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Summary:  

This master’s thesis addresses the challenges associated with power interruption and 

unstable operation in power systems. It highlights the potential for enhancing transient 

stability analysis through the utilization of direct methods. Furthermore, it recognizes the 

increasing importance of online transient stability analysis in the future, driven by 

factors such as electrification and an influx of renewable energy sources. These factors 

necessitate operating the grid closer to its operational limits. 

 

The primary aim of this master thesis was to establish the theoretical framework for 

direct methods and devise a practical approach for implementing the controlling unstable 

equilibrium point method. 

 

The thesis includes two test cases: a single machine infinite bus test case and a 

multimachine test case. Results obtained from these test cases align with expectations 

and existing literature, in computing critical clearing times. For the multimachine test 

case a homotopy approach was utilized to calculate the CUEP. 
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Nomenclature 
 

BCU Boundary of stability region based Controlling Unstable equilibrium point 

CCT Critical Clearing Time 

COI Center Of Inertia 

CUEP Controlling Unstable Equilibrium Point 

DAE Differential Algebraic Equation 

FACTS Flexible AC Transmission System 

HVDC High Voltage Direct Current 

PEBS Potential Energy Boundary Surface 

RK4 Runge Kutta 4th order method 

SEP Stable Equilibrium Poin 

SMIB Single Machine Infinite Bus 

UEP Unstable Equilibrium Point 

WSCC Western System Coordinating Council 
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1 Introduction 

1.1 Background and Motivation 

Power interruptions and unstable operation are major challenges for power systems, with 

significant economic and societal costs. In the United States alone, power outages were 

estimated to cost around $80 billion annually in 2004. Addressing these issues would require 

significant investment, with estimates ranging from $50 to $100 billion to modernize the 

grid[1].  

 

These issues are not unique to the United States and have only grown more complex. In 

Norway there is an increasing demand for electricity coupled with ambitious climate goals, 

resulting in a rise in the deployment of renewable energy sources, such as wind and solar. 

Several wind projects are currently under consideration in Norway. As power generation 

moves further from consumers, it necessitates new grid investments, and from a socio-

economic standpoint, there is a need to maximize the potential of the exiting grid. This will 

likely require utility companies to push the current grid closer to its operational limits.  

 

Operating the power grid to its operational limits necessitates a reevaluation of the criteria for 

setting the limits. One of the current limitations is related to transient stability considerations, 

which are typically imposed due to the conservative assumptions applied in off-line time 

domain simulations for transient stability analysis. To increase the operability of the grid, it is 

natural to consider conducting on-line transient stability analysis, which can provide a more 

accurate picture closer to reality, and thus removing some of the conservative assumptions. 

However, the time-consuming nature of the traditional approach is not suitable for on-line 

transient stability analysis of practical power systems[2]. 

 

The only viable option for an online alternative is direct methods, today direct methods are 

closely coupled with Lyapunov’s stability theorem. The application of Lyapunov stability in 

various stability cases has been extensively studied since its introduction to the western world 

in the 1930’s. For transient stability, Magnusson made an early contribution in 1947[3], 

although the methodology did not gain a lot of attention until the 1960s. In the early stages 

there were two fundamental issues, they were related to the characterization of the systems 

energy and the determination of its critical energy. In the early 1970s the center of inertia 

formulation was introduced which was crucial in developing the methodology as it facilitated 

much simpler ways to characterize the systems energy[4]. 

 

In recent years the technology has been tested in real grids with promising results[5]. The 

reason these approaches are less computationally taxing than the standard time domain 

approach is because they do not require a full solution of the differential equations, meaning 

it is not necessary to solve the differential equations for the full period to determine the 

stability of the system. 
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1.2 Objectives and scope of work 

1.2.1 Methods 

During the course of this thesis, a combination of methods was utilized. A literature review 

was conducted to explore the theoretical foundation for direct methods.  

The test cases were simulated and plotted using the python programming language. Several 

modules in python will be utilized, namely Numpy, Scipy, Matplotlib and Sympy. 

A comparative analysis was conducted, comparing the test cases to relevant literature.  

1.2.2 Objectives 

The primary aim of this thesis is to develop a functional approach to the Controlling Unstable 

Equilibrium Point (CUEP) method. To achieve this goal, the following objectives have been 

identified: 

 

• Conduct a literature review on the theoretical foundation of direct methods, with 

special emphasis on CUEP methodology. 

• Describe the mathematical techniques required for the implementation of direct 

methods.  

• Perform a comparative analysis of the results obtained from a SMIB test case using 

direct methods against results obtained using the equal area criteria. 

• Implement the CUEP methodology on the WSCC 3-generator 9-bus system and 

validate the results by comparing them to credible sources. 

• Identify the primary challenges associated with the multimachine case and explore 

how further research can address these challenges by improving the methodology. 

 

The initial iteration of these objectives can be found in Appendix A. Overall, this thesis aims 

to contribute to increasing the knowledge of direct methods at the institute for electrical 

power engineering at USN. 

1.2.3 Scope and limitations of work 

The multimachine test case is limited to analyzing an ideal fault with zero fault resistance. 

This might not reflect the actual behavior of faults in real-world scenarios. However, this 

approach was chosen because the main objective is to test the methodology, including the 

fault resistance would somewhat complicate the calculations and thus not be appropriate for 

initial testing. 

 

All test cases presented in this thesis were conducted on power grids operating at a frequency 

of 60Hz, as this frequency is commonly used in related research papers for comparison and 

validation. It is important to note that using a 50Hz power grid would not alter the results or 

conclusions of this thesis in any notable way. In fact, one could argue that a 50Hz power grid 

is more favorable for transient stability, as machines with the same H constant would 
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effectively have a higher inertia constant. Nonetheless, the choice of frequency was based on 

the prevailing convention in literature, and the findings are applicable to both 50 and 60Hz 

power grids. 

 

For the multimachine transient stability analysis, we will employ the center of inertia 

formulation as widely adopted in literature. Developing energy functions for a model using 

relative rotor angles will be beyond the scope of this thesis. 

1.2.4 Thesis overview 

Chapter 2  

Chapter 2 deals with the power system stability problem and the model used later in the 

thesis. 

Chapter 3 

Chapter 3 deals with the theoretical foundation of direct methods, with special emphasis on 

the CUEP methodology. 

Chapter 4  

Chapter 4 covers the numerical methods employed in the simulation of the test cases. 

Chapter 5 

Chapter 5 covers the SMIB test case. 

Chapter 6  

Chapter 6 covers the multimachine test case employing the CUEP methodology. 

Chapter 7  

Chapter 7 discusses the findings in the report and possible improvements. 

Chapter 8 

Chapter 8 concludes with the results found in the thesis and gives recommendations for future 

work. 
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2 Power system stability 
This chapter provides an overview of power system stability with a focus on transient 

stability and a reduced order model based on the classical model eliminated to the internal 

nodes of the generator. Each topic is covered in a separate subchapter. 

2.1 The stability problem 

Power systems are continuously subjected to disturbances, load variations, faults etc. Power 

system stability may broadly be the defined as the property that enables it to be in a state of 

operating equilibrium under normal operating conditions and after a disturbance[6]. 

 

The power system is a dynamic system, consisting of both passive and active components. 

When a disturbance occurs, the system responds dynamically by shifting its operating point. 

The classification of a disturbance depends on the type and severity of the disturbance. 

Generally power system dynamics are analyzed over three different timeframes: short, mid 

and long term. 

 

Another possible way to classify power system dynamics is to consider the different physical 

phenomena it can represent and assign a corresponding time scale. This approach may be 

more appropriate because a disturbance can represent several types of phenomena. The 

physical phenomena that a power system can be subjected to include wave phenomena, 

electromagnetic phenomena, electromagnetic phenomena, and thermodynamic phenomena. A 

classification of power system dynamics based on the different phenomena can be seen in 

Figure 2.1.  

  

 

Figure 2.1: Time frames of power system dynamics phenomena [7] 

 

Traditionally power system stability has been characterized as shown in Figure 2.2 which was 

formalized by IEEE-CIGRE in 2004[8]. 
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Figure 2.2:Classification of power system stability[8] 

 

The classical definition of power system stability primarily focused on the electromechanical 

and thermodynamic phenomena. However, with the rapid penetration of power electronic 

converter interfaced technologies such as wind and photovoltaic generation, as well as 

HVDC and FACTs, the power system has evolved significantly since the classical definition 

was formalized. As a result, a new flowchart describing power system stability can be seen in 

Figure 2.3. 

 

 

Figure 2.3:Classification of power system stability[9] 

It is useful to include the new definition of stability in terms of a timescale, which can be 

seen in Figure 2.4.  
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Figure 2.4: Time frame of power system dynamics[9] 

 

This thesis will predominantly concentrate on transient stability, which is a part of rotor angle 

dynamics. It mainly pertains to the electromechanical phenomena of power systems. 

However, it is essential to comprehend the prospective influence of emerging technologies on 

transient stability analysis. Even though the definition of transient stability has remained 

unchanged, the spread of such technologies has resulted in a decrease in the grid’s inertia. 

