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Summary:  

A model for energy usage forecasting can be a tool to help reduce the energy consumed by 

buildings, and thereby also reduce both the energy costs and carbon footprint of buildings.  

In order to create a good prediction model, the inputs containing valuable information are found 

by data analysis. The data analysis mainly uncovers that the training data in this project contains 

certain cyclical patterns for daily, weekly, and yearly variations. And that one of the most 

important parameters influencing changes in energy consumption is cooling caused by the outdoor 

temperature. 

This thesis investigates using two different machine learning algorithms to create energy 

consumption models for daily and hourly energy predictions. The first model type is long-short 

term memory (LSTM) and the second is gradient boosted machines. Which model type produces 

the best results will depend on the building, and the desired prediction horizon which may be the 

next hour, day, or month.  

The data used for model training in the project is recorded from two separate buildings located in 

Athens, Greece. Where the best predicting model for building #1 is a LSTM model with a MAE 

of 608 kWh (about 15% of test set mean), and for building #2 a gradient boosting model with a 

MAE of 1208 kWh (about 8% of test set mean).  
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Preface 
This report is written as part of the master thesis in the eighth semester of the online master 

Industrial IT and Automation program (IIA) at the University of Southeast Norway (USN).  

The work performed during this thesis is part of a collaboration between USN and the external 

partner Yodiwo. Yodiwo is a company helping customers optimize a variety of tasks within 

the domain of building and space management by utilizing IoT, AI and other digital tools. In 

this thesis, the Yodiwo branch located in Athens has been the contributor of data and 

knowledge.  

For the performance and support during this thesis I would like to thank Yodiwo and in 

particular Anthoula for providing knowledge, guidance, and constant support during the work. 

I would also like to direct a special thanks to Carlos for his support and expertise in the field 

of modelling and engineering work. 

This project relies on implementations in Python, and depends on important libraries such as 

XGBoost, TensorFlow and Keras in particular. Plots in the results part are all created with 

Python. All other figures and illustrations are created by the author with the help of Microsoft 

Office tools.  

Fundamental knowledge in the fields of machine learning, model development, programming 

and general thermal dynamics will help the interested readers enjoy this report. The work 

performed during this thesis could be useful for other peers in the field of data analysis and 

machine learning community, or people interested in energy usage in buildings in general.  

Full source code developed during the thesis can be accessed through these links: Data import, 

Data analysis, XGBoost model, LSTM model. 
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Abbreviations 
ANN – Artificial Neural Network 

NN – Neural Network 

ML – Machine Learning 

AI – Artificial Intelligence  

SVM – Support Vector Machine  

LSTM – Long Short-Term Memory  

GRU – Gradient Recurrent Unit  

HVAC – Heating, Ventilation and Air Conditioning 

CSV – Comma-Separated Values file  

JSON – JavaScript Object Notation  

UTC – Coordinated Universal Time (Universal Time Coordinated)  
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1 Introduction  
This introduction chapter discloses the purpose and goal of the project in the contexts with 

some of the background information, alongside an introduction to energy and thermal models 

in general. At the end of the chapter, there is also information about the report structure. 

1.1 Background information  

If the world shall reach the goal of limiting global warming and climate change by reducing 

the total emission of greenhouse gasses in accordance with the Paris climate agreement, every 

sector must contribute. Buildings consume nearly 40% of the overall energy worldwide and 

are thus responsible for the corresponding carbon footprint [1]. It is estimated that this portion 

is larger than both the industry sector (about 32% of total) and the transport sector (about 28% 

of total) [2]. It is even estimated that the energy demand in buildings will increase mainly 

because of population growth, increased number of buildings and amount of floor space. All 

of which underlines the importance of good energy efficiency in the building sector.  

Of the total energy consumed by the building sector, a study from 2018 shows that operation 

of residential buildings accounts for about 61% and operation of non-residential buildings 

accounts for about 22% of the energy consumed in buildings. The remaining is connected to 

the building construction industry (17%) [2].  

Methods for energy prediction, energy models, have in general two purposes in a building: 

design or optimization (of for instance the HVAC system) before and during construction, and 

calculating savings for retrofitting strategies or enabling model predictive control in existing 

buildings [2]. Demand forecasting and decomposition of energy consumption patterns can help 

identify the major objectives for energy conservation. Furthermore, sufficient energy 

predictions can help building managers shift energy consumption to off-peak periods, make 

more efficient energy purchase plans, form energy storage, and utilize energy buffers, that in 

sum can help reduce the total energy consumption, increase the usage of energy from renewable 

sources, and reduce the costs of energy [3]. Models for energy prediction could also help detect 

abnormalities inside the building, which in turn can reduce the response time for managing the 

cause. 

The time people spend in an indoor space is today about 90%, making the indoor environmental 

quality (IEQ) an important parameter of the quality of life for the occupants [4]. Energy 

conservation, which can lead to good energy efficiency without sacrificing comfort levels, does 

then particularly mean identifying areas of wasteful energy usage and then taking actions to 

reduce this surplus [1].  

Models for energy predictions can serve different purposes depending on the area of need, and 

not only on a building specific level. Governments or city planners can for instance also benefit 

from using energy models for high level predictions like the future energy demand in cities or 

different districts, power grid requirement and free capacity simulations, and much more.  

Globally, heating is a larger energy consumer compared to cooling today, but some research 

would suggest that global warming and climate changes will transition the energy usage from 

heating to more cooling in the future, making both the pattern and geographical location for 

consumption change over time. 
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1.2 Energy and Thermal Models  

There has been an increasing interest in developing models for energy consumption and 

thermal behavior for buildings for the last decades. These models can usually be divided into 

three main categories: white, grey, and black box models (according to [5] and [2]). 

1.2.1 White box model 

White box models are based on mechanistic models that require calibration of the physical 

parameters based on building specific material knowledge. One key advantage for this type is 

that models can be created without the use of recorded building data, which again uncover one 

of the challenges of estimating correct parameters for the model. The degree of complexity can 

vary in these models with one strategy being lumping parameters together. There exist several 

computer programs that utilize these kinds of models for energy simulation. 

1.2.2 Black box model 

Black box models represent the data-driven approach to modelling, whereas different recorded 

features are used as inputs to the model and the model is calibrated to predict the correct output. 

The black box models are therefore not reliant on a physical understanding or differential 

equations, but there is often not a straightforward way of understanding how the predictions 

work, hence the name “black box”. A machine learning model is a data-driven model type and 

will fall under this category.  

Lately, there has been a development in this field with algorithms that can help understand how 

these machine learning algorithm’s function. For instance, what features a neural network put 

emphasis on during image recognition. Which could make the workings of such algorithms a 

bit less of a “black box”. 

1.2.3 Grey box model  

Grey box models can be seen as sort of a combination of the white and black box approach 

where the models are typically mechanistic models, of the same structure as one can find in 

white box models, but the identification of model parameters are found using data.  

One popular example of a grey box model is the lumped capacitance model, where the 

distributed thermal mass of the building is “lumped” into a discrete number of capacitances. 

Inside the model, thermal resistors interconnect these thermal capacitors, making it a thermal 

network. Therefore lumped capacitance is often referred to as “thermal networks”, “resistor-

capacitor” or simply “RC networks”.  

1.2.4 Important parameters  

The total energy consumption in a building will depend on the equipment responsible for 

consuming energy, this can be any physical equipment, machinery, process, or a combination 

of these [1]. Figure 1-1 illustrates how some of the different energy consumers and other 

parameters can affect the total energy consumption of a building.  
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Figure 1-1: Important parameters in energy consumption 

A study from 2012 shows that the energy consumption in buildings can be divided into 

categories as shown in Figure 1-2 [1]. In this study, lighting is shown to be a substantial factor. 

It is reasonable to assume that this percentage would be reduced today due to the increased use 

of low energy lighting such as LEDs. 

 

Figure 1-2: Energy consumption in buildings [1]. 

How these percentage of energy consumption is divided for a specific building will differ 

depending on the usage of the building, geographical location and so on. Some of the general 

important parameters that influence energy consumption is [1]: 

• Climate related 

o Solar radiation 

o Air temperature 

o Wind characteristics  

o Sky or cloud conditions 



 1 Introduction 

10 

o Building location  

• Building or usage  

o Room air temperature 

o Thermos-physical properties of construction elements  

o Internal heat gains 

o Ventilation rate 

A report from Enova (governmental energy advisor organization in Norway) states that the 

percentage of energy consumption in Norwegian buildings due to outdoor temperatures will 

greatly depend on the building type (residential, office, school…) but even more important is 

the building standard used during construction. As an example, for an office building built in 

the 1950’s as much as 55% of the energy consumption is due to outdoor temperature 

conditions, compared with only 20% for a building built in the late 2010’s [6]. This shows that 

the particular variable importance, with respect to energy consumption in buildings, will 

probably be building specific. This report from Enova refers to Norwegian building standards 

and climate conditions where cold temperatures and heating of buildings are important, but it 

is assumed that the same can also be true for a warmer climate where cooling is more relevant. 

1.2.5 Related work 

There exists a lot of research in the field, and many have earlier successfully created models 

within the gray box domain. Since the grey box models are only partly data-driven, recent 

reports then often compare the use of grey box models to complete data-driven models (black 

box models). The model types that are commonly used for the black box approach are then 

ANN, SVM and ARX type, like in [7] and [2]. Here, they concluded with the ANN model type 

giving the best predictions. 

1.3 Project objectives 

The project’s objective is to identify important parameters related to energy consumption in 

buildings and make machine learning models that can predict the future energy consumption 

in a building. Compare the result from different machine learning modelling techniques, and 

also compare it to a simpler modelling technique. This project will focus on making energy 

prediction models for commercial buildings. The full task description for this master thesis can 

be found in Appendix A. 

1.4 Report structure  

This report follows the IMRaD (Introduction, Method, Results and Discussion) format. The 

methods chapter begins with a theory overview of machine learning, with emphasis on the 

methods used during this project. Then describes how the raw data is managed, prepared, and 

further analyzed, before lastly describing the models and implementation of models. The 

results chapters will present the data analysis and modelling results, and finally the discussion 

and conclusion chapter will discuss and comment on the overall findings during the project. 
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2 Methodology   
This chapter starts with a description of some of the background theory for machine learning, 

with a particular focus on the modelling techniques used in this project, and how machine 

learning relates to artificial intelligence. Additionally, some information about implementation 

and the main libraries used during code implementation. The chapter continues by describing 

the specific methodology used during the project work and model development. The overall 

project development can be broken down into three steps, first importing and pre-processing 

of raw data, secondly data analysis to transform data into information by identification of key 

features within the data and features engineering, lastly the development of different machine 

learning models based on the features identified during data analysis. 

2.1 Artificial Intelligence and Machine Learning 

This subchapter will introduce Artificial Intelligence (AI) and Machine Learning (ML) in 

general, how they relate, and some of the terminology used in this context. In addition, some 

of the theory behind the specific ML methods used in this project.  

First of all, what is artificial intelligence? Artificial intelligence can be described as “The effort 

to automate intellectual tasks that are normally performed by humans” [8]. This means that 

AI includes a broad field, which may not include any learning at all. Consider the early chess 

programs in the 1980’s, these were strictly rules-based reasoning programs hardcoded by 

skilled programmers. This approach is now known as symbolic AI.  

Machine learning is a subfield of AI, so you could say that machine learning is AI. Machine 

learning is different compared to symbolic AI, as this method is not dependent on human 

programmers to write down specific rules – a computer program, in order to turn inputs into 

suitable outputs or responses. Machine learning rather turns this process on its head and turns 

inputs and outputs into rules, so ML is a process of training rather than programming. In a way 

ML is just mathematics which can especially relate to statistical mathematics. But unlike 

classical statistical analysis, ML tends to manage very large datasets and is a field mostly driven 

by empirical findings which is greatly reliant on improvements in hardware and software [8].  

Training a machine learning algorithm is usually performed by repeated exposure to a series 

of examples. Where the ML algorithm is given one or several inputs and the model’s current 

output is compared to the expected output (known output) to see how well the algorithm is 

performing. The result from this comparison is then used in a feedback loop to adjust and 

enhance the algorithm’s predictions through a process referred to as learning. So, through 

repeated exposure to known input and outputs the machine learning algorithm learns to 

transform inputs into meaningful outputs. The core of machine learning is therefore this process 

of transforming inputs into meaningful representations of the data that gets us closer to the 

expected output [8]. The finished product of machine learning is then a model, a model found 

(or learned) out of data through a process of training [9]. 

This brings us to one of the core challenges with machine learning, the training data. No 

machine learning method can produce a good model or desired goal without adequate, unbiased 

data that accurately reflect the process which it is to model. The process of getting the model 

to produce consistent predictions on all data, is called generalization [9]. In addition to using 
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incorrect training data, another problem that can disturb the model’s generalization capabilities 

is called overfitting. Overfitting is when the model is overly adapted to the training data, 

meaning that in addition to learning the process dynamics also learn noise and outliers in the 

training data and hence lose some of the generalization capabilities. This would often result in 

good prediction results on training data but poor predictions for general data [9]. The opposite 

of overfitting is underfitting. Underfitting can take place when the model is not adequately 

trained and has not yet sufficiently “learned” all the dynamics of the process. This would 

normally give poor predictions results on both the training and general data. 

In the world of machine learning, there are two basic approaches: supervised and unsupervised 

learning. Supervised learning applies labeled data to learn “known” outcomes, whereas 

unsupervised does not use pre-labeled data but rather finds patterns within the data [10]. There 

also exists semi-supervised which is a combination of the two, and reinforced learning [9]. 

 

Figure 2-1: Classification and regression problem principal [9]. 

One can typically divide supervised machine learning problems into two main tasks, 

classification, and regression problems. In a classification problem, the task is to divide data 

into compartments (or classes) and then assign the correct class label [11]. Examples of 

classification problems can be image classification where the goal is to classify if an image 

contains a “cat” or “dog”, identify if an email is “spam” or “not spam”, or it can be to classify 

if a person can be “trusted” or “not trusted”. Whereas the classification problem predicts 

discrete class labels, the task in a regression problem is to predict a continuous value based on 

the input variables. Figure 2-1 illustrates the difference between the two problem types.  

 

Figure 2-2: Comparison of classification and regression task [11]. 

