

www.usn.no

Faculty of Technology, Natural Sciences and Maritime Sciences
Campus Porsgrunn

FMH606 Master's Thesis 2023

MSc Industrial IT and Automation

Sea Search and Rescue by Autonomous
Drones in High Fidelity Visual and Physical

Simulation

Rajeev Poudel

www.usn.no

The University of South-Eastern Norway takes no responsibility for the results and

conclusions in this student report.

Course: FMH606 Master's Thesis, 2023

Title: Sea Search and Rescue by Autonomous Drones in High Fidelity Visual and Physical

Simulation

Number of pages: 90

Keywords: Unreal Engine 4.27, Unreal Engine 5.1, Microsoft AirSim, ROS, SAR,

Autonomous, UAV, UAS, YOLOv7, YOLOv8, Path Planning, Archimedean Spiral,

Boustrophedon Path, Blueprints

Student: Rajeev Poudel

Supervisor: Fabio Andrade

External partner: N/A

Summary:

Unpredictable ship accidents still claim a lot of human life every year even with so many

technological advancements. Maritime Search and Rescue missions during such hazards

are mostly carried out with costly equipment and manpower that have some inherent

estimation biases in many physical quantities. With small-size, lower operational cost,

flexible aerial maneuverability, wireless communication, and mathematical computation

ability, drones can be useful to minimize the costs and speed up the SAR operations

without physical intrusion in dangerous post disaster scenarios. And due to the risky nature

of the problem, simulation was the rational path initially.

But there was a shortage of previous literature that tried to especially solve this problem

in proper simulation platform. Therefore, in the beginning a high fidelity dynamic marine

simulation environment was created using Unreal Engine 4.27, Microsoft AirSim, and

ROS which contained a Post Disaster Ship, other many debris, and human victims

floating. Then, an autonomous SAR mission was planned and implemented for the drone

with various pretrained YOLOv7 models that achieved high accuracy of victim detection.

This work was published in IEEE/CVF WACV Conference, 2023. After that another

iteration of autonomous simulation for tracking both treading and swimming victims with

YOLOv8 pretrained models was carried out in custom environment in Unreal Engine 5.1

which also had satisfactory results. Furthermore, the ID and detected location in latitude

and longitude of the tracked victim was made easily accessible for use in concerned

places. Finally, the possibility for the cooperation and control of multiple drones working

together for SAR missions was thoroughly discussed in the end.

Preface
This master’s thesis is done as a requirement for the 30 credit thesis course in the MSc

Industrial IT and Automation programme at USN. This thesis is closely related with USN

responsibilities for European Union ‘s Project Valkyries that USN is part of with various other

stakeholders whose primary aim was to create a common framework in Europe for the use of

Autonomous Systems in post disaster conditions for saving lives of victims and mitigate any

other financial and environment losses. This is a very noble cause to safeguard the lives of

people making the world a safer and better place to live.

So, I am very much thankful to USN for providing me the opportunity through this thesis to

work on this noble goal of increasing the well-being of the human-kind.

I would like express my deepest gratitude to my supervisor, Fabio Augusto de Alcantara

Andrade for his relentless technical as well as emotional support to complete this work. I would

not have been able to complete this work without his support. Also, I would like to thank PhD

student Luciano Lima for his valuable support and motivation to write and publish the paper.

Furthermore, I am very much grateful to the coordinator of this programme MSc Industrial IT

and Automation, Hakon Viumdal for his motivation and emotional support throughout my

study period in USN.

Finally, I would like to thank my family, and friends for the constant love and support.

May 15, 2023

Rajeev Poudel

4

Contents
1 Introduction ... 10

1.1 Context and Motivation .. 10
1.2 Research Problem .. 11
1.3 Research Objectives... 12
1.4 Research Questions ... 12
1.5 Limitations ... 13

2 Theory .. 14

2.1 Unreal Engine .. 14
2.2 Microsoft AirSim ... 14
2.3 Robot Operating System (ROS) .. 15
2.4 Archimedean Spiral .. 16

3 Published Paper .. 17

3.1 Abstract ... 17
3.2 Introduction ... 17
3.3 Development of the Novel Framework ... 19

3.3.1 Virtual Environment .. 19
3.3.2 Initial Setup of the UAS .. 24
3.3.3 Manual Control of the UAS ... 24
3.3.4 Implementation of YOLOv7 in ROS ... 25

3.4 Evaluation of Object Detection Models .. 25
3.4.1 Selection of Pretrained YOLOv7 Models on Different Datasets for Evaluation 25
3.4.2 Experimentation with Various Configurations ... 26
3.4.3 Path Planning for the Autonomous Mission .. 27
3.4.4 Final Mission Execution ... 28

3.5 Results and Discussion ... 29
3.6 Conclusion .. 32

4 Additional work on the paper ... 34

4.1 Overall Process Diagram ... 34
4.2 Custom Virtual Environment in Unreal Engine 5.1 .. 35

4.2.1 Setting up the initial Sea Environment ... 35
4.2.2 Transfer of Assets ... 35
4.2.3 Swimming People ... 37
4.2.4 Controllable Speed Boat .. 41
4.2.5 Autonomous Rescue of the Victim by the Speed boat ... 45
4.2.6 Initial Setup of the Drone using AirSim .. 47

4.3 Detection and Tracking by YOLOv8 .. 48
4.4 Autonomous Archimedean Spiral Path Planning .. 49
4.5 Direct Georeferencing .. 53
4.6 PD Tracking by Drone .. 55
4.7 Victim Geolocation ... 57
4.8 Autonomous Search and Rescue Mission ... 57
4.9 Results and Discussion ... 59

5 Discussion of Collaboration between Multiple Drones 62

6 Conclusion .. 65

References………………………………………………………………………………66

Appendices……………………………………………………………………………...71

5

List of Figures

Figure 2.1. Architecture of the AirSim simulator with core components and interactions

between them [4].. 14

Figure 2.2. Archimedean spiral represented on a polar graph [12] ... 16

Figure 2.3. Effect of Camera FOV and Height from the surface on the Camera footprint 16

Figure 3.1. Simulated environment from oil tanker side. .. 19

Figure 3.2. Simulated environment from objects side. .. 20

Figure 3.3. Post Disaster Oil Tanker. ... 21

Figure 3.4. Blueprints available in the "Post-Apocalyptic Oil Tanker" product. 21

Figure 3.5. Buoyancy points configuration. ... 22

Figure 3.6. Buoyancy points placement. .. 23

Figure 3.7. Top view with objects. .. 23

Figure 3.8. Initial UAS Setup in the Virtual Environment. ... 24

Figure 3.9. Isolated test region with just humans. ... 26

Figure 3.10. Illustration of the experimental procedures followed in the testing region. 27

Figure 3.11. Boustrophedon Path... 28

Figure 3.12. Collaboration between the nodes during the mission obtained using "rqt_graph".

.. 29

Figure 3.13. Detection with YOLOv7-SDS in mission. .. 31

Figure 3.14. Detections with YOLOv7-COCO in mission. ... 32

Figure 4.1. Block Diagram of the Overall Process Flow ... 34

Figure 4.2. Blueprint for Oil Barrel with Buoyancy component .. 36

Figure 4.3. Character Blueprint with Buoyancy added. ... 36

Figure 4.4. Character treading in Sea with buoyancy .. 37

Figure 4.5. 1D Animation Blendspace with Treading Animation ... 37

Figure 4.6. 1D Animation Blendspace with Swimming Animation .. 38

Figure 4.7. Animation Blueprint Event Graph ... 38

Figure 4.8. Animation Blendspace to Output Animation Pose in Animation Blueprint 39

Figure 4.9. Event Graph for Character Leonard Swimming in a square pattern 39

Figure 4.10. Timeline Node outputting values from 0.0 to 90.0 in 2 seconds 40

Figure 4.11. Timeline Node outputting values from 0.0 to 0.9 over the duration of 20 seconds

.. 40

6

Figure 4.12. Event Graph for Character Pete swimming forward continuously 41

Figure 4.13. Sockets added to the static mesh of the chosen Speed Boat................................ 42

Figure 4.14. Blueprint for the Speed Boat with Buoyancy component 42

Figure 4.15. Custom Move to Event inside Speed Boat to autonomously drive to selected

person. .. 43

Figure 4.16. TriggerMoveTo custom event inside BP_SpeedBoatControlled 44

Figure 4.17. OnBoardPerson custom event inside BP_SpeedBoatControlled 45

Figure 4.18. Addition of box collision components in BP_Leonard 45

Figure 4.19. Collision event for boxcollision2 and the drone.. 46

Figure 4.20. Collision event for boxcollision1 and the boat .. 46

Figure 4.21. Initial Setup of the Drone in the Environment .. 47

Figure 4.22. Experimentation with YOLOv8 pretrained model by manually flying the drone.

.. 48

Figure 4.23. Visualization of the implementation of the Archimedean Spiral 49

Figure 4.24. Testing of the path following by Archimedean_Spiral_Path node in the

Environment ... 52

Figure 4.25. Testing for the robustness of the path following ... 52

Figure 4.26. Conceptual diagram for Direct Georeferencing. ... 53

Figure 4.27. Flowchart for the code implementation of Direct Georeferencing 54

Figure 4.28. Flowchart for PD tracking of the victim by the drone ... 55

Figure 4.29. Testing of Georeferencing node with YOLOv8 pretrained detection model 56

Figure 4.30. Testing of Georeferencing node from the side view ... 56

Figure 4.31. Testing of Georeferencing node for tracking with pretrained YOLOv8

segmentation model ... 57

Figure 4.32. Collaboration between the nodes during the final autonomous mission obtained

using rqt_graph. ... 58

Figure 4.33. Autonomous search mission by the drone before the boat came to the rescue. .. 59

Figure 4.34. Simulation result of the rescue of the victim by the boat autonomously 59

Figure 4.35. Closer view of the autonomous rescue of the victim by the speed boat with the

help of the autonomous drone .. 60

Figure 4.36. Victim ID, Latitude, Longitude, and Altitude calculated by the

Victim_Geolocation node. .. 60

Figure 4.37. Geographical location of the detection in Google maps [46] 61

Figure 5.1. Multiple drones spawned in the simulation environment...................................... 62

Figure 5.2. ROS Topics available with 3 drones spawned in the simulation environment. 63

7

Figure 5.3. ROS Services available with 3 drones spawned in the simulation environment. . 63

Figure 5.4. Example Hierarchical level for control and cooperation between multiple drones.

.. 64

8

List of Tables

Table 1. Overview of the datasets collected and assessed. .. 29

Table 2. Confusion Matrix of the detections in the collected images for the Yolov7 model

trained on the COCO2017 dataset (YOLOv7-COCO). ... 30

Table 3. Confusion Matrix of the detections in the collected images for the Yolov7 model

trained on the SeaDronesSee dataset (YOLOv7-SDS). ... 30

Table 4. Explanation of the Archimedean Spiral implementation ... 49

9

Nomenclature

AUV Autonomous Underwater Vehicle

API Application Programming Interface

BP Blueprint

CVF Computer Vision Foundation

FOV Field of View

GPS Global Positioning System

GPU Graphics Processing Unit

HITL Hardware-in-the-Loop

IEEE Institute of Electrical and Electronics Engineers

NED North East Down

PID Proportional Integral Derivative

ROS Robot Operating System

SAR Search and Rescue

SITL Software-in-the-loop

UAV Unmanned Aerial Vehicle

UAS Unmanned Aerial System

USV Unmanned Surface Vehicle

UE Unreal Engine

YOLOYou Only Look Once

10

1 Introduction
With the everlasting curiosity and dissatisfaction in human beings to evolve further, it has been

an ultimate goal of humanity to manifest intelligence into an immortal machine making it a

fully autonomous entity. Furthermore, the need for survival has been the major driving factor

for innovations to homo sapiens justifying the significance of the interest to develop an

effective and robust network of smart systems that can independently operate to mitigate the

damage inflicted after an unforeseen disaster. Consequently, the European Union also decided

to initiate a project named “VALKYRIES” that works in Harmonization and Pre-

Standardization of Equipment, Training and Tactical Coordinated procedures for First Aid

Vehicles deployment on European multi-victim Disasters [1]. The University of South-Eastern

Norway (USN) is one of the participants of this project with allocation of several

responsibilities which will be the basis for this Master thesis.

This chapter will firstly impart the introduction to the thesis with the discussion of the necessary

background and context of the overall study, succeeded by the formulation of research problem,

questions, and objectives, and finally, the limitations to the study that are acknowledged

upfront.

1.1 Context and Motivation

Initially, the thesis topic with the preliminary background and minimum expectations in a broad

horizon along with the primary tools and software to be used, including chiefly Unreal Engine

4, Microsoft AirSim, and ROS, was decided, and allotted by USN. On further investigation,

the topic was in line with the current work being carried out by the Autonomous Research

Group, USN, in the prestigious VALKYRIES project. Therefore, with an aim to contribute to

the ongoing work at the University as well as to augment the relevancy of the study, it was

decided to direct the thesis in the corresponding direction.

Now diving into the specific topic, the aim of all major technological inventions is to make

human life easier and better accompanied by economic prosperity with minimal harm to the

environment. But there is always a persistent risk of uncontrollable and unpredictable

occurrence of natural calamities due to imbalance of forces in Mother Earth that jeopardizes

the main essence of mankind to live a happy and prosperous life. Likewise, the continual

possibility of disasters in ships, buses, airplanes, and other mechanical systems also instigates

peril to the survival of person itself followed by the costly economic and environmental

deterioration. Hence, the proper management of natural catastrophes and other disasters has

captivated a lot of attention since the start of human civilization because it is related to

safeguarding the core subconscious instinct of any living species to survive. It resulted in all

the novel technologies developed in the process of evolution being implemented, at their

respective times, for addressing this issue.

Moreover, the enhancement of technology from steam powered rotatory mechanical machines

in the first industrial revolution, to on off transistor logic powered second revolution, to

microcontrollers, made with combination of transistors, propelled third revolution, and finally

to internet driven fourth industrial revolution (Industry 4.0) has enabled the metamorphosis of

machines to highly sophisticated, and self-governing entities, commonly known as autonomous

systems, that are independently able to sense, perceive, plan, and act according to the

11

surrounding environment with proper training. It is, therefore, intriguing for people to deploy

autonomous systems for amelioration of any post disaster condition which can reduce the

associated risk, cost, and delay along with the increase of efficiency to salvage more lives, and

curb down the financial and ecological loss.

 In congruence, the European Union decided to commence the VALKYRIES project in 2020

with 17 main participants, including various universities and research institutes, hailing from

several countries inside Europe [1]. The primary goal of the project, in simple words, is the

creation of a uniform multi-country framework of autonomous post-disaster response system

that can work together independently for multi-faceted operations like search and rescue, first

aid, health, and safety of the victims, in the event of catastrophes encompassing various nations.

Every country has some unique subtle and inconspicuous legal, socio-economic, and security

fabric which substantiates the pertinency of this project. As a result, common concordance

between the states is vital for cooperation and coordination in case of detrimental hazards.

Finally, USN is one of the member universities of the VALKYRIES project who has been

allotted various duties. The elementary task relevant to the thesis topic is described in Task 4.1

titled as “First aid vehicles and supportive autonomous units” [1]. Basically, beginning with

scrutinizing the cutting-edge technical possibilities for the reaction of unaided and sovereign

artificial agents in first aid, USN needs to replenish the inconsistencies in their

institutionalization and standardization to put forward a guideline for their embracement by the

EU first aid responders. Furthermore, to showcase the application, USN has been designated

an explicit use case involving post-disaster scenario of an oil tanker ship in the region of North

Sea between Norway, Denmark, and Netherlands [1]. The fundamental aspects of the use case

demonstration are the search and rescue of the victims with emergency care, oil spill detection,

and salvage cargo with collaboration between the different responsible governmental

authorities in many fronts. For that, the principal anticipated self-governing systems to be

deployed are Unmanned Surface Vehicles (USVs) that need to replicate the tasks otherwise

carried out by human first aid responders by sovereignly infiltrating the affected region, and

Unmanned Aerial Vehicles (UAVs), especially drones, that can gather the essential information

from higher elevation with minimum penetration into the potentially risky and treacherous

areas. Moreover, it is also expected that the information gathered should be transmitted to a

common framework, named as SIGRUN, developed of cloud-based database with linkage to

web and mobile based applications.

