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Abstract
Online learning has become increasingly important, having in mind the latest events, 
imposed isolation measures and closed schools and campuses. Consequently, teachers and 
students need to embrace digital tools and platforms, bridge the newly established physi-
cal gap between them, and consume education in various new ways. Although literature 
indicates that the development of intelligent techniques must be incorporated in e-learning 
systems to make them more effective, the need exists for research on how these techniques 
impact the whole process of online learning, and how they affect learners’ performance. 
This paper aims to provide comprehensive research on innovations in e-learning, and pre-
sent a literature review of used intelligent techniques and explore their potential benefits. 
This research presents a categorization of intelligent techniques, and explores their roles 
in e-learning environments. By summarizing the state of the art in the area, the authors 
outline past research, highlight its gaps, and indicate important implications for practice. 
The goal is to understand better available intelligent techniques, their implementation and 
application in e-learning context, and their impact on improving learning in online educa-
tion. Finally, the review concludes that AI-supported solutions not only can support learner 
and teacher, by recommending resources and grading submissions, but they can offer fully 
personalized learning experience.
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1 Introduction

In the last years, education at all levels has witnessed a substantial increase in the num-
ber of learning technologies supporting the traditional classroom environments. Moreo-
ver, online and distance learning has become increasingly essential, considering the latest 
events with the pandemic, imposed isolation measures, and closed schools and campuses. 
Due to these recent trends and circumstances, teachers and learners need to embrace learn-
ing technologies (e.g., digital tools and platforms) to bridge the newly established physi-
cal gap between them and consume education in various new ways. Therefore, the focus 
is shifting from developing infrastructures and delivering information online to join-
ing interdisciplinary efforts to improve the overall online learning experience (Shute and 
Towle 2003). These changes in our educational systems have brought a growing interest 
in exploiting digital traces that learners leave behind while interacting with learning tech-
nologies through artificial intelligence (AI), big data (Daniel 2015), and learning analytics 
(Siemens 2013) innovations.

Moreover, teachers are frequently challenged by the demands of providing scalable yet 
personalized and adaptive feedback that can promote learning in the online setting. Those 
efforts largely depend on correctly identifying the characteristics of a particular learner, as 
they differ in knowledge and skills, cognitive abilities, performance, and the learning strat-
egies they tend to use (Van Seters et al. 2012).

Based on the research needs identified in Becker et al. (2018), Mangaroska and Gianna-
kos (2017), Mote et al. (2016), the paper summarizes intelligent techniques used in e-learn-
ing and presents findings on their roles in enhancing educational systems. The goal is to 
discover and evaluate AI-based techniques used in e-learning and quantify the benefits they 
offer to the learning process. Thus, we propose the following goals is to:

• classify and analyze the publications from the area,
• identify and categorize various intelligent techniques used in online learning,
• identify their roles in the specific systems and provide an overview of gain results con-

cerning learner engagement and performance,
• discuss the future trends and challenges in the e-learning context.

To address the defined goals, the paper addresses the following research questions:

• RQ1 Which intelligent techniques are designed, implemented, and used in e-learning 
environments, and for which purposes?

• RQ2 How do different intelligent techniques impact learners’ attitudes, motivation, and 
overall performance in online learning platforms?

• RQ3 What are the challenges and unreached potential of implementing intelligent tech-
niques in e-learning?

Special focus will be directed towards identifying the influence on learners’ attitudes–how 
learners respond towards something (Smidt et  al. 2014), motivation–reason or desire for 
learning (Rakic et al. 2019), and performance–how well students are learning in terms of 
knowledge and skills development (Elezi and Bamber 2021). Even though the paper does 
not focus on any specific e-learning domain, the majority of the identified systems are from 
the computer science education area. However, the review also identified numerous sys-
tems for learning languages, mathematics, physics, biology, etc.



Intelligent techniques in e-learning: a literature review  

1 3

A thorough literature review has been conducted to answer the proposed questions, and 
a detailed categorization of the concepts that synthesize and extend existing research in 
the area of intelligent techniques in online education is offered. By summarizing the state 
of the art in the area of intelligent techniques in online education, the authors will try to 
outline past research, highlight its gaps, and indicate essential implications for practice. 
By creating the review of earlier and recent work, it will become possible to understand 
theoretical concepts and terminology and identify areas in which further research would be 
beneficial.

The remainder of the paper is organized as follows. Section 2 presents the related work 
relevant to this study, including intelligent techniques in e-learning and previous review 
studies. The used methodology is presented in Sect. 3 describing the studies selection and 
analysis process. Section  4 presents the research findings, qualitative and quantitative, 
derived from the collected data. Section 5 answers the defined research questions before 
discussing the results in Sect. 6. Finally, Sect. 7 concludes the paper and provides sugges-
tions for future research.

2  Related work

The use of intelligent techniques in e-learning has a role in providing context-aware and 
context-sensitive resources based on what is available and relevant to the needs or motiva-
tions of the learner, considering the learners’ emotional states too (FitzGerald et al. 2018). 
Researchers have identified the need to incorporate emerging intelligent technologies to 
enable e-learning systems to offer personalized learning content, automatic guidance, feed-
back, and adaptive learning paths and interfaces (Tang et al. 2021).

An overview of the recent findings in this research field has been presented in several lit-
erature reviews (Table 1). The reviews are mainly focused on specific areas of use of intel-
ligence, such as the use of machine learning techniques (Alenezi and Faisal 2020; Farhat 
et  al. 2020; Khanal et  al. 2020; Tang et  al. 2021), educational data mining (Al-Razgan 
et al. 2014; Du et al. 2020; Dutt et al. 2017; Martins et al. 2018; Silva and Fonseca 2017), 
knowledge tracing (Am et al. 2021; Dai et al. 2021), learning analytics (Banihashem et al. 
2018; Bruno et al. 2021; Leitner et al. 2017; Melesko and Kurilovas 2018b; Mangaroska 
and Giannakos 2018), learner modeling (Abyaa et al. 2019; Chrysafiadi and Virvou 2013; 
Jando et al. 2017), and different kinds of intelligent agents (Hobert and Meyer von Wolff 
2019; Martha and Santoso 2019; Soliman et al. 2010) in e-learning. In addition, intelligent 
techniques might be used to visualize learners’ data (Bodily et al. 2018; Hooshyar et al. 
2020; Matcha et al. 2019a) or for different purposes in intelligent tutoring systems (Alkhat-
lan and Kalita 2019; Dermeval et al. 2018; Mousavinasab et al. 2021) and learning man-
agement systems (Alshammari et al. 2016; Kasim and Khalid 2016; Oliveira et al. 2016).

Contrary to these review studies that focus on the narrow segments of AI in e-learning 
research, this study tries to grasp the broad picture of used methods and techniques and 
form the theoretical framework of technology-based learning models. The study will iden-
tify the core research trends based on longitudinal publication evidence. However, without 
a whole picture regarding the advancements of AI and the use of intelligent techniques in 
e-learning, some important research directions could be ignored, and some could be over-
emphasized, particularly by novice researchers in this field. Therefore, the importance of 
conducting a systematic literature review in this area is of great importance. The findings 
of the presented study can serve as a reference for educators and researchers from the area. 



 M. Ilić et al.

1 3

Visualizing of a research network will help researchers identify core papers in the focal 
network and highlight networking relationships among core papers for future research 
directions.

Based on the suggestions of several systematic review studies (Mousavinasab et  al. 
2021; Tang et  al. 2021), this study analyzes research conducted in the past decades on 
the application of AI in e-learning and presents the patterns of publications and research 
trends.

3  Methodology

To conduct the literature review, we followed the guidelines given by Kitchenham and 
Charters (2007). This methodology was chosen as: (1) it provides precise and excellent 
guidance for performing reviews; (2) it has been proven as effective for similar literature 
reviews the authors have performed in the past; and (3) it is applicable to almost any field.

The selection of publications has been executed into two phases. First, we determined 
keywords that will be used to search the papers. After detailed consideration, the follow-
ing keywords were selected: e-learning, intelligent, techniques, approach, personalization, 
implementation, system. To get the best search results, the combination of these keywords 
was applied in search using Boolean operators AND and OR.

The following search string queries were used to obtain papers from various databases:

• E-learning AND Intelligent AND (Techniques OR Approach)

Table 1  Available literature reviews

Category Publications

Techniques
 Machine learning Alenezi and Faisal (2020), Farhat et al. (2020), Khanal et al. (2020), Tang 

et al. (2021)
 Educational data mining Al-Razgan et al. (2014), Du et al. (2020), Dutt et al. (2017), Martins et al. 

(2018), Silva and Fonseca (2017)
 Knowledge tracing Am et al. (2021), Dai et al. (2021)
 Learning analytics Banihashem et al. (2018), Bruno et al. (2021), Leitner et al. (2017), Man-

garoska and Giannakos (2018), Melesko and Kurilovas (2018b)
 Learner modeling Abyaa et al. (2019), Chrysafiadi and Virvou (2013), Jando et al. (2017)

Environments
 Intelligent tutoring systems Alkhatlan and Kalita (2019), Dermeval et al. (2018), Mousavinasab et al. 

(2021)
 Learning management systems Alshammari et al. (2016), Kasim and Khalid (2016), Oliveira et al. (2016)

Intelligent agents
 Multi-agent Soliman et al. (2010)
 Pedagogical agents Hobert and Meyer von Wolff (2019), Martha and Santoso (2019)

Visualization of learners’ data
 Open learner models Bodily et al. (2018), Hooshyar et al. (2020)
 Learning analytics dashboards Bodily et al. (2018), Matcha et al. (2019a)
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• E-learning AND Personalization AND Intelligent AND (Techniques OR Approach)
• E-learning AND Intelligent AND (Techniques OR Approach) AND Implementation
• E-learning AND Intelligent AND (Techniques OR Approach) AND System

To get as many papers available on the internet, related to the topic of intelligent tech-
niques in e-learning, we used seven different databases for the searching process. The fol-
lowing databases were searched using the defined search string queries: Google Scholar, 
Scopus, Springer Link, Science Direct, Web of Science, IEEE Xplore, and ACM Digital 
Library. After initial search, a total of 8729 papers were found.

The Second phase included filtering insufficient and irrelevant papers. After the removal 
of duplicate papers, 5820 papers remained. Afterwords, the following inclusion criteria has 
been defined: 

1. Presentation of intelligent technique(s) applied in e-learning,
2. Specific use of intelligent technique(s) in e-learning,
3. Overview of e-learning systems that implement intelligent technique(s),
4. Inclusion of specific roles of intelligent technique(s) in e-learning,
5. Articles that had full text,
6. Article is available in English.

First, we filtered all papers by screening titles, abstracts, and keywords. The papers that 
met the inclusion criteria were then selected, a total of 782.

