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Summary:  

Unpredictable ship accidents still claim a lot of human life every year even with so many 

technological advancements. Maritime Search and Rescue missions during such hazards 

are mostly carried out with costly equipment and manpower that have some inherent 

estimation biases in many physical quantities. With small-size, lower operational cost, 

flexible aerial maneuverability, wireless communication, and mathematical computation 

ability, drones can be useful to minimize the costs and speed up the SAR operations 

without physical intrusion in dangerous post disaster scenarios. And due to the risky nature 

of the problem, simulation was the rational path initially.  

But there was a shortage of previous literature that tried to especially solve this problem 

in proper simulation platform. Therefore, in the beginning a high fidelity dynamic marine 

simulation environment was created using Unreal Engine 4.27, Microsoft AirSim, and 

ROS which contained a Post Disaster Ship, other many debris, and human victims 

floating. Then, an autonomous SAR mission was planned and implemented for the drone 

with various pretrained YOLOv7 models that achieved high accuracy of victim detection. 

This work was published in IEEE/CVF WACV Conference, 2023. After that another 

iteration of autonomous simulation for tracking both treading and swimming victims with 

YOLOv8 pretrained models was carried out in custom environment in Unreal Engine 5.1 

which also had satisfactory results. Furthermore, the ID and detected location in latitude 

and longitude of the tracked victim was made easily accessible for use in concerned 

places. Finally, the possibility for the cooperation and control of multiple drones working 

together for SAR missions was thoroughly discussed in the end.       
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1 Introduction 
With the everlasting curiosity and dissatisfaction in human beings to evolve further, it has been 

an ultimate goal of humanity to manifest intelligence into an immortal machine making it a 

fully autonomous entity. Furthermore, the need for survival has been the major driving factor 

for innovations to homo sapiens justifying the significance of the interest to develop an 

effective and robust network of smart systems that can independently operate to mitigate the 

damage inflicted after an unforeseen disaster. Consequently, the European Union also decided 

to initiate a project named “VALKYRIES” that works in Harmonization and Pre-

Standardization of Equipment, Training and Tactical Coordinated procedures for First Aid 

Vehicles deployment on European multi-victim Disasters [1]. The University of South-Eastern 

Norway (USN) is one of the participants of this project with allocation of several 

responsibilities which will be the basis for this Master thesis.  

This chapter will firstly impart the introduction to the thesis with the discussion of the necessary 

background and context of the overall study, succeeded by the formulation of research problem, 

questions, and objectives, and finally, the limitations to the study that are acknowledged 

upfront. 

1.1 Context and Motivation 

Initially, the thesis topic with the preliminary background and minimum expectations in a broad 

horizon along with the primary tools and software to be used, including chiefly Unreal Engine 

4, Microsoft AirSim, and ROS, was decided, and allotted by USN. On further investigation, 

the topic was in line with the current work being carried out by the Autonomous Research 

Group, USN, in the prestigious VALKYRIES project. Therefore, with an aim to contribute to 

the ongoing work at the University as well as to augment the relevancy of the study, it was 

decided to direct the thesis in the corresponding direction. 

Now diving into the specific topic, the aim of all major technological inventions is to make 

human life easier and better accompanied by economic prosperity with minimal harm to the 

environment. But there is always a persistent risk of uncontrollable and unpredictable 

occurrence of natural calamities due to imbalance of forces in Mother Earth that jeopardizes 

the main essence of mankind to live a happy and prosperous life. Likewise, the continual 

possibility of disasters in ships, buses, airplanes, and other mechanical systems also instigates 

peril to the survival of person itself followed by the costly economic and environmental 

deterioration. Hence, the proper management of natural catastrophes and other disasters has 

captivated a lot of attention since the start of human civilization because it is related to 

safeguarding the core subconscious instinct of any living species to survive. It resulted in all 

the novel technologies developed in the process of evolution being implemented, at their 

respective times, for addressing this issue.  

Moreover, the enhancement of technology from steam powered rotatory mechanical machines 

in the first industrial revolution, to on off transistor logic powered second revolution, to 

microcontrollers, made with combination of transistors, propelled third revolution, and finally 

to internet driven fourth industrial revolution (Industry 4.0) has enabled the metamorphosis of 

machines to highly sophisticated, and self-governing entities, commonly known as autonomous 

systems, that are independently able to sense, perceive, plan, and act according to the 
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surrounding environment with proper training. It is, therefore, intriguing for people to deploy 

autonomous systems for amelioration of any post disaster condition which can reduce the 

associated risk, cost, and delay along with the increase of efficiency to salvage more lives, and 

curb down the financial and ecological loss. 

 In congruence, the European Union decided to commence the VALKYRIES project in 2020 

with 17 main participants, including various universities and research institutes, hailing from 

several countries inside Europe [1]. The primary goal of the project, in simple words, is the 

creation of a uniform multi-country framework of autonomous post-disaster response system 

that can work together independently for multi-faceted operations like search and rescue, first 

aid, health, and safety of the victims, in the event of catastrophes encompassing various nations. 

Every country has some unique subtle and inconspicuous legal, socio-economic, and security 

fabric which substantiates the pertinency of this project. As a result, common concordance 

between the states is vital for cooperation and coordination in case of detrimental hazards. 

Finally, USN is one of the member universities of the VALKYRIES project who has been 

allotted various duties. The elementary task relevant to the thesis topic is described in Task 4.1 

titled as “First aid vehicles and supportive autonomous units” [1]. Basically, beginning with 

scrutinizing the cutting-edge technical possibilities for the reaction of unaided and sovereign 

artificial agents in first aid, USN needs to replenish the inconsistencies in their 

institutionalization and standardization to put forward a guideline for their embracement by the 

EU first aid responders. Furthermore, to showcase the application, USN has been designated 

an explicit use case involving post-disaster scenario of an oil tanker ship in the region of North 

Sea between Norway, Denmark, and Netherlands [1]. The fundamental aspects of the use case 

demonstration are the search and rescue of the victims with emergency care, oil spill detection, 

and salvage cargo with collaboration between the different responsible governmental 

authorities in many fronts. For that, the principal anticipated self-governing systems to be 

deployed are Unmanned Surface Vehicles (USVs) that need to replicate the tasks otherwise 

carried out by human first aid responders by sovereignly infiltrating the affected region, and 

Unmanned Aerial Vehicles (UAVs), especially drones, that can gather the essential information 

from higher elevation with minimum penetration into the potentially risky and treacherous 

areas. Moreover, it is also expected that the information gathered should be transmitted to a 

common framework, named as SIGRUN, developed of cloud-based database with linkage to 

web and mobile based applications.  

Additionally, it is stressed that the implementations should be able to cope with the damage to 

the conventional communication framework when employed without the precise outlook of the 

cross-frontier and cross-sectorial BLOS (Beyond Line of Sight) missions [1]. 

1.2 Research Problem 

Due to the inherent terrain intrusive nature of USVs with limited range of visibility compared 

to the flexible aerial maneuverability of drones with higher spectrum of perceptibility at a 

secure altitude, it is preferable to utilize drones for the initial surveillance of the potentially 

fatal vicinity of the disaster struck ship that forms the foundation for the deployment of USVs. 

Moreover, the elementary aim of establishment of any emergency management systems is to 

strengthen the probability of detecting and emancipating any threat from the survival of human 

life. 
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Based on these postulations, the research problem for this master thesis is formulated as 

follows: Develop a virtual reality simulation environment of a post-disaster scenario of an oil-

tanker ship positioned in North Sea between Norway, Denmark, and Netherlands using Unreal 

Engine, and implement a network of multiple drones in ROS with interface to Microsoft 

AirSim that autonomously carry out reconnaissance missions with the focus on search and 

rescue of victims.     

1.3 Research Objectives 

Based on the context and the research problem, the following are the paramount objectives of 

the study: 

a. To design and construct a sea simulation environment using Unreal Engine, Microsoft 

AirSim, and ROS. 

b. To conceptualize as well as actualize the various strategies for cooperation between several 

self-governing drones to effectively inspect the locality of the wrecked ship prioritizing the 

detection of victims.  

c. To convey useful information to concerned authorities from hazardous territory.  

1.4 Research Questions 

The following fundamental questions were triggered with the research objectives that guided 

the overall thesis study:  

a. How to develop a high-fidelity sea simulation environment with a post disaster ship where 

multiple drones can be spawned and controlled? 

b. How to distribute responsibilities among the individual drones? 

c. How to locate the victims within the vicinity of the ship? 

d. How to handle the dynamic sea environment where the victims and objects keep on moving? 

e. How to plan the time and energy efficient path for the drones ensuring full coverage of the     

solicited area?  

f. How to make the drones carry out the missions autonomously collaborating with each other? 

g. How to communicate between the multiple agents in real-time? 

h. How to transmit the information gathered by the drones to the concerned authorities 

remotely? 

 

 

 

 

 



  

13 

1.5 Limitations 

The following are the major limitations of the study recognized upfront: 

a. There will always be some bias and discrepancies in the simulation from the real world. 

b. The downward facing camera in the drone even with the gimbal might not be completely 

stable, which might cause error in the georeferencing process. 

c. The Odometry NED values are prone to errors because they are estimated values calculated 

based on other motion sensors. 
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2 Theory 
This chapter introduces the major tools and the theory behind some of the methods used in this 

Master thesis. 

2.1 Unreal Engine 

Unreal Engine is an incredibly powerful and popular game development tool which is created 

and maintained by Epic Games [2]. It is a game engine especially popular for the creation of 

real-time 3D games, but it also supports creators across various industries to develop cutting-

edge real-time 3D content, interactive experiences, and immersive virtual worlds. Therefore, 

lots of industries and academia use Unreal Engine which has a large user base around the world 

with a solid support framework. The basic introduction to installation and use of Unreal Engine 

with explanation of various features is available in structured form in [3]. 

2.2 Microsoft AirSim 

AirSim is an open-source simulator platform built on Unreal Engine that is developed by the 

Microsoft Research Team with the primary goal to narrow the gap between simulation and 

reality to facilitate the development of autonomous vehicles, with elementary focus on aerial 

systems, by providing physically and visually realistic simulations [4]. It can offer real-time 

hardware-in-the-loop (HITL) simulations, with support for popular lighweight messaging 

protocols for drones like MavLink [5] working on popular hardware platforms like Pixhawk, 

by the help of a physics engine able to operate at a high frequency. In addition, it also supports 

software-in-the-loop (SITL) simulations with the availability of built-in default flight controller 

called simple_flight, which is used in this Master thesis, with also the support for PX4 and 

Ardupilot as external flight controllers [6].  

The overall architecture of the AirSim system is shown in Figure that illustrates the core 

components and the interactions between them.  

 

Figure 2.1. Architecture of the AirSim simulator with core components and interactions between them [4] 
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The Figure portrays the core components with modular design that includes simulator part with 

environment model, vehicle model, physics engine, sensor models, rendering interface, public 

API layer, and an interface layer for vehicle firmware or the companion computer [4]. This 

research thesis focuses on SITL simulation, and hence does not use physical firmware. So, the 

focus will be on the simulation in the local computer as if it is the companion computer of the 

drone which sends the desired state wish to the Simulator through the API layer and gets back 

the current estimated state as well as sensor, and perception data required for the autonomous 

search and rescue mission planning from the API layer of the simulator.   

Basically, the built-in flight controller inside the simulator obtains desired state input from the 

companion computer, and sensor data from Sensor models and perception data from the 

Rendering engine which is Unreal Engine, then calculates the current state estimate and outputs 

the actuator control signals to the Vehicle Model to achieve the desired state. The Vehicle Model 

computes the forces, including forces generated from drag, friction and gravity simulated by 

various models for them, and torques generated by the simulated actuators to send to the 

Physics Engine that calculates the next kinematic state, expressed in term of 6 quantities as 

position, orientation, linear velocity, linear acceleration, angular velocity, and angular 

acceleration. The Physics Engine also considers the Environment models for gravity, air 

density, air pressure, magnetic field, and geographic location which together with kinematics 

forms the ground truth for the simulated Sensor Models. Also, the Physics Engine sends the 

current calculated pose of the drone to the Rendering Engine for the display, and the loop 

continues as seen in Figure. All the models used for simulating physical properties in [4] are 

proven dynamic physical models which justifies the high fidelity visual and physical 

simulation. 

Furthermore, even though Microsoft has officially shutdown the further development of 

AirSim from 2022 and archived the official AirSim repository [7] to launch their new platform 

called Project AirSim [8], Codex laboratories LLC have forked the official AirSim repository, 

and continued the development of AirSim with a new name Colosseum [9] working with  

Unreal Engine 5 which was used for the solution in Chapter 4 of this Master thesis.  

 

2.3 Robot Operating System (ROS) 

ROS is an popular open-source robotics middleware framework running mainly on Unix-based 

platforms such as Ubuntu and Mac OS X systems [10]. It is not an operating system but 

provides similar functionalities such as hardware abstraction, low-level device control, 

implementation of commonly used functionality, message-passing between processes, and 

package management. Basically, the main goal of ROS is to provide a common, scalable, 

flexible, and language independent platform for robotics developers to share and reuse the 

code. The detailed explanation of all the concepts, installation procedures, tutorials, and other 

information about ROS can be found in an systematic form in its official documentation [10]. 