Additionally, it is stressed that the implementations should be able to cope with the damage to

the conventional communication framework when employed without the precise outlook of the

cross-frontier and cross-sectorial BLOS (Beyond Line of Sight) missions [1].

1.2 Research Problem

Due to the inherent terrain intrusive nature of USVs with limited range of visibility compared

to the flexible aerial maneuverability of drones with higher spectrum of perceptibility at a

secure altitude, it is preferable to utilize drones for the initial surveillance of the potentially

fatal vicinity of the disaster struck ship that forms the foundation for the deployment of USVs.

Moreover, the elementary aim of establishment of any emergency management systems is to

strengthen the probability of detecting and emancipating any threat from the survival of human

life.

12

Based on these postulations, the research problem for this master thesis is formulated as

follows: Develop a virtual reality simulation environment of a post-disaster scenario of an oil-

tanker ship positioned in North Sea between Norway, Denmark, and Netherlands using Unreal

Engine, and implement a network of multiple drones in ROS with interface to Microsoft

AirSim that autonomously carry out reconnaissance missions with the focus on search and

rescue of victims.

1.3 Research Objectives

Based on the context and the research problem, the following are the paramount objectives of

the study:

a. To design and construct a sea simulation environment using Unreal Engine, Microsoft

AirSim, and ROS.

b. To conceptualize as well as actualize the various strategies for cooperation between several

self-governing drones to effectively inspect the locality of the wrecked ship prioritizing the

detection of victims.

c. To convey useful information to concerned authorities from hazardous territory.

1.4 Research Questions

The following fundamental questions were triggered with the research objectives that guided

the overall thesis study:

a. How to develop a high-fidelity sea simulation environment with a post disaster ship where

multiple drones can be spawned and controlled?

b. How to distribute responsibilities among the individual drones?

c. How to locate the victims within the vicinity of the ship?

d. How to handle the dynamic sea environment where the victims and objects keep on moving?

e. How to plan the time and energy efficient path for the drones ensuring full coverage of the

solicited area?

f. How to make the drones carry out the missions autonomously collaborating with each other?

g. How to communicate between the multiple agents in real-time?

h. How to transmit the information gathered by the drones to the concerned authorities

remotely?

13

1.5 Limitations

The following are the major limitations of the study recognized upfront:

a. There will always be some bias and discrepancies in the simulation from the real world.

b. The downward facing camera in the drone even with the gimbal might not be completely

stable, which might cause error in the georeferencing process.

c. The Odometry NED values are prone to errors because they are estimated values calculated

based on other motion sensors.

14

2 Theory
This chapter introduces the major tools and the theory behind some of the methods used in this

Master thesis.

2.1 Unreal Engine

Unreal Engine is an incredibly powerful and popular game development tool which is created

and maintained by Epic Games [2]. It is a game engine especially popular for the creation of

real-time 3D games, but it also supports creators across various industries to develop cutting-

edge real-time 3D content, interactive experiences, and immersive virtual worlds. Therefore,

lots of industries and academia use Unreal Engine which has a large user base around the world

with a solid support framework. The basic introduction to installation and use of Unreal Engine

with explanation of various features is available in structured form in [3].

2.2 Microsoft AirSim

AirSim is an open-source simulator platform built on Unreal Engine that is developed by the

Microsoft Research Team with the primary goal to narrow the gap between simulation and

reality to facilitate the development of autonomous vehicles, with elementary focus on aerial

systems, by providing physically and visually realistic simulations [4]. It can offer real-time

hardware-in-the-loop (HITL) simulations, with support for popular lighweight messaging

protocols for drones like MavLink [5] working on popular hardware platforms like Pixhawk,

by the help of a physics engine able to operate at a high frequency. In addition, it also supports

software-in-the-loop (SITL) simulations with the availability of built-in default flight controller

called simple_flight, which is used in this Master thesis, with also the support for PX4 and

Ardupilot as external flight controllers [6].

The overall architecture of the AirSim system is shown in Figure that illustrates the core

components and the interactions between them.

Figure 2.1. Architecture of the AirSim simulator with core components and interactions between them [4]

15

The Figure portrays the core components with modular design that includes simulator part with

environment model, vehicle model, physics engine, sensor models, rendering interface, public

API layer, and an interface layer for vehicle firmware or the companion computer [4]. This

research thesis focuses on SITL simulation, and hence does not use physical firmware. So, the

focus will be on the simulation in the local computer as if it is the companion computer of the

drone which sends the desired state wish to the Simulator through the API layer and gets back

the current estimated state as well as sensor, and perception data required for the autonomous

search and rescue mission planning from the API layer of the simulator.

Basically, the built-in flight controller inside the simulator obtains desired state input from the

companion computer, and sensor data from Sensor models and perception data from the

Rendering engine which is Unreal Engine, then calculates the current state estimate and outputs

the actuator control signals to the Vehicle Model to achieve the desired state. The Vehicle Model

computes the forces, including forces generated from drag, friction and gravity simulated by

various models for them, and torques generated by the simulated actuators to send to the

Physics Engine that calculates the next kinematic state, expressed in term of 6 quantities as

position, orientation, linear velocity, linear acceleration, angular velocity, and angular

acceleration. The Physics Engine also considers the Environment models for gravity, air

density, air pressure, magnetic field, and geographic location which together with kinematics

forms the ground truth for the simulated Sensor Models. Also, the Physics Engine sends the

current calculated pose of the drone to the Rendering Engine for the display, and the loop

continues as seen in Figure. All the models used for simulating physical properties in [4] are

proven dynamic physical models which justifies the high fidelity visual and physical

simulation.

Furthermore, even though Microsoft has officially shutdown the further development of

AirSim from 2022 and archived the official AirSim repository [7] to launch their new platform

called Project AirSim [8], Codex laboratories LLC have forked the official AirSim repository,

and continued the development of AirSim with a new name Colosseum [9] working with

Unreal Engine 5 which was used for the solution in Chapter 4 of this Master thesis.

2.3 Robot Operating System (ROS)

ROS is an popular open-source robotics middleware framework running mainly on Unix-based

platforms such as Ubuntu and Mac OS X systems [10]. It is not an operating system but

provides similar functionalities such as hardware abstraction, low-level device control,

implementation of commonly used functionality, message-passing between processes, and

package management. Basically, the main goal of ROS is to provide a common, scalable,

flexible, and language independent platform for robotics developers to share and reuse the

code. The detailed explanation of all the concepts, installation procedures, tutorials, and other

information about ROS can be found in an systematic form in its official documentation [10].

Furthermore, AirSim has a built-in wrapper for ROS that helps to interface the AirSim API as

shown in Figure with ROS directly whose detailed explanation is given in [11]. This is

extensively used throughout the Master thesis.

16

2.4 Archimedean Spiral

The Archimedean spiral (also known as the arithmetic spiral) is a spiral named after the 3rd-

century BC Greek mathematician Archimedes [12]. It is the locus comprising of the locations

of a point moving away from a fixed center point over time with a constant speed along a line

that rotates with constant angular velocity as shown in Figure.

Figure 2.2. Archimedean spiral represented on a polar graph [12]

In polar coordinates (r, θ) it can be represented by the {equation}.

𝑟 = 𝑎 +
𝑏

2𝜋
⋅ 𝜃

where a and b are real numbers.

The parameter 𝑎 controls the position of the center point of the spiral. If a is positive then the

center is shifted outward towards θ = 0, and if a is negative then the center of the spiral moves

outward from the origin towards θ = π. Whereas parameter b controls the distance between the

loops, which is equal for all the loops. This property of Archimedean spiral makes it suitable

for full coverage of the unknown desired region with low or no overlap in search and rescue

missions if the distance b between the loops is selected according to the Field of View (FOV)

and height of the camera from the ground as shown in Figure which is discussed also by the

authors in [13], [14], and [15].

Figure 2.3. Effect of Camera FOV and Height from the surface on the Camera footprint

17

3 Published Paper
This chapter presents the paper [16] published by the author of this thesis, PhD Student

Luciano Lima, and the supervisor of this thesis Fabio Andrade in Proceedings of the IEEE/CVF

Winter Conference on Applications of Computer Vision (WACV) Workshops, 2023 during the

duration of this Master thesis, and is an integral part of this Master thesis.

3.1 Abstract

This work presents a novel framework providing the ability to control an Unmanned Aerial

System (UAS) while detecting objects in real-time with visible detections, containing class

names, bounding boxes, and confidence scores, in a changeable high-fidelity sea simulation

environment, where the major attributes like the number of human victims and debris floating,

ocean waves and shades, weather conditions such as rain, snow, and fog, sun brightness and

intensity, camera exposure and brightness can easily be manipulated. Developed using Unreal

Engine, Microsoft AirSim, and Robot Operating System (ROS), the framework was firstly used

to find the best possible configuration of the UAS flight altitude, and camera brightness with

high average prediction confidence of human victim detection, and then only autonomous real-

time test missions were carried out to calculate the accuracies of two pretrained You Only Look

Once Version 7 (YOLOv7) models: YOLOv7 retrained on SeaDronesSee Dataset (YOLOv7-

SDS) and YOLOv7 originally trained on Microsoft COCO Dataset (YOLOv7-COCO), which

resulted in high values of 97.8% and 93.79%, respectively. Furthermore, it is proposed that the

framework developed in this study can be reverse engineered for autonomous real-time training

with automatic ground-truth labeling of the images from the gaming engine that already has all

the details of all objects placed in the environment for rendering them onto the screen. This is

required to be done to avoid the cumbersome and time-consuming manual labeling of large

amount of synthetic data that can be extracted using this framework which could be a

groundbreaking achievement in the field of maritime computer vision.

3.2 Introduction

Unforeseeable in nature, disasters involving ships at sea not only inflict costly economic and

environmental damage, but also jeopardize the invaluable life of crew and passengers onboard.

According to [17], there were a total of 892 shipping losses worldwide between 2012 to 2021

with 54 total mishaps alone in 2021. Even though the total number of global vessel hazards

declined by around 57% over the decade, it is still a substantial amount with each case

necessitating prompt and costly deployment of Search and Rescue (SAR) teams to rapidly curb

down the resulting harm. And, naturally, the primary focus of all rescue missions is to first

scour the inhospitable post-disaster region for victims and safeguard their lives. All this

substantiates the research interest to effectively and efficiently utilize the existing cutting-edge

scientific innovations to alleviate the threat on human life emanating from unpredictable

maritime accidents.

However, the abundance of all the applicable contemporary technologies introduces perplexity

in deciding the perfect combination between them for optimum performance. In general, almost

18

all major research conundrums are resolved with the thorough comprehension of the problem

domain and taking inspirations from the phenomenon already occurring in nature. On

breakdown of present real-life search and rescue operations, intuitively most of the associated

expense including time and money is attributed to the transportation of human first responders

in boats, helicopters, and aircrafts [18]. In addition, the involvement of humans, pursuant to

[19], brings upon various errors due to estimation biases of different physical quantities such

as under-estimation of horizontal distance, over-estimation of height when looking down and

under-estimation when looking up. These drawbacks can be overcome using Unmanned Aerial

Systems (UAS) that have small-size, lower operational cost, flexible aerial maneuverability,

wireless communication, and mathematical computation ability. UAS equipped with simple

RGB and/or thermal cameras and either onboard or cloud-based processing capability which

facilitates the use of deep convolutional neural networks (CNN) based object detection models,

as discussed by the authors in [20], [21], [22], [23], [24] and [25], can best mimic the action

of rescue personnel flying in helicopters or aircrafts for finding the victims in hazardous

territories, making the rescue process more efficient. Furthermore, among different modern

deep learning based object detection models [26], the state-of-the-art YOLOv7 that transcends

all other recognized object detectors in speed and accuracy [27] is here considered the most

suitable one because in critical real-time SAR missions both response time and accuracy are

equally important for saving human life. Therefore, the starting scientific dilemma is now

narrowed down to the paramount research question that forms the main basis for this work

which is: How to find the best possible configurations of the UAS and state-of-the-art object

detection models for working together in real-time with optimal accuracy of victim detection

at an erratic post-disaster ship scenario?

With this question in mind, simulation seems to be the only plausible path forward initially

because of the risk, price, time, and effort involved to set up the physical test environment at

sea with real persons and UAS with cameras, not to mention the absurd complications in the

re-enactment of the alternating scenario in the aftermath of an actual ship accident. Moreover,

the general prerequisites of the simulation platform to be used can also be deduced from the

research question as: (1) It should be able to produce detailed reproduction of a disaster-struck

ship surroundings with high quality of graphics; (2) It should allow the replica of UAS with

various sensors to be spawned and controlled in the fabricated environment; (3) It should have

an interface to a mechanism capable to control as well as read and process sensor data from a

real UAS, and execute object detection models, enabling transferability to real-world

applications; and (4) It should have the ability to pass a continuous image stream from the

replicated UAS that can be fed as input to object detection models for real-time processing.

Unreal Engine 4 [28] with the integration of AirSim [29], and Robot Operating System (ROS)

[30], on the basis of [31], [32], [33], [34] and [35], has the potential to fulfill all the

requirements of the simulation platform for this work as mentioned above. But when the

requirements are actually materialized with the combination of Unreal Engine, AirSim, ROS,

and Object Detection Models, a novel framework originates that answers the research question.

Therefore, this work follows the steps according to the requirements to firstly develop the

framework. Then, using this framework, the object detection models are evaluated to find the

finest configurations for achieving high accuracy of victim detection in real-time.

19

Hence, the main contributions of this paper are summarized as:

• The creation of a high-fidelity changeable sea simulation environment, where the deep-

rooted challenges in the maritime computer vision such as the different light conditions,

altitudes, sea colors, buoyancy, objects movement, camera exposures, brightness,

weather, size of the objects, among many others, can be easily controlled. This also

allows to inexhaustibly generate synthetic data for training new models.

• The development of a framework with the constructed simulation environment to

evaluate the performance of the cutting-edge object detection models with the input

images from the UAS in real-time autonomous SAR missions, which can directly be

transferred to real-world UAS applications.

• The proposal to reverse engineer the created framework for autonomous real-time

training of object detection models with the automatic ground-truth labeling of the

desired objects in the images from the UAS which could be a breakthrough in maritime

computer vision.

3.3 Development of the Novel Framework

This section describes the overall steps carried out based on the requirements of the

simulation platform mentioned in the previous section.

3.3.1 Virtual Environment

In this section, all the steps to build the simulated environment will be presented.

The simulation environment is composed of a oil tanker, objects and people in water, and a

small boat where the drones are deployed from.

In Figure 3.1, the environment is presented, highlighting the oil tanker. Another angle of the

environment, highlighting the objects and people can be seen in Figure 3.2.

Figure 3.1. Simulated environment from oil tanker side.

20

Figure 3.2. Simulated environment from objects side.

3.3.1.1 Environment Project

The Environment Project [36] is an open source environment simulation project for Unreal

Engine 4. It is the continuation of the Ocean Project, and has many features, such as ocean

simulation, sky simulation, buoyancy, time, and fish plugins. In this work, the simulation

environment was built on top of an existing example world that is made available by the

Environment Project.