Consequently, there is an escalating requirement for precise transient stability analysis, 

particularly online transient stability analysis, since the traditional off-line transient stability 

analysis is based on a set of preconceived assumptions. Attaining a set of accurate 

assumptions will likely become more difficult, with the increasing penetration of photovoltaic 

and wind generation. 

2.2 Transient Stability 

Transient stability analysis is a vital aspect of power system analysis, as it helps 

understanding how power systems behave in response to large disturbances, such as short 

circuits. These disturbances can cause sudden changes in the operating conditions in the 

power system and trigger a dynamic response from the system. 

 

Consider a power system operating at a stable equilibrium point prior to a fault. This means 

that 𝑃𝑚 = 𝑃𝑒 , in this case there is no acceleration or deceleration of the machines. Suddenly a 

three-phase short circuit occurs, this will change the network topology, hence 𝑃𝑚 ≠ 𝑃𝑒 . The 

machines throughout the system will experience acceleration or deceleration. The result is 
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that the rotor angle will change with respect to the synchronously moving reference axis. If 

one or several of the machines accelerates beyond a critical point, they will not be able to 

return to a stable equilibrium point after the fault. This can lead to loss of synchronism, 

cascading failures and possibly a blackout. Transient stability analysis deals with this 

phenomenon, analyzing the implications of different faults and designing the system in such a 

way that it will be able to safely operate in the event of a fault. This can be determining 

critical clearing times, available transfer capacity, remedial actions etc. To illustrate the point 

in Figure 2.5 the rotor angle is plotted for three different cases. 

 

 

Figure 2.5: 3 cases of transient stability analysis [10] 

Where: 

• Case 1 is stable. 

• Case 2 is first swing unstable. 

• Case 3 is also unstable. 

 

Transient stability analysis mostly deals with case 1 or first swing stability. In these 

situations, it is common to use simpler generator models with a constant voltage behind a 

transient reactance[11]. 

 

The mathematical model for describing a dynamical response in power systems is given by a 

set of first order differential equations, written in compact form in Equation (2.1). 
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𝑥̇ = 𝑓(𝑥, 𝑦) (2.1) 

 

When the power system is subjected to a disturbance, the disturbance can mathematically be 

described as shown in Equation (2.2). 

 

𝑥̇(𝑡) = 𝑓𝑃𝑟𝑒(𝑥(𝑡))  − ∞ < 𝑡 ≤ 0 

𝑥̇(𝑡) = 𝑓𝐹(𝑥(𝑡)) 0 < 𝑡 ≤ 𝑡𝑐𝑙 

𝑥̇(𝑡) = 𝑓𝑝𝑜𝑠𝑡(𝑥(𝑡)) 𝑡𝑐𝑙 < 𝑡 < ∞ 

 

(2.2) 

Prior to time t=0, the system is operating in the pre-fault state, denoted “Pre”. At time t=0 the 

system experiences a disturbance, the faulted period denoted “F” lasts until the disturbance is 

cleared, 0 ≤ 𝑡 ≤ 𝑡𝑐𝑙, often referred to as the fault-on period. After the fault is cleared, the 

system enters the post-fault period denoted “Post”. The objective of transient stability 

analysis is to determine whether the post fault system will settle down to a stable equilibrium 

point (SEP), or if the system will spin out of control and possibly experience cascading 

failures and loss of synchronism. 

2.3 Classical Model with network nodes eliminated 

This subchapter will introduce a reduced order model commonly used in direct methods of 

transient stability analysis, specifically the classical model with eliminated network nodes. 

We will provide an overview of the classical model, followed by a description of the internal 

node model with both relative rotor angles and a center of inertia formulation. In addition, we 

will discuss the computation of equilibrium points for the center of inertia representation. 

Each topic will be presented in separate sections. 

2.3.1 The classical model 

For this thesis a classical model will be used when solving the differential equations. The 

classical model can be summarized as follows[11]: 

1. Mechanical power remains constant during the swing curve computation. 

2. Damping is neglected. 

3. The generators can be represented by a constant transient reactance in series with a 

constant internal voltage. 

4. The mechanical rotor angle equals the electrical phase angle of the transient internal 

voltage. 

5. All loads are considered as constant during the computation of the swing equation. 
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The classical model is said to be adequate for studying first-swing stability, generally 

considered the first second of the faulted period [12]. Some key limitations of the classical 

model should be noted: 

 

1. Saying that mechanical power remains constant during the computation of the swing 

curve is unlikely to be true if we consider longer periods of time. 

2. Reduction of the system to internal nodes removes a lot of the system topology and 

makes it impossible to study how other components in the grid are affected. 

3. The worst swing might occur after the first swing. 

 

2.3.2 Internal Node Model 

The swing equation for the internal node model with negligible damping can be written as 

shown in Equation (2.3)[12]. 

𝑑δ𝑖

𝑑𝑡
= ω𝑖 

𝑀𝑖

𝑑ω𝑖

𝑑𝑡
= 𝑃𝑚𝑖 − 𝑃𝑒𝑖 

(2.3) 

The electrical power is given by Equation (2.4). 

 

𝑃𝑒𝑖 = 𝐸𝑖
2𝐺𝑖𝑖 + ∑ 𝐶𝑖𝑗𝑠𝑖𝑛δ𝑖𝑗 + 𝐷𝑖𝑗𝑐𝑜𝑠δ𝑖𝑗

𝑛

𝑗=1,𝑗≠𝑖

 (2.4) 

Replacing the sum of the constant parameters in Equation (2.3) to a new parameter 𝑃𝑖 yields 

the following set of first order differential equations shown in Equation (2.5). 

 

𝑑δ𝑖

𝑑𝑡
= ω𝑖 

𝑀𝑖

𝑑ω𝑖

𝑑𝑡
= 𝑃𝑖 − 𝑃𝑒𝑖 

(2.5) 

 

Where: 

• 𝑃𝑖 = 𝑃𝑚𝑖 − 𝐸𝑖
2𝐺𝑖𝑖 

• 𝐶𝑖𝑗 = 𝐸𝑖𝐸𝑗𝐵𝑖𝑗 

• 𝐷𝑖𝑗 = 𝐸𝑖𝐸𝑗𝐺𝑖𝑗 

• δ𝑖𝑗 = δ𝑖 − δ𝑗  

• δ𝑖 , ω𝑖 rotor angle and angular velocity with respect to a synchronously moving 

reference frame. 

• 𝑀𝑖 the rotor’s inertia constant 
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• 𝐺𝑖𝑗, 𝐵𝑖𝑗 transfer conductance and transfer susceptance in the reduced admittance 

matrix. 

• 𝐸𝑖 magnitude of the constant voltage behind the constant transient reactance 

 

According to the classical model only the electrical power of the machines will be changing, 

this means that from pre-fault, fault-on and post-fault the only thing that changes is the 

transfer conductance and transfer susceptance in the reduced admittance matrix. 

 

2.3.3 Center of Inertia formulation 

The center of inertia formulation is a vital tool for direct methods of transient stability 

analysis. This is because, unlike the relative rotor angles where each angle is moving with 

respect to a different synchronously moving reference frame, the center of inertia formulation 

captures the mean motion of the system. Another benefit of the center of inertia formulation 

is that it removes the energy associated with the motion of the internal center, which does not 

contribute to stability deformation[4]. The swing equation according to the COI framework 

with damping neglected is defined as depicted in Equation (2.6). 

 

𝑑δ̃𝑖

𝑑𝑡
= ω̃𝑖 

𝑀𝑖

𝑑ω̃𝑖

𝑑𝑡
= 𝑃𝑖 − 𝑃𝑒𝑖 −

𝑀𝑖

𝑀𝑇
𝑃𝐶𝑂𝐼 

(2.6) 

In order to express the angular velocity and rotor angles in the COI-framework it is necessary 

to initialize them in accordance with Equation (2.7). 

 

δ̃𝑖 = δ𝑖 − δ0 

ω̃𝑖 = ω − ω0 

δ0 =
1

𝑀𝑇
∑ 𝑀𝑖δ𝑖

𝑛

𝑖=1

 

ω0 =
1

𝑀𝑇
∑ 𝑀𝑖

𝑛

𝑖=1

ω𝑖 

 

(2.7) 

The constant 𝑀𝑇 can be calculated as shown in Equation (2.8). 

 

𝑀𝑇 = ∑ 𝑀𝑖

𝑛

𝑖=1

 (2.8) 
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The 𝑃𝐶𝑂𝐼 parameter is defined as shown in Equation (2.9). 

 

𝑃𝐶𝑂𝐼 = ∑ 𝑃𝑖

𝑛

𝑖=1

− 2 ∑ ∑ 𝐷𝑖𝑗𝑐𝑜𝑠δ̃𝑖𝑗

𝑛

𝑗=𝑖+1

𝑛−1

𝑖

 

 

(2.9) 

 

2.3.4 Equilibrium points for the center of inertia formulation 

The power system can be mathematically described as a set of DAE’s. Like shown in 

Equation (2.10)[13]. 