An example of the difference between classification and regression is given in Figure 2-2, 

where the classification part is to classify temperatures into either “hot” or “cold”, whereas the 

regression problem is to determine the temperature as a numerical value.  

Inside the domain of machine learning, there are many different techniques. While many of 

these techniques are fairly old, the field of machine learning, and especially deep learning, has 
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only gained attention in the last decade due to the many remarkable achievements particularly 

in the fields of speech and image recognition. As machine learning is guided by experimental 

findings rather than solved theoretically with a pen and paper, it can be viewed as more as an 

“engineering science”. Most of these recent achievements are due to increasing processing 

powers (hardware), datasets availability and the boost in investments in the field [8]. Figure 

2-3 shows how AI, ML and some of the ML techniques relate.  

 

Figure 2-3: Relationship of artificial intelligence, machine learning and some ML techniques.  

2.1.1 Timeseries and Machine Learning 

The term timeseries is used for a sequence of sample values indexed in a timely order, often 

with an equal time interval between making it a sequence of discrete values. A timeseries could 

thus be any data obtained through measurements on regular time intervals, like the outside 

temperature, price of a stock, or energy meter value. The most common task when it comes to 

timeseries and machine learning, is forecasting – predicting what’s happening next in the 

timeseries [12]. 

Timeseries forecasting is a bit different compared to other machine learning tasks as it is 

important to know the dynamics of the system, understand the trend, seasonal, cyclical, and 

random variations in the system. It is also important to identify some patterns or features that 

are related to the outcome in order to make any successful forecasting, and it would for instance 

be impossible to make a good forecast on a random signal. 

2.1.2 Training a Machine Learning algorithm  

Before training begins, the complete dataset is normally divided into training, validation, and 

test sets. The training set is used for training the model, the validation set is used for tracking 

the training progress, and the test set is only used after training to test the model or compare to 

different models before production. When working with timeseries forecasting it is also 

important that the validation and test set is more recent than the training set, as we try to predict 

the future given the past and not the other way around. 

It is normal to use the same training data several times during one training session as the 

learning method is iterative and gradually improves the model’s performance. The term epoch 

is used to describe how many iterations the complete training set has been shown to the model, 
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where one epoch refers to one iteration. For a training session, the number of epochs is normally 

specified in advance. Early stopping is referred to as when the training is stopped before 

reaching this specified maximum number of epochs (hence the name “early stopping”) due to 

deficiency in learning rate for the validation set. Early stopping is used as a tool to prevent 

overfitting. Figure 2-4 illustrates how the number of epochs will typically impact the learning 

and prediction error for the training and validation set.  

 

Figure 2-4: How number of epochs typically affect ML training.  

The tunable parameters that define the model structure and those used to control the learning 

process are called hyperparameters. There is no single perfect set of hyperparameters that will 

work for every model, so identifying these hyperparameters can be the real work of tuning the 

ML model. 

2.2 Neural Network - NN 

Neural network is a type of machine learning algorithm. The structure of a neural network 

(NN), or more precisely an artificial neural network (ANN) in this case, is inspired by the 

working principle of the human brain where many biological neurons are interconnected in a 

large network to process inputs and extract information [9]. The artificial neural network is, 

like the name suggests, a network of neurons with one of the core components being the 

artificial neuron or node as they are called with regards to ANN.  

 

Figure 2-5: Working principle of a node in an neural network [12]. 
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A node is actually a mathematical function where it takes inputs (x), weights them individually 

(w), sums them up and adds a bias factor (b) to calculate a net sum. This net sum (net) is then 

passed through an activation function (f(.)) to produce the node’s output (y). The calculation of 

the net value is shown in equation (2.1) and (2.2). See Figure 2-5 for illustration of node 

working principle.  

 𝑛𝑒𝑡 =  ∑(𝑤𝑖

𝑛

𝑖=1

∙ 𝑥𝑖) + 𝑏 (2.1) 

Can also be written as: 

Where: 

𝑣 = 𝑤 ∙ 𝑥 + 𝑏 

 

𝑤 = [𝑤1 ⋯ 𝑤𝑛] 

 𝑥 = [

𝑥1

⋮
𝑥𝑛

] 

 

(2.2) 

There are severe types of activation functions like the linear, step, ramp, tan-sigmoid, sigmoid, 

ReLU [12], examples shown in Figure 2-6. 

 

Figure 2-6: Examples of different activation functions. 

Nodes are usually organized in layers where nodes are connected to form a neural network. In 

this layered structure, information enters at the input layer, passes through the hidden layers, 

and exits at the output layer. During this process the information is processed layer by layer, 

where all nodes in a layer receive information, process it, and create the output simultaneously 

[9], see illustration in Figure 2-7. 
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Figure 2-7: Multi-layer perceptron network [12]. 

The structure, the number of nodes in each layer, and the way they are connected will depend 

on the task at hand. Networks with a single hidden layer are called vanilla neural networks or 

shallow networks. When more hidden layers are added (at least two hidden layers), it becomes 

a deep neural network. If all nodes in the previous layer are connected to every node in the 

next, we call it a fully connected network. This fully connected feed forward architecture is the 

standard architecture and most used for simple applications, where feed forward networks only 

consider forward connectivity [13].  See Figure 2-8 for an illustration of the general structure. 

 

Figure 2-8: General structure of multi-layer fully connected neural network. 

Adding more nodes or layers can increase the network complexity capabilities, but also 

increase the computational load of training in addition to the risk of overfitting. 

2.2.1 Training the neural network 

During neural network training a loss function, sometimes also called objective function or cost 

function, takes the network’s output, compare it to the true output and computes a distance 
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score [8]. This score is then used in a feedback loop to adjust the network’s weights in a way 

that tries to minimize this score. Two of the main types of such cost functions are sum of 

squared error and cross entropy function [9].  

 

Figure 2-9: Flow chart of the NN training process [8].   

This process of adjusting the weights and biases based on the loss score is the job of the 

optimizer, which applies what is called the backpropagation algorithm. There exist several 

different optimizer algorithms, such as: Stochastic Gradient Descent (SGD), batch, mini-batch, 

Adagrad, RMSProp, AdaMax, Adam. Which optimizer to use depends on the task as all have 

their strengths and weaknesses [8]. Figure 2-9 shows a flow chart of a neural network training 

process. The optimizers will adjust the weights and biases so that the loss score is minimized, 

and hence the prediction error of the model will improve. One tool the optimizers can use is to 

follow the gradient descent (imagine a ball rolling downhill as shown in Figure 2-10). One 

potential problem is then to get stuck in local minimum points. To help solve this local 

minimum problem the concepts of momentum and velocity are utilized by some optimizers, as 

where the ball has large momentum, it can help roll over the local minimums and continue to 

reach the global minimum point. 
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Figure 2-10: Concept of gradient descent 

Learning rate is a measure of how quickly the model should learn during training, or more 

precisely how much the weights should be adjusted each time. A too large learning rate will 

adjust the weights too aggressively and will in many cases struggle with finding the actual 

minimum point. Therefore, it can be sensible with a too small learning rate rather than too 

large, but it varies. Figure 2-11 shows an illustration of how different learning rates can affect 

the learning process. There can be a tradeoff between the computational load and training time 

as a lower learning rate must be compensated for with a higher number of epochs. 

 

Figure 2-11: Illustration of learning rate. 

As earlier mentioned for ML in general, the tunable parameters that define the model structure 

and those used to control the learning process are called hyperparameters. With regards to 

neural networks, the number of layers, number of nodes in each layer, optimizer and learning 

rate are all examples of hyperparameters. 

2.2.2 Recurrent Neural Network (RNN) 

Recurrent Neural Network (RNN) is a type of neural network with capabilities to “remember” 

past states or inputs, which makes it good when processing sequential data like in timeseries 

forecasting, speech recognition, or other tasks where earlier inputs will influence the future. In 

contrast to the traditional feed forward architecture, where incoming data travels in a single 

direction from input to output, the RNN structure includes feedback loops to preserve previous 

information [14]. Consider a piece of a RNN, A, which has some input x and some output h as 
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shown in Figure 2-12. By including the feedback loop, this allows for information to be passed 

from one step to another. 

 

Figure 2-12: Recurrent neural network, feedback loop 

This loop structure makes it possible to think of the recurrent neural network like the normal 

neural network structure if we “unroll” the loop in time [15], see Figure 2-13. Since the RNN 

has a loop structure, all the modules in the chain share the same parameters across each layer 

[16].  

 

Figure 2-13: An unrolled recurrent neural network [15]. 

If we unroll the RNN it takes forms as a chain of repeated module structures. In the general 

RNN structure as discussed here, these repeated modules will usually be quite simple and 

contain a single tanh layer, see illustration in Figure 2-14.  

 

Figure 2-14: Repeated module structure in chain for general RNN [15]. 

A frequent problem when training RNN is the exploding or vanishing gradient. When the 

gradient is too small, it continues to get smaller, and updating the weights will finally set it to 

an insignificant value which effectively makes the network stop learning. Exploding gradient 

is the opposite, when the gradient is too large, the network becomes unstable. One solution to 

vanishing and exploding gradient, can be reducing the number of hidden layers in the model 

and thus reducing the complexity [17].  
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The appealing idea of the RNN is that it is in theory able to link previous information to the 

present task, but in practice this is only partly true as it can be useful if the time frame is narrow, 

meaning the information is not too far into the past, unfortunately many real life situations 

require a longer “memory”. This is where another special type of RNN comes in, that is the 

Long Short Term Memory network (LSTM) [15].  

2.2.3 Long Short-term memory (LSTM)  

As introduced in the previous subchapter, LSTM is a special type of RNN but in addition to 

the short term memory capabilities of the general RNN, the LSTM also has the ability for a 

longer “memory”, hence the name long short term memory. The structure of the LSTM is like 

the general RNN structure, a chain of repeated modules, only with a different module content. 

In comparison to the ordinary RNN, LSTM  does not struggle as much with vanishing or 

exploding gradient. The general structure of the LSTM is shown in Figure 2-15. 

 

 

Figure 2-15: Repeated module structure of chain in LSTM [15]. 

The LSTM block contains four neural networks, in combination these networks have the ability 

to select what information to add or remove from the cell state. This operation is managed by 

three gates which in turn controls how much information should be forgotten (forget gate), 

added (input gate) and outputted (output gate) from the cell state. Where the cell state ct is the 

previously mentioned “memory” of the LSTM network. Gates are put together out of a sigmoid 

neural network and a pointwise multiplicator as shown in Figure 2-16. The sigmoid network 

layer will produce a value between zero and one, describing how much information to let 

through the gate. Also see detailed illustration of LSTM block in Figure 2-17. 

 

Figure 2-16: Structure of a LSTM gate 

The decision of how much of the cell state information should be kept or forgotten is based on 

the previous output ht-1 and current input xt and is controlled by a sigmoid neural network called 

the forget gate layer. This sigmoid network produces a value between zero and one and will 

output one in order of keeping all cell memory and zero for forgetting cell memory.  
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Figure 2-17: Detailed view of traditional LSTM block. 

To control how much new information should be stored in the cell state, a combination of a 

sigmoid and a tanh neural network is used. The tanh network calculates potential candidate 

values to be added to the cell state from a combination of current input xt and previous output 

ht-1. Then the sigmoid net decides which of these candidate values calculated by the tanh net to 

be added to the cell state. 

Lastly the output is controlled by a multiplication of a tanh function and a sigmoid neural 

network and is a “filtered” version of the cell state. Where the sigmoid network decides what 

parts of the cell state to output based on the previous output ht-1 and current input xt. The tanh 

function takes the current cell state and compresses it to a value between -1 and 1. 

There also exist other variations of the LSTM cell, one of which is the Gradient Recurrent Unit 

(GRU), which is found to cost less computation and give comparable results. For more 

information about the LSTM network, variants, and the math behind, see [15].  

2.2.4 Deep learning  

Deep learning is a subfield of machine learning that usually employs deep neural networks (as 

earlier mentioned, neural networks with two or more hidden layers) [9]. Lately deep learning 

has become the hero of machine learning due to the many advancements, such as in image and 

speech recognition.  

Deep learning will typically have a higher probability for overfitting due to increased network 

complexity, but this tendency can be mitigated by using massive amounts of training data in 

addition to using dropout nodes while training and regularization.  

One potential showstopper for deep learning is the dramatic increase in computational load as 

the networks and the data amounts become larger. The use of GPUs and even TPUs for training 

can help reduce training times, but the elephant in the room is still the energy consumption 

related to the massive computational load both for training and running applications like the 

lately blooming ChatGPT [19]. 
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2.3 Decision Tree - DT 

A Decision Tree (DT) is another type of machine learning algorithm, where the structure is like 

a flowchart with a series of hierarchical questions. The decision tree begins with a root node 

(without any incoming branches) and depending on the choices follows through branches and 

leaf, in total organized as a tree. From the root node the branches go to internal nodes, also 

called decision nodes, before ending up in leaf nodes or terminal nodes. The internal nodes 

represent a test on an attribute, and the leaf nodes represent all the possible outcomes or 

predictions of the decision tree. The general DT structure is illustrated with a classification 

problem in Figure 2-18. 

 

Figure 2-18: Example of decision tree structure, like a flow chart. 

This simple structure makes the decision tree easy to interpret and visualize. Decision trees can 

be used both for classification and regression tasks. The process of training the decision tree is 

the process of identifying the ideal splitting points of the tree. This process is repeated until the 

majority of the training data is correctly classified. As the tree grows (by adding branches and 

nodes), data can be fragmented into too many sub trees which can easily make DT be overfitted. 

Therefore, to preserve its purity, decision trees should be kept as small as possible [18]. 

2.3.1 Random forest  

 

Figure 2-19: Working principle of random forest.  

Random forest is an assembly of multiple decision trees used to predict one single output. This 

ML technique is used to improve the prediction accuracy of single DT, this technique is 

especially effective when the individual trees are uncorrelated. One tool used to ensure that the 

trees stay uncorrelated, is to only use a selection of the features (not all) when training each 
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individual tree, or only use a selection of the training data for each tree [19]. The working 

concept of a random forest is illustrated in Figure 2-19. 

2.3.2 Boosting  

Bosting is the process of building one strong classifier based on a combination of many weak 

learners. Boosting is a method that can be used for improving any given machine learning 

algorithm. When boosting decision trees, the trees are trained in a sequential order in contrast 

to bagging where trees are trained in parallel (as for random forests training) [20]. 