Two important configurations that are only present when building sea environments are the

color of the ocean and the waves. It is possible to choose a darker or brighter ocean or more

blue or green, for example. Regarding the waves, it is possible to choose the height, direction,

among others, to make a more stormy or calm sea. In the Environment Project world, these

configurations are in the Blueprint "BP_Ocean". Additionally, the various environmental

aspects like sunlight intensity, brightness, atmospheric light, fog, and others were present in

the blueprint "BP_Sky".

In addition, it is possible to configure weather parameters such as wind, rain, among others,

which are also present in any world of Unreal Engine 4 but have their own plugin in the

Environment Project.

3.3.1.2 Post-Disaster Oil Tanker

The first element that was added to the environment was a post disaster ship.

21

Figure 3.3. Post Disaster Oil Tanker.

Unreal Engine 4 Marketplace has much content available for download, both free and paid.

The content that was chosen for this work is called "Post-Apocalyptic Oil Tanker" and was

made available for purchase in 2017 by the content creator "mikkotahtinen". An illustration of

the ship can be seen in Figure 3.3. It is important to note that the content that is downloaded is

composed by many separate blueprints (Figure 3.4). The creator of the world needed to build

the oil tanker with the desired content. One advantage was that in the content there were many

other interesting objects such as containers, that were added in the environment developed by

this work.

Figure 3.4. Blueprints available in the "Post-Apocalyptic Oil Tanker" product.

3.3.1.3 People

As the goal of this proposed framework was to provide a realistic environment, it was required

to populate it with people. This work focused on including people treading water to simulate

22

victims in a sea disaster. However, it is also possible to include people walking in the ship or

swimming. Many characters and animations can be downloaded for free at Mixamo [37] by

Adobe.

In this work, around six different characters were used, all of them with the animation of

treading water.

After downloading the animation, the physics aspects must be properly configured. The two

configurations that allow the person to properly tread water and be affected by the water

movement are to enable collision and choose the "SK_Mannequin_PhysicsAsset" as the

"Physics Asset Override". This was implemented with the proper understanding of similarity

in the bone structure and hierarchy of the "SK_Mannequin" Asset which is the default third

person character of Unreal Engine, and the Mixamo character. This also allows the manual

control of the Mixamo characters using the physics control capability of the "SK_Mannequin".

3.3.1.4 Buoyancy Configuration

One of the main aspects of this work is to have objects which are affected by the stream and

waves of the environment. Therefore, the buoyancy must be correctly configured, otherwise,

the objects would just be with a static position, frozen in the 3D space, without following the

water movement.

To configure the buoyancy, first the "Buoyant Force" component was added to the Blueprint,

then, the buoyancy points were decided with the assistance of the arrow tool as shown in Figure

3.5. Therefore, it is possible to know the exact position to add the buoyancy in the "Test Points"

configuration element. For the swimmer, three buoyancy points were added. This varies for

different objects.

Figure 3.5. Buoyancy points configuration.

23

Finally, Figure 3.6 presents the three test points which were included for the swimmer

blueprint.

Figure 3.6. Buoyancy points placement.

It is important to note that the same procedure must be performed for all objects placed on the

sea, such as the oil tanker, containers, oil barrels, buoys, among others. Nevertheless, the

buoyancy points should be added to only one blueprint of any object, and then the same object

can be easily replicated with the same settings.

3.3.1.5 Other Aspects

In addition, buoys, and other objects, such as containers and oil barrels with buoyancy added

following the same procedure as people, were placed as seen in Figure 3.7.

Figure 3.7. Top view with objects.

24

3.3.2 Initial Setup of the UAS

Firstly, the AirSim plugin was integrated into the custom Unreal environment following the

procedures as explained in the AirSim documentation [38]. All settings, except for the camera,

were kept as default. A single multirotor UAS named "Drone_1" was spawned in the

environment with "PlayerStart" placed on top of a rescue fishing boat as shown in Figure 3.8.

Figure 3.8. Initial UAS Setup in the Virtual Environment.

The camera settings were modified facilitating the UAS to have a single camera of resolution

640x640, which is the YOLOv7 model standard image resolution, field of view (FOV) of 90

degrees, and gimbal enabled with perfect stabilization of 1 and pitch of -90 degrees making the

camera face vertically downward. In addition, the sensors like IMU, Magnetometer, GPS, and

Barometer were also enabled automatically if the settings were left unchanged for the

Multirotor sim mode as mentioned in the AirSim documentation [38].

Furthermore, complying with the directives specified, AirSim ROS wrapper was setup for

Noetic version of ROS inside Windows Sub-system for Linux (WSL) 2 with Ubuntu 20.04 as

Linux distribution on a Windows 10 computer having NVIDIA GeForce RTX 2080 Ti

Graphical Processing Unit (GPU). It primarily contained two nodes among which the mostly

used first node named "airsim_node" was a wrapper over AirSim's multirotor C++ client library

that was comprised of various publishers, subscribers, services, and parameters.

3.3.3 Manual Control of the UAS

Next, using the "Twist" ROS message type, the velocity command subscriber topic from the

wrapper allowed the movement of the UAS in all directions with the input of both linear and

angular velocities in x, y, and z coordinates. For utilizing this feature to manually move the

UAS in a desired way in the simulation environment, a ROS package named

"AS_RoS_Teleop" was used that linked the different keyboard keys with separate control

commands to publish velocity twist messages in the chosen topic.

25

3.3.4 Implementation of YOLOv7 in ROS

Subsequently, the effort of implementing YOLOv7 in ROS was eased with the ready-made

ROS package titled "yolov7_ros" which was a ROS wrapper built over the original framework

by the official developers of YOLOv7 [27]. After that, the weights of the chosen pertained

YOLOv7 models were downloaded, and the class names for the respective models in the

required txt file format were saved in separate folders. Then, the path to the model weights,

class names, and the image topic were specified accordingly in the launch file to initiate the

node for the real-time detection and visualization of the detections along with the bounding

boxes, class names, and confidence scores using the desired YOLOv7 model one at a time.

3.4 Evaluation of Object Detection Models

This section explains the different procedures adopted to evaluate the performance of the object

detection models for real-time detection of human victims in autonomous UAS missions.

3.4.1 Selection of Pretrained YOLOv7 Models on Different Datasets for
Evaluation

As this study was in its early phase, it was decided to utilize the ready-to-use YOLOv7 models

that were already trained on datasets containing people because the focus of this study was to

detect human victims with high accuracy in the post-disaster scenarios.

The first obvious choice was the originally trained YOLOv7 model on Microsoft COCO

(Common Objects in Context) [39] which was a large-scale dataset developed for object

detection, classification and segmentation with 91 labeled objects constituting also people

designated as "person" class. Due to the core nature of any Deep CNN based models including

YOLOv7 to learn patterns in the training image using shifting convolution operations, it was

important to assess the type of human images in this dataset. So on further scrutiny, it was

found that the majority of the images were taken in canonical perspective [40] with different

viewing angles.

Secondly, in search of datasets specially concentrating on the marine environment and aerial

images, SeaDronesSee [41] was found, which was also a large-scale dataset from different

aerial perspectives developed with focus on SAR operations on the sea using UAS. This was

completely relevant for this work. In addition, the SeaDronesSee team had also trained

YOLOv7 in their own dataset, and made the model freely available in project GitHub [42]. The

output labels in this model were swimmer (people floating with stretched hands and legs), boat,

jet ski, buoy, and lifesaving appliance (life jacket/lifebelt).

26

3.4.2 Experimentation with Various Configurations

The main beauty of the developed framework was that it enabled numerous experiments with

minimal efforts which otherwise would have been either impossible or extremely difficult in

real-life.

However, to make the study more focused in accordance with all other experimental studies,

the variables to be considered in this work were also reduced from the plethora of the

manipulable variables. Thus, keeping constant the environmental factors such as dark blue

ocean shade, low wave amplitude and velocity, normal level of atmospheric and other lights,

only the UAS position, especially height, and camera brightness was manipulated. The camera

brightness was altered by changing the post-process settings present inside the camera

component of the main parent blueprint of AirSim Camera named "BP_PIPCAMERA". Also,

to further reduce the variables involved in this study, the camera brightness was changed as

very low, low, normal, high, and very high. When the environment is executed in AirSim Game

Mode, the images rendered on the screen are from the external camera which is also a child of

the parent AirSim Camera. Hence, when the brightness of the camera was changed, it affected

the image displayed on the viewport as seen in Figure 3.10.

Therefore, the starting experiment was carried out by freely traversing the UAS in the

environment with different camera brightness and YOLOv7 models. On doing so, some

interesting phenomenon of human victim detection were observed for both the models.

With the YOLOv7-SDS model selected, all the objects were detected as "boat" class in low or

normal camera brightness for all heights of the UAS. But when the brightness was high, the

model started to detect floating people with hands and legs moving as "swimmers" whereas

other objects were still as "boat". Meanwhile, with the YOLOv7-COCO model chosen, the

human buoyant victims were correctly classified as "person" class mostly in low heights with

low or normal brightness.

For concretizing these observations, a separate test area with just the imported six characters

was created as shown in Figure 3.9.

Figure 3.9. Isolated test region with just humans.

27

After that, the UAS was manually flown to the center of the testing region, and slowly only the

altitude of the UAS was elevated from low to high and vice versa with different camera

brightness each time for both YOLOv7-SDS and YOLOv7-COCO models. Concurrently, the

detections with bounding boxes and confidence scores, the average prediction confidences and

the altitude were closely monitored as shown in Figure 3.10.

Figure 3.10. Illustration of the experimental procedures followed in the testing region.

Finally, after exhaustive trials it was found that the YOLOv7-SDS model had the highest

average prediction confidence of detecting human victims as "swimmers" class at 8 meters

from the sea level with a very high camera brightness, whereas the YOLOv7-COCO model

had the highest average prediction confidence of detecting human victims as "person" class at

2 meters from the sea level with low camera brightness.

3.4.3 Path Planning for the Autonomous Mission

As the primary objective of this study was to evaluate the performance of the models for victim

detection by skipping the arduous process of deploying the UAS in actual post-disaster

scenarios with a simulated one, there was a need to replicate the mission that would have been

employed in real-life, which could be used to gather the test images after detection by the

models for empirical accuracy calculation.

Moreover, the predetermination of the specific height and camera settings of the UAS also laid

the foundation for the autonomous surveillance mission. Using the distributed node processing

capability of the ROS framework, the responsibilities of taking the UAS to the appropriate

location in the environment, and then covering the desired locality fully were assigned to

separate nodes. The point-to-point transfer of the UAS was implemented by modifying the

second node present in the AirSim ROS wrapper named "Simple PID Controller Node" from

service node into an action server node waiting for the position goal asynchronously where the

28

controller parameters proportional gain (K_p) and derivative gain (K_d) were set after heuristic

tuning to 0.5, and 2 respectively.

For full coverage of the desired post-disaster region by the UAS, the boustrophedon path [43],

as shown in Figure 3.11, was deemed to be the most straightforward and effective option for

this work, where the width in each step was selected to be:

𝑤𝑖𝑑𝑡ℎ = 2 × 𝑍𝑈𝐴𝑆 × tan (
𝐹𝑂𝑉

2
)

where 𝑍𝑈𝐴𝑆 is the altitude of the UAS and FOV is the field of view of the camera.

Figure 3.11. Boustrophedon Path.

Here, the boustrophedon path was implemented in a node where the odometry sensor topic was

subscribed for current UAS position and the required velocities were published to the velocity

command topic in world frame.

Furthermore, an additional path planner node was created for the autonomous systematic

execution of both the nodes.

3.4.4 Final Mission Execution

Lastly, the autonomous reconnaissance operations were carried out, where the drone

independently takes off, goes to the specified starting point of the desired area, covers the area

for predefined mission time, and returns back to land in the initial position. All these actions

were executed by the collaboration between the different nodes discussed in the previous

sections as shown in Figure 3.12.

29

Figure 3.12. Collaboration between the nodes during the mission obtained using "rqt_graph".

Also, using the "image_view" package in ROS, the real-time images with detections published

during the mission by the "yolov7_ros" node in the visualization topic were observed and some

chosen images at strategic locations containing people were saved by simple right-click of

mouse-button for both the models which ensured proper representative sampling for statistical

calculation. This was mainly done to limit the number of images gathered for numerical testing

due to high frame rate without losing substantial features from the data.

3.5 Results and Discussion

This section presents the results from the statistical metrics calculation of the selected output

test images from the real-time detection models along with the relevant discussions.

Table 1 illustrates the flight altitude and camera brightness of the UAS for each model in

addition to the number of test images gathered for evaluation. The number of images sampled

was lower when using the YOLOv7-SDS because the flight elevation was higher, and as each

time the altitude is doubled, the area covered is quadrupled, so less images were needed for the

representative analysis of the same area.

Table 1. Overview of the datasets collected and assessed.

Model Altitude Brightness Images

YOLOv7-COCO 2 m Low 130

YOLOv7-SDS 8 m Very High 26

30

The confusion matrix of the detections in the YOLOv7-COCO model can be seen in Table 2.

There were 129 objects detected. Of these 129 objects, 110 were correctly detected as "person",

2 were incorrectly classified as another object and 6 people were not detected at all. Therefore,

the number of false negatives is equal to 8. That gives an accuracy of 93.79%. Among the

correctly detected people, the average confidence level was 84%, the minimum was 27% and

the maximum 96%.

Table 2. Confusion Matrix of the detections in the collected images for the Yolov7 model trained on the

COCO2017 dataset (YOLOv7-COCO).

 Predicted

Person Not Person

Actual Person 110 8

 Not Person 0 11

The confusion matrix of the detections in the YOLO-SDS model can be seen in Table 3. There

were 142 objects detected. Of these 142 objects, 36 were correctly detected as swimmers, there

was 1 incorrectly classified as another object and 2 swimmers were not detected at all.

Therefore, the number of false negatives is equal to 3. That gives an accuracy of 97.8%. Among

the correctly detected swimmers, the average confidence level was 69%, the minimum was

38% and the maximum 82%.

Table 3. Confusion Matrix of the detections in the collected images for the Yolov7 model trained on the

SeaDronesSee dataset (YOLOv7-SDS).

 Predicted

Swimmer Not Swimmer

Actual Swimmer 36 3

 Not Swimmer 0 103

Now, the first point to be discussed is the very fact that the models trained on real images were

able to detect the synthetic objects with high accuracies provides a strong proof-of-concept for

the interchangeability of real and virtual SAR missions, justifying the importance of this work.

Secondly, although the accuracies achieved by both models were high, there was a huge

difference in the nature of the input images fed into the models. This inspired further

contemplation on the working of the deep CNN itself. As, in deep learning the patterns in pixel

level from the input images are encoded into the model, so the behavior of the model is

dependent on the normalized pixel intensities in the three RGB color channels which is actually

the numerical input into the model. With this comprehension, the results from the YOLOv7-

model, as seen in Figure 3.14 made complete sense because the patterns in training images of

31

MS COCO Dataset [39] matched with the pixel-level patterns in the input images due to the

adjusted flight altitude of the UAS. But the result from the YOLOv7-SDS, as observed in

Figure 3.13, was a surprising discovery which was only possible due to the rigorous

experiments with various configurations of altitude and camera settings allowed by this

framework. Comparing this result to the images with people in the SeaDronesSee Dataset [41],

it could only be hypothesized that the matching of the pixel-level pattern of a human floating

in water with stretched hands and legs along with high uniform intensities of the bright pixels

triggered the neural network to output "swimmer" class. This intriguing phenomenon needs

more research and can be particularly interesting for training with high altitude or satellite

images.

Figure 3.13. Detection with YOLOv7-SDS in mission.

Lastly, another captivating observation highlighting the significance of real-time detection in

SAR is that with a high frame rate of input images, the footprint underneath the UAS is always

overlapping with the UAS moving forward only small distance in each iteration resulting in

multiple chances of detection. So, even if a victim is not detected in one image, there is still a

high probability that it might have been detected in the earlier or will be detected in the

subsequent image which is clearly exemplified by Figure 3.14.This also results in the actual

false omission rate (FOR) being lower than what was observed with the test images.

