

www.usn.no

Faculty of Technology, Natural sciences and Maritime Sciences
Campus Porsgrunn

FMH606 Master's Thesis 2023

Industrial IT and Automation

Development of Predictive Machine
Learning Algorithm for Energy Usage in

Buildings

Øystein Guldberg

www.usn.no

The University of South-Eastern Norway takes no responsibility for the results and

conclusions in this student report.

Course: FMH606 Master's Thesis, 2023

Title: Development of Predictive Machine Learning Algorithm for Energy Usage in Buildings

Number of pages: 85

Keywords: Machine learning, predictive energy model, energy usage, energy forecasting in

buildings

Student: Øystein Guldberg

Supervisor: Anthoula Mountzouri, Carlos Pfeiffer

External partner: Yodiwo

Summary:

A model for energy usage forecasting can be a tool to help reduce the energy consumed by

buildings, and thereby also reduce both the energy costs and carbon footprint of buildings.

In order to create a good prediction model, the inputs containing valuable information are found

by data analysis. The data analysis mainly uncovers that the training data in this project contains

certain cyclical patterns for daily, weekly, and yearly variations. And that one of the most

important parameters influencing changes in energy consumption is cooling caused by the outdoor

temperature.

This thesis investigates using two different machine learning algorithms to create energy

consumption models for daily and hourly energy predictions. The first model type is long-short

term memory (LSTM) and the second is gradient boosted machines. Which model type produces

the best results will depend on the building, and the desired prediction horizon which may be the

next hour, day, or month.

The data used for model training in the project is recorded from two separate buildings located in

Athens, Greece. Where the best predicting model for building #1 is a LSTM model with a MAE

of 608 kWh (about 15% of test set mean), and for building #2 a gradient boosting model with a

MAE of 1208 kWh (about 8% of test set mean).

 Preface

3

Preface
This report is written as part of the master thesis in the eighth semester of the online master

Industrial IT and Automation program (IIA) at the University of Southeast Norway (USN).

The work performed during this thesis is part of a collaboration between USN and the external

partner Yodiwo. Yodiwo is a company helping customers optimize a variety of tasks within

the domain of building and space management by utilizing IoT, AI and other digital tools. In

this thesis, the Yodiwo branch located in Athens has been the contributor of data and

knowledge.

For the performance and support during this thesis I would like to thank Yodiwo and in

particular Anthoula for providing knowledge, guidance, and constant support during the work.

I would also like to direct a special thanks to Carlos for his support and expertise in the field

of modelling and engineering work.

This project relies on implementations in Python, and depends on important libraries such as

XGBoost, TensorFlow and Keras in particular. Plots in the results part are all created with

Python. All other figures and illustrations are created by the author with the help of Microsoft

Office tools.

Fundamental knowledge in the fields of machine learning, model development, programming

and general thermal dynamics will help the interested readers enjoy this report. The work

performed during this thesis could be useful for other peers in the field of data analysis and

machine learning community, or people interested in energy usage in buildings in general.

Full source code developed during the thesis can be accessed through these links: Data import,

Data analysis, XGBoost model, LSTM model.

“If I have seen further, it is by standing on the shoulders of Giants.”

- Isaac Newton

Porsgrunn, 2023.05.15

Øystein Guldberg

https://colab.research.google.com/drive/1m09M3d7J_9Z4uPsvCstHgad4YmKpgvNv?usp=sharing
https://colab.research.google.com/drive/18rJAlJ5Reb8Ba-Eqo70HdkdHEFQtZz_u?usp=sharing
https://colab.research.google.com/drive/1ShHptj2DXoLLM4r3jajmL6juQSFieq4Q?usp=sharing
https://colab.research.google.com/drive/1SHleIaVhXneydu_4KS5PPbP4wZxJDmTI?usp=sharing

 Contents

4

Contents

Preface ... 3

Contents ... 4

Abbreviations .. 6

1 Introduction ... 7

1.1 Background information .. 7
1.2 Energy and Thermal Models .. 8

1.2.1 White box model ... 8
1.2.2 Black box model .. 8
1.2.3 Grey box model ... 8
1.2.4 Important parameters ... 8
1.2.5 Related work .. 10

1.3 Project objectives ... 10
1.4 Report structure .. 10

2 Methodology .. 11

2.1 Artificial Intelligence and Machine Learning ... 11
2.1.1 Timeseries and Machine Learning .. 13
2.1.2 Training the ML algorithm .. 13

2.2 Neural Network - NN ... 14
2.2.1 Training the neural network ... 16
2.2.2 Recurrent Neural Network (RNN) .. 18
2.2.3 Long Short-term memory (LSTM) .. 20
2.2.4 Deep learning... 21

2.3 Decision Tree - DT .. 22
2.3.1 Random forest ... 22
2.3.2 Boosting ... 23
2.3.3 Gradient boosting machines.. 23

2.4 Python .. 23
2.4.1 Google Colaboratory – Colab .. 24
2.4.2 TensorFlow and Keras .. 24
2.4.3 XGBoost ... 24
2.4.4 Scikit-learn. .. 25
2.4.5 Pandas .. 25
2.4.6 Matplotlib ... 25

2.5 Data preparation ... 26
2.5.1 Raw data format .. 28
2.5.2 Pre-processing and aggregation of data. ... 29
2.5.3 Time stamps .. 32

2.6 Feature Engineering ... 32
2.6.1 Weather data .. 33
2.6.2 Energy consumption .. 33
2.6.3 Time Features .. 34
2.6.4 Lag Features .. 35

2.7 Data Analysis .. 35
2.7.1 Trend .. 35

2.8 Modelling ... 36
2.8.1 Extreme gradient boosting ... 37
2.8.2 LSTM ... 37

 Contents

5

2.8.3 Validation of models ... 39
2.8.4 Data standardization ... 39
2.8.5 One-hot encoding ... 39
2.8.6 Outlier handling ... 39

3 Data analysis results .. 40

3.1 Weather data analysis .. 40
3.2 Energy data analysis .. 41

3.2.1 Building #1 ... 41
3.2.2 Building #2 ... 42
3.2.3 Both buildings ... 43
3.2.4 Trend .. 44

3.3 Combined data analysis ... 46
3.3.1 Timely energy features ... 46
3.3.2 Correlation ... 49
3.3.3 Autocorrelation.. 51

3.4 New temperature feature .. 53

4 Modelling results... 55

4.1 Outlier handling .. 55
4.1.1 Standard deviations From grouped Mean (SFM) ... 55
4.1.2 Temperature scatter .. 56

4.2 Baseline model .. 57
4.3 Extreme gradient boosting .. 58

4.3.1 Timely features – daily energy consumption ... 58
4.3.2 All features – daily energy consumption .. 60
4.3.3 All features – hourly energy consumption ... 62
4.3.4 Model parameter importance ... 63

4.4 LSTM models ... 64
4.4.1 Single input model .. 64
4.4.2 General model ... 66

4.5 Future predictions .. 68

5 Discussion ... 69

5.1 Pre-processing .. 69
5.2 Data Analysis .. 69

5.2.1 Outlier detection .. 70
5.3 Models .. 71

5.3.1 Model validation .. 71
5.3.2 Gradient Boosting Machines ... 71
5.3.3 LSTM ... 72
5.3.4 Overall model results .. 73

5.4 Future work ... 74

6 Conclusion .. 75

References ... 76

Appendices .. 79

 Abbreviations

6

Abbreviations
ANN – Artificial Neural Network

NN – Neural Network

ML – Machine Learning

AI – Artificial Intelligence

SVM – Support Vector Machine

LSTM – Long Short-Term Memory

GRU – Gradient Recurrent Unit

HVAC – Heating, Ventilation and Air Conditioning

CSV – Comma-Separated Values file

JSON – JavaScript Object Notation

UTC – Coordinated Universal Time (Universal Time Coordinated)

 1 Introduction

7

1 Introduction
This introduction chapter discloses the purpose and goal of the project in the contexts with

some of the background information, alongside an introduction to energy and thermal models

in general. At the end of the chapter, there is also information about the report structure.

1.1 Background information

If the world shall reach the goal of limiting global warming and climate change by reducing

the total emission of greenhouse gasses in accordance with the Paris climate agreement, every

sector must contribute. Buildings consume nearly 40% of the overall energy worldwide and

are thus responsible for the corresponding carbon footprint [1]. It is estimated that this portion

is larger than both the industry sector (about 32% of total) and the transport sector (about 28%

of total) [2]. It is even estimated that the energy demand in buildings will increase mainly

because of population growth, increased number of buildings and amount of floor space. All

of which underlines the importance of good energy efficiency in the building sector.

Of the total energy consumed by the building sector, a study from 2018 shows that operation

of residential buildings accounts for about 61% and operation of non-residential buildings

accounts for about 22% of the energy consumed in buildings. The remaining is connected to

the building construction industry (17%) [2].

Methods for energy prediction, energy models, have in general two purposes in a building:

design or optimization (of for instance the HVAC system) before and during construction, and

calculating savings for retrofitting strategies or enabling model predictive control in existing

buildings [2]. Demand forecasting and decomposition of energy consumption patterns can help

identify the major objectives for energy conservation. Furthermore, sufficient energy

predictions can help building managers shift energy consumption to off-peak periods, make

more efficient energy purchase plans, form energy storage, and utilize energy buffers, that in

sum can help reduce the total energy consumption, increase the usage of energy from renewable

sources, and reduce the costs of energy [3]. Models for energy prediction could also help detect

abnormalities inside the building, which in turn can reduce the response time for managing the

cause.

The time people spend in an indoor space is today about 90%, making the indoor environmental

quality (IEQ) an important parameter of the quality of life for the occupants [4]. Energy

conservation, which can lead to good energy efficiency without sacrificing comfort levels, does

then particularly mean identifying areas of wasteful energy usage and then taking actions to

reduce this surplus [1].

Models for energy predictions can serve different purposes depending on the area of need, and

not only on a building specific level. Governments or city planners can for instance also benefit

from using energy models for high level predictions like the future energy demand in cities or

different districts, power grid requirement and free capacity simulations, and much more.

Globally, heating is a larger energy consumer compared to cooling today, but some research

would suggest that global warming and climate changes will transition the energy usage from

heating to more cooling in the future, making both the pattern and geographical location for

consumption change over time.

 1 Introduction

8

1.2 Energy and Thermal Models

There has been an increasing interest in developing models for energy consumption and

thermal behavior for buildings for the last decades. These models can usually be divided into

three main categories: white, grey, and black box models (according to [5] and [2]).

1.2.1 White box model

White box models are based on mechanistic models that require calibration of the physical

parameters based on building specific material knowledge. One key advantage for this type is

that models can be created without the use of recorded building data, which again uncover one

of the challenges of estimating correct parameters for the model. The degree of complexity can

vary in these models with one strategy being lumping parameters together. There exist several

computer programs that utilize these kinds of models for energy simulation.

1.2.2 Black box model

Black box models represent the data-driven approach to modelling, whereas different recorded

features are used as inputs to the model and the model is calibrated to predict the correct output.

The black box models are therefore not reliant on a physical understanding or differential

equations, but there is often not a straightforward way of understanding how the predictions

work, hence the name “black box”. A machine learning model is a data-driven model type and

will fall under this category.

Lately, there has been a development in this field with algorithms that can help understand how

these machine learning algorithm’s function. For instance, what features a neural network put

emphasis on during image recognition. Which could make the workings of such algorithms a

bit less of a “black box”.

1.2.3 Grey box model

Grey box models can be seen as sort of a combination of the white and black box approach

where the models are typically mechanistic models, of the same structure as one can find in

white box models, but the identification of model parameters are found using data.

One popular example of a grey box model is the lumped capacitance model, where the

distributed thermal mass of the building is “lumped” into a discrete number of capacitances.

Inside the model, thermal resistors interconnect these thermal capacitors, making it a thermal

network. Therefore lumped capacitance is often referred to as “thermal networks”, “resistor-

capacitor” or simply “RC networks”.

1.2.4 Important parameters

The total energy consumption in a building will depend on the equipment responsible for

consuming energy, this can be any physical equipment, machinery, process, or a combination

of these [1]. Figure 1-1 illustrates how some of the different energy consumers and other

parameters can affect the total energy consumption of a building.

 1 Introduction

9

Figure 1-1: Important parameters in energy consumption

A study from 2012 shows that the energy consumption in buildings can be divided into

categories as shown in Figure 1-2 [1]. In this study, lighting is shown to be a substantial factor.

It is reasonable to assume that this percentage would be reduced today due to the increased use

of low energy lighting such as LEDs.

Figure 1-2: Energy consumption in buildings [1].

How these percentage of energy consumption is divided for a specific building will differ

depending on the usage of the building, geographical location and so on. Some of the general

important parameters that influence energy consumption is [1]:

• Climate related

o Solar radiation

o Air temperature

o Wind characteristics

o Sky or cloud conditions

 1 Introduction

10

o Building location

• Building or usage

o Room air temperature

o Thermos-physical properties of construction elements

o Internal heat gains

o Ventilation rate

A report from Enova (governmental energy advisor organization in Norway) states that the

percentage of energy consumption in Norwegian buildings due to outdoor temperatures will

greatly depend on the building type (residential, office, school…) but even more important is

the building standard used during construction. As an example, for an office building built in

the 1950’s as much as 55% of the energy consumption is due to outdoor temperature

conditions, compared with only 20% for a building built in the late 2010’s [6]. This shows that

the particular variable importance, with respect to energy consumption in buildings, will

probably be building specific. This report from Enova refers to Norwegian building standards

and climate conditions where cold temperatures and heating of buildings are important, but it

is assumed that the same can also be true for a warmer climate where cooling is more relevant.

1.2.5 Related work

There exists a lot of research in the field, and many have earlier successfully created models

within the gray box domain. Since the grey box models are only partly data-driven, recent

reports then often compare the use of grey box models to complete data-driven models (black

box models). The model types that are commonly used for the black box approach are then

ANN, SVM and ARX type, like in [7] and [2]. Here, they concluded with the ANN model type

giving the best predictions.

1.3 Project objectives

The project’s objective is to identify important parameters related to energy consumption in

buildings and make machine learning models that can predict the future energy consumption

in a building. Compare the result from different machine learning modelling techniques, and

also compare it to a simpler modelling technique. This project will focus on making energy

prediction models for commercial buildings. The full task description for this master thesis can

be found in Appendix A.

1.4 Report structure

This report follows the IMRaD (Introduction, Method, Results and Discussion) format. The

methods chapter begins with a theory overview of machine learning, with emphasis on the

methods used during this project. Then describes how the raw data is managed, prepared, and

further analyzed, before lastly describing the models and implementation of models. The

results chapters will present the data analysis and modelling results, and finally the discussion

and conclusion chapter will discuss and comment on the overall findings during the project.

 2 Methodology

11

2 Methodology
This chapter starts with a description of some of the background theory for machine learning,

with a particular focus on the modelling techniques used in this project, and how machine

learning relates to artificial intelligence. Additionally, some information about implementation

and the main libraries used during code implementation. The chapter continues by describing

the specific methodology used during the project work and model development. The overall

project development can be broken down into three steps, first importing and pre-processing

of raw data, secondly data analysis to transform data into information by identification of key

features within the data and features engineering, lastly the development of different machine

learning models based on the features identified during data analysis.

2.1 Artificial Intelligence and Machine Learning

This subchapter will introduce Artificial Intelligence (AI) and Machine Learning (ML) in

general, how they relate, and some of the terminology used in this context. In addition, some

of the theory behind the specific ML methods used in this project.