𝑥̇ = 𝑓(𝑥, 𝑦) 

0 = 𝑔(𝑥, 𝑦) 
(2.10) 

The reduced network model in accordance with the classical model is when the y-matrix of 

the system is reduced to the internal nodes of the generator. This model simplifies the 

problem further because the algebraic equations disappear as depicted in Equation (2.11).  

 

𝑥̇ = 𝑓(𝑥, 𝑦) (2.11) 

An intuitive understanding of an equilibrium point is to think about the swing equation and 

say at an equilibrium point ω̃ = 0. This means there is no acceleration. Solving for an 

equilibrium point is therefore equivalent to saying that the derivative is zero represented by 

Equation (2.12). 

0 = 𝑓(𝑥, 𝑦) (2.12) 

This gives the system of nonlinear equations depicted in equation (2.13). This equation is the 

one that needs to be solved for all equilibrium points utilizing this model. 

𝑓𝑖 = 𝑃𝑖 − 𝑃𝑒𝑖 −
𝑀𝑖

𝑀𝑇
𝑃𝐶𝑂𝐼 (2.13) 

It should be noted that due to the center of inertia formulation where ∑ 𝑀𝑖δ̃𝑖
= 0 the number 

of equations can be reduced, because one of the rotor angles can be expressed as a function of 

the other rotor angles and inertia constants. It will prove challenging to not reduce the number 

of equations, because if one wants to find an equilibrium point normally this involves 

numerical methods, which in turn usually requires the Jacobian matrix. Taking the inverse of 

a Jacobian if not all the variables are unique is not possible using traditional approaches. 

Hence, not performing this reduction could make it difficult to solve the system of nonlinear 

equations correctly. 
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3 Theoretical foundation of direct methods 
This chapter presents the theoretical basis for direct methods used in transient stability 

analysis. It begins with an introduction to the concept of Lyapunov stability, followed by an 

overview of the most common energy functions. The chapter then proceeds to discuss the 

most widely employed direct method with a special emphasis on the CUEP method. 

3.1 Lyapunov Stability 

The concept of Lyapunov stability, proposed by Aleksandr Lyapunov in his 1892 Ph.D. 

dissertation, has become a fundamental tool in control theory. It allows the stability of an 

equilibrium point in a nonlinear dynamic system to be determined without the need of 

numerical integration, making it a valuable technique in numerous control applications. In 

this subchapter, we will delve into the basic principles of Lyapunov stability with an 

emphasis on the parts that pertain to direct methods of transient stability. 

 

To gain an intuitive understanding of Lyapunov stability, consider an example of a football at 

the bottom of a hill. When the ball is kicked, it can either fail to reach the top of the hill and 

roll back down, or it can successfully cross over the top and not return to the bottom. One 

approach to analyzing this behavior is to determine the initial conditions and integrate the 

differential equations that describe the motion of the ball and see if it crosses the top. This 

would then be the equivalent of a standard time domain simulation for power systems. 

However, an alternative approach is to employ a Lyapunov function that satisfies certain 

criteria that will be addressed later and use the Lyapunov function to determine the stability 

of the system. 

 

In this context, an intuitive thought for the Lyapunov function would be the system energy. 

Then one could calculate the energy subjected to the ball and compare it to the energy 

required to reach the top of the hill. One could then determine the stability of the system 

without tracking the position as the ball moves up the hill[4]. 

 

Consider the nonlinear dynamical system presented in Equation (3.1).  

 

𝑥̇ = 𝑓(𝑥) (3.1) 

 

If a scalar function 𝑉(𝑥) can be constructed so that it satisfies the mathematical conditions 

depicted in Equation (3.2) where 𝑥̂ is an equilibrium point. Then it can be called a Lyapunov 

function. 
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𝑉(𝑥̂) = 0 

𝑉(𝑥) > 0 as long as 𝑥 ≠ 𝑥̂ 

𝑉̇(𝑥) < 0 as long as 𝑥 ≠ 𝑥̂ 

(3.2) 

 

There are more details to Lyapunov stability but for the purposes of this thesis, it will suffice. 

From this it can be deduced that if the x-value is put into the Lyapunov function, and the 

function satisfies the conditions for a Lyapunov function it will converge to an equilibrium 

point. However, for the purposes of direct methods of transient stability we are interested in 

what value the scalar function 𝑉(𝑥) has at the stability boundary of the system. 

 

For direct methods of transient stability analysis, the Lyapunov functions are constructed as 

transient energy functions as shown in Equation (3.3). 

 

𝑉(ω, δ) = 𝑉𝐾𝐸 + 𝑉𝑃𝐸 (3.3) 

 

To explain this concept in a practical manner, consider Figure 3.1. Where the ball in this case 

is the power system. The ball starts out operating in at a stable equilibrium point. Meaning 

that there is no acceleration 𝑃𝑚 = 𝑃𝑒. When a disturbance occurs, kinetic energy will be 

injected. It will roll along the surface of the bowl. The trajectory or direction the ball will be 

moving will depend upon the direction in which the disturbance is applied. If the kinetic 

energy subjected into the ball is large enough, so that it crosses over the rim, we can no 

longer guarantee that the ball will return to the SEP and therefore it is considered unstable. 

As the ball moves, it will acquire potential energy, as the height of the ball with respect to the 

stable equilibrium point increases. If one pays close attention to Figure 3.1 one will see that 

the rim of the bowl is not uniform. This means that the kinetic energy the system can absorb 

will depend greatly on the direction of the ball. Direct methods use different techniques to 

assess the stability of the system but essentially, they all try and find the potential energy at 

the top of the rim. Because if the total energy of the system during a fault does not exceed the 

potential energy at the top of the rim it will return to a stable equilibrium point. 
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Figure 3.1: Rolling Ball Analogy[14] 

 

While critical energy is important, its value alone is not particularly useful. Instead, critical 

energy is typically used to calculate the critical clearing time (CCT), which represents the 

time a fault can persist in the power system before the will be unable to converge to a post-

fault SEP. The criterion for determining the CCT involves checking the inequality 𝑉(𝑥) ≤
𝑉𝑐𝑟, the time when the systems energy equals the critical energy is the CCT. 

 

 

The basic steps for computing the CCT can be expressed as [12]: 

1. Construct an energy/Lyapunov function 𝑉(ω, δ) for the postfault system. 

2. Find the critical value of 𝑉(ω, δ) for a given post-fault system denoted 𝑉𝑐𝑟. 

3. Integrate the swing equation for the fault-on period until 𝑉(ω, δ) = 𝑉𝑐𝑟. 

 

This approach is similar for all direct methods. Where they differ however, is in steps 2 and 

3. 

3.2 Single Machine energy function 

The energy function is always constructed for the post fault system. In Equation (3.4) the 

energy function for a single machine system is shown[12]. 

 

𝑉(δ, ω) =
1

2
𝑀ω2 + 𝑉𝑃𝐸(δ) 

 

(3.4) 
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Where the potential energy is given by Equation (3.5).  

𝑉𝑃𝐸 = −𝑃𝑚δ − 𝑃𝑒
𝑚𝑎𝑥𝑐𝑜𝑠δ 

 
(3.5) 

It is necessary to change the energy function so that the potential energy is zero at the post 

fault stable equilibrium point. The energy function is then rewritten as shown in Equation 

(3.6). 

 

𝑉(δ, ω) =
1

2
𝑀ω2 − 𝑃𝑚(δ − δ𝑠) − 𝑃𝑒

𝑚𝑎𝑥(𝑐𝑜𝑠δ − 𝑐𝑜𝑠δ𝑠) (3.6) 

 

3.3 Multi Machine energy function  

The most used multimachine energy function is depicted in Equation (3.7). 

 

𝑉 =
1

2
∑ 𝑀𝑖

𝑛

𝑖=1

ω̃𝑖
2 − ∑ 𝑃𝑖(δ̃𝑖 − δ̃𝑖

𝑠)

𝑛

𝑖=1

− ∑ ∑ [𝐶𝑖𝑗(𝑐𝑜𝑠δ̃𝑖𝑗 − 𝑐𝑜𝑠δ̃𝑖𝑗
𝑠 ) − 𝐼𝑖𝑗]

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

 (3.7) 

The term 𝐼𝑖𝑗 is path dependent integral term and we can therefore not say for certain that V is 

positive-definite. If 𝐷𝑖𝑗 ≡ 0 it can be shown that the energy function is a true Lyapunov 

function. There are several approximations to the term 𝐼𝑖𝑗 but one that is often utilized is 

depicted in Equation (3.8)[12] [5]. 

 

𝐼𝑖𝑗 = 𝐷𝑖𝑗

δ̃𝑖 + δ̃𝑗 − δ̃𝑖
𝑠 − δ̃𝑗

𝑠

δ̃𝑖 − δ̃𝑗 − δ̃𝑖
𝑠 + δ̃𝑗

𝑠
[𝑠𝑖𝑛δ̃𝑖𝑗 − 𝑠𝑖𝑛δ̃𝑖𝑗

𝑠 ] (3.8) 

Where: 

• S denotes the post fault stable equilibrium point. 