32

Figure 3.14. Detections with YOLOv7-COCO in mission.

3.6 Conclusion

In this work, a framework was developed using Unreal Engine, Microsoft AirSim, and ROS

that enabled the control of the UAS in a desired way based on velocity commands while

detecting objects in an alternating post-disaster ship simulation environment. After that, two

pretrained YOLOv7 models were selected: YOLOv7-SDS and YOLOv7-COCO. Then, using

the created framework, extensive manual testing was implemented by changing the UAS

altitude along with the camera brightness to discover the best possible combination with high

average prediction confidence of detecting human victims naturally floating in water with

moving hands and legs. This allowed to plan and implement autonomous UAS missions using

the same framework yielding high accuracies of real-time victim detection calculated as 97.8%

for YOLOv7-SDS when the UAS was deployed in an altitude of 8m with high camera

brightness, and 93.79% for YOLOv7-COCO when the UAS was employed at a height of 2m

from the sea-level with lower camera brightness.

Furthermore, the developed framework has immense potential for further work. Due to the

limitation of time and difficulty of accommodating all the things in a single paper, only a few

experiments were carried out in this study. But extensive experimentations will be performed

in the near future with various object detection models in different configurations accompanied

by the implementation of the findings physically with a real UAS. Additionally, other

researchers are also encouraged to utilize the detailed steps of reproducing the framework

fabricated in this work to carry out experiments according to their respective needs.

Moreover, a small modification in the research question proposed in this work to "How to make

any configuration of the UAS and object detection models to work together in real-time with

optimal accuracy of detecting any desired object in a dynamic marine environment?" suddenly

demystifies the true potential of this framework. By reverse engineering the images in the UAS

camera to have the precise automatic ground truth labeling from the gaming engine, the same

framework has the capability of training new object detection models in real-time in different

33

imaginable configurations for any thinkable objects overcoming all the traditional challenges

in maritime computer vision.

Acknowledgment:

This paper is supported by European Union’s Horizon 2020 research and innovation

programme under grant agreement No. 101020676 for the project named as VALKYRIES

(Harmonization and Pre-Standardization of Equipment, Training and Tactical Coordinated

procedures for First Aid Vehicles deployment on European multi-victim Disasters).

34

4 Additional work on the paper
This chapter describes the additional work carried out in accordance with the paper with a

primary objective to answer the research question of how to handle the dynamic marine

environment where people and objects cannot remain in the same place due to the nature of

open sea water.

4.1 Overall Process Diagram

The block diagram, as shown in Figure 4.1, briefly illustrates the overall process flow for this

chapter which will be explained in detail in the later sections.

Figure 4.1. Block Diagram of the Overall Process Flow

35

4.2 Custom Virtual Environment in Unreal Engine 5.1

This section describes the steps followed for the creation of a new custom Sea Simulation

Environment from scratch using the currently latest fully released version 5.1 of Unreal Engine

(UE) and Microsoft AirSim. This was carried out to further explore the potential of the built-

in features of UE5.1 as a knowledge building step.

4.2.1 Setting up the initial Sea Environment

Here, the primary steps involved in setting up a natural looking simulation environment with

sky and sea are explained. Starting with a new blank blueprint project with starter content

selected in the initial user interface of UE5.1, firstly, a new empty level was created, which was

completely empty and dark, and was saved as Environment in Maps folder. Then, from the

Place Actors panel, firstly, Sky Atmosphere component was placed into the Environment from

the Visual effects category, followed by the Directional Light component from Light category,

which was renamed as Sunlight. Next, again from the Visual effects category, two components

Volumetric Cloud and Exponential Height Fog were added into the Environment, ending with

Skylight component from the Light category with Real Time Capture property checked for

better lighting. Consequently, the Environment level contained a realistic looking sky

atmosphere with blue sky, movable sun, clouds, and a negligible amount of fog, whose settings

could be modified according to the desire of the developer.

Furthermore, for the placement of sea in the Environment, in the beginning two built-in plugins

named Water and Landmass were enabled. Then, changing the viewing mode from Perspective

to Landmass, the size of the landmass was selected sufficiently large in Quads with Enable

Edit Layers property checked, which was necessary for Water plugin to work because the water

body was built over the landmass, and leaving other properties unchanged. After that, again

switching to Perspective viewing mode, from the Place Actors panel, Water Body Ocean

component was added into the Environment, which spawned the sea into the Environment, and

with it selected, the spline points in white color were made adequately small to cover up the

default formation of a small island in the Environment. Finally, after the completion of all these

steps, a simulation environment was developed with sky and empty sea.

4.2.2 Transfer of Assets

The different useful assets like Oil Tanker, Buoys, and six people from the previously

developed environment in UE4.27 as in Section 3.3.1, were migrated to this project in UE5.1.

The Ship blueprint developed earlier by combining different static meshes parts, was directly

placed in the Environment, and Particle Effects of Fire from Starter Content were added to

simulate its accident. However, some modification had to be made for different other assets

that required buoyancy for floating like containers, oil barrels, buoys, and people because the

Environment Project as in Section 3.3.1.4 had its own buoyancy component named Buoyant

Force, but for the custom environment the unreal engine had its own default Buoyancy

component. Nevertheless, the differences were subtle with primarily just the change in name

36

for the points where buoyancy was applied from Test Points to Pontoons as shown in Figure

4.2 for oil barrel, and similarly for other static meshes.

Figure 4.2. Blueprint for Oil Barrel with Buoyancy component

Likewise, some adjustments were also made to simulate treading people from previous work

in Section 3.3.1, by wrapping the character into a blueprint class that is a child of Character

class, which gives additional components like capsule collision cylinder, skeletal mesh,

character movement by default because it was later found in further study that this was the

standard practice in Game Development used for controlling character as shown in Figure 4.3.

Figure 4.3. Character Blueprint with Buoyancy added.

The desired skeletal mesh of the person, and the existing animation asset of Treading was

selected in the Mesh component. Previously, the physics was enabled directly for the skeletal

mesh itself, by also overriding its physics asset to SK_Mannequin_PhysicsAsset as in Section

3.3.1.4, which was found after extensive trial and error to make the character fall normally

without any unusual behavior. But here, the physics was enabled for the capsule component by

checking the Simulate Physics and Enable gravity property which made the character

experience gravity without directly changing any settings of the skeletal mesh as it was a child

of the capsule component. Also, only a single Pontoon point was added in Buoyancy

component with other properties like Radius left to default values as shown in Figure 4.3. As,

it was enough to make the person naturally float on water with treading action, which was the

elementary concern for this study as shown in Figure 4.4.

37

Figure 4.4. Character treading in Sea with buoyancy

4.2.3 Swimming People

As the people normally floating in water with moving hands and legs i.e., treading, had already

been implemented in the paper, the next step was to implement swimming victims in water.

For that, firstly, swimming animation for the character was downloaded from Mixamo [37] and

imported into the project. But people cannot directly start swimming or continuously only swim

forever. Taking this into account, animation blendspace was used that helps for transition of

animation from treading to swimming based on the value of arbitrarily chosen parameter. In

this case, the speed of the swimmer is chosen as that parameter, which is a natural phenomenon

also. One of six characters, named Leonard, was chosen initially to update it into a swimmer,

and a 1D Animation Blendspace component from Animation option when right clicked in the

content browser of UE5.1 was created as shown in Figure 4.5.

Figure 4.5. 1D Animation Blendspace with Treading Animation

As seen in Axis Settings in Figure 4.5, Speed parameter was kept in the Horizontal Axis with

Minimum Axis Value as 0.0 and Maximum Axis Value as 100.0. Then, the Treading Animation

38

was dragged from the Asset Browser in the lower right section to the leftmost part of the

timeline with symbol of “x”, and Swimming Animation was dragged to the rightmost part as

shown in Figure 4.6.

Figure 4.6. 1D Animation Blendspace with Swimming Animation

Hence, the animation slowly changes with the increasing input value of Speed from 0.0 to

100.0. The developed animation blendspace was then used to create an Animation Blueprint,

which could be used inside the blueprint of the character. In the Event Graph of the Animation

blueprint, the current speed of the character was taken from the Get Component Velocity

function and set to a float variable named Speed as depicted in Figure 4.7.

Figure 4.7. Animation Blueprint Event Graph

39

Then, that Speed variable was used as input to the blendspace, and the output of the blendspace

was connected to Output Animation Pose node of the animation blueprint that directs the

current animation for the character as illustrated in Figure 4.8.

Figure 4.8. Animation Blendspace to Output Animation Pose in Animation Blueprint

Now, for the actual swimming action of the character, firstly, an idea was brainstormed to make

the character swim continuously in a square pattern for the easiness of the testing purposes

later. For that, a custom event Trigger swim was created inside the character blueprint to trigger

the start of the movement as shown in Figure 4.9.

Figure 4.9. Event Graph for Character Leonard Swimming in a square pattern

40

For the control of time and value, different Timeline nodes were used. The first two will be

explained as an example, with a similar idea for the rest. The first timeline node Timeline_12,

as shown in Figure 4.10, was of short duration of 2 seconds, that was used to output smooth

continuous value from 0.0 to 90.0 to Set Actor Relative Rotation function node which rotates

the character to the right by 90°.

Figure 4.10. Timeline Node outputting values from 0.0 to 90.0 in 2 seconds

Then, the second timeline node Timeline_8, as illustrated in Figure 4.11, was used for

producing values between 0.0 and 0.9 between a duration of 20 seconds, which was fed into

the Add Movement Input function node for making the character slowly swim forward in the

current relative z or yaw direction that was found by extracting the forward vector from the z

rotation value given by Get Actor Rotation function node as portrayed in Figure 4.9.

Figure 4.11. Timeline Node outputting values from 0.0 to 0.9 over the duration of 20 seconds

Similarly, when the character swam for 20 seconds, then the relative rotation was adjusted to

follow the square pattern, and again the character swam for another 20 seconds. Hence, a total

of 4 timeline nodes of 2 second duration were used for setting the relative rotation smoothly in

each phase, and another 4 timeline nodes of 20 second duration for the swimming movement

input. Then, as illustrated in Figure 4.9, Set Timer by Event Handle node was used to again

trigger the event Trigger swim automatically after the end for making the character

continuously swim in a square pattern.

41

Another important point to note is that before the character starts swimming, the Physics

Volume of the Movement Component was set as Water Volume. The Maximum Swimming

Speed property of the Character was set to 100 cm/s in the Character Movement component in

accordance with the Speed parameter set in the Animation blendspace as in Figure 4.5. And the

maximum value to be produced by the timeline node was set to 0.9 to not make the character

swim in a fully horizontal way inside water, but with a small angle to the horizontal.

Likewise, another idea was formulated that a continuously forward swimming person would

also be required during the intermediate testing of the tracking by drone. Therefore, another

character named Pete was chosen to be a continuous swimmer. The event graph of the

continuous swimmer is shown in Figure 4.12. Here, a single timeline node was used for a

duration of 5 seconds and maximum value of 0.9 with Loop option turned on.

Figure 4.12. Event Graph for Character Pete swimming forward continuously

4.2.4 Controllable Speed Boat

In the previous work Section 3.3.2, the boat where drone was placed and launched was

available in the Environment Project as in Section 3.3.1.1 and was just floating on water. So,

it was decided to try to move the boat also autonomously to the desired location in this

Environment i.e., victims in the current context. For this, a new asset named Speed Boat Packs

was bought from the Unreal Engine Marketplace which was supported for UE version 5.1. It

contained many boat types among which a Speed Boat as shown in Figure 4.13 was chosen for

this study. Firstly, a new Blueprint Class named BP_SpeedBoatControlled was created as a

child of default Pawn Class. Then, all the static meshes available in the Speed Boat asset were

put together as children of the main boat body static mesh in the blueprint as illustrated in

Figure 4.14. After that, six sockets were added at different locations in the static mesh of the

boat where the Pontoons could act to provide buoyancy as depicted in Figure 4.13.

42

Figure 4.13. Sockets added to the static mesh of the chosen Speed Boat

Next, the Buoyancy component was added to the blueprint and the Pontoons were attached to

the sockets by the Center Socket property of the Pontoon as shown in Figure 4.14.

Figure 4.14. Blueprint for the Speed Boat with Buoyancy component

For controllable autonomous driving of the boat, a custom event Move To was created in the

Event Graph as illustrated in Figure 4.15. The Figure 4.15 contains two contiguous parts on

top of one another to accommodate inside the page and maintain the readability of the blueprint

code.

43

Figure 4.15. Custom Move to Event inside Speed Boat to autonomously drive to selected person.

44

Here, firstly, the location of the blueprint character BP_Leonard was obtained by Get Actor

Location function node, then the unit direction vector between the boat and the character was

calculated using Get Unit Direction Vector function node. As, the direction was calculated

from the center of the boat, 90° was subtracted in yaw direction of the output of Rotation from

X Vector function node, which gave the rotation difference from x-direction, to make the boat

point straight in the direction of the person by setting the new rotation in z or yaw axis using

Set Actor Relative Rotation function node. Also, the unit direction vector was multiplied by the

user specified Speed variable with Instance editable property checked that enabled editing it in

the Level Editor, to input it into the Add Force function node. Moreover, to limit the maximum

speed of the boat, the current velocity of the boat obtained from Get Physics Linear Velocity

function node was checked whether it was higher or lower than the Speed set by the user, and

only if it was lower the input to Add Force function node was allowed, otherwise the current

velocity of the boat was clamped to the Speed set by using Set Physics Linear Velocity function

node. Then, finally in the end again the Move To custom event was triggered after a small Delay

to loop continuously until the destination was reached as shown in Figure 4.15.

Also, another custom event titled TriggerMoveTo was fabricated to trigger the Move To event

after some user specified delay through a float variable named Delay for Boat to Start Rescue

whose Instance Editable property was turned on for the ease of changing the value from the

Level Editor as portrayed in Figure 4.16.

Figure 4.16. TriggerMoveTo custom event inside BP_SpeedBoatControlled

Furthermore, an additional custom event named OnBoardPerson was also created to attach the

person onto the boat as shown in Figure 4.17. For that, initially an extra socket titled

SavedPerson was added onto the static mesh of the boat in the appropriate empty location in

the boat as seen in Figure 4.13. Then, a Skeletal Mesh component named SavedPerson was

added as a child of the main body static mesh of the boat. Moreover, a new animation asset

called Praying was also downloaded from Mixamo [37] and imported into the engine to

simulate the action of the saved victim thanking for the rescue. The OnBoardPerson event was

made to take as input the desired Skeletal Mesh component which was set into the SavedPerson

component using Set Skeletal Mesh Asset function node. Then, using the Set Animation Mode

and Set Animation function nodes, the animation asset of the SavedPerson component was set

to Praying. And, finally using the Attach Component to Component function node, as shown

in Figure 4.17, the SavedPerson component could be attached with the body mesh of the speed

boat in the location of SavedPerson socket.

45

Figure 4.17. OnBoardPerson custom event inside BP_SpeedBoatControlled

4.2.5 Autonomous Rescue of the Victim by the Speed boat

Next, the triggering point for the Move To event in the speed boat was considered to be the

moment when the drone reaches the vicinity of the victim. For that a Box Collision component

named boxcollision2 was added into the blueprint of the character Leonard BP_Leonard as

illustrated in Figure 4.18. The boxcollision2 component was scaled in all directions but by

higher amount in the Z-direction to account for the drone flying up in the air.