The exclusion criteria to determine which papers would enter the final selection is: 

1. Not applicable to this research,
2. Not related to the research questions,
3. Multiple publications covering the same topic/system.

After excluding some papers with the above exclusion criteria and rechecking the inclusion 
criteria, a total of 305 papers entered the final selection. Papers from this final selection 
were then fully analyzed, classified, and categorized.

4  Intelligent techniques in e‑learning—findings

An e-learning course should not be designed in a vacuum; rather, it should match learners’ 
needs and desires as closely as possible, and adapt during course progression (Graf and 
List 2005; Ruiz et al. 2008; Mikić et al. 2022). To achieve that, online learning environ-
ments must:

• Create and build learner model by collecting data about learners, identifying their 
progress, activities, and needs using various data mining techniques, but also pro-
vide learners with possibilities to view and analyze their data through means of open 
learner model.

• Measure, collect, analyze, and report data about learners via learning analytics.
• Offer adaptive assessment customized to each examinee based on their previous per-

formance.
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• Customize learning towards each learner’s strengths, needs, skills, and interests by 
implementing fully personalized approach.

Online learning environments must meet these four requirements in order to provide a 
truly adaptive teaching and learning experience (Vesin et al. 2018; Chatti et al. 2013). Sup-
porting these elements in online learning environments could allow learners to efficiently 
acquire a variety of professional skills and competencies. E-learning systems use different 
intelligent techniques, primarily AI-based algorithms, intelligent agents, and data mining, 
to successfully implement such a personalized approach. In that regard, this review will 
cover the intelligent techniques, used in online education in four broad areas: learner mode-
ling (profiling and prediction); learning analytics; adaptive assessment and evaluation; and 
adaptive and personalized learning (Zawacki-Richter et al. 2019). Even though most of the 
techniques presented in this review clearly represent AI or can be applied in AI (techniques 
like artificial neural networks, fuzzy logic, Bayesian network, etc.), some of them are not 
regarded as AI (item response theory, Elo rating algorithm) but are used in e-learning to 
provide intelligent approaches to achieve adaptation, assessment or learner modeling.

4.1  Qualitative findings

4.1.1  Learner modeling

Learners have different motivations, prior knowledge, personalities, emotions, and learning 
habits, all of which can have an impact on their educational process (Abyaa et al. 2019). As 
a result, supplying each learner with tailored learning content is no longer an option, but a 
necessity. Understanding the learners may help teachers design better instruction and mate-
rials, but it can also assist learners in becoming more aware of how they learn best.

Learner modeling is the act of gathering and updating data about a learner over time 
using well-defined procedures. The stages of this procedure are (1) obtaining initial data 
on the learner’s attributes, (2) model construction, and (3) updating the learner model by 
watching and tracing the learner’s activities (Abyaa et al. 2019; Vagale and Niedrite 2012).

Literature review, presented in Abyaa et  al. (2019) analyzes the works in the area 
and identifies three main areas of interest regarding learner modeling: the modeling 
approaches, the modeling techniques, and the learner characteristics being modeled. 
In addition, we identified another aspect of learner modeling that should be investigated in 
more detail - used technologies and standardization efforts.

The learner model can be implemented using two different modeling approaches: 
knowledge-based and behavioral-based (Ahmed et  al. 2017). These two approaches are 
used in e-learning to acquire substantial information about learners needed to create a 
learner model. Knowledge-based approach gathers learner data through examination, ques-
tionnaires, learner interests, and learners’ learning routines. The behavioral-based approach 
collects learner data only by observing learners’ system activities and processes.

Regarding the question of which learner’s data is being collected, six major catego-
ries of modeled characteristics were identified in the literature, depending on the used 
approach: the learner profile (mostly learner personal information and static data), knowl-
edge (knowledge level, competencies, skills errors, misconceptions), cognitive character-
istics (learning and thinking styles, cognitive states, learner’s behavior), social character-
istics (interactions, culture, social style), motivation (interests, learning goals, engagement 
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and affect), and personality (Abyaa et al. 2019). These characteristics represent the type of 
learner data that is being collected and then used for modeling.

Influenced by the modeling approach and the defined goals of e-learning system, five 
modeling techniques can be identified (Abyaa et al. 2019): predictive modeling tech-
niques (De Morais et al. 2014), clustering and classification techniques (Moubayed et al. 
2020), overlay modeling (Ahmadaliev et  al. 2019), uncertainty modeling (Al-Shanfari 
et al. 2017), and ontology-based learner modeling (Akharraz et al. 2018; Rezgui et al. 
2014). These techniques are used for modeling learner models using collected data.

Some typical examples of e-learning systems that use a knowledge-based approach 
for learner modeling are Zebra (Nguyen 2014) (ontology-based learner modeling tech-
nique, with modeled characteristic knowledge), AdaptLearn (Alshammari et  al. 2015) 
(uncertainty modeling technique, with cognitive modeled characteristics), and Learn-
ing Java (Yau and Hristova 2018) (uncertainty modeling technique, with cognitive mod-
eled characteristics). Some typical examples of e-learning systems that use a behav-
ioral-based approach for learner modeling are DEPTHS (Jeremić et al. 2012) (overlay 
technique, with modeled characteristic knowledge), INSPIREus (Papanikolaou 2014) 
(clustering and classification technique, with modeled characteristics knowledge and 
motivation), and My Math Academy (Thai et al. 2021) (predictive modeling technique, 
with modeled characteristic knowledge).

Numerous online courses and e-learning platforms have been created independently, 
frequently at great expense. Furthermore, such content and systems are often, if not always, 
unprepared to communicate or share data. Systems must be able to read and understand 
other systems’ data structures to communicate and interoperate, therefore need extensive 
standardization efforts. Shareable Content Object Reference Model, or SCORM, is a set 
of technical standards for e-learning software products (Poltrack et al. 2012). Due to cur-
rent web trends and the SCORM standard inflexibility for formal education, a new strategy 
and transition to the development of a new standard were needed, and it was necessary to 
switch to Experience API (xAPI). The xAPI represents a specification that enables differ-
ent learning technologies to capture data about a person’s or a group’s wide range of learn-
ing experiences in a consistent format using the xAPI vocabulary (Karoudis and Magou-
las 2018). It provides a learner-centered model for learning data collection and learning 
process recording (Sun et  al. 2020). With this technology, experiences can be collected 
in the form of statements and stored in a learner record store that syncs learning activi-
ties across platforms and devices (Smith et al. 2018; Zapata-Rivera and Petrie 2018). As a 
result, learning applications could make use of much more complete data to support learn-
ers with visualizations and interventions (Neitzel et al. 2017). E-learning systems can more 
effectively adapt instruction when they have more accurate models of the learner’s prior 
knowledge or competency (Sottilare et al. 2017).

4.1.1.1 Open learner models Open Learner Model (OLM) is a contemporary approach 
to represent the current state of the learner’s knowledge (Ahmad 2013). OLM can be 
understood as learner models that allow a user, usually the learner, to view the internal 
system’s learner model data in a human-understandable form (Kay and Bull 2015). They 
externalize the inferred learner model contents to the learner (or another user), usually 
with some kind of visualization (Bull et al. 2016). Through the OLM, where this infor-
mation is modeled, learners can access information about their current level of knowl-
edge, difficulties in the subject area, and any misconceptions they may have. Opening the 
learner model to the learners can offer them a useful additional learning resource (Vesin 
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et  al. 2018), help them to understand better their learning (Barria Pineda and Brusi-
lovsky 2019), promote reflection, and encourage learners to take greater responsibility 
for organizing their learning (Long and Aleven 2017).

In OLM, the knowledge level of learners is typically represented in the form of skillom-
eters (Albó et al. 2019), concept maps (Bull 2020), and hierarchical tree structures (Conejo 
et al. 2011). In addition to these three most used display models, there are also other types 
of visualization in OLM such as bar graphs and pie charts (Papanikolaou 2014), the grids 
(Guerra et al. 2018), bullets (Brusilovsky and Yudelson 2008), circles (Hsiao et al. 2013), 
smilies (Bull and McKay 2004), treemaps (Brusilovsky et  al. 2011), stars, gauges, word 
clouds, tables, histograms, network diagrams, and radar plots (Bull et al. 2015, 2016).

Based on the main goal of the implemented OLM, Bull and Kay (2010) identified sev-
eral categories of OLMs:

• Inspectable–which promote reflection and planning (Bull et al. 2010).
• Editable–where the user can directly change the model assessment and system’s repre-

sentation of their knowledge at will (Conati et al. 2018).
• Challenged–where learner may challenge their model, and justify the changes they 

make to the model (Bull and Kay 2010).
• Co-operative–where learning model is built together by both learners and system 

(Hamzah 2018).
• Persuaded–which allow learners to change their learner models but they are required to 

demonstrate their competency before the system can agree with the changes they made 
(Suleman et al. 2016).

• Add-evidence–where learner can contribute additional evidence for changing his learn-
ing model (Kay and Kummerfeld 2019).

• Negotiated–which allow learners to negotiate and potentially modify their model 
(Thomson and Mitrovic 2009).

For challenged, cooperative, persuaded, add-evidence, and negotiated OLMs, there is a 
variety of guiding tools for learners to use during the negotiation process, some regular 
like menu selection, collaborative tools, and negotiation with the teacher, but also some 
AI guiding tools such as pedagogical agents, conversational agents, and dialogue games 
(Nakahashi and Yamada 2021; Bull and Kay 2010; Zapata-Rivera et  al. 2007). A nego-
tiation mechanism using these AI guiding tools has been used in OLM to enhance learner 
model accuracy and provide opportunities for learner reflection (Suleman et  al. 2016). 
More detailed overview of intelligent agents and their use in e-learning will be provided in 
Sect. 4.1.7.

Employing OLM in e-learning systems is very important for learners because it can 
assist their learning and enable them to monitor and analyze their advancement and devel-
opment. Learner modeling and OLM are not intelligent techniques per se, but to fully grasp 
their potential, e-learning environments use various data mining techniques to success-
fully collect and visualize data about learners, their knowledge, activities, and needs, and 
knowledge tracing techniques for modeling and predicting learners’ knowledge, perfor-
mance, and future interaction.
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4.1.2  Educational data mining

Data mining is an effective tool to extract meaningful and interesting patterns from the cur-
rent and historical data stored in data warehouses or data repositories, to be analyzed and 
predict future trends (Prabha and Shanavas 2015). In the context of educational research, 
data mining is known as Educational Data Mining (EDM). EDM is defined as the area 
of scientific inquiry centered around the development of methods for making discoveries 
within the unique kinds of educational data and using those methods to understand learners 
better and the environments in which they learn (Baker 2010).

The most common uses of EDM are for supporting learners in course selection, learn-
ers’ profiling, finding problems leading to dropout, learners’ targeting, curriculum develop-
ment, predicting learners’ performance, and as a support for decision-making at learner 
enrollment (Zorić 2020).