• 𝑃𝑖 = 𝑃𝑚𝑖 − 𝐸𝑖
2𝐺𝑖𝑖 

• 𝐶𝑖𝑗 = 𝐸𝑖𝐸𝑗𝐵𝑖𝑗 

• 𝛿𝑖𝑗 = 𝛿𝑖 − 𝛿𝑗 

• 𝐼𝑖𝑗 is the energy dissipated in the network conductances. 

• 𝐷𝑖𝑗 = 𝐸𝑖𝐸𝑗𝐺𝑖𝑗 

 



Theoretical foundation of direct methods 

 

 

                22 

3.4 Review of Direct Methods  

In this subchapter, the working principle of the three most prominent direct methods will be 

introduced, each in their respective sections. Special emphasis will be placed on the 

Controlling Unstable Equilibrium Point (CUEP) method since it is the main focus of this 

thesis. 

3.4.1 Closest Unstable Equilibrium Point 

The method known as the closest unstable equilibrium point method was first developed in 

the 1960s also referred to as the lowest energy UEP method. Originally the aim of the method 

was to find the exact stability boundary, which was deemed a too challenging task for 

practical power systems. However, by the 1970s researchers shifted their focus to finding a 

suitable estimate of the stability boundary, which is less computationally taxing[15]. 

 

To conceptually illustrate this method, one can consider the rim of the bowl depicted in 

Figure 3.2. The entire rim represents the stability boundary of the postfault system. The 

closest UEP method aims to find the lowest point along the rim. The potential energy 

corresponding this point is 𝑉𝑐𝑟. The drawback of this method is that it requires the 

computation of many UEP’s, making it computationally demanding. Moreover, the method 

often yields to conservative results compared to other direct methods. This is because the 

trajectory of the fault might be heading in another direction than where the lowest point is 

located, it can therefore tolerate more energy injected into the system before it is getting close 

to the stability boundary[12].  

 

To illustrate the concept, consider the SMIB system. The system dynamics are represented by 

the swing equation represented as two first order differential equations as shown in Equation 

(3.9). For the purposes of this example damping is negligible. 

 

𝑑δ

𝑑𝑡
= ω 

𝑀
𝑑ω

𝑑𝑡
= 𝑃𝑚 − 𝑃𝑒

𝑚𝑎𝑥𝑠𝑖𝑛δ 

 

(3.9) 

The post-fault stable equilibrium point can be found when ω = 0, and is shown in Equation 

(3.10). 

 

δs = 𝑠𝑖𝑛−1 (
𝑃𝑚

𝑃𝑒
𝑚𝑎𝑥) (3.10) 

The two UEP’s of this system is shown in Equation (3.11). 
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δ1 = π − 𝑠𝑖𝑛−1 (
𝑃𝑚

𝑃𝑒
𝑚𝑎𝑥) 

δ2 = −π − 𝑠𝑖𝑛−1 (
𝑃𝑚

𝑃𝑒
𝑚𝑎𝑥) 

(3.11) 

In Figure 3.2 we can see the stability boundary of the system denoted ∂𝐴(δ𝑠, 0), encloses a 

region 𝐴(δ𝑠, 0) which is the stability region of the system. The stability region is the union of 

the stable manifolds of the UEP denoted 𝑊𝑠(δ1,, 0) and 𝑊𝑠(δ2, 0) [2]. 

 

 

Figure 3.2: SEP enclosed by stability boundary[2] 

 

To conceptually understand what a stable manifold is, it is a set of all the points that converge 

to the same “location”. For the case of the stable manifold of the UEP’s, it would be all the 

points in the phase space that converges to the specific UEP. 

 

In the closest UEP method we now proceed to check the energy function given in Equation 

(3.6), for both UEP’s. The one that yields the lowest value will be the critical energy of the 

system. In Figure 3.3 the estimated stability region is depicted as the shaded area. 
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Figure 3.3: Constant energy surface closest UEP method[2] 

To summarize the method could be used to find the critical clearing time in the following 

way: 

1. Find all the UEP’s of the system. 

2. Arrange them in order after their respective energy values. 

3. The UEP with the lowest energy value is the closest UEP. 

4. The critical energy 𝑉𝑐𝑟 would then be the potential energy at the closest UEP. 

5. Integrate the fault-on trajectory until it reaches 𝑉𝑐𝑟 the corresponding time is the CCT. 

  

3.4.2 Potential Energy Boundary Surface Method 

The Potential Energy Boundary Surface Method (PEBS) was first proposed by Kakimoto et. 

al and Athay et.al. It has received a lot of attention for its natural relationship with the equal 

area criteria[12]. 

 

To conceptualize the method, the rim of the bowl presented in Figure 3.1 is the potential 

energy boundary surface. The PEBS method is simple in the sense that it does not require 

solving the system of nonlinear equations to obtain an equilibrium point. The methodology 

can be summarized in the following steps: 

 

1. Integrate the fault on trajectory until it crosses the “rim” of the bowl. 

2. The exit point or where it crosses the PEBS is used to calculate 𝑉𝑐𝑟. 

3. The CCT is found by integrating the fault-on trajectory until the sum of the kinetic 

and potential energy equals 𝑉𝑐𝑟. 
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3.4.3 Controlling Unstable Equilibrium Point  

The controlling UEP method, also called the exit point method, was developed in the 1980s. 

It aims to reduce the conservativeness of the closest UEP method by taking the fault 

trajectory into account[2].  

 

The method can in one way be said to be a combination of both PEBS and the closest UEP 

method. The steps to find the CCT using the CUEP method is listed as: 

1. Integrate the fault on-trajectory until it crosses the PEBS, this point is called the exit 

point. 

2. Use the exit point as the initial condition and solve for the CUEP. 

3. The potential energy at the CUEP is 𝑉𝑐𝑟. 

4. Integrate the fault on trajectory until it reaches 𝑉𝑐𝑟. The corresponding time step is the 

CCT. 

 

In the context of conservatism, the CUEP method is positioned between the closest UEP 

method and the PEBS method. The difference between the PEBS and CUEP methods lies in 

the fact that the exit point is not necessarily an unstable equilibrium point, as discussed 

previously, the stability boundary of a system is defined as the union of the stable manifolds 

of the UEP’s. This means there is a possibility that the PEBS method may have crossed the 

stability boundary at the exit point, leading to an unsatisfactory result in terms of critical 

energy. 

 

For many years, the computation of the CUEP’s was a formidable barrier in utilizing the 

methodology. The system of nonlinear equations is highly nonlinear and can be characterized 

by their fractal shapes, making many numerical methods unable to converge to a desired 

solution. The CUEP’s also lie on the stability boundary embedded with other UEP’s making 

it difficult to distinguish the CUEP from other UEP’s. Finding an initial guess that lies within 

the convergence region of the CUEP can be challenging [8] [16]. Several methodologies have 

in recent years made computing the CUEPS easier, the main methods are the BCU 

methodology and continuation-based approaches. In this thesis, a continuation approach 

rooted in Homotopy analysis, as proposed by Joydeep Mitra and is colleagues is posed as a 

viable solution [5]. 

 

The algorithm for computing the critical clearing time in this thesis is shown in Figure 3.4. 
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Figure 3.4: Proposed Algorithm for computing CUEP 

The first step of the algorithm is to determine the initial conditions of the system. As 

described in chapter 2 an internal node model using the classical representation will be 

utilized in computation of the swing curves and the computation of the equilibrium points. 

The calculations that need to be performed in step 1 can be summarized as follows: 

 

1. From the pre-fault load-flow determine the constant voltage behind the transient 

reactance. 

2. Calculate the initial rotor angle of the machines. 

3. Convert the loads to shunt impedances and add them to the corresponding diagonal of 

the y-matrix. 

4. Add the transient reactance to the y-matrix. 

5. For the faulted condition assume an ideal fault and remove the corresponding row and 

column of the y-matrix. 

6. For the post-fault system remove the line that is cleared and compute a new y-matrix. 

7. Reduce the fault-on and post-fault matrix to an internal node model. 
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The second step is calculating the post-fault SEP. This can be done solving Equation (2.13) 

for the postfault system. The initial guess should be the pre-fault SEP, using Newtons method 

will be a good enough method to determine the post-fault SEP. 

 

The third step is calculating the exit point. The exit point can be calculated by integrating the 

differential equations shown in Equation (2.6). The reduced fault-on matrix acquired in step 

one is utilized when integrating the equations. The only thing that changes for the different 

states is the y-matrix, everything else remains constant. The integration continues until the 

first maximum of the potential energy function is reached. 

 

The fourth step is calculating the CUEP. The post-fault reduced matrix acquired in step one is 

used to solve the nonlinear system of equations given in Equation (2.13). The exit point is 

used as the initial condition, the numerical method utilized is a homotopy method that is 

covered in chapter 4, the mapping direction and practical details of the computation is 

covered in chapter 6. 

