

ǿǿǿΦǳǎƴΦƴƻ

CŀŎǳƭǘȅ ƻŦ ¢ŜŎƘƴƻƭƻƎȅΣ bŀǘǳǊŀƭ {ŎƛŜƴŎŜǎ ŀƴŘ aŀǊƛǘƛƳŜ {ŎƛŜƴŎŜǎ
/ŀƳǇǳǎ tƻǊǎƎǊǳƴƴ

FMH606 Master's Thesis 2023

MSc Industrial IT and Automation

Sea Search and Rescue by Autonomous
Drones in High Fidelity Visual and Physical

Simulation

Rajeev Poudel

ǿǿǿΦǳǎƴΦƴƻ

The University of South-Eastern Norway takes no responsibility for the results and

conclusions in this student report.

Course: FMH606 Master's Thesis, 2023

Title : Sea Search and Rescue by Autonomous Drones in High Fidelity Visual and Physical

Simulation

Number of pages: 90

Keywords: Unreal Engine 4.27, Unreal Engine 5.1, Microsoft AirSim, ROS, SAR,

Autonomous, UAV, UAS, YOLOv7, YOLOv8, Path Planning, Archimedean Spiral,

Boustrophedon Path, Blueprints

Student: Rajeev Poudel

Supervisor: Fabio Andrade

External partner: N/A

Summary:

Unpredictable ship accidents still claim a lot of human life every year even with so many

technological advancements. Maritime Search and Rescue missions during such hazards

are mostly carried out with costly equipment and manpower that have some inherent

estimation biases in many physical quantities. With small-size, lower operational cost,

flexible aerial maneuverability, wireless communication, and mathematical computation

ability, drones can be useful to minimize the costs and speed up the SAR operations

without physical intrusion in dangerous post disaster scenarios. And due to the risky nature

of the problem, simulation was the rational path initially.

But there was a shortage of previous literature that tried to especially solve this problem

in proper simulation platform. Therefore, in the beginning a high fidelity dynamic marine

simulation environment was created using Unreal Engine 4.27, Microsoft AirSim, and

ROS which contained a Post Disaster Ship, other many debris, and human victims

floating. Then, an autonomous SAR mission was planned and implemented for the drone

with various pretrained YOLOv7 models that achieved high accuracy of victim detection.

This work was published in IEEE/CVF WACV Conference, 2023. After that another

iteration of autonomous simulation for tracking both treading and swimming victims with

YOLOv8 pretrained models was carried out in custom environment in Unreal Engine 5.1

which also had satisfactory results. Furthermore, the ID and detected location in latitude

and longitude of the tracked victim was made easily accessible for use in concerned

places. Finally, the possibility for the cooperation and control of multiple drones working

together for SAR missions was thoroughly discussed in the end.

Preface
This masterôs thesis is done as a requirement for the 30 credit thesis course in the MSc

Industrial IT and Automation programme at USN. This thesis is closely related with USN

responsibilities for European Union ós Project Valkyries that USN is part of with various other

stakeholders whose primary aim was to create a common framework in Europe for the use of

Autonomous Systems in post disaster conditions for saving lives of victims and mitigate any

other financial and environment losses. This is a very noble cause to safeguard the lives of

people making the world a safer and better place to live.

So, I am very much thankful to USN for providing me the opportunity through this thesis to

work on this noble goal of increasing the well-being of the human-kind.

I would like express my deepest gratitude to my supervisor, Fabio Augusto de Alcantara

Andrade for his relentless technical as well as emotional support to complete this work. I would

not have been able to complete this work without his support. Also, I would like to thank PhD

student Luciano Lima for his valuable support and motivation to write and publish the paper.

Furthermore, I am very much grateful to the coordinator of this programme MSc Industrial IT

and Automation, Hakon Viumdal for his motivation and emotional support throughout my

study period in USN.

Finally, I would like to thank my family, and friends for the constant love and support.