The benefits of EDM are numerous, including enhancing the quality of education, 
improving current study programs and educational practice, improving teaching, advanc-
ing the process of studying, improving learners’ academic performance, reducing learners’ 
failure rates, increasing course completion percent, and helping educational management 
to be more efficient and effective (Abu Tair and El-Halees 2012; Kumar and Chadha 2011; 
Zorić 2020).

The five most commonly used techniques in the educational domain found in the litera-
ture are: prediction, clustering, relationship mining, distillation for human judgment, and 
discovery with models (Bienkowski et al. 2012). Each of these techniques can be used to 
quantitatively analyze large data sets to find hidden meaning and patterns (Huebner 2013).

Prediction entails developing a model that can infer a specific element of the data (pre-
dicted variable) from a set of predictor variables (Bienkowski et al. 2012). This technique 
is used in e-learning to analyze learner data and predict outcomes. The types of prediction 
methods are classification (target variable is a category), regression (target and background 
variables are numbers), the density score (predicted value is the probability density func-
tion) (Grigorova et  al. 2017). Examples of e-learning systems using prediction are AL-
TESL-e-learning system (Wang and Liao 2011) for the classification of learner character-
istics and learning performances and Junyi Academy (Paquette et  al. 2020), which uses 
regression to analyze and extract information from both human annotations and usage logs.

Clustering is the process of grouping a set of objects into classes of similar objects (Asif 
et al. 2017). In e-learning, cluster analysis can be used to investigate similarities and differ-
ences between learners, courses, teachers, etc (Zorić 2020). Typical examples of e-learn-
ing systems using this technique are dotLRN (Köck and Paramythis 2011) for monitor-
ing and interpreting sequential learner activities and ESURBCA (Suresh and Prakasam 
2013), which uses this technique to get consistency in content delivery, quality content in 
learning materials, learners’ self-learning concepts, and performance improvement in their 
examination.

Relationship mining is the process of identifying relationships among variables in a 
dataset and encoding them as rules for subsequent use (Wibawa et al. 2021). The key appli-
cation of this technique in e-learning is identifying relationships in learner behavior pat-
terns and diagnosing learner difficulties (Romero and Ventura 2020). Different types of 
relationship mining exist, such as association rule mining (relations between variables), 
sequential pattern mining (temporal association between variables), correlation mining 
(linear correlation between variables), and causal data mining (the causal relationships 
between variables) (Grigorova et al. 2017). Typical examples of e-learning systems using 
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relationship mining are eDisiplin (Man et al. 2018), which uses association rules to dis-
close some useful patterns for decision support, ESOG (Ougiaroglou and Paschalis 2012), 
which uses this technique to discover all hidden associations that satisfy some user-prede-
fined criteria, and Blockly programming App (Shih 2018), which uses sequential pattern 
mining to find the sequence patterns of app functions accessed by users.

Distillation for human judgment is a process of representing data using visualization 
and interactive interfaces to enable humans to quickly identify or classify data features 
(Wibawa et  al. 2021). The key application of this technique in e-learning is helping 
instructors visualize and analyze the ongoing activities of the learners and their use of 
information (Romero and Ventura 2020). A typical example of an e-learning system for 
distillation for human judgment is Canvas (Arnold and Pistilli 2012), which utilizes this 
technique to model learner and instructor usage data and to examine the relationship 
between these models and learner learning outcomes.

Discovery with models is a technique that uses a model developed via prediction, 
clustering, or by human reasoning knowledge engineering and then used as a com-
ponent in further analysis (Hicham et  al. 2020). It can be used to find relationships 
between learner behavior and learner characteristics or contextual variables, analysis of 
research questions in various contexts, and integration of psychometric modeling frame-
works into machine learning models (Bienkowski et al. 2012). A typical example of an 
e-learning system using this technique is the Cisco Networking Academy (Mislevy et al. 
2012), which uses it for online assessment.

Using data mining in e-learning will enable the analysis of learners’ data collected 
from e-learning environments to discover hidden knowledge and recognize patterns, 
which can then be used to improve learning.

4.1.3  Knowledge tracing

The rapid development of computer-supported education environments and e-learning 
platforms provide abundant learners’ exercise data for Knowledge Tracing (KT) (Chen 
et  al. 2018). KT is the task of modeling learner knowledge over time so that we can 
accurately predict how learners will perform on future interactions (Piech et al. 2015). 
Its working mechanism is to take observations of a learner’s performance (e.g. the cor-
rectness of the learner response in a practice opportunity) or a learner’s actions (e.g. 
the time he stayed for a question), and then use those to estimate the learner’s underly-
ing hidden attributes, such as knowledge, goals, preferences, and motivational state, etc 
(Gong et al. 2010).

The following are the most important advantages of KT in e-learning environments:

• Predicting learner’s performance. KT records learners’ knowledge states over time 
in order to estimate their progress toward mastering the required knowledge compo-
nents and, as a result, can predict a learner’s performance (Yang and Cheung 2018).

• Giving strong feedback to teachers. Data obtained from KT could be used to warn 
the teacher in case the learner has not mastered the skills that are required by a given 
subject (Casalino et al. 2021).

• Helping in the process of personalization. KT assists an e-learning system in providing 
learners with more effective and personalized instruction material (Penmetsa 2021).
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• Assisting the learner’s needs. KT enables us to grasp the current needs of learners 
and to recommend questions accurately (Zhang et al. 2020).

• Maintaining learners’ motivation during the learning process. KT can help learn-
ers improve their self-motivation in learning and achieve personalized guidance by 
automatically detecting their weak knowledge points (Zou et al. 2020).

• Improving learners’ learning efficiency. Predicted learners’ performance can be used 
to personalize their learning schemes and increase their learning efficiency (Shen 
et al. 2021).

The most known techniques for KT are Bayesian knowledge tracing and deep knowledge 
tracing.

A family of methods called Bayesian Knowledge Tracing (BKT) uses probabilistic 
methods and machine learning to model learners’ skill acquisition in e-learning systems 
(David et  al. 2016). The original BKT model was proposed by Corbett and Anderson 
(1994). E-learning systems that utilize BKT can predict learner performance (Qiu et  al. 
2011). BKT is a specific type of dynamic Bayesian network, or more precisely, of hid-
den Markov models consisting of observed and latent variables (performance and skills) 
(Schodde et  al. 2017). BKT takes learner performances and uses them to estimate the 
student’s level of knowledge (Gong et al. 2010). BKT assumes that student knowledge is 
represented as a set of binary variables, one per skill (the skill is either mastered by the 
student or not) (Yudelson et al. 2013). They are updated based on the correctness of stu-
dents’ answers to questions that test the skill under investigation; hence observations are 
also binary (Käser et al. 2014). Some of the typical e-learning systems based on BKT are 
CRYSTAL ISLAND (Rowe and Lester 2010), ASSISTment (Pardos and Heffernan 2010), 
edX (Pardos et  al. 2013), Coursera (Wang et  al. 2016), Robot language tutor (Schodde 
et al. 2017), and SITS (Hooshyar et al. 2018).

Deep Knowledge Tracing (DKT) proposed by Piech et al. (2015) utilizes recurrent neu-
ral network to model student learning. DKT aims to automatically trace learners’ knowl-
edge states by mining their exercise performance data (Yang and Cheung 2018). In the 
DKT algorithm, at any time step, the input to recurrent neural networks is the learner per-
formance on a single problem of the skill that the learner is currently working on (Xiong 
et al. 2016). As a learner progresses through an assignment, the DKT algorithm attempts 
to utilize information from previous timesteps, or problems, to make better inferences 
regarding future performance (Zhang et al. 2017b). Specifically, based on learner historical 
answered questions, it can predict learner performance on future questions with high accu-
racy (Wang et al. 2019). Typical examples of e-learning systems based on DKT are Khan 
academy (Piech et al. 2015) and Udacity (Kim et al. 2018).

Many other authors have developed their own models for KT through the years. 
Dynamic Key-Value Memory Networks (DKVMN) presented in Zhang et al. (2017a) can 
exploit the relationships between underlying concepts and directly output a learner’s mas-
tery level of each concept. DKVMN is a variant of memory-augmented neural networks, a 
type of model that adds storage modules and corresponding read-write mechanisms based 
on traditional neural networks (Sun et al. 2021). Sequential Key-Value Memory Networks 
(SKVMN) (Abdelrahman and Wang 2019) is also a deep learning model for KT proposed 
by Abdelrahman & Wang, which unifies the strengths of recurrent modeling capacity and 
memory capacity of the existing deep learning KT models for modeling learner learning. 
Pavlik Jr et al. (2009) presented Performance Factors Analysis (PFA) as a new alternative 
to KT, where they compared these two models, and results suggested that the PFA model 
was somewhat superior to the KT model overall. PFA predicts learner performance based 
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on the item difficulty and learner historical performances (Gong et  al. 2010). Pu et  al. 
(2021) presented Deep Performance Factors Analysis (DPFA) for KT, which consistently 
outperforms PFA and DKT and has results comparable to those of DKVMN. Chen et al. 
(2018) developed a new KT model named PDKT-C to estimate learners’ knowledge states 
better. González-Brenes et al. (2014) presented FAST (Feature Aware Student Knowledge 
Tracing), an efficient, novel method that allows integrating general features into KT. Pan-
dey and Karypis (2019) proposed a self-attention-based knowledge tracing model named 
SAKT, which models a learner’s interaction history and predicts his performance on the 
next exercise by considering the relevant exercises from his past interactions. Trifa et al. 
(2019) proposed Mod-Knowledge, an intelligent agent that analyzes the learner interaction 
to trace the learner’s knowledge state using machine learning algorithms.

The main current challenge is to support KT with the psychological and behavioral 
aspects of the teaching process, linked specifically to learning design.

4.1.4  Learning analytics

Educational data is growing rapidly as an increasing number of education systems are 
going online (Krikun 2017). Extensive data sets are available from learners’ interactions 
with educational software, and online learning (Koedinger et al. 2010; Siemens and Baker 
2012). E-learning environments automatically capture system-based records of users’ 
activities, recording who accessed what and when (Phillips et  al. 2011). The analysis of 
this data can improve learning models to predict the results of learners, for example, to dis-
tinguish who needs extra help or who can solve a more complex task to develop additional 
skills (Mamcenko and Kurilovas 2017).