 

The fifth step is calculating the critical energy of the system. The critical energy is found by 

inputting the CUEP and post-fault SEP into the energy function given in Equation (3.7). 

Since the CUEP is located on the stability boundary, ω = 0 and the kinetic energy term 

disappears.  

 

The sixth step is determining the CCT. The integration from step three can be reused and the 

timestep when 𝑉(δ, ω) = 𝑉𝑐𝑟 is the critical clearing time. 
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4 Numerical Methods 
In this chapter, the numerical methods utilized in this thesis are covered. Kron Reduction for 

reducing matrices, Homotopy analysis for solving nonlinear equations, and the reliable 4th 

order Runge Kutta method for numerical integration. 

4.1 Runge Kutta 4th order method for swing equation 

Solving the swing equations in this thesis will be done using, Runge Kutta 4th order method 

or RK4. It is considered to be the most widely used solver for ordinary differential equations 

[17].  

 

Solving the swing equation requires the equation to be rewritten as a set of first-order 

differential equations. The swing equation is solved for both a single machine and several 

machines, with the same principle applied in both cases. In the case of multiple machines, the 

equations are iterated per timestep. For the purposes of developing a computational scheme, 

the solution methodology is presented using a single-machine example. In Equation (4.1) the 

swing equation is rewritten as a set of two first order differential equations. 

 

𝑑δ

𝑑𝑡
= ω − ω𝑠 

𝑑ω

𝑑𝑡
=

π𝑓

H
(𝑃𝑚 − 𝑃𝑒) 

(4.1) 

 

Damping is neglected, 𝑃𝑚 is the mechanical power input to the machine and 𝑃𝑒 is the 

electrical power. The RK4 method uses four estimations where h denotes the integration 

timestep. The first estimation is shown in Equation (4.2)[18]. 

 

𝐾1δ = ℎ(ω − ω𝑠) 

𝐾1ω = ℎ (
π𝑓

𝐻
(𝑃𝑚 − 𝑃𝑒)) 

(4.2) 

The second approximation is given by Equation (4.3). 

 

𝐾2δ = ℎ (ω +
K1ω

2
− ω𝑠) 

𝐾2ω = ℎ (
π𝑓

𝐻
(𝑃𝑚 − 𝑃𝑒)) 

(4.3) 

The third approximation is given by Equation (4.4). 
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𝐾3δ = ℎ (ω +
K2ω

2
− ω𝑠) 

𝐾3ω = ℎ (
π𝑓

𝐻
(𝑃𝑚 − 𝑃𝑒)) 

(4.4) 

The fourth approximation is given by Equation (4.5). 

𝐾4𝛿 = ℎ(𝜔 + K3ω − 𝜔𝑠) 

𝐾4𝜔 = ℎ (
𝜋𝑓

𝐻
(𝑃𝑚 − 𝑃𝑒)) 

(4.5) 

These approximations are used to calculate the angular velocity and the rotor angle for the 

next timestep as shown in Equation (4.6). 

 

ω𝑛+1 = ω𝑛 +
1

6
⋅ (𝐾1ω + 2𝐾2ω + 2𝐾3ω + 𝐾4ω) 

δ𝑛+1 = δ𝑛 +
1

6
⋅ (𝐾1δ + 2𝐾2δ + 3𝐾3δ + 𝐾4δ) 

(4.6) 

 

4.2 HAM analysis homotopy 

This thesis employs the homotopy analysis method to identify the controlling unstable 

equilibrium points. While several homotopy methods exist, in this thesis Newton homotopy 

will be employed. This section will provide an overview of the fundamental theory and 

principles associated with this method. 

 

The homotopy analysis method was first proposed by Shijun Liao in 1992. The concept 

describes a continuous variation. To take an example a circle can be continuously deformed 

into a square. If a continuous deformation from one object to another is possible the objects 

are said to be homotopic[19]. 

 

In Equation (4.7) the most widely used homotopy function is presented [16].   

 

ℋ(𝑥, 𝑡) = 𝑡𝐹(𝑥) + (1 − 𝑡)𝒢(𝑥) = 0 (4.7) 

 

Where t is the mapping factor and is increased from 0-1. Which in turn will transform the 

homotopy function to the solution.  In Equation (4.8) the function 𝒢(𝑥) is chosen. This is 

called Newton homotopy. This eliminates the process of finding a suitable function. 
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𝒢(𝑥) = 𝐹(𝑥) − 𝐹(𝑥0) (4.8) 

 

This can be simplified as shown in Equation (4.9). 

 

ℋ(𝑥, 𝑡) = 𝐹(𝑥) − (1 − 𝑡)𝐹(𝑥0) = 0 (4.9) 

 

The forward mapping approach presented in the example is a useful tool in root finding. 

However, for certain problems multiple roots may exist, and it may become necessary to 

search for roots in the opposite direction. This is where Newton homotopy proves 

advantageous, as it allows for direction of the path to be modified. To change the direction, a 

slight adjustment in the formula is required, as demonstrated in Equation (4.10). This 

flexibility of the Newton homotopy method makes it a powerful tool for solving complex 

problems with multiple roots. 

 

 

ℋ(𝑥, 𝑡) = 𝑡𝐹(𝑥) + (1 + 𝑡)𝒢(𝑥) = 0 (4.10) 

 

The reason homotopy is used rather than a standard Newton Raphson (NR) approach is 

because of the region of convergence. If the initial guess to NR does not lie within the region 

of convergence of the solution it will not be able to converge to a solution. Newton homotopy 

overcomes this problem because it is globally convergent. This means that it will converge to 

a solution provided there is no turning point, bifurcation point or singularities in the solution 

trajectory[16]. 

 

An illustration of the operational mechanism of Newton-Homotopy shall be presented using a 

straightforward example. The numerical method used to solve each homotopy-iteration is 

Newton Raphson method, the single variable formula is shown in Equation (4.11) and the 

multi variable formula is shown in Equation (4.12). The system of equations is presented in 

Equation (4.13). 

𝑥𝑘+1 = 𝑥𝑘 −
𝑔(𝑥𝑘)

𝑔′(𝑥𝑘)
 (4.11) 

  

𝑥𝑘+1 = 𝑥𝑘 − 𝑗−1(𝑥𝑘) ⋅ 𝑔(𝑥𝑘) (4.12) 

 

𝑓(𝑥) =
𝑥1 + 2𝑥2 − 2

𝑥1
2 − 4𝑥2

2 − 4
 (4.13) 
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The jacobian matrix is computed and shown in Equation (4.14). 

 

𝑗 =
1 2

2𝑥1 8𝑥2
 (4.14) 

The initial guess is presented in Equation (4.15). 

 
 

𝑥(0) =
1
2

 (4.15) 

Utilizing a standard Newton-Raphson method poses no significant challenge in 

computing this example. However, to showcase the working principle of Newton-

homotopy forward mapping, the jacobian matrix shall remain unchanged while 

necessitating changes to the system of equations shown in Equation (4.16). The 

term “y” in the equation is the vector 𝑥0 as shown in Equation (4.16). 

 

 

𝑓(𝑥) =
(𝑥1 + 2𝑥2 − 2) − (1 − 𝑡)(𝑦1 + 2𝑦2 − 2)

(𝑥1
2 − 4𝑥2

2 − 4) − (1 − 𝑡)(𝑦1
2 − 4𝑦2

2 − 4)
 (4.16) 

 

This means that throughout the iteration of the mapping parameter, the initial condition 

remains constant for the term that is multiplied with (1 − 𝑡). This means a new and updated 

initial condition will come for each Homotopy-iteration. Each Homotopy-iteration is solved 

with Newton-raphson. Effectively moving the initial condition for the problem closer to the 

answer for each iteration. 

 

4.3 Kron reduction 

In this thesis, the admittance matrices will be reduced to the internal nodes of the generators 

in order to implement the formulas presented later in the thesis. This reduction will be 

accomplished using a commonly known method known as Kron reduction. The present 

section will describe the underlying principle of this technique. 

 

Kron reduction can be performed utilizing Equation (4.17). 

 

𝑌𝑘𝑗(𝑛𝑒𝑤) = 𝑌𝑘𝑗(𝑜𝑟𝑖𝑔) −
𝑌𝑘𝑁(𝑜𝑟𝑖𝑔)𝑌𝑁𝑗(𝑜𝑟𝑖𝑔)

𝑌𝑁𝑁(𝑜𝑟𝑖𝑔)
 

 

(4.17) 

Consider a matrix of size 4x4, which is required to be reduced to a 3x3 matrix, as depicted in 

Equation (4.18). 
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[

𝑌11 𝑌12 𝑌13 𝑌14

𝑌21 𝑌22 𝑌23 𝑌24

𝑌31 𝑌32 𝑌33 𝑌34

𝑌41 𝑌42 𝑌43 𝑌44

] → [
𝑌11 𝑌12 𝑌13

𝑌21 𝑌22 𝑌23

𝑌31 𝑌32 𝑌33

] (4.18) 

 

The values of k,j and N are determined as k = 3, j = 3 and N = 4, respectively. The elements 

of the resulting 3x3 matrix are computed using Equation (4.17) and an iterative process over 

k and j indices. An implementation of this process using Python is included in Appendix B 

for practical demonstration purposes. 
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5 SMIB Test Case 
The SMIB test case is derived from the power system illustrated in example 13.3 of the book 

“Power System Analysis” [11]. The system topology is presented in figure Figure 5.1, while 

Table 5.1 provides a list of the system parameters. 