May 15, 2023

Rajeev Poudel

4

Contents
1 Introduction ... 10

1.1 Context and Motivation .. 10
1.2 Research Problem .. 11
1.3 Research Objectives... 12
1.4 Research Questions ... 12
1.5 Limitations ... 13

2 Theory .. 14

2.1 Unreal Engine .. 14
2.2 Microsoft AirSim ... 14
2.3 Robot Operating System (ROS) .. 15
2.4 Archimedean Spiral .. 16

3 Published Paper .. 17

3.1 Abstract ... 17
3.2 Introduction ... 17
3.3 Development of the Novel Framework ... 19

3.3.1 Virtual Environment .. 19
3.3.2 Initial Setup of the UAS .. 24
3.3.3 Manual Control of the UAS ... 24
3.3.4 Implementation of YOLOv7 in ROS ... 25

3.4 Evaluation of Object Detection Models .. 25
3.4.1 Selection of Pretrained YOLOv7 Models on Different Datasets for Evaluation 25
3.4.2 Experimentation with Various Configurations ... 26
3.4.3 Path Planning for the Autonomous Mission .. 27
3.4.4 Final Mission Execution ... 28

3.5 Results and Discussion ... 29
3.6 Conclusion .. 32

4 Additional work on the paper ... 34

4.1 Overall Process Diagram ... 34
4.2 Custom Virtual Environment in Unreal Engine 5.1 .. 35

4.2.1 Setting up the initial Sea Environment ... 35
4.2.2 Transfer of Assets ... 35
4.2.3 Swimming People ... 37
4.2.4 Controllable Speed Boat .. 41
4.2.5 Autonomous Rescue of the Victim by the Speed boat ... 45
4.2.6 Initial Setup of the Drone using AirSim .. 47

4.3 Detection and Tracking by YOLOv8 .. 48
4.4 Autonomous Archimedean Spiral Path Planning .. 49
4.5 Direct Georeferencing .. 53
4.6 PD Tracking by Drone .. 55
4.7 Victim Geolocation ... 57
4.8 Autonomous Search and Rescue Mission ... 57
4.9 Results and Discussion ... 59

5 Discussion of Collaboration between Multiple Drones 62

6 Conclusion .. 65

Referenceséééééééééééééééééééééééééééééé66

Appendicesééééééééééééééééééééééééééééé...71

5

List of Figures

Figure 2.1. Architecture of the AirSim simulator with core components and interactions

between them [4].. 14

Figure 2.2. Archimedean spiral represented on a polar graph [12] ... 16

Figure 2.3. Effect of Camera FOV and Height from the surface on the Camera footprint 16

Figure 3.1. Simulated environment from oil tanker side. .. 19

Figure 3.2. Simulated environment from objects side. .. 20

Figure 3.3. Post Disaster Oil Tanker. ... 21

Figure 3.4. Blueprints available in the "Post-Apocalyptic Oil Tanker" product. 21

Figure 3.5. Buoyancy points configuration. ... 22

Figure 3.6. Buoyancy points placement. .. 23

Figure 3.7. Top view with objects. .. 23

Figure 3.8. Initial UAS Setup in the Virtual Environment. ... 24

Figure 3.9. Isolated test region with just humans. ... 26

Figure 3.10. Illustration of the experimental procedures followed in the testing region. 27

Figure 3.11. Boustrophedon Path... 28

Figure 3.12. Collaboration between the nodes during the mission obtained using "rqt_graph".

.. 29

Figure 3.13. Detection with YOLOv7-SDS in mission. .. 31

Figure 3.14. Detections with YOLOv7-COCO in mission. ... 32

Figure 4.1. Block Diagram of the Overall Process Flow ... 34

Figure 4.2. Blueprint for Oil Barrel with Buoyancy component .. 36

Figure 4.3. Character Blueprint with Buoyancy added. ... 36

Figure 4.4. Character treading in Sea with buoyancy .. 37

Figure 4.5. 1D Animation Blendspace with Treading Animation ... 37

Figure 4.6. 1D Animation Blendspace with Swimming Animation .. 38

Figure 4.7. Animation Blueprint Event Graph ... 38

Figure 4.8. Animation Blendspace to Output Animation Pose in Animation Blueprint 39

Figure 4.9. Event Graph for Character Leonard Swimming in a square pattern 39

Figure 4.10. Timeline Node outputting values from 0.0 to 90.0 in 2 seconds 40

Figure 4.11. Timeline Node outputting values from 0.0 to 0.9 over the duration of 20 seconds

.. 40

6

Figure 4.12. Event Graph for Character Pete swimming forward continuously 41

Figure 4.13. Sockets added to the static mesh of the chosen Speed Boat................................ 42

Figure 4.14. Blueprint for the Speed Boat with Buoyancy component 42

Figure 4.15. Custom Move to Event inside Speed Boat to autonomously drive to selected

person. .. 43

Figure 4.16. TriggerMoveTo custom event inside BP_SpeedBoatControlled 44

Figure 4.17. OnBoardPerson custom event inside BP_SpeedBoatControlled 45

Figure 4.18. Addition of box collision components in BP_Leonard 45

Figure 4.19. Collision event for boxcollision2 and the drone.. 46

Figure 4.20. Collision event for boxcollision1 and the boat .. 46

Figure 4.21. Initial Setup of the Drone in the Environment .. 47

Figure 4.22. Experimentation with YOLOv8 pretrained model by manually flying the drone.