Learning Analytics (LA) can be defined as the analysis of electronic learning data, 
which allows teachers, course designers, and administrators of learning environments to 
search for unobserved patterns and underlying information in learning processes (Agudo-
Peregrina et al. 2014). LA has the ability to interpret the unusual behaviors of learners, rec-
ognize patterns in learning, identify potential issues or gaps, conduct appropriate interven-
tions, and increase learners’ awareness of their actions and development (Mangaroska and 
Giannakos 2018; Siemens and Long 2011). It employs sophisticated analytic tools and pro-
cedures to investigate and visualize large institutional data sets in the service of improving 
learning and teaching (Brown 2011; Macfadyen and Dawson 2012; Shum and Ferguson 
2012). The majority of techniques employed by LA are derived from EDM, but in addition 
to these techniques, LA also incorporates social network analysis and statistical analysis 
(Bienkowski et al. 2012; Romero and Ventura 2020).

EDM techniques used for LA include prediction, clustering, relationship mining, distil-
lation for human judgment, and discovery with models. Examples of e-learning systems 
that use some of the EDM techniques are Desire2Learn, Shehata and Arnold (2015) which 
uses prediction to improve learner success, retention, completion, and graduation rates, and 
Blackboard Vista (Arnold and Pistilli 2012), which employs distillation for human judg-
ment for LA.

Social network analysis records learners’ online interactions to gauge their participa-
tion and engagement level (Czerkawski 2015). The purpose of social network analysis is 
to determine and understand the relationships between learners in a network environment 
such as discussion forums or social media (Wibawa et al. 2021). A typical example of an 
e-learning system that uses this technique is OSBLE+ (Olivares et al. 2019), which uses 
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social network analysis to determine whether exposure to automated interventions would 
positively affect the relationship among learners over time.

Statistical analysis is used for the analysis and interpretation of quantitative data for 
decision-making (Leitner et al. 2017). By using statistical analysis in e-learning environ-
ments, we can count the number of visits, analyze mouse clicks, and calculate time spent 
on tasks (Khalil and Ebner 2015). A typical example of e-learning system using this tech-
nique is OU Analyse (Herodotou et al. 2020), which uses a variety of advanced statistical 
approaches to identify learners who are at risk of failing their studies.

Visualization of data obtained using these techniques is mainly done using learning 
analytics dashboards. For learners and teachers alike, they should be able to see a visual 
representation of their activities and how they relate to those of their classmates or other 
participants in the learning process (Duval 2011).

A Learning Analytics Dashboard (LAD) is a single display that aggregates different 
indicators about learners, learning processes, and learning contexts into one or multiple 
visualizations (Schwendimann et  al. 2016). LAD provides educators and learners with a 
comprehensive snapshot of the learning domain (Ramaswami et  al. 2022). LAD display 
insights, trends, and changes in data over time, mainly using different types of charts and 
various widgets. They present data clearly and efficiently, and they are very intuitive for 
both teachers and learners. The main goal of LAD for educators is to assist them in getting 
learners’ feedback either during or after lectures so they can use this information to modify 
and adjust their instructions, lessons, guidance, and tutoring (Verbert et  al. 2014). Also, 
teachers can use this feedback for checking each learner’s learning progress and providing 
proper interventions (Kim et al. 2016).

The LAD and OLM have similar goals. Both the LAD and OLM aim to make data avail-
able to help learners interpret aspects of their learning (Kay and Bull 2015). OLM shows 
the learner model to users, with some visualization, to assist their self-regulated learning 
by, for example, helping prompt reflection, facilitating planning, and supporting navigation 
(Guerra-Hollstein et al. 2017). Even though OLM and LA are similar areas concerning the 
visualization of learners’ data (in general), they are different in that OLM is more inclined 
toward visualization of the learner’s level of knowledge (progress), difficulties, and mis-
conceptions, while LA is rather more based on results towards prediction, recommenda-
tion, and also semantic aggregation (Hooshyar et al. 2019; Kay and Bull 2015). In addition, 
a significant difference is that OLMs are grounded on work in “student modeling”, “learner 
modeling”, and even the broader “user modeling”, whereas dashboards are more broadly 
grounded in data-driven decision-making, which often includes goals, stakeholders, and 
decision-making outside of the context of the learner model (Bodily et al. 2018).

LA has the potential for a tangible positive impact on learner learning by supporting 
learning strategies and tactics (Knight et al. 2020). Learning strategies can be defined as 
the behaviors of a learner that are intended to influence how the learner processes infor-
mation (Mayer 1988; Gasevic et  al. 2017). A learning tactic is a single or a very short 
sequence of operations a learner applies to information (Winne and Marzouk 2019). Tra-
ditionally, learning strategies and tactics are usually discovered using surveys, question-
naires, or think-aloud protocols. In e-learning, LA has the potential to detect and explain 
characteristics of learning strategies and tactics through analysis of trace data and com-
municate the findings via feedback (Matcha et al. 2019b). Such LA approaches provide a 
direct analysis of the users’ “actual” behavior in lieu of the learners’ perception, and recall 
of events (Jovanović et al. 2017).

After collecting the learners’ data and discovering their learning strategies and tactics 
via LA, learning designers use this valuable information for learning design. Learning 
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design can be defined as an application of a pedagogical model for a specific learning 
objective, target group, and a specific context or knowledge domain (Koper and Olivier 
2004). Learning designers use summative, real-time, and predictive LA to increase the 
quality of the curriculum, materials, scaffolds, and assessments (Ifenthaler 2017). Learning 
design and LA can help teachers in designing quality learning experiences for their learn-
ers, evaluate how learners are learning within that intended learning context, and support 
personalized learning experiences for learners (Lockyer and Dawson 2011).

LA can be a powerful tool in e-learning environments. Using LA in e-learning can assist 
in identifying potential issues or gaps in learners, and then instructors can use this informa-
tion to optimize learning and improve learners’ success.

4.1.5  Adaptive assessment

In traditional education, most assessments present the same set of questions to all learn-
ers. While such examinations are relatively simple to develop, they do not reveal what 
each learner is genuinely capable of. There may be learners who know more than their test 
results display. Alternatively, learners may answer some questions poorly but might dem-
onstrate a higher level of knowledge if given more straightforward questions. If all learners 
are asked the same questions, the information provided by the results may be limited.

In contrast, adaptive assessment is adjusted to learner responses by analyzing their 
range of skills and proficiency levels and defining a tailored learning route for a specific 
learner. Such adaptive assessment systems are also known as computerized adaptive 
testing, which represents a special case of computer-based testing where each examinee 
takes a unique test that is tailored to their ability level (Triantafillou et al. 2008). With 
the use of adaptive testing, the evaluation system is more accurate in measuring the 
ability of the learner. It can accommodate the diversity of learner capabilities to provide 
learning materials for the system according to the level of learner’s proficiency (Kusti-
yahningsih and Cahyani 2013). A computer-based adaptive assessment provides highly 
accurate results that can recognize the mastered competencies of each learner, deter-
mine educational requirements, track educational advancement throughout time, and 
place learners in educational programs that suit them (Raman and Nedungadi 2010).

The most valuable benefits of adaptive assessments in online learning environments are:

• Increased assessment precision. Adaptive testing allows quickly identifying a candi-
date’s accurate knowledge level by precisely narrowing down the range of a learner’s 
ability (Chrysafiadi et al. 2020; Krouska et al. 2018).

• Increased effectiveness. Compared to traditional assessments, the adaptive element 
of the assessment allows for more accurate estimates of a candidate’s knowledge 
(Hubalovsky et al. 2019; Mangaroska et al. 2019).

• Enhanced learners’ experience. Matching questions to the learner’s actual level of 
ability prevents learners from seeing questions that are too difficult or too easy and 
reduces the likelihood that they will feel overwhelmed, discouraged, or bored. A 
more learner-friendly assessment experience can increase learners’ acceptance level 
(Hariyanto and Köhler 2020).

The most common intelligent techniques used in e-learning software development to match 
learners’ proficiency level are item response theory, Elo rating algorithm, and TrueSkill.
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Item Response Theory (IRT) is a conceptual framework that is based on basic measure-
ment concepts using statistical and mathematical tools (Salcedo et al. 2005). IRT has roots 
in psychometrics and is concerned with accurate test scoring and the development of test 
items. It is usually used in the adaptive assessment systems domain to calibrate and evalu-
ate items in a test and to score learners’ abilities, attitudes, or other latent traits (Dahl and 
Fykse 2018). IRT models enable estimation of the skill level of each learner and its evolu-
tion over time, as well as the difficulty and the discrimination of each question (Benedetto 
et al. 2020). Some typical examples of e-learning systems that implement adaptive assess-
ment based on IRT are UZWEBMAT (Özyurt et al. 2014), MISTRAL (Oppl et al. 2017), 
Amrita Learning (Gutjahr et al. 2017), SIETTE (Conejo et al. 2018), UTS (Bernardi et al. 
2018), English vocabulary learning system (Chen et al. 2019), SamurAI (Uto et al. 2019), 
PEL-IRT (Ferjaoui and Cheniti Belcadhi 2020), and Lexue 100 (Jia and Le 2020).

Elo rating algorithm represent an alternative to IRT. The Elo rating algorithm, devel-
oped to measure player strength in chess tournaments, has also been applied for edu-
cational research and used to measure learner ability (Pankiewicz and Bator 2019). To 
adapt the concept of a chess game to the educational measurement, a learner is con-
sidered a player, an item is considered an opponent, and a correctly answered item is 
considered a win for the learner (Park et al. 2019). Some typical examples of e-learning 
systems that implement adaptive assessment based on Elo rating algorithm are ProTuS 
(Mangaroska et  al. 2018), Math Garden (Brinkhuis et  al. 2018), Matistikk (Dahl and 
Fykse 2018), and ACT Academy (Yudelson et al. 2019).

TrueSkill is another approach for adaptive assessment, which can be viewed as a 
generalization of the Elo rating system used in chess (Herbrich et al. 2006). TrueSkill 
was developed for ranking players in video games. By interpreting problem-solving as a 
match between learner and problem, it is possible to use the TrueSkill rating system to 
estimate the ability of learners to solve a series of issues in the e-learning environment 
(Lee 2019). A typical example of an e-learning system that implements adaptive assess-
ment based on TrueSkill is APACTS (Kawatsu et al. 2017).

Adaptive assessment can change the difficulty level based on a learner’s responses, 
making it more efficient, targeted, and precise than traditional tests. They are, however, 
extremely complex, time-consuming, and resource-intensive to create.

4.1.6  Personalization in e‑learning

Personalized learning is a learning experience in which the pace of learning and the 
instructional approach are tailored to each learner’s specific needs (Mikić et al. 2022). 
The pace of learning, sequence, technology, instructional strategy, instructional content, 
and other aspects of personalized learning may all vary based on learner needs. This 
more tailored education aims to provide relevant learning activities motivated by their 
interests and are frequently self-initiated.

Personalized e-learning systems customize various features of online learning, such 
as the user interface, learning content, or activities. These features can be personalized 
based on different factors such as learners’ prior knowledge, preferences, habits, behav-
ior, etc. AI shows its true potential when designing personalized training, providing a 
wide range of methods and techniques that could be applied to customize the learning 
process in online environments. The most commonly used personalization methods in 
e-learning today are:
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• Recommendation of content. Learners can receive recommendations of study materi-
als that best suit their learning preferences with the use of AI to identify patterns in 
learners’ data (Tarus et al. 2018a).