First of all, what is artificial intelligence? Artificial intelligence can be described as “The effort

to automate intellectual tasks that are normally performed by humans” [8]. This means that

AI includes a broad field, which may not include any learning at all. Consider the early chess

programs in the 1980’s, these were strictly rules-based reasoning programs hardcoded by

skilled programmers. This approach is now known as symbolic AI.

Machine learning is a subfield of AI, so you could say that machine learning is AI. Machine

learning is different compared to symbolic AI, as this method is not dependent on human

programmers to write down specific rules – a computer program, in order to turn inputs into

suitable outputs or responses. Machine learning rather turns this process on its head and turns

inputs and outputs into rules, so ML is a process of training rather than programming. In a way

ML is just mathematics which can especially relate to statistical mathematics. But unlike

classical statistical analysis, ML tends to manage very large datasets and is a field mostly driven

by empirical findings which is greatly reliant on improvements in hardware and software [8].

Training a machine learning algorithm is usually performed by repeated exposure to a series

of examples. Where the ML algorithm is given one or several inputs and the model’s current

output is compared to the expected output (known output) to see how well the algorithm is

performing. The result from this comparison is then used in a feedback loop to adjust and

enhance the algorithm’s predictions through a process referred to as learning. So, through

repeated exposure to known input and outputs the machine learning algorithm learns to

transform inputs into meaningful outputs. The core of machine learning is therefore this process

of transforming inputs into meaningful representations of the data that gets us closer to the

expected output [8]. The finished product of machine learning is then a model, a model found

(or learned) out of data through a process of training [9].

This brings us to one of the core challenges with machine learning, the training data. No

machine learning method can produce a good model or desired goal without adequate, unbiased

data that accurately reflect the process which it is to model. The process of getting the model

to produce consistent predictions on all data, is called generalization [9]. In addition to using

 2 Methodology

12

incorrect training data, another problem that can disturb the model’s generalization capabilities

is called overfitting. Overfitting is when the model is overly adapted to the training data,

meaning that in addition to learning the process dynamics also learn noise and outliers in the

training data and hence lose some of the generalization capabilities. This would often result in

good prediction results on training data but poor predictions for general data [9]. The opposite

of overfitting is underfitting. Underfitting can take place when the model is not adequately

trained and has not yet sufficiently “learned” all the dynamics of the process. This would

normally give poor predictions results on both the training and general data.

In the world of machine learning, there are two basic approaches: supervised and unsupervised

learning. Supervised learning applies labeled data to learn “known” outcomes, whereas

unsupervised does not use pre-labeled data but rather finds patterns within the data [10]. There

also exists semi-supervised which is a combination of the two, and reinforced learning [9].

Figure 2-1: Classification and regression problem principal [9].

One can typically divide supervised machine learning problems into two main tasks,

classification, and regression problems. In a classification problem, the task is to divide data

into compartments (or classes) and then assign the correct class label [11]. Examples of

classification problems can be image classification where the goal is to classify if an image

contains a “cat” or “dog”, identify if an email is “spam” or “not spam”, or it can be to classify

if a person can be “trusted” or “not trusted”. Whereas the classification problem predicts

discrete class labels, the task in a regression problem is to predict a continuous value based on

the input variables. Figure 2-1 illustrates the difference between the two problem types.

Figure 2-2: Comparison of classification and regression task [11].

An example of the difference between classification and regression is given in Figure 2-2,

where the classification part is to classify temperatures into either “hot” or “cold”, whereas the

regression problem is to determine the temperature as a numerical value.

Inside the domain of machine learning, there are many different techniques. While many of

these techniques are fairly old, the field of machine learning, and especially deep learning, has

 2 Methodology

13

only gained attention in the last decade due to the many remarkable achievements particularly

in the fields of speech and image recognition. As machine learning is guided by experimental

findings rather than solved theoretically with a pen and paper, it can be viewed as more as an

“engineering science”. Most of these recent achievements are due to increasing processing

powers (hardware), datasets availability and the boost in investments in the field [8]. Figure

2-3 shows how AI, ML and some of the ML techniques relate.

Figure 2-3: Relationship of artificial intelligence, machine learning and some ML techniques.

2.1.1 Timeseries and Machine Learning

The term timeseries is used for a sequence of sample values indexed in a timely order, often

with an equal time interval between making it a sequence of discrete values. A timeseries could

thus be any data obtained through measurements on regular time intervals, like the outside

temperature, price of a stock, or energy meter value. The most common task when it comes to

timeseries and machine learning, is forecasting – predicting what’s happening next in the

timeseries [12].

Timeseries forecasting is a bit different compared to other machine learning tasks as it is

important to know the dynamics of the system, understand the trend, seasonal, cyclical, and

random variations in the system. It is also important to identify some patterns or features that

are related to the outcome in order to make any successful forecasting, and it would for instance

be impossible to make a good forecast on a random signal.

2.1.2 Training a Machine Learning algorithm

Before training begins, the complete dataset is normally divided into training, validation, and

test sets. The training set is used for training the model, the validation set is used for tracking

the training progress, and the test set is only used after training to test the model or compare to

different models before production. When working with timeseries forecasting it is also

important that the validation and test set is more recent than the training set, as we try to predict

the future given the past and not the other way around.

It is normal to use the same training data several times during one training session as the

learning method is iterative and gradually improves the model’s performance. The term epoch

is used to describe how many iterations the complete training set has been shown to the model,

 2 Methodology

14

where one epoch refers to one iteration. For a training session, the number of epochs is normally

specified in advance. Early stopping is referred to as when the training is stopped before

reaching this specified maximum number of epochs (hence the name “early stopping”) due to

deficiency in learning rate for the validation set. Early stopping is used as a tool to prevent

overfitting. Figure 2-4 illustrates how the number of epochs will typically impact the learning

and prediction error for the training and validation set.

Figure 2-4: How number of epochs typically affect ML training.

The tunable parameters that define the model structure and those used to control the learning

process are called hyperparameters. There is no single perfect set of hyperparameters that will

work for every model, so identifying these hyperparameters can be the real work of tuning the

ML model.

2.2 Neural Network - NN

Neural network is a type of machine learning algorithm. The structure of a neural network

(NN), or more precisely an artificial neural network (ANN) in this case, is inspired by the

working principle of the human brain where many biological neurons are interconnected in a

large network to process inputs and extract information [9]. The artificial neural network is,

like the name suggests, a network of neurons with one of the core components being the

artificial neuron or node as they are called with regards to ANN.

Figure 2-5: Working principle of a node in an neural network [12].

 2 Methodology

15

A node is actually a mathematical function where it takes inputs (x), weights them individually

(w), sums them up and adds a bias factor (b) to calculate a net sum. This net sum (net) is then

passed through an activation function (f(.)) to produce the node’s output (y). The calculation of

the net value is shown in equation (2.1) and (2.2). See Figure 2-5 for illustration of node

working principle.

 𝑛𝑒𝑡 = ∑(𝑤𝑖

𝑛

𝑖=1

∙ 𝑥𝑖) + 𝑏 (2.1)

Can also be written as:

Where:

𝑣 = 𝑤 ∙ 𝑥 + 𝑏

𝑤 = [𝑤1 ⋯ 𝑤𝑛]

 𝑥 = [

𝑥1

⋮
𝑥𝑛

]

(2.2)

There are severe types of activation functions like the linear, step, ramp, tan-sigmoid, sigmoid,

ReLU [12], examples shown in Figure 2-6.

Figure 2-6: Examples of different activation functions.

Nodes are usually organized in layers where nodes are connected to form a neural network. In

this layered structure, information enters at the input layer, passes through the hidden layers,

and exits at the output layer. During this process the information is processed layer by layer,

where all nodes in a layer receive information, process it, and create the output simultaneously

[9], see illustration in Figure 2-7.

 2 Methodology

16

Figure 2-7: Multi-layer perceptron network [12].

The structure, the number of nodes in each layer, and the way they are connected will depend

on the task at hand. Networks with a single hidden layer are called vanilla neural networks or

shallow networks. When more hidden layers are added (at least two hidden layers), it becomes

a deep neural network. If all nodes in the previous layer are connected to every node in the

next, we call it a fully connected network. This fully connected feed forward architecture is the

standard architecture and most used for simple applications, where feed forward networks only

consider forward connectivity [13]. See Figure 2-8 for an illustration of the general structure.

Figure 2-8: General structure of multi-layer fully connected neural network.

Adding more nodes or layers can increase the network complexity capabilities, but also

increase the computational load of training in addition to the risk of overfitting.

2.2.1 Training the neural network

During neural network training a loss function, sometimes also called objective function or cost

function, takes the network’s output, compare it to the true output and computes a distance

 2 Methodology

17

score [8]. This score is then used in a feedback loop to adjust the network’s weights in a way

that tries to minimize this score. Two of the main types of such cost functions are sum of

squared error and cross entropy function [9].

Figure 2-9: Flow chart of the NN training process [8].

This process of adjusting the weights and biases based on the loss score is the job of the

optimizer, which applies what is called the backpropagation algorithm. There exist several

different optimizer algorithms, such as: Stochastic Gradient Descent (SGD), batch, mini-batch,

Adagrad, RMSProp, AdaMax, Adam. Which optimizer to use depends on the task as all have

their strengths and weaknesses [8]. Figure 2-9 shows a flow chart of a neural network training

process. The optimizers will adjust the weights and biases so that the loss score is minimized,

and hence the prediction error of the model will improve. One tool the optimizers can use is to

follow the gradient descent (imagine a ball rolling downhill as shown in Figure 2-10). One

potential problem is then to get stuck in local minimum points. To help solve this local

minimum problem the concepts of momentum and velocity are utilized by some optimizers, as

where the ball has large momentum, it can help roll over the local minimums and continue to

reach the global minimum point.

 2 Methodology

18

Figure 2-10: Concept of gradient descent

Learning rate is a measure of how quickly the model should learn during training, or more

precisely how much the weights should be adjusted each time. A too large learning rate will

adjust the weights too aggressively and will in many cases struggle with finding the actual

minimum point. Therefore, it can be sensible with a too small learning rate rather than too

large, but it varies. Figure 2-11 shows an illustration of how different learning rates can affect

the learning process. There can be a tradeoff between the computational load and training time

as a lower learning rate must be compensated for with a higher number of epochs.

Figure 2-11: Illustration of learning rate.

As earlier mentioned for ML in general, the tunable parameters that define the model structure

and those used to control the learning process are called hyperparameters. With regards to

neural networks, the number of layers, number of nodes in each layer, optimizer and learning

rate are all examples of hyperparameters.

2.2.2 Recurrent Neural Network (RNN)

Recurrent Neural Network (RNN) is a type of neural network with capabilities to “remember”

past states or inputs, which makes it good when processing sequential data like in timeseries

forecasting, speech recognition, or other tasks where earlier inputs will influence the future. In

contrast to the traditional feed forward architecture, where incoming data travels in a single

direction from input to output, the RNN structure includes feedback loops to preserve previous

information [14]. Consider a piece of a RNN, A, which has some input x and some output h as

 2 Methodology

19

shown in Figure 2-12. By including the feedback loop, this allows for information to be passed

from one step to another.

Figure 2-12: Recurrent neural network, feedback loop

This loop structure makes it possible to think of the recurrent neural network like the normal

neural network structure if we “unroll” the loop in time [15], see Figure 2-13. Since the RNN

has a loop structure, all the modules in the chain share the same parameters across each layer

[16].

Figure 2-13: An unrolled recurrent neural network [15].

If we unroll the RNN it takes forms as a chain of repeated module structures. In the general

RNN structure as discussed here, these repeated modules will usually be quite simple and

contain a single tanh layer, see illustration in Figure 2-14.

Figure 2-14: Repeated module structure in chain for general RNN [15].

A frequent problem when training RNN is the exploding or vanishing gradient. When the

gradient is too small, it continues to get smaller, and updating the weights will finally set it to

an insignificant value which effectively makes the network stop learning. Exploding gradient

is the opposite, when the gradient is too large, the network becomes unstable. One solution to

vanishing and exploding gradient, can be reducing the number of hidden layers in the model

and thus reducing the complexity [17].

 2 Methodology

20

The appealing idea of the RNN is that it is in theory able to link previous information to the

present task, but in practice this is only partly true as it can be useful if the time frame is narrow,

meaning the information is not too far into the past, unfortunately many real life situations

require a longer “memory”. This is where another special type of RNN comes in, that is the

Long Short Term Memory network (LSTM) [15].

2.2.3 Long Short-term memory (LSTM)

As introduced in the previous subchapter, LSTM is a special type of RNN but in addition to

the short term memory capabilities of the general RNN, the LSTM also has the ability for a

longer “memory”, hence the name long short term memory. The structure of the LSTM is like

the general RNN structure, a chain of repeated modules, only with a different module content.

In comparison to the ordinary RNN, LSTM does not struggle as much with vanishing or

exploding gradient. The general structure of the LSTM is shown in Figure 2-15.

Figure 2-15: Repeated module structure of chain in LSTM [15].

The LSTM block contains four neural networks, in combination these networks have the ability

to select what information to add or remove from the cell state. This operation is managed by

three gates which in turn controls how much information should be forgotten (forget gate),

added (input gate) and outputted (output gate) from the cell state. Where the cell state ct is the

previously mentioned “memory” of the LSTM network. Gates are put together out of a sigmoid

neural network and a pointwise multiplicator as shown in Figure 2-16. The sigmoid network

layer will produce a value between zero and one, describing how much information to let

through the gate. Also see detailed illustration of LSTM block in Figure 2-17.

Figure 2-16: Structure of a LSTM gate

The decision of how much of the cell state information should be kept or forgotten is based on

the previous output ht-1 and current input xt and is controlled by a sigmoid neural network called

the forget gate layer. This sigmoid network produces a value between zero and one and will

output one in order of keeping all cell memory and zero for forgetting cell memory.

 2 Methodology

21

Figure 2-17: Detailed view of traditional LSTM block.

To control how much new information should be stored in the cell state, a combination of a

sigmoid and a tanh neural network is used. The tanh network calculates potential candidate

values to be added to the cell state from a combination of current input xt and previous output

ht-1. Then the sigmoid net decides which of these candidate values calculated by the tanh net to

be added to the cell state.

Lastly the output is controlled by a multiplication of a tanh function and a sigmoid neural

network and is a “filtered” version of the cell state. Where the sigmoid network decides what

parts of the cell state to output based on the previous output ht-1 and current input xt. The tanh

function takes the current cell state and compresses it to a value between -1 and 1.

There also exist other variations of the LSTM cell, one of which is the Gradient Recurrent Unit

(GRU), which is found to cost less computation and give comparable results. For more

information about the LSTM network, variants, and the math behind, see [15].

2.2.4 Deep learning

Deep learning is a subfield of machine learning that usually employs deep neural networks (as

earlier mentioned, neural networks with two or more hidden layers) [9]. Lately deep learning

has become the hero of machine learning due to the many advancements, such as in image and

speech recognition.

Deep learning will typically have a higher probability for overfitting due to increased network

complexity, but this tendency can be mitigated by using massive amounts of training data in

addition to using dropout nodes while training and regularization.

One potential showstopper for deep learning is the dramatic increase in computational load as

the networks and the data amounts become larger. The use of GPUs and even TPUs for training

can help reduce training times, but the elephant in the room is still the energy consumption

related to the massive computational load both for training and running applications like the

lately blooming ChatGPT [19].

 2 Methodology

22

2.3 Decision Tree - DT

A Decision Tree (DT) is another type of machine learning algorithm, where the structure is like

a flowchart with a series of hierarchical questions. The decision tree begins with a root node

(without any incoming branches) and depending on the choices follows through branches and

leaf, in total organized as a tree. From the root node the branches go to internal nodes, also

called decision nodes, before ending up in leaf nodes or terminal nodes. The internal nodes

represent a test on an attribute, and the leaf nodes represent all the possible outcomes or

predictions of the decision tree. The general DT structure is illustrated with a classification

problem in Figure 2-18.