Furthermore, AirSim has a built-in wrapper for ROS that helps to interface the AirSim API as 

shown in Figure with ROS directly whose detailed explanation is given in [11]. This is 

extensively used throughout the Master thesis.    
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2.4 Archimedean Spiral 

The Archimedean spiral (also known as the arithmetic spiral) is a spiral named after the 3rd-

century BC Greek mathematician Archimedes [12]. It is the locus comprising of the locations 

of a point moving away from a fixed center point over time with a constant speed along a line 

that rotates with constant angular velocity as shown in Figure.  

 

Figure 2.2. Archimedean spiral represented on a polar graph [12] 

In polar coordinates (r, θ) it can be represented by the {equation}. 

𝑟 = 𝑎 +  
𝑏

2𝜋
⋅ 𝜃 

where a and b are real numbers.  

The parameter 𝑎 controls the position of the center point of the spiral. If a is positive then the 

center is shifted outward towards θ = 0, and if a is negative then the center of the spiral moves 

outward from the origin towards θ = π. Whereas parameter b controls the distance between the 

loops, which is equal for all the loops. This property of Archimedean spiral makes it suitable 

for full coverage of the unknown desired region with low or no overlap in search and rescue 

missions if the distance b between the loops is selected according to the Field of View (FOV) 

and height of the camera from the ground as shown in Figure which is discussed also by the 

authors in [13], [14], and [15]. 

 

Figure 2.3. Effect of Camera FOV and Height from the surface on the Camera footprint 
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3 Published Paper 
This chapter presents the paper [16] published by the author of this thesis,  PhD Student 

Luciano Lima, and the supervisor of this thesis Fabio Andrade in Proceedings of the IEEE/CVF 

Winter Conference on Applications of Computer Vision (WACV) Workshops, 2023 during the 

duration of this Master thesis, and is an integral part of this Master thesis. 

3.1 Abstract 

This work presents a novel framework providing the ability to control an Unmanned Aerial 

System (UAS) while detecting objects in real-time with visible detections, containing class 

names, bounding boxes, and confidence scores, in a changeable high-fidelity sea simulation 

environment, where the major attributes like the number of human victims and debris floating, 

ocean waves and shades, weather conditions such as rain, snow, and fog, sun brightness and 

intensity, camera exposure and brightness can easily be manipulated. Developed using Unreal 

Engine, Microsoft AirSim, and Robot Operating System (ROS), the framework was firstly used 

to find the best possible configuration of the UAS flight altitude, and camera brightness with 

high average prediction confidence of human victim detection, and then only autonomous real-

time test missions were carried out to calculate the accuracies of two pretrained You Only Look 

Once Version 7 (YOLOv7) models: YOLOv7 retrained on SeaDronesSee Dataset (YOLOv7-

SDS) and YOLOv7 originally trained on Microsoft COCO Dataset (YOLOv7-COCO), which 

resulted in high values of 97.8% and 93.79%, respectively. Furthermore, it is proposed that the 

framework developed in this study can be reverse engineered for autonomous real-time training 

with automatic ground-truth labeling of the images from the gaming engine that already has all 

the details of all objects placed in the environment for rendering them onto the screen. This is 

required to be done to avoid the cumbersome and time-consuming manual labeling of large 

amount of synthetic data that can be extracted using this framework which could be a 

groundbreaking achievement in the field of maritime computer vision. 

 

3.2 Introduction 

Unforeseeable in nature, disasters involving ships at sea not only inflict costly economic and 

environmental damage, but also jeopardize the invaluable life of crew and passengers onboard. 

According to [17], there were a total of 892 shipping losses worldwide between 2012 to 2021 

with 54 total mishaps alone in 2021. Even though the total number of global vessel hazards 

declined by around 57% over the decade, it is still a substantial amount with each case 

necessitating prompt and costly deployment of Search and Rescue (SAR) teams to rapidly curb 

down the resulting harm. And, naturally, the primary focus of all rescue missions is to first 

scour the inhospitable post-disaster region for victims and safeguard their lives. All this 

substantiates the research interest to effectively and efficiently utilize the existing cutting-edge 

scientific innovations to alleviate the threat on human life emanating from unpredictable 

maritime accidents. 

However, the abundance of all the applicable contemporary technologies introduces perplexity 

in deciding the perfect combination between them for optimum performance. In general, almost 
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all major research conundrums are resolved with the thorough comprehension of the problem 

domain and taking inspirations from the phenomenon already occurring in nature. On 

breakdown of present real-life search and rescue operations, intuitively most of the associated 

expense including time and money is attributed to the transportation of human first responders 

in boats, helicopters, and aircrafts [18]. In addition, the involvement of humans, pursuant to 

[19], brings upon various errors due to estimation biases of different physical quantities such 

as under-estimation of horizontal distance, over-estimation of height when looking down and 

under-estimation when looking up. These drawbacks can be overcome using Unmanned Aerial 

Systems (UAS) that have small-size, lower operational cost, flexible aerial maneuverability, 

wireless communication, and mathematical computation ability. UAS equipped with simple 

RGB and/or thermal cameras and either onboard or cloud-based processing capability which 

facilitates the use of deep convolutional neural networks (CNN) based object detection models, 

as discussed by the authors in  [20], [21], [22], [23], [24] and [25], can best mimic the action 

of rescue personnel flying in helicopters or aircrafts for finding the victims in hazardous 

territories, making the rescue process more efficient. Furthermore, among different modern 

deep learning based object detection models [26], the state-of-the-art YOLOv7 that transcends 

all other recognized object detectors in speed and accuracy [27] is here considered the most 

suitable one because in critical real-time SAR missions both response time and accuracy are 

equally important for saving human life. Therefore, the starting scientific dilemma is now 

narrowed down to the paramount research question that forms the main basis for this work 

which is: How to find the best possible configurations of the UAS and state-of-the-art object 

detection models for working together in real-time with optimal accuracy of victim detection 

at an erratic post-disaster ship scenario? 

With this question in mind, simulation seems to be the only plausible path forward initially 

because of the risk, price, time, and effort involved to set up the physical test environment at 

sea with real persons and UAS with cameras, not to mention the absurd complications in the 

re-enactment of the alternating scenario in the aftermath of an actual ship accident. Moreover, 

the general prerequisites of the simulation platform to be used can also be deduced from the 

research question as: (1) It should be able to produce detailed reproduction of a disaster-struck 

ship surroundings with high quality of graphics; (2) It should allow the replica of UAS with 

various sensors to be spawned and controlled in the fabricated environment; (3) It should have 

an interface to a mechanism capable to control as well as read and process sensor data from a 

real UAS, and execute object detection models, enabling transferability to real-world 

applications; and (4) It should have the ability to pass a continuous image stream from the 

replicated UAS that can be fed as input to object detection models for real-time processing.   

Unreal Engine 4 [28] with the integration of AirSim [29], and Robot Operating System (ROS) 

[30], on the basis of [31], [32], [33], [34] and [35], has the potential to fulfill all the 

requirements of the simulation platform for this work as mentioned above. But when the 

requirements are actually materialized with the combination of Unreal Engine, AirSim, ROS, 

and Object Detection Models, a novel framework originates that answers the research question. 

Therefore, this work follows the steps according to the requirements to firstly develop the 

framework. Then, using this framework, the object detection models are evaluated to find the 

finest configurations for achieving high accuracy of victim detection in real-time. 
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Hence, the main contributions of this paper are summarized as: 

• The creation of a high-fidelity changeable sea simulation environment, where the deep-

rooted challenges in the maritime computer vision such as the different light conditions, 

altitudes, sea colors, buoyancy, objects movement, camera exposures, brightness, 

weather, size of the objects, among many others, can be easily controlled. This also 

allows to inexhaustibly generate synthetic data for training new models. 

 

• The development of a framework with the constructed simulation environment to 

evaluate the performance of the cutting-edge object detection models with the input 

images from the UAS in real-time autonomous SAR missions, which can directly be 

transferred to real-world UAS applications. 

 

• The proposal to reverse engineer the created framework for autonomous real-time 

training of object detection models with the automatic ground-truth labeling of the 

desired objects in the images from the UAS which could be a breakthrough in maritime 

computer vision. 

 

3.3 Development of the Novel Framework 

This section describes the overall steps carried out based on the requirements of the 

simulation platform mentioned in the previous section. 

3.3.1 Virtual Environment 

In this section, all the steps to build the simulated environment will be presented. 

The simulation environment is composed of a oil tanker, objects and people in water, and a 

small boat where the drones are deployed from. 

In Figure 3.1, the environment is presented, highlighting the oil tanker. Another angle of the 

environment, highlighting the objects and people can be seen in Figure 3.2. 

 

Figure 3.1. Simulated environment from oil tanker side. 
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Figure 3.2. Simulated environment from objects side. 

 

3.3.1.1 Environment Project 

The Environment Project [36] is an open source environment simulation project for Unreal 

Engine 4. It is the continuation of the Ocean Project, and has many features, such as ocean 

simulation, sky simulation, buoyancy, time, and fish plugins. In this work, the simulation 

environment was built on top of an existing example world that is made available by the 

Environment Project. 

Two important configurations that are only present when building sea environments are the 

color of the ocean and the waves. It is possible to choose a darker or brighter ocean or more 

blue or green, for example. Regarding the waves, it is possible to choose the height, direction, 

among others, to make a more stormy or calm sea. In the Environment Project world, these 

configurations are in the Blueprint "BP_Ocean". Additionally, the various environmental 

aspects like sunlight intensity, brightness, atmospheric light, fog, and others were present in 

the blueprint "BP_Sky". 

In addition, it is possible to configure weather parameters such as wind, rain, among others, 

which are also present in any world of Unreal Engine 4 but have their own plugin in the 

Environment Project. 

 

3.3.1.2 Post-Disaster Oil Tanker 

The first element that was added to the environment was a post disaster ship. 
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Figure 3.3. Post Disaster Oil Tanker. 

Unreal Engine 4 Marketplace has much content available for download, both free and paid. 

The content that was chosen for this work is called "Post-Apocalyptic Oil Tanker" and was 

made available for purchase in 2017 by the content creator "mikkotahtinen". An illustration of 

the ship can be seen in Figure 3.3. It is important to note that the content that is downloaded is 

composed by many separate blueprints (Figure 3.4). The creator of the world needed to build 

the oil tanker with the desired content. One advantage was that in the content there were many 

other interesting objects such as containers, that were added in the environment developed by 

this work. 

 

Figure 3.4. Blueprints available in the "Post-Apocalyptic Oil Tanker" product. 

 

3.3.1.3 People 

As the goal of this proposed framework was to provide a realistic environment, it was required 

to populate it with people. This work focused on including people treading water to simulate 
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victims in a sea disaster. However, it is also possible to include people walking in the ship or 

swimming. Many characters and animations can be downloaded for free at Mixamo [37] by 

Adobe. 

In this work, around six different characters were used, all of them with the animation of 

treading water. 

After downloading the animation, the physics aspects must be properly configured. The two 

configurations that allow the person to properly tread water and be affected by the water 

movement are to enable collision and choose the "SK_Mannequin_PhysicsAsset" as the 

"Physics Asset Override". This was implemented with the proper understanding of similarity 

in the bone structure and hierarchy of the "SK_Mannequin" Asset which is the default third 

person character of Unreal Engine, and the Mixamo character. This also allows the manual 

control of the Mixamo characters using the physics control capability of the "SK_Mannequin". 

 

3.3.1.4 Buoyancy Configuration 

One of the main aspects of this work is to have objects which are affected by the stream and 

waves of the environment. Therefore, the buoyancy must be correctly configured, otherwise, 

the objects would just be with a static position, frozen in the 3D space, without following the 

water movement. 

To configure the buoyancy, first the "Buoyant Force" component was added to the Blueprint, 

then, the buoyancy points were decided with the assistance of the arrow tool as shown in Figure 

3.5. Therefore, it is possible to know the exact position to add the buoyancy in the "Test Points" 

configuration element. For the swimmer, three buoyancy points were added. This varies for 

different objects.   

 

Figure 3.5. Buoyancy points configuration. 
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Finally, Figure 3.6 presents the three test points which were included for the swimmer 

blueprint. 

 

Figure 3.6. Buoyancy points placement. 

It is important to note that the same procedure must be performed for all objects placed on the 

sea, such as the oil tanker, containers, oil barrels, buoys, among others. Nevertheless, the 

buoyancy points should be added to only one blueprint of any object, and then the same object 

can be easily replicated with the same settings.   

 

3.3.1.5 Other Aspects 

In addition, buoys, and other objects, such as containers and oil barrels with buoyancy added 

following the same procedure as people, were placed as seen in Figure 3.7. 

 

Figure 3.7. Top view with objects. 
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3.3.2 Initial Setup of the UAS 

Firstly, the AirSim plugin was integrated into the custom Unreal environment following the 

procedures as explained in the AirSim documentation [38]. All settings, except for the camera, 

were kept as default. A single multirotor UAS named "Drone_1" was spawned in the 

environment with "PlayerStart" placed on top of a rescue fishing boat as shown in Figure 3.8. 

 

Figure 3.8. Initial UAS Setup in the Virtual Environment. 