• Resource/curriculum sequencing. Using pattern recognition, AI can detect specific 
concepts that learners fail and adjust the sequence of course material presented to a 
learner (Muhammad et al. 2016).

• Providing automatic feedback. AI can capture, aggregate, and analyze learners’ sub-
missions and activities and provide personalized feedback (Matcha et al. 2019b).

With the implementation of personalized learning, AI will assist learners in achieving 
academic success while also helping teachers in becoming more effective.

4.1.6.1 Recommendation of content Recommender systems can often be defined and per-
ceived as systems that aim to provide specifically tailored recommendations according to 
individual user preferences (Zhang et al. 2021b). Deployment of these systems in various 
e-learning contexts and scenarios can aid learners in locating the proper learning materials 
and resources, allowing them to accomplish their learning goals.

Often, the learner profile, which can be identified as a construct consisting of learn-
ers’ preferences, knowledge level and interests, represents an important segment related to 
learning success (Manolis et al. 2013). In the ideal circumstances, recommender systems in 
e-learning environments should help learners to determine the best-matching resources and 
actions regarding their learner profile (Zhang et al. 2021b).

Recommender systems have been developed and integrated in e-learning using multiple 
forms of recommendation: collaborative filtering (Hidayat et  al. 2020; Liu 2019; Murad 
et  al. 2020), content-based filtering (Lops et  al. 2011; Raghuwanshi and Pateriya 2019; 
Wang et al. 2018), and knowledge-based filtering (AbuEloun and Abu-Naser 2017; Alawar 
and Abu-Naser 2017; Hiles and Agha 2017; Tarus et al. 2018b)

In addition to these three basic techniques of recommendations, many hybrid recom-
mender systems can be found in the literature (Cobos et al. 2013; De Medio et al. 2020; 
Tahmasebi et al. 2019; Tarus et al. 2018a; Zhou et al. 2018).

Hybrid recommender systems represent the combination of more than one recom-
mender system approach, all in favor of overcoming the common issues and drawbacks 
related to using singular recommendation approaches. These types of recommendation sys-
tems are utilized to achieve an increase in performance while cutting back the downsides 
and limitations. Hybrid recommender system factors in the strengths of the techniques inte-
grated to generate valid recommendations (George and Lal 2019). Some typical examples 
of hybrid recommender system approaches that can be found in literature are: support vec-
tor machine based collaborative filtering (Ren and Wang 2018), sequential pattern mining 
with collaborative filtering (Chen et  al. 2014), association rules with content-based and 
collaborative filtering (Xiao et al. 2018), sequential pattern mining with knowledge-based 
filtering (Tarus et al. 2017), etc.

The likes of the singular recommendation approaches undoubtedly represent essential 
segments of personalized e-learning environments. Nevertheless, the trends in the literature 
point out that the usage of hybrid recommender systems is higher than those based on sin-
gle recommendation techniques (Alyari and Navimipour 2018).

4.1.6.2 Resource/curriculum sequencing To achieve their learning goals, learners should 
study appropriate and relevant learning resources (Premlatha and Geetha 2015). After the 
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identification of proper learning resources by the instructor, these resources should be 
constructed into a learning path for learners. A learning path refers to organizing learning 
activities in a suitable sequence so that learners can effectively study a subject area (Yang 
and Dong 2017). Designing an ideal learning path for learners represents one of the main 
challenges in e-learning adaptation. Resource sequencing is used in e-learning to generate 
a personalized learning path and resources for each learner based on learners’ prior knowl-
edge, learning goals, progress, and personal preferences (Queirós et al. 2014). Instead of all 
learners having the same learning path, which can cause learner disorientation and confu-
sion, a personalized learning path enables learners to achieve curriculum goals easier and 
increase their motivation and commitment to learning.

In e-learning, there are a number of different techniques for generating a personalized 
learning path, such as genetic algorithm (Agbonifo and Olanrewaju 2018; Albadr et  al. 
2020; Dwivedi et  al. 2018), memetic algorithm (Nguyen et  al. 2012; Shishehchi et  al. 
2021), ant colony optimization (Benabdellah et al. 2013; Niknam and Thulasiraman 2020), 
particle swarm optimization (Alhunitah and Menai 2016; Liu et  al. 2019), and artificial 
bee colony (Hsu et al. 2012; Venkatesh and Sathyalakshmi 2020).

Using these techniques for implementing resource sequencing in e-learning systems can 
give learners a clear, systematic, and organized approach to learning, which can help them 
to master their lessons easier and thereby accelerate their progress. An adaptive e-learning 
system that offers a personalized learning path can increase learning quality and enhance 
learners’ performance (Vanitha et al. 2019).

4.1.6.3 Providing feedback to learners The essential part of e-learning is that learners must 
receive feedback and assistance throughout the whole process (Shvets et al. 2020). Feedback 
represents a system’s response to learners regarding their activities or performance, used 
by the learners to improve the quality of their work or learning practices. The success of 
e-learning systems relies on engaging experience and timely and accurate feedback to the 
learners on their performance (Hassan et al. 2019).

To be able to provide adaptive feedback in the broad sense, an e-learning system needs 
to have the intelligent capability to analyze learners’ activities (Le 2016). Learners can bet-
ter comprehend their cognitive processes and engage in online learning activities by receiv-
ing timely, personalized feedback. For feedback to be adaptive, different characteristics 
of learners are taken into account, such as prior knowledge, learning progress, and pref-
erences (Bimba et al. 2017). Many systems for providing adaptive learner feedback exist 
through literature, and most of them support textual feedback (Kakeshita and Ohta 2016; 
Tawafak et al. 2019; Vijayakumar et al. 2018), while some deliver video feedback (Crook 
et al. 2012).

Implementing adaptive feedback in e-learning has a relevant impact on the learners, 
who value it because it makes their learning process simpler, richer, and more significant 
(Martínez-Argüelles et  al. 2013). Also, evidence suggests that e-learning systems with 
adaptive feedback can significantly improve learner performance (Hassan et al. 2019).

4.1.7  Intelligent agents

Intelligent agents as a conception has been around since the early years of e-learning. 
These so-called assistant programs are located inside the e-learning system, and they make 
the whole learning process more active to suit the learner’s demands. Intelligent agents are 
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used to collect, process, and analyze learners’ data to understand and optimize the learning 
environment (Kotova 2017). In general, intelligent agents can monitor behavior, evaluate 
learners’ performance and the importance of the way of transmitting recommendations, 
and improve the quality of learning (Saeidi Pour et al. 2017). Agents can perform repetitive 
tasks, remember things learners forgot, intelligently summarize complex data, learn from 
learners and even make recommendations to them (Meleško and Kurilovas 2018a).

The utilization of agents in e-learning systems assists in referring to many of the restric-
tions of these systems by promoting the design and distribution of e-learning objects that 
match learner preferences. These agents observe the learner’s responses to the introduced 
learning object to provide convenient content for the learner’s abilities. Agents are con-
centrated task-resolving units with defined task margins and can perform independently 
without directions.

Up-to-date extraction of learning contents, easy, comfortable, fast contact between 
teacher and learner, and supervision over the teacher’s and learner’s performance during 
the learning process are considered advantages provided by a system based on intelligent 
agents in e-learning (Fasihfar and Rokhsati 2017).

Some typical examples of autonomous intelligent agent systems are eTeacher (Chung 
2015), which tracks the learning activities and performance of learners and provides them 
with personalized content, and Mod-Knowledge (Trifa et al. 2019), which is responsible 
for analyzing the learner’s interactions to trace their knowledge state.

A multi-agent system is a collection of autonomous agents that work together to solve 
problems that are beyond the capabilities of individual agents (Xu et al. 2014). They can be 
described as an assembly of agents with their trouble-fixing capabilities.

Examples of multi-agent systems are MAS-PLANG (Asselman et al. 2018), which pro-
vides content, navigation strategy, and navigation tools according to the learners’ learning 
habits, EMASPEL (Bokhari and Ahmad 2014), which takes the facial expression of the 
learner and provides help accordingly, ALLEGRO (Asselman et al. 2017), which manages 
the content for learners, F-SMILE (Alkhatlan and Kalita 2019), used to generate default 
assumptions about learners, ISABEL (Aguilar et al. 2015), where the idea is to divide the 
learners in groups with similar profiles and where each group is managed by a tutor agent, 
IAELS (Tsai et  al. 2012), for improving learners’ learning capabilities, MIPITS (Laven-
delis 2015), used to provide different types of tasks and adapt tasks to the needs of indi-
vidual learners, ADOPT (Ajroud et al. 2021), whose agents analyze the traces left by the 
learner, calculate various indicators, and propose the most suitable adaptations for the 
learner, PowerChalk (Rosado et al. 2015), whose agents are used for identification in order 
to get individual user profiles and to create educational content, and MetaTutor (Trevors 
et al. 2014), which interacts with the learner’s prior domain knowledge to affect their note-
taking activities and subsequent learning outcomes.

Personalized approaches based on intelligent agent technology imply that each learner 
has its own personal (pedagogical) agent, tutor respectively, that directs learner towards 
learning (Kuk et al. 2016). These agents are in the form of a virtual character or simple 
chat interface equipped with AI that can support the learners’ learning process and use 
various instructional strategies in an e-learning environment (Martha and Santoso 2019).

In e-learning, there are two types of these agents: pedagogical agent and conversational 
agent. The difference between these two is that a pedagogical agent will merely hold a 
monologue, give hints and solutions, while a conversational agent can engage in a dialogue 
with the learner (Davis 2018; Wellnhammer et al. 2020). Conversational agents use natural 
language processing, which enables them to understand text and spoken words and con-
verse with humans in a natural way (Van Pinxteren et al. 2020). The main goals of these 
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agents are to motivate and guide learners through the learning process by asking questions 
and proposing solutions (Klašnja-Milićević et al. 2017).

Typical examples of e-learning systems with pedagogical agents are ISLA (Mondragon 
et al. 2016) with pedagogical agent Jessi, who is capable of detecting the affective state of 
an autistic child in mathematical learning, ATS (Thompson and McGill 2017), in which 
pedagogical agent Jean responds to the affective state of the learner, CALL system (Car-
lotto and Jaques 2016), with pedagogical agent Patti who explains the material on the con-
tent screens and reacts to learners’ exercise results, APLUS (Matsuda et  al. 2014) has a 
pedagogical agent named SimStuden, who helps learners learn to solve algebraic equations 
by tutoring, and a second agent, Mr. Williams, on whom learners can click to ask for help, 
and the EC Lab (Osman and Lee 2014), which also has two pedagogical agents, Professor 
T., who gives accurate information and explains new concepts to the learners, and Lisa, 
who learns together with the learners and provides motivation and encouragement to the 
learners to complete the tasks and exercises in the module.