 

Figure 5.1: One-line diagram for the SMIB test case 

 

 

Table 5.1: System parameters for the SMIB test case 

𝐻 5𝑀𝐽

𝑀𝑉𝐴
 

𝑃𝑚 1 p.u 

Terminal Voltage 1 p.u 

Infinite bus voltage 1 p.u 

𝑓 60 Hz 

 

5.1 Model 

The classical model described in subchapter 2.3 indicates that during the numerical 

integration of the two first-order differential equations, both voltage and mechanical power 

are constant. This suggests that the only parameter that changes during the integration process 

is electrical power. As a result, it becomes crucial to evaluate the electrical power as a 

function of the rotor angle in the different system states, namely pre-fault, fault-on and post-

fault. In this section, the calculation of the function of the electrical power for each of these 

states is presented. 
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The pre-fault state is straight forward, in Equation (5.1) the formula for the electrical power is 

shown. 

 

𝑃𝑒 =
|𝑣1| ⋅ |𝑣2|

𝑥
𝑠𝑖𝑛δ (5.1) 

Between the terminal voltage and the infinite bus, the electrical power is represented in 

Equation (5.2). 

|𝑉𝑡| ⋅ |𝑉|

𝑋
𝑠𝑖𝑛α = 1 →

1 ⋅ 1

0.3
𝑠𝑖𝑛α = 1 

 

(5.2) 

The terminal voltage of the machine can be found as shown in Equation (5.3). 

 

𝑉𝑡 = 1.0∠𝑠𝑖𝑛−10.3 = 1.0∠17.458∘ (5.3) 

 

The internal voltage of the machine could then be found as shown in Equation (5.4). 

 

𝐸′ =
1.0∠17.458∘ − 1.0

𝑗0.3
⋅ 𝑗0.20 + 1.0∠17.458 = 1.050∠28.44 (5.4) 

The electrical power in the pre-fault state is then presented in Equation (5.5). 

𝑃𝑒 =
(1.050)(1.0)

0.5
𝑠𝑖𝑛δ = 2.10𝑠𝑖𝑛δ 

 

(5.5) 

Now consider a bolted three phase short circuit at the point “P” as illustrated in Figure 5.2. 
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Figure 5.2: One-line diagram for the faulted condition 

 

This makes the connection between the two parallel lines a delta connection as shown in 

Figure 5.3. This then gets transformed to a Y-connection as shown in Equation (5.6). 

 

 

Figure 5.3: Impedance diagram of the faulted delta condition 

 

  

𝑍𝐴 =
𝑍𝐴𝐵𝑍𝐶𝐴

𝑍𝐴𝐵 + 𝑍𝐵𝐶 + 𝑍𝐶𝐴
= 𝑗0.1 

𝑍𝐵 =
𝑍𝐵𝐶𝑍𝐴𝐵

𝑍𝐴𝐵 + 𝑍𝐵𝐶 + 𝑍𝐶𝐴
= 𝑗0.1 

(5.6) 
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𝑍𝐶 =
𝑍𝐶𝐴𝑍𝐵𝐶

𝑍𝐴𝐵 + 𝑍𝐵𝐶 + 𝑍𝐶𝐴
= 𝑗0.05 

 

The system is now represented as a Y-connection, as illustrated in Figure 5.4. To determine 

the power flow between the generator’s internal node and the infinite bus, a straightforward 

approach involves performing a 𝑌 − Δ transform from node A to node B, as demonstrated in 

Equation (5.7). 

 

Figure 5.4:Impedance diagram of the faulted y-connection 

 

𝑍𝐴𝐵 =
𝑍𝐴𝑍𝐵 + 𝑍𝐵𝑍𝐶 + 𝑍𝐶𝑍𝐴

𝑍𝐶
= 𝑗1.3 

 

(5.7) 

The resulting equation representing the electrical power in the fault-on state can be seen in 

Equation (5.8). 

𝑃𝑒 =
1.05 ⋅ 1

1.3
⋅ 𝑠𝑖𝑛δ = 0.808𝑠𝑖𝑛δ 

 

(5.8) 

The equation for the post-fault state can be obtained in the same manner as the pre-fault state. 

The post-fault state is represented in Equation (5.9). Table 5.2 summarizes the equations for 

the three system states. 

 

𝑃𝑒 =
1.05 ⋅ 1

0.7
⋅ 𝑠𝑖𝑛δ = 1.5𝑠𝑖𝑛δ 

 

(5.9) 
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Table 5.2: Overview of the electrical power for each system state 

System State Electrical Power 

Pre-Fault 2.1 𝑠𝑖𝑛δ 

Faulted 0.808 𝑠𝑖𝑛δ 

Post-Fault 1.500𝑠𝑖𝑛δ 

 

5.2 Exit Point 

As discussed in chapter 3 the aim is to find the point where the fault-on trajectory exits the 

stability boundary of the post-fault system. This is done by integrating the fault-on trajectory 

until it crosses the stability boundary. In theory this is called the exit point and it is equivalent 

to the first local maximum of potential energy. 

 

The first thing that needs to be calculated is the post-fault SEP, at a stable equilibrium point 

𝑃𝑎 is zero. The post-fault SEP can be found as shown in Equation (5.10). 

𝑑ω

𝑑𝑡
= 1 − 1.5𝑠𝑖𝑛δ 

0 =  1 − 1.5𝑠𝑖𝑛δ 

δ = 𝑠𝑖𝑛−1 (
1

1.5
) = 41.81∘ = 0.7297𝑟𝑎𝑑 

 

(5.10) 

The potential energy as a function of time is plotted in Figure 5.5.  
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Figure 5.5: Potential energy for the fault-on period 

 

The first maximum is found after 241 iterations, this gives an exit point equal to 2.411 rad. 

The single machine case is a special case where the exit point is the controlling unstable 

equilibrium point. This is illustrated in Figure 5.6. 

 

 

Figure 5.6: Potential Energy “well” for the SMIB case[12]  

From the figure it is evident that the post-fault sep is surrounded by, two unstable equilibrium 

points at coordinates −π − δ𝑠 and π − δ𝑠. From the calculation in Equation (5.10), we know 

that δ𝑠 = 0.7297. A simple test where one takes π − 0.7297 =  2.411. Shows that the first 
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maximum of the potential energy function is in fact the controlling unstable equilibrium 

point. 

 

5.3 Critical Clearing time and critical clearing angle 

It is essential to ensure that the system’s total energy does not exceed the critical energy, 

which is defined as the potential energy at the CUEP or 𝑉(𝛿𝑢) to relate it to Figure 5.6. The 

critical energy level for the present system has been calculated as -1.29. To determine the 

critical clearing time and angle, the energy of the system is evaluated during each timestep 

during the fault-on trajectory until the condition until 𝑉(𝜔, 𝛿) < 𝑉𝑃𝐸(𝛿𝑢) is no longer valid. 

This process yields a critical clearing time of 0.318 seconds and a critical clearing angle of 

83.79 degrees. 

 

To compare it to the equal area criteria, the formula for this specific case can be found in 

example 13.8 in the book “Power System Analysis”[11],for simplicity the calculation is 

shown in Equation (5.11).  

 

 

𝑐𝑜𝑠δ𝑐𝑟 =

1.0
2.10

(2.412 − 0.496) + 0.714𝑐𝑜𝑠(138.19)∘ − 0.385𝑐𝑜𝑠(28.44∘)

0.714 − 0.385
 

= 0.1266 

δ𝑐𝑟 = 𝑐𝑜𝑠−1(0.1266) = 82.726∘ 

 

(5.11) 

This is slightly lower than what was achieved using the direct method. This is because of 

round-off errors in the calculation in the book. To validate that the critical clearing time will 

not lead to instability a time domain simulation has been performed, as shown in Figure 

5.7.The time domain simulation using the classical formulation is simulated for 10 seconds 

with a damping factor of 0.01. This is done to ensure that the critical clearing time is not set 

too high and that it goes towards a stable operating point. The numerical integration and 

calculations for this test case can be found in appendix C.  
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Figure 5.7: Time domain simulation for the SMIB test case 
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6 Multimachine Test Case 
In this chapter, we will introduce the multimachine test case, which is based on the WSCC 3 

generator 9 bus system. The algorithm for computing the CCT for a specific contingency was 

presented in chapter 3. The algorithm will be used to calculate the CCT for a fault occurring 

close to busbar 4, between lines 4 and 5. The computation will be shown in a stepwise 

manner. The results of this calculation will be validated against the thesis “Direct Methods 

for power systems transient stability analysis using BCU method”[15] and the report “A 

Lyapunov Function Based remedial Action Screening Tool Using real-time data”[5]. 