Figure 4.18. Addition of box collision components in BP_Leonard

Then, in the Event Graph of BP_Leonard a default collision detection event was created On

Component Begin Overlap (boxcollision2) that detected the collision between the boxcollision2

and the drone as shown in Figure 4.19. The Get Player Pawn function node was used to get the

reference of the blueprint class of the AirSim Drone BP_FlyingPawn. When the collision was

46

detected inside boxcollision2, it was checked whether the Other Actor was the drone, and if it

was True then the custom event inside the boat titled Trigger Move To was activated which in

turn started the movement of the boat towards the person by triggering the Move To event after

some delay.

Figure 4.19. Collision event for boxcollision2 and the drone

Now, with the setup of triggering the boat towards the person completed, next step was to on

board the victim onto the boat when the boat reached near it. For that, another Box Collision

component named boxcollision1 was also added in BP_Leonard as seen in Figure 4.18.

Similarly, with the drone, in the Event Graph of BP_Leonard a default collision detection event

was created On Component Begin Overlap (boxcollision1) that detected the collision between

the boxcollision1 and the boat as shown in Figure 4.20. Firstly, Cast to

BP_SpeedBoatControlled node checked whether the Other Actor was

BP_SpeedBoatControlled, and if it was valid then the OnBoardPerson custom event was

triggered with the skeletal mesh of Leonard character also sent as input. It simulated the person

loaded onto the boat when the boat reached near the victim.

Figure 4.20. Collision event for boxcollision1 and the boat

47

4.2.6 Initial Setup of the Drone using AirSim

Following the similar procedures as in Section 3.3.2, with a difference in the use of the AirSim

version to [9] developed by Codex Laboratories LLC to work with Unreal Engine version 5.1,

the drone was initially placed in the developed Environment as shown in Figure 4.21.

Furthermore, the origin geopoint parameter in the AirSim settings [7] was set to Latitude of

57.963589°, Longitude of 9.130108°, and Altitude of 122 as seen in Appendix H. And it is

important to note that when the Environment is started in AirSim Gamemode, the origin point

both in geographical coordinates and NED coordinates starts from the initial spawning point

of the drone. And, as the drone was kept on top of the boat, the difference in height from the

starting point of the drone and the sea level was found to be 3.28366 m that was set as

z_correction used in the georeferencing calculation later. The gimbal location was set in the

middle point of the drone without any offset in this study, so it was ignored. But any difference

in camera height known can be adjusted to z_correction.

Figure 4.21. Initial Setup of the Drone in the Environment

48

4.3 Detection and Tracking by YOLOv8

Based on the official GitHub repository [44] and [45], YOLOv8 was implemented in ROS in

a separate node named yolov8_sea whose complete code implementation is in Appendix E.

Basically, the node yolov8_sea subscribed the image topic

/airsim_node/Drone_1/camera_1/Scene from the AirSim Drone, and the model was

implemented in the image callback of the subscriber for Real-Time Detection. Here, both the

object detection and segmentation models of YOLOv8 were implemented in the same node

with a Boolean flag for selection amongst the two models. Furthermore, the center and

bounding box pixel coordinates along with the tracking ID of the detections for each image

were published as Detection2DArray message in the topic titled /detections. Also, the detection

image, with bounding boxes, class name of the objects, track ID, and confidence score drawn

onto it, was displayed in an OpenCV window for real-time viewing as well as published as

sensor_msgs.msg. Image message in the topic /detection_image for remote viewing from

anywhere. This allowed for the experimentation as in Section 3.4.2. For the current context,

the drone was manually flown at different heights and the detection results along with the

corresponding height were viewed in real-time, as shown in Figure 4.22, and it was observed

that the YOLOv8 pretrained model detects the person treading and swimming in Sea with high

confidence score till around 6.5m from the sea level. The model detected the person perfectly

in any pose till that height, so no other configurations were tested for this study.

Figure 4.22. Experimentation with YOLOv8 pretrained model by manually flying the drone.

49

4.4 Autonomous Archimedean Spiral Path Planning

Based on the theory explained in Section 2.4, Autonomous Archimedean Spiral Path Planning

was implemented on separate node named Archimedean_Spiral_Path in ROS whose complete

code implementation is included in Appendix D, and its visualization is shown in Figure 4.23.

Figure 4.23. Visualization of the implementation of the Archimedean Spiral

For the easiness of understanding, the Table 4 describes the various parameters portrayed in

the Figure 4.23. Visualization of the implementation of the Archimedean Spiral starting from

the first quadrant.

Table 4. Explanation of the Archimedean Spiral implementation

Quadrant Parameters Description

First NED XY Frame The X and Y direction of the NED frame that the

AirSim Drone works on

50

 (x, y) The current (x, y) location of the drone in NED

Frame

Angle to centre =

atan2(dx/dy)

The angle to the origin point from the current

location of the drone where dx = x - 0 = x, dy = y -

0 = y, as the origin point in this study was taken as

(0,0). The atan2 is the arc or inverse tangent

function of the math library in python.

Lookahead angle (w) The small lookahead angle in radians from the

current angle to centre. For this work, the chosen

value was 3° x π/180 radians.

next_angle Angle to centre + Lookahead angle.

next_radius = b. (Ө + w) The distance from the origin to the next point in the

locus according to the {Equation}. Here, parameter

a was ignored. (Ө + w) denotes the polar coordinate

angle Ө for the next point, and it was implemented

as the running sum of the difference between the

present next_angle and the previous next_angle in

each step.

next_x = next_radius.

sin(next_angle)

The x value of the next point in the locus after the

conversion from polar coordinate. It is different

from the normal cartesian coordinate because of

the change of frame in NED. Here, “.” represents

the multiplication

next_y = next_radius.

cos(next_angle)

The y value of the next point in the locus after the

conversion from polar coordinate.

Second next_x = next_radius. sin

(π - next_angle)

For mathematical simplicity and intuition, it was

decided to keep the next_angle between 0 and π/2

radians to always calculate as a right-angled

triangle. The atan2 function yields values from 0 to

π/2 in the first quadrant, and π/2 to π radians for the

second quadrant in anticlockwise direction. Hence,

51

(π –next_angle) gave values between 0 and π/2 in

clockwise direction.

next_y = -next_radius. cos

(π - next_angle)

In the second quadrant, the value in vertical

direction remains same in polarity but the value in

horizontal direction has reverse polarity. Hence,

the sign “-” for next_y.

Third next_x = -next_radius. sin

(π + next_angle)

The atan2 function gave output from - π/2 to - π for

the angles in the third quadrant in clockwise

direction. Hence, addition of π gave positive values

between 0 and π/2 in the anticlockwise direction.

next_y = -next_radius. cos

(π + next_angle)

The polarities are negative for both vertical and

horizontal directions in third quadrant.

Fourth next_x = -next_radius. sin

(abs(next_angle))

The atan2 function outputs values between 0 and -

π/2 radians for the angles in the fourth quadrant in

clockwise direction. Therefore, the absolute value

of next_angle yielded positive values between 0

and π/2 radians in clockwise direction.

next_y = next_radius. cos

(abs(next_angle))

In the fourth quadrant, the values in the vertical

direction are negative whereas the values in the

horizontal direction are positive.

With the values of the next point in the path known autonomously, the next step was to send

proper velocity commands to follow the spiral path by the drone in the form of Twist message

that contained linear and angular velocity components in x, y, and z direction. The velocities

in x and y directions were sent PD controlled values with error being the difference in next

point (next_x, next_y) and current point (x, y) with controller parameters Kp and Td

heuristically tuned to 1 and 0.5 respectively. Likewise, the altitude of the drone i.e., z value

was also PD controlled to a desired altitude with controller parameters Kp and Td as 2 and 5

respectively. In addition, the roll and pitch of the drone were also tried to be controlled with PI

controller having parameters Kp and Ti as 2 and 10 respectively after heuristic tuning as seen

in the code in {Appendix}. Then, with a small value of parameter b of 1 as in Figure 4.23, the

Archimedean_Spiral_Path node was tested for the result to give the output as shown in Figure

4.24.

52

Figure 4.24. Testing of the path following by Archimedean_Spiral_Path node in the Environment

The pink traced path seen in the Figure 4.24 is the path moved by the drone, which is a default

feature of AirSim, and is activated by pressing T on the keyboard. It can be seen from Figure

4.24 that the drone perfectly follows the Archimedean spiral as in Figure 4.23 with unit equal

distance between the loops. Furthermore, due to the addition of extra control parameters the

drone not only followed the spiral path, but it was also able to endure very high manual force

trying to disrupt the path, making the path following more robust for search and rescue missions

as shown in Figure 4.25.

Figure 4.25. Testing for the robustness of the path following

53

4.5 Direct Georeferencing

With the conceptual framework as shown in Figure 4.26, the detection centre in pixels which

was outputted from the YOLOv8 model in yolov8_sea node, was converted into NED

coordinate position in the world, i.e., direct georeferencing, with the complete code

implementation in ROS as a separate node named as Georeferencing is presented in Appendix

F.

Figure 4.26. Conceptual diagram for Direct Georeferencing.

And the flowchart for the logical flow with pseudocode of the code implementation based on

the Figure 4.26 is illustrated in Figure 4.27.

Camera

54

Figure 4.27. Flowchart for the code implementation of Direct Georeferencing

55

Here, as seen in Figure 4.27, basically, the Georeferencing node listens to two topics

/detections from yolov8_sea node and the Odometry topic from the AirSim using Approximate

Time Synchronizer in ROS that synchronizes the messages in both the topics based on the

maximum difference of time in the timestamps of both the messages and produces a single

callback function. For this study, the maximum difference in time given by the slop parameter

was set to a very low value of 0.1 seconds. Then, as /detections topic contained

Detection2Darray message which comprised of all the detections in the single frame of image,

only the first person detected and tracked by the model was selected for the tracking by the

drone in this study. All the steps used after that are self-explanatory based on Figure 4.26 and

Figure 4.27.

4.6 PD Tracking by Drone

Furthermore, the continuous tracking by drone until the victim was rescued was also

implemented inside the Georeferencing node as seen in Appendix F. The continuation of the

flowchart shown in Figure with the addition of the logical flow for tracking is shown in Figure

4.28.

Figure 4.28. Flowchart for PD tracking of the victim by the drone

The position errors were calculated between the NED coordinates of the detected victim and

the current NED position of the drone obtained from the Odometry topic. Similarly, the altitude

of the drone was also controlled to a desired height specified by the developer. Both position

and altitude of the drone were controlled using PD controller with proportional gain Kp set to

0.2 and the derivative gain Kd set to 2 after exhaustive heuristic tuning for best performance.

After that, the computed controlled velocity values were published to the command velocity in

world frame topic of the drone using Twist message as seen in the code implementation.

Moreover, the testing procedure for the successful operation of the Georeferencing node with

proper PD parameters was carried out with the continuously swimming forward Pete character

described in Section 4.2.3 as shown in Figure 4.29. The drone was manually flown near the

swimming person till the person was inside the frame of the camera, then the node would get

activated itself and start tracking the person autonomously. The pink traced line shows the

autonomous movement of the drone. The parameters were changed until stable and satisfactory

tracking was obtained for the swimmer. In addition, manual disturbances were also added to

the drone to change its path, orientation, and altitude while autonomous tracking, but it

overcame all the disturbances also to continue tracking the person.

56

Figure 4.29. Testing of Georeferencing node with YOLOv8 pretrained detection model

The tracking action looked like Figure 4.30 from the side view.

Figure 4.30. Testing of Georeferencing node from the side view

Similarly, the pretrained YOLOv8 segmentation model was also tested for tracking

performance as shown in Figure 4.31, and it also gave satisfactory performance.

57

Figure 4.31. Testing of Georeferencing node for tracking with pretrained YOLOv8 segmentation model

4.7 Victim Geolocation

Even though the NED coordinates were useful for the local control of the drone, for external

use and transmission, the local NED coordinate position of the detected victim were converted

into GPS coordinates in latitude and longitude. For that, a separate node was created titled

Victim_Geolocation whose complete code implementation is kept in Appendix G. It was

decided to use a separate node from the Georeferencing node to separate the conversion and

potential external transmission of the Victim_ID and GPS coordinates to various destinations

which might have their own latency. The Victim_Geolocation node subscribed to the topic

published by the Georeferencing node, which can be seen at the end of Figure. For the

conversion of NED coordinate into GPS coordinate, a separate ROS service named

returngeolocationfromned was created by modifying the AirSim ROS wrapper that used the

default nedToGeodetic C++ function available inside Earth Utils module in AirSim C++

library. The nedToGeodetic function uses various independent parameters like the radius and

curvature of the earth for conversion. The ROS service returngeolocationfromned took the

NED coordinate point as input Request and returned output as Response the GPS coordinates.

Also, the Victim_Geolocation node displayed the Person_ID, latitude, longitude, and altitude

on the screen.

4.8 Autonomous Search and Rescue Mission

Finally, all the independent processes described in earlier sections and illustrated by the block

diagram in Figure 4.1, were combined for working together to a single search and rescue

autonomous mission with the collaboration between the different nodes as shown in Figure

4.32.

58

Figure 4.32. Collaboration between the nodes during the final autonomous mission obtained using rqt_graph.

In summary, an additional node named path_planner was developed, as seen in the lower left

corner of Figure 4.32 with code implementation included in Appendix B, whose responsibility

was to autonomously initiate the overall process by publishing a message with the start location

including x, y and desired z values for the drone to start spiral search to a topic

/Goto_spiral_start_location. Also, another new ROS Action Client node named

PD_Position_Controller was fabricated, with full code implementation kept in Appendix C,

to listen to the message from the path_planner node and transfer the message to ROS PD

position controller Action server node titled pd_position_control_node , same one discussed in

Section 3.4.3 of the paper, for actually moving the drone to the spiral start location. When the

drone reached the spiral search start location, the Result back from the action server became

True, and then the PD_Position_Controller published a message in the topic /spiral_start

which was subscribed by the Archimedean_Spiral_Path node that started the spiral search

process. The drone then started following the spiral search path until the yolov8_sea node

detected the first person which in turn triggered the Georeferencing node. The Georeferencing

node was modified to initially publish a message to the Archimedean_Spiral_Path node

through /spiral_start topic to stop the spiral path following of the drone. Then, the usual

functioning of the Georeferencing node started along with the PD tracking of the victim.

Finally, the mission ended with the Victim_Geolocation node displaying the ID, latitude,

longitude, and altitude values of the victim on the screen until the boat autonomously came to

the detected victim location and on boarded the person onto it after user specified delay as

explained in detail in Section 4.2.5.

59

4.9 Results and Discussion

This section will present and discuss the results of the complete autonomous search and rescue

mission described in the earlier section. The Figure 4.33 illustrates the autonomous launching

of the drone by path_planner node and PD_Position_Controller node to the spiral start

location, then moving in the spiral path with Archimedean_Spiral_Path node until the

swimming victim detected, the detection by the yolov8_sea node and the tracking of the victim

by the drone through Georeferencing node before the boat came to the rescue. Here, the pink

traced line shows the path followed by the drone. The character Leonard that continuously

swims in a square pattern was kept nearby the launching point of the drone from the boat for

the easiness of visualization of the mission result in a single frame like in Figure 4.33.

Figure 4.33. Autonomous search mission by the drone before the boat came to the rescue.

Then, the Figure 4.34 shows the boat coming to the rescue of the person, who is continuously

detected and followed by the drone, and on boarding the victim on it after 120 seconds of delay

specified by the author, starting from the point in time the drone first starts detecting the victim.

Figure 4.34. Simulation result of the rescue of the victim by the boat autonomously

The Figure 4.35 portrays the result in a different closer view of the external camera which

makes the path followed by the drone in the autonomous search and rescue mission clearer.

60

Figure 4.35. Closer view of the autonomous rescue of the victim by the speed boat with the help of the

autonomous drone

Furthermore, the screenshot of the ID and geographical location of the detected victim

calculated by the Victim_Geolocation node simultaneously is shown in Figure 4.36.