Typical examples of e-learning systems with conversational agents are Geranium (Griol 
et  al. 2014), with conversational agent Gera, which poses questions to the learners that 
they must answer either orally or using the graphical interface, and Curiosity Notebook 
(Chhibber and Law 2019), which supports conversational interaction between learners and 
AI agents.

Including agents in e-learning will push the learning process to a more functional level. 
With intelligent agents, e-learning systems have the chance to learn and use their acquired 
knowledge to fulfill their goals (Fasihfar and Rokhsati 2017).

4.1.8  Other intelligent techniques in e‑learning

Previous chapters represent the overview of different e-learning processes and intelligent 
techniques that are used to support them. However, most popular intelligent techniques 
found their way into e-learning by offering multiple different roles, most notably artificial 
neural networks, Bayesian network, fuzzy logic, decision tree, and hidden Markov model.

Artificial neural networks are a powerful class of machine learning algorithms that learn 
complex patterns from data using collections of simple trainable mathematical functions 
(Hassan and Hamada 2017). In e-learning systems, they are mostly used for predicting a 
learner’s performance (Şuşnea 2010), analyzing learners’ online interactive behaviors 
(Poitras et al. 2019), recognizing the cognitive state of learners (Bhattacharya et al. 2018), 
detecting human expression using psychological signals (Dogmus et al. 2014), or predict-
ing difficulties a learner will experience in a digital design course (Hussain et al. 2019).

A Bayesian network represents some conditional dependency of the random variables by 
the directed acyclic graph and conditional probability tables (Kondo and Hatanaka 2019). 
It is a combination of AI, probability theory, graph theory, and decision theory (Wang et al. 
2020). Bayesian networks can learn and represent uncertain and coarse knowledge (Zhang 
et al. 2021a). It has significant advantages in dealing with uncertainty, mining the correla-
tions among observable quantities, latent variables, and unknown parameters (Jiang et al. 
2018). In e-learning systems, it is mostly used for detecting the learning habits of a learner 
(Leka and Kika 2018), managing learner models (Nguyen and Pham 2011), evaluating the 
teaching performance of university teaching assistants in an e-learning session (Xu et al. 
2016), adaptively supporting students in learning environments (Eryılmaz and Adabashi 
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2020), or for the learners’ acquisition of problem-solving skills in computer programming 
(Hooshyar et al. 2018).

Fuzzy logic is an extension of the traditional set theory, as statements can be partial 
truths, lying in between absolute truth and absolute falsity (Bajaj and Sharma 2018). In 
e-learning systems, it is mostly used for evaluation and assessment of learners’ tasks 
(Jurado et  al. 2014), checking the quality of the proposed solutions by the learners and 
monitoring the collaboration process (Ortega 2021), identification of the alterations on 
the state of learners’ knowledge level and making dynamic decisions on how the teaching 
syllabus is presented to the learner to fit his/her personal needs (Chrysafiadi and Virvou 
2014), identifying learners’ preferred learning strategies and knowledge delivery needs that 
revolve around characteristics of learners and the existing knowledge level in generating an 
adaptive learning environment (Almohammadi et al. 2016), or for describing, defining, and 
modifying the uncertainty in a student’s behavior (Katz et al. 1994).

A decision tree is a tree in which each branch node represents a choice between several 
alternatives, and each leaf node represents a decision (Bajaj and Sharma 2018). It is fre-
quently used to acquire information and then use it to predict outcomes, and therefore facil-
itates decision-making (Al Karim et al. 2021). In e-learning systems, it is mostly used for 
analyzing data and sharing the results (Akyuz 2020), building a learner model that predicts 
each learner’s final learning state (Uto et al. 2019), providing personalized learning paths 
for optimizing the performance of creativity (Lin et al. 2013), extracting and highlighting 
important information from learners’ data (Karkar et al. 2020), or for the classification of 
learners’ learning mistakes (Faeskorn-Woyke et al. 2020).

A hidden Markov model is a collection of unobserved states which follow the rules of 
the Markov property in a situation where the interrelationship between the true observa-
tion and an unobserved state takes birth from a probability distribution (Almohammadi 
et al. 2017). In e-learning systems, it is mostly used for the adaptability of course content 
according to the learner’s performance in the pre-test and post-test (Rani et al. 2017), pre-
dicting students’ navigation actions (Homsi et al. 2008), measuring motivation and prior 
knowledge of the learners (Van Seters et  al. 2012), enhancing navigational abilities and 
easing the search for suitable learning content for the visually impaired (Azeta et al. 2014), 
or automatic recognition of e-learning activities based on the mouse movement of learners 
(Elbahi et al. 2016).

AI and other emerging technologies are transforming modern e-learning. AI integrated 
into e-learning solutions aids in creating custom-tailored learning paths, personalizing 
online courses, providing relevant materials to appropriate learners, analyzing the content 
to improve learner engagement, and automating the learning and grading processes. With-
out a doubt, AI has limitless potential in the e-learning industry, where technology integra-
tion can reshape the way we learn.

4.2  Quantitative findings

In this section, we present the quantitative results of the review. Figure 1 shows the research 
trend of publications from 2010 until 2021 for each category. The graph was created using 
data from the Google Scholar database, retrieved using Harzing’s Publish or Perish tool. 
Results from this tool were obtained by filtering publications based on titles. The Google 
Scholar database was chosen because it represents the largest and most known repository 
of scientific papers. The other databases were not included in order to avoid a large number 
of duplicates.
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The total number of papers used to create the graph is 3972. The number of papers by 
category is as follows: learner modeling 154, OLM 73, EDM 1026, KT 458, LA 202, adap-
tive assessment 782, intelligent agents 1130, and other intelligent techniques 147.

According to this graph, it can be seen all intelligent techniques and roles identified in 
this literature review have a stable and constant flow of publications per year. Intelligent 
agents were most popular for the first years but later were surpassed by EDM in 2016, 
which has the most publications up until 2021. It is worth mentioning that adaptive assess-
ment and KT have a constant increase in trend.

The categorization of intelligent techniques, used strategies, and their roles in e-learning 
environments identified by the review are presented in the Appendix 1. More than 100 
e-learning systems were found and shown in this table that implements at least one of the 
intelligent techniques or roles from the findings section.

5  Results

This section presents the main insights of the performed literature review in light of previ-
ous research on intelligent techniques in e-learning. Moreover, we will provide answers to 
three research questions and highlight the main aspects that should be addressed by future 
research in the field.

RQ1: Which intelligent techniques are designed, implemented, and used in e-learning 
environments, and for which purposes? Almost all most common intelligent techniques 
have found their way in e-learning (Fig. 2) while supporting four main roles: learner mod-
eling, learning analytics, adaptive assessment, and personalized learning.

Figure 2 displays the intelligent techniques used by the four main roles in e-learning. 
Learner modeling represents the first role, which employs the open learner model to enable 
learners to view and analyze their learner model; educational data mining for collecting 
data; and knowledge tracing for modeling and predicting learners’ knowledge. After the 
learner model is created, learning analytics can be employed for the measurement, col-
lection, analysis, and reporting of learners’ data. The results generated by LA present the 
input data for implementation of adaptive assessment, tailored towards each examinee to 

Fig. 1  Distribution of the trends identified by the review
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precisely determine the learner’s ability. After assessing learners, learning can be adapted 
to each learner’s skills, interests, strengths, and needs, and offer fully personalized learning.

RQ2: How do different intelligent techniques impact learners’ attitudes, motivation, and 
overall performance in online learning platforms? Adaptive assessment, knowledge trac-
ing, learning analytics, educational data mining, resource sequencing, open learner model, 
pedagogical agents, and conversational agents all play important roles in impacting learn-
ers’ attitudes, motivation, and overall performance in e-learning environments. However, 
none of these elements could have a significant effect without a learning modeling process 
that detects and records specific student attributes and learning patterns.

Some learners need constant encouragement and motivation to keep a positive atti-
tude while taking e-learning courses. In contrast, others are self-motivated and perform 
well regardless of the academic environment (Montebello 2018). Motivation and self-
determination are directly linked to the process of learner modeling, in which specific 
learner characteristics and learning patterns are identified and used to tailor academic 
content to the same learner. The opening of the learner model can also benefit learners 
by providing them with an additional learning resource, assisting them in better com-
prehending their learning, stimulating reflection, and encouraging them to take more 
responsibility for their learning.

When discussing the impact of AI in e-learning, one of the anticipated benefits is 
increased motivation in learners as part of encouraging them to take action to achieve 
their goals. Recent research has shown that adapted assessment and increased input 
into the assessment process can improve student engagement and motivation (Wanner 
and Palmer 2015). Adaptive assessment plays an important role in motivating learn-
ers by giving each of them questions tailored to their level of knowledge (Mangaroska 
et al. 2019). In that regard, adaptive assessment stimulates learners while avoiding their 

Fig. 2  Intelligent techniques in e-learning
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disappointment and frustration. Improvements in educational experience and learner 
performance are among the advantages of this type of assessment.

Knowledge tracing can help learners stay motivated during the learning process as it 
increases their self-motivation in learning and achieves personalized guidance by auto-
matically detecting their weak knowledge points (Zou et  al. 2020). KT accomplishes 
this by estimating a learner’s underlying hidden qualities, such as knowledge, goals, 
preferences, and motivational state, among other things, based on observations of the 
student’s performance or activities.

Creating a personalized learning path for each student with relevant topics saves 
not only time but also boosts learner’ motivation. Adaptive presentation and navigation 
support can improve motivation, keep people interested, and improve comprehension. 
However, it is not sufficient to support learners to attain the learning outcomes or goals, 
as every time a learner revisits a particular page, the presentation and navigation sup-
port may be different, which may confuse them (Vanitha et al. 2019).

Learning analytics and educational data mining supported by AI allow instructors 
to understand learners’ performance, progress, and knowledge, by decrypting their online 
activities (Seo et al. 2021). Accurate prediction of learners’ academic performance is criti-
cal for learning design and providing better educational services (Zawacki-Richter et  al. 
2019). Numerous algorithms have been used to recommend e-learning content and have 
achieved good performances in adapting to rapid changes existing in learning environ-
ments (Wan and Niu 2018).

Pedagogical agents and conversational agents are designed to motivate students and 
guide them through the learning process. They motivate and encourage students to com-
plete the tasks and exercises in the module. They accomplish this through asking students 
questions, providing hints, and proposing solutions, as well as participating in a discussion 
with the learner in the case of conversational agents.