6.1 Determining Initial values 

The multimachine system that will be used in this report is the WSCC test system. Relevant 

values for this system is found in the book from Sauer and Pai[12]. The system is shown in 

Figure 6.1. 

 

 

Figure 6.1:WSCC 3 generator 9 bus system [12] 

 

Relevant values from the resulting load-flow analysis can be found in Table 6.1.  
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Table 6.1: Load-flow results  

 Bus Voltage (Pu) Pg Qg -PL -QL 

1 Swing 1.04∠0∘ 0.716 0.27 - - 

2 (P-V) 1.025∠9.3∘ 1.63 0.067 - - 

3 (P-V) 1.025∠4.7∘ 0.85 -0.109 - - 

4 (P-Q) 1.026∠

− 2.2∘ 

- - - - 

5 (‘’) 0.996∠

− 4.0∘ 

- - 1.25 0.5 

6 (‘’) 1.013∠

− 3.7∘ 

- - 0.9 0.3 

7 (‘’) 1.026∠3.7∘ - - - - 

8 (‘’) 1.016∠0.7∘ - - 1.00 0.35 

9 (‘’) 1.032∠2.0∘  - - - 

 

Determining the initial values in accordance with the classical model and using an internal 

node model requires five steps: 

1. Calculate the constant voltage behind the transient reactance from the pre-fault load-

flow analysis. 

2. Convert the loads to shunt impedances. 

3. Generate a reduced fault-on y-matrix. 

4. Generate a reduced post-fault y-matrix. 

5. Determine the initial center of inertia parameters. 

 

The data from the synchronous machines required to perform these calculations are given in 

Table 6.2. 
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Table 6.2:Relevant Generator values[12] 

Generator 𝑋𝑑
′  in per unit M 

1 0.0608 0.1254 

2 0.1198 0.034 

3 0.1813 0.016 

 

The constant voltage behind the transient reactance can be calculated as shown in Equation 

(6.1). 

𝐸∠δ′ = (𝑉 +
𝑄𝑥𝑑

′

𝑉
) + 𝑗 (

𝑃𝑥𝑑
′

𝑉
) 

 

(6.1) 

Where V is the magnitude of the terminal voltage. To find the rotor angle of the machine 

δ0 = δ′ + α where α is the angle at the terminal. The resulting internal voltages with 

corresponding rotor angles are depicted in Equation (6.2). 

 

𝐸1
′ = 1.0566∠2.27∘ 

𝐸2
′ = 1.0503∠19.75∘ 

𝐸3
′ = 1.017∠13.2∘ 

 

(6.2) 

The initial rotor angles are the pre-fault stable equilibrium point written in the unit of radians 

this becomes [0.0396,0.344,0.23]. Converting them into the initial angles of the center of 

inertia formulation as discussed in chapter 3, can be done by utilizing the formulas depicted 

in Equation (6.3). 

 

δ𝑖̃  = δ𝑖   − δ0 

δ0 =
1

𝑀𝑇
∑ 𝑀𝑖δ𝑖

𝑛

𝑖=0

 

 

(6.3) 

Calculating δ0 = 0.116, the resulting rotor angles for the center of inertia formulation then 

becomes [-0.0764,0.229,0.114]. These angles then represent the pre-fault stable equilibrium 

point in the center of inertia formulation. 
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The next step is converting the loads to shunt impedances. This is because all loads are to be 

considered constant during the computation of the swing equation in accordance with the 

classical requirement. The formula for converting the loads to shunt admittances is shown in 

Equation (6.4)[12]. 

 

𝑦
𝑖𝑖

= −
(𝑃𝐿𝑖 − 𝑗𝑄𝐿𝑖)

𝑉𝑖
2  

 

(6.4) 

The resulting impedances for the loads are shown in Equation (6.5). 

 

 

𝑦
55

= 1.26 − 𝑗0.504 

𝑌66 = 0.8776 − 𝑗0.2925 

𝑌88 = 0.9690 − 𝑗0.3391 

 

(6.5) 

 

The original y-matrix gets updated with two values, the transient reactance of the 

synchronous machines is added in series with the corresponding transformer reactance, and 

the shunt impedances that represent the load are added as a shunt impedance on the busbar 

where the load is connected. 

 

To create the faulted y-matrix an ideal fault is considered between lines 4 and 5 close to 

busbar 4. This means that the voltage at busbar 4 = 0. This means that both the column and 

row of the bus fault location is removed from the original y-matrix and reduced using kron-

reduction as explained in chapter 4 to a 3x3 matrix. For the post-fault matrix, the line from 4 

to 5 is removed and kron reduction is utilized to generate a 3x3 matrix for the post-fault 

system. 

 

6.2 Post-fault SEP  

The post-fault stable equilibrium point represents the state of the power system when it 

returns to a steady state after a disturbance. As discussed in chapter 2, this equilibrium point 

can be obtained by solving the system of nonlinear equations, that for convenience is shown 

in Equation (6.6). 

 

𝑓𝑖 = 𝑃𝑖 − 𝑃𝑒𝑖 −
𝑀𝑖

𝑀𝑇
𝑃𝐶𝑂𝐼 (6.6) 
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Since the classical model is used the only element that changes is the y-matrix. Using the 

post-fault matrix and the initial angles as the initial guess this problem can be solved using a 

standard newton Raphson algorithm, in literature the post-fault SEP normally lies within the 

region of convergence when the pre-fault SEP is used as the initial guess[13]. 

 

For this contingency the number of equations is reduced as discussed in chapter 2. 

Synchronous machines one and two are chosen as the reference machines and to calculate the 

angle of machine three Equation (6.7) is used. 

 

δ̃3 = −
𝑀1δ̃1 + 𝑀2δ̃2

𝑀3
 (6.7) 

The resulting post fault SEP solved using newtons method is depicted in Equation (6.8). The 

script for calculating the post fault SEP is shown in appendix (x.x). 

 

𝛿1 = −0.6045158 

δ̃2 = 0.18174784 

δ̃3 = 0.08757509825 

(6.8) 

 

6.3 Exit Point 

The determination of exit points is a crucial step in the CUEP method for transient stability 

analysis. It is defined as the point where the fault-on trajectory intersects the stability 

boundary of the post-fault system. There are several methods for computing the exit point, 

but in this thesis, we employ the first maximum of the potential energy along the fault-on 

trajectory as the methodology. 

 

Numerical integration is performed using a 4th order Runge-Kutta solver, as outlined in 

chapter 4. Figure 6.2 illustrates the potential energy, and the delta corresponding to the first 

maximum of the potential energy function is the exit point. To compare the results obtained 

from this approach, there has also been included exit points from one master thesis and one 

technical report that employ the WSCC 3 generator 9 bus system. In Table 6.3 the exit points 

are presented. Where No.1 corresponds to the work done in this thesis, No.2 is from the 

master thesis “Direct Methods for Power Systems Transient Stability analysis using BCU 

method”, and No.3 is from the report “A Lyapunov Function Based Remedial Action 

Screening Tool Using Real-Time Data”. 
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Figure 6.2: Potential Energy for the fault-on period 

 

Table 6.3:Exit Points  

 

No. 

Fault 

Near bus 

 Line trip Exit points (rad) 

From To δ̃1 δ̃2 δ̃3 

1 4 4 5 -0.77538 1.93921 1.94038 

2 4 4 5 -808206 2.02901 2.02450 

3 4 4 5 -0.83157 2.05223 2.16748 

 

 

6.4 Controlling unstable equilibrium points 

One of the primary challenges in utilizing the controlling unstable equilibrium point 

methodology is accurately computing the CUEP. The CUEP is embedded within many 

unstable equilibrium points on the stability boundary of the post-fault system, making it 

difficult to distinguish the CUEP from other UEP’s. Additionally, the convergence regions of 

CUEP’s are characterized by fractal shapes, which can cause many numerical methods to fail 

to converge. Finding an initial guess that lies within the region of convergence of the CUEP 

is also a challenging task. As a result, computing the CUEP is a crucial step in successful 

implementation of the CUEP methodology[16] [13]. 
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In this thesis a homotopy based approach will be used when computing the CUEP. This is a 

more computationally taxing method than the BCU method, but in theory it reduces the 

necessity for accurately computing the exit point.  

 

The principle of homotopy is covered in chapter 4. However, there is some additional 

information that is required to explain how computation of CUEP’s is done utilizing the 

homotopy approach, the exit point is used as the initial guess. Determining whether to use a 

backward mapping or forward mapping approach can be assessed by examining Figure 6.3. 

In the algorithm, a forward mapping approach is assumed by default. After one iteration, if 

the potential energy decreases with respect to the exit point, this indicates that the algorithm 

is heading in the direction of the CUEP, and therefore the correct mapping direction has been 

identified. Conversely, if the potential energy increases with respect to the exit point, the 

algorithm should switch to a backward mapping approach to ensure an accurate identification 

of the CUEP. Thus, the mapping direction of the mapping approach can be adjusted based on 

the behavior of the potential energy with respect to the exit point. It should be noted that in 

this thesis fixed point homotopy was used, meaning that the mapping factor t had a 

predetermined value which was used throughout the process. However, to increase the 

computational speed of the method an adjustable mapping factor should be utilized[16]. 