.. 48

Figure 4.23. Visualization of the implementation of the Archimedean Spiral 49

Figure 4.24. Testing of the path following by Archimedean_Spiral_Path node in the

Environment ... 52

Figure 4.25. Testing for the robustness of the path following ... 52

Figure 4.26. Conceptual diagram for Direct Georeferencing. ... 53

Figure 4.27. Flowchart for the code implementation of Direct Georeferencing 54

Figure 4.28. Flowchart for PD tracking of the victim by the drone ... 55

Figure 4.29. Testing of Georeferencing node with YOLOv8 pretrained detection model 56

Figure 4.30. Testing of Georeferencing node from the side view ... 56

Figure 4.31. Testing of Georeferencing node for tracking with pretrained YOLOv8

segmentation model ... 57

Figure 4.32. Collaboration between the nodes during the final autonomous mission obtained

using rqt_graph. ... 58

Figure 4.33. Autonomous search mission by the drone before the boat came to the rescue. .. 59

Figure 4.34. Simulation result of the rescue of the victim by the boat autonomously 59

Figure 4.35. Closer view of the autonomous rescue of the victim by the speed boat with the

help of the autonomous drone .. 60

Figure 4.36. Victim ID, Latitude, Longitude, and Altitude calculated by the

Victim_Geolocation node. .. 60

Figure 4.37. Geographical location of the detection in Google maps [46] 61

Figure 5.1. Multiple drones spawned in the simulation environment...................................... 62

Figure 5.2. ROS Topics available with 3 drones spawned in the simulation environment. 63

7

Figure 5.3. ROS Services available with 3 drones spawned in the simulation environment. . 63

Figure 5.4. Example Hierarchical level for control and cooperation between multiple drones.

.. 64

8

List of Tables

Table 1. Overview of the datasets collected and assessed. .. 29

Table 2. Confusion Matrix of the detections in the collected images for the Yolov7 model

trained on the COCO2017 dataset (YOLOv7-COCO). ... 30

Table 3. Confusion Matrix of the detections in the collected images for the Yolov7 model

trained on the SeaDronesSee dataset (YOLOv7-SDS). ... 30

Table 4. Explanation of the Archimedean Spiral implementation ... 49

9

Nomenclature

AUV Autonomous Underwater Vehicle

API Application Programming Interface

BP Blueprint

CVF Computer Vision Foundation

FOV Field of View

GPS Global Positioning System

GPU Graphics Processing Unit

HIT L Hardware-in-the-Loop

IEEE Institute of Electrical and Electronics Engineers

NED North East Down

PID Proportional Integral Derivative

ROS Robot Operating System

SAR Search and Rescue

SITL Software-in-the-loop

UAV Unmanned Aerial Vehicle

UAS Unmanned Aerial System

USV Unmanned Surface Vehicle

UE Unreal Engine

YOLOYou Only Look Once

10

1 Introduction
With the everlasting curiosity and dissatisfaction in human beings to evolve further, it has been

an ultimate goal of humanity to manifest intelligence into an immortal machine making it a

fully autonomous entity. Furthermore, the need for survival has been the major driving factor

for innovations to homo sapiens justifying the significance of the interest to develop an

effective and robust network of smart systems that can independently operate to mitigate the

damage inflicted after an unforeseen disaster. Consequently, the European Union also decided

to initiate a project named ñVALKYRIESò that works in Harmonization and Pre-

Standardization of Equipment, Training and Tactical Coordinated procedures for First Aid

Vehicles deployment on European multi-victim Disasters [1]. The University of South-Eastern

Norway (USN) is one of the participants of this project with allocation of several

responsibilities which will be the basis for this Master thesis.

This chapter will firstly impart the introduction to the thesis with the discussion of the necessary

background and context of the overall study, succeeded by the formulation of research problem,

questions, and objectives, and finally, the limitations to the study that are acknowledged

upfront.

1.1 Context and Motivation

Initially , the thesis topic with the preliminary background and minimum expectations in a broad

horizon along with the primary tools and software to be used, including chiefly Unreal Engine