The need to articulate a holistic evaluation criterion and measure the effectiveness of 
AI in e-learning has been expressed in (Zhai et  al. 2021). The authors suggested adopt-
ing the multidimensional model, which includes technique, pedagogical design, domain 
knowledge, and human factors, to ensure the validity and reliability of the evaluation. The 
majority of intelligent techniques offer a generic approach and cannot address the needs of 
a particular domain, specific learning activities, or teaching goals (Zhai et al. 2021).

RQ3: What are the challenges and unreached potential of implementing intelligent tech-
niques in online education? The quality of available data, limited public domain knowl-
edge, and limited research on the attitudes of both learners and teachers towards AI sys-
tems have been identified as the main challenges of implementing intelligent techniques 
in online education. Their use towards understanding of relations of learning design and 
optimization of learning process, is recognized as the most significant unreached potential.

The main issues raised in the presented studies were related to data quality, especially 
adequate, efficient and relevant use of the information generated and collected by the tech-
nology (Nasiri et al. 2012; Reyes 2015; Zorić 2020). In addition, available data often can-
not capture or present a complete picture of a learning process (Tsai and Gasevic 2017), 
while obtaining and integrating data from various sources represents a major challenge 
(Tsai et al. 2021). As learners interact with educational content, instructors should control 
their presence and follow their performance based on evaluation strategies and continuous 
data collection. The keys to providing the most effective learning are designing appropriate 
learning paths, analyzing the learners’ data and performance, and providing activities and 
assessments adapted to their knowledge and learning goals.
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The role of AI in e-learning should be about finding and guiding the learner to the 
needed information and making sure the learner is getting the most suitable, understand-
able, and relevant content. It allows efficient analysis of huge amounts of data and identify-
ing patterns and trends to continuously optimize and improve learning experiences. Most 
of the presented research is directed towards enabling instructors to receive detailed infor-
mation about each student’s strengths, weaknesses, struggles, and performance, identifying 
patterns or trends and highlighting them to instructional designers. This makes decision-
making more accessible and allow taking immediate and appropriate action. However, the 
available knowledge base, accessible by the AI search engines, is mainly limited to public 
domain knowledge (Borba et al. 2016; Rosenblit 2018). Even though, data availability has 
been less of an issue in recent years since universities more often record data on classroom 
and online courses, it is often not publicly available as education institutions frequently 
lack the means and resources to access and store it (Gašević 2018). Therefore, such knowl-
edge represents the AI’s weak point, as it is often incomplete and too generic, and as such, 
it can’t be expected to find answers to some concrete questions.

Although the majority of existing research has been conducted to evaluate the use of 
various intelligent techniques, little has been done to understand students’ and instruc-
tors’ concerns on AI systems (Zawacki-Richter et al. 2019; Seo et al. 2021; Williamson 
and Eynon 2020). From the students’ perspective, AI systems are expected to improve 
instructional communication but it could also provide unreliable answers and negatively 
impact their grades (Seo et al. 2021). The same study reported that students perceived that 
canned and standardized support might negatively influence their ability to learn effec-
tively. In addition, privacy concerns also exist about monitoring and recording learners’ 
activities while measurement of their unconscious behavior is performed (Zawacki-Richter 
et al. 2019).

On the other hand, the majority of studies included students as participants, while teach-
ers and professor practitioners received less attention (Zhai et al. 2021). Teachers’ attitudes 
towards AI have a significant influence on the effectiveness of its use in e-learning as inad-
equate or inappropriate professional development could generate resistance towards AI-
supported learning among students. In addition, as reported by the study presented in (Seo 
et al. 2021), instructors expressed concerns that too extensive inclusion of AI could limit 
students’ willingness for exploration and discovery.

With the implementation of personalized support, the risk emerges of over-standard-
izing the learning process by dictating how an engaged student should or would act (Seo 
et al. 2021). Despite the apparent value, intelligent techniques might limit learners’ oppor-
tunities for exploration and discovery. Studies expressed that learners will miss out on 
opportunities to acquire new skills or learn from their mistakes. Therefore, the crucial solu-
tion is to keep teachers involved in instructional design. Intelligent techniques can quickly 
process vast amounts of data but can struggle to respond to complex contexts, thus proving 
that humans’ flexibility, creativity, and adaptivity might be crucial.

6  Discussion and future research directions

AI can solve problems that can only be solved by humans, and e-learning technologies can 
significantly benefit from this emerging technology. This review identified the four most 
common applications of intelligent techniques in e-learning:
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Learner modeling. Using AI to detect a learner’s strengths and weaknesses has even 
more immediate applications than personalized courses. In addition to a simple skill over-
view, learner profiles can collect information on a person’s learning ability, an affinity for 
specific skills, and ambitions. Where learner modeling benefited the most is with the use of 
EDM and KT (mainly BKT and DKT).

Learning analytics. The ability of computers to quickly evaluate massive data sets is 
one of the areas where they significantly outperform humans. Teachers and administrators 
may find it difficult to comprehend the rising volume of data supplied by modern e-learn-
ing technology. AI can make a significant difference by finding patterns or trends and high-
lighting them to both the learner and the teacher, helping them understand the data and 
make decisions, mainly with use of EDM techniques.

Automatic assessment and grading. More complex tasks, such as grading written sub-
missions such as essays and presentations and providing feedback to learners on how they 
can improve their work, are likely to be automated by AI. The implementation of such 
solutions can speed up reviewing and evaluating the learners’ work. It frees up time for 
teachers to prepare materials for online courses, communicate with learners, and so on. 
The most common techniques used for this purpose in e-learning environments are IRT, 
Elo rating algorithm and TrueSkill.

Personalized learning. AI can follow learners’ progression within an e-learning course 
and assist in identifying concepts where each learner lacks proficiency and modifying the 
course accordingly. This review has identified several personalization techniques used in 
e-learning, mainly content recommendation, resource sequencing, and adaptive feedback. 
These techniques were used in e-learning environments to adapt content, learning activi-
ties, navigation, etc.

In addition, the review identified the main educational goals of using intelligent tech-
niques in the e-learning context and their impact to the learning process. Many research-
ers investigated how various intelligent techniques influence the learning and reported its 
positive effect to students’ motivation (Sharma et al. 2020), increasing of students’ intrin-
sic motivation (Tenório et  al. 2021), performance (Mangaroska et  al. 2021a), and over-
all attitude (Wan and Niu 2018; Wanner and Palmer 2015). Notably, adaptive assessment 
has been proven as the most effective for increasing student performance (Kaliwal and 
Deshpande 2021; Mangaroska et  al. 2019; Murphy 2017), pedagogical and conversa-
tional agents for motivation (Hobert and Meyer von Wolff 2019), and learning analytics 
for increasing engagement and awareness of the effect of online learning (Mamcenko and 
Kurilovas 2017; Kim et al. 2016; Bodily et al. 2018). Although the learning design will not 
be able to overcome the students’ lack of self-motivation and time management in most 
cases, it can help by providing clear structure and instructions and making the workload 
manageable (Wanner and Palmer 2015). Simultaneously, some research suggests that the 
level of students’ competencies, such as knowledge, understanding, skills, and attitudes/
values, is strongly related to the level of application of individualized learning in pedagogi-
cal practice in e-learning environments (Kurilovas 2019; Mangaroska et al. 2021b).

Identification of the main challenges and unreached potential of AI in e-learning have 
been the ultimate goal of the review. The initial step towards implementing AI in e-learn-
ing is identifying the criteria that should be followed. The essential idea is to provide neu-
tral interventions, disconnected from teachers’ subjective and biased influence. Such inter-
ventions would make AI-supported instructions more precise and efficient, fair to learners, 
and at the same time based on the pedagogical models taking into account human factors, 
preferences, skills, and knowledge.
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The majority of research included in this systematic review is merely focused on analyz-
ing and finding patterns in data to develop models, making predictions that inform students 
and teachers, or on supporting administrative decisions using mathematical theories and 
several decades-old machine learning methods (Zawacki-Richter et al. 2019). This type of 
research is now possible thanks to advances in processing power and the widespread avail-
ability of large amounts of digitized student data. However, there is very little evidence that 
pedagogical and psychological learning theories related to AI-driven educational technol-
ogy are evolving. Therefore, future research should explore developing a framework on 
capturing and systematizing learning design data grounded in learning analytics and learn-
ing theory, as well as documenting how educators’ learning design choices affect subse-
quent learning activities and performances over time (Mangaroska and Giannakos 2018). 
Another study, presented in (Zawacki-Richter et al. 2019), has identified a lack of critical 
reflection of the pedagogical and ethical implications as well as risks of implementing AI-
based e-learning environments. An essential goal of this systematic review is to encourage 
researchers to develop further the theories that support empirical studies about the devel-
opment and implementation of AI in e-learning platforms. The need exists to understand 
and implement the learning design, thoroughly based on learning theory and specifically 
designed to stimulate specific learning mechanisms, thus expanding research to a broader 
level.

The need exists to articulate a universal evaluation standard and measure the effective-
ness of AI in e-learning (Zhai et al. 2021). Although the significance of individual tech-
niques has been demonstrated in numerous domains and platforms, direct comparisons of 
their effectiveness and efficiency in the learning process have yet to be conducted (Klašnja-
Milićević et al. 2015). The reason is that no systems support multiple techniques (Klašnja-
Milićević et  al. 2018). Additionally, to establish the utilization of personalization tech-
niques in education as an essential element of the learning process, there is also a need for a 
proper pedagogical approach and the appropriate use of learning design (Westwood 2018; 
O’Donnell et al. 2015). The authors in (Essalmi et al. 2015) emphasized the importance of 
examining and comparing personalization techniques to determine which one should be 
used to tailor each course. To ensure the validity and reliability of the evaluation, a mul-
tidimensional model that includes technique, pedagogical design, domain knowledge, and 
human factors must be used. Many intelligent techniques were designed for a general situa-
tion and cannot match the needs of specific learning strategies or topics being taught (Zhai 
et al. 2021). Finally, the lack of longitudinal studies, the substantial presence of descriptive 
and pilot studies from a technological standpoint, and the prevalence of quantitative meth-
ods indicate the potential for innovative and meaningful research and practice that could 
impact the AI-supported learning by adopting design-based approaches (Zawacki-Richter 
et al. 2019; Easterday et al. 2018).

6.1  Limitations

Although this review attempted to investigate various forms of AI application in e-learn-
ing, it might be possible that other intelligent techniques exist. The analysis of the results 
included a large number of publications and although we have clearly defined inclusion and 
exclusion criteria, it is possible that some unforeseen exclusions of papers have occurred. 
Considering the limitation of used publication selection methodology (Kitchenham and 
Charters 2007), the authors don’t claim that all existing systems were included in the 
review but rather the most prominent or typical examples.
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7  Conclusion

AI in the e-learning area has the potential to benefit learners, teachers, and education as 
a whole. It can equip everyone with a high-quality education by providing a tailored and 
customized experience. AI-supported solutions can answer learners’ questions, recommend 
personalized resources and grade submissions. It can be used to predict dropouts, provide 
extra support to learners, and automate learning and assessment. Although there is concern 
that AI may eventually replace humans, it is more likely that AI will act as an effective sup-
port system for human professionals.