Figure 2-18: Example of decision tree structure, like a flow chart.

This simple structure makes the decision tree easy to interpret and visualize. Decision trees can

be used both for classification and regression tasks. The process of training the decision tree is

the process of identifying the ideal splitting points of the tree. This process is repeated until the

majority of the training data is correctly classified. As the tree grows (by adding branches and

nodes), data can be fragmented into too many sub trees which can easily make DT be overfitted.

Therefore, to preserve its purity, decision trees should be kept as small as possible [18].

2.3.1 Random forest

Figure 2-19: Working principle of random forest.

Random forest is an assembly of multiple decision trees used to predict one single output. This

ML technique is used to improve the prediction accuracy of single DT, this technique is

especially effective when the individual trees are uncorrelated. One tool used to ensure that the

trees stay uncorrelated, is to only use a selection of the features (not all) when training each

 2 Methodology

23

individual tree, or only use a selection of the training data for each tree [19]. The working

concept of a random forest is illustrated in Figure 2-19.

2.3.2 Boosting

Bosting is the process of building one strong classifier based on a combination of many weak

learners. Boosting is a method that can be used for improving any given machine learning

algorithm. When boosting decision trees, the trees are trained in a sequential order in contrast

to bagging where trees are trained in parallel (as for random forests training) [20].

Adaptive boosting (AdaBoost) is a technique that applies boosting [21]. In contrast to random

forest which consists of several full-size trees, adaptive boosting usually just employs nodes

with two leaves (also known as a stump). The adaptive boosting technique consists of:

1. Start by making a simple model based on all the training data.

2. Then the misplaced samples from this initial model are given extra weight (“boosted”)

and used to train a new simple model

3. Train a new model with the previously adaptively boosted samples. Then the misplaced

samples from this model are given extra weight and used to train a new simple model.

Each new tree will then focus on the prediction errors from the previous.

4. Step 3 is repeated until the maximum number of trees is reached, or all samples are

correctly classified.

5. Use output from all trees for total prediction.

2.3.3 Gradient boosting machines

Gradient boosting is similar to the previously described adaptive boosting, but each tree is

typically larger. One key feature is that the technique focuses on the residuals from the previous

prediction and are therefore called a gradual learner. The gradient boosting regression tree

consists of [22]:

1. The first prediction (base prediction) is the mean target value for all training data.

2. The second prediction will then focus on the residual error between the mean value

(previous prediction) and the actual values.

3. The next layer will then focus on the residuals for the previous layer and predict this.

4. Step 3 continues to add more simple trees until the maximum number of estimators are

reached, or the learning stops improving.

5. Use output from all trees for total prediction.

a. The models are also weighted to adjust how fast each model should contribute

through the learning rate parameter.

2.4 Python

Kaggle is a website that, among many things, hosts popular competitions for machine learning

algorithms worldwide. In addition to hosting competitions, Kaggle also runs a yearly survey

among its machine learning community to identify which algorithms and libraries they use.

The most popular libraries or frameworks in 2020 were Scikit-learn, TensorFlow, Keras and

XGBoost. One thing all of these have in common is that they are all Python libraries. Today

 2 Methodology

24

Python is by far the most used language when it comes to data science and machine learning,

possibly because of the vast number of libraries to use [8]. This subchapter will introduce some

of the Python libraries utilized throughout this project.

2.4.1 Google Colaboratory – Colab

First of all, when coding you need a code editor. The Python editor used in this project is

Google Colaboratory – Colab. The programming environment in Colab is like a Jupyter

notebook where it is possible to combine text and script in blocks. Using Colab has several

benefits, working documents can automatically be stored in the cloud, code can run on a server

and not on the local machine meaning libraries are installed on the remote server and with

potentially larger processing powers (can also utilize GPU and even TPU for training machine

learning algorithms).

2.4.2 TensorFlow and Keras

TensorFlow is an open source, Python based, platform for developing machine learning

projects, where its primary contributor is Google. The platform is designed to be a convenient

way for engineers, researchers, and others to utilize neural networks and especially deep

learning. The projects can run on normal CPUs, but also on GPUs and even TPUs (highly

parallel hardware accelerators). TensorFlow programs can also be exported to run on other

runtimes C++ and JavaScript (web browser applications) or by using TensorFlow Lite run on

mobile or embedded devices [8].

Keras is an API built on top of TensorFlow. Keras was originally made for research purposes

for easy and fast experimentation with deep learning. Keras is made easily understandable for

humans (not only machines), and therefore based on simple and easy-to-understand commands.

The Keras library has over a million users today with many of the largest companies in the

world on its users list [8]. In this project the Keras library is used to create and train various

neural network models. Some of the important parameters of the network being:

• Layers: Structure of layers, neurons in each layer, activation function

• Optimizer: Adam…

• Learning rate: example 0.01

• Loss function: example: MAE

2.4.3 XGBoost

XGBoost (Extreme Gradient Boosting) is a popular library for implementing algorithms in the

gradient boosting framework. The library is optimized to be efficient, portable, and flexible

[23]. In this project the model “XGBRegressor” is used, with some of the most important

parameters being [24]:

• n_estimators: The number of trees in the assembly

o normally increased until the predictions stopped improving.

• max_dept: The maximum depth of each tree

o Usually, a value between 1 and 10.

• objective: The objective for the algorithm

 2 Methodology

25

o For regression problems typically “reg: linear”

• learning-rate: The weight assigned to each model (tree) added. This means we can

add more trees before the model overfits. In general, it is better to have more

estimators with less weight on each.

o Usually set to a small number 0.1, 0.01... (1 is maximum).

• subsample: The number of samples used to train each tree.

o Value between 0-1.

• colsample_bytree: Number of features used in each tree.

o Value between 0-1, 1 being all features.

• early_stopping_rounds: Specify number of rounds with no improvements on

validation set before stopping training.

o Value of 5-10 is a reasonable number.

2.4.4 Scikit-learn.

Scikit-learn is an open-source ML library that supports multiple supervised and un-supervised

learning algorithms, it also includes many useful tools used during machine learning projects.

In this project mostly the supporting tools in this package are used, not the models.

2.4.5 Pandas

Pandas is an open-source library in Python, it is not directly a machine learning library, but it

is typically used for preparation of data and data analysis in relation to ML. Some of the

highlights are efficient tools for reading and writing to and from files of various formats (CSV,

JSON...and more). The data can be handled in data frames, where data is displayed as a two-

dimensional table. The library contains tools such as indexing, sorting, filtering, splitting,

merging of data frames, in addition to statistical calculations such as min, max, mean, standard

deviation to name a few. This makes it a widely used library within many domains of handling

data [25].

2.4.6 Matplotlib

Matplotlib is one of the most popular libraries when it comes to data visualization. Much like

Pandas, Matplotlib is not directly a machine learning library, but it is extensively used since it

provides a large diversity of visualizations. The Seaborn library is also used as a supplement

to Matplotlib for some of the visualization.

 2 Methodology

26

2.5 Data preparation

This subchapter will present the methods used for handling raw data and the pre-processing

performed before the data can be further analyzed and used in models.

In this project, energy data recorded from two buildings located in Athens, Greece in the period

from 2020-01-01 to 2022-12-31 (UTC) is used alongside weather data for Athens covering the

same time period. The provided weather data for the project has the weather service “Open

Weather Map” as its origin.

Both buildings consist of several energy meters measuring the electrical energy consumption

from various energy consumers inside the buildings, where the parameter “active energy” is

the parameter used from these energy meters. This parameter is given as the total energy

consumption (in kWh), which is an incremental value, normally over the whole energy meter’s

lifetime. Table 2-1 and Table 2-2 shows an overview of energy meters in the two buildings.

Except for the fact they are both commercial buildings, there is no additional information

available about the buildings like: buildings usage type, occupancy level, building material,

floor layout. The logical naming of each energy sensor is performed by the building owners

and can be arbitrary. Figure 2-20 illustrates how energy meters and different energy consumers

could typically be distributed within an example building. The total energy consumption for a

building is then the combined energy consumption for all energy meters within that building -

the sum of all energy meters.

Figure 2-20: Illustration of energy meter distribution in an example building.

 2 Methodology

27

Table 2-1: Energy meter overview, building #1

Logical Name Format

(columns x rows)

1st floor 2x100751

Air-condition ventilation

#Q7E

2x100747

UPS #02 2x100719

UPS #01 2x100694

Boilers #Q1.2 2x100682

Field Switch Generator

#01

2x100675

Field Switch Generator

#02

2x100661

Chiller #01 Q2.1 Calliroe

Street

2x100646

Chiller #02 Q2.1 Svggrou

Street

2x100634

Table 2-2: Energy meter overview, building #2

Logical Name Format

(columns x rows)

P2 Power Meter 2x285908

PUCR2 Power Meter 2x286813

PUCR New Power Meter 2x509450

P1 Power Meter 2x286925

PUCR3 Power Meter 2x286867

PUCR1 Power Meter 2x269847

PUCR Power Meter (16) 2x287191

Chillers Data Center Power

Meter (17)

2x284424

Triple Switch Power Meter

(18)

2x510069

Chiller 1 Data Center Power

Meter (21)

2x510090

Power Transformer 2 Power

Meter (19)

2x505201

Power Transformer 1 Power

Meter (20)

2x509581

Chiller_1 Power Meter (23) 2x734647

Chiller _2 Power Meter (22) 2x761791

Building Chillers Power Meter

(24)

2x509588

 2 Methodology

28

2.5.1 Raw data format

The raw data provided is in a number of CSV- and JSON-files, and all of them must be read

into Python for further processing. The energy data consists of several files, one file for each

individual energy meter in a building. The general format of these energy data files can be seen

in Table 2-3.

The energy data files:

• Building #1: includes data from 01.01.2020 to 31.12.2022. About one record per 15min.

• Building #2: includes data from 10.01.2020 to 31.12.2022. Most files have about one

record every 5 minutes, some files with one record every other minute.

Table 2-3: General format of all energy data files

Feature name Unit Sample format Description

kWh kWh 2862855.75 Energy meter value,

incremental value of total

energy consumption

Time Datetime. 2020-01-

01T00:04:59Z

Timestamp for meter

reading, in UTC time

according to ISO 8601 1

formatting.

The raw weather data has a format of 20 x 29 341 columns and rows originally (empty columns

are dropped during import). The data resolution is approximately one record per hour, but the

time shifts during the dataset, meaning it is not the same minute for each hourly record hence

not exactly one hour apart. The general format of the weather data can be seen in Table 2-4.

1 ISO 8601 is an international standard covering exchange and communication of date and time-related data. The

Z at the end of the time stamp indicates that the time has zero UTC offset [33].

 2 Methodology

29

Table 2-4: General format of weather data.

Feature name Unit Sample Format Description

Time (UTC) Datetime 1577836800000000000 Date timestamp of record in Unix

time format2, nanoseconds

Cloudiness_pct % 20 Cloudiness in percentage

Humidity % 59 Relative humidity

Pressure mbar 1022 Atmospheric pressure

Sunrise_ts Datetime 1585800496 Datetime for sunrise current day in

Unix time format, seconds

Sunset_ts Datetime 1585846115 Datetime for sunset current day in

Unix time format, seconds

Temp_feels_like °C 5.18 Feels like temperature also known as

apparent temperature. The perceived

temperature equivalent for humans

from combining the temperature,

humidity, and wind speed [26].

Temp_min °C 7.22 Minimum temperature

Temp_max °C 15.97 Maximum temperature

Temperature °C 17.81 Air temperature

Wind_deg deg 38 Wind direction in degrees

Wind_speed m/s 2.21 Wind speed in wind direction

2.5.2 Pre-processing and aggregation of data.

The raw input data has different time formats, may contain duplicates or have missing records,

and the sampling rate differs between the files. So, the raw data needs to be pre-processed and

aggregated before it is ready to be further analyzed or used in any ML model.

2 Unix (or Unix epoch) time format defines the number of seconds passed since January 1st, 1970, at UTC. A time

format commonly used by computer systems [32].

 2 Methodology

30

General pre-processing pipeline from raw to transformed data:

The raw data in form of CSV or JSON files are loaded into Python as a Pandas

data frame.

The time formats are transformed into one standard datetime format, time

stamps given in UTC format. The formatted datetime column is then used as the

index of the data frame. This makes it possible to sort the data with regards to

time, identify and remove possible duplicates in the data.

Empty columns, containing no data for all rows in that column, are discarded

alongside columns containing non-numeric, static data, such as name, id and

subid.

The data is then aggregated to make a uniform data frame with one value for

every time step with fixed time intervals. The time intervals used here are

hourly (every whole hour), and days (at midnight). When performing the

aggregation, data can either be shifted forwards or backwards. This makes a

difference in how the data is labeled in time. Also, different aggregation rules

apply depending on the nature of the input data.

• For the weather data, data is grouped by the mean value for all samples

in the time interval.

• Since the value for energy data is an incremental value, it makes sense

to use the maximum value for that time interval.

When the data is aggregated with fixed time intervals, it’s easy to identify time

slots with missing data values and select a suitable handling method.

 2 Methodology

31

As mentioned above in the general pre-processing overview, when performing aggregation

data can either be shifted forwards or backwards. This makes a difference in how the data is

labeled in time.

• Shifting forwards can be viewed as the value for the previous time slot. Ex.

Aggregated data labeled 12:00 will be the values in the time slot from 11:00-11:59.

Example shown in Figure 2-21.

• Shifting backwards can be viewed as the value for the coming time slot. Ex.

Aggregated data labeled 12:00 will be the time slot from 12:00-12:59. Example

shown in Figure 2-22.

Figure 2-21: Aggregation of data, values shifted forwards.

Figure 2-22: Aggregation of data, values shifted backwards.

Data leakage points to the phenomenon where a model is trained on information outside the

training data, information that is not known at that point in time. This can make the model

perform well on training and validation sets but have reduced prediction accuracy in the real

world as these features are not available. Using aggregation with shifting backward rule can

be more intuitive to interpret, but it can also make a logical problem when modelling as for

example at exactly 12:00 o’clock we cannot know the values that come in the future (12:00-

12:59). Aggregation with forward shifting values is therefore used in this project to avoid the

possible data leakage.

Figure 2-23:Linear interpolation for missing data, for one and several samples missing.

 2 Methodology

32

There are several options when it comes to handling missing values in the aggregated data. The

simplest solution would be to do nothing or just drop the rows with missing samples. Another

way is to use an interpolation method and substitute the missing values, one of which is linear

interpolation illustrated in Figure 2-23. Some other options are:

• Polynomial interpolation.

• Insert mean.

• Insert zero or other fixed value.

• Forward or backward fill, copy previous or next sample value.

• K-nearest neighbor (KNN).

In this project, small gaps of missing data are substituted through linear interpolation. Bigger

gaps (many days) of missing data are left unchanged as it is hard to substitute sensible values

for these areas.

2.5.3 Time stamps

UTC (Universal Time Coordinated or Coordinated Universal Time) is the world’s primary

standard for regulating clocks and time. UTC is a measure of mean solar time at longitude 0°

with each day being 24 hours and is not adjusted for daylight saving time, 12 o’clock is when

the sun is passing the prime meridian. UTC is an efficient replacement for the GTM (Greenwich

Mean Time) [27].

For convenient reasons the earth is divided into time zones, where one time zone covers

approximately 15 degrees longitude, but time zones tend to follow country borders and not

strictly the longitude. All time zones are defined with an UTC offset, usually a whole number

of hours, ranging from -12 to +14 hours [28]. For instance, Norway is in time zone UTC+1 and

Greece is in time zone UTC+2. Each time zone then uses this UTC time with offset as the local

time, so that the sun is at the highest point in this time zone around noon local time.