Adaptive boosting (AdaBoost) is a technique that applies boosting [21]. In contrast to random 

forest which consists of several full-size trees, adaptive boosting usually just employs nodes 

with two leaves (also known as a stump). The adaptive boosting technique consists of: 

1. Start by making a simple model based on all the training data. 

2. Then the misplaced samples from this initial model are given extra weight (“boosted”) 

and used to train a new simple model 

3. Train a new model with the previously adaptively boosted samples. Then the misplaced 

samples from this model are given extra weight and used to train a new simple model. 

Each new tree will then focus on the prediction errors from the previous.   

4. Step 3 is repeated until the maximum number of trees is reached, or all samples are 

correctly classified.  

5. Use output from all trees for total prediction.  

2.3.3 Gradient boosting machines  

Gradient boosting is similar to the previously described adaptive boosting, but each tree is 

typically larger. One key feature is that the technique focuses on the residuals from the previous 

prediction and are therefore called a gradual learner. The gradient boosting regression tree 

consists of [22]:  

1. The first prediction (base prediction) is the mean target value for all training data.  

2. The second prediction will then focus on the residual error between the mean value 

(previous prediction) and the actual values.  

3. The next layer will then focus on the residuals for the previous layer and predict this. 

4. Step 3 continues to add more simple trees until the maximum number of estimators are 

reached, or the learning stops improving. 

5. Use output from all trees for total prediction.  

a. The models are also weighted to adjust how fast each model should contribute 

through the learning rate parameter.  

2.4 Python 

Kaggle is a website that, among many things, hosts popular competitions for machine learning 

algorithms worldwide. In addition to hosting competitions, Kaggle also runs a yearly survey 

among its machine learning community to identify which algorithms and libraries they use. 

The most popular libraries or frameworks in 2020 were Scikit-learn, TensorFlow, Keras and 

XGBoost. One thing all of these have in common is that they are all Python libraries. Today 
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Python is by far the most used language when it comes to data science and machine learning, 

possibly because of the vast number of libraries to use [8]. This subchapter will introduce some 

of the Python libraries utilized throughout this project. 

2.4.1 Google Colaboratory – Colab 

First of all, when coding you need a code editor. The Python editor used in this project is 

Google Colaboratory – Colab. The programming environment in Colab is like a Jupyter 

notebook where it is possible to combine text and script in blocks. Using Colab has several 

benefits, working documents can automatically be stored in the cloud, code can run on a server 

and not on the local machine meaning libraries are installed on the remote server and with 

potentially larger processing powers (can also utilize GPU and even TPU for training machine 

learning algorithms). 

2.4.2 TensorFlow and Keras 

TensorFlow is an open source, Python based, platform for developing machine learning 

projects, where its primary contributor is Google. The platform is designed to be a convenient 

way for engineers, researchers, and others to utilize neural networks and especially deep 

learning. The projects can run on normal CPUs, but also on GPUs and even TPUs (highly 

parallel hardware accelerators). TensorFlow programs can also be exported to run on other 

runtimes C++ and JavaScript (web browser applications) or by using TensorFlow Lite run on 

mobile or embedded devices [8].  

Keras is an API built on top of TensorFlow. Keras was originally made for research purposes 

for easy and fast experimentation with deep learning. Keras is made easily understandable for 

humans (not only machines), and therefore based on simple and easy-to-understand commands. 

The Keras library has over a million users today with many of the largest companies in the 

world on its users list [8]. In this project the Keras library is used to create and train various 

neural network models. Some of the important parameters of the network being: 

• Layers: Structure of layers, neurons in each layer, activation function 

• Optimizer: Adam…  

• Learning rate:  example 0.01 

• Loss function:  example: MAE 

2.4.3 XGBoost  

XGBoost (Extreme Gradient Boosting) is a popular library for implementing algorithms in the 

gradient boosting framework. The library is optimized to be efficient, portable, and flexible 

[23]. In this project the model “XGBRegressor” is used, with some of the most important 

parameters being [24]:  

• n_estimators: The number of trees in the assembly 

o normally increased until the predictions stopped improving.  

• max_dept: The maximum depth of each tree 

o Usually, a value between 1 and 10.  

• objective: The objective for the algorithm 
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o For regression problems typically “reg: linear” 

• learning-rate: The weight assigned to each model (tree) added. This means we can 

add more trees before the model overfits. In general, it is better to have more 

estimators with less weight on each.  

o Usually set to a small number 0.1, 0.01... (1 is maximum).  

• subsample: The number of samples used to train each tree. 

o Value between 0-1.  

• colsample_bytree: Number of features used in each tree. 

o Value between 0-1, 1 being all features.  

• early_stopping_rounds: Specify number of rounds with no improvements on 

validation set before stopping training. 

o Value of 5-10 is a reasonable number. 

2.4.4 Scikit-learn.  

Scikit-learn is an open-source ML library that supports multiple supervised and un-supervised 

learning algorithms, it also includes many useful tools used during machine learning projects. 

In this project mostly the supporting tools in this package are used, not the models. 

2.4.5 Pandas  

Pandas is an open-source library in Python, it is not directly a machine learning library, but it 

is typically used for preparation of data and data analysis in relation to ML. Some of the 

highlights are efficient tools for reading and writing to and from files of various formats (CSV, 

JSON...and more). The data can be handled in data frames, where data is displayed as a two-

dimensional table. The library contains tools such as indexing, sorting, filtering, splitting, 

merging of data frames, in addition to statistical calculations such as min, max, mean, standard 

deviation to name a few. This makes it a widely used library within many domains of handling 

data [25]. 

2.4.6 Matplotlib 

Matplotlib is one of the most popular libraries when it comes to data visualization. Much like 

Pandas, Matplotlib is not directly a machine learning library, but it is extensively used since it 

provides a large diversity of visualizations. The Seaborn library is also used as a supplement 

to Matplotlib for some of the visualization.  
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2.5 Data preparation  

This subchapter will present the methods used for handling raw data and the pre-processing 

performed before the data can be further analyzed and used in models. 

In this project, energy data recorded from two buildings located in Athens, Greece in the period 

from 2020-01-01 to 2022-12-31 (UTC) is used alongside weather data for Athens covering the 

same time period. The provided weather data for the project has the weather service “Open 

Weather Map” as its origin.  

Both buildings consist of several energy meters measuring the electrical energy consumption 

from various energy consumers inside the buildings, where the parameter “active energy” is 

the parameter used from these energy meters. This parameter is given as the total energy 

consumption (in kWh), which is an incremental value, normally over the whole energy meter’s 

lifetime. Table 2-1 and Table 2-2 shows an overview of energy meters in the two buildings. 

Except for the fact they are both commercial buildings, there is no additional information 

available about the buildings like: buildings usage type, occupancy level, building material, 

floor layout. The logical naming of each energy sensor is performed by the building owners 

and can be arbitrary. Figure 2-20 illustrates how energy meters and different energy consumers 

could typically be distributed within an example building. The total energy consumption for a 

building is then the combined energy consumption for all energy meters within that building - 

the sum of all energy meters.  

 

Figure 2-20: Illustration of energy meter distribution in an example building. 
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Table 2-1: Energy meter overview, building #1 

Logical Name Format 

(columns x rows) 

1st floor 2x100751 

Air-condition ventilation 

#Q7E 

2x100747 

UPS #02 2x100719 

UPS #01 2x100694 

Boilers #Q1.2 2x100682 

Field Switch Generator 

#01 

2x100675 

Field Switch Generator 

#02 

2x100661 

Chiller #01 Q2.1 Calliroe 

Street  

2x100646 

Chiller #02 Q2.1 Svggrou 

Street 

2x100634 

 

Table 2-2: Energy meter overview, building #2 

Logical Name Format 

(columns x rows) 

P2 Power Meter 2x285908 

PUCR2 Power Meter 2x286813 

PUCR New Power Meter 2x509450 

P1 Power Meter 2x286925 

PUCR3 Power Meter 2x286867 

PUCR1 Power Meter 2x269847 

PUCR Power Meter (16) 2x287191 

Chillers Data Center Power 

Meter (17) 

2x284424 

Triple Switch Power Meter 

(18) 

2x510069 

Chiller 1 Data Center Power 

Meter (21) 

2x510090 

Power Transformer 2 Power 

Meter (19) 

2x505201 

Power Transformer 1 Power 

Meter (20)  

2x509581 

Chiller_1 Power Meter (23) 2x734647 

Chiller _2 Power Meter (22) 2x761791 

Building Chillers Power Meter 

(24) 

2x509588 
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2.5.1 Raw data format 

The raw data provided is in a number of CSV- and JSON-files, and all of them must be read 

into Python for further processing. The energy data consists of several files, one file for each 

individual energy meter in a building. The general format of these energy data files can be seen 

in Table 2-3. 

The energy data files: 

• Building #1: includes data from 01.01.2020 to 31.12.2022. About one record per 15min.  

• Building #2: includes data from 10.01.2020 to 31.12.2022. Most files have about one 

record every 5 minutes, some files with one record every other minute. 

Table 2-3: General format of all energy data files 

Feature name Unit Sample format Description 

kWh kWh 2862855.75 Energy meter value, 

incremental value of total 

energy consumption  

Time Datetime.  2020-01-

01T00:04:59Z 

Timestamp for meter 

reading, in UTC time 

according to ISO 8601 1 

formatting. 

The raw weather data has a format of 20 x 29 341 columns and rows originally (empty columns 

are dropped during import). The data resolution is approximately one record per hour, but the 

time shifts during the dataset, meaning it is not the same minute for each hourly record hence 

not exactly one hour apart. The general format of the weather data can be seen in Table 2-4. 

  

 

1 ISO 8601 is an international standard covering exchange and communication of date and time-related data. The 

Z at the end of the time stamp indicates that the time has zero UTC offset [33].  
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Table 2-4: General format of weather data. 

Feature name Unit Sample Format Description 

Time (UTC) Datetime  1577836800000000000 Date timestamp of record in Unix 

time format2, nanoseconds 

Cloudiness_pct  % 20 Cloudiness in percentage 

Humidity % 59 Relative humidity 

Pressure  mbar 1022 Atmospheric pressure 

Sunrise_ts Datetime 1585800496 Datetime for sunrise current day in 

Unix time format, seconds 

Sunset_ts Datetime 1585846115 Datetime for sunset current day in 

Unix time format, seconds 

Temp_feels_like °C 5.18 Feels like temperature also known as 

apparent temperature. The perceived 

temperature equivalent for humans 

from combining the temperature, 

humidity, and wind speed [26]. 

Temp_min °C 7.22 Minimum temperature 

Temp_max °C 15.97 Maximum temperature 

Temperature °C 17.81 Air temperature   

Wind_deg deg 38 Wind direction in degrees  

Wind_speed m/s 2.21 Wind speed in wind direction  

2.5.2 Pre-processing and aggregation of data.  

The raw input data has different time formats, may contain duplicates or have missing records, 

and the sampling rate differs between the files. So, the raw data needs to be pre-processed and 

aggregated before it is ready to be further analyzed or used in any ML model. 

  

 

2 Unix (or Unix epoch) time format defines the number of seconds passed since January 1st, 1970, at UTC. A time 

format commonly used by computer systems [32]. 



 2 Methodology 

30 

General pre-processing pipeline from raw to transformed data: 

 

 

The raw data in form of CSV or JSON files are loaded into Python as a Pandas 

data frame. 

 

The time formats are transformed into one standard datetime format, time 

stamps given in UTC format. The formatted datetime column is then used as the 

index of the data frame. This makes it possible to sort the data with regards to 

time, identify and remove possible duplicates in the data. 

 

Empty columns, containing no data for all rows in that column, are discarded 

alongside columns containing non-numeric, static data, such as name, id and 

subid.  

 

The data is then aggregated to make a uniform data frame with one value for 

every time step with fixed time intervals. The time intervals used here are 

hourly (every whole hour), and days (at midnight). When performing the 

aggregation, data can either be shifted forwards or backwards. This makes a 

difference in how the data is labeled in time. Also, different aggregation rules 

apply depending on the nature of the input data.  

• For the weather data, data is grouped by the mean value for all samples 

in the time interval. 

• Since the value for energy data is an incremental value, it makes sense 

to use the maximum value for that time interval.  

 

When the data is aggregated with fixed time intervals, it’s easy to identify time 

slots with missing data values and select a suitable handling method.  
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As mentioned above in the general pre-processing overview, when performing aggregation 

data can either be shifted forwards or backwards. This makes a difference in how the data is 

labeled in time.  

• Shifting forwards can be viewed as the value for the previous time slot. Ex. 

Aggregated data labeled 12:00 will be the values in the time slot from 11:00-11:59. 

Example shown in Figure 2-21. 

• Shifting backwards can be viewed as the value for the coming time slot. Ex. 

Aggregated data labeled 12:00 will be the time slot from 12:00-12:59. Example 

shown in Figure 2-22. 

 

 

Figure 2-21: Aggregation of data, values shifted forwards. 

 

Figure 2-22: Aggregation of data, values shifted backwards. 

Data leakage points to the phenomenon where a model is trained on information outside the 

training data, information that is not known at that point in time. This can make the model 

perform well on training and validation sets but have reduced prediction accuracy in the real 

world as these features are not available. Using aggregation with shifting backward rule can 

be more intuitive to interpret, but it can also make a logical problem when modelling as for 

example at exactly 12:00 o’clock we cannot know the values that come in the future (12:00-

12:59). Aggregation with forward shifting values is therefore used in this project to avoid the 

possible data leakage. 

 

Figure 2-23:Linear interpolation for missing data, for one and several samples missing. 
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There are several options when it comes to handling missing values in the aggregated data. The 

simplest solution would be to do nothing or just drop the rows with missing samples. Another 

way is to use an interpolation method and substitute the missing values, one of which is linear 

interpolation illustrated in Figure 2-23. Some other options are: 

• Polynomial interpolation. 

• Insert mean. 

• Insert zero or other fixed value. 

• Forward or backward fill, copy previous or next sample value. 

• K-nearest neighbor (KNN). 

In this project, small gaps of missing data are substituted through linear interpolation. Bigger 

gaps (many days) of missing data are left unchanged as it is hard to substitute sensible values 

for these areas. 