Qualitative findings from this review gave us an overview, insights, and applications of 
all intelligent techniques used in online education, leaving us with the strong impression 
that AI can be successfully implemented and utilized in e-learning systems and can take 
learning to a whole new level. Quantitative findings gave us an insight into the research 
trend of publications, revealing the most popular categories of intelligent techniques as well 
as the number of discovered e-learning systems implementing these intelligent techniques.

As an answer to the first research question, the review identifies a large number of the 
intelligent techniques used in e-learning environments, supporting four main roles: learner 
modeling, learning analytics, adaptive assessment, and personalized learning.

The second research question shows that adaptive assessment, knowledge tracing, learn-
ing analytics, educational data mining, resource sequencing, open learner model, pedagog-
ical agents, and conversational agents, each in their own way, play an important role in 
impacting learners’ attitudes, motivation, and overall performance in e-learning environ-
ments, but without a learning modeling process that identifies and stores individual stu-
dent characteristics and learning patterns, none of these elements could have a significant 
impact.

In response to the third research question, we identified data quality and limited public 
domain knowledge as the main challenges of implementing intelligent techniques in online 
education, as AI search engines can struggle to find answers to some concrete questions 
due to these problems. Also, additional challenges relate to the limited research into the 
attitudes of both learners and instructors regarding AI systems. The unreached potential 
of implementing intelligent techniques in online education refers to AI-supported learning 
by adopting design-based approaches; developing a framework on capturing and systema-
tizing learning design data grounded in learning analytics and learning theory; improving 
responding to complex contexts; universal evaluation standards; and developing systems 
that support multiple techniques.

The aim of the paper was to provide comprehensive overview of innovations and intel-
ligent techniques used in e-learning, to achieve personalized learning, adaptive assessment, 
content recommendation and generate deeper understanding of learning processes. The 
goal was to investigate how intelligent techniques can support personalized learning prac-
tices and how they can facilitate engagement in online and distance learning.

Personalization of e-learning is necessary to meet the specific needs of learners and 
optimize their learning. Personalization can improve the learning results with appropri-
ate recommendations, customization of the curriculum, giving feedback, etc. A review of 
the most commonly used personalization techniques in e-learning has been published in 
(Mikić et al. 2022) that complements the study presented in this paper.

Based on the understanding of pedagogical (personalization techniques) and technical 
aspects (AI techniques), the next step would be performing comparative studies of differ-
ent personalization techniques. In this way, the advantages and disadvantages of all the 
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identified techniques in direct comparison should be more thoroughly investigated, and 
determined how to achieve them using AI. In addition, we also want to find the best combi-
nation of techniques that could be used in a single e-learning system to create an environ-
ment that can meet all learner needs and requirements.

Appendix 1: Intelligent techniques in e‑learning

Strategies Techniques Implemented systems

Learner modeling
Educational 

data mining
Prediction AL-TESL-e-learning system Wang and Liao (2011), Junyi Academy 

Paquette et al. (2020)
Clustering dotLRN Köck and Paramythis (2011), ESURBCA Suresh and 

Prakasam (2013)
Relationship 

mining
eDisiplin Man et al. (2018), ESOG Ougiaroglou and Paschalis (2012), 

Blockly programming App Shih (2018)
Distillation for 

human judgment
Canvas Arnold and Pistilli (2012),

Discovery with 
models

Cisco Networking Academy Mislevy et al. (2012)

Autonomous 
agents

eTeacher Chung (2015)

Multi-agent ALLEGRO Asselman et al. (2017), ISABEL Aguilar et al. (2015), 
IAELS Tsai et al. (2012), PowerChalk Rosado et al. (2015)

Knowledge 
tracing

Bayesian knowl-
edge tracing

CRYSTAL ISLAND Rowe and Lester (2010), ASSISTment Pardos 
and Heffernan (2010), edX Pardos et al. (2013), Coursera Wang 
et al. (2016), Robot language tutor Schodde et al. (2017), SITS 
Hooshyar et al. (2018)

Deep knowledge 
tracing

Khan academy Piech et al. (2015), Udacity Kim et al. (2018)

Autonomous 
agents

Mod-Knowledge Trifa et al. (2019)

Fuzzy logic IT2FLS Almohammadi et al. (2016)
Vizualization 

of learners’ 
data

Open learner 
model

INSPIREus Papanikolaou (2014), Flexi-OLM Bull (2020), AMAS 
OLE Yousuf et al. (2018), UM toolkit Johnson (2018), Lea’s 
Box Bull et al. (2016), ELM-ART Herder et al. (2017), EI-OSM 
Zapata-Rivera (2020), Mr. Collins Bull (2016), Next-TELL Bull 
et al. (2015), StyLE-OLM Dimitrova and Brna (2016), EER-Tutor 
Mitrović and Holland (2020), MasteryGrids Guerra et al. (2018), 
edCrumble Albó et al. (2019), SQL-Tutor El Agha et al. (2018), 
VisMod Kaliwal and Deshpande (2021), VCM Salem et al. (2017), 
INGRID Conejo et al. (2011), QuizMap Brusilovsky et al. (2011), 
GVIS Mazzola and Mazza (2010), NavEx Brusilovsky and Yudelson 
(2008), Progessor Hsiao et al. (2013), E-KERMIT Jones (2018), 
Subtraction Master Bull and McKay (2004), Fraction Helper Lee 
and Bull (2008), QuizPACK Murphy (2017), Doubtfire++ Law 
et al. (2017), TITUS Bastida et al. (2017), CALMsystem Leonardou 
et al. (2019), PAL3 Hampton et al. (2018), NDLtutor Suleman et al. 
(2016), Topolor 2 Shi and Cristea (2015)
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Strategies Techniques Implemented systems

Learning analytics
Data collec-

tion
EDM techniques Desire2Learn Shehata and Arnold (2015), Blackboard Vista Arnold 

and Pistilli (2012)
Data analysis Social network 

analysis
OSBLE+ Olivares et al. (2019)

Statistical analysis OU Analyse Herodotou et al. (2020)
Decision tree MLTutor Akyuz (2020)

Predic-
tion and 
analysis 
of student 
behaviour

Artificial neural 
networks

ILIAS Şuşnea (2010), Research Quest Poitras et al. (2019), DEEDS 
Hussain et al. (2019), CBeL Bhattacharya et al. (2018), ReAct! 
Dogmus et al. (2014)

Bayesian network SAVER Leka and Kika (2018), CAMLES Nguyen and Pham (2011)
Fuzzy logic Sherlock II Katz et al. (1994)
Decision tree SamurAI Uto et al. (2019), UoK platform Karkar et al. (2020), EDB 

Faeskorn-Woyke et al. (2020)
Hidden Markov 

model
AIWBES Homsi et al. (2008), Proteus Van Seters et al. (2012), iVeES 

Azeta et al. (2014)
Vizualization 

of learners’ 
data

Learning analytics 
dashboard

MathSpring Muldner et al. (2015), SCELE Santoso et al. (2018), 
Cyber Campus Kim et al. (2016), OUJ system Furukawa et al. 
(2017), iTutor Wang and Han (2021), SoftLearn Ramos-Soto et al. 
(2017)

Adaptive assessment
Student 

ranking, 
evaluation 
and assess-
ment

Item response 
theory

UZWEBMAT Özyurt et al. (2014), MISTRAL Oppl et al. (2017), 
Amrita Learning Gutjahr et al. (2017), SIETTE Conejo et al. (2018), 
UTS Bernardi et al. (2018), English vocabulary learning system 
Chen et al. (2019), SamurAI Uto et al. (2019), PEL-IRT Ferjaoui 
and Cheniti Belcadhi (2020), Lexue 100 Jia and Le (2020)

Elo rating algo-
rithm

ProTuS Mangaroska et al. (2018), Math Garden Brinkhuis et al. 
(2018), Matistikk Dahl and Fykse (2018), ACT Academy Yudelson 
et al. (2019)

TrueSkill APACTS Kawatsu et al. (2017)
Bayesian network MILE Xu et al. (2016)
Fuzzy logic COALA Jurado et al. (2014), DomoSim-TPC Ortega (2021), FuzKSD 

Chrysafiadi and Virvou (2014)
Personalized learning
Recom-

mender 
systems

Collaborative 
filtering

PeerGrade Wind et al. (2018), LAMS Álvarez-González et al. (2017), 
LogCF Chen and Cui (2020)

Content-based 
filtering

Quickstep Lops et al. (2011), CBNR Kandakatla and Bandi (2018)

Knowledge-based 
filtering

MDB Hiles and Agha (2017), ADO-Tutor El Haddad and Naser 
(2017), CSS-Tutor Alawar and Abu-Naser (2017), ScholarLite 
Samin and Azim (2019)

Hybrid techniques CodERS Chen et al. (2014), RSPP Cobos et al. (2013), MoodleRec De 
Medio et al. (2020)

Multi-agent MIPITS Lavendelis (2015), ADOPT Ajroud et al. (2021), MetaTutor 
Trevors et al. (2014)
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Strategies Techniques Implemented systems

Resource 
sequencing

Genetic algorithm LPRS_EL Dwivedi et al. (2018)
Memetic algorithm TPG Nguyen et al. (2012)
Ant colony optimi-

zation
ACSEL Benabdellah et al. (2013), LPR Niknam and Thulasiraman 

(2020)
Particle swarm 

optimization
IDRCCS Wang and Tsai (2009)

Artificial bee 
colony

PBREL Venkatesh and Sathyalakshmi (2020)

Multi-agent MAS-PLANG Asselman et al. (2018)
Decision tree PCLS Lin et al. (2013)
Hidden Markov 

model
OPAESFH Rani et al. (2017), Equation Grapher Elbahi et al. (2016)

Automated 
feedback

Textual feedback SQL Quizbot Vijayakumar et al. (2018), Pgtracer Kakeshita and Ohta 
(2016), UCOM Tawafak et al. (2019)

Video feedback ASSET Crook et al. (2012)
Learners’ 

guidance
Pedagogical agents ISLA Mondragon et al. (2016), ATS Thompson and McGill (2017), 

CALL system Carlotto and Jaques (2016), APLUS Matsuda et al. 
(2014), EC Lab Osman and Lee (2014)

Conversational 
agents

Geranium Griol et al. (2014), Curiosity Notebook Chhibber and Law 
(2019)

Multi-agent EMASPEL Bokhari and Ahmad (2014), F-SMILE Alkhatlan and 
Kalita (2019)

Bayesian network FB-ITS Eryılmaz and Adabashi (2020)
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