Many of the countries with higher latitude (the northern countries, but also some of the

southern), practice daylight savings time (DST). Daylight savings time shifts the local time

(most commonly with one hour) during the warmer months so that darkness comes at a later

point in time [29]. For instance, Norway will use UTC+2 instead of UTC+1 and Greece will

use UTC+3 instead of UTC+2 during summertime. In the EU, DST begins the last Sunday of

March and ends the last Sunday in October at 1:00 UTC time.

All the input data used in this project is marked with a time stamp in UTC+0, this makes it easy

to compare data from various sources. One thing to consider is that the local time is changed

due to DST, which can also result in a one-hour shift in energy usage pattern during

summertime.

2.6 Feature Engineering

In order to help the models perform better, new features can be created from existing data in a

process known as feature engineering. The core of feature engineering is simply making the

data better suited for the task at hand, and consequently adding more value to the data. One

example of feature engineering could be the creation of apparent temperature (“felt like

temperature”) by combining the values of temperature, humidity, and wind speed [27]. Using

 2 Methodology

33

Fourier transformation for picking up frequency components in the data can be another

example, which is also a common feature engineering approach wherever this is appropriate

[12]. The actual usefulness of a feature will depend on the model, the only useful features are

the ones that the model can learn. Sometimes a feature only adds value when in combination

with others.

2.6.1 Weather data

As mentioned in the pre-processing and aggregation section (2.5.2), the aggregation rule

applied to numerical weather data is the mean value for the aggregation period. But the raw

weather dataset also contains datetime values for sunset and sunrise. When aggregated for days,

a numerical value for the number of hours with sunlight in that day is calculated based on these

two values and added as a new column (Daylight). When aggregated for hours these values are

discarded.

2.6.2 Energy consumption

The energy data is provided as an energy meter value, and this value does not give us much

information on its own as this is only an incremental value for the total energy consumption

during the energy meter’s lifetime. The value we are interested in is the energy consumption

for that specific time period (per hour or day). In order to find the energy consumption for this

specific time period, the differential value between two time steps is calculated (as shown in

Figure 2-24).

Figure 2-24: Differential value for one time slot

Therefore, a new column representing this differential value is created in all the aggregated

energy datasets (one for each energy meter). This differential value is then calculated by taking

the current meter value and subtracting the previous. Figure 2-25 shows an example of how

this calculation is performed.

 2 Methodology

34

Figure 2-25: Example of how energy consumption is calculated and stored in a new column (MeterDiff).

To get the total energy consumption within one building, the calculated energy consumption

from all energy meters (MeterDiff) in that building is summarized into one parameter named

SumDiff.

2.6.3 Time Features

For adding timely information, new time related features are created based on the timestamp

of each sample. The features created from timestamp are:

• Hour of day (0-23)

• Weekday/day of week (0-6)

• Week number (1-53)

• Month (1-12)

• Day of month (1-31)

• Quarter (1-4)

• Year

• Day of year (1-366)

By doing so, samples can then easily be grouped on various time features during analysis or

visualization. The models can also benefit from this information as this can help extract timely

information from the data. One thing to consider here is whether these timely features, and

particularly hour of day, should be extracted from UTC or local time.

Unlike other numerical values (like temperature) these created timely features are more of a

categorical variable, as the magnitude of the value has nothing to do with the variable

magnitude. Example: Either it is Monday, or it is not (1 or 0). One option could therefore be to

transform these variables with one-hot encoding which usually yields better performance for

some model types. The one-hot encoding of time features:

• IsWeekend (Mon-Fri = 0 and Sat-Sun = 1)

• IsWorkHour (8 <= hour <= 20 then 1, else 0)

• IsMonday, IsTuesday, IsWednesday, IsThursday, IsFriday, IsSaturday and IsSunday

(true or false, depending on the day of week).

 2 Methodology

35

2.6.4 Lag Features

For utilizing the energy data several lag features can be created. Lag addresses the point that

these events are “lagging” behind the current event in time, they happened in the past, as

opposed to a lead feature which would be into the future, “leading” in time. How to select what

lag features to create will depend on cycles and seasonality in the data. It is reasonable to

believe that energy consumption data will be in daily, weekly, and yearly cycles.

Longer lag features created are:

• Lag1: 364 days

o Practically one year back (365 days), but gets the same day of week by using

52 weeks back (52*7=364)

• Lag2: 728 days

• Lag3: 1092 days

Shorter lag features are:

• slag1: 1 days

• slag7: 7 days

• slag14: 14 days

• slag21: 21 days

These lag features can be used as inputs to help the model by supplying the energy consumption

for the same time slot some time step earlier. How far into the past this time step should be will

depend on how far the prediction horizon of the model needs to be, as this will limit the

maximum prediction horizon. For example if the model’s prediction horizon is seven days, the

shortest possible lag factor used must be the same (seven days back). Using slag1 in this case

would create a violation on prediction for the second day, as this information is not known. It

is therefore important when using the lag features as model inputs to take particular care to

avoid such information violations.

2.7 Data Analysis

For several reasons (like reduced training time and risk for overfitting) it is desirable to keep

the models as simple as possible. It is therefore desirable to identify correlation between

variables, identify if they contain duplicate information, and in turn uncover the variables that

are influencing the model’s target value the most. As a result, the model can use only the inputs

adding substantial value and the others providing mostly noise be discarded.

The aggregated data is therefore inspected and analyzed to get a basic understanding of the

data content and system dynamics. Several plots are created for visual inspection and simple

calculations like correlation and autocorrelation are used as tools for identifying the important

variables.

2.7.1 Trend

The underlying trend for the data is calculated as the simple 365-days moving average (SMA).

For the first year (day 1-365) the trend is set equal to this period’s mean value as this year must

 2 Methodology

36

be used to initialize the SMA (horizontal trend first year). The first year then sets a baseline

value and a trend factor can be calculated by dividing the SMA output on the baseline value.

2.8 Modelling

The objective for all models in this thesis is to forecast energy consumption in a building some

time step into the future. Since the target of the models is a numerical value, this makes it a

regression problem.

There are several methods for setting up the model structure, this thesis will focus on two

different approaches, with and without the use of sequences of input data. Figure 2-26

illustrates the difference between the two approaches. Where the one to the left uses inputs in

the form of a sequence to forecast the energy consumption some amount of time into the future.

The length of the sequence (number of time steps back) and the number of variables used can

vary, in addition to the prediction horizon (time steps k into future). With this approach it is

typical that the target variable (output) is also used as an input variable as the model tries to

forecast the next value in this sequence.

Figure 2-26: Different model prediction approaches.

The other approach (to the right in figure) does not use an input sequence, but rather simple,

static inputs. As opposed to the previous approach, it is not common to also use the target

variable as an input in this approach, as this model tries to predict this missing value. The

example in the figure predicts the target value at the same time slot as the input variables, but

it could also have been some other time slot into the future. Based on the inputs the model will

try to predict the corresponding output, time is not important in this approach.

It can be reasonable to believe that a sequence of input data is more important if the prediction

horizon is short, as the sequence can then carry relevant information from the near past

(example: for predicting the energy consumption for the next day, the pattern from the previous

seven days can be important). But as the prediction horizon gets larger (week or even month),

the gap between the data available and the target value becomes larger and thus increasingly

uncorrelated, and a model with static inputs can be just as good as using an input sequence.

Is this project two types of ML models are considered, extreme gradient boosting and neural

networks (LSTM), as these are lately one of the most used algorithms for a wide selection of

 2 Methodology

37

problems. Both methods are described in more detail in the following section. The variables

used as inputs and the general structure of the models will depend on the findings from the data

analysis. In any case, it is normal to start with a simple model structure and only add complexity

if it improves the predictions in order to avoid unnecessary complex models.

2.8.1 Extreme gradient boosting

Since decision trees or gradient boosting machines are not capable of handling sequences of

inputs, the second approach with simple, static inputs is used for this model type. The library

XGBoost is used for implementing these models in Python.

The model’s maximum prediction horizon will depend on the inputs used to the model. For

instance, if only timely features are used as an input (quarter, month, day of week…etc.), the

prediction horizon is infinite as we can produce these inputs for the infinite future. But if we

also include features such as lag or weather features into the model input, the prediction horizon

will be limited by the extent of how long into the future these variables are known.

To prevent overfitting and keep the model as simple as possible, it is best to start with a simple

model (few, shallow trees with few inputs) and keep adding complexity until the validation set

stops improving. The parameter for early stopping is also used during all model training as a

tool to help against overfitting, so that the training stops when the validation set stops

improving for the given number of steps.

2.8.2 LSTM

LSTM is the neural network type selected in this project because of the ability to handle

sequences of timeseries as input data. LSTM networks are implemented in Python by using the

TensorFlow and Keras libraries. When working with LSTM network and timeseries data, the

data first needs to be in a format the neural network can understand. So, the timeseries data is

divided into small input sequences and the corresponding target sequence in a sliding window

style. Figure 2-27 shows how one such input and corresponding labeled target sequence is

organized.

Figure 2-27: Input and labeled target sequence to LSTM.

These small sequences of input and target values are then stacked into a batch. Figure 2-28

illustrates one example of this batching principle for one timeseries, where a 3-sample input

sequence and the corresponding target with two samples ahead (offset one) is displayed.

 2 Methodology

38

Figure 2-28: Example of batching timeseries data for training the LSTM network.

It is not unusual to have more than one input to the LSTM network, Figure 2-29 shows how

this same batching principle will work for multiple inputs and one output. These kinds of data

structures are known as tensors in TensorFlow and Keras.

Figure 2-29: Concept of batching timeseries data (rank-2 and rank-3 tensors).

When dividing the data into training, validation and test set the focus in this case will be on the

target values. Example: the corresponding input sequence to the first target value in the test set

will be indexed in the validation set. Figure 2-30 shows an example of how this will affect the

indexing of input and outputs for the training, validation, and test set where an input sequence

width of seven, the offset is zero and target width is one.

Figure 2-30: Example of indexing of training, validation, and test set. Starting index for input and output

matrices.

Since the LSTM models are initialized with random weights, the model training result can be

different each time. Accordingly, it can be beneficial to use several training rounds per

hyperparameter setting in order to test them appropriately. Since it can be hard to exactly

replicate a model’s training outcome, it can be convenient to save good performing models for

later import and reuse.

 2 Methodology

39

2.8.3 Validation of models

MAE (Mean Absolute Error) and RMSE (Root Mean Squared Error) are two metric measures

used for validating the model performance. Here, the MAE value is used to determine the best

performing models. Cross validation could be used, crucial when there is little data. Cross

validation is not as important when having a sufficient amount of data, as in this project.

2.8.4 Data standardization

Some model types, like neural networks, are particularly sensitive to the different scales and

variances that naturally come with different variables and units. In order for every variable to

have the same potential impact effect on the model, it is normal to standardize variables to

mean and variance. One common way is to center to mean and scale to standard deviations

from mean, also known as z-score standardization. Equation (2.3 shows the formula for z-score

standardization.

𝑧𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥 − �̅�

𝜎𝑥
 (2.3)

Another way can be to scale to feature range, then features are scaled to lie between a minimum

and maximum value (ex: 0 and 1). This can be achieved by max-min scaling.

2.8.5 One-hot encoding

Neural networks can be more sensitive to categorical inputs compared to decision trees. Then

instead of using the variable DayOfWeek as input, it can then make more sense to use some of

the variables IsMonday, IsTuesday and so on. Principle of one-hot encoding is described in

chapter for time feature engineering (chap. 2.6.3).

2.8.6 Outlier handling

An outlier is a sample that deviates significantly from other observations in the same dataset.

Outliers are introduced from several causes, in this particular dataset there could for instance

be errors with a sensor, equipment failure, grid power fails, data processing error and so on.

But there could also be abnormalities in the building, something that went wrong, someone

opened a window and so on. Before the model training can begin, it is important to handle

outliers in the training data so that the models do not try to also learn these outliers. How to

correctly handle the outliers can depend on the reasons behind the outlier, but this is normally

unknown. The simplest way to handle an outlier can be to just remove the values including

outliers, other times this may not be appropriate, then substituting the outlier value for another

value can be a choice (same principle as for substituting other missing data). There are several

known methods for identifying outliers or abnormalities. Four of which are:

- Statistical methods like Interquartile Range (IQR) and standard deviation.

- Hampel filter [30].

- STL (Seasonal-Trend decomposition using Loess)

- Automatic outlier detection methods: isolation forest, one class SVM, elliptic envelope

and local outlier factors.

 3 Data analysis results

40

3 Data analysis results
This chapter presents the result of data pre-processing and analysis of the data performed in

Python. The result of the pre-processing data pipeline is several data frames:

• Weather data

o One aggregated for hours and one for days.

• Energy data

o Containing data for each individual energy meter and total sum.

o One aggregated for hours and one for days - two for each building.

• Combination data

o Combination of weather and energy data.

o All weather features, combined with total energy consumption for each

building.

o One aggregated for hours and one for days - two for each building.

3.1 Weather data analysis

This subchapter will focus on the weather data analysis, starting with a basic inspection through

line plots. A comment on the correlation for weather features is found as a part of the data

analysis of combined data (chap. 3.3.2).

Figure 3-1 shows a line plot of all the variables in the weather dataset, aggregated for days.

Here we can see that most of the weather features carry a seasonal tendency.

Figure 3-1: All weather data, aggregated for days.

 3 Data analysis results

41

Figure 3-2 shows a line plot of temperature, “feels-like-temperature” and 30 days simple

moving average of temperature (SMA30). The figure also indicates the time periods with

missing temperature data with a thick red line (at y=0). Here, the missing data is not substituted

as the gaps with missing data are large (several days).

Figure 3-2: Plot of weather data: temperature, felt-like-temp, SMA30. Data aggregated for days.

In this plot it seems that the feels-like-temperature deviates more from the temperature feature

when the temperature is in the lower parts of the chart compared to middle and top.

3.2 Energy data analysis

This subchapter will focus on examining the energy data for both buildings. As described in

the methodology chapter, the calculated energy consumption variable will be used in the energy

data analysis.

3.2.1 Building #1

Figure 3-3 shows a stack plot of all the individual energy meters in building #1, and Figure 3-4

a boxplot of the same energy meters. Here it can be seen that some energy meters contribute

far more to the total energy consumption than others. And also that the consumption varies

during the seasons.

 3 Data analysis results

42

Figure 3-3: Stack plot of energy consumption (aggregated for day) for all energy meters in building #1

Figure 3-4: Boxplot of energy consumption per day for all energy meters in building #1

3.2.2 Building #2

Figure 3-5 shows a stack plot of all the individual energy meters in building #2, and Figure 3-6

shows a boxplot of the same energy meters. As for building #1, also here some energy meters

contribute far more than others. But it doesn’t seem to be quite the same percent wise

magnitude on the seasonal variations like in building #1. There are however some fluctuations

in the data, especially around September 2022, that can indicate some errors in the

measurement or data pre-processing.

 3 Data analysis results

43

Figure 3-5: Stack plot of energy consumption per day for all energy meters in Building #2.

Figure 3-6: Boxplot of energy consumption per day for all energy meters in Building #2

3.2.3 Both buildings

Figure 3-7 shows a line plot of total energy consumption for both buildings. From the mean

lines added for each building in the plot, in can be seen that building #2 has a reduction in

energy consumption and especially the third year as this period is far below the mean line. It

also looks like the energy usage pattern for building #2 has changed during the time period, as

there are more alterations during summer months in the last half (start around summer 2021).