The camera settings were modified facilitating the UAS to have a single camera of resolution 

640x640, which is the YOLOv7 model standard image resolution, field of view (FOV) of 90 

degrees, and gimbal enabled with perfect stabilization of 1 and pitch of -90 degrees making the 

camera face vertically downward. In addition, the sensors like IMU, Magnetometer, GPS, and 

Barometer were also enabled automatically if the settings were left unchanged for the 

Multirotor sim mode as mentioned in the AirSim documentation [38]. 

Furthermore, complying with the directives specified, AirSim ROS wrapper was setup for 

Noetic version of ROS inside Windows Sub-system for Linux (WSL) 2 with Ubuntu 20.04 as 

Linux distribution on a Windows 10 computer having NVIDIA GeForce RTX 2080 Ti 

Graphical Processing Unit (GPU). It primarily contained two nodes among which the mostly 

used first node named "airsim_node" was a wrapper over AirSim's multirotor C++ client library 

that was comprised of various publishers, subscribers, services, and parameters. 

 

3.3.3 Manual Control of the UAS 

Next, using the "Twist" ROS message type, the velocity command subscriber topic from the 

wrapper allowed the movement of the UAS in all directions with the input of both linear and 

angular velocities in x, y, and z coordinates. For utilizing this feature to manually move the 

UAS in a desired way in the simulation environment, a ROS package named 

"AS_RoS_Teleop" was used that linked the different keyboard keys with separate control 

commands to publish velocity twist messages in the chosen topic. 
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3.3.4 Implementation of YOLOv7 in ROS 

Subsequently, the effort of implementing YOLOv7 in ROS was eased with the ready-made 

ROS package titled "yolov7_ros" which was a ROS wrapper built over the original framework 

by the official developers of YOLOv7 [27]. After that, the weights of the chosen pertained 

YOLOv7 models were downloaded, and the class names for the respective models in the 

required txt file format were saved in separate folders. Then, the path to the model weights, 

class names, and the image topic were specified accordingly in the launch file to initiate the 

node for the real-time detection and visualization of the detections along with the bounding 

boxes, class names, and confidence scores using the desired YOLOv7 model one at a time. 

 

3.4 Evaluation of Object Detection Models 

This section explains the different procedures adopted to evaluate the performance of the object 

detection models for real-time detection of human victims in autonomous UAS missions. 

3.4.1 Selection of Pretrained YOLOv7 Models on Different Datasets for 
Evaluation 

As this study was in its early phase, it was decided to utilize the ready-to-use YOLOv7 models 

that were already trained on datasets containing people because the focus of this study was to 

detect human victims with high accuracy in the post-disaster scenarios.  

The first obvious choice was the originally trained YOLOv7 model on Microsoft COCO 

(Common Objects in Context) [39] which was a large-scale dataset developed for object 

detection, classification and segmentation with 91 labeled objects constituting also people 

designated as "person" class. Due to the core nature of any Deep CNN based models including 

YOLOv7 to learn patterns in the training image using shifting convolution operations, it was 

important to assess the type of human images in this dataset. So on further scrutiny, it was 

found that the majority of the images were taken in canonical perspective [40] with different 

viewing angles. 

Secondly, in search of datasets specially concentrating on the marine environment and aerial 

images, SeaDronesSee [41] was found, which was also a large-scale dataset from different 

aerial perspectives developed with focus on SAR operations on the sea using UAS. This was 

completely relevant for this work. In addition, the SeaDronesSee team had also trained 

YOLOv7 in their own dataset, and made the model freely available in project GitHub [42]. The 

output labels in this model were swimmer (people floating with stretched hands and legs), boat, 

jet ski, buoy, and lifesaving appliance (life jacket/lifebelt). 
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3.4.2 Experimentation with Various Configurations 

The main beauty of the developed framework was that it enabled numerous experiments with 

minimal efforts which otherwise would have been either impossible or extremely difficult in 

real-life. 

However, to make the study more focused in accordance with all other experimental studies, 

the variables to be considered in this work were also reduced from the plethora of the 

manipulable variables. Thus, keeping constant the environmental factors such as dark blue 

ocean shade, low wave amplitude and velocity, normal level of atmospheric and other lights, 

only the UAS position, especially height, and camera brightness was manipulated. The camera 

brightness was altered by changing the post-process settings present inside the camera 

component of the main parent blueprint of AirSim Camera named "BP_PIPCAMERA". Also, 

to further reduce the variables involved in this study, the camera brightness was changed as 

very low, low, normal, high, and very high. When the environment is executed in AirSim Game 

Mode, the images rendered on the screen are from the external camera which is also a child of 

the parent AirSim Camera. Hence, when the brightness of the camera was changed, it affected 

the image displayed on the viewport as seen in Figure 3.10.  

Therefore, the starting experiment was carried out by freely traversing the UAS in the 

environment with different camera brightness and YOLOv7 models. On doing so, some 

interesting phenomenon of human victim detection were observed for both the models. 

With the YOLOv7-SDS model selected, all the objects were detected as "boat" class in low or 

normal camera brightness for all heights of the UAS. But when the brightness was high, the 

model started to detect floating people with hands and legs moving as "swimmers" whereas 

other objects were still as "boat". Meanwhile, with the YOLOv7-COCO model chosen, the 

human buoyant victims were correctly classified as "person" class mostly in low heights with 

low or normal brightness. 

For concretizing these observations, a separate test area with just the imported six characters 

was created as shown in Figure 3.9. 

 

Figure 3.9. Isolated test region with just humans. 
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After that, the UAS was manually flown to the center of the testing region, and slowly only the 

altitude of the UAS was elevated from low to high and vice versa with different camera 

brightness each time for both YOLOv7-SDS and YOLOv7-COCO models. Concurrently, the 

detections with bounding boxes and confidence scores, the average prediction confidences and 

the altitude were closely monitored as shown in Figure 3.10. 

 

Figure 3.10. Illustration of the experimental procedures followed in the testing region. 

Finally, after exhaustive trials it was found that the YOLOv7-SDS model had the highest 

average prediction confidence of detecting human victims as "swimmers" class at 8 meters 

from the sea level with a very high camera brightness, whereas the YOLOv7-COCO model 

had the highest average prediction confidence of detecting human victims as "person" class at 

2 meters from the sea level with low camera brightness. 

 

3.4.3 Path Planning for the Autonomous Mission 

As the primary objective of this study was to evaluate the performance of the models for victim 

detection by skipping the arduous process of deploying the UAS in actual post-disaster 

scenarios with a simulated one, there was a need to replicate the mission that would have been 

employed in real-life, which could be used to gather the test images after detection by the 

models for empirical accuracy calculation. 

Moreover, the predetermination of the specific height and camera settings of the UAS also laid 

the foundation for the autonomous surveillance mission. Using the distributed node processing 

capability of the ROS framework, the responsibilities of taking the UAS to the appropriate 

location in the environment, and then covering the desired locality fully were assigned to 

separate nodes. The point-to-point transfer of the UAS was implemented by modifying the 

second node present in the AirSim ROS wrapper named "Simple PID Controller Node" from 

service node into an action server node waiting for the position goal asynchronously where the 
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controller parameters proportional gain (K_p) and derivative gain (K_d) were set after heuristic 

tuning to 0.5, and 2 respectively. 

For full coverage of the desired post-disaster region by the UAS, the boustrophedon path [43], 

as shown in Figure 3.11, was  deemed to be the most straightforward and effective option for 

this work, where the width in each step was selected to be: 

𝑤𝑖𝑑𝑡ℎ = 2 × 𝑍𝑈𝐴𝑆 × tan (
𝐹𝑂𝑉

2
)  

where 𝑍𝑈𝐴𝑆 is the altitude of the UAS and FOV is the field of view of the camera. 

 

Figure 3.11. Boustrophedon Path. 

Here, the boustrophedon path was implemented in a node where the odometry sensor topic was 

subscribed for current UAS position and the required velocities were published to the velocity 

command topic in world frame. 

Furthermore, an additional path planner node was created for the autonomous systematic 

execution of both the nodes. 

 

3.4.4 Final Mission Execution 

Lastly, the autonomous reconnaissance operations were carried out, where the drone 

independently takes off, goes to the specified starting point of the desired area, covers the area 

for predefined mission time, and returns back to land in the initial position. All these actions 

were executed by the collaboration between the different nodes discussed in the previous 

sections as shown in Figure 3.12. 
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Figure 3.12. Collaboration between the nodes during the mission obtained using "rqt_graph". 

 

Also, using the "image_view" package in ROS, the real-time images with detections published 

during the mission by the "yolov7_ros" node in the visualization topic were observed and some 

chosen images at strategic locations containing people were saved by simple right-click of 

mouse-button for both the models which ensured proper representative sampling for statistical 

calculation. This was mainly done to limit the number of images gathered for numerical testing 

due to high frame rate without losing substantial features from the data. 

 

3.5 Results and Discussion 

This section presents the results from the statistical metrics calculation of the selected output 

test images from the real-time detection models along with the relevant discussions. 

Table 1 illustrates the flight altitude and camera brightness of the UAS for each model in 

addition to the number of test images gathered for evaluation. The number of images sampled 

was lower when using the YOLOv7-SDS because the flight elevation was higher, and as each 

time the altitude is doubled, the area covered is quadrupled, so less images were needed for the 

representative analysis of the same area. 

Table 1. Overview of the datasets collected and assessed. 

Model Altitude Brightness Images 

YOLOv7-COCO 2 m Low 130 

YOLOv7-SDS 8 m Very High 26 
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The confusion matrix of the detections in the YOLOv7-COCO model can be seen in Table 2. 

There were 129 objects detected. Of these 129 objects, 110 were correctly detected as "person", 

2 were incorrectly classified as another object and 6 people were not detected at all. Therefore, 

the number of false negatives is equal to 8. That gives an accuracy of 93.79%. Among the 

correctly detected people, the average confidence level was 84%, the minimum was 27% and 

the maximum 96%. 

Table 2. Confusion Matrix of the detections in the collected images for the Yolov7 model trained on the 

COCO2017 dataset (YOLOv7-COCO). 

 Predicted  

Person  Not Person 

Actual Person 110 8 

 Not Person 0 11 

 

The confusion matrix of the detections in the YOLO-SDS model can be seen in Table 3. There 

were 142 objects detected. Of these 142 objects, 36 were correctly detected as swimmers, there 

was 1 incorrectly classified as another object and 2 swimmers were not detected at all. 

Therefore, the number of false negatives is equal to 3. That gives an accuracy of 97.8%. Among 

the correctly detected swimmers, the average confidence level was 69%, the minimum was 

38% and the maximum 82%. 

Table 3. Confusion Matrix of the detections in the collected images for the Yolov7 model trained on the 

SeaDronesSee dataset (YOLOv7-SDS). 

 Predicted  

Swimmer Not Swimmer 

Actual  Swimmer 36 3 

 Not Swimmer 0 103 

 

Now, the first point to be discussed is the very fact that the models trained on real images were 

able to detect the synthetic objects with high accuracies provides a strong proof-of-concept for 

the interchangeability of real and virtual SAR missions, justifying the importance of this work. 

Secondly, although the accuracies achieved by both models were high, there was a huge 

difference in the nature of the input images fed into the models. This inspired further 

contemplation on the working of the deep CNN itself. As, in deep learning the patterns in pixel 

level from the input images are encoded into the model, so the behavior of the model is 

dependent on the normalized pixel intensities in the three RGB color channels which is actually 

the numerical input into the model. With this comprehension, the results from the YOLOv7-

model, as seen in Figure 3.14  made complete sense because the patterns in training images of 
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MS COCO Dataset [39] matched with the pixel-level patterns in the input images due to the 

adjusted flight altitude of the UAS. But the result from the YOLOv7-SDS, as observed in 

Figure 3.13, was a surprising discovery which was only possible due to the rigorous 

experiments with various configurations of altitude and camera settings allowed by this 

framework. Comparing this result to the images with people in the SeaDronesSee Dataset [41], 

it could only be hypothesized that the matching of the pixel-level pattern of a human floating 

in water with stretched hands and legs along with high uniform intensities of the bright pixels 

triggered the neural network to output "swimmer" class. This intriguing phenomenon needs 

more research and can be particularly interesting for training with high altitude or satellite 

images. 

 

Figure 3.13. Detection with YOLOv7-SDS in mission. 

 

Lastly, another captivating observation highlighting the significance of real-time detection in 

SAR is that with a high frame rate of input images, the footprint underneath the UAS is always 

overlapping with the UAS moving forward only small distance in each iteration resulting in 

multiple chances of detection. So, even if a victim is not detected in one image, there is still a 

high probability that it might have been detected in the earlier or will be detected in the 

subsequent image which is clearly exemplified by Figure 3.14.This also results in the actual 

false omission rate (FOR) being lower than what was observed with the test images. 
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Figure 3.14. Detections with YOLOv7-COCO in mission. 

 

3.6 Conclusion 

In this work, a framework was developed using Unreal Engine, Microsoft AirSim, and ROS 

that enabled the control of the UAS in a desired way based on velocity commands while 

detecting objects in an alternating post-disaster ship simulation environment. After that, two 

pretrained YOLOv7 models were selected: YOLOv7-SDS and YOLOv7-COCO. Then, using 

the created framework, extensive manual testing was implemented by changing the UAS 

altitude along with the camera brightness to discover the best possible combination with high 

average prediction confidence of detecting human victims naturally floating in water with 

moving hands and legs. This allowed to plan and implement autonomous UAS missions using 

the same framework yielding high accuracies of real-time victim detection calculated as 97.8% 

for YOLOv7-SDS when the UAS was deployed in an altitude of 8m with high camera 

brightness, and 93.79% for YOLOv7-COCO when the UAS was employed at a height of 2m 

from the sea-level with lower camera brightness.       