2.5.3 Time stamps 

UTC (Universal Time Coordinated or Coordinated Universal Time) is the world’s primary 

standard for regulating clocks and time. UTC is a measure of mean solar time at longitude 0° 

with each day being 24 hours and is not adjusted for daylight saving time, 12 o’clock is when 

the sun is passing the prime meridian. UTC is an efficient replacement for the GTM (Greenwich 

Mean Time) [27]. 

For convenient reasons the earth is divided into time zones, where one time zone covers 

approximately 15 degrees longitude, but time zones tend to follow country borders and not 

strictly the longitude. All time zones are defined with an UTC offset, usually a whole number 

of hours, ranging from -12 to +14 hours [28]. For instance, Norway is in time zone UTC+1 and 

Greece is in time zone UTC+2. Each time zone then uses this UTC time with offset as the local 

time, so that the sun is at the highest point in this time zone around noon local time.  

Many of the countries with higher latitude (the northern countries, but also some of the 

southern), practice daylight savings time (DST). Daylight savings time shifts the local time 

(most commonly with one hour) during the warmer months so that darkness comes at a later 

point in time [29]. For instance, Norway will use UTC+2 instead of UTC+1 and Greece will 

use UTC+3 instead of UTC+2 during summertime. In the EU, DST begins the last Sunday of 

March and ends the last Sunday in October at 1:00 UTC time.  

All the input data used in this project is marked with a time stamp in UTC+0, this makes it easy 

to compare data from various sources. One thing to consider is that the local time is changed 

due to DST, which can also result in a one-hour shift in energy usage pattern during 

summertime.  

2.6 Feature Engineering  

In order to help the models perform better, new features can be created from existing data in a 

process known as feature engineering. The core of feature engineering is simply making the 

data better suited for the task at hand, and consequently adding more value to the data. One 

example of feature engineering could be the creation of apparent temperature (“felt like 

temperature”) by combining the values of temperature, humidity, and wind speed [27]. Using 
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Fourier transformation for picking up frequency components in the data can be another 

example, which is also a common feature engineering approach wherever this is appropriate 

[12]. The actual usefulness of a feature will depend on the model, the only useful features are 

the ones that the model can learn. Sometimes a feature only adds value when in combination 

with others. 

2.6.1 Weather data  

As mentioned in the pre-processing and aggregation section (2.5.2), the aggregation rule 

applied to numerical weather data is the mean value for the aggregation period. But the raw 

weather dataset also contains datetime values for sunset and sunrise. When aggregated for days, 

a numerical value for the number of hours with sunlight in that day is calculated based on these 

two values and added as a new column (Daylight). When aggregated for hours these values are 

discarded. 

2.6.2 Energy consumption  

The energy data is provided as an energy meter value, and this value does not give us much 

information on its own as this is only an incremental value for the total energy consumption 

during the energy meter’s lifetime. The value we are interested in is the energy consumption 

for that specific time period (per hour or day). In order to find the energy consumption for this 

specific time period, the differential value between two time steps is calculated (as shown in 

Figure 2-24). 

 

Figure 2-24: Differential value for one time slot 

Therefore, a new column representing this differential value is created in all the aggregated 

energy datasets (one for each energy meter). This differential value is then calculated by taking 

the current meter value and subtracting the previous. Figure 2-25 shows an example of how 

this calculation is performed.  
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Figure 2-25: Example of how energy consumption is calculated and stored in a new column (MeterDiff). 

To get the total energy consumption within one building, the calculated energy consumption 

from all energy meters (MeterDiff) in that building is summarized into one parameter named 

SumDiff.  

2.6.3 Time Features 

For adding timely information, new time related features are created based on the timestamp 

of each sample. The features created from timestamp are:  

• Hour of day (0-23) 

• Weekday/day of week (0-6)  

• Week number (1-53) 

• Month (1-12) 

• Day of month (1-31) 

• Quarter (1-4) 

• Year  

• Day of year (1-366) 

By doing so, samples can then easily be grouped on various time features during analysis or 

visualization. The models can also benefit from this information as this can help extract timely 

information from the data. One thing to consider here is whether these timely features, and 

particularly hour of day, should be extracted from UTC or local time.  

Unlike other numerical values (like temperature) these created timely features are more of a 

categorical variable, as the magnitude of the value has nothing to do with the variable 

magnitude. Example: Either it is Monday, or it is not (1 or 0). One option could therefore be to 

transform these variables with one-hot encoding which usually yields better performance for 

some model types. The one-hot encoding of time features:   

• IsWeekend (Mon-Fri = 0 and Sat-Sun = 1) 

• IsWorkHour (8 <= hour <= 20 then 1, else 0) 

• IsMonday, IsTuesday, IsWednesday, IsThursday, IsFriday, IsSaturday and IsSunday 

(true or false, depending on the day of week). 
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2.6.4 Lag Features  

For utilizing the energy data several lag features can be created. Lag addresses the point that 

these events are “lagging” behind the current event in time, they happened in the past, as 

opposed to a lead feature which would be into the future, “leading” in time. How to select what 

lag features to create will depend on cycles and seasonality in the data. It is reasonable to 

believe that energy consumption data will be in daily, weekly, and yearly cycles.  

Longer lag features created are: 

• Lag1: 364 days  

o Practically one year back (365 days), but gets the same day of week by using 

52 weeks back (52*7=364) 

• Lag2: 728 days 

• Lag3: 1092 days 

Shorter lag features are: 

• slag1: 1 days  

• slag7: 7 days  

• slag14: 14 days 

• slag21: 21 days 

These lag features can be used as inputs to help the model by supplying the energy consumption 

for the same time slot some time step earlier. How far into the past this time step should be will 

depend on how far the prediction horizon of the model needs to be, as this will limit the 

maximum prediction horizon. For example if the model’s prediction horizon is seven days, the 

shortest possible lag factor used must be the same (seven days back). Using slag1 in this case 

would create a violation on prediction for the second day, as this information is not known. It 

is therefore important when using the lag features as model inputs to take particular care to 

avoid such information violations. 

2.7 Data Analysis  

For several reasons (like reduced training time and risk for overfitting) it is desirable to keep 

the models as simple as possible. It is therefore desirable to identify correlation between 

variables, identify if they contain duplicate information, and in turn uncover the variables that 

are influencing the model’s target value the most. As a result, the model can use only the inputs 

adding substantial value and the others providing mostly noise be discarded.  

The aggregated data is therefore inspected and analyzed to get a basic understanding of the 

data content and system dynamics. Several plots are created for visual inspection and simple 

calculations like correlation and autocorrelation are used as tools for identifying the important 

variables. 

2.7.1 Trend 

The underlying trend for the data is calculated as the simple 365-days moving average (SMA). 

For the first year (day 1-365) the trend is set equal to this period’s mean value as this year must 
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be used to initialize the SMA (horizontal trend first year). The first year then sets a baseline 

value and a trend factor can be calculated by dividing the SMA output on the baseline value. 

2.8 Modelling  

The objective for all models in this thesis is to forecast energy consumption in a building some 

time step into the future. Since the target of the models is a numerical value, this makes it a 

regression problem.  

There are several methods for setting up the model structure, this thesis will focus on two 

different approaches, with and without the use of sequences of input data. Figure 2-26 

illustrates the difference between the two approaches. Where the one to the left uses inputs in 

the form of a sequence to forecast the energy consumption some amount of time into the future. 

The length of the sequence (number of time steps back) and the number of variables used can 

vary, in addition to the prediction horizon (time steps k into future). With this approach it is 

typical that the target variable (output) is also used as an input variable as the model tries to 

forecast the next value in this sequence. 

 

Figure 2-26: Different model prediction approaches. 

The other approach (to the right in figure) does not use an input sequence, but rather simple, 

static inputs. As opposed to the previous approach, it is not common to also use the target 

variable as an input in this approach, as this model tries to predict this missing value. The 

example in the figure predicts the target value at the same time slot as the input variables, but 

it could also have been some other time slot into the future. Based on the inputs the model will 

try to predict the corresponding output, time is not important in this approach. 

It can be reasonable to believe that a sequence of input data is more important if the prediction 

horizon is short, as the sequence can then carry relevant information from the near past 

(example: for predicting the energy consumption for the next day, the pattern from the previous 

seven days can be important). But as the prediction horizon gets larger (week or even month), 

the gap between the data available and the target value becomes larger and thus increasingly 

uncorrelated, and a model with static inputs can be just as good as using an input sequence. 

Is this project two types of ML models are considered, extreme gradient boosting and neural 

networks (LSTM), as these are lately one of the most used algorithms for a wide selection of 
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problems. Both methods are described in more detail in the following section. The variables 

used as inputs and the general structure of the models will depend on the findings from the data 

analysis. In any case, it is normal to start with a simple model structure and only add complexity 

if it improves the predictions in order to avoid unnecessary complex models. 

2.8.1 Extreme gradient boosting  

Since decision trees or gradient boosting machines are not capable of handling sequences of 

inputs, the second approach with simple, static inputs is used for this model type. The library 

XGBoost is used for implementing these models in Python. 

The model’s maximum prediction horizon will depend on the inputs used to the model. For 

instance, if only timely features are used as an input (quarter, month, day of week…etc.), the 

prediction horizon is infinite as we can produce these inputs for the infinite future. But if we 

also include features such as lag or weather features into the model input, the prediction horizon 

will be limited by the extent of how long into the future these variables are known.  

To prevent overfitting and keep the model as simple as possible, it is best to start with a simple 

model (few, shallow trees with few inputs) and keep adding complexity until the validation set 

stops improving. The parameter for early stopping is also used during all model training as a 

tool to help against overfitting, so that the training stops when the validation set stops 

improving for the given number of steps. 

2.8.2 LSTM 

LSTM is the neural network type selected in this project because of the ability to handle 

sequences of timeseries as input data. LSTM networks are implemented in Python by using the 

TensorFlow and Keras libraries. When working with LSTM network and timeseries data, the 

data first needs to be in a format the neural network can understand. So, the timeseries data is 

divided into small input sequences and the corresponding target sequence in a sliding window 

style. Figure 2-27 shows how one such input and corresponding labeled target sequence is 

organized. 

 

Figure 2-27: Input and labeled target sequence to LSTM. 

These small sequences of input and target values are then stacked into a batch. Figure 2-28 

illustrates one example of this batching principle for one timeseries, where a 3-sample input 

sequence and the corresponding target with two samples ahead (offset one) is displayed.  
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Figure 2-28: Example of batching timeseries data for training the LSTM network.  

It is not unusual to have more than one input to the LSTM network, Figure 2-29 shows how 

this same batching principle will work for multiple inputs and one output. These kinds of data 

structures are known as tensors in TensorFlow and Keras. 

 

Figure 2-29: Concept of batching timeseries data (rank-2 and rank-3 tensors). 

When dividing the data into training, validation and test set the focus in this case will be on the 

target values. Example: the corresponding input sequence to the first target value in the test set 

will be indexed in the validation set. Figure 2-30 shows an example of how this will affect the 

indexing of input and outputs for the training, validation, and test set where an input sequence 

width of seven, the offset is zero and target width is one.  

 

Figure 2-30: Example of indexing of training, validation, and test set. Starting index for input and output 

matrices.  

Since the LSTM models are initialized with random weights, the model training result can be 

different each time. Accordingly, it can be beneficial to use several training rounds per 

hyperparameter setting in order to test them appropriately. Since it can be hard to exactly 

replicate a model’s training outcome, it can be convenient to save good performing models for 

later import and reuse. 
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2.8.3 Validation of models 

MAE (Mean Absolute Error) and RMSE (Root Mean Squared Error) are two metric measures 

used for validating the model performance. Here, the MAE value is used to determine the best 

performing models. Cross validation could be used, crucial when there is little data. Cross 

validation is not as important when having a sufficient amount of data, as in this project. 

2.8.4 Data standardization   

Some model types, like neural networks, are particularly sensitive to the different scales and 

variances that naturally come with different variables and units. In order for every variable to 

have the same potential impact effect on the model, it is normal to standardize variables to 

mean and variance. One common way is to center to mean and scale to standard deviations 

from mean, also known as z-score standardization. Equation (2.3 shows the formula for z-score 

standardization.  

𝑧𝑠𝑐𝑎𝑙𝑒𝑑 =  
𝑥 − �̅�

𝜎𝑥
 (2.3) 

Another way can be to scale to feature range, then features are scaled to lie between a minimum 

and maximum value (ex: 0 and 1). This can be achieved by max-min scaling.  

2.8.5 One-hot encoding 

Neural networks can be more sensitive to categorical inputs compared to decision trees. Then 

instead of using the variable DayOfWeek as input, it can then make more sense to use some of 

the variables IsMonday, IsTuesday and so on. Principle of one-hot encoding is described in 

chapter for time feature engineering (chap. 2.6.3). 

2.8.6 Outlier handling  

An outlier is a sample that deviates significantly from other observations in the same dataset. 

Outliers are introduced from several causes, in this particular dataset there could for instance 

be errors with a sensor, equipment failure, grid power fails, data processing error and so on. 

But there could also be abnormalities in the building, something that went wrong, someone 

opened a window and so on. Before the model training can begin, it is important to handle 

outliers in the training data so that the models do not try to also learn these outliers. How to 

correctly handle the outliers can depend on the reasons behind the outlier, but this is normally 

unknown. The simplest way to handle an outlier can be to just remove the values including 

outliers, other times this may not be appropriate, then substituting the outlier value for another 

value can be a choice (same principle as for substituting other missing data). There are several 

known methods for identifying outliers or abnormalities. Four of which are: 

- Statistical methods like Interquartile Range (IQR) and standard deviation. 

- Hampel filter [30]. 

- STL (Seasonal-Trend decomposition using Loess) 

- Automatic outlier detection methods: isolation forest, one class SVM, elliptic envelope 

and local outlier factors.  
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3 Data analysis results  
This chapter presents the result of data pre-processing and analysis of the data performed in 

Python. The result of the pre-processing data pipeline is several data frames:  

• Weather data 

o One aggregated for hours and one for days. 

• Energy data 

o Containing data for each individual energy meter and total sum. 

o One aggregated for hours and one for days - two for each building. 

• Combination data 

o Combination of weather and energy data. 

o All weather features, combined with total energy consumption for each 

building. 

o One aggregated for hours and one for days - two for each building. 