Even though building #1 has a much larger seasonal increase compared to building #2 (percent

wise), it can be seen that both buildings have the same seasonal pattern, with an increase during

summer months. This is simpler shown in Figure 3-8 where data is z-score standardized.

 3 Data analysis results

44

Figure 3-7: Line plot of total energy consumption per building, aggregated for days.

Figure 3-8: Line plot of total energy consumption per building, aggregated for days, z-score standardized data.

3.2.4 Trend

The energy data is divided into separate years for a simpler yearly comparison of the seasonal

variations and cycles in the data. Also, the underlying trend in the data is calculated as the 365-

day SMA value (as described in chapter 2.7.1). The yearly data for second and third year can

then be adjusted for the underlying trend (divide by trend factor) for easier comparison of

cyclical behavior in all years.

From the plots in Figure 3-9, we can see that building #1 has no considerable change in the

underlying trend and adjusting for trend gives no noticeable change. However, from the plot in

Figure 3-10, building #2 has a strong decline in the underlying trend, going from a mean value

of 19 970 kWh/day the first year and ending at 15 931 kWh/day the third year, a reduced yearly

 3 Data analysis results

45

mean energy consumption of about 20%. There are of course climate condition factors that

could affect the underlying trend, as not every year has the same weather, but such a big

decrease would indicate some behavior changes in the energy usage pattern for building #2.

Each building has a separate energy sensitivity to climate conditions, meaning the actual

percent of energy dependent on climate is different. So, if the changes were purely due to

different yearly climate conditions, it would be reasonable to expect a comparable trend in

building #1 as both buildings experience more or less the same weather.

Figure 3-9: Yearly comparison of data, adjusted for leap year and day of week lineup, building #1.

Figure 3-10: Yearly comparison of data, adjusted for leap year and day of week lineup, building #2.

 3 Data analysis results

46

When energy consumption in building #2 is adjusted for the underlying trend (last chart in

figure), meaning that the value is divided by the trend factor, the yearly trends lineup fairly

well showing a comparable seasonal usage pattern.

3.3 Combined data analysis

It is intuitive that energy consumption in a building is correlated with the outdoor temperature,

so for initial examination of this relationship a line plot combining energy consumption with

temperature is created (see Figure 3-11). From the figure, it can be seen that the energy

consumption for both buildings is highest during the summertime which points to energy

consumption used for cooling purposes. Note that the figure contains two y-axes.

Figure 3-11: Combination plot of energy consumption (left y-axis) and outdoor temperature (right y-axis).

According to Enova (governmental energy advisor organization in Norway), the need for

additional heating in buildings normally ends when the outdoor temperature exceeds about 17

degrees Celsius, therefore they name this value base temperature [31]. If temperatures below

the base temperature require additional heating, it would make sense that values above would

call for additional cooling. To investigate this hypothesis, some assisting lines are added in the

figure. One horizontal line for the base temperature of 17 degrees, and several vertical lines for

the dates when outdoor temperature crosses this base temperature line. Here, a 10-day SMA

(simple moving average) value for temperature is used to get a single crossing point of the base

temperature. From the plot it seems that these vertical lines correspond well to the points where

energy consumption increases and returns down. This indicates that the hypothesis of using 17

as the base temperature could also be applicable for cooling.

3.3.1 Timely energy features

Figure 3-12 and Figure 3-13 shows boxplots of the hourly aggregated data where data is

grouped by timely features as hour of day, day of week, month, and year, for both building #1

and #2. For both buildings there seem to be several cyclical behaviors as consumption is higher

 3 Data analysis results

47

during daytime compared to nighttime, higher during weekdays compared to weekdays, and

highest in the summertime. Building #2 does also have a descending yearly trend in the data,

which is not seen in building #1. Which corresponds to the previous observations and trend

calculations.

Figure 3-12: Boxplot building #1, hourly aggregated data grouped by time features. Adjusted to local time with

DLS.

 3 Data analysis results

48

Figure 3-13: Boxplot building #2, hourly aggregated data grouped by time features. Adjusted to local time with

DLS.

In the previous boxplots, time features are created from the local time (adjusted for daylight

savings time). To illustrate the effect of DLS in the usage pattern, Figure 3-14 shows a

comparison where data is divided by summer and winter time (DLS), where one side is adjusted

for DLS and the other is not. Here one can see that there is a one-hour shift in the pattern if

data is not adjusted for DLS, energy consumption rises one hour earlier when not adjusted

during summertime (plot in down left corner).

Figure 3-14: Comparison of summer and wintertime, with and without adjusting for DLS. Data for building #1.

 3 Data analysis results

49

3.3.2 Correlation

This subchapter will describe the analysis of variables and the correlation between them. Figure

3-15 and Figure 3-16 shows the correlation of every weather feature combined with energy

consumption in building #1 and #2 in triangular heatmaps. From these figures we can see that

the variable SumDiff mostly correlates with temperature, humidity, daylight, and cloudiness,

and with the strongest positive correlation between SumDiff and temperature.

Figure 3-15: Heatmap weather data and SumDiff building #1. Aggregated for days.

Figure 3-16: Heatmap weather data and SumDiff building #2. Aggregated for days.

 3 Data analysis results

50

The most important results from the heatmaps and correlation are summarized in Table 3-1.

Table 3-1: Comments to important feature correlation

Feature Corr. with SumDiff

(Building #1 / Building #2)

Comment

Temperature 0,62 / 0,57 We can see that all temperature variables

(Temp_feels_like, Temp_max, Temp_min, and

Temperature), has a correlation of

approximately 1 meaning these carries mostly

the same information. And it would therefore

make sense to only use one of them further.

Humidity -0.46 / -0.44 The relative humidity has an inverse correlation

with temperature (-0.66) and Daylight (-0.69).

Indicating that the climate is relative more

humid with low temperatures and shorter days -

wintertime.

Daylight 0.42 / 0.48 Daylight is strongly correlated with

temperature (0.71), indicating the carry much

of the same information. As the days gets

longer, the temperature gets higher.

Cloudiness -0.38 / -0.32 Negative correlation: when less clouds (open

sky) – higher energy consumption. Cloudiness

correlates to humidity and temperature,

indicating that there are more clouds when RH

is high, and temperatures are low.

Based on the previously shown heatmaps and correlation analysis, it is found that temperature,

humidity, daylight, and cloudiness are the features with greatest correlation with energy

consumption (SumDiff). Therefore, scatter plots of these variables (x-axis) together with energy

consumption (y-axis) are shown in Figure 3-17 and Figure 3-18. From the previous boxplots,

where energy is grouped on timely energy features, we know that the energy consumption is

dependent on day of week, so the samples are grouped, and color-coded by day of week.

 3 Data analysis results

51

Figure 3-17: Scatter plot of most important weather feature for building #1, aggregated for days.

Figure 3-18: Scatter plot of most important weather features for building #2, aggregated for days.

3.3.3 Autocorrelation

Since the lag features are created from the variable SumDiff, only with a time difference, it is

possible to check the SumDiff variable’s autocorrelation. The autocorrelation between lag

features and SumDiff can be seen in Figure 3-19. It shows that building #1 has the strongest

autocorrelation to 7 days back of 0.86 (slag7) and 52 weeks ago of 0.84 (lag1).

 3 Data analysis results

52

Figure 3-19: Correlation of lag features, building #1.

Figure 3-20 shows the same type of heatmap, but for building #2. Here, the strongest

autocorrelation is also for 7 days back of 0.84. But with less correlation to one year ago (lag1).

This can be due to the decreasing trend and change in energy usage pattern seen before.

Building #2 does not have any values for 3 years back and therefore no values for lag3.

Figure 3-20: Correlation of lag features, building #2.

 3 Data analysis results

53

3.4 New temperature feature

Based on the previous scatter plots and correlation of important variables, it is seen that

temperature is an important variable. Therefore, Figure 3-21 and Figure 3-22 takes a closer

look at this relationship of temperature vs energy consumption, divided into two subplots: one

for weekdays and one for weekends. Based on the previously presented hypothesis that 17

could be a base temperature for temperature dependent energy consumption. Here, a horizontal

line for the mean value for temperatures below 17 (previously discussed base temperature) and

a linear regression line for temperatures above 17 (red lines) are added.

Figure 3-21: Scatter plot of temperature vs energy consumption building #1 grouped by weekday and weekend,

aggregated for days. The red shaded areas are only a static distance from the red lines for easier visualization.

Figure 3-22: Scatter plot of temperature vs energy consumption building #2 grouped by weekday and weekend,

aggregated for days. The red shaded areas are only a static distance from the red lines for easier visualization.

On the assumption that there might be a linear-like relationship between the energy

consumption and the temperatures, when above 17 degrees and no significant tendency below

(as seen above), a new variable temperature_adjusted is created. This new variable is then

calculated by subtracting 17 to the temperature values and setting the resulting negative values

to zero (temperatures below 17 => adjusted temperature = 0). This is another example of feature

 3 Data analysis results

54

engineering done in this project. Figure 3-23 shows the new correlation heatmap with weather

features including this adjusted temperature feature for building #1. From this figure, we can

see that the correlation between energy consumption has increased from 0.62 for temperature

to 0.69 for the temperature_adjusted. If we group samples into weekdays and weekends, the

correlation is increased from 0.4 to 0.42 for weekends, and from 0.84 to 0.92 for weekdays.

The same trend can also be seen for building #2, where general increased from 0.57 to 0.6.

Weekends from 0.42 to 0.43, and weekdays 0.66 to 0.68.

Figure 3-23: Correlation of weather features and building #1.

Figure 3-24 shows a scatter plot of the relation between energy consumption and this new

adjusted temperature for building #1. In addition to the linear regression line in red, a second

order regression line is added for visual effect as this seems to fit the values better, especially

for the top end values in weekdays.

Figure 3-24: Scatter plot of energy consumption vs adjusted temperature for building #1. The green shaded areas

are only a static distance from the green line for easier visualization.

 4 Modelling results

55

4 Modelling results
This chapter will present the model results for a simple baseline model, XGBoost (extreme

gradient boosting models) and LSTM models.

The available energy data is divided into training, validation, and test sets, where the splitting

dates used are 2022.01.01 and 2022.08.01. This gives about 66% for the training set, and 17%

each for the validation and test set. Figure 4-1 shows the split of available energy data for

building #1.

Figure 4-1: Train, validation, and test set split for building #1.

This split is used for the baseline model along with the gradient boosting models. The LSTM

models will only have approximately this date split as they use a percentage of the total number

of records, as opposed to the actual dates shown in the plot.

In the plots for model prediction output below, samples with high prediction error (RMSE >

two standard deviations) are marked with a red circle in the model output plot to indicate areas

with poor predictions compared with validation and test set.

4.1 Outlier handling

Since the data has both trend and seasonal components, simple statistical methods like IQR and

standard deviations might be too simple approaches as the same values for one season might

be an outlier in another season. Automatic outlier algorithms might also work, but oftentimes

it is not known on what basis these select the outliers. Some methods like the isolation forest,

the number of outliers in the data must be set in advance which makes it somewhat if a trial-

and-error approach to finding the correct percentage of outliers present in the data.

Two custom methods for identifying potential outliers are developed and suggested as an

alternative in this project. The first is Standard deviations From groped Mean (SFM), the

second is inspired by the previously created variable adjusted temperature.

4.1.1 Standard deviations From grouped Mean (SFM)

SFM is an algorithm for outlier detection developed during this project and is given the name

SFM (Standard deviations From grouped Mean). It is a method that calculates a mean value

 4 Modelling results

56

based on grouping by user-selected time features (ex. DayOfWeek and Quarter), and then

identify values as outliers if the value is outside a given number of standard deviations from

this grouped mean. It is a repetitive method that performs this operation in iteration, identifies

and removes outliers in one round, then recalculates mean and standard deviation for next

round with the previous outliers removed. Example output from this algorithm is shown in

Figure 4-2, where outliers are marked with a red circle.

Figure 4-2: Output from SFM (Standard deviations From grouped Mean), building #2.

4.1.2 Temperature scatter

Another method for identifying potential outliers that is developed during this project is based

on the previously described adjusted temperature (chapter 3.4). Values that deviate greatly

from the rest of the temperature trend are marked as potential outliers. What boundary to use

can be adjusted but a value of 0.3-0.5 times the mean is used here. Figure 4-3 shows an example

from this method, where outliers are marked as red dots.

 4 Modelling results

57

Figure 4-3: Marked potential outliers from temperature scatter, data from building #1.

4.2 Baseline model

A simple, common sense, no-learning model is created to set a prediction accuracy baseline

value for what the machine learning models should beat in order of adding any value. From the

variable analysis part, we saw that there is a strong autocorrelation between the current energy

consumption and the previous year’s energy consumption (lag1 feature). So, the simple

baseline model used here is just to predict the future as a copy of the past. Then, the model’s

forecast for the next period’s consumption will be equal to the previous time period’s

consumption. In this model, the energy consumption from 364 days back (lag1) is used as the

model output, but this could also have been done for a shorter prediction horizon by using the

7 days back and so forth. Figure 4-4 shows the output from this simple, no-learning model for

predicting the daily energy consumption for the next 364 days in building #1.

Figure 4-4: Predicting future as copy of last year, for building #1.

The full prediction results for this model type are shown in Table 4-1. This simple model can

also include adjustment for the underlying trend in the data, which improves the predictions

for building #2 but at the same time increases the error for building #1.

 4 Modelling results

58

Table 4-1: Simple prediction model result

Dataset Input

Features

Model Parameters Prediction

horizon

MAE/RMSE

Test set

Building#1 Building#2

Hourly Lag1 Adjusted for trend 1 year 58/86 96/111

Hourly Lag1 Not adjusted for trend 1 year 56/82 103/141

Daily Lag1 Adjusted for trend 1 year 1054/1425 2495/3340

Daily Lag1 Not adjusted for trend 1 year 997/1315 2666/3923

4.3 Extreme gradient boosting

This subchapter presents the result from XGBoost (extreme gradient boosting) models. Where

the first model types predict the daily energy consumption by using only lag and timely

features, the second also includes weather features. Lastly the models predict hourly energy

consumption.

4.3.1 Timely features – daily energy consumption

Firstly, models including only lag and timely features are created. One key advantage with this

approach is that these input variables are normally known for an extended time into the future

making the maximum prediction horizon from the models further.

From the previous variable analysis, it is seen that the energy consumption has both daily and

weekly cyclic behavior, and a seasonal variation during the year. Which also corresponds to

the strong correlation between energy consumption and the lag features lag1 and slag7.

Therefore, the features: [lag1, slag7, Week, Month, DayOfWeek, IsWeekend] are believed to be

of most importance and are the features in focus for these models. A script for automatically

testing all combinations of these features is implemented to identify the most important features

and combinations for the model. A result summary with the most important findings is shown

in Table 4-2. These models use data aggregated for days and the prediction output will

accordingly also be daily energy consumption. The full results from all testing all combinations

can be found in Appendix B.

 4 Modelling results

59

Figure 4-5: Simple model output building #1, aggregated for days.

Figure 4-5 and Figure 4-6 shows the prediction output from the best of these model types

compared with the test set for building #1 and #2. The problem area for forecasting, in both

buildings, seems to be in June (early summer).

Table 4-2: Model for daily consumption, without weather features. Summary, complete test result in appendix.

Dataset Input Features Maximum

prediction

horizon

MAE/RMSE

Test set

B1 B2

Daily DayOfWeek, Month Unlimited 829/1168 1381/2762

Daily DayOfWeek, Week Unlimited 922/1234 1286/2759

Daily Lag1 1 year 950/1239 1735/3083

Daily sLag7 1 week 845/1394 1913/3274

Daily DayOfWeek, Lag1 1 year 876/1150 1704/3074

Daily DayOfWeek, sLag7 1 week 789/1322 1936/3296

Daily DayOfWeek, Month,

lag1, slag7

1 week 711/1147 1465/2792

 4 Modelling results

60

Figure 4-6: Simple model output building #2, aggregated for days.