Furthermore, the developed framework has immense potential for further work. Due to the 

limitation of time and difficulty of accommodating all the things in a single paper, only a few 

experiments were carried out in this study. But extensive experimentations will be performed 

in the near future with various object detection models in different configurations accompanied 

by the implementation of the findings physically with a real UAS. Additionally, other 

researchers are also encouraged to utilize the detailed steps of reproducing the framework 

fabricated in this work to carry out experiments according to their respective needs.  

Moreover, a small modification in the research question proposed in this work to "How to make 

any configuration of the UAS and object detection models to work together in real-time with 

optimal accuracy of detecting any desired object in a dynamic marine environment?" suddenly 

demystifies the true potential of this framework. By reverse engineering the images in the UAS 

camera to have the precise automatic ground truth labeling from the gaming engine, the same 

framework has the capability of training new object detection models in real-time in different 
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imaginable configurations for any thinkable objects overcoming all the traditional challenges 

in maritime computer vision. 
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4 Additional work on the paper 
This chapter describes the additional work carried out in accordance with the paper with a 

primary objective to answer the research question of how to handle the dynamic marine 

environment where people and objects cannot remain in the same place due to the nature of 

open sea water.   

4.1 Overall Process Diagram 

The block diagram, as shown in Figure 4.1, briefly illustrates the overall process flow for this 

chapter which will be explained in detail in the later sections.  

 

 

Figure 4.1. Block Diagram of the Overall Process Flow 
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4.2 Custom Virtual Environment in Unreal Engine 5.1 

This section describes the steps followed for the creation of a new custom Sea Simulation 

Environment from scratch using the currently latest fully released version 5.1 of Unreal Engine 

(UE) and Microsoft AirSim. This was carried out to further explore the potential of the built-

in features of UE5.1 as a knowledge building step.  

4.2.1 Setting up the initial Sea Environment 

Here, the primary steps involved in setting up a natural looking simulation environment with 

sky and sea are explained. Starting with a new blank blueprint project with starter content 

selected in the initial user interface of UE5.1, firstly, a new empty level was created, which was 

completely empty and dark, and was saved as Environment in Maps folder. Then, from the 

Place Actors panel, firstly, Sky Atmosphere component was placed into the Environment from 

the Visual effects category, followed by the Directional Light component from Light category, 

which was renamed as Sunlight. Next, again from the Visual effects category, two components 

Volumetric Cloud and Exponential Height Fog were added into the Environment, ending with 

Skylight component from the Light category with Real Time Capture property checked for 

better lighting. Consequently, the Environment level contained a realistic looking sky 

atmosphere with blue sky, movable sun, clouds, and a negligible amount of fog, whose settings 

could be modified according to the desire of the developer.   

Furthermore, for the placement of sea in the Environment, in the beginning two built-in plugins 

named Water and Landmass were enabled. Then, changing the viewing mode from Perspective 

to Landmass, the size of the landmass was selected sufficiently large in Quads with Enable 

Edit Layers property checked, which was necessary for Water plugin to work because the water 

body was built over the landmass, and leaving other properties unchanged. After that, again 

switching to Perspective viewing mode, from the Place Actors panel, Water Body Ocean 

component was added into the Environment, which spawned the sea into the Environment, and 

with it selected, the spline points in white color were made adequately small to cover up the 

default formation of a small island in the Environment. Finally, after the completion of all these 

steps, a simulation environment was developed with sky and empty sea. 

              

4.2.2 Transfer of Assets 

The different useful assets like Oil Tanker, Buoys, and six people from the previously 

developed environment in UE4.27 as in Section 3.3.1, were migrated to this project in UE5.1. 

The Ship blueprint developed earlier by combining different static meshes parts, was directly 

placed in the Environment, and Particle Effects of Fire from Starter Content were added to 

simulate its accident. However, some modification had to be made for different other assets 

that required buoyancy for floating like containers, oil barrels, buoys, and people because the 

Environment Project as in Section 3.3.1.4 had its own buoyancy component named Buoyant 

Force, but for the custom environment the unreal engine had its own default Buoyancy 

component. Nevertheless, the differences were subtle with primarily just the change in name 
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for the points where buoyancy was applied from Test Points to Pontoons as shown in Figure 

4.2 for oil barrel, and similarly for other static meshes. 

 

 

Figure 4.2. Blueprint for Oil Barrel with Buoyancy component 

 

Likewise, some adjustments were also made to simulate treading people from previous work 

in Section 3.3.1, by wrapping the character into a blueprint class that is a child of Character 

class, which gives additional components like capsule collision cylinder, skeletal mesh, 

character movement by default because it was later found in further study that this was the 

standard practice in Game Development used for controlling character as shown in Figure 4.3.   

 

Figure 4.3. Character Blueprint with Buoyancy added. 

 

The desired skeletal mesh of the person, and the existing animation asset of Treading was 

selected in the Mesh component. Previously, the physics was enabled directly for the skeletal 

mesh itself, by also overriding its physics asset to SK_Mannequin_PhysicsAsset as in Section 

3.3.1.4, which was found after extensive trial and error to make the character fall normally 

without any unusual behavior. But here, the physics was enabled for the capsule component by 

checking the Simulate Physics and Enable gravity property which made the character 

experience gravity without directly changing any settings of the skeletal mesh as it was a child 

of the capsule component. Also, only a single Pontoon point was added in Buoyancy 

component with other properties like Radius left to default values as shown in Figure 4.3. As, 

it was enough to make the person naturally float on water with treading action, which was the 

elementary concern for this study as shown in Figure 4.4. 
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Figure 4.4. Character treading in Sea with buoyancy 

 

4.2.3 Swimming People 

As the people normally floating in water with moving hands and legs i.e., treading, had already 

been implemented in the paper, the next step was to implement swimming victims in water. 

For that, firstly, swimming animation for the character was downloaded from Mixamo [37] and 

imported into the project. But people cannot directly start swimming or continuously only swim 

forever. Taking this into account, animation blendspace was used that helps for transition of 

animation from treading to swimming based on the value of arbitrarily chosen parameter. In 

this case, the speed of the swimmer is chosen as that parameter, which is a natural phenomenon 

also. One of six characters, named Leonard, was chosen initially to update it into a swimmer, 

and a 1D Animation Blendspace component from Animation option when right clicked in the 

content browser of UE5.1 was created as shown in Figure 4.5. 

 

Figure 4.5. 1D Animation Blendspace with Treading Animation 

As seen in Axis Settings in Figure 4.5, Speed parameter was kept in the Horizontal Axis with 

Minimum Axis Value as 0.0 and Maximum Axis Value as 100.0. Then, the Treading Animation 
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was dragged from the Asset Browser in the lower right section to the leftmost part of the 

timeline with symbol of “x”, and Swimming Animation was dragged to the rightmost part as 

shown in Figure 4.6.   

 

Figure 4.6. 1D Animation Blendspace with Swimming Animation 

Hence, the animation slowly changes with the increasing input value of Speed from 0.0 to 

100.0. The developed animation blendspace was then used to create an Animation Blueprint, 

which could be used inside the blueprint of the character. In the Event Graph of the Animation 

blueprint, the current speed of the character was taken from the Get Component Velocity 

function and set to a float variable named Speed as depicted in Figure 4.7. 

 

Figure 4.7. Animation Blueprint Event Graph 
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Then, that Speed variable was used as input to the blendspace, and the output of the blendspace 

was connected to Output Animation Pose node of the animation blueprint that directs the 

current animation for the character as illustrated in Figure 4.8. 

 

Figure 4.8. Animation Blendspace to Output Animation Pose in Animation Blueprint 

 

Now, for the actual swimming action of the character, firstly, an idea was brainstormed to make 

the character swim continuously in a square pattern for the easiness of the testing purposes 

later. For that, a custom event Trigger swim was created inside the character blueprint to trigger 

the start of the movement as shown in Figure 4.9.  

 

Figure 4.9. Event Graph for Character Leonard Swimming in a square pattern 
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For the control of time and value, different Timeline nodes were used. The first two will be 

explained as an example, with a similar idea for the rest. The first timeline node Timeline_12, 

as shown in Figure 4.10, was of short duration of 2 seconds, that was used to output smooth 

continuous value from 0.0 to 90.0 to Set Actor Relative Rotation function node which rotates 

the character to the right by 90°. 

 

Figure 4.10. Timeline Node outputting values from 0.0 to 90.0 in 2 seconds 

 

Then, the second timeline node Timeline_8, as illustrated in Figure 4.11, was used for 

producing values between 0.0 and 0.9 between a duration of 20 seconds, which was fed into 

the Add Movement Input function node for making the character slowly swim forward in the 

current relative z or yaw direction that was found by extracting the forward vector from the z 

rotation value given by Get Actor Rotation function node as portrayed in Figure 4.9. 

 

Figure 4.11. Timeline Node outputting values from 0.0 to 0.9 over the duration of 20 seconds 

 

Similarly, when the character swam for 20 seconds, then the relative rotation was adjusted to 

follow the square pattern, and again the character swam for another 20 seconds. Hence, a total 

of 4 timeline nodes of 2 second duration were used for setting the relative rotation smoothly in 

each phase, and another 4 timeline nodes of 20 second duration for the swimming movement 

input. Then, as illustrated in Figure 4.9, Set Timer by Event Handle node was used to again 

trigger the event Trigger swim automatically after the end for making the character 

continuously swim in a square pattern.  
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Another important point to note is that before the character starts swimming, the Physics 

Volume of the Movement Component was set as Water Volume. The Maximum Swimming 

Speed property of the Character was set to 100 cm/s in the Character Movement component in 

accordance with the Speed parameter set in the Animation blendspace as in Figure 4.5. And the 

maximum value to be produced by the timeline node was set to 0.9 to not make the character 

swim in a fully horizontal way inside water, but with a small angle to the horizontal.   

Likewise, another idea was formulated that a continuously forward swimming person would 

also be required during the intermediate testing of the tracking by drone. Therefore, another 

character named Pete was chosen to be a continuous swimmer. The event graph of the 

continuous swimmer is shown in Figure 4.12. Here, a single timeline node was used for a 

duration of 5 seconds and maximum value of 0.9 with Loop option turned on.  

 

Figure 4.12. Event Graph for Character Pete swimming forward continuously  

 

4.2.4 Controllable Speed Boat 

In the previous work Section 3.3.2, the boat where drone was placed and launched was 

available in the Environment Project as in Section 3.3.1.1 and was just floating on water. So, 

it was decided to try to move the boat also autonomously to the desired location in this 

Environment i.e., victims in the current context. For this, a new asset named Speed Boat Packs 

was bought from the Unreal Engine Marketplace which was supported for UE version 5.1. It 

contained many boat types among which a Speed Boat as shown in Figure 4.13 was chosen for 

this study. Firstly, a new Blueprint Class named BP_SpeedBoatControlled was created as a 

child of default Pawn Class. Then, all the static meshes available in the Speed Boat asset were 

put together as children of the main boat body static mesh in the blueprint as illustrated in 

Figure 4.14. After that, six sockets were added at different locations in the static mesh of the 

boat where the Pontoons could act to provide buoyancy as depicted in Figure 4.13. 
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Figure 4.13. Sockets added to the static mesh of the chosen Speed Boat 

 

Next, the Buoyancy component was added to the blueprint and the Pontoons were attached to 

the sockets by the Center Socket property of the Pontoon as shown in Figure 4.14. 

 

Figure 4.14. Blueprint for the Speed Boat with Buoyancy component 

 

For controllable autonomous driving of the boat, a custom event Move To was created in the 

Event Graph as illustrated in Figure 4.15. The Figure 4.15 contains two contiguous parts on 

top of one another to accommodate inside the page and maintain the readability of the blueprint 

code.  
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Figure 4.15. Custom Move to Event inside Speed Boat to autonomously drive to selected person. 
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Here, firstly, the location of the blueprint character BP_Leonard was obtained by Get Actor 

Location function node, then the unit direction vector between the boat and the character was 

calculated using Get Unit Direction Vector function node. As, the direction was calculated 

from the center of the boat, 90° was subtracted in yaw direction of the output of Rotation from 

X Vector function node, which gave the rotation difference from x-direction, to make the boat 

point straight in the direction of the person by setting the new rotation in z or yaw axis using 

Set Actor Relative Rotation function node. Also, the unit direction vector was multiplied by the 

user specified Speed variable with Instance editable property checked that enabled editing it in 

the Level Editor, to input it into the Add Force function node. Moreover, to limit the maximum 

speed of the boat, the current velocity of the boat obtained from Get Physics Linear Velocity 

function node was checked whether it was higher or lower than the Speed set by the user, and 

only if it was lower the input to Add Force function node was allowed, otherwise the current 

velocity of the boat was clamped to the Speed set by using Set Physics Linear Velocity function 

node. Then, finally in the end again the Move To custom event was triggered after a small Delay 

to loop continuously until the destination was reached as shown in Figure 4.15.  

Also, another custom event titled TriggerMoveTo was fabricated to trigger the Move To event 

after some user specified delay through a float variable named Delay for Boat to Start Rescue 

whose Instance Editable property was turned on for the ease of changing the value from the 

Level Editor as portrayed in Figure 4.16. 