3.1 Weather data analysis 

This subchapter will focus on the weather data analysis, starting with a basic inspection through 

line plots. A comment on the correlation for weather features is found as a part of the data 

analysis of combined data (chap. 3.3.2).  

Figure 3-1 shows a line plot of all the variables in the weather dataset, aggregated for days. 

Here we can see that most of the weather features carry a seasonal tendency. 

 

Figure 3-1: All weather data, aggregated for days. 
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Figure 3-2 shows a line plot of temperature, “feels-like-temperature” and 30 days simple 

moving average of temperature (SMA30).  The figure also indicates the time periods with 

missing temperature data with a thick red line (at y=0). Here, the missing data is not substituted 

as the gaps with missing data are large (several days).   

 

Figure 3-2: Plot of weather data: temperature, felt-like-temp, SMA30. Data aggregated for days. 

In this plot it seems that the feels-like-temperature deviates more from the temperature feature 

when the temperature is in the lower parts of the chart compared to middle and top. 

3.2 Energy data analysis  

This subchapter will focus on examining the energy data for both buildings. As described in 

the methodology chapter, the calculated energy consumption variable will be used in the energy 

data analysis.   

3.2.1 Building #1 

Figure 3-3 shows a stack plot of all the individual energy meters in building #1, and Figure 3-4 

a boxplot of the same energy meters. Here it can be seen that some energy meters contribute 

far more to the total energy consumption than others. And also that the consumption varies 

during the seasons.  



 3 Data analysis results 

42 

 

Figure 3-3: Stack plot of energy consumption (aggregated for day) for all energy meters in building #1 

 

Figure 3-4: Boxplot of energy consumption per day for all energy meters in building #1 

3.2.2 Building #2 

Figure 3-5 shows a stack plot of all the individual energy meters in building #2, and Figure 3-6 

shows a boxplot of the same energy meters. As for building #1, also here some energy meters 

contribute far more than others. But it doesn’t seem to be quite the same percent wise 

magnitude on the seasonal variations like in building #1. There are however some fluctuations 

in the data, especially around September 2022, that can indicate some errors in the 

measurement or data pre-processing. 
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Figure 3-5: Stack plot of energy consumption per day for all energy meters in Building #2. 

 

Figure 3-6: Boxplot of energy consumption per day for all energy meters in Building #2 

3.2.3 Both buildings  

Figure 3-7 shows a line plot of total energy consumption for both buildings. From the mean 

lines added for each building in the plot, in can be seen that building #2 has a reduction in 

energy consumption and especially the third year as this period is far below the mean line. It 

also looks like the energy usage pattern for building #2 has changed during the time period, as 

there are more alterations during summer months in the last half (start around summer 2021). 

Even though building #1 has a much larger seasonal increase compared to building #2 (percent 

wise), it can be seen that both buildings have the same seasonal pattern, with an increase during 

summer months. This is simpler shown in Figure 3-8 where data is z-score standardized.  
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Figure 3-7: Line plot of total energy consumption per building, aggregated for days. 

 

Figure 3-8: Line plot of total energy consumption per building, aggregated for days, z-score standardized data. 

3.2.4 Trend 

The energy data is divided into separate years for a simpler yearly comparison of the seasonal 

variations and cycles in the data. Also, the underlying trend in the data is calculated as the 365-

day SMA value (as described in chapter 2.7.1). The yearly data for second and third year can 

then be adjusted for the underlying trend (divide by trend factor) for easier comparison of 

cyclical behavior in all years.  

From the plots in Figure 3-9, we can see that building #1 has no considerable change in the 

underlying trend and adjusting for trend gives no noticeable change. However, from the plot in 

Figure 3-10, building #2 has a strong decline in the underlying trend, going from a mean value 

of 19 970 kWh/day the first year and ending at 15 931 kWh/day the third year, a reduced yearly 
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mean energy consumption of about 20%. There are of course climate condition factors that 

could affect the underlying trend, as not every year has the same weather, but such a big 

decrease would indicate some behavior changes in the energy usage pattern for building #2. 

Each building has a separate energy sensitivity to climate conditions, meaning the actual 

percent of energy dependent on climate is different. So, if the changes were purely due to 

different yearly climate conditions, it would be reasonable to expect a comparable trend in 

building #1 as both buildings experience more or less the same weather.  

 

Figure 3-9: Yearly comparison of data, adjusted for leap year and day of week lineup, building #1. 

 

Figure 3-10: Yearly comparison of data, adjusted for leap year and day of week lineup, building #2. 
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When energy consumption in building #2 is adjusted for the underlying trend (last chart in 

figure), meaning that the value is divided by the trend factor, the yearly trends lineup fairly 

well showing a comparable seasonal usage pattern. 

3.3 Combined data analysis 

It is intuitive that energy consumption in a building is correlated with the outdoor temperature, 

so for initial examination of this relationship a line plot combining energy consumption with 

temperature is created (see Figure 3-11). From the figure, it can be seen that the energy 

consumption for both buildings is highest during the summertime which points to energy 

consumption used for cooling purposes. Note that the figure contains two y-axes.  

 

Figure 3-11: Combination plot of energy consumption (left y-axis) and outdoor temperature (right y-axis). 

According to Enova (governmental energy advisor organization in Norway), the need for 

additional heating in buildings normally ends when the outdoor temperature exceeds about 17 

degrees Celsius, therefore they name this value base temperature [31]. If temperatures below 

the base temperature require additional heating, it would make sense that values above would 

call for additional cooling. To investigate this hypothesis, some assisting lines are added in the 

figure. One horizontal line for the base temperature of 17 degrees, and several vertical lines for 

the dates when outdoor temperature crosses this base temperature line. Here, a 10-day SMA 

(simple moving average) value for temperature is used to get a single crossing point of the base 

temperature. From the plot it seems that these vertical lines correspond well to the points where 

energy consumption increases and returns down. This indicates that the hypothesis of using 17 

as the base temperature could also be applicable for cooling.  

3.3.1 Timely energy features  

Figure 3-12 and Figure 3-13 shows boxplots of the hourly aggregated data where data is 

grouped by timely features as hour of day, day of week, month, and year, for both building #1 

and #2. For both buildings there seem to be several cyclical behaviors as consumption is higher 
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during daytime compared to nighttime, higher during weekdays compared to weekdays, and 

highest in the summertime. Building #2 does also have a descending yearly trend in the data, 

which is not seen in building #1. Which corresponds to the previous observations and trend 

calculations.  

 

Figure 3-12: Boxplot building #1, hourly aggregated data grouped by time features. Adjusted to local time with 

DLS.  
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Figure 3-13: Boxplot building #2, hourly aggregated data grouped by time features. Adjusted to local time with 

DLS. 

In the previous boxplots, time features are created from the local time (adjusted for daylight 

savings time). To illustrate the effect of DLS in the usage pattern, Figure 3-14 shows a 

comparison where data is divided by summer and winter time (DLS), where one side is adjusted 

for DLS and the other is not. Here one can see that there is a one-hour shift in the pattern if 

data is not adjusted for DLS, energy consumption rises one hour earlier when not adjusted 

during summertime (plot in down left corner).  

 

Figure 3-14: Comparison of summer and wintertime, with and without adjusting for DLS. Data for building #1.  
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3.3.2 Correlation 

This subchapter will describe the analysis of variables and the correlation between them. Figure 

3-15 and Figure 3-16 shows the correlation of every weather feature combined with energy 

consumption in building #1 and #2 in triangular heatmaps. From these figures we can see that 

the variable SumDiff mostly correlates with temperature, humidity, daylight, and cloudiness, 

and with the strongest positive correlation between SumDiff and temperature.  

 

Figure 3-15: Heatmap weather data and SumDiff building #1. Aggregated for days. 

 

Figure 3-16: Heatmap weather data and SumDiff building #2. Aggregated for days.  
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The most important results from the heatmaps and correlation are summarized in Table 3-1.  

Table 3-1: Comments to important feature correlation 

Feature Corr. with SumDiff 

(Building #1 / Building #2) 

Comment 

Temperature  0,62 / 0,57 We can see that all temperature variables 

(Temp_feels_like, Temp_max, Temp_min, and 

Temperature), has a correlation of 

approximately 1 meaning these carries mostly 

the same information. And it would therefore 

make sense to only use one of them further. 

Humidity -0.46 / -0.44 The relative humidity has an inverse correlation 

with temperature (-0.66) and Daylight (-0.69). 

Indicating that the climate is relative more 

humid with low temperatures and shorter days - 

wintertime. 

Daylight 0.42 / 0.48 Daylight is strongly correlated with 

temperature (0.71), indicating the carry much 

of the same information. As the days gets 

longer, the temperature gets higher.  

Cloudiness -0.38 / -0.32 Negative correlation: when less clouds (open 

sky) – higher energy consumption. Cloudiness 

correlates to humidity and temperature, 

indicating that there are more clouds when RH 

is high, and temperatures are low.  

 

Based on the previously shown heatmaps and correlation analysis, it is found that temperature, 

humidity, daylight, and cloudiness are the features with greatest correlation with energy 

consumption (SumDiff). Therefore, scatter plots of these variables (x-axis) together with energy 

consumption (y-axis) are shown in Figure 3-17 and Figure 3-18. From the previous boxplots, 

where energy is grouped on timely energy features, we know that the energy consumption is 

dependent on day of week, so the samples are grouped, and color-coded by day of week.  
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Figure 3-17: Scatter plot of most important weather feature for building #1, aggregated for days. 

 

Figure 3-18: Scatter plot of most important weather features for building #2, aggregated for days.  

3.3.3 Autocorrelation  

Since the lag features are created from the variable SumDiff, only with a time difference, it is 

possible to check the SumDiff variable’s autocorrelation. The autocorrelation between lag 

features and SumDiff can be seen in Figure 3-19. It shows that building #1 has the strongest 

autocorrelation to 7 days back of 0.86 (slag7) and 52 weeks ago of 0.84 (lag1).  
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Figure 3-19: Correlation of lag features, building #1. 

Figure 3-20 shows the same type of heatmap, but for building #2. Here, the strongest 

autocorrelation is also for 7 days back of 0.84. But with less correlation to one year ago (lag1). 

This can be due to the decreasing trend and change in energy usage pattern seen before. 

Building #2 does not have any values for 3 years back and therefore no values for lag3. 

 

Figure 3-20: Correlation of lag features, building #2. 
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3.4 New temperature feature 

Based on the previous scatter plots and correlation of important variables, it is seen that 

temperature is an important variable. Therefore, Figure 3-21 and Figure 3-22 takes a closer 

look at this relationship of temperature vs energy consumption, divided into two subplots: one 

for weekdays and one for weekends. Based on the previously presented hypothesis that 17 

could be a base temperature for temperature dependent energy consumption. Here, a horizontal 

line for the mean value for temperatures below 17 (previously discussed base temperature) and 

a linear regression line for temperatures above 17 (red lines) are added.  

 

Figure 3-21: Scatter plot of temperature vs energy consumption building #1 grouped by weekday and weekend, 

aggregated for days. The red shaded areas are only a static distance from the red lines for easier visualization. 

 

Figure 3-22: Scatter plot of temperature vs energy consumption building #2 grouped by weekday and weekend, 

aggregated for days. The red shaded areas are only a static distance from the red lines for easier visualization. 

On the assumption that there might be a linear-like relationship between the energy 

consumption and the temperatures, when above 17 degrees and no significant tendency below 

(as seen above), a new variable temperature_adjusted is created. This new variable is then 

calculated by subtracting 17 to the temperature values and setting the resulting negative values 

to zero (temperatures below 17 => adjusted temperature = 0). This is another example of feature 



 3 Data analysis results 

54 

engineering done in this project. Figure 3-23 shows the new correlation heatmap with weather 

features including this adjusted temperature feature for building #1. From this figure, we can 

see that the correlation between energy consumption has increased from 0.62 for temperature 

to 0.69 for the temperature_adjusted. If we group samples into weekdays and weekends, the 

correlation is increased from 0.4 to 0.42 for weekends, and from 0.84 to 0.92 for weekdays. 

The same trend can also be seen for building #2, where general increased from 0.57 to 0.6. 

Weekends from 0.42 to 0.43, and weekdays 0.66 to 0.68.  

 

Figure 3-23: Correlation of weather features and building #1. 

Figure 3-24 shows a scatter plot of the relation between energy consumption and this new 

adjusted temperature for building #1. In addition to the linear regression line in red, a second 

order regression line is added for visual effect as this seems to fit the values better, especially 

for the top end values in weekdays. 

 

Figure 3-24: Scatter plot of energy consumption vs adjusted temperature for building #1. The green shaded areas 

are only a static distance from the green line for easier visualization. 
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4 Modelling results  
This chapter will present the model results for a simple baseline model, XGBoost (extreme 

gradient boosting models) and LSTM models. 

The available energy data is divided into training, validation, and test sets, where the splitting 

dates used are 2022.01.01 and 2022.08.01. This gives about 66% for the training set, and 17% 

each for the validation and test set. Figure 4-1 shows the split of available energy data for 

building #1.  

 

Figure 4-1: Train, validation, and test set split for building #1. 

This split is used for the baseline model along with the gradient boosting models. The LSTM 

models will only have approximately this date split as they use a percentage of the total number 

of records, as opposed to the actual dates shown in the plot. 

In the plots for model prediction output below, samples with high prediction error (RMSE > 

two standard deviations) are marked with a red circle in the model output plot to indicate areas 

with poor predictions compared with validation and test set. 

4.1 Outlier handling 

Since the data has both trend and seasonal components, simple statistical methods like IQR and 

standard deviations might be too simple approaches as the same values for one season might 

be an outlier in another season. Automatic outlier algorithms might also work, but oftentimes 

it is not known on what basis these select the outliers. Some methods like the isolation forest, 

the number of outliers in the data must be set in advance which makes it somewhat if a trial-

and-error approach to finding the correct percentage of outliers present in the data.  

Two custom methods for identifying potential outliers are developed and suggested as an 

alternative in this project. The first is Standard deviations From groped Mean (SFM), the 

second is inspired by the previously created variable adjusted temperature.  