4.3.2 All features – daily energy consumption

The parameters used in the previous model type are paired with the weather features showing

highest correlation with energy consumption from the analysis part. These are: [temperature,

temperature_adjusted, cloudiness_pct, humidity, daylight]. Figure 4-7 and Figure 4-8 shows

the output from the models when also weather features are included compared with the test set

for both buildings.

Figure 4-7: Model building #1 with the temperature parameter included, aggregated for days.

 4 Modelling results

61

Figure 4-8: Model building #2 with the temperature parameter included, aggregated for days.

The script for automatically detecting the best combination of parameters is also used here, but

the full test results are not included as an appendix because of the extensive length (10 variables

gives over 1000 possible combinations). However, a summary of most important results for

daily aggregated data can be seen in Table 4-3.

Table 4-3: Feature summary for models including weather features.

Dataset Input Features Maximum

prediction

horizon

MAE/RMSE

Test set

B1 B2

Daily DayOfWeek, Temperature Forecast

dependent

621/997 1356/2849

Daily DayOfWeek,

temperature_adjusted

Forecast

dependent

612/990 1357/2839

Daily DayOfWeek, temperature,

cloudiness_pct,

Forecast

dependent

631/1008 1345/2829

Daily DayOfWeek, Week,

cloudiness_pct, daylight

Forecast

dependent

848/1205 1280/2702

 4 Modelling results

62

4.3.3 All features – hourly energy consumption

Models for hourly energy consumption are also created. In addition to the features used in the

daily models, the features [Hour, IsWorkHour] are also included. Summary of results for

models using hourly data with and without the use of weather features are shown in Table 4-4.

Table 4-4: Short term model with and without weather data

Dataset Input Features Prediction

horizon

MAE/RMSE

Test set

B1 B2

Hourly DayOfWeek, Hour,

Month

Infinite 50/72 51/68

Hourly DayOfWeek, Hour,

Week

Infinite 52/73 50/68

Hourly DayOfWeek, Hour,

Temperature

Forecast

dependent

45/66 50/69

Hourly DayOfWeek, Hour,

Temperature,

IsWorkHour

Forecast

dependent

45/66 49/68

Hourly DayOfWeek, Hour,

Temperature,

IsWorkHour, slag7

Forecast

dependent, 1

week

41/70 53/76

Hourly DayOfWeek, Hour,

Temperature,

IsWorkHour, Week

Forecast

dependent

48/69 47/65

Figure 4-9 and Figure 4-10 shows the best model prediction output for the test set for both

building #1 and #2 at an hourly interval.

 4 Modelling results

63

Figure 4-9: Hourly prediction with weather data included, building #1.

Figure 4-10: Hourly prediction with weather data included, building #2.

4.3.4 Model parameter importance

From the models created with the XGBoost library, it is possible to get the trained model’s

weighting of feature importance. It is seen that when both the features DayOfWeek and

IsWeekend are included, the models prefer to emphasize only the DayOfWeek variable. The

models using either one feature performs similarly, but slightly better with DayOfWeek.

Regarding the temperature and temperature_adjusted features, it seems that models including

only the temperature_adjusted yields slightly better results. Although, when both features are

included in the same model, the model emphasize only the temperature feature. Figure 4-11

shows a bar chart for feature importance from such a model.

 4 Modelling results

64

Figure 4-11: Feature importance, aggregated daily building #1.

When studying the features Hour and IsWorkHour in models where either feature is used, they

seem to yield equivalent results. Although, the models inducing both parameters seem to yield

a slight, but insignificant, improvement. Figure 4-12 shows a bar chart viewing the importance

of each variable used by one of the hourly predicting models created with XGBoost.

Figure 4-12: Bar chart over the importance of features in the model, building #1.

4.4 LSTM models

This subchapter presents the result from the LSTM models. The models presented below use a

sequence of previous seven day’s energy consumption as input to forecast the next day’s energy

consumption. It is also shown how a pre-trained model for one building can be adapted and re-

trained for predictions on the other.

4.4.1 Single input model

The first model forecast the energy consumption for the next day given the energy consumption

of the past 7 days - single input model. Table 4-5 shows the prediction results with different

hyperparameter settings for building #1. Several MAE scores are included as training results

for the same hyperparameter settings are different in each training session.

 4 Modelling results

65

Table 4-5: Prediction results for LSTM simple model, building #1

Layer Learning rate Epochs before es MAE

Test set

1 layer: 7 node

LSTM

0.1 11, 24, 57, 8, 35

epochs

1375, 897, 772,

1311, 849, 1317

1 layer: 14 node

LSTM

0.1 56, 52, 31, 42 664, 714, 812, 792

1 layer: 32 node

LSTM

0.1 (es =5 rounds)

0.05 (es = 5 rounds)

0.01 (es=10 rounds)

25, 49

54

11,

894, 1262, 697

668, 661, 690

1288, 768, 771

1 layer: 50 node

LSTM

0.05 (es=10 rounds) 74, 42, 82 608, 745, 643

Model prediction result on test set for the model with lowest MAE in building #1 value can be

seen in Figure 4-13.

Figure 4-13: Predictions output from LSTM, building #1. One layer, fifty nodes

Figure 4-14 shows how training and validation loss function decreases with increasing epochs.

Since the models use standardized values, the loss scale is in numbers of standard deviations.

 4 Modelling results

66

Figure 4-14: Loss for training and validation set.

4.4.2 General model

As seen in the data analysis part, the z-standardized values for both buildings have a strong

pattern resemblance. So, by using the pre-trained model for building #1 (with 50 nodes as

shown above) and simply just scale data (inputs/output) with standard deviation and mean

corresponding to building #2 training set, the model also yields decent results as shown in

Figure 4-15. This is then without any re-training of the model, just scale data to fit building #2.

Figure 4-15: Model trained on building #1, just scaled to fit building #2.

However, the model’s performance is further increased when re-trained on building specific

training data. Results after re-training shown in Figure 4-16.

 4 Modelling results

67

Figure 4-16: pre-trained model from building #1, retrained to building #2 data.

The inverse experiment where a model trained on building #2 data is scaled to fit building #1

is shown in Figure 4-17.

Figure 4-17: pre-trained model for building #2, just scaled to building #1.

 4 Modelling results

68

4.5 Future predictions

For using any of the models shown above for future predictions (used in production), the best

model settings can be used and retrained on all available data. The maximum prediction horizon

will still be depending on the input variables used. Figure 4-18 shows an example of future

predictions with an XGBoost model for building #1, where the maximum prediction horizon

is one year according to model inputs.

Figure 4-18: Model trained on all data for future predicting daily energy prediction, building #1.

 5 Discussion

69

5 Discussion
This chapter will discuss the findings, limitations and possible future work realized during the

project. The chapter will begin with a discussion of the input data and the pre-processing,

before moving to the data analysis and feature engineering. Then the models and the model

results are discussed, and lastly future work.

5.1 Pre-processing

As earlier described, aggregated data is shifted forward in time during pre-processing. This will

affect the timestamping of the data, and further the timely feature engineered variables like

DayOfWeek. This shift in time can then create confusion during analyzing or visualizing the

data. Example: Since events are shifted forwards, the events happening on a Sunday will be

shifted forwards and marked as the following Monday (at 00:00). If data is then later grouped

by day of week, it is data that are marked as Sunday and Monday that are the days belonging

to weekend patterns (and not Saturday and Sunday). This is mostly an important concern when

aggregation for days as the shift is larger but will also be the case for other aggregation

intervals.

All data files contained some time slots with missing data, and it is selected to use linear

interpolation for substituting missing energy data, and not to substitute for the missing weather

data as these time slots were too large and therefore creates too big uncertainty. This will later

affect how these variables can be used as inputs to models, and if the model type can handle

missing inputs.

5.2 Data Analysis

The goal when developing any ML model is to make the model as simple as possible without

sacrificing any of the prediction accuracy. To do so it is important to find the important

parameters or features, which will provide the model with useful information and exclude

noise. The data analysis part identifies that there are certain cyclical usage patterns for both

buildings, as the consumption is lower on weekends compared with weekdays, higher during

daytime compared with nighttime. Also, a seasonal pattern as consumption is higher during

summer than winter indicating energy consumed for cooling. This is also confirmed with the

correlation between the feature engineered lag factors, as there is a strong autocorrelation

between now and the one week ago (slag7) and one year ago (lag1 – 52 weeks).

There is discovered a decline in the underlying trend for building #2, showing a reduction of

about 20% energy consumption over the whole time period. It can also be signs that the usage

pattern of building #2 has changed over the course of the three-year timespan, as it seems they

have incorporated changes between workday/weekend, nightly reductions or similar. This may

be seen in context with steep energy price increase in 2021 and even further in 2022, and

consequently an overall increased attention to energy saving. It can be expected that this change

will affect how well the models for building #2 can perform, as the pattern in training data will

be changed during the timespan and not reflect the current situation that well.

When it comes to the weather features, it is identified that the outdoor temperature has the

strongest positive correlation with the energy consumption in both building, and that

 5 Discussion

70

consumption is highest during the summer period indicating cooling related energy

consumption. Although building #1 has a larger percent wise dependency on temperature

compared with building #2, when the data is standardized, the patterns are similar for both

buildings. This fits well to the previously presented Enova report, where it’s stated that the

percentage of energy consumption that is temperature dependent will largely depend on the

building type, but not least on what building materials or building standard is used. Enova has

estimated that for commercial buildings the temperature dependent energy consumption can

vary from about 25 to 70% depending on building material [6]. Even though the Enova report

is referring to colder climates with heating of buildings, this seems to also cohere with cooling

as seen in this report. So, this would suggest that the two buildings in this project are either

used for different purposes, built after different building standards (age) or a combination of

the two.

Of the remaining weather features, it is shown that cloudiness, number of hours with daylight

and humidity correlated the most with the energy consumption. Many of these variables also

had a strong correlation with temperature, indicating that they carry similar patterns and might

not add any additional value to the models. If on the other hand some of these values have had

a strong correlation with energy consumption, but not to temperature, one could expect that

they carry relevant, new information to the models.

Beforehand, it might be intuitive to suggest that feels-like-temperature would be more

important than solely temperature as this variable takes more information into consideration

(an engineered feature). But the variable analysis shows that this is not true, at least for the two

buildings in question during this project. This might be due to how the feels-like-temperature

feature is calculated. Feels-like-temperature is often used as another name for apparent

temperature, a combination of heat index and wind chill, which is a measure of the temperature

perceived by humans. Where the wind chill is the cooling effect of wind to exposed skin, and

heat index is a combination of temperature and humidity. The wind chill factor mostly

influences temperatures below 10 °C and humidity factor for temperatures above 27 °C [26].

A range which covers the primary operating range for temperatures in this project. It is however

reasonable to think that the feels-like-temperature variable could be more important when

investigating heating of buildings in colder climates (below 10 °C), when this feature takes the

wind speed factor into consideration.

In this case, it is expected that the sun will heat buildings and lead to an increase in the cooling

demand and will consequently be an important factor in addition to just outdoor temperature.

It could therefore be interesting to get a variable estimating the magnitude of this sun energy

contribution for improving the energy models. More on this under section for future work.

5.2.1 Outlier detection

As earlier presented, there exist numerous strategies and algorithms for automatic outlier

detection. The simpler methods are to remove values outside a certain standard deviation, or

some inter quartile range (IQR). Because the data in this project varies much depending on

time (season and cycles) these approaches were found to be a bit too simple whereas a value

that is normal for one season can be out of range in another context. Also, some algorithms for

automatic detection and removal of outliers are tried such as Local Outlier Factor, Isolation

Forest, Elliptic Envelope and One class SVM (all available as libraries in scikit-learn). These

 5 Discussion

71

automatic outlier algorithms are just briefly tested but not used since it is hard to know exactly

why they mark records as outliers.

Therefore, a couple of custom-made algorithms for detecting potential outliers are suggested

in this project. Standard deviation From grouped Mean (SFM), and Temperature trend outliers.

The key advantage with these approaches is that they are highly adapted to the specific purpose

in detecting outliers in building energy data, and it is easy to understand the working principle.

In addition to these two approaches, testing the effect of removing outliers from individual

energy meters (before combining them) should be investigated since the energy consumption

in each building is the sum of many energy meters within the same building. Here, the simpler,

traditional outlier detection methods might be sufficient.

Also, all outlier methods used here only remove the outliers by dropping the sample. A better

way could instead be to substitute the removed values, like the method used for substituting

missing energy data during pre-processing.

5.3 Models

A simple non-learning model is created to set a baseline value for model accuracy. The simple

baseline model is created on the assumption that the future energy consumption will be much

like the past. For building #1 this simple model gave decent results, but for building #2 this

method is not as satisfactory. This is probably because the underlying trend in the consumption

is declining and the usage pattern is changed for building #2, but the predictions were somewhat

improved when including the trend factor. This shows that this simple method can work to

some extent in cases where the trend and usage pattern is stable, and likewise can get both

better and worse by including the trend.

5.3.1 Model validation

For validating and measuring the model’s performance, the metrics MAE (mean absolute error)

and RMSE (root mean squared error) are used. Here, the RMSE values will penalize

predictions with samples with large deviations harder than the MAE value, even if the number

of samples with large deviation is small. In this project the MAE value is used to determine

how well the models are performing, using RMSE instead could affect the results.

One tool that has shown to be effective to avoid overfitting and underfitting of models is the

early stopping function. As earlier described, this function stops the model training when the

predictions stop improving for the validation set. This enables setting the maximum number of

epochs to a high enough number to prevent underfitting, and at the same time stops training

before the model is overfitted. Special care is needed for finding the best suited early stopping

number of rounds as this is closely related to the selected learning rate, particularly for LSTM

training as the initial weights are random and training progress can be different each time.

5.3.2 Gradient Boosting Machines

It is shown that variations of XGBoost models can beat the simple baseline model’s prediction

accuracy for the test set. But the models for daily energy predictions with only lag and timely

features as inputs had the largest prediction error area in the early parts of summer. This can

 5 Discussion

72

be due to a different climate for this period compared to earlier years and that this effect is not

well reflected in the training data. Again, the model will only reflect the future as good as the

training data.

This underestimation in early summer is improved by also including the outdoor temperature

variable for building #1. Including temperature feature also made the Week and Month features

obsolete and the best performing model for daily energy consumption in building #1 included

only DayOfWeek and Temperature. For building #2 including the temperature feature did not

enhance the prediction error in any significant way (test set MAE from 1286 to 1280). It is not

concluded what is the exact cause for this, but it can be related to weaker relation to temperature

compared to building #1 which percentwise has a higher temperature dependent energy

consumption.

From the variable analysis it is shown that the created feature adjusted temperature has a

greater correlation to energy consumption than temperature. Even though the adjusted

temperature yielded higher correlation to energy consumption, the models preferred to use the

standard temperature feature when both features are included as inputs, and the model

predictions are disappointingly similar in both cases. This shows that XGBoost models can

pick up on un-linear relationships in variables and adjust for them on its own. The same is also

the case when using DayOfWeek and IsWeekend features in combination. The models prefer to

use the variable with DayOfWeek in contrast to the one-hot encoded IsWeekend. It is expected

that these one-hot encoded variables could be more important for the LSTM models.

The model’s performance did not seem to have any significant improvements with the time

features created from local time adjusted for DST, compared with UTC not adjusted for DST.