 

Figure 4.16. TriggerMoveTo custom event inside BP_SpeedBoatControlled 

 

Furthermore, an additional custom event named OnBoardPerson was also created to attach the 

person onto the boat as shown in Figure 4.17. For that, initially an extra socket titled 

SavedPerson was added onto the static mesh of the boat in the appropriate empty location in 

the boat as seen in Figure 4.13. Then, a Skeletal Mesh component named SavedPerson was 

added as a child of the main body static mesh of the boat. Moreover, a new animation asset 

called Praying was also downloaded from Mixamo [37] and imported into the engine to 

simulate the action of the saved victim thanking for the rescue. The OnBoardPerson event was 

made to take as input the desired Skeletal Mesh component which was set into the SavedPerson 

component using Set Skeletal Mesh Asset function node. Then, using the Set Animation Mode 

and Set Animation function nodes, the animation asset of the SavedPerson component was set 

to Praying. And, finally using the Attach Component to Component function node, as shown 

in Figure 4.17, the SavedPerson component could be attached with the body mesh of the speed 

boat in the location of SavedPerson socket.  
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Figure 4.17. OnBoardPerson custom event inside BP_SpeedBoatControlled 

 

4.2.5 Autonomous Rescue of the Victim by the Speed boat 

Next, the triggering point for the Move To event in the speed boat was considered to be the 

moment when the drone reaches the vicinity of the victim. For that a Box Collision component 

named boxcollision2 was added into the blueprint of the character Leonard BP_Leonard as 

illustrated in Figure 4.18. The boxcollision2 component was scaled in all directions but by 

higher amount in the Z-direction to account for the drone flying up in the air.  

 

Figure 4.18. Addition of box collision components in BP_Leonard 

 

Then, in the Event Graph of BP_Leonard a default collision detection event was created On 

Component Begin Overlap (boxcollision2) that detected the collision between the boxcollision2 

and the drone as shown in Figure 4.19. The Get Player Pawn function node was used to get the 

reference of the blueprint class of the AirSim Drone BP_FlyingPawn. When the collision was 
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detected inside boxcollision2, it was checked whether the Other Actor was the drone, and if it 

was True then the custom event inside the boat titled Trigger Move To was activated which in 

turn started the movement of the boat towards the person by triggering the Move To event after 

some delay.  

 

Figure 4.19. Collision event for boxcollision2 and the drone 

 

Now, with the setup of triggering the boat towards the person completed, next step was to on 

board the victim onto the boat when the boat reached near it. For that, another Box Collision 

component named boxcollision1 was also added in BP_Leonard as seen in Figure 4.18. 

Similarly, with the drone, in the Event Graph of BP_Leonard a default collision detection event 

was created On Component Begin Overlap (boxcollision1) that detected the collision between 

the boxcollision1 and the boat as shown in Figure 4.20. Firstly, Cast to 

BP_SpeedBoatControlled node checked whether the Other Actor was 

BP_SpeedBoatControlled, and if it was valid then the OnBoardPerson custom event was 

triggered with the skeletal mesh of Leonard character also sent as input. It simulated the person 

loaded onto the boat when the boat reached near the victim.   

 

Figure 4.20. Collision event for boxcollision1 and the boat 
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4.2.6 Initial Setup of the Drone using AirSim 

Following the similar procedures as in Section 3.3.2, with a difference in the use of the AirSim 

version to [9] developed by Codex Laboratories LLC to work with Unreal Engine version 5.1, 

the drone was initially placed in the developed Environment as shown in Figure 4.21. 

Furthermore, the origin geopoint parameter in the AirSim settings [7] was set to Latitude of 

57.963589°, Longitude of 9.130108°, and Altitude of 122 as seen in Appendix H. And it is 

important to note that when the Environment is started in AirSim Gamemode, the origin point 

both in geographical coordinates and NED coordinates starts from the initial spawning point 

of the drone. And, as the drone was kept on top of the boat, the difference in height from the 

starting point of the drone and the sea level was found to be 3.28366 m that was set as 

z_correction used in the georeferencing calculation later. The gimbal location was set in the 

middle point of the drone without any offset in this study, so it was ignored. But any difference 

in camera height known can be adjusted to z_correction.   

 

Figure 4.21. Initial Setup of the Drone in the Environment 
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4.3 Detection and Tracking by YOLOv8 

Based on the official GitHub repository [44] and [45], YOLOv8 was implemented in ROS in 

a separate node named yolov8_sea whose complete code implementation is in Appendix E. 

Basically, the node yolov8_sea subscribed the image topic 

/airsim_node/Drone_1/camera_1/Scene from the AirSim Drone, and the model was 

implemented in the image callback of the subscriber for Real-Time Detection. Here, both the 

object detection and segmentation models of YOLOv8 were implemented in the same node 

with a Boolean flag for selection amongst the two models. Furthermore, the center and 

bounding box pixel coordinates along with the tracking ID of the detections for each image 

were published as Detection2DArray message in the topic titled /detections. Also, the detection 

image, with bounding boxes, class name of the objects, track ID, and confidence score drawn 

onto it, was displayed in an OpenCV window for real-time viewing as well as published as 

sensor_msgs.msg. Image message in the topic /detection_image for remote viewing from 

anywhere. This allowed for the experimentation as in Section 3.4.2. For the current context, 

the drone was manually flown at different heights and the detection results along with the 

corresponding height were viewed in real-time, as shown in Figure 4.22, and it was observed 

that the YOLOv8 pretrained model detects the person treading and swimming in Sea with high 

confidence score till around 6.5m from the sea level. The model detected the person perfectly 

in any pose till that height, so no other configurations were tested for this study. 

 

Figure 4.22. Experimentation with YOLOv8 pretrained model by manually flying the drone. 
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4.4 Autonomous Archimedean Spiral Path Planning 

Based on the theory explained in Section 2.4, Autonomous Archimedean Spiral Path Planning 

was implemented on separate node named Archimedean_Spiral_Path in ROS whose complete 

code implementation is included in Appendix D, and its visualization is shown in Figure 4.23. 

 

Figure 4.23. Visualization of the implementation of the Archimedean Spiral  

 

For the easiness of understanding, the Table 4 describes the various parameters portrayed in 

the Figure 4.23. Visualization of the implementation of the Archimedean Spiral starting from 

the first quadrant.  

Table 4. Explanation of the Archimedean Spiral implementation  

Quadrant Parameters Description 

First NED XY Frame The X and Y direction of the NED frame that the 

AirSim Drone works on  
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 (x, y) The current (x, y) location of the drone in NED 

Frame  

Angle to centre = 

atan2(dx/dy) 

The angle to the origin point from the current 

location of the drone where dx = x - 0 = x, dy = y - 

0 = y, as the origin point in this study was taken as 

(0,0). The atan2 is the arc or inverse tangent 

function of the math library in python. 

Lookahead angle (w) The small lookahead angle in radians from the 

current angle to centre. For this work, the chosen 

value was 3° x π/180 radians. 

next_angle Angle to centre + Lookahead angle.  

next_radius = b. (Ө + w) The distance from the origin to the next point in the 

locus according to the {Equation}. Here, parameter 

a was ignored. (Ө + w) denotes the polar coordinate 

angle Ө for the next point, and it was implemented 

as the running sum of the difference between the 

present next_angle and the previous next_angle in 

each step. 

next_x = next_radius. 

sin(next_angle) 

The x value of the next point in the locus after the 

conversion from polar coordinate. It is different 

from the normal cartesian coordinate because of 

the change of frame in NED. Here, “.” represents 

the multiplication 

next_y = next_radius. 

cos(next_angle) 

The y value of the next point in the locus after the 

conversion from polar coordinate. 

Second next_x = next_radius. sin 

(π - next_angle) 

For mathematical simplicity and intuition, it was 

decided to keep the next_angle between 0 and π/2 

radians to always calculate as a right-angled 

triangle. The atan2 function yields values from 0 to 

π/2 in the first quadrant, and π/2 to π radians for the 

second quadrant in anticlockwise direction. Hence, 
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(π –next_angle) gave values between 0 and π/2 in 

clockwise direction.    

next_y = -next_radius. cos 

(π - next_angle) 

In the second quadrant, the value in vertical 

direction remains same in polarity but the value in 

horizontal direction has reverse polarity. Hence, 

the sign “-” for next_y. 

Third next_x = -next_radius. sin 

(π + next_angle) 

The atan2 function gave output from - π/2 to - π for 

the angles in the third quadrant in clockwise 

direction. Hence, addition of π gave positive values 

between 0 and π/2 in the anticlockwise direction. 

next_y = -next_radius. cos 

(π + next_angle) 

The polarities are negative for both vertical and 

horizontal directions in third quadrant. 

Fourth next_x = -next_radius. sin 

(abs(next_angle)) 

The atan2 function outputs values between 0 and -

π/2 radians for the angles in the fourth quadrant in 

clockwise direction. Therefore, the absolute value 

of next_angle yielded positive values between 0 

and π/2 radians in clockwise direction.  

next_y = next_radius. cos 

(abs(next_angle)) 

In the fourth quadrant, the values in the vertical 

direction are negative whereas the values in the 

horizontal direction are positive.  

 

With the values of the next point in the path known autonomously, the next step was to send 

proper velocity commands to follow the spiral path by the drone in the form of Twist message 

that contained linear and angular velocity components in x, y, and z direction. The velocities 

in x and y directions were sent PD controlled values with error being the difference in next 

point (next_x, next_y) and current point (x, y) with controller parameters Kp and Td 

heuristically tuned to 1 and 0.5 respectively. Likewise, the altitude of the drone i.e., z value 

was also PD controlled to a desired altitude with controller parameters Kp and Td as 2 and 5 

respectively. In addition, the roll and pitch of the drone were also tried to be controlled with PI 

controller having parameters Kp and Ti as 2 and 10 respectively after heuristic tuning as seen 

in the code in {Appendix}. Then, with a small value of parameter b of 1 as in Figure 4.23, the 

Archimedean_Spiral_Path node was tested for the result to give the output as shown in Figure 

4.24. 
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Figure 4.24. Testing of the path following by Archimedean_Spiral_Path node in the Environment 

 

The pink traced path seen in the Figure 4.24 is the path moved by the drone, which is a default 

feature of AirSim, and is activated by pressing T on the keyboard. It can be seen from Figure 

4.24 that the drone perfectly follows the Archimedean spiral as in Figure 4.23 with unit equal 

distance between the loops. Furthermore, due to the addition of extra control parameters the 

drone not only followed the spiral path, but it was also able to endure very high manual force 

trying to disrupt the path, making the path following more robust for search and rescue missions 

as shown in Figure 4.25. 

 

Figure 4.25. Testing for the robustness of the path following  
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4.5 Direct Georeferencing 

With the conceptual framework as shown in Figure 4.26, the detection centre in pixels which 

was outputted from the YOLOv8 model in yolov8_sea node, was converted into NED 

coordinate position in the world, i.e., direct georeferencing, with the complete code 

implementation in ROS as a separate node named as Georeferencing is presented in Appendix 

F. 

 

Figure 4.26. Conceptual diagram for Direct Georeferencing.  

 

And the flowchart for the logical flow with pseudocode of the code implementation based on 

the Figure 4.26 is illustrated in Figure 4.27. 

 

 

 

             

          

            

          

         

          

       

             

                

Camera 

 

           

           

        

           
       

              

            

                         

            

                        

       

       

        

  

  
 
  
 
  
 
  
 
  
  
  
 
  
  
  
  
  
 
  
 

 
 
  
 
  
  
  
 
  
  
 
  
  
  
 
  
  
  
  

 

 
 
  
 
  
  
 
 
  
  
 
  
 
 
  
 
 
 

 
  
 
 
 

 



  

54 

 

Figure 4.27. Flowchart for the code implementation of Direct Georeferencing 
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Here, as seen in Figure 4.27, basically, the Georeferencing node listens to two topics 

/detections from yolov8_sea node and the Odometry topic from the AirSim using Approximate 

Time Synchronizer in ROS that synchronizes the messages in both the topics based on the 

maximum difference of time in the timestamps of both the messages and produces a single 

callback function. For this study, the maximum difference in time given by the slop parameter 

was set to a very low value of 0.1 seconds. Then, as /detections topic contained 

Detection2Darray message which comprised of all the detections in the single frame of image, 

only the first person detected and tracked by the model was selected for the tracking by the 

drone in this study. All the steps used after that are self-explanatory based on Figure 4.26 and 

Figure 4.27.           

4.6 PD Tracking by Drone 

Furthermore, the continuous tracking by drone until the victim was rescued was also 

implemented inside the Georeferencing node as seen in Appendix F. The continuation of the 

flowchart shown in Figure with the addition of the logical flow for tracking is shown in Figure 

4.28. 

 

Figure 4.28. Flowchart for PD tracking of the victim by the drone 

 

The position errors were calculated between the NED coordinates of the detected victim and 

the current NED position of the drone obtained from the Odometry topic. Similarly, the altitude 

of the drone was also controlled to a desired height specified by the developer. Both position 

and altitude of the drone were controlled using PD controller with proportional gain Kp set to 

0.2 and the derivative gain Kd set to 2 after exhaustive heuristic tuning for best performance. 