Figure 4.36. Victim ID, Latitude, Longitude, and Altitude calculated by the Victim_Geolocation node.

As the drone was continuously detecting the victim along with the calculation of the location,

only the few of the beginning detection results are shown in Figure 4.36. Furthermore, the

61

geographical location in latitude and latitude being detected by the drone in Google maps [46]

is illustrated in Figure 4.37.

 Figure 4.37. Geographical location of the detection in Google maps [46]

The area between Norway, Denmark, and the Netherlands shown in Figure is the area of

interest for USN in Project Valkyries which was achieved by previously setting the origin

geopoint in AirSim settings as explained in {section}. Hence, the Figure and Figure indicates

that the conversion between the detected and georeferenced NED coordinates in meters and the

GPS coordinates in latitude and longitude of the position of the victim in the simulated

Environment is working correctly. Therefore, with this study, the simulated information of the

victim like ID, latitude, longitude, and altitude detected by the autonomous drone during the

simulation of the oil tanker accident are available in a separate node implemented with Python

in ROS which can be easily used or transmitted to remote cloud-based system like Valkyries

Dashboard for further testing.

Furthermore, with the drone continuously tracking the first person it detects until the rescue

teams reach the victim for rescue can try to solve the issue of dynamic marine environment.

62

5 Discussion of Collaboration between
Multiple Drones

This chapter will discuss the possibility of cooperation between multiple drones in the same

framework. It was first important to develop and test the different techniques for controlling a

single drone autonomously for various use cases in search and rescue missions which was

carried out in previous chapters. Then, multiple drones could easily be spawned and controlled

in the simulation environment as shown in Figure 5.1 with simple changes in AirSim settings

based on AirSim Documentation [38]. In addition to cameras, other sensors like LIDAR,

Distance Sensor can also be activated.

Figure 5.1. Multiple drones spawned in the simulation environment.

The Figure 5.1 is analogous to the Figure 3.8 in Section 3.3.2 of the paper but with three drones

spawned. Also, the environment seen in Figure 5.1 is the recreated environment in a same way

like in the paper described in Chapter 3, but in Unreal Engine version 5.1 by downloading and

updating the version that worked in Unreal Engine 5.0 from Environment Project [36]. Even

though this updated environment was available, the custom environment was used in the third

chapter to illustrate the flexibility of the overall framework used in this research thesis. The

same ROS nodes work with both the marine environments, or any other custom environment

of different geography developed in Unreal Engine, and the assets and blueprints developed

can also be used interchangeably among the environments.

Now, again coming back to the multiple drones spawned in the environment, the AirSim ROS

wrapper automatically duplicates all the topics available for each drone to multiple drones

distinctly separated by their name in namespace as shown in Figure 5.2.

63

Figure 5.2. ROS Topics available with 3 drones spawned in the simulation environment.

Similarly, the Figure 5.3 illustrates the ROS services available with three drones activated.

Figure 5.3. ROS Services available with 3 drones spawned in the simulation environment.

64

Hence, with distinct topics and services for each drone available as shown in Figure 5.2 and

Figure 5.3, multiple drones can also be simulated for autonomous missions with the same code

implementation as in the Section 3.4.4 and Section 4.8 with the addition of higher layers of

parent path_planner nodes for coordination as shown in Figure 5.4.

Figure 5.4. Example Hierarchical level for control and cooperation between multiple drones.

Due to the distributed parallel node processing capability of ROS, multiple nodes can run

simultaneously, and each node can be given a different responsibility for the control of multiple

drones. Another benefit of using ROS in controlling multiple drones as highlighted in Figure

is all communication in a single ROS framework is handled by a single ROS master where the

nodes register themselves in the beginning. Therefore, all the nodes in any level in the

framework can communicate with each other when necessary. Some examples for this can be

seen in {section}, when the Georeferencing node stopped the Archimedean_Spiral_Path node

to change from search mode to tracking mode or in {section} where the Boustrophedon_path

node was stopped by the main path_planner node after mission time was over and the drone

was brought back to the home location. Also, the ROS Master can be over a network in the

cloud in different machine, controlling nodes connected to it parallelly in distributed systems.

Furthermore, the different drones can be sent to different starting locations following different

path planning to search or track the victims, detect the disaster ship location or other concerned

objects, and communicate with each other as well as external concerned parties through

different topics. To exemplify this, the first drone can initially search for the location of the

post disaster ship with spiral path in local NED position autonomously, then send the location

message to other drones to extensively search around the detected disaster location.

Therefore, the combination of ROS, Microsoft AirSim and Unreal Engine is very important for

the simulation of multi-agent drones. And this thesis primarily shows how they can be

controlled with different responsibilities assigned for different nodes.

65

6 Conclusion
In conclusion, high fidelity marine simulation environments containing the post disaster ship,

other debris such as containers, oil barrels, buoys, and most importantly people having different

actions such as treading and swimming with natural buoyancy were developed in both Unreal

Engine version 4.27 and 5.1 with the integration of Microsoft AirSim and ROS. Then, various

strategies for controlling the spawned single drone in the simulated environments were

developed and tested with the primary focus in the search and rescue of the victims followed

by the discussion to scale the same solutions with multiple drones.

Furthermore, the work presented in this thesis has tremendous potential for further work. The

immediate next work will be to test the various algorithms and models used in this study with

real physical drones. In addition, collision avoidance strategies can be added on the drones to

make them more robust as discussed by the authors in [13],[47], [48], and [49]. Additionally,

various new Vision transformers [50] based object detection, and segmentation models such as

Grounding DINO [51], Segment Anything [52], and a recently released transformer model

faster than all YOLOs called as Real Time Detection Transformer (RT-DETR) [53] , and in

CNN category newer models like YOLO-NAS [54] could be applied in the detection and path

following solutions like proposed in [55].

Moreover, the main purpose of showing the boat autonomously coming to the rescue of the

victim detected in Chapter 4 was to discuss the possible future work for the pair of aerial drones

and the surface vehicles working together for the complete autonomous search and rescue.

Various interesting vision based deep reinforcement learning methods proposed for surface

systems as FastRLAP: A System for Learning High-Speed Driving via Deep RL and

Autonomous Practicing [56], Legged Locomotion in Challenging Terrains using Egocentric

Vision [57], Deep Whole-Body Control: Learning a Unified Policy for Manipulation and

Locomotion [58], and UAV/USV Cooperative Trajectory Optimization Based on

Reinforcement Learning [59] could be tried to be applied on the boat for autonomous collision

avoiding movement for rescue. Similarly, some of the MPC based methods as discussed by the

previous USN Student Syed Sami in his Master thesis [60], UAV-USV cooperative tracking

based on MPC [61], Cooperative Path Planning for UAV, USV, and AUV together for search

and rescue missions [62] and Autonomous Collision Avoidance MPC for USV [63]. Finally,

another relevant interesting vision based collision avoidance work ongoing in USN that could

be applied on the autonomous rescue boat is [64].

 References

66

References

[1] ‘Harmonization and Pre-Standardization of Equipment, Training and Tactical

Coordinated procedures for First Aid Vehicles deployment on European multi-victim

Disasters | VALKYRIES Project | Fact Sheet | H2020 | CORDIS | European

Commission’. https://cordis.europa.eu/project/id/101020676 (accessed Apr. 24, 2022).

[2] ‘Unreal Engine | The most powerful real-time 3D creation tool’, Unreal Engine.

https://www.unrealengine.com/en-US (accessed May 14, 2023).

[3] ‘Understanding the Basics’. https://docs.unrealengine.com/5.0/en-US/understanding-

the-basics-of-unreal-engine/ (accessed May 14, 2023).

[4] S. Shah, D. Dey, C. Lovett, and A. Kapoor, ‘AirSim: High-Fidelity Visual and Physical

Simulation for Autonomous Vehicles’. arXiv, Jul. 18, 2017. doi:

10.48550/arXiv.1705.05065.

[5] ‘Introduction · MAVLink Developer Guide’. https://mavlink.io/en/ (accessed May 14,

2023).

[6] ‘Flight Controller - AirSim’. https://microsoft.github.io/AirSim/flight_controller/

(accessed May 14, 2023).

[7] ‘Home - AirSim’. https://microsoft.github.io/AirSim/ (accessed May 14, 2023).

[8] ‘Aerial Autonomy: Project AirSim’, Microsoft AI. https://www.microsoft.com/en-

us/AI/autonomous-systems-project-airsim (accessed May 14, 2023).

[9] ‘Welcome to Colosseum, a successor of AirSim’. Codex Laboratories LLC, May 08,

2023. Accessed: May 14, 2023. [Online]. Available:

https://github.com/CodexLabsLLC/Colosseum

[10] ‘Documentation - ROS Wiki’. http://wiki.ros.org/Documentation (accessed May 14,

2023).

[11] ‘ROS: AirSim ROS Wrapper - AirSim’.

https://microsoft.github.io/AirSim/airsim_ros_pkgs/ (accessed May 14, 2023).

[12] ‘Archimedean spiral’, Wikipedia. Apr. 01, 2023. Accessed: May 09, 2023. [Online].

Available:

https://en.wikipedia.org/w/index.php?title=Archimedean_spiral&oldid=1147744547

[13] F. A. de Alcantara Andrade et al., ‘Autonomous Unmanned Aerial Vehicles in Search

and Rescue Missions Using Real-Time Cooperative Model Predictive Control’, Sensors,

vol. 19, no. 19, Art. no. 19, Jan. 2019, doi: 10.3390/s19194067.

[14] F. Balampanis, I. Maza, and A. Ollero, ‘Spiral-like coverage path planning for multiple

heterogeneous UAS operating in coastal regions’, in 2017 International Conference on

Unmanned Aircraft Systems (ICUAS), Jun. 2017, pp. 617–624. doi:

10.1109/ICUAS.2017.7991461.

[15] G. Xu, X. Chen, B. Wang, K. Li, J. Wang, and X. Wei, ‘A search strategy of UAV’s

automatic landing on ship in all weathe’, in 2011 International Conference on Electrical

 References

67

and Control Engineering, Sep. 2011, pp. 2857–2860. doi:

10.1109/ICECENG.2011.6057120.

[16] R. Poudel, L. Lima, and F. Andrade, ‘A Novel Framework to Evaluate and Train Object

Detection Models for Real-Time Victims Search and Rescue at Sea with Autonomous

Unmanned Aerial Systems Using High-Fidelity Dynamic Marine Simulation

Environment’, in 2023 IEEE/CVF Winter Conference on Applications of Computer

Vision Workshops (WACVW), Waikoloa, HI, USA: IEEE, Jan. 2023, pp. 239–247. doi:

10.1109/WACVW58289.2023.00030.

[17] A. G. C. & Specialty, ‘Safety and Shipping Review 2022’. [Online]. Available:

https://www.agcs.allianz.com/news-and-insights/reports/shipping-safety.html

[18] Regjeringen, ‘The Norwegian Search and Rescue Service’. [Online]. Available:

https://www.regjeringen.no/globalassets/upload/kilde/jd/bro/2003/0005/ddd/pdfv/18386

5-infohefte_engelsk.pdfl

[19] Y.-Y. Choong, G. Salvendy, and others, ‘Voices of First Responders–Applying Human

Factors and Ergonomics Knowledge to Improve the Usability of Public Safety

Communications Technology’. NISTIR, 2021.

[20] S. Wang, Y. Han, J. Chen, Z. Zhang, G. Wang, and N. Du, ‘A deep-learning-based sea

search and rescue algorithm by UAV remote sensing’, in 2018 IEEE CSAA Guidance,

Navigation and Control Conference (CGNCC), IEEE, 2018, pp. 1–5.

[21] R. Zheng, R. Yang, K. Lu, and S. Zhang, ‘A search and rescue system for maritime

personnel in disaster carried on unmanned aerial vehicle’, in 2019 18th International

Symposium on Distributed Computing and Applications for Business Engineering and

Science (DCABES), IEEE, 2019, pp. 43–47.

[22] S. Sambolek and M. Ivasic-Kos, ‘Automatic person detection in search and rescue

operations using deep CNN detectors’, IEEE Access, vol. 9, pp. 37905–37922, 2021.

[23] B. Mishra, D. Garg, P. Narang, and V. Mishra, ‘Drone-surveillance for search and

rescue in natural disaster’, Computer Communications, vol. 156, pp. 1–10, 2020.

[24] J. Lorincz, A. Tahirović, and B. R. Stojkoska, ‘A Novel Real-Time Unmanned Aerial

Vehicles-based Disaster Management Framework’, in 2021 29th Telecommunications

Forum (℡FOR), IEEE, 2021, pp. 1–4.

[25] C. D. Rodin, L. N. de Lima, F. A. de Alcantara Andrade, D. B. Haddad, T. A. Johansen,

and R. Storvold, ‘Object classification in thermal images using convolutional neural

networks for search and rescue missions with unmanned aerial systems’, in 2018

International Joint Conference on Neural Networks (IJCNN), IEEE, 2018, pp. 1–8.

[26] S. S. A. Zaidi, M. S. Ansari, A. Aslam, N. Kanwal, M. Asghar, and B. Lee, ‘A survey of

modern deep learning based object detection models’, Digital Signal Processing, p.

103514, 2022.

[27] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, ‘YOLOv7: Trainable bag-of-freebies

sets new state-of-the-art for real-time object detectors’. arXiv, 2022. doi:

10.48550/ARXIV.2207.02696.

[28] E. Games, ‘Unreal Engine’. [Online]. Available: https://www.unrealengine.com

 References

68

[29] S. Shah, D. Dey, C. Lovett, and A. Kapoor, ‘AirSim: High-Fidelity Visual and Physical

Simulation for Autonomous Vehicles’, in Field and Service Robotics, 2017. [Online].

Available: https://arxiv.org/abs/1705.05065

[30] Stanford Artificial Intelligence Laboratory et al., ‘Robot Operating System’. [Online].

Available: https://www.ros.org/

[31] T. Do Trong, Q. T. Hai, N. T. Duc, and H. T. Thanh, ‘A Novelty Approach to Emulate

Field Data Captured by Unmanned Aerial Vehicles for Training Deep Learning

Algorithms Used for Search-and-Rescue Activities at Sea’, in 2020 IEEE Eighth

International Conference on Communications and Electronics (ICCE), IEEE, 2021, pp.

288–293.

[32] F. A. D. A. Andrade et al., ‘Virtual Reality Simulation of Autonomous Solar Plants

Inspections with Unmanned Aerial Systems’, in 2021 Aerial Robotic Systems Physically

Interacting with the Environment (AIRPHARO), IEEE, 2021, pp. 1–8.

[33] A. Redulla and S. P. Singh, ‘Simulating differential games with improved fidelity to

better inform cooperative & adversarial two vehicle UAV flight’, in 2018 IEEE

International Conference on Simulation, Modeling, and Programming for Autonomous

Robots (SIMPAR), IEEE, 2018, pp. 130–136.

[34] C. Ma, Y. Zhou, and Z. Li, ‘A New Simulation Environment Based on Airsim, ROS,

and PX4 for Quadcopter Aircrafts’, in 2020 6th International Conference on Control,

Automation and Robotics (ICCAR), 2020, pp. 486–490. doi:

10.1109/ICCAR49639.2020.9108103.

[35] S. Wang, J. Chen, Z. Zhang, G. Wang, Y. Tan, and Y. Zheng, ‘Construction of a virtual

reality platform for UAV deep learning’, in 2017 Chinese Automation Congress (CAC),

IEEE, 2017, pp. 3912–3916.

[36] DotCam, TK-Master, Zoc, and S. Elble, ‘EnvironmentProject’, GitHub repository.