This can be because the DST setting is mostly relevant to the Hour variable during

summertime, which counts for an insignificant part of the model input importance.

One advantage with XGBoost compared to the LSTM method is that the training reaches the

same result every time, so a set of variables or other settings only needs to be tested once. Also,

that training is generally much faster. This enabled the possibility for creating a script for

automatically testing all possible combinations of features in a convenient way.

5.3.3 LSTM

The LSTM model produced during this project was a model that only takes a sequence of the

daily energy consumption for the previous seven days as input and predicts the next day’s

energy consumption. Some different network structures are tested, with the use of different

numbers of nodes, learning rate and early stopping rounds. The results show that the best LSTM

models can produce a lower prediction error value (MAE) for the test set compared with both

the baseline model and the best XGBoost models.

Since the initial weights in a new model are random values, the output from a trained network

will vary slightly each time it is trained. Since the training result can be different each time, it

is important to train the models several times in order to establish if the settings are satisfactory.

How good the trained models can be will also depend a lot on the selection of learning rate and

settings for early stopping (hyperparameters). The effects of early stopping settings could

perhaps have been mitigated if this setting had been switched off overall, and all the training

reached the maximum number of epochs.

 5 Discussion

73

Because the buildings showed such similar patterns when energy consumption was z-score

standardized. It is shown that it is possible to use a pre-trained model for another building and

just scale the data to the building specific standard deviation and mean. This could indicate the

possibility to make kind of a general model that can be valid for multiple comparable buildings,

which allows for making a decent model before much data from the specific building is

collected. The pre-trained model is however improved through re-training with building

specific data. Nevertheless, using a pre-trained model as the starting point for a new model

training also helped the models reach a good solution faster, which then points to the benefit

of having a good pre-trained model as the starting point whenever creating a model for a new

building. This could for instance be accomplished by having a pre-trained model as a starting

point for each comparable building type (school, office, apartment…).

The LSTM models mainly just improved the prediction accuracy for building #1, not for

building #2. The test set for building #2 includes some heavy fluctuations in the energy

consumption, indicating outliers or some other errors. Since the LSTM model will also use the

test data as inputs, this will affect the model outputs in addition to the reduced MAE score on

the output side. So, it might be a good idea to do some filtering on the model’s input in order

to isolate the effect from outliers to model output.

The LSTM models shown in this project use the last 7 days as input to predict the next day, but

what if you like the model to predict the next 7 days rather than just the one day. There are

mainly two ways of increasing the prediction width and thus getting multiple prediction

horizons from the same model when using LSTM, one where the label width is increased

during model training and then increasing the model’s output. The other is making one day

ahead prediction, as done in this project, but refeeding the output back to the model as an input

making a multistep model.

5.3.4 Overall model results

In any case, the machine learning models did perform better than the simple, no-learning

baseline model. Because of time limitations during the project, more time is put into the

XGBoost models compared to the LSTM models, so it can be reasonable to think that the

prediction accuracy for these models is closer to their maximum potential. It would therefore

be interesting to further test how different model structures for the LSTM like deeper networks,

different input width or more input variables could affect the results from LSTM models.

Furthermore, it is shown that the models were generally better at picking up the pattern at

building #1 compared to building #2, even if the MAE score for building #2 has a percent wise

better prediction accuracy. Again, this can be caused by the training data for building #2 not

reflecting the current usage pattern of building #2 due to change in trend and usage pattern.

Here, one possible solution could be to use just the most recent and relevant data during a re-

training of the model and check if this can help performance.

During model training, the temperature measurement for that time slot is used, but when the

model is to be used for future predictions (when in production), this measurement is obviously

not available and a value from a weather forecasting service is needed instead. This raises the

question of how this change will impact the model’s prediction accuracy, which in turn depends

on how closely related the forecasted temperature and actual temperature are. How far into the

future we have a good temperature forecast, will also determine how far into the future these

 5 Discussion

74

model types can be used with a certain accuracy. In this project the assumption of up to seven

days with a reliable temperature forecast is used.

One key advantage with the XGBoost models, is that the maximum prediction horizon is longer

than with the LSTM and that we can create predictions for a year or more depending on the

input variables selected. One of the problems with ML is the requirements for recorded data,

therefore a more generic model type like shown with just scaling a pre-trained model here is

desirable.

5.4 Future work

Some of the model predictions that are misplaced seem to be single days that are typically not

fitting the “normal” pattern, further work could be investigated if these days are linked to

national holidays or such. Including a variable indicating if a day is a national holiday is

possible (ex. “IsHoliday”), but during a year it could be very few occurrences and thus little

training data for the model, one simpler solution could then be to mark holidays as IsWeekend

or set the day of week to Sunday, as it is reasonable to assume a similar pattern for Sundays

and holidays.

Some features are only important when combined with others, and it is possible that these are

not discovered in this project. As discussed above it would be attractive to get a variable

describing the additional cooling demand caused by sun energy. Investigate the possibility for

creating such a feature by combining daylight and cloudiness or check the resemblance to wet

bulb temperature. Also, using more variables describing what happens inside the buildings

could likewise help the model, like the indoor temperature measurement, occupancy level and

so on. Here using data from a simulator could help identify which variables are important,

before inserting new sensors and acquiring these from the actual buildings.

Because of time restrictions during the project, the handling of outliers and how different

methods affect the model prediction result is not very well tested. A more in-depth investigation

of outlier handling, substitution of removed outliers, input smoothening of outliers to LSTM

inputs should be considered. Also possibly identify the explanation for outliers, some may be

due to Covid-19 restrictions or national holiday.

On the model side further investigation of the LSTM networks, with other structures, deeper

models, substituting LSTM with GRU nodes, more input variables should be investigated.

Deeper and more complex models might call for the usage of dropout nodes during training. It

is also possible to investigate other, new model types like Prophet. Since the building’s usage

pattern often will change over time, the option for an automatic retraining, or automatic

validation could be something to consider before setting the model into production.

The total energy consumption in each building is a combination of many energy meters within

the building. Investigate if it is better to make models for each individual energy meter rather

than the combined values. This way each energy consumer could use the model structure and

input variables best suited for the specific purpose, like in [7].

 6 Conclusion

75

6 Conclusion
This master thesis had two main goals: perform data analysis to identify important variables

related to energy consumption and create machine learning algorithms for energy predictions

in buildings based on this. Energy data for about a three-year period from two separate

buildings located in Athens should be used as the foundation.

Before the data analysis could be performed a series of data pre-processing steps involving data

aggregation, handling of missing values and feature engineering needed to be performed. Then,

a comprehensive data analysis identified yearly seasonality, daily and weekly cyclical patterns

for both buildings and underlying trend changes. Also, autocorrelation and correlation between

energy consumption and other variables showed that outdoor temperature is one important

variable, but it varies depending on the building and season (outdoor temperature).

To compare if the machine learning models provided any value, a simple, non-learning model

was created in order of setting a baseline value for prediction accuracy. The baseline model is

built on the assumption that the future will be like the past, and future predictions are therefore

only a copy of the past. In any case, both machine learning types had a better prediction

accuracy compared to this simple baseline model.

Many models and different configurations within two machine learning model types have been

trained and tested during the project, these are LSTM and XGBoost models. The best

performing XGBoost model for building #1 relied on temperature_adjusted, DayOfWeek as

input variables, with the best results for daily energy predictions for test set MAE of 612 kWh

(15% of test set mean value). And the best for building #2 used DayOfWeek, Week,

cloudiness_pct, daylight as inputs with a MAE of 1280kWh (8% of test set mean value). The

LSTM models used a sequence of the daily energy consumption from the previous seven days

to predict the next day. Even with only a single input variable the best performing model had

a MAE for test set of 608 kWh for building #1 and 1451 kWh for building #2.

Different buildings have different energy usage patterns, and the usage patterns can often

change over time. It is hard to find one model type and one set of hyperparameters that will

work well in all cases. The best performing model will therefore often depend on the specific

building as seen in this project, where the best performing model for each building was of

different type.

 References

76

References

[1] A. K. V.S.K.V Harish, "A review on modeling and simulation of building energy

systes," Elsevier, 2015.

[2] B. Marek and Z. Klaudia, "Prediction of Cooling Energy Consumption in Hotel

Building Using Machine Learning Techniques," MDPI energies, 2020.

[3] M. Elena , N. Phuong H., G. Madeleine and K. Wil L., "Comparison of Machine

Learning Methods for Estimating Energy Consumption in Buildings," Eidenhoven

University of Technology, Department of Electircal Engineering, Eindhoven, The

Netherlands.

[4] M. Jin Woo , J. Sung Kwon, L. Yong Oh and C. Sangsun, "Prediction Performance of

an Artificial Neural Network Model for the Amount of Cooling Energy Consumption in

Hotel Rooms," energies, 2015.

[5] A. S. C. Deb, "Review of data-driven energy modelling techniques for building

retrofit," Elsevier, p. 13, 30 03 2021.

[6] Enova, "Enovas byggstatistikk 2017," Enova , 2017.

[7] F. J.-S. Abdul Afram, "Black-box modeling of residential HVAC system and

comparison of gray-box and black-box modeling methods," Elsevier, p. 29, 03 11 2014.

[8] F. Chollet, "Deep Learning with Python, second edition," Shelter Ilands, Manning

Publication Co, 2021, pp. 1-67.

[9] P. Kim, MATLAB Deep Learning: With Machine Learning, Nerual Networks and

Artifical Intelligenxce, Apress, 2017.

[10] J. Delua, "IBM, Supervised vs. Unsupervised Learning: What's the Difference?," IBM,

12 03 2021. [Online]. Available: https://www.ibm.com/cloud/blog/supervised-vs-

unsupervised-learning. [Accessed 20 03 2023].

[11] S. Gupta, "Springboard - Regression vs Classification in Machine Learning: What's the

Difference?," 6 10 2021. [Online]. Available: https://www.springboard.com/blog/data-

science/regression-vs-classification/. [Accessed 16 04 2023].

[12] F. Chollet, "Deep Learning with Python, second edition," Shelter Ilands, Manning

Publication Co, 2021, pp. 280-308.

[13] H. Viumdal, "Lecture notes: Introduction to Neural Networks," University of South-

Eastern Norway, 2021.

[14] R. Goyal, "Zeomag - Five Important Techniques That You Should Know About Deep

Learning," 09 05 2018. [Online]. Available: https://www.zeolearn.com/magazine/five-

important-techniques-that-you-should-know-about-deep-learning. [Accessed 20 03

2023].

 References

77

[15] M. West, "Bouvet - Explaining Recurrent Neural Networks," [Online]. Available:

https://www.bouvet.no/bouvet-deler/explaining-recurrent-neural-networks. [Accessed

20 03 2023].

[16] C. Olah, "Colah's blog - Understanding LSTM Networks," 27 08 2015. [Online].

Available: http://colah.github.io/posts/2015-08-Understanding-LSTMs/. [Accessed 25

03 2023].

[17] IBM, "IBM - What are recurrent neural networks?," IBM, [Online]. Available:

https://www.ibm.com/topics/recurrent-neural-networks. [Accessed 16 04 2023].

[18] A. Biswal, "Simpli Learn - Recurrent Neural Network (RNN) Tutorial: Types,

Examples, LSTM and More," 14 02 2023. [Online]. Available:

https://www.simplilearn.com/tutorials/deep-learning-tutorial/rnn. [Accessed 25 03

2023].

[19] "IBM - What are decision trees?," IBM, [Online]. Available: https://www.ibm.com/in-

en/topics/decision-trees. [Accessed 28 03 2023].

[20] "IBM - What is random forest?," IBM, [Online]. Available:

https://www.ibm.com/topics/random-forest. [Accessed 28 03 2023].

[21] IBM, "IBM - What is boosting?," IBM, [Online]. Available:

https://www.ibm.com/topics/boosting. [Accessed 16 04 2023].

[22] "Geeks For Geeks - Boosting in Machine Learning, Boosting and AdaBoost," 28 01

2022. [Online]. Available: https://www.geeksforgeeks.org/boosting-in-machine-

learning-boosting-and-adaboost/?ref=lbp. [Accessed 28 03 2023].

[23] T. Masui, "Medium - All you need to know about Gradient Boosting Machines - Part 1.

Regression," 20 01 2022. [Online]. Available: https://towardsdatascience.com/all-you-

need-to-know-about-gradient-boosting-algorithm-part-1-regression-2520a34a502.

[Accessed 04 04 2023].

[24] "XGBoost - Documentation," 2022. [Online]. Available:

https://xgboost.readthedocs.io/en/stable/index.html. [Accessed 04 04 2023].

[25] J. Bownlee, "Machine Learning Mastery - XGBoost for regression," 12 03 2021.

[Online]. Available: https://machinelearningmastery.com/xgboost-for-regression/.

[Accessed 04 04 2023].

[26] "Pandas - About pandas," 2023. [Online]. Available:

https://pandas.pydata.org/about/index.html. [Accessed 04 04 2023].

[27] "Wikipedia, Apparent temperature," Wikipedia , 20 12 2022. [Online]. Available:

https://en.wikipedia.org/wiki/Apparent_temperature. [Accessed 05 05 2023].

[28] "Wikipedia, UTC," 02 03 2023. [Online]. Available:

https://en.wikipedia.org/wiki/Coordinated_Universal_Time. [Accessed 13 03 2023].

 References

78

[29] "Wikipedia, Time zone," 01 03 2023. [Online]. Available:

https://en.wikipedia.org/wiki/Time_zone. [Accessed 13 03 2023].

[30] "Wikipedia, Dayligh saving time," 13 03 2023. [Online]. Available:

https://en.wikipedia.org/wiki/Daylight_saving_time. [Accessed 13 03 2023].

[31] W. Wheeler, "Medium," 27 05 2019. [Online]. Available:

https://medium.com/wwblog/clean-up-your-time-series-data-with-a-hampel-filter-

58b0bb3ebb04. [Accessed 05 04 2023].

[32] "Enova - Enova kunnskap - Graddagstall," Enova, [Online]. Available:

https://www.enova.no/kunnskap/graddagstall/. [Accessed 08 04 2023].

[33] Dan, "https://www.unixtimestamp.com/," Dantools.com, 2014. [Online]. Available:

https://www.unixtimestamp.com/. [Accessed 7 March 2023].

[34] "Wikipedia, IOS 8601," 04 03 2023. [Online]. Available:

https://en.wikipedia.org/wiki/ISO_8601. [Accessed 07 03 2023].

 Appendices

79

Appendices

Appendix A – Project topic description

Appendix B – XGBoost feature search results.

 Appendices

80

Appendix A – Project topic description

 Appendices

81

 Appendices

82

Appendix B – XGBoost feature search results.