After that, the computed controlled velocity values were published to the command velocity in 

world frame topic of the drone using Twist message as seen in the code implementation. 

Moreover, the testing procedure for the successful operation of the Georeferencing node with 

proper PD parameters was carried out with the continuously swimming forward Pete character 

described in Section 4.2.3 as shown in Figure 4.29. The drone was manually flown near the 

swimming person till the person was inside the frame of the camera, then the node would get 

activated itself and start tracking the person autonomously. The pink traced line shows the 

autonomous movement of the drone. The parameters were changed until stable and satisfactory 

tracking was obtained for the swimmer. In addition, manual disturbances were also added to 

the drone to change its path, orientation, and altitude while autonomous tracking, but it 

overcame all the disturbances also to continue tracking the person.   
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Figure 4.29. Testing of Georeferencing node with YOLOv8 pretrained detection model 

 

The tracking action looked like Figure 4.30 from the side view. 

 

Figure 4.30. Testing of Georeferencing node from the side view 

 

Similarly, the pretrained YOLOv8 segmentation model was also tested for tracking 

performance as shown in Figure 4.31, and it also gave satisfactory performance.  
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Figure 4.31. Testing of Georeferencing node for tracking with pretrained YOLOv8 segmentation model 

 

4.7 Victim Geolocation 

Even though the NED coordinates were useful for the local control of the drone, for external 

use and transmission, the local NED coordinate position of the detected victim were converted 

into GPS coordinates in latitude and longitude. For that, a separate node was created titled 

Victim_Geolocation whose complete code implementation is kept in Appendix G. It was 

decided to use a separate node from the Georeferencing node to separate the conversion and 

potential external transmission of the Victim_ID and GPS coordinates to various destinations 

which might have their own latency. The Victim_Geolocation node subscribed to the topic 

published by the Georeferencing node, which can be seen at the end of Figure. For the 

conversion of NED coordinate into GPS coordinate, a separate ROS service named 

returngeolocationfromned was created by modifying the AirSim ROS wrapper that used the 

default nedToGeodetic C++ function available inside Earth Utils module in AirSim C++ 

library. The nedToGeodetic function uses various independent parameters like the radius and 

curvature of the earth for conversion. The ROS service returngeolocationfromned took the 

NED coordinate point as input Request and returned output as Response the GPS coordinates. 

Also, the Victim_Geolocation node displayed the Person_ID, latitude, longitude, and altitude 

on the screen. 

 

4.8 Autonomous Search and Rescue Mission 

Finally, all the independent processes described in earlier sections and illustrated by the block 

diagram in Figure 4.1, were combined for working together to a single search and rescue 

autonomous mission with the collaboration between the different nodes as shown in Figure 

4.32.  
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Figure 4.32. Collaboration between the nodes during the final autonomous mission obtained using rqt_graph. 

  

In summary, an additional node named path_planner was developed, as seen in the lower left 

corner of Figure 4.32 with code implementation included in Appendix B, whose responsibility 

was to autonomously initiate the overall process by publishing a message with the start location 

including x, y and desired z values for the drone to start spiral search to a topic 

/Goto_spiral_start_location. Also, another new ROS Action Client node named 

PD_Position_Controller was  fabricated, with full code implementation kept in Appendix C, 

to listen to the message from the path_planner node and transfer the message to ROS PD 

position controller Action server node titled pd_position_control_node , same one discussed in 

Section 3.4.3 of the paper, for actually moving the drone to the spiral start location. When the 

drone reached the spiral search start location, the Result back from the action server became 

True, and then the PD_Position_Controller published a message in the topic /spiral_start 

which was subscribed by the Archimedean_Spiral_Path node that started the spiral search 

process. The drone then started following the spiral search path until the yolov8_sea node 

detected the first person which in turn triggered the Georeferencing node. The Georeferencing 

node was modified to initially publish a message to the Archimedean_Spiral_Path node 

through /spiral_start topic to stop the spiral path following of the drone. Then, the usual 

functioning of the Georeferencing node started along with the PD tracking of the victim. 

Finally, the mission ended with the Victim_Geolocation node displaying the ID, latitude, 

longitude, and altitude values of the victim on the screen until the boat autonomously came to 

the detected victim location and on boarded the person onto it after user specified delay as 

explained in detail in Section 4.2.5.  
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4.9 Results and Discussion 

This section will present and discuss the results of the complete autonomous search and rescue 

mission described in the earlier section. The Figure 4.33 illustrates the autonomous launching 

of the drone by path_planner node and PD_Position_Controller node to the spiral start 

location, then moving in the spiral path with Archimedean_Spiral_Path node until the 

swimming victim detected, the detection by the yolov8_sea node and the tracking of the victim 

by the drone through Georeferencing node before the boat came to the rescue. Here, the pink 

traced line shows the path followed by the drone. The character Leonard that continuously 

swims in a square pattern was kept nearby the launching point of the drone from the boat for 

the easiness of visualization of the mission result in a single frame like in Figure 4.33.    

 

Figure 4.33. Autonomous search mission by the drone before the boat came to the rescue. 

Then, the Figure 4.34 shows the boat coming to the rescue of the person, who is continuously 

detected and followed by the drone, and on boarding the victim on it after 120 seconds of delay 

specified by the author, starting from the point in time the drone first starts detecting the victim. 

 

Figure 4.34. Simulation result of the rescue of the victim by the boat autonomously 

The Figure 4.35 portrays the result in a different closer view of the external camera which 

makes the path followed by the drone in the autonomous search and rescue mission clearer. 



  

60 

 

Figure 4.35. Closer view of the autonomous rescue of the victim by the speed boat with the help of the 

autonomous drone 

Furthermore, the screenshot of the ID and geographical location of the detected victim 

calculated by the Victim_Geolocation node simultaneously is shown in Figure 4.36. 

 

Figure 4.36. Victim ID, Latitude, Longitude, and Altitude calculated by the Victim_Geolocation node. 

As the drone was continuously detecting the victim along with the calculation of the location, 

only the few of the beginning detection results are shown in Figure 4.36. Furthermore, the 
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geographical location in latitude and latitude being detected by the drone in Google maps [46] 

is illustrated in Figure 4.37. 

 

 Figure 4.37. Geographical location of the detection in Google maps [46] 

The area between Norway, Denmark, and the Netherlands shown in Figure is the area of 

interest for USN in Project Valkyries which was achieved by previously setting the origin 

geopoint in AirSim settings as explained in {section}. Hence, the Figure and Figure indicates 

that the conversion between the detected and georeferenced NED coordinates in meters and the 

GPS coordinates in latitude and longitude of the position of the victim in the simulated 

Environment is working correctly.  Therefore, with this study, the simulated information of the 

victim like ID, latitude, longitude, and altitude detected by the autonomous drone during the 

simulation of the oil tanker accident are available in a separate node implemented with Python 

in ROS which can be easily used or transmitted to remote cloud-based system like Valkyries 

Dashboard for further testing. 

Furthermore, with the drone continuously tracking the first person it detects until the rescue 

teams reach the victim for rescue can try to solve the issue of dynamic marine environment. 
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5 Discussion of Collaboration between 
Multiple Drones  

This chapter will discuss the possibility of cooperation between multiple drones in the same 

framework. It was first important to develop and test the different techniques for controlling a 

single drone autonomously for various use cases in search and rescue missions which was 

carried out in previous chapters. Then, multiple drones could easily be spawned and controlled 

in the simulation environment as shown in Figure 5.1 with simple changes in AirSim settings 

based on AirSim Documentation [38]. In addition to cameras, other sensors like LIDAR, 

Distance Sensor can also be activated.  

 

Figure 5.1. Multiple drones spawned in the simulation environment. 

The Figure 5.1 is analogous to the Figure 3.8 in Section 3.3.2 of the paper but with three drones 

spawned. Also, the environment seen in Figure 5.1 is the recreated environment in a same way 

like in the paper described in Chapter 3, but in Unreal Engine version 5.1 by downloading and 

updating the version that worked in Unreal Engine 5.0 from Environment Project [36]. Even 

though this updated environment was available, the custom environment was used in the third 

chapter to illustrate the flexibility of the overall framework used in this research thesis. The 

same ROS nodes work with both the marine environments, or any other custom environment 

of different geography developed in Unreal Engine, and the assets and blueprints developed 

can also be used interchangeably among the environments.  

Now, again coming back to the multiple drones spawned in the environment, the AirSim ROS 

wrapper automatically duplicates all the topics available for each drone to multiple drones 

distinctly separated by their name in namespace as shown in Figure 5.2.  
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Figure 5.2. ROS Topics available with 3 drones spawned in the simulation environment. 

Similarly, the Figure 5.3 illustrates the ROS services available with three drones activated. 

 

Figure 5.3. ROS Services available with 3 drones spawned in the simulation environment. 
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Hence, with distinct topics and services for each drone available as shown in Figure 5.2 and 

Figure 5.3, multiple drones can also be simulated for autonomous missions with the same code 

implementation as in the Section 3.4.4 and Section 4.8 with the addition of higher layers of 

parent path_planner nodes for coordination as shown in Figure 5.4.  

 

Figure 5.4. Example Hierarchical level for control and cooperation between multiple drones. 

 

Due to the distributed parallel node processing capability of ROS, multiple nodes can run 

simultaneously, and each node can be given a different responsibility for the control of multiple 

drones. Another benefit of using ROS in controlling multiple drones as highlighted in Figure 

is all communication in a single ROS framework is handled by a single ROS master where the 

nodes register themselves in the beginning. Therefore, all the nodes in any level in the 

framework can communicate with each other when necessary. Some examples for this can be 

seen in {section}, when the Georeferencing node stopped the Archimedean_Spiral_Path node 

to change from search mode to tracking mode or in {section} where the Boustrophedon_path 

node was stopped by the main path_planner node after mission time was over and the drone 

was brought back to the home location. Also, the ROS Master can be over a network in the 

cloud in different machine, controlling nodes connected to it parallelly in distributed systems. 

Furthermore, the different drones can be sent to different starting locations following different 

path planning to search or track the victims, detect the disaster ship location or other concerned 

objects, and communicate with each other as well as external concerned parties through 

different topics. To exemplify this, the first drone can initially search for the location of the 

post disaster ship with spiral path in local NED position autonomously, then send the location 

message to other drones to extensively search around the detected disaster location.    

Therefore, the combination of ROS, Microsoft AirSim and Unreal Engine is very important for 

the simulation of multi-agent drones. And this thesis primarily shows how they can be 

controlled with different responsibilities assigned for different nodes.  
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6 Conclusion 
In conclusion, high fidelity marine simulation environments containing the post disaster ship, 

other debris such as containers, oil barrels, buoys, and most importantly people having different 

actions such as treading and swimming with natural buoyancy were developed in both Unreal 

Engine version 4.27 and 5.1 with the integration of Microsoft AirSim and ROS. Then, various 

strategies for controlling the spawned single drone in the simulated environments were 

developed and tested with the primary focus in the search and rescue of the victims followed 

by the discussion to scale the same solutions with multiple drones.  

Furthermore, the work presented in this thesis has tremendous potential for further work. The 

immediate next work will be to test the various algorithms and models used in this study with 

real physical drones. In addition, collision avoidance strategies can be added on the drones to 

make them more robust as discussed by the authors in [13],[47], [48], and [49]. Additionally, 

various new Vision transformers [50] based object detection, and segmentation models such as 

Grounding DINO [51], Segment Anything [52], and a recently released transformer model 

faster than all YOLOs called as Real Time Detection Transformer (RT-DETR) [53] , and in 

CNN category newer models like YOLO-NAS [54] could be applied in the detection and path 

following solutions like proposed in [55].  

Moreover, the main purpose of showing the boat autonomously coming to the rescue of the 

victim detected in Chapter 4 was to discuss the possible future work for the pair of aerial drones 

and the surface vehicles working together for the complete autonomous search and rescue. 