GitHub, 2022. [Online]. Available: https://github.com/UE4-OceanProject/Environment-

Project

[37] Adobe, ‘Mixamo by Adobe’. [Online]. Available: http://www.mixamo.com

[38] Microsoft, ‘AirSim’. [Online]. Available: https://microsoft.github.io/AirSim/

[39] T.-Y. Lin et al., ‘Microsoft COCO: Common Objects in Context’. arXiv, 2014. doi:

10.48550/ARXIV.1405.0312.

[40] J. Higgins, Canonical views of objects and scenes. University of Illinois at Urbana-

Champaign, 2011.

[41] L. A. Varga, B. Kiefer, M. Messmer, and A. Zell, ‘SeaDronesSee: A Maritime

Benchmark for Detecting Humans in Open Water’. arXiv, 2021. doi:

10.48550/ARXIV.2105.01922.

[42] B. Kiefer, ‘SeaDronesSee’, GitHub repository. GitHub, 2022. [Online]. Available:

https://github.com/Ben93kie/SeaDronesSee

[43] H. Choset and P. Pignon, ‘Coverage path planning: The boustrophedon cellular

decomposition’, in Field and service robotics, Springer, 1998, pp. 203–209.

[44] G. Jocher, A. Chaurasia, and J. Qiu, ‘YOLO by Ultralytics’. Jan. 2023. Accessed: May

14, 2023. [Online]. Available: https://github.com/ultralytics/ultralytics

 References

69

[45] M. Á. G. Santamarta, ‘yolov8_ros’. May 15, 2023. Accessed: May 15, 2023. [Online].

Available: https://github.com/mgonzs13/yolov8_ros

[46] ‘Google Maps’, Google Maps.

https://www.google.com/maps/place/57%C2%B057'48.8%22N+9%C2%B008'25.2%22

E/@57.8163417,4.339613,6.21z/data=!4m4!3m3!8m2!3d57.963544!4d9.140319

(accessed May 13, 2023).

[47] H. M. Jayaweera and S. Hanoun, ‘Real-time Obstacle Avoidance for Unmanned Aerial

Vehicles (UAVs)’, in 2021 IEEE International Conference on Systems, Man, and

Cybernetics (SMC), Oct. 2021, pp. 2622–2627. doi: 10.1109/SMC52423.2021.9659197.

[48] S. Song, Y. Zhang, X. Qin, K. Saunders, and J. Liu, ‘Vision-guided Collision

Avoidance Through Deep Reinforcement Learning’, in NAECON 2021 - IEEE National

Aerospace and Electronics Conference, Aug. 2021, pp. 191–194. doi:

10.1109/NAECON49338.2021.9696380.

[49] A. Lombard, L. Durand, and S. Galland, ‘Velocity Obstacle Based Strategy for Multi-

agent Collision Avoidance of Unmanned Aerial Vehicles’, in 2020 IEEE International

Conference on Sensing, Communication and Networking (SECON Workshops), Jun.

2020, pp. 1–6. doi: 10.1109/SECONWorkshops50264.2020.9149770.

[50] A. Dosovitskiy et al., ‘An Image is Worth 16x16 Words: Transformers for Image

Recognition at Scale’. arXiv, Jun. 03, 2021. doi: 10.48550/arXiv.2010.11929.

[51] S. Liu et al., ‘Grounding DINO: Marrying DINO with Grounded Pre-Training for Open-

Set Object Detection’. arXiv, Mar. 20, 2023. doi: 10.48550/arXiv.2303.05499.

[52] A. Kirillov et al., ‘Segment Anything’. arXiv, Apr. 05, 2023. doi:

10.48550/arXiv.2304.02643.

[53] W. Lv et al., ‘DETRs Beat YOLOs on Real-time Object Detection’. arXiv, Apr. 17,

2023. doi: 10.48550/arXiv.2304.08069.

[54] ‘Deci-AI/super-gradients’. deci.ai, May 15, 2023. Accessed: May 15, 2023. [Online].

Available: https://github.com/Deci-AI/super-gradients

[55] Y. M. R. da Silva et al., ‘Computer Vision Based Path Following for Autonomous

Unmanned Aerial Systems in Unburied Pipeline Onshore Inspection’, Drones, vol. 6,

no. 12, Art. no. 12, Dec. 2022, doi: 10.3390/drones6120410.

[56] K. Stachowicz, D. Shah, A. Bhorkar, I. Kostrikov, and S. Levine, ‘FastRLAP: A System

for Learning High-Speed Driving via Deep RL and Autonomous Practicing’. arXiv,

Apr. 19, 2023. doi: 10.48550/arXiv.2304.09831.

[57] A. Agarwal, A. Kumar, J. Malik, and D. Pathak, ‘Legged Locomotion in Challenging

Terrains using Egocentric Vision’. arXiv, Nov. 14, 2022. Accessed: May 15, 2023.

[Online]. Available: http://arxiv.org/abs/2211.07638

[58] Z. Fu, X. Cheng, and D. Pathak, ‘Deep Whole-Body Control: Learning a Unified Policy

for Manipulation and Locomotion’. arXiv, Oct. 18, 2022. doi:

10.48550/arXiv.2210.10044.

[59] P. Yao and Z. Gao, ‘UAV/USV Cooperative Trajectory Optimization Based on

Reinforcement Learning’, in 2022 China Automation Congress (CAC), Nov. 2022, pp.

4711–4715. doi: 10.1109/CAC57257.2022.10055417.

 References

70

[60] S. S. A. Haq, ‘Trajectory following using model predictive control for SeaDrone

collision avoidance using Robot Operating System’, Master thesis, University of South-

Eastern Norway, 2022. Accessed: May 15, 2023. [Online]. Available:

https://openarchive.usn.no/usn-xmlui/handle/11250/3011349

[61] W. Li, Y. Ge, and G. Ye, ‘UAV-USV cooperative tracking based on MPC’, in 2022

34th Chinese Control and Decision Conference (CCDC), Aug. 2022, pp. 4652–4657.

doi: 10.1109/CCDC55256.2022.10034383.

[62] Y. Wu, K. H. Low, and C. Lv, ‘Cooperative Path Planning for Heterogeneous

Unmanned Vehicles in a Search-and-Track Mission Aiming at an Underwater Target’,

IEEE Transactions on Vehicular Technology, vol. 69, no. 6, pp. 6782–6787, Jun. 2020,

doi: 10.1109/TVT.2020.2991983.

[63] Y. Yu, Y. Fan, Y. Zhang, D. Mu, and X. Sun, ‘An autonomous collision avoidance

system unified with the TFMS and the FCS-MPC strategy for USV’, in 2022 41st

Chinese Control Conference (CCC), Jul. 2022, pp. 3438–3443. doi:

10.23919/CCC55666.2022.9902408.

[64] F. A. A. Andrade et al., ‘Detection and tracking of crossing vessels for small

autonomous vessels equipped with stereo camera’, in OCEANS 2022 - Chennai, Feb.

2022, pp. 1–6. doi: 10.1109/OCEANSChennai45887.2022.9775279.

 Appendices

71

Appendices

Appendix A Thesis Task Description

 Appendices

72

 Appendices

73

Appendix B Implementation of path_planner node in ROS

#!/usr/bin/env python

import rospy

import actionlib

from math import pi,sin,cos,sqrt

from airsim_ros_pkgs.msg import MoveOnPathAction,MoveOnPathGoal

from geometry_msgs.msg import Point

from std_msgs.msg import String

from airsim_ros_pkgs.msg import ControlDrones

from airsim_ros_pkgs.msg import GoHome

goto_spiralstart_location = True

x_start = 0 # starting location in x for spiral start

y_start = 0 # starting location in y for spiral start

desired_z = -3.05 # desired altitude of the drone during the

mission

if __name__ == '__main__':

 try:

 rospy.init_node('path_planner')

pub1 =

rospy.Publisher("/Goto_spiral_start_location",ControlDrones,latch=True

,queue_size=1)

pub2 =

rospy.Publisher("/spiral_start",ControlDrones,latch=True,queue_size=1)

 msg1 = ControlDrones()

 while goto_spiralstart_location:

 if (pub1.get_num_connections()>0):

 msg1.enable = "Go to spiral start location"

 msg1.x = x_start

 msg1.y = y_start

 msg1.z = desired_z

 pub1.publish(msg1)

 rospy.loginfo("Going to spiral start location!!!!")

 goto_spiralstart_location = False

 while True:

 rospy.sleep(-1)

 except rospy.ROSInterruptException:

 pass

 Appendices

74

Appendix C Implementation of PD_Position_Controller node in ROS

#!/usr/bin/env python

import rospy

import actionlib

from math import pi,sin,cos,sqrt

from airsim_ros_pkgs.msg import MoveOnPathAction,MoveOnPathGoal

from geometry_msgs.msg import Point

from airsim_ros_pkgs.msg import ControlDrones

from airsim_ros_pkgs.srv import Takeoff

single_time = True

enable = ""

x_start = 0

y_start = 0

search_height = 0

start_spiral_search = False

def get_location_cb(msg):

 global enable,x_start,y_start,search_height

 enable = msg.enable

 x_start = msg.x

 y_start = msg.y

 search_height = msg.z

 rospy.loginfo("Moving Drone to the spiral start location!!!")

def setTakeoffMode():

 rospy.wait_for_service('/airsim_node/Drone_1/takeoff')

 try:

 takeoffService = rospy.ServiceProxy('/airsim_node/Drone_1/takeoff',

Takeoff)

 takeoffService(True)

 except rospy.ServiceException as e:

 print ("Service takeoff call failed: %s"%e)

if __name__ == '__main__':

 try:

 # Initializes a rospy node so that the SimpleActionClient can publish

and subscribe over ROS.

 rospy.init_node('PD_Position_Controller')

 sub1 =

rospy.Subscriber("/Goto_spiral_start_location",ControlDrones,get_location_cb)

 rospy.sleep(1)

 pub =

rospy.Publisher('/spiral_start',ControlDrones,latch=True,queue_size=1)

 Appendices

75

 pub =

rospy.Publisher('/spiral_start',ControlDrones,latch=True,queue_size=1)

 rospy.loginfo("Inside moveonpath action path-planner_movetolocation

1!!")

 rospy.loginfo("%s",enable)

 while (enable != "Go to spiral start location"):

 rospy.sleep(-1)

 rospy.loginfo("Inside moveonpath action path-planner_movetolocation

2!!")

 if enable == "Go to spiral start location":

 setTakeoffMode()

 msg1 = ControlDrones()

 rospy.loginfo("Inside moveonpath action path-

planner_movetolocation 3!!")

 client = actionlib.SimpleActionClient('/airsim_node/moveOnPath',

MoveOnPathAction)

 client.wait_for_server()

 goal1 = MoveOnPathGoal()

 point1 = Point()

 msg = ControlDrones()

 point1.x = x_start

 point1.y = y_start

 point1.z = search_height

 goal1.point = point1

 goal1.vehicle_name = "Drone_1"

 goal1.velocity = 5.0

 goal1.timeout_sec= sqrt(point1.x**2 + point1.y**2 +

point1.z**2)/goal1.velocity + 60

 goal1.yaw = 0

 client.send_goal(goal1)

 client.wait_for_result()

 if client.get_result():

 start_spiral_search = True

 rospy.loginfo("Starting spiral search")

 while start_spiral_search:

 if (pub.get_num_connections()>0):

 Appendices

76

 msg1.enable = "Start Spiral Search"

 msg1.x = x_start

 msg1.y = y_start

 msg1.z = search_height

 pub.publish(msg1)

 rospy.loginfo("Started the spiral search process!!!")

 start_spiral_search = False

 while True:

 rospy.sleep(-1)

 except rospy.ROSInterruptException:

 pass

 Appendices

77

Appendix D Implementation of Archimedean_Spiral_Path node in ROS

#!/usr/bin/env python

import rospy

import math

from airsim_ros_pkgs.srv import *

import time

from airsim_ros_pkgs.msg import VelCmd

from airsim_ros_pkgs.msg import ControlDrones

from nav_msgs.msg import Odometry

from geometry_msgs.msg import Twist

x= 0.0

y= 0.0

z = 0.0

pitch= 0.0

roll = 0.0

yaw = 0.0

def to_eularian_angles(q):

 z = q.z

 y = q.y

 x = q.x

 w = q.w

 ysqr = y * y

 # roll (x-axis rotation)

 t0 = +2.0 * (w*x + y*z)

 t1 = +1.0 - 2.0*(x*x + ysqr)

 roll = math.atan2(t0, t1)

 # pitch (y-axis rotation)

 t2 = +2.0 * (w*y - z*x)

 if (t2 > 1.0):

 t2 = 1

 if (t2 < -1.0):

 t2 = -1.0

 pitch = math.asin(t2)

 # yaw (z-axis rotation)

 t3 = +2.0 * (w*z + x*y)

 t4 = +1.0 - 2.0 * (ysqr + z*z)

 yaw = math.atan2(t3, t4)

 return (pitch, roll, yaw)

 Appendices

78

desired_x = 30

desired_y = 10

dx = desired_x

dy = desired_y

desired_yaw = math.atan2(dx,dy)

distance = math.sqrt(dx**2+dy**2)

 #distance_xy = distance * math.cos(math.asin(dz/distance))

distance_cal = 0

n = 1

e_prev_z = 0

e_prev_roll =0

e_prev_pitch = 0

u_roll_prev = 0

u_pitch_prev = 0

ex_prev = 0

ey_prev = 0

ew_prev = 0

count = 0

sum = 0

prev_sum = 0

prev_angle_to_centre = 0

enable = ""

start_x = 0

start_y = 0

desired_z = 0

def spiral_start_cb(msg):

 global enable,start_x,start_y,desired_z

 enable = msg.enable

 start_x = msg.x

 start_y = msg.y

 desired_z = msg.z

 rospy.loginfo("Got the spiral start command!!!")

def listenercb(msg):

 global desired_yaw,e_prev_z,e_prev_roll, e_prev_pitch,

u_roll_prev,u_pitch_prev,ex_prev,ey_prev,ew_prev,count,sum,prev_angle_to_centr

e,start_x,start_y,desired_z

 if enable == "Start Spiral Search":

 vel = VelCmd()

 x = msg.pose.pose.position.x

 y = msg.pose.pose.position.y

 z = msg.pose.pose.position.z

 Appendices

79

 pitch,roll,yaw = to_eularian_angles(msg.pose.pose.orientation)

 #a = 3.0

 b = 8 / (2*math.pi)

 dx = x - start_x

 dy = y - start_y

 angle_to_centre= math.atan2(dx,dy)

 angle_to_centre_degree = angle_to_centre * 180 / math.pi

 w = 3 * math.pi/180

 actual_radius = math.sqrt(dx**2+dy**2)

 next_angle = (w + angle_to_centre)

 count = int(sum/(2*math.pi))

 if next_angle >= 0 and next_angle <= math.pi/2:

 present_angle = next_angle

 sum = sum + abs(present_angle - prev_angle_to_centre)

 prev_angle_to_centre = present_angle

 #sum = sum + w

 next_radius = b*sum

 next_x = next_radius*math.sin(present_angle) #First Quadrant

 next_y = next_radius*math.cos(present_angle)

 elif next_angle > math.pi/2 and next_angle <= math.pi:

 present_angle = math.pi - next_angle

 sum = sum + abs(present_angle - prev_angle_to_centre)

 prev_angle_to_centre = present_angle

 #sum = sum + w

 next_radius = b*sum

 next_x = next_radius*math.sin(present_angle) #Second Quadrant

 next_y = -next_radius*math.cos(present_angle)

 elif next_angle >= -math.pi and next_angle < - math.pi/2:

 present_angle = math.pi + next_angle

 sum = sum + abs(present_angle - prev_angle_to_centre)

 prev_angle_to_centre = present_angle

 #sum = sum + w

 next_radius = b*sum

 next_x = -next_radius*math.sin(present_angle) # Third Quadrant

 next_y = -next_radius*math.cos(present_angle)

 elif next_angle >= -math.pi/2 and next_angle < 0:

 present_angle = abs(next_angle)