4.1.1 Standard deviations From grouped Mean (SFM) 

SFM is an algorithm for outlier detection developed during this project and is given the name 

SFM (Standard deviations From grouped Mean). It is a method that calculates a mean value 
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based on grouping by user-selected time features (ex. DayOfWeek and Quarter), and then 

identify values as outliers if the value is outside a given number of standard deviations from 

this grouped mean. It is a repetitive method that performs this operation in iteration, identifies 

and removes outliers in one round, then recalculates mean and standard deviation for next 

round with the previous outliers removed. Example output from this algorithm is shown in 

Figure 4-2, where outliers are marked with a red circle. 

 

 

Figure 4-2: Output from SFM (Standard deviations From grouped Mean), building #2. 

4.1.2 Temperature scatter 

Another method for identifying potential outliers that is developed during this project is based 

on the previously described adjusted temperature (chapter 3.4). Values that deviate greatly 

from the rest of the temperature trend are marked as potential outliers. What boundary to use 

can be adjusted but a value of 0.3-0.5 times the mean is used here. Figure 4-3 shows an example 

from this method, where outliers are marked as red dots.  
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Figure 4-3: Marked potential outliers from temperature scatter, data from building #1. 

4.2 Baseline model  

A simple, common sense, no-learning model is created to set a prediction accuracy baseline 

value for what the machine learning models should beat in order of adding any value. From the 

variable analysis part, we saw that there is a strong autocorrelation between the current energy 

consumption and the previous year’s energy consumption (lag1 feature). So, the simple 

baseline model used here is just to predict the future as a copy of the past. Then, the model’s 

forecast for the next period’s consumption will be equal to the previous time period’s 

consumption. In this model, the energy consumption from 364 days back (lag1) is used as the 

model output, but this could also have been done for a shorter prediction horizon by using the 

7 days back and so forth. Figure 4-4 shows the output from this simple, no-learning model for 

predicting the daily energy consumption for the next 364 days in building #1.  

 

Figure 4-4: Predicting future as copy of last year, for building #1. 

The full prediction results for this model type are shown in Table 4-1. This simple model can 

also include adjustment for the underlying trend in the data, which improves the predictions 

for building #2 but at the same time increases the error for building #1. 
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Table 4-1: Simple prediction model result 

Dataset Input 

Features 

Model Parameters Prediction 

horizon 

MAE/RMSE 

Test set 

Building#1 Building#2 

Hourly Lag1 Adjusted for trend 1 year 58/86 96/111 

Hourly Lag1 Not adjusted for trend 1 year 56/82 103/141 

Daily Lag1 Adjusted for trend  1 year 1054/1425 2495/3340 

Daily Lag1 Not adjusted for trend 1 year 997/1315 2666/3923 

4.3 Extreme gradient boosting 

This subchapter presents the result from  XGBoost (extreme gradient boosting) models. Where 

the first model types predict the daily energy consumption by using only lag and timely 

features, the second also includes weather features. Lastly the models predict hourly energy 

consumption.   

4.3.1 Timely features – daily energy consumption  

Firstly, models including only lag and timely features are created. One key advantage with this 

approach is that these input variables are normally known for an extended time into the future 

making the maximum prediction horizon from the models further.  

From the previous variable analysis, it is seen that the energy consumption has both daily and 

weekly cyclic behavior, and a seasonal variation during the year. Which also corresponds to 

the strong correlation between energy consumption and the lag features lag1 and slag7. 

Therefore, the features: [lag1, slag7, Week, Month, DayOfWeek, IsWeekend] are believed to be 

of most importance and are the features in focus for these models. A script for automatically 

testing all combinations of these features is implemented to identify the most important features 

and combinations for the model. A result summary with the most important findings is shown 

in Table 4-2. These models use data aggregated for days and the prediction output will 

accordingly also be daily energy consumption. The full results from all testing all combinations 

can be found in Appendix B. 
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Figure 4-5: Simple model output building #1, aggregated for days. 

Figure 4-5 and Figure 4-6 shows the prediction output from the best of these model types 

compared with the test set for building #1 and #2. The problem area for forecasting, in both 

buildings, seems to be in June (early summer).  

Table 4-2: Model for daily consumption, without weather features. Summary, complete test result in appendix. 

Dataset Input Features Maximum 

prediction 

horizon 

MAE/RMSE 

Test set 

B1 B2 

Daily DayOfWeek, Month Unlimited 829/1168 1381/2762 

Daily DayOfWeek, Week Unlimited 922/1234 1286/2759 

Daily Lag1 1 year 950/1239 1735/3083 

Daily sLag7 1 week 845/1394 1913/3274 

Daily DayOfWeek, Lag1 1 year 876/1150 1704/3074 

Daily DayOfWeek, sLag7 1 week 789/1322 1936/3296 

Daily DayOfWeek, Month, 

lag1, slag7 

1 week 711/1147 1465/2792 
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Figure 4-6: Simple model output building #2, aggregated for days. 

4.3.2 All features – daily energy consumption  

The parameters used in the previous model type are paired with the weather features showing 

highest correlation with energy consumption from the analysis part. These are: [temperature, 

temperature_adjusted, cloudiness_pct, humidity, daylight]. Figure 4-7 and Figure 4-8 shows 

the output from the models when also weather features are included compared with the test set 

for both buildings.  

 

Figure 4-7: Model building #1 with the temperature parameter included, aggregated for days.  
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Figure 4-8: Model building #2 with the temperature parameter included, aggregated for days. 

The script for automatically detecting the best combination of parameters is also used here, but 

the full test results are not included as an appendix because of the extensive length (10 variables 

gives over 1000 possible combinations). However, a summary of most important results for 

daily aggregated data can be seen in Table 4-3. 

Table 4-3: Feature summary for models including weather features. 

Dataset Input Features Maximum 

prediction 

horizon 

MAE/RMSE 

Test set 

B1 B2 

Daily DayOfWeek, Temperature Forecast 

dependent 

621/997 1356/2849 

Daily DayOfWeek, 

temperature_adjusted 

Forecast 

dependent  

612/990 1357/2839 

Daily DayOfWeek, temperature, 

cloudiness_pct,  

Forecast 

dependent 

631/1008 1345/2829 

Daily DayOfWeek, Week, 

cloudiness_pct, daylight 

Forecast 

dependent  

848/1205 1280/2702 
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4.3.3 All features – hourly energy consumption  

Models for hourly energy consumption are also created. In addition to the features used in the 

daily models, the features [Hour, IsWorkHour] are also included. Summary of results for 

models using hourly data with and without the use of weather features are shown in Table 4-4. 

Table 4-4: Short term model with and without weather data 

Dataset Input Features Prediction 

horizon 

MAE/RMSE 

Test set 

B1 B2 

Hourly DayOfWeek, Hour, 

Month 

Infinite 50/72 51/68 

Hourly DayOfWeek, Hour, 

Week  

Infinite 52/73 50/68 

Hourly DayOfWeek, Hour, 

Temperature 

Forecast 

dependent 

45/66 50/69 

Hourly DayOfWeek, Hour, 

Temperature, 

IsWorkHour 

Forecast 

dependent 

45/66 49/68 

Hourly DayOfWeek, Hour, 

Temperature, 

IsWorkHour, slag7 

Forecast 

dependent, 1 

week 

41/70 53/76 

Hourly DayOfWeek, Hour, 

Temperature, 

IsWorkHour, Week 

Forecast 

dependent 

48/69 47/65 

Figure 4-9 and Figure 4-10 shows the best model prediction output for the test set for both 

building #1 and #2 at an hourly interval. 
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Figure 4-9: Hourly prediction with weather data included, building #1.  

 

Figure 4-10: Hourly prediction with weather data included, building #2. 

4.3.4 Model parameter importance  

From the models created with the XGBoost library, it is possible to get the trained model’s 

weighting of feature importance. It is seen that when both the features DayOfWeek and 

IsWeekend are included, the models prefer to emphasize only the DayOfWeek variable. The 

models using either one feature performs similarly, but slightly better with DayOfWeek.  

Regarding the temperature and temperature_adjusted features, it seems that models including 

only the temperature_adjusted yields slightly better results. Although, when both features are 

included in the same model, the model emphasize only the temperature feature. Figure 4-11 

shows a bar chart for feature importance from such a model.  
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Figure 4-11: Feature importance, aggregated daily building #1. 

When studying the features Hour and IsWorkHour in models where either feature is used, they 

seem to yield equivalent results. Although, the models inducing both parameters seem to yield 

a slight, but insignificant, improvement. Figure 4-12 shows a bar chart viewing the importance 

of each variable used by one of the hourly predicting models created with XGBoost.  

 

Figure 4-12: Bar chart over the importance of features in the model, building #1. 

4.4 LSTM models 

This subchapter presents the result from the LSTM models. The models presented below use a 

sequence of previous seven day’s energy consumption as input to forecast the next day’s energy 

consumption. It is also shown how a pre-trained model for one building can be adapted and re-

trained for predictions on the other. 

4.4.1 Single input model 

The first model forecast the energy consumption for the next day given the energy consumption 

of the past 7 days - single input model. Table 4-5 shows the prediction results with different 

hyperparameter settings for building #1. Several MAE scores are included as training results 

for the same hyperparameter settings are different in each training session. 
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Table 4-5: Prediction results for LSTM simple model, building #1 

Layer Learning rate Epochs before es MAE  

Test set 

1 layer: 7 node 

LSTM 

0.1 11, 24, 57, 8, 35 

epochs 

1375, 897, 772, 

1311, 849, 1317 

1 layer: 14 node 

LSTM 

0.1 56, 52, 31, 42 664, 714, 812, 792 

1 layer: 32 node 

LSTM 

0.1 (es =5 rounds) 

0.05 (es = 5 rounds) 

0.01 (es=10 rounds) 

25, 49 

54 

11,  

894, 1262, 697 

668, 661, 690 

1288, 768, 771 

1 layer: 50 node 

LSTM 

0.05 (es=10 rounds) 74, 42, 82 608, 745, 643 

Model prediction result on test set for the model with lowest MAE in building #1 value can be 

seen in Figure 4-13.  

 

Figure 4-13: Predictions output from LSTM, building #1. One layer, fifty nodes 

Figure 4-14 shows how training and validation loss function decreases with increasing epochs. 

Since the models use standardized values, the loss scale is in numbers of standard deviations. 
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Figure 4-14: Loss for training and validation set. 

4.4.2 General model 

As seen in the data analysis part, the z-standardized values for both buildings have a strong 

pattern resemblance. So, by using the pre-trained model for building #1 (with 50 nodes as 

shown above) and simply just scale data (inputs/output) with standard deviation and mean 

corresponding to building #2 training set, the model also yields decent results as shown in 

Figure 4-15. This is then without any re-training of the model, just scale data to fit building #2.  

 

Figure 4-15: Model trained on building #1, just scaled to fit building #2. 

However, the model’s performance is further increased when re-trained on building specific 

training data. Results after re-training shown in Figure 4-16.   
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Figure 4-16: pre-trained model from building #1, retrained to building #2 data. 

The inverse experiment where a model trained on building #2 data is scaled to fit building #1 

is shown in Figure 4-17.  

 

Figure 4-17: pre-trained model for building #2, just scaled to building #1. 
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4.5 Future predictions  

For using any of the models shown above for future predictions (used in production), the best 

model settings can be used and retrained on all available data. The maximum prediction horizon 

will still be depending on the input variables used. Figure 4-18 shows an example of future 

predictions with an XGBoost model for building #1, where the maximum prediction horizon 

is one year according to model inputs. 

 

Figure 4-18: Model trained on all data for future predicting daily energy prediction, building #1. 
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5 Discussion 
This chapter will discuss the findings, limitations and possible future work realized during the 

project. The chapter will begin with a discussion of the input data and the pre-processing, 

before moving to the data analysis and feature engineering. Then the models and the model 

results are discussed, and lastly future work.  

5.1 Pre-processing  

As earlier described, aggregated data is shifted forward in time during pre-processing. This will 

affect the timestamping of the data, and further the timely feature engineered variables like 

DayOfWeek. This shift in time can then create confusion during analyzing or visualizing the 

data. Example: Since events are shifted forwards, the events happening on a Sunday will be 

shifted forwards and marked as the following Monday (at 00:00). If data is then later grouped 

by day of week, it is data that are marked as Sunday and Monday that are the days belonging 

to weekend patterns (and not Saturday and Sunday). This is mostly an important concern when 

aggregation for days as the shift is larger but will also be the case for other aggregation 

intervals.  

All data files contained some time slots with missing data, and it is selected to use linear 

interpolation for substituting missing energy data, and not to substitute for the missing weather 

data as these time slots were too large and therefore creates too big uncertainty. This will later 

affect how these variables can be used as inputs to models, and if the model type can handle 

missing inputs. 

5.2 Data Analysis  

The goal when developing any ML model is to make the model as simple as possible without 

sacrificing any of the prediction accuracy. To do so it is important to find the important 

parameters or features, which will provide the model with useful information and exclude 

noise. The data analysis part identifies that there are certain cyclical usage patterns for both 

buildings, as the consumption is lower on weekends compared with weekdays, higher during 

daytime compared with nighttime. Also, a seasonal pattern as consumption is higher during 

summer than winter indicating energy consumed for cooling. This is also confirmed with the 

correlation between the feature engineered lag factors, as there is a strong autocorrelation 

between now and the one week ago (slag7) and one year ago (lag1 – 52 weeks).  

There is discovered a decline in the underlying trend for building #2, showing a reduction of 

about 20% energy consumption over the whole time period. It can also be signs that the usage 

pattern of building #2 has changed over the course of the three-year timespan, as it seems they 

have incorporated changes between workday/weekend, nightly reductions or similar. This may 

be seen in context with steep energy price increase in 2021 and even further in 2022, and 

consequently an overall increased attention to energy saving. It can be expected that this change 

will affect how well the models for building #2 can perform, as the pattern in training data will 

be changed during the timespan and not reflect the current situation that well.  

When it comes to the weather features, it is identified that the outdoor temperature has the 

strongest positive correlation with the energy consumption in both building, and that 



 5 Discussion 

70 

consumption is highest during the summer period indicating cooling related energy 

consumption. Although building #1 has a larger percent wise dependency on temperature 

compared with building #2, when the data is standardized, the patterns are similar for both 

buildings. This fits well to the previously presented Enova report, where it’s stated that the 

percentage of energy consumption that is temperature dependent will largely depend on the 

building type, but not least on what building materials or building standard is used. Enova has 

estimated that for commercial buildings the temperature dependent energy consumption can 

vary from about 25 to 70% depending on building material [6]. Even though the Enova report 

is referring to colder climates with heating of buildings, this seems to also cohere with cooling 

as seen in this report. So, this would suggest that the two buildings in this project are either 

used for different purposes, built after different building standards (age) or a combination of 

the two. 