Various interesting vision based deep reinforcement learning methods proposed for surface 

systems as FastRLAP: A System for Learning High-Speed Driving via Deep RL and 

Autonomous Practicing  [56], Legged Locomotion in Challenging Terrains using Egocentric 

Vision [57], Deep Whole-Body Control: Learning a Unified Policy for Manipulation and 

Locomotion [58], and UAV/USV Cooperative Trajectory Optimization Based on 

Reinforcement Learning [59] could be tried to be applied on the boat for autonomous collision 

avoiding movement for rescue. Similarly, some of the MPC based methods as discussed by the 

previous USN Student Syed Sami in his Master thesis [60],  UAV-USV cooperative tracking 

based on MPC [61], Cooperative Path Planning for UAV, USV, and AUV together for search 

and rescue missions [62] and Autonomous Collision Avoidance MPC for USV [63]. Finally, 

another relevant interesting vision based collision avoidance work ongoing in USN that could 

be applied on the autonomous rescue boat is [64].        
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Appendix A Thesis Task Description 
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Appendix B Implementation of path_planner node in ROS 

#!/usr/bin/env python 

import rospy 

import actionlib 

from math import pi,sin,cos,sqrt 

from airsim_ros_pkgs.msg import MoveOnPathAction,MoveOnPathGoal 

from geometry_msgs.msg import Point 

from std_msgs.msg import String 

from airsim_ros_pkgs.msg import ControlDrones 

from airsim_ros_pkgs.msg import GoHome 

 

 

goto_spiralstart_location = True 

 

x_start = 0  # starting location in x for spiral start 

y_start = 0  # starting location in y for spiral start         

desired_z = -3.05  # desired altitude of the drone during the 

mission              

 

if __name__ == '__main__': 

    try: 

        

        rospy.init_node('path_planner') 

 

pub1 = 

rospy.Publisher("/Goto_spiral_start_location",ControlDrones,latch=True

,queue_size=1) 

 

pub2 = 

rospy.Publisher("/spiral_start",ControlDrones,latch=True,queue_size=1)  

 

        msg1 = ControlDrones() 

         

        while goto_spiralstart_location: 

            if (pub1.get_num_connections()>0): 

                msg1.enable = "Go to spiral start location" 

                msg1.x = x_start 

                msg1.y = y_start 

                msg1.z = desired_z 

                pub1.publish(msg1) 

                rospy.loginfo("Going to spiral start location!!!!") 

                goto_spiralstart_location = False 

         

  while True: 

            rospy.sleep(-1) 

     

    except rospy.ROSInterruptException: 

        pass  
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Appendix C Implementation of PD_Position_Controller node in ROS 

#!/usr/bin/env python 

import rospy 

import actionlib 

from math import pi,sin,cos,sqrt 

from airsim_ros_pkgs.msg import MoveOnPathAction,MoveOnPathGoal 

from geometry_msgs.msg import Point 

from airsim_ros_pkgs.msg import ControlDrones 

from airsim_ros_pkgs.srv import Takeoff 

 

 

single_time = True 

enable = "" 

 

x_start = 0 

y_start = 0 

search_height = 0 

 

start_spiral_search = False 

 

def get_location_cb(msg): 

    global enable,x_start,y_start,search_height 

    enable = msg.enable 

    x_start = msg.x 

    y_start = msg.y 

    search_height = msg.z 

    rospy.loginfo("Moving Drone to the spiral start location!!!") 

 

def setTakeoffMode(): 

    rospy.wait_for_service('/airsim_node/Drone_1/takeoff') 

    try: 

        takeoffService = rospy.ServiceProxy('/airsim_node/Drone_1/takeoff', 

Takeoff)  

         

        takeoffService(True) 

    except rospy.ServiceException as e: 

        print ("Service takeoff call failed: %s"%e) 

 

if __name__ == '__main__': 

    try: 

        # Initializes a rospy node so that the SimpleActionClient can publish 

and subscribe over ROS. 

        rospy.init_node('PD_Position_Controller') 

        sub1 = 

rospy.Subscriber("/Goto_spiral_start_location",ControlDrones,get_location_cb) 

        rospy.sleep(1) 

        pub = 

rospy.Publisher('/spiral_start',ControlDrones,latch=True,queue_size=1)  
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        pub = 

rospy.Publisher('/spiral_start',ControlDrones,latch=True,queue_size=1) 

        

 

        rospy.loginfo("Inside moveonpath action path-planner_movetolocation 

1!!") 

        rospy.loginfo("%s",enable) 

        while (enable != "Go to spiral start location"): 

            rospy.sleep(-1) 

        rospy.loginfo("Inside moveonpath action path-planner_movetolocation 

2!!") 

        if enable == "Go to spiral start location": 

            setTakeoffMode() 

            msg1 = ControlDrones() 

            rospy.loginfo("Inside moveonpath action path-

planner_movetolocation 3!!") 

            client = actionlib.SimpleActionClient('/airsim_node/moveOnPath', 

MoveOnPathAction) 

 

            client.wait_for_server() 

            goal1 = MoveOnPathGoal() 

            point1 = Point() 

            msg = ControlDrones() 

 

            point1.x = x_start  

            point1.y = y_start  

            point1.z = search_height 

            goal1.point = point1 

 

            goal1.vehicle_name = "Drone_1" 

 

            goal1.velocity = 5.0 

            goal1.timeout_sec= sqrt(point1.x**2 + point1.y**2 + 

point1.z**2)/goal1.velocity + 60 

 

            goal1.yaw = 0 

 

            client.send_goal(goal1) 

 

            client.wait_for_result() 

 

            if client.get_result(): 

                start_spiral_search = True 

                rospy.loginfo("Starting spiral search") 

                 

             

            while start_spiral_search: 

                if (pub.get_num_connections()>0):  
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                    msg1.enable = "Start Spiral Search" 

                    msg1.x = x_start 

                    msg1.y = y_start 

                    msg1.z = search_height 

                    pub.publish(msg1) 

                    rospy.loginfo("Started the spiral search process!!!") 

                    start_spiral_search = False 

             

            while True: 

                rospy.sleep(-1) 

    except rospy.ROSInterruptException: 

        pass 
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Appendix D Implementation of Archimedean_Spiral_Path node in ROS 

#!/usr/bin/env python 

 

import rospy 

import math 

from airsim_ros_pkgs.srv import * 

import time 

 

from airsim_ros_pkgs.msg import VelCmd 

from airsim_ros_pkgs.msg import ControlDrones 

from nav_msgs.msg import Odometry 

from geometry_msgs.msg import Twist 

 

x= 0.0 

y= 0.0 

z = 0.0 

 

pitch= 0.0 

roll = 0.0 

yaw = 0.0 

 

def to_eularian_angles(q): 

    z = q.z 

    y = q.y 

    x = q.x 

    w = q.w 

    ysqr = y * y 

 

    # roll (x-axis rotation) 

    t0 = +2.0 * (w*x + y*z) 

    t1 = +1.0 - 2.0*(x*x + ysqr) 

    roll = math.atan2(t0, t1) 

 

    # pitch (y-axis rotation) 

    t2 = +2.0 * (w*y - z*x) 

    if (t2 > 1.0): 

        t2 = 1 

    if (t2 < -1.0): 

        t2 = -1.0 

    pitch = math.asin(t2) 

 

    # yaw (z-axis rotation) 

    t3 = +2.0 * (w*z + x*y) 

    t4 = +1.0 - 2.0 * (ysqr + z*z) 

    yaw = math.atan2(t3, t4) 

 

    return (pitch, roll, yaw) 
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desired_x = 30 

desired_y = 10 

 

dx = desired_x  

dy = desired_y  

 

desired_yaw = math.atan2(dx,dy) 

 

distance = math.sqrt(dx**2+dy**2) 

    #distance_xy = distance * math.cos(math.asin(dz/distance)) 

distance_cal = 0 

n = 1 

e_prev_z = 0 

e_prev_roll =0 

e_prev_pitch = 0 

u_roll_prev = 0 

u_pitch_prev = 0 

ex_prev = 0 

ey_prev = 0 

ew_prev = 0 

count = 0 

sum = 0 

prev_sum = 0 

prev_angle_to_centre = 0 

 

enable = "" 

start_x = 0 

start_y = 0 

desired_z = 0  

 

def spiral_start_cb(msg): 

    global enable,start_x,start_y,desired_z 

    enable = msg.enable 

    start_x = msg.x 

    start_y = msg.y 

    desired_z = msg.z 

    rospy.loginfo("Got the spiral start command!!!") 

 

def listenercb(msg): 

    global desired_yaw,e_prev_z,e_prev_roll, e_prev_pitch, 

u_roll_prev,u_pitch_prev,ex_prev,ey_prev,ew_prev,count,sum,prev_angle_to_centr

e,start_x,start_y,desired_z 

     

    if enable == "Start Spiral Search": 

        vel = VelCmd() 

        x = msg.pose.pose.position.x 

        y = msg.pose.pose.position.y 

        z = msg.pose.pose.position.z  
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        pitch,roll,yaw = to_eularian_angles(msg.pose.pose.orientation) 

 

        #a = 3.0 

        b = 8 / (2*math.pi) 

         

        dx = x - start_x 

        dy = y - start_y 

        angle_to_centre=  math.atan2(dx,dy)  

        angle_to_centre_degree = angle_to_centre * 180 / math.pi  

        w =  3 * math.pi/180  

         

        actual_radius = math.sqrt(dx**2+dy**2) 

         

        next_angle = (w + angle_to_centre) 

         

        count = int(sum/(2*math.pi)) 

 

         

        if next_angle >= 0 and next_angle <= math.pi/2: 

            present_angle = next_angle 

            sum = sum + abs(present_angle - prev_angle_to_centre) 

            prev_angle_to_centre = present_angle 

            #sum = sum + w 

            next_radius = b*sum 

            next_x = next_radius*math.sin(present_angle) #First Quadrant 

            next_y = next_radius*math.cos(present_angle) 

         

        elif next_angle > math.pi/2  and next_angle <= math.pi: 

            present_angle = math.pi - next_angle 

            sum = sum + abs(present_angle - prev_angle_to_centre) 

            prev_angle_to_centre = present_angle 

            #sum = sum + w 

            next_radius = b*sum 

            next_x = next_radius*math.sin(present_angle) #Second Quadrant 

            next_y = -next_radius*math.cos(present_angle) 

         

        elif next_angle >= -math.pi and next_angle < - math.pi/2: 

            present_angle = math.pi + next_angle 

            sum = sum + abs(present_angle - prev_angle_to_centre) 

            prev_angle_to_centre = present_angle 

            #sum = sum + w 

            next_radius = b*sum 

            next_x = -next_radius*math.sin(present_angle) # Third Quadrant 

            next_y = -next_radius*math.cos(present_angle) 

         

         

        elif next_angle >= -math.pi/2 and next_angle < 0: 

            present_angle = abs(next_angle)  
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            sum = sum + abs(present_angle - prev_angle_to_centre) 

            prev_angle_to_centre = present_angle 

            #sum = sum + w 

            next_radius = b*sum 

            next_x = -next_radius*math.sin(present_angle) ##Fourth Quadrant 

            next_y = next_radius*math.cos(present_angle) 

         

        elif next_angle < - math.pi: 

            present_angle = abs(next_angle + math.pi) 

            sum = sum  

            prev_angle_to_centre = present_angle 

            #sum = sum + w  

            next_radius = b*sum 

            next_x = next_radius*math.sin(present_angle) # Second Quadrant 

            next_y = -next_radius*math.cos(present_angle) 

 

        elif next_angle > math.pi: 

            present_angle = abs(next_angle - math.pi) 

            sum = sum  

            prev_angle_to_centre = present_angle 

            #sum = sum + w 

            next_radius = b*sum 

            next_x = -next_radius*math.sin(present_angle) # Third Quadrant 

            next_y = -next_radius*math.cos(present_angle) 

 

        else: 

            pass 

 

        time = rospy.Time.now().to_sec() 

 

        rospy.loginfo("z: %f, next_x:%f, x:%f, 

next_y:%f,y:%f,angle_to_centre:%f,next_angle:%f,radius:%f, next_radius:%f, 

sum:%f,spiral 

count:%d",z,next_x,x,next_y,y,angle_to_centre_degree,next_angle*180/math.pi,ac

tual_radius,next_radius,sum,count) 

         

        #PD Control for z 

        Kp_p = 2 

        Td = 5 

 

        ez = desired_z - z 

        uz = Kp_p*ez + Kp_p*Td*(ez - e_prev_z) 

        e_prev_z = ez 

         

         

        #PID Control 

        Kp_angle = 2 

        Ti = 10  
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        e_roll = 0 - roll 

        u_roll = u_roll_prev + Kp_angle *(e_roll - e_prev_roll) + 

(Kp_angle/Ti)*0.01*e_roll 

        e_prev_roll = e_roll 

        u_roll_prev = u_roll 

 

        e_pitch = 0 - pitch 

        u_pitch = u_pitch_prev + Kp_angle*(e_pitch - e_prev_pitch) + 

(Kp_angle/Ti)*0.01*e_pitch 

        e_prev_pitch = e_pitch 

        u_pitch_prev = u_pitch 

 

         

        #Velocity control 

        Kp = 1 #1 

        Kd = 0.5 #0.5 

        ex = next_x - x 

        vx = Kp * ex + Kd * (ex - ex_prev) 

        ex_prev = ex 

        ey = next_y - y 

        vy = Kp * ey + Kd*(ey-ey_prev) 

        ey_prev = ey 

 

         

        vel.twist.linear.x = vx ; vel.twist.linear.y = vy ; vel.twist.linear.z 

= uz 

        vel.twist.angular.x = -u_roll; vel.twist.angular.y = -u_pitch; 

vel.twist.angular.z = 0 

         

        pub.publish(vel) 

       

 

if __name__=="__main__": 

    try: 

        rospy.init_node("Archimedean_Spiral_Path",anonymous=True) 

        start_time = rospy.Time.now().to_sec() 

        pub = 

rospy.Publisher('/airsim_node/Drone_1/vel_cmd_body_frame',VelCmd, 

queue_size=1) 

        sub = 

rospy.Subscriber('/airsim_node/Drone_1/odom_local_ned',Odometry,listenercb) 

        sub1 = rospy.Subscriber('/spiral_start', 

ControlDrones,spiral_start_cb) 

        rospy.sleep(1) 

        rospy.spin() 

         

    except rospy.ROSInterruptException: 

        pass  

 

 



 

 

  Appendices 

82 

Appendix E Implementation of yolov8_sea node in ROS 

#!/usr/bin/env python 

import cv2 

import torch 

import random 

 

import rospy 

 

from cv_bridge import CvBridge 

 

from ultralytics import YOLO 

 

from sensor_msgs.msg import Image 

from vision_msgs.msg import Detection2D 

from vision_msgs.msg import ObjectHypothesisWithPose 

from vision_msgs.msg import Detection2DArray 

 

class Yolov8Node(): 