 

 

 

Figure 6.3:Forward and Backward mapping CUEP 

The computation of the CUEP is done solving the same system of nonlinear equations as 

depicted in Equation (2.13). In Table 6.4 three sets of CUEP’s are shown. Where No.1 

corresponds to the work done in this thesis, No.2 is from the master thesis “Direct Methods 

for Power Systems Transient Stability analysis using BCU method”, and No.3 is from the 

report “A Lyapunov Function Based Remedial Action Screening Tool Using Real-Time 

Data”. 
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Table 6.4:CUEP’s 

 

No. 

Fault 

Near bus 

Line trip Controlling UEPs, (rad) 

From To δ̃1 δ̃2 δ̃3 

1 4 4 5 -0.83065 2.16207 1.9158 

2 4 4 5 -0.79264 2.16069 1.94184 

3 4 4 5 -0.83157 2.05223 2.16748 

 

6.5 Critical clearing time 

Finding the critical clearing time is obtained by reusing the integration from the exit point 

calculation. Then the inequality 𝑉(𝑥) ≤ 𝑉𝑐𝑟 is checked until the systems energy equals the 

critical energy. The CUEP computed in this thesis along with the CUEPs from the thesis and 

report for comparison is presented in Table 6.5. 

 

Table 6.5:Critical Energy and Critical Clearing Time 

No. Critical Energy Critical Clearing time 

No.1 3.14345 0.332 

No.2 3.094 0.33 

No.3 3.05 0.328 
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7 Discussion 
 

An intriguing discovery in the SMIB-test case, is that all three direct methods discussed in 

Chapter 3 would produce identical results. For the closest UEP method the UEP found would 

in fact be the closest, for the PEBS method the UEP found would be the first maximum of the 

potential energy, and if one where to use a larger timestep so that the exit point did not equal 

the UEP and solved it using Newtons method it would also converge to the same UEP. 

Therefore, the SMIB-test case is a special case where all methods would yield the same 

result. 

 

When analyzing the multimachine case, it is advisable to exercise caution while comparing 

the exit point, CUEP, critical energy and critical clearing times, as the assumptions made in 

the documents used for validation are not entirely clear. This lack of information could lead 

to misconceptions. However, it should be noted that the selected contingency is a prevalent 

one for the WSCC 3 generator 9 bus system, and thus the findings in this thesis are consistent 

with exiting literature. Concluding on which method gave the most conservative results is not 

possible to know seeing as all the assumptions is not known. 

 

Two assumptions made in the multimachine case of this thesis may increase the conservatism 

of the results. Firstly, assuming an ideal fault condition with zero fault resistance may 

exaggerate the mismatch between electrical and mechanical power, leading to an 

overestimation of the initial acceleration. Secondly, neglecting damping may result in an 

overestimation of the angular velocity, further increasing conservatism in the analysis. 

However, it should be noted that these assumptions do not reflect the conditions of practical 

power systems. One of the challenges is to find a balance between a conservative analysis 

and a realistic one to maximize the potential of utilizing direct methods.  

 

Another simplification made in this thesis is that loads are converted to shunt impedances and 

remain constant during the simulation. However, in practical power systems, dynamic loads, 

like induction motors and power electronic devices are present. They affect the stability of 

the system, by utilizing a reduced network model it is not possible to study the behavior of 

dynamic loads. The penetration of power electronic converter interfaced technologies could 

potentially make this more of a problem in the future and is definitively something that 

should be investigated further. 

 

This thesis showcases how direct methods can be utilized to assess the transient stability of a 

power system. In the test cases off-line analysis has been performed. However, as mentioned 

in the introduction it is desirable to utilize this method for online transient stability analysis. 

Implementing this as a online approach requires the methodology to be incorporated in 

existing control systems, where the analysis can be performed continuously and be utilized 

for remedial actions in the power system. 
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Remedial action can be classified as either corrective or preventive. Corrective actions, such 

as line tripping, load shedding, or generation tripping are triggered immediately if a 

significant disturbance occurs, whereas preventive actions, such as load rescheduling or load 

shedding, are triggered periodically or upon request of system operators. 

 

An important concept in this approach is the energy sensitivity margin, which is the 

difference between the energy at the CUEP and the energy at clearing. If the margin is larger 

than zero, the contingency is deemed stable. The energy sensitivity margin is depicted in 

Equation (7.1). 

 

Δ𝑉 = 𝑉𝑢 − 𝑉𝑐𝑙 (7.1) 

 

The energy margin can also be utilized for determining how load rescheduling is performed, 

but further details on this aspect are beyond the scope of this thesis. By integrating online 

transient stability analysis, the power system can be operated more realistically, closer to its 

practical limits, instead of relying on limits determined using offline analysis, which may not 

accurately reflect the actual operating conditions of the grid[5]. 
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8 Conclusion and future work 
 

8.1 Conclusion 

 

In test case 1 the single machine infinite bus test case, obtained results that aligned with the 

expectations and were consistent with the outcomes derived from the equal area criteria. This 

confirms the effectiveness of the implementation of direct methods, demonstrating its validity 

and reliability. 

 

Furthermore, the CUEP homotopy approach was employed and tested for a contingency 

within the multimachine test case. The results obtained were found to be in accordance with 

existing literature, and validation was conducted using two reputable sources. This successful 

application of the homotopy approach establishes its viability in determining critical clearing 

times for contingencies in the power system. 

 

During the literature review, it was revealed that different methods for assessing transient 

stability have varying levels of conservatism. The closest UEP method was identified as the 

most conservative, followed by CUEP, while PEBS method was determined to be the least 

conservative. 

 

Another significant aspect worth mentioning is the report titled “A Lyapunov Function Based 

Remedial Action Screening Tool Using Real-time Data”. In this report, the CUEP homtopy 

approach was applied to a large-scale real-time digital simulator. Utilizing data from 

Southern California Edision one of the largest utility companies in California. The simulator 

facilitated real-time testing of a system with up to 286 busbars. Although specific details of 

the performed tests are not publicly available, the report indicates a successful outcome, 

suggesting broader testing and commercialization. The project was completed in 2016 and 

has led to more research within the field. 

 

The successful implementation of direct methods conducted in the test cases demonstrates the 

feasibility of utilizing these approaches for assessing transient stability of power systems. The 

extensive research conducted in the field, along with ongoing investigations, demonstrates 

the promising prospects for enhancing power system oberability, stability and overall grid 

resilience.  
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8.2 Future work 

In terms of future work, several recommendations emerge from this thesis. Firstly, it would be 

valuable to implement the proposed methodology in a larger-scale model, such as the Nordic 

Power system. This expanded application would provide insights into the effectiveness and 

scalability of the approach. 

 

Furthermore, incorporating structure preserving models into the analysis would significantly 

enhance the level of information obtained from transient stability assessments. By considering 

the characteristics and dynamics of the system components, a more comprehensive 

understanding of the transient stability issue can be achieved. 

 

Additionally, exploring the impact of power electronic converter interfaced technologies would 

be useful. Assessing how the penetration of these technologies influence stability can help in 

understanding how they affect stability.  
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Appendices 
 

Appendix A  Task Description for the Master Thesis 

Appendix B  Kron Reduction 

Appendix C  Test case 1: Single machine infinite bus 

Appendix D  Test case 2: WSCC 3 generator 9 bus system 
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Appendix A: Task description for the master thesis 
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Appendix B: Kron Reduction 

Methods created in python to perform kron reduction to create the fault on and post-fault 

reduced matrices. 
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Appendix C: Test Case 1 SMIB 

Runge Kutta 4th order solver for numerical integration of the fault-on trajectory. 
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Finding the first maximum of the potential energy, the critical energy and corresponding 

critical clearing time and angle for comparison with the equal area criterion. 
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For the time domain simulation, the RK4 solver was updated to include damping and clear 

the fault at the CCT, which can be seen in the code. 
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Appendix D: Test Case 2 Multi Machine 

To solve for equilibrium points the Sympy library in Python has been utilized. This enables 

symbolic math for computing the jacobian of Equation (2.13) and return numerical values for 

both the jacobian and the function.  
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The data coming out from this method cannot be used directly in a numerical solver, 

therefore the data needs to be reshaped. 

 

 

Newtons method is used both for calculating the postfault SEP and the CUEP. However, 

when calculating the CUEP a full solution of Newtons method is used per homotopy 

iteration. 
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Defining 𝑃𝐶𝑂𝐼 and 𝑃𝑒𝑖 

 

 

The fault-on matrix gets integrated using an RK4 solver. 
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The energy function is defined. 
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Finding the exit point is the first maximum of the fault-on trajectory. 
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Finding the critical clearing time is done by reusing the integration from the fault-on 

trajectory, the full energy function is used and figuring out where 𝑉(𝑥) = 𝑉𝑐𝑟. 

 

 

 