Of the remaining weather features, it is shown that cloudiness, number of hours with daylight 

and humidity correlated the most with the energy consumption. Many of these variables also 

had a strong correlation with temperature, indicating that they carry similar patterns and might 

not add any additional value to the models. If on the other hand some of these values have had 

a strong correlation with energy consumption, but not to temperature, one could expect that 

they carry relevant, new information to the models.  

Beforehand, it might be intuitive to suggest that feels-like-temperature would be more 

important than solely temperature as this variable takes more information into consideration 

(an engineered feature). But the variable analysis shows that this is not true, at least for the two 

buildings in question during this project. This might be due to how the feels-like-temperature 

feature is calculated. Feels-like-temperature is often used as another name for apparent 

temperature, a combination of heat index and wind chill, which is a measure of the temperature 

perceived by humans. Where the wind chill is the cooling effect of wind to exposed skin, and 

heat index is a combination of temperature and humidity. The wind chill factor mostly 

influences temperatures below 10 °C and humidity factor for temperatures above 27 °C [26]. 

A range which covers the primary operating range for temperatures in this project. It is however 

reasonable to think that the feels-like-temperature variable could be more important when 

investigating heating of buildings in colder climates (below 10 °C), when this feature takes the 

wind speed factor into consideration.  

In this case, it is expected that the sun will heat buildings and lead to an increase in the cooling 

demand and will consequently be an important factor in addition to just outdoor temperature. 

It could therefore be interesting to get a variable estimating the magnitude of this sun energy 

contribution for improving the energy models. More on this under section for future work.  

5.2.1 Outlier detection  

As earlier presented, there exist numerous strategies and algorithms for automatic outlier 

detection. The simpler methods are to remove values outside a certain standard deviation, or 

some inter quartile range (IQR). Because the data in this project varies much depending on 

time (season and cycles) these approaches were found to be a bit too simple whereas a value 

that is normal for one season can be out of range in another context. Also, some algorithms for 

automatic detection and removal of outliers are tried such as Local Outlier Factor, Isolation 

Forest, Elliptic Envelope and One class SVM (all available as libraries in scikit-learn). These 
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automatic outlier algorithms are just briefly tested but not used since it is hard to know exactly 

why they mark records as outliers. 

Therefore, a couple of custom-made algorithms for detecting potential outliers are suggested 

in this project. Standard deviation From grouped Mean (SFM), and Temperature trend outliers. 

The key advantage with these approaches is that they are highly adapted to the specific purpose 

in detecting outliers in building energy data, and it is easy to understand the working principle. 

In addition to these two approaches, testing the effect of removing outliers from individual 

energy meters (before combining them) should be investigated since the energy consumption 

in each building is the sum of many energy meters within the same building. Here, the simpler, 

traditional outlier detection methods might be sufficient.  

Also, all outlier methods used here only remove the outliers by dropping the sample. A better 

way could instead be to substitute the removed values, like the method used for substituting 

missing energy data during pre-processing. 

5.3 Models 

A simple non-learning model is created to set a baseline value for model accuracy. The simple 

baseline model is created on the assumption that the future energy consumption will be much 

like the past. For building #1 this simple model gave decent results, but for building #2 this 

method is not as satisfactory. This is probably because the underlying trend in the consumption 

is declining and the usage pattern is changed for building #2, but the predictions were somewhat 

improved when including the trend factor. This shows that this simple method can work to 

some extent in cases where the trend and usage pattern is stable, and likewise can get both 

better and worse by including the trend.  

5.3.1 Model validation 

For validating and measuring the model’s performance, the metrics MAE (mean absolute error) 

and RMSE (root mean squared error) are used. Here, the RMSE values will penalize 

predictions with samples with large deviations harder than the MAE value, even if the number 

of samples with large deviation is small. In this project the MAE value is used to determine 

how well the models are performing, using RMSE instead could affect the results.  

One tool that has shown to be effective to avoid overfitting and underfitting of models is the 

early stopping function. As earlier described, this function stops the model training when the 

predictions stop improving for the validation set. This enables setting the maximum number of 

epochs to a high enough number to prevent underfitting, and at the same time stops training 

before the model is overfitted. Special care is needed for finding the best suited early stopping 

number of rounds as this is closely related to the selected learning rate, particularly for LSTM 

training as the initial weights are random and training progress can be different each time.  

5.3.2 Gradient Boosting Machines 

It is shown that variations of XGBoost models can beat the simple baseline model’s prediction 

accuracy for the test set. But the models for daily energy predictions with only lag and timely 

features as inputs had the largest prediction error area in the early parts of summer. This can 
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be due to a different climate for this period compared to earlier years and that this effect is not 

well reflected in the training data. Again, the model will only reflect the future as good as the 

training data.  

This underestimation in early summer is improved by also including the outdoor temperature 

variable for building #1. Including temperature feature also made the Week and Month features 

obsolete and the best performing model for daily energy consumption in building #1 included 

only DayOfWeek and Temperature. For building #2 including the temperature feature did not 

enhance the prediction error in any significant way (test set MAE from 1286 to 1280). It is not 

concluded what is the exact cause for this, but it can be related to weaker relation to temperature 

compared to building #1 which percentwise has a higher temperature dependent energy 

consumption. 

From the variable analysis it is shown that the created feature adjusted temperature has a 

greater correlation to energy consumption than temperature. Even though the adjusted 

temperature yielded higher correlation to energy consumption, the models preferred to use the 

standard temperature feature when both features are included as inputs, and the model 

predictions are disappointingly similar in both cases. This shows that XGBoost models can 

pick up on un-linear relationships in variables and adjust for them on its own. The same is also 

the case when using DayOfWeek and IsWeekend features in combination. The models prefer to 

use the variable with DayOfWeek in contrast to the one-hot encoded IsWeekend. It is expected 

that these one-hot encoded variables could be more important for the LSTM models.  

The model’s performance did not seem to have any significant improvements with the time 

features created from local time adjusted for DST, compared with UTC not adjusted for DST. 

This can be because the DST setting is mostly relevant to the Hour variable during 

summertime, which counts for an insignificant part of the model input importance.  

One advantage with XGBoost compared to the LSTM method is that the training reaches the 

same result every time, so a set of variables or other settings only needs to be tested once. Also, 

that training is generally much faster. This enabled the possibility for creating a script for 

automatically testing all possible combinations of features in a convenient way. 

5.3.3 LSTM 

The LSTM model produced during this project was a model that only takes a sequence of the 

daily energy consumption for the previous seven days as input and predicts the next day’s 

energy consumption. Some different network structures are tested, with the use of different 

numbers of nodes, learning rate and early stopping rounds. The results show that the best LSTM 

models can produce a lower prediction error value (MAE) for the test set compared with both 

the baseline model and the best XGBoost models. 

Since the initial weights in a new model are random values, the output from a trained network 

will vary slightly each time it is trained. Since the training result can be different each time, it 

is important to train the models several times in order to establish if the settings are satisfactory. 

How good the trained models can be will also depend a lot on the selection of learning rate and 

settings for early stopping (hyperparameters). The effects of early stopping settings could 

perhaps have been mitigated if this setting had been switched off overall, and all the training 

reached the maximum number of epochs.  
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Because the buildings showed such similar patterns when energy consumption was z-score 

standardized. It is shown that it is possible to use a pre-trained model for another building and 

just scale the data to the building specific standard deviation and mean. This could indicate the 

possibility to make kind of a general model that can be valid for multiple comparable buildings, 

which allows for making a decent model before much data from the specific building is 

collected. The pre-trained model is however improved through re-training with building 

specific data. Nevertheless, using a pre-trained model as the starting point for a new model 

training also helped the models reach a good solution faster, which then points to the benefit 

of having a good pre-trained model as the starting point whenever creating a model for a new 

building. This could for instance be accomplished by having a pre-trained model as a starting 

point for each comparable building type (school, office, apartment…).  

The LSTM models mainly just improved the prediction accuracy for building #1, not for 

building #2. The test set for building #2 includes some heavy fluctuations in the energy 

consumption, indicating outliers or some other errors. Since the LSTM model will also use the 

test data as inputs, this will affect the model outputs in addition to the reduced MAE score on 

the output side. So, it might be a good idea to do some filtering on the model’s input in order 

to isolate the effect from outliers to model output. 

The LSTM models shown in this project use the last 7 days as input to predict the next day, but 

what if you like the model to predict the next 7 days rather than just the one day. There are 

mainly two ways of increasing the prediction width and thus getting multiple prediction 

horizons from the same model when using LSTM, one where the label width is increased 

during model training and then increasing the model’s output. The other is making one day 

ahead prediction, as done in this project, but refeeding the output back to the model as an input 

making a multistep model. 

5.3.4 Overall model results  

In any case, the machine learning models did perform better than the simple, no-learning 

baseline model. Because of time limitations during the project, more time is put into the 

XGBoost models compared to the LSTM models, so it can be reasonable to think that the 

prediction accuracy for these models is closer to their maximum potential. It would therefore 

be interesting to further test how different model structures for the LSTM like deeper networks, 

different input width or more input variables could affect the results from LSTM models.  

Furthermore, it is shown that the models were generally better at picking up the pattern at 

building #1 compared to building #2, even if the MAE score for building #2 has a percent wise 

better prediction accuracy. Again, this can be caused by the training data for building #2 not 

reflecting the current usage pattern of building #2 due to change in trend and usage pattern. 

Here, one possible solution could be to use just the most recent and relevant data during a re-

training of the model and check if this can help performance.  

During model training, the temperature measurement for that time slot is used, but when the 

model is to be used for future predictions (when in production), this measurement is obviously 

not available and a value from a weather forecasting service is needed instead. This raises the 

question of how this change will impact the model’s prediction accuracy, which in turn depends 

on how closely related the forecasted temperature and actual temperature are. How far into the 

future we have a good temperature forecast, will also determine how far into the future these 
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model types can be used with a certain accuracy. In this project the assumption of up to seven 

days with a reliable temperature forecast is used. 

One key advantage with the XGBoost models, is that the maximum prediction horizon is longer 

than with the LSTM and that we can create predictions for a year or more depending on the 

input variables selected. One of the problems with ML is the requirements for recorded data, 

therefore a more generic model type like shown with just scaling a pre-trained model here is 

desirable. 

5.4 Future work 

Some of the model predictions that are misplaced seem to be single days that are typically not 

fitting the “normal” pattern, further work could be investigated if these days are linked to 

national holidays or such. Including a variable indicating if a day is a national holiday is 

possible (ex. “IsHoliday”), but during a year it could be very few occurrences and thus little 

training data for the model, one simpler solution could then be to mark holidays as IsWeekend 

or set the day of week to Sunday, as it is reasonable to assume a similar pattern for Sundays 

and holidays.  

Some features are only important when combined with others, and it is possible that these are 

not discovered in this project. As discussed above it would be attractive to get a variable 

describing the additional cooling demand caused by sun energy. Investigate the possibility for 

creating such a feature by combining daylight and cloudiness or check the resemblance to wet 

bulb temperature. Also, using more variables describing what happens inside the buildings 

could likewise help the model, like the indoor temperature measurement, occupancy level and 

so on. Here using data from a simulator could help identify which variables are important, 

before inserting new sensors and acquiring these from the actual buildings.  

Because of time restrictions during the project, the handling of outliers and how different 

methods affect the model prediction result is not very well tested. A more in-depth investigation 

of outlier handling, substitution of removed outliers, input smoothening of outliers to LSTM 

inputs should be considered. Also possibly identify the explanation for outliers, some may be 

due to Covid-19 restrictions or national holiday.  

On the model side further investigation of the LSTM networks, with other structures, deeper 

models, substituting LSTM with GRU nodes, more input variables should be investigated. 

Deeper and more complex models might call for the usage of dropout nodes during training. It 

is also possible to investigate other, new model types like Prophet. Since the building’s usage 

pattern often will change over time, the option for an automatic retraining, or automatic 

validation could be something to consider before setting the model into production. 

The total energy consumption in each building is a combination of many energy meters within 

the building. Investigate if it is better to make models for each individual energy meter rather 

than the combined values. This way each energy consumer could use the model structure and 

input variables best suited for the specific purpose, like in [7].  
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6 Conclusion 
This master thesis had two main goals: perform data analysis to identify important variables 

related to energy consumption and create machine learning algorithms for energy predictions 

in buildings based on this. Energy data for about a three-year period from two separate 

buildings located in Athens should be used as the foundation. 

Before the data analysis could be performed a series of data pre-processing steps involving data 

aggregation, handling of missing values and feature engineering needed to be performed. Then, 

a comprehensive data analysis identified yearly seasonality, daily and weekly cyclical patterns 

for both buildings and underlying trend changes. Also, autocorrelation and correlation between 

energy consumption and other variables showed that outdoor temperature is one important 

variable, but it varies depending on the building and season (outdoor temperature). 

To compare if the machine learning models provided any value, a simple, non-learning model 

was created in order of setting a baseline value for prediction accuracy. The baseline model is 

built on the assumption that the future will be like the past, and future predictions are therefore 

only a copy of the past. In any case, both machine learning types had a better prediction 

accuracy compared to this simple baseline model.  

Many models and different configurations within two machine learning model types have been 

trained and tested during the project, these are LSTM and XGBoost models. The best 

performing XGBoost model for building #1 relied on temperature_adjusted, DayOfWeek as 

input variables, with the best results for daily energy predictions for test set MAE of 612 kWh 

(15% of test set mean value). And the best for building #2 used DayOfWeek, Week, 

cloudiness_pct, daylight as inputs with a MAE of 1280kWh (8% of test set mean value). The 

LSTM models used a sequence of the daily energy consumption from the previous seven days 

to predict the next day. Even with only a single input variable the best performing model had 

a MAE for test set of 608 kWh for building #1 and 1451 kWh for building #2.  

Different buildings have different energy usage patterns, and the usage patterns can often 

change over time. It is hard to find one model type and one set of hyperparameters that will 

work well in all cases. The best performing model will therefore often depend on the specific 

building as seen in this project, where the best performing model for each building was of 

different type.
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Appendix B – XGBoost feature search results.  