 

    def __init__(self) -> None: 

 

         

        self.device = torch.device("cuda" if torch.cuda.is_available() else 

"cpu")  

        # params 

        # self.model = rospy.get_param("model", "yolov8x.pt") 

        

        # self.tracker = rospy.get_param("tracker", "bytetrack.yaml") 

 

        # self.img_topic = rospy.get_param("img_topic", 

"/airsim_node/Drone_1/camera_1/Scene") 

        

 

        # self.threshold = rospy.get_param("threshold", 0.5) 

 

        # self.enable = rospy.get_param("enable", True) 

         

        # # params 

        self.model1 = "yolov8x.pt" 

        self.model2 = "yolov8x-seg.pt" 

        self.bool_yolo_seg = True 

 

        self.img_topic = "/airsim_node/Drone_1/camera_1/Scene" 

        

        self.threshold =  0.5 

 

        self.enable =  True 

 

        self._class_to_color = {}  
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        self.cv_bridge = CvBridge() 

        if self.bool_yolo_seg: 

            self.yolo = YOLO(self.model2) 

            self.yolo.fuse() 

        else: 

            self.yolo = YOLO(self.model1) 

            self.yolo.fuse() 

        rospy.sleep(1) 

        self.yolo.to(self.device) 

 

        # topics 

        self._pub = rospy.Publisher("detections",Detection2DArray, queue_size= 

10) 

        self._detection_image_pub = rospy.Publisher("detection_image", Image, 

queue_size= 10) 

        rospy.sleep(1) 

        self._sub = rospy.Subscriber(self.img_topic, Image, self.image_cb) 

 

    def image_cb(self, msg: Image) -> None: 

 

        if self.enable: 

 

            # convert image + predict + track 

            cv_image = self.cv_bridge.imgmsg_to_cv2(msg) 

             

            results = self.yolo.track(source=cv_image,show=False, 

verbose=False, tracker="bytetrack.yaml") 

             

 

            # create detections msg 

            detections_msg = Detection2DArray() 

            detections_msg.header = msg.header 

 

            results = results[0].cpu() 

             

 

            for b in results.boxes: 

 

                label = self.yolo.names[int(b.cls)] 

                score = float(b.conf) 

 

                if score < self.threshold: 

                    continue 

 

                detection = Detection2D() 

 

                detection.header = msg.header 
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                detection.source_img = msg 

 

                box = b.xywh[0] 

 

                # get boxes values 

                detection.bbox.center.x = float(box[0]) 

                detection.bbox.center.y = float(box[1]) 

                detection.bbox.size_x = float(box[2]) 

                detection.bbox.size_y = float(box[3]) 

 

                # get track id 

                track_id = 0 

                if not b.id is None: 

                    track_id = int(b.id) 

                #detection.id = track_id 

 

                # get hypothesis 

                hypothesis = ObjectHypothesisWithPose() 

                hypothesis.id = int(b.cls) 

                hypothesis.score = score 

                hypothesis.pose.pose.position.x = float(track_id) 

                detection.results.append(hypothesis) 

 

                # draw boxes for debug 

                if label not in self._class_to_color: 

                    r = random.randint(0, 255) 

                    g = random.randint(0, 255) 

                    b1 = random.randint(0, 255) 

                    self._class_to_color[label] = (r, g, b1) 

                color = self._class_to_color[label] 

 

                min_pt = (round(detection.bbox.center.x - 

detection.bbox.size_x / 2.0), 

                          round(detection.bbox.center.y - 

detection.bbox.size_y / 2.0)) 

                max_pt = (round(detection.bbox.center.x + 

detection.bbox.size_x / 2.0), 

                          round(detection.bbox.center.y + 

detection.bbox.size_y / 2.0)) 

                cv_image = cv2.rectangle(cv_image, min_pt, max_pt, color, 2) 

 

                label = "{}:({}) {:.3f}".format(label, str(track_id), score) 

                pos = (min_pt[0], max(15, int(min_pt[1] - 10))) 

                font = cv2.FONT_HERSHEY_SIMPLEX 

                cv_image = cv2.putText(cv_image, label, pos, font, 

                            0.5, color, 1, cv2.LINE_AA) 
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                # append msg 

                detections_msg.detections.append(detection) 

 

            # publish detections and dbg image 

            self._pub.publish(detections_msg) 

             

             

            if self.bool_yolo_seg: 

                annotated_results = results[0].plot(conf=False, labels = 

False, img= cv_image,  boxes = False,masks = True) 

                 

             

 

                self._detection_image_pub.publish(self.cv_bridge.cv2_to_imgmsg

(annotated_results, encoding=msg.encoding)) 

                cv2.imshow("Real-Time Detection with Tracking and 

Segmentation",annotated_results) 

                cv2.waitKey(1) 

            else: 

                self._detection_image_pub.publish(self.cv_bridge.cv2_to_imgmsg   

(cv_image,encoding=msg.encoding)) 

                cv2.imshow("Real-Time Detection with Tracking",cv_image) 

                cv2.waitKey(1) 

 

            if rospy.is_shutdown(): 

                cv2.destroyAllWindows() 

 

if __name__ == "__main__": 

    rospy.init_node("yolov8_sea", anonymous= True) 

    Yolov8Node() 

    rospy.spin() 
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Appendix F Implementation of Georeferencing node in ROS 

#!/usr/bin/env python 

import rospy 

import message_filters 

from nav_msgs.msg import Odometry 

from vision_msgs.msg import Detection2DArray 

from airsim_ros_pkgs.msg  import Altimeter  

from geometry_msgs.msg import Point 

from airsim_ros_pkgs.msg  import IDandLocation 

from airsim_ros_pkgs.msg import VelCmd 

from airsim_ros_pkgs.msg import ControlDrones 

from math import tan,pi 

 

x_det = 0 

y_det = 0 

ex_prev = 0 

ey_prev = 0 

e_prev_z = 0 

desired_z = 1.5 

 

stop_spiral_search = True 

 

#PD Control for tracking 

Kp = 0.5 

Kd = 2 

 

#PD Control for height 

Kp_z = 0.5 

Kd_z = 2 

 

 #Parameters 

image_width = 640 

image_height = 640 

HFOV = 90 * pi/180 

z_correction = 3.28366  

 

 

def callback(odom,bbox): 

    global x_det,y_det,ex_prev,ey_prev,Kp,Kd,e_prev_z,desired_z,im-

age_width,image_height,HFOV,z_correction,Kp_z,Td_z 

     

    try: 

        only_person = 0 

        if len(bbox.detections) > 1: 

        #     rospy.loginfo("length:%d",len(bbox.detections)) 

            for i,det in enumerate(bbox.detections): 

                 if (det.results[0].id == 0) and (det.results[0].pose.pose.po-

sition.x == 1.0):  
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                     only_person = i 

                     break 

                      

        else: 

            only_person = 0 

        

         

        class_id = bbox.detections[only_person].results[0].id 

        track_id = int(bbox.detections[only_person].results[0].pose.pose.posi-

tion.x) 

 

        if (class_id == 0) and (track_id == 1) : 

 

            while stop_spiral_search: 

                if (spiral_pub.get_num_connections()>0): 

                    msg1 = ControlDrones() 

                    msg1.enable = "Stop Spiral Search" 

                    msg1.x = 0 

                    msg1.y = 0 

                    msg1.z = 0 

                    spiral_pub.publish(msg1) 

                    rospy.loginfo("Stopped the spiral search process!!!") 

                    stop_spiral_search = False 

     

            rospy.loginfo("Inside Georeferencing") 

 

            vel = VelCmd() 

            IDandLoc = IDandLocation() 

 

            x = odom.pose.pose.position.x 

            y = odom.pose.pose.position.y 

            z = odom.pose.pose.position.z 

 

            x_center = bbox.detections[0].bbox.center.x 

            y_center =  bbox.detections[0].bbox.center.y 

 

            H = abs(z - z_correction) 

            width_ned = 2*H*tan(HFOV/2) 

            height_ned = image_height/image_width * width_ned 

 

            detection_width_center_ned = (x_center/image_width) * width_ned 

            detection_height_center_ned = ((image_height-y_center)/im-

age_height) * height_ned 

 

            horizontal_correction = detection_height_center_ned - height_ned/2  

            vertical_correction = detection_width_center_ned - width_ned/2 
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            x_det = x + horizontal_correction 

            y_det = y + vertical_correction 

 

            IDandLoc.point.x = x_det 

            IDandLoc.point.y = y_det 

            IDandLoc.point.z = z_correction 

            IDandLoc.ID = track_id 

 

            #PD Control for z 

            ez = desired_z - z 

            uz = Kp_z*ez + Kp_z*Td_z*(ez - e_prev_z) 

            e_prev_z = ez 

 

            #PD Control for position tracking 

            ex = x_det - x 

            vx = Kp * ex + Kd * (ex - ex_prev) 

            ex_prev = ex 

            ey = y_det - y 

            vy = Kp * ey + Kd*(ey-ey_prev) 

            ey_prev = ey 

            rospy.loginfo("vx:%f,vy:%f,uz:%f,current_z:%f",vx,vy,uz,z) 

            vel.twist.linear.x = vx ; vel.twist.linear.y = vy ; 

vel.twist.linear.z = uz 

            vel.twist.angular.x = 0; vel.twist.angular.y = 0; 

vel.twist.angular.z = 0 

             

            pub.publish(vel) 

            victim_pub.publish(IDandLoc) 

 

    except IndexError: 

        rospy.loginfo("Error getting detections!!") 

 

if __name__ == "__main__": 

    rospy.init_node("Georeferencing",anonymous=True) 

    pub = rospy.Publisher('/airsim_node/Drone_1/vel_cmd_body_frame',VelCmd, 

queue_size=1) 

    victim_pub = 

rospy.Publisher("/victim_location_ned",IDandLocation,queue_size=1) 

    spiral_pub = 

rospy.Publisher("/spiral_start",ControlDrones,latch=True,queue_size=1) 

    odom_sub = 

message_filters.Subscriber('/airsim_node/Drone_1/odom_local_ned', Odometry) 

    bboxes_sub = message_filters.Subscriber('/detections', Detection2DArray) 

    approx = 

message_filters.ApproximateTimeSynchronizer([odom_sub,bboxes_sub],1000,slop=0.

1) 

    approx.registerCallback(callback) 

    rospy.spin() 
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Appendix G Implementation of Victim_Geolocation node in ROS 

#!/usr/bin/env python 

 

import rospy  

 

from geometry_msgs.msg import Point 

from airsim_ros_pkgs.msg  import IDandLocation 

from airsim_ros_pkgs.srv import ReturnGeolocation 

 

def ReturnGeoLocationfromNed_client(ned_point): 

    rospy.wait_for_service('/airsim_node/Drone_1/returngeolocationfromned') 

    try: 

        returnGeolocationfromnedService = 

rospy.ServiceProxy('/airsim_node/Drone_1/returngeolocationfromned', 

ReturnGeolocation)  

         

        response = returnGeolocationfromnedService(ned_point) 

        return response.outputpoint 

    except rospy.ServiceException as e: 

        print ("Service returngeolocationfromned call failed: %s"%e) 

 

def geolocation_cb(IDandned_point): 

    gps_location = Point() 

    #rospy.loginfo("x_det:%f, y_det:%f, 

z:%f",IDandned_point.point.x,IDandned_point.point.y, IDandned_point.point.z) 

    gps_location = ReturnGeoLocationfromNed_client(IDandned_point.point) 

    rospy.loginfo("Person_ID:%d,Latitude:%f, Longitude:%f, 

Altitude:%f",IDandned_point.ID,gps_location.x,gps_location.y, gps_location.z) 

 

if __name__ == "__main__": 

 

    rospy.init_node("Victim_Geolocation",anonymous=True) 

 

    sub1 = rospy.Subscriber("/victim_location_ned",IDandLocation, 

geolocation_cb, queue_size=100) 

 

    rospy.spin() 
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Appendix H Main AirSim Settings 

{ 

  "ClockSpeed": 1, 

  "SettingsVersion": 1.2, 

  "SimMode": "Multirotor", 

   

  "Vehicles": { 

    "Drone_1": { 

      "VehicleType": "SimpleFlight", 

      "DefaultVehicleState": "Disarmed", 

        

      "Cameras": { 

        "camera_1": { 

          "CaptureSettings": [ 

            { 

              "ImageType": 0, 

              "Width": 640, 

              "Height": 640, 

              "FOV_Degrees": 90 

            } 

          ], 

          "Gimbal": { 

            "Stabilization": 1, 

            "Pitch": -90.0, "Roll": 0, "Yaw": 0 

          }, 

          "X": 0.0, "Y": 0.0, "Z": 0.0, 

          "Pitch": 0.0, "Roll": 0.0, "Yaw": 0.0 

        } 

      }, 

      "X": 0.0, "Y": 0.0, "Z": 0, 

      "Pitch": 0.0, "Roll": 0, "Yaw": 0 

    } 

  }, 

  "OriginGeopoint": { 

    "Latitude": 57.963589, 

    "Longitude": 9.130108, 

    "Altitude": 122 

  } 

} 

 
 

 

 

 

 

 

 

 