Building #1:

combi Features Val_MAE Val_RMSE Test_MAE Test_RMSE

61
['DayOfWeek', 'Month', 'IsWeekend', 'lag1',
'slag7']

607.0 1003.0 711.0 1147.0

50 ['DayOfWeek', 'Month', 'lag1', 'slag7'] 607.0 1003.0 711.0 1147.0

55 ['Week', 'IsWeekend', 'lag1', 'slag7'] 648.0 1089.0 756.0 1263.0

37
['Week',
'lag1',
'slag7']

652.0 1085.0 762.0 1270.0

62 ['Week', 'Month', 'IsWeekend', 'lag1', 'slag7'] 660.0 1084.0 764.0 1277.0

60
['DayOfWeek', 'Week', 'IsWeekend', 'lag1',
'slag7']

657.0 1074.0 773.0 1230.0

56 ['Month', 'IsWeekend', 'lag1', 'slag7'] 626.0 994.0 773.0 1197.0

47 ['DayOfWeek', 'Week', 'lag1', 'slag7'] 657.0 1074.0 773.0 1230.0

63
['DayOfWeek', 'Week', 'Month', 'IsWeekend',
'lag1', 'slag7']

648.0 1073.0 774.0 1232.0

59 ['DayOfWeek', 'Week', 'Month', 'lag1', 'slag7'] 648.0 1073.0 774.0 1232.0

48 ['DayOfWeek', 'Month', 'IsWeekend', 'lag1'] 662.0 967.0 775.0 1084.0

27 ['DayOfWeek', 'Month', 'lag1'] 662.0 967.0 775.0 1084.0

54 ['Week', 'Month', 'lag1', 'slag7'] 668.0 1078.0 781.0 1292.0

30 ['DayOfWeek', 'IsWeekend', 'slag7'] 563.0 959.0 789.0 1323.0

11 ['DayOfWeek', 'slag7'] 563.0 959.0 789.0 1323.0

49 ['DayOfWeek', 'Month', 'IsWeekend', 'slag7'] 562.0 937.0 791.0 1241.0

28 ['DayOfWeek', 'Month', 'slag7'] 562.0 937.0 791.0 1241.0

38 ['Month', 'IsWeekend', 'lag1'] 842.0 1142.0 797.0 1106.0

51 ['DayOfWeek', 'IsWeekend', 'lag1', 'slag7'] 607.0 956.0 799.0 1226.0

31 ['DayOfWeek', 'lag1', 'slag7'] 607.0 956.0 799.0 1226.0

40 ['Month', 'lag1', 'slag7'] 629.0 980.0 802.0 1214.0

17 ['Month', 'lag1'] 864.0 1158.0 803.0 1125.0

45 ['DayOfWeek', 'Week', 'IsWeekend', 'lag1'] 656.0 970.0 804.0 1124.0

39 ['Month', 'IsWeekend', 'slag7'] 574.0 975.0 804.0 1310.0

24 ['DayOfWeek', 'Week', 'lag1'] 656.0 970.0 804.0 1124.0

52 ['Week', 'Month', 'IsWeekend', 'lag1'] 821.0 1157.0 809.0 1108.0

57
['DayOfWeek', 'Week', 'Month', 'IsWeekend',
'lag1']

660.0 966.0 818.0 1134.0

43 ['DayOfWeek', 'Week', 'Month', 'lag1'] 660.0 966.0 818.0 1134.0

26 ['DayOfWeek', 'Month', 'IsWeekend'] 672.0 1013.0 829.0 1168.0

8 ['DayOfWeek', 'Month'] 672.0 1013.0 829.0 1168.0

46 ['DayOfWeek', 'Week', 'IsWeekend', 'slag7'] 600.0 1033.0 831.0 1235.0

35 ['Week', 'IsWeekend', 'lag1'] 821.0 1146.0 831.0 1129.0

25 ['DayOfWeek', 'Week', 'slag7'] 600.0 1033.0 831.0 1235.0

15 ['Week', 'slag7'] 626.0 1077.0 836.0 1330.0

18 ['Month', 'slag7'] 582.0 962.0 838.0 1337.0

6 ['slag7'] 604.0 1025.0 845.0 1394.0

 Appendices

83

combi Features Val_MAE Val_RMSE Test_MAE Test_RMSE

41 ['IsWeekend', 'lag1', 'slag7'] 624.0 969.0 847.0 1283.0

33 ['Week', 'Month', 'lag1'] 848.0 1176.0 847.0 1156.0

20 ['IsWeekend', 'slag7'] 598.0 996.0 848.0 1400.0

21 ['lag1', 'slag7'] 622.0 966.0 852.0 1291.0

14 ['Week', 'lag1'] 847.0 1171.0 862.0 1176.0

53 ['Week', 'Month', 'IsWeekend', 'slag7'] 629.0 1082.0 872.0 1346.0

36 ['Week', 'IsWeekend', 'slag7'] 641.0 1082.0 876.0 1334.0

29 ['DayOfWeek', 'IsWeekend', 'lag1'] 732.0 1044.0 876.0 1151.0

10 ['DayOfWeek', 'lag1'] 732.0 1044.0 876.0 1151.0

34 ['Week', 'Month', 'slag7'] 630.0 1082.0 886.0 1378.0

23 ['DayOfWeek', 'Week', 'IsWeekend'] 609.0 924.0 922.0 1234.0

7 ['DayOfWeek', 'Week'] 609.0 924.0 922.0 1234.0

42 ['DayOfWeek', 'Week', 'Month', 'IsWeekend'] 614.0 924.0 930.0 1260.0

22 ['DayOfWeek', 'Week', 'Month'] 614.0 924.0 930.0 1260.0

58
['DayOfWeek', 'Week', 'Month', 'IsWeekend',
'slag7']

602.0 1007.0 937.0 1321.0

44 ['DayOfWeek', 'Week', 'Month', 'slag7'] 602.0 1007.0 937.0 1321.0

5 ['lag1'] 766.0 1065.0 951.0 1239.0

19 ['IsWeekend', 'lag1'] 770.0 1070.0 956.0 1239.0

13 ['Week', 'IsWeekend'] 1063.0 1539.0 1113.0 1609.0

16 ['Month', 'IsWeekend'] 1130.0 1582.0 1120.0 1610.0

32 ['Week', 'Month', 'IsWeekend'] 1056.0 1533.0 1146.0 1640.0

12 ['Week', 'Month'] 1104.0 1592.0 1147.0 1674.0

2 ['Week'] 1105.0 1594.0 1151.0 1679.0

3 ['Month'] 1169.0 1646.0 1183.0 1659.0

9 ['DayOfWeek', 'IsWeekend'] 1438.0 1773.0 1310.0 1628.0

1 ['DayOfWeek'] 1438.0 1773.0 1310.0 1628.0

4 ['IsWeekend'] 1697.0 2037.0 1573.0 1878.0

Building #2:

combi Features Val_MAE Val_RMSE Test_MAE Test_RMSE

23 ['DayOfWeek', 'Week', 'IsWeekend'] 902.0 1519.0 1286.0 2759.0

7 ['DayOfWeek', 'Week'] 902.0 1519.0 1286.0 2759.0

22 ['DayOfWeek', 'Week', 'Month'] 891.0 1515.0 1314.0 2761.0

42 ['DayOfWeek', 'Week', 'Month', 'IsWeekend'] 891.0 1515.0 1314.0 2761.0

13 ['Week', 'IsWeekend'] 1121.0 1780.0 1380.0 2795.0

8 ['DayOfWeek', 'Month'] 961.0 1560.0 1381.0 2762.0

26 ['DayOfWeek', 'Month', 'IsWeekend'] 961.0 1560.0 1381.0 2762.0

2 ['Week'] 1126.0 1783.0 1398.0 2820.0

32 ['Week', 'Month', 'IsWeekend'] 1118.0 1779.0 1427.0 2811.0

12 ['Week', 'Month'] 1122.0 1786.0 1461.0 2821.0

16 ['Month', 'IsWeekend'] 1164.0 1797.0 1512.0 2810.0

56 ['Month', 'IsWeekend', 'lag1', 'slag7'] 912.0 1491.0 1517.0 2911.0

 Appendices

84

combi Features Val_MAE Val_RMSE Test_MAE Test_RMSE

50 ['DayOfWeek', 'Month', 'lag1', 'slag7'] 889.0 1478.0 1518.0 2905.0

61
['DayOfWeek', 'Month', 'IsWeekend', 'lag1',
'slag7']

889.0 1478.0 1518.0 2905.0

40 ['Month', 'lag1', 'slag7'] 905.0 1489.0 1527.0 2914.0

3 ['Month'] 1170.0 1810.0 1530.0 2821.0

55 ['Week', 'IsWeekend', 'lag1', 'slag7'] 938.0 1524.0 1542.0 2898.0

37 ['Week', 'lag1', 'slag7'] 947.0 1525.0 1544.0 2906.0

31 ['DayOfWeek', 'lag1', 'slag7'] 832.0 1470.0 1548.0 2964.0

51 ['DayOfWeek', 'IsWeekend', 'lag1', 'slag7'] 832.0 1470.0 1548.0 2964.0

54 ['Week', 'Month', 'lag1', 'slag7'] 952.0 1525.0 1551.0 2899.0

41 ['IsWeekend', 'lag1', 'slag7'] 844.0 1474.0 1551.0 2963.0

62 ['Week', 'Month', 'IsWeekend', 'lag1', 'slag7'] 955.0 1524.0 1555.0 2901.0

21 ['lag1', 'slag7'] 849.0 1483.0 1559.0 2970.0

59 ['DayOfWeek', 'Week', 'Month', 'lag1', 'slag7'] 937.0 1514.0 1582.0 2926.0

63
['DayOfWeek', 'Week', 'Month', 'IsWeekend',
'lag1', 'slag7']

937.0 1514.0 1582.0 2926.0

60
['DayOfWeek', 'Week', 'IsWeekend', 'lag1',
'slag7']

959.0 1540.0 1587.0 2916.0

47 ['DayOfWeek', 'Week', 'lag1', 'slag7'] 959.0 1540.0 1587.0 2916.0

29 ['DayOfWeek', 'IsWeekend', 'lag1'] 1055.0 1666.0 1704.0 3072.0

10 ['DayOfWeek', 'lag1'] 1055.0 1666.0 1704.0 3072.0

36 ['Week', 'IsWeekend', 'slag7'] 1031.0 1642.0 1712.0 2947.0

58
['DayOfWeek', 'Week', 'Month', 'IsWeekend',
'slag7']

1009.0 1634.0 1724.0 2988.0

44 ['DayOfWeek', 'Week', 'Month', 'slag7'] 1009.0 1634.0 1724.0 2988.0

46 ['DayOfWeek', 'Week', 'IsWeekend', 'slag7'] 1012.0 1632.0 1725.0 2944.0

25 ['DayOfWeek', 'Week', 'slag7'] 1012.0 1632.0 1725.0 2944.0

19 ['IsWeekend', 'lag1'] 1081.0 1691.0 1726.0 3074.0

5 ['lag1'] 1089.0 1697.0 1735.0 3083.0

53 ['Week', 'Month', 'IsWeekend', 'slag7'] 1020.0 1646.0 1740.0 2975.0

15 ['Week', 'slag7'] 1032.0 1652.0 1741.0 2952.0

34 ['Week', 'Month', 'slag7'] 1021.0 1648.0 1762.0 2980.0

28 ['DayOfWeek', 'Month', 'slag7'] 1011.0 1638.0 1782.0 2977.0

49 ['DayOfWeek', 'Month', 'IsWeekend', 'slag7'] 1011.0 1638.0 1782.0 2977.0

18 ['Month', 'slag7'] 1043.0 1663.0 1805.0 2975.0

39 ['Month', 'IsWeekend', 'slag7'] 1035.0 1662.0 1807.0 2994.0

57
['DayOfWeek', 'Week', 'Month', 'IsWeekend',
'lag1']

898.0 1518.0 1849.0 3078.0

43 ['DayOfWeek', 'Week', 'Month', 'lag1'] 898.0 1518.0 1849.0 3078.0

24 ['DayOfWeek', 'Week', 'lag1'] 909.0 1527.0 1896.0 3100.0

45 ['DayOfWeek', 'Week', 'IsWeekend', 'lag1'] 909.0 1527.0 1896.0 3100.0

52 ['Week', 'Month', 'IsWeekend', 'lag1'] 995.0 1593.0 1912.0 3136.0

6 ['slag7'] 1082.0 1750.0 1913.0 3274.0

27 ['DayOfWeek', 'Month', 'lag1'] 898.0 1506.0 1928.0 3152.0

 Appendices

85

combi Features Val_MAE Val_RMSE Test_MAE Test_RMSE

48 ['DayOfWeek', 'Month', 'IsWeekend', 'lag1'] 898.0 1506.0 1928.0 3152.0

33 ['Week', 'Month', 'lag1'] 1002.0 1604.0 1933.0 3147.0

30 ['DayOfWeek', 'IsWeekend', 'slag7'] 1068.0 1743.0 1936.0 3296.0

11 ['DayOfWeek', 'slag7'] 1068.0 1743.0 1936.0 3296.0

20 ['IsWeekend', 'slag7'] 1074.0 1750.0 1938.0 3311.0

17 ['Month', 'lag1'] 964.0 1548.0 1940.0 3169.0

35 ['Week', 'IsWeekend', 'lag1'] 993.0 1596.0 1944.0 3149.0

14 ['Week', 'lag1'] 1002.0 1608.0 1958.0 3159.0

38 ['Month', 'IsWeekend', 'lag1'] 948.0 1534.0 1985.0 3224.0

9 ['DayOfWeek', 'IsWeekend'] 1710.0 2187.0 2127.0 2975.0

1 ['DayOfWeek'] 1710.0 2187.0 2127.0 2975.0

4 ['IsWeekend'] 1838.0 2340.0 2191.0 3032.0

	1 Introduction
	1.1 Background information
	1.2 Energy and Thermal Models
	1.2.1 White box model
	1.2.2 Black box model
	1.2.3 Grey box model
	1.2.4 Important parameters
	1.2.5 Related work

	1.3 Project objectives
	1.4 Report structure

	2 Methodology
	2.1 Artificial Intelligence and Machine Learning
	2.1.1 Timeseries and Machine Learning
	2.1.2 Training a Machine Learning algorithm

	2.2 Neural Network - NN
	2.2.1 Training the neural network
	2.2.2 Recurrent Neural Network (RNN)
	2.2.3 Long Short-term memory (LSTM)
	2.2.4 Deep learning

	2.3 Decision Tree - DT
	2.3.1 Random forest
	2.3.2 Boosting
	2.3.3 Gradient boosting machines

	2.4 Python
	2.4.1 Google Colaboratory – Colab
	2.4.2 TensorFlow and Keras
	2.4.3 XGBoost
	2.4.4 Scikit-learn.
	2.4.5 Pandas
	2.4.6 Matplotlib

	2.5 Data preparation
	2.5.1 Raw data format
	2.5.2 Pre-processing and aggregation of data.
	2.5.3 Time stamps

	2.6 Feature Engineering
	2.6.1 Weather data
	2.6.2 Energy consumption
	2.6.3 Time Features
	2.6.4 Lag Features

	2.7 Data Analysis
	2.7.1 Trend

	2.8 Modelling
	2.8.1 Extreme gradient boosting
	2.8.2 LSTM
	2.8.3 Validation of models
	2.8.4 Data standardization
	2.8.5 One-hot encoding
	2.8.6 Outlier handling

	3 Data analysis results
	3.1 Weather data analysis
	3.2 Energy data analysis
	3.2.1 Building #1
	3.2.2 Building #2
	3.2.3 Both buildings
	3.2.4 Trend

	3.3 Combined data analysis
	3.3.1 Timely energy features
	3.3.2 Correlation
	3.3.3 Autocorrelation

	3.4 New temperature feature

	4 Modelling results
	4.1 Outlier handling
	4.1.1 Standard deviations From grouped Mean (SFM)
	4.1.2 Temperature scatter

	4.2 Baseline model
	4.3 Extreme gradient boosting
	4.3.1 Timely features – daily energy consumption
	4.3.2 All features – daily energy consumption
	4.3.3 All features – hourly energy consumption
	4.3.4 Model parameter importance

	4.4 LSTM models
	4.4.1 Single input model
	4.4.2 General model

	4.5 Future predictions

	5 Discussion
	5.1 Pre-processing
	5.2 Data Analysis
	5.2.1 Outlier detection

	5.3 Models
	5.3.1 Model validation
	5.3.2 Gradient Boosting Machines
	5.3.3 LSTM
	5.3.4 Overall model results

	5.4 Future work

	6 Conclusion
	References
	Appendices