Building #1: 

combi Features Val_MAE Val_RMSE Test_MAE Test_RMSE 

61 
['DayOfWeek', 'Month', 'IsWeekend', 'lag1', 
'slag7'] 

607.0 1003.0 711.0 1147.0 

50 ['DayOfWeek', 'Month', 'lag1', 'slag7'] 607.0 1003.0 711.0 1147.0 

55 ['Week', 'IsWeekend', 'lag1', 'slag7'] 648.0 1089.0 756.0 1263.0 

37 
['Week', 
'lag1', 
'slag7'] 

652.0 1085.0 762.0 1270.0 

62 ['Week', 'Month', 'IsWeekend', 'lag1', 'slag7'] 660.0 1084.0 764.0 1277.0 

60 
['DayOfWeek', 'Week', 'IsWeekend', 'lag1', 
'slag7'] 

657.0 1074.0 773.0 1230.0 

56 ['Month', 'IsWeekend', 'lag1', 'slag7'] 626.0 994.0 773.0 1197.0 

47 ['DayOfWeek', 'Week', 'lag1', 'slag7'] 657.0 1074.0 773.0 1230.0 

63 
['DayOfWeek', 'Week', 'Month', 'IsWeekend', 
'lag1', 'slag7'] 

648.0 1073.0 774.0 1232.0 

59 ['DayOfWeek', 'Week', 'Month', 'lag1', 'slag7'] 648.0 1073.0 774.0 1232.0 

48 ['DayOfWeek', 'Month', 'IsWeekend', 'lag1'] 662.0 967.0 775.0 1084.0 

27 ['DayOfWeek', 'Month', 'lag1'] 662.0 967.0 775.0 1084.0 

54 ['Week', 'Month', 'lag1', 'slag7'] 668.0 1078.0 781.0 1292.0 

30 ['DayOfWeek', 'IsWeekend', 'slag7'] 563.0 959.0 789.0 1323.0 

11 ['DayOfWeek', 'slag7'] 563.0 959.0 789.0 1323.0 

49 ['DayOfWeek', 'Month', 'IsWeekend', 'slag7'] 562.0 937.0 791.0 1241.0 

28 ['DayOfWeek', 'Month', 'slag7'] 562.0 937.0 791.0 1241.0 

38 ['Month', 'IsWeekend', 'lag1'] 842.0 1142.0 797.0 1106.0 

51 ['DayOfWeek', 'IsWeekend', 'lag1', 'slag7'] 607.0 956.0 799.0 1226.0 

31 ['DayOfWeek', 'lag1', 'slag7'] 607.0 956.0 799.0 1226.0 

40 ['Month', 'lag1', 'slag7'] 629.0 980.0 802.0 1214.0 

17 ['Month', 'lag1'] 864.0 1158.0 803.0 1125.0 

45 ['DayOfWeek', 'Week', 'IsWeekend', 'lag1'] 656.0 970.0 804.0 1124.0 

39 ['Month', 'IsWeekend', 'slag7'] 574.0 975.0 804.0 1310.0 

24 ['DayOfWeek', 'Week', 'lag1'] 656.0 970.0 804.0 1124.0 

52 ['Week', 'Month', 'IsWeekend', 'lag1'] 821.0 1157.0 809.0 1108.0 

57 
['DayOfWeek', 'Week', 'Month', 'IsWeekend', 
'lag1'] 

660.0 966.0 818.0 1134.0 

43 ['DayOfWeek', 'Week', 'Month', 'lag1'] 660.0 966.0 818.0 1134.0 

26 ['DayOfWeek', 'Month', 'IsWeekend'] 672.0 1013.0 829.0 1168.0 

8 ['DayOfWeek', 'Month'] 672.0 1013.0 829.0 1168.0 

46 ['DayOfWeek', 'Week', 'IsWeekend', 'slag7'] 600.0 1033.0 831.0 1235.0 

35 ['Week', 'IsWeekend', 'lag1'] 821.0 1146.0 831.0 1129.0 

25 ['DayOfWeek', 'Week', 'slag7'] 600.0 1033.0 831.0 1235.0 

15 ['Week', 'slag7'] 626.0 1077.0 836.0 1330.0 

18 ['Month', 'slag7'] 582.0 962.0 838.0 1337.0 

6 ['slag7'] 604.0 1025.0 845.0 1394.0 
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combi Features Val_MAE Val_RMSE Test_MAE Test_RMSE 

41 ['IsWeekend', 'lag1', 'slag7'] 624.0 969.0 847.0 1283.0 

33 ['Week', 'Month', 'lag1'] 848.0 1176.0 847.0 1156.0 

20 ['IsWeekend', 'slag7'] 598.0 996.0 848.0 1400.0 

21 ['lag1', 'slag7'] 622.0 966.0 852.0 1291.0 

14 ['Week', 'lag1'] 847.0 1171.0 862.0 1176.0 

53 ['Week', 'Month', 'IsWeekend', 'slag7'] 629.0 1082.0 872.0 1346.0 

36 ['Week', 'IsWeekend', 'slag7'] 641.0 1082.0 876.0 1334.0 

29 ['DayOfWeek', 'IsWeekend', 'lag1'] 732.0 1044.0 876.0 1151.0 

10 ['DayOfWeek', 'lag1'] 732.0 1044.0 876.0 1151.0 

34 ['Week', 'Month', 'slag7'] 630.0 1082.0 886.0 1378.0 

23 ['DayOfWeek', 'Week', 'IsWeekend'] 609.0 924.0 922.0 1234.0 

7 ['DayOfWeek', 'Week'] 609.0 924.0 922.0 1234.0 

42 ['DayOfWeek', 'Week', 'Month', 'IsWeekend'] 614.0 924.0 930.0 1260.0 

22 ['DayOfWeek', 'Week', 'Month'] 614.0 924.0 930.0 1260.0 

58 
['DayOfWeek', 'Week', 'Month', 'IsWeekend', 
'slag7'] 

602.0 1007.0 937.0 1321.0 

44 ['DayOfWeek', 'Week', 'Month', 'slag7'] 602.0 1007.0 937.0 1321.0 

5 ['lag1'] 766.0 1065.0 951.0 1239.0 

19 ['IsWeekend', 'lag1'] 770.0 1070.0 956.0 1239.0 

13 ['Week', 'IsWeekend'] 1063.0 1539.0 1113.0 1609.0 

16 ['Month', 'IsWeekend'] 1130.0 1582.0 1120.0 1610.0 

32 ['Week', 'Month', 'IsWeekend'] 1056.0 1533.0 1146.0 1640.0 

12 ['Week', 'Month'] 1104.0 1592.0 1147.0 1674.0 

2 ['Week'] 1105.0 1594.0 1151.0 1679.0 

3 ['Month'] 1169.0 1646.0 1183.0 1659.0 

9 ['DayOfWeek', 'IsWeekend'] 1438.0 1773.0 1310.0 1628.0 

1 ['DayOfWeek'] 1438.0 1773.0 1310.0 1628.0 

4 ['IsWeekend'] 1697.0 2037.0 1573.0 1878.0 

 

Building #2: 

combi Features Val_MAE Val_RMSE Test_MAE Test_RMSE 

23 ['DayOfWeek', 'Week', 'IsWeekend'] 902.0 1519.0 1286.0 2759.0 

7 ['DayOfWeek', 'Week'] 902.0 1519.0 1286.0 2759.0 

22 ['DayOfWeek', 'Week', 'Month'] 891.0 1515.0 1314.0 2761.0 

42 ['DayOfWeek', 'Week', 'Month', 'IsWeekend'] 891.0 1515.0 1314.0 2761.0 

13 ['Week', 'IsWeekend'] 1121.0 1780.0 1380.0 2795.0 

8 ['DayOfWeek', 'Month'] 961.0 1560.0 1381.0 2762.0 

26 ['DayOfWeek', 'Month', 'IsWeekend'] 961.0 1560.0 1381.0 2762.0 

2 ['Week'] 1126.0 1783.0 1398.0 2820.0 

32 ['Week', 'Month', 'IsWeekend'] 1118.0 1779.0 1427.0 2811.0 

12 ['Week', 'Month'] 1122.0 1786.0 1461.0 2821.0 

16 ['Month', 'IsWeekend'] 1164.0 1797.0 1512.0 2810.0 

56 ['Month', 'IsWeekend', 'lag1', 'slag7'] 912.0 1491.0 1517.0 2911.0 
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combi Features Val_MAE Val_RMSE Test_MAE Test_RMSE 

50 ['DayOfWeek', 'Month', 'lag1', 'slag7'] 889.0 1478.0 1518.0 2905.0 

61 
['DayOfWeek', 'Month', 'IsWeekend', 'lag1', 
'slag7'] 

889.0 1478.0 1518.0 2905.0 

40 ['Month', 'lag1', 'slag7'] 905.0 1489.0 1527.0 2914.0 

3 ['Month'] 1170.0 1810.0 1530.0 2821.0 

55 ['Week', 'IsWeekend', 'lag1', 'slag7'] 938.0 1524.0 1542.0 2898.0 

37 ['Week', 'lag1', 'slag7'] 947.0 1525.0 1544.0 2906.0 

31 ['DayOfWeek', 'lag1', 'slag7'] 832.0 1470.0 1548.0 2964.0 

51 ['DayOfWeek', 'IsWeekend', 'lag1', 'slag7'] 832.0 1470.0 1548.0 2964.0 

54 ['Week', 'Month', 'lag1', 'slag7'] 952.0 1525.0 1551.0 2899.0 

41 ['IsWeekend', 'lag1', 'slag7'] 844.0 1474.0 1551.0 2963.0 

62 ['Week', 'Month', 'IsWeekend', 'lag1', 'slag7'] 955.0 1524.0 1555.0 2901.0 

21 ['lag1', 'slag7'] 849.0 1483.0 1559.0 2970.0 

59 ['DayOfWeek', 'Week', 'Month', 'lag1', 'slag7'] 937.0 1514.0 1582.0 2926.0 

63 
['DayOfWeek', 'Week', 'Month', 'IsWeekend', 
'lag1', 'slag7'] 

937.0 1514.0 1582.0 2926.0 

60 
['DayOfWeek', 'Week', 'IsWeekend', 'lag1', 
'slag7'] 

959.0 1540.0 1587.0 2916.0 

47 ['DayOfWeek', 'Week', 'lag1', 'slag7'] 959.0 1540.0 1587.0 2916.0 

29 ['DayOfWeek', 'IsWeekend', 'lag1'] 1055.0 1666.0 1704.0 3072.0 

10 ['DayOfWeek', 'lag1'] 1055.0 1666.0 1704.0 3072.0 

36 ['Week', 'IsWeekend', 'slag7'] 1031.0 1642.0 1712.0 2947.0 

58 
['DayOfWeek', 'Week', 'Month', 'IsWeekend', 
'slag7'] 

1009.0 1634.0 1724.0 2988.0 

44 ['DayOfWeek', 'Week', 'Month', 'slag7'] 1009.0 1634.0 1724.0 2988.0 

46 ['DayOfWeek', 'Week', 'IsWeekend', 'slag7'] 1012.0 1632.0 1725.0 2944.0 

25 ['DayOfWeek', 'Week', 'slag7'] 1012.0 1632.0 1725.0 2944.0 

19 ['IsWeekend', 'lag1'] 1081.0 1691.0 1726.0 3074.0 

5 ['lag1'] 1089.0 1697.0 1735.0 3083.0 

53 ['Week', 'Month', 'IsWeekend', 'slag7'] 1020.0 1646.0 1740.0 2975.0 

15 ['Week', 'slag7'] 1032.0 1652.0 1741.0 2952.0 

34 ['Week', 'Month', 'slag7'] 1021.0 1648.0 1762.0 2980.0 

28 ['DayOfWeek', 'Month', 'slag7'] 1011.0 1638.0 1782.0 2977.0 

49 ['DayOfWeek', 'Month', 'IsWeekend', 'slag7'] 1011.0 1638.0 1782.0 2977.0 

18 ['Month', 'slag7'] 1043.0 1663.0 1805.0 2975.0 

39 ['Month', 'IsWeekend', 'slag7'] 1035.0 1662.0 1807.0 2994.0 

57 
['DayOfWeek', 'Week', 'Month', 'IsWeekend', 
'lag1'] 

898.0 1518.0 1849.0 3078.0 

43 ['DayOfWeek', 'Week', 'Month', 'lag1'] 898.0 1518.0 1849.0 3078.0 

24 ['DayOfWeek', 'Week', 'lag1'] 909.0 1527.0 1896.0 3100.0 

45 ['DayOfWeek', 'Week', 'IsWeekend', 'lag1'] 909.0 1527.0 1896.0 3100.0 

52 ['Week', 'Month', 'IsWeekend', 'lag1'] 995.0 1593.0 1912.0 3136.0 

6 ['slag7'] 1082.0 1750.0 1913.0 3274.0 

27 ['DayOfWeek', 'Month', 'lag1'] 898.0 1506.0 1928.0 3152.0 
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combi Features Val_MAE Val_RMSE Test_MAE Test_RMSE 

48 ['DayOfWeek', 'Month', 'IsWeekend', 'lag1'] 898.0 1506.0 1928.0 3152.0 

33 ['Week', 'Month', 'lag1'] 1002.0 1604.0 1933.0 3147.0 

30 ['DayOfWeek', 'IsWeekend', 'slag7'] 1068.0 1743.0 1936.0 3296.0 

11 ['DayOfWeek', 'slag7'] 1068.0 1743.0 1936.0 3296.0 

20 ['IsWeekend', 'slag7'] 1074.0 1750.0 1938.0 3311.0 

17 ['Month', 'lag1'] 964.0 1548.0 1940.0 3169.0 

35 ['Week', 'IsWeekend', 'lag1'] 993.0 1596.0 1944.0 3149.0 

14 ['Week', 'lag1'] 1002.0 1608.0 1958.0 3159.0 

38 ['Month', 'IsWeekend', 'lag1'] 948.0 1534.0 1985.0 3224.0 

9 ['DayOfWeek', 'IsWeekend'] 1710.0 2187.0 2127.0 2975.0 

1 ['DayOfWeek'] 1710.0 2187.0 2127.0 2975.0 

4 ['IsWeekend'] 1838.0 2340.0 2191.0 3032.0 
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