 Appendices

80

 sum = sum + abs(present_angle - prev_angle_to_centre)

 prev_angle_to_centre = present_angle

 #sum = sum + w

 next_radius = b*sum

 next_x = -next_radius*math.sin(present_angle) ##Fourth Quadrant

 next_y = next_radius*math.cos(present_angle)

 elif next_angle < - math.pi:

 present_angle = abs(next_angle + math.pi)

 sum = sum

 prev_angle_to_centre = present_angle

 #sum = sum + w

 next_radius = b*sum

 next_x = next_radius*math.sin(present_angle) # Second Quadrant

 next_y = -next_radius*math.cos(present_angle)

 elif next_angle > math.pi:

 present_angle = abs(next_angle - math.pi)

 sum = sum

 prev_angle_to_centre = present_angle

 #sum = sum + w

 next_radius = b*sum

 next_x = -next_radius*math.sin(present_angle) # Third Quadrant

 next_y = -next_radius*math.cos(present_angle)

 else:

 pass

 time = rospy.Time.now().to_sec()

 rospy.loginfo("z: %f, next_x:%f, x:%f,

next_y:%f,y:%f,angle_to_centre:%f,next_angle:%f,radius:%f, next_radius:%f,

sum:%f,spiral

count:%d",z,next_x,x,next_y,y,angle_to_centre_degree,next_angle*180/math.pi,ac

tual_radius,next_radius,sum,count)

 #PD Control for z

 Kp_p = 2

 Td = 5

 ez = desired_z - z

 uz = Kp_p*ez + Kp_p*Td*(ez - e_prev_z)

 e_prev_z = ez

 #PID Control

 Kp_angle = 2

 Ti = 10

 Appendices

81

 e_roll = 0 - roll

 u_roll = u_roll_prev + Kp_angle *(e_roll - e_prev_roll) +

(Kp_angle/Ti)*0.01*e_roll

 e_prev_roll = e_roll

 u_roll_prev = u_roll

 e_pitch = 0 - pitch

 u_pitch = u_pitch_prev + Kp_angle*(e_pitch - e_prev_pitch) +

(Kp_angle/Ti)*0.01*e_pitch

 e_prev_pitch = e_pitch

 u_pitch_prev = u_pitch

 #Velocity control

 Kp = 1 #1

 Kd = 0.5 #0.5

 ex = next_x - x

 vx = Kp * ex + Kd * (ex - ex_prev)

 ex_prev = ex

 ey = next_y - y

 vy = Kp * ey + Kd*(ey-ey_prev)

 ey_prev = ey

 vel.twist.linear.x = vx ; vel.twist.linear.y = vy ; vel.twist.linear.z

= uz

 vel.twist.angular.x = -u_roll; vel.twist.angular.y = -u_pitch;

vel.twist.angular.z = 0

 pub.publish(vel)

if __name__=="__main__":

 try:

 rospy.init_node("Archimedean_Spiral_Path",anonymous=True)

 start_time = rospy.Time.now().to_sec()

 pub =

rospy.Publisher('/airsim_node/Drone_1/vel_cmd_body_frame',VelCmd,

queue_size=1)

 sub =

rospy.Subscriber('/airsim_node/Drone_1/odom_local_ned',Odometry,listenercb)

 sub1 = rospy.Subscriber('/spiral_start',

ControlDrones,spiral_start_cb)

 rospy.sleep(1)

 rospy.spin()

 except rospy.ROSInterruptException:

 pass

 Appendices

82

Appendix E Implementation of yolov8_sea node in ROS

#!/usr/bin/env python

import cv2

import torch

import random

import rospy

from cv_bridge import CvBridge

from ultralytics import YOLO

from sensor_msgs.msg import Image

from vision_msgs.msg import Detection2D

from vision_msgs.msg import ObjectHypothesisWithPose

from vision_msgs.msg import Detection2DArray

class Yolov8Node():

 def __init__(self) -> None:

 self.device = torch.device("cuda" if torch.cuda.is_available() else

"cpu")

 # params

 # self.model = rospy.get_param("model", "yolov8x.pt")

 # self.tracker = rospy.get_param("tracker", "bytetrack.yaml")

 # self.img_topic = rospy.get_param("img_topic",

"/airsim_node/Drone_1/camera_1/Scene")

 # self.threshold = rospy.get_param("threshold", 0.5)

 # self.enable = rospy.get_param("enable", True)

 # # params

 self.model1 = "yolov8x.pt"

 self.model2 = "yolov8x-seg.pt"

 self.bool_yolo_seg = True

 self.img_topic = "/airsim_node/Drone_1/camera_1/Scene"

 self.threshold = 0.5

 self.enable = True

 self._class_to_color = {}

 Appendices

83

 self.cv_bridge = CvBridge()

 if self.bool_yolo_seg:

 self.yolo = YOLO(self.model2)

 self.yolo.fuse()

 else:

 self.yolo = YOLO(self.model1)

 self.yolo.fuse()

 rospy.sleep(1)

 self.yolo.to(self.device)

 # topics

 self._pub = rospy.Publisher("detections",Detection2DArray, queue_size=

10)

 self._detection_image_pub = rospy.Publisher("detection_image", Image,

queue_size= 10)

 rospy.sleep(1)

 self._sub = rospy.Subscriber(self.img_topic, Image, self.image_cb)

 def image_cb(self, msg: Image) -> None:

 if self.enable:

 # convert image + predict + track

 cv_image = self.cv_bridge.imgmsg_to_cv2(msg)

 results = self.yolo.track(source=cv_image,show=False,

verbose=False, tracker="bytetrack.yaml")

 # create detections msg

 detections_msg = Detection2DArray()

 detections_msg.header = msg.header

 results = results[0].cpu()

 for b in results.boxes:

 label = self.yolo.names[int(b.cls)]

 score = float(b.conf)

 if score < self.threshold:

 continue

 detection = Detection2D()

 detection.header = msg.header

 Appendices

84

 detection.source_img = msg

 box = b.xywh[0]

 # get boxes values

 detection.bbox.center.x = float(box[0])

 detection.bbox.center.y = float(box[1])

 detection.bbox.size_x = float(box[2])

 detection.bbox.size_y = float(box[3])

 # get track id

 track_id = 0

 if not b.id is None:

 track_id = int(b.id)

 #detection.id = track_id

 # get hypothesis

 hypothesis = ObjectHypothesisWithPose()

 hypothesis.id = int(b.cls)

 hypothesis.score = score

 hypothesis.pose.pose.position.x = float(track_id)

 detection.results.append(hypothesis)

 # draw boxes for debug

 if label not in self._class_to_color:

 r = random.randint(0, 255)

 g = random.randint(0, 255)

 b1 = random.randint(0, 255)

 self._class_to_color[label] = (r, g, b1)

 color = self._class_to_color[label]

 min_pt = (round(detection.bbox.center.x -

detection.bbox.size_x / 2.0),

 round(detection.bbox.center.y -

detection.bbox.size_y / 2.0))

 max_pt = (round(detection.bbox.center.x +

detection.bbox.size_x / 2.0),

 round(detection.bbox.center.y +

detection.bbox.size_y / 2.0))

 cv_image = cv2.rectangle(cv_image, min_pt, max_pt, color, 2)

 label = "{}:({}) {:.3f}".format(label, str(track_id), score)

 pos = (min_pt[0], max(15, int(min_pt[1] - 10)))

 font = cv2.FONT_HERSHEY_SIMPLEX

 cv_image = cv2.putText(cv_image, label, pos, font,

 0.5, color, 1, cv2.LINE_AA)

 Appendices

85

 # append msg

 detections_msg.detections.append(detection)

 # publish detections and dbg image

 self._pub.publish(detections_msg)

 if self.bool_yolo_seg:

 annotated_results = results[0].plot(conf=False, labels =

False, img= cv_image, boxes = False,masks = True)

 self._detection_image_pub.publish(self.cv_bridge.cv2_to_imgmsg

(annotated_results, encoding=msg.encoding))

 cv2.imshow("Real-Time Detection with Tracking and

Segmentation",annotated_results)

 cv2.waitKey(1)

 else:

 self._detection_image_pub.publish(self.cv_bridge.cv2_to_imgmsg

(cv_image,encoding=msg.encoding))

 cv2.imshow("Real-Time Detection with Tracking",cv_image)

 cv2.waitKey(1)

 if rospy.is_shutdown():

 cv2.destroyAllWindows()

if __name__ == "__main__":

 rospy.init_node("yolov8_sea", anonymous= True)

 Yolov8Node()

 rospy.spin()

 Appendices

86

Appendix F Implementation of Georeferencing node in ROS

#!/usr/bin/env python

import rospy

import message_filters

from nav_msgs.msg import Odometry

from vision_msgs.msg import Detection2DArray

from airsim_ros_pkgs.msg import Altimeter

from geometry_msgs.msg import Point

from airsim_ros_pkgs.msg import IDandLocation

from airsim_ros_pkgs.msg import VelCmd

from airsim_ros_pkgs.msg import ControlDrones

from math import tan,pi

x_det = 0

y_det = 0

ex_prev = 0

ey_prev = 0

e_prev_z = 0

desired_z = 1.5

stop_spiral_search = True

#PD Control for tracking

Kp = 0.5

Kd = 2

#PD Control for height

Kp_z = 0.5

Kd_z = 2

 #Parameters

image_width = 640

image_height = 640

HFOV = 90 * pi/180

z_correction = 3.28366

def callback(odom,bbox):

 global x_det,y_det,ex_prev,ey_prev,Kp,Kd,e_prev_z,desired_z,im-

age_width,image_height,HFOV,z_correction,Kp_z,Td_z

 try:

 only_person = 0

 if len(bbox.detections) > 1:

 # rospy.loginfo("length:%d",len(bbox.detections))

 for i,det in enumerate(bbox.detections):

 if (det.results[0].id == 0) and (det.results[0].pose.pose.po-

sition.x == 1.0):

 Appendices

87

 only_person = i

 break

 else:

 only_person = 0

 class_id = bbox.detections[only_person].results[0].id

 track_id = int(bbox.detections[only_person].results[0].pose.pose.posi-

tion.x)

 if (class_id == 0) and (track_id == 1) :

 while stop_spiral_search:

 if (spiral_pub.get_num_connections()>0):

 msg1 = ControlDrones()

 msg1.enable = "Stop Spiral Search"

 msg1.x = 0

 msg1.y = 0

 msg1.z = 0

 spiral_pub.publish(msg1)

 rospy.loginfo("Stopped the spiral search process!!!")

 stop_spiral_search = False

 rospy.loginfo("Inside Georeferencing")

 vel = VelCmd()

 IDandLoc = IDandLocation()

 x = odom.pose.pose.position.x

 y = odom.pose.pose.position.y

 z = odom.pose.pose.position.z

 x_center = bbox.detections[0].bbox.center.x

 y_center = bbox.detections[0].bbox.center.y

 H = abs(z - z_correction)

 width_ned = 2*H*tan(HFOV/2)

 height_ned = image_height/image_width * width_ned

 detection_width_center_ned = (x_center/image_width) * width_ned

 detection_height_center_ned = ((image_height-y_center)/im-

age_height) * height_ned

 horizontal_correction = detection_height_center_ned - height_ned/2

 vertical_correction = detection_width_center_ned - width_ned/2

 Appendices

88

 x_det = x + horizontal_correction

 y_det = y + vertical_correction

 IDandLoc.point.x = x_det

 IDandLoc.point.y = y_det

 IDandLoc.point.z = z_correction

 IDandLoc.ID = track_id

 #PD Control for z

 ez = desired_z - z

 uz = Kp_z*ez + Kp_z*Td_z*(ez - e_prev_z)

 e_prev_z = ez

 #PD Control for position tracking

 ex = x_det - x

 vx = Kp * ex + Kd * (ex - ex_prev)

 ex_prev = ex

 ey = y_det - y

 vy = Kp * ey + Kd*(ey-ey_prev)

 ey_prev = ey

 rospy.loginfo("vx:%f,vy:%f,uz:%f,current_z:%f",vx,vy,uz,z)

 vel.twist.linear.x = vx ; vel.twist.linear.y = vy ;

vel.twist.linear.z = uz

 vel.twist.angular.x = 0; vel.twist.angular.y = 0;

vel.twist.angular.z = 0

 pub.publish(vel)

 victim_pub.publish(IDandLoc)

 except IndexError:

 rospy.loginfo("Error getting detections!!")

if __name__ == "__main__":

 rospy.init_node("Georeferencing",anonymous=True)

 pub = rospy.Publisher('/airsim_node/Drone_1/vel_cmd_body_frame',VelCmd,

queue_size=1)

 victim_pub =

rospy.Publisher("/victim_location_ned",IDandLocation,queue_size=1)

 spiral_pub =

rospy.Publisher("/spiral_start",ControlDrones,latch=True,queue_size=1)

 odom_sub =

message_filters.Subscriber('/airsim_node/Drone_1/odom_local_ned', Odometry)

 bboxes_sub = message_filters.Subscriber('/detections', Detection2DArray)

 approx =

message_filters.ApproximateTimeSynchronizer([odom_sub,bboxes_sub],1000,slop=0.

1)

 approx.registerCallback(callback)

 rospy.spin()

 Appendices

89

Appendix G Implementation of Victim_Geolocation node in ROS

#!/usr/bin/env python

import rospy

from geometry_msgs.msg import Point

from airsim_ros_pkgs.msg import IDandLocation

from airsim_ros_pkgs.srv import ReturnGeolocation

def ReturnGeoLocationfromNed_client(ned_point):

 rospy.wait_for_service('/airsim_node/Drone_1/returngeolocationfromned')

 try:

 returnGeolocationfromnedService =

rospy.ServiceProxy('/airsim_node/Drone_1/returngeolocationfromned',

ReturnGeolocation)

 response = returnGeolocationfromnedService(ned_point)

 return response.outputpoint

 except rospy.ServiceException as e:

 print ("Service returngeolocationfromned call failed: %s"%e)

def geolocation_cb(IDandned_point):

 gps_location = Point()

 #rospy.loginfo("x_det:%f, y_det:%f,

z:%f",IDandned_point.point.x,IDandned_point.point.y, IDandned_point.point.z)

 gps_location = ReturnGeoLocationfromNed_client(IDandned_point.point)

 rospy.loginfo("Person_ID:%d,Latitude:%f, Longitude:%f,

Altitude:%f",IDandned_point.ID,gps_location.x,gps_location.y, gps_location.z)

if __name__ == "__main__":

 rospy.init_node("Victim_Geolocation",anonymous=True)

 sub1 = rospy.Subscriber("/victim_location_ned",IDandLocation,

geolocation_cb, queue_size=100)

 rospy.spin()

 Appendices

90

Appendix H Main AirSim Settings

{

 "ClockSpeed": 1,

 "SettingsVersion": 1.2,

 "SimMode": "Multirotor",

 "Vehicles": {

 "Drone_1": {

 "VehicleType": "SimpleFlight",

 "DefaultVehicleState": "Disarmed",

 "Cameras": {

 "camera_1": {

 "CaptureSettings": [

 {

 "ImageType": 0,

 "Width": 640,

 "Height": 640,

 "FOV_Degrees": 90

 }

],

 "Gimbal": {

 "Stabilization": 1,

 "Pitch": -90.0, "Roll": 0, "Yaw": 0

 },

 "X": 0.0, "Y": 0.0, "Z": 0.0,

 "Pitch": 0.0, "Roll": 0.0, "Yaw": 0.0

 }

 },

 "X": 0.0, "Y": 0.0, "Z": 0,

 "Pitch": 0.0, "Roll": 0, "Yaw": 0

 }

 },

 "OriginGeopoint": {

 "Latitude": 57.963589,

 "Longitude": 9.130108,

 "Altitude": 122

 }

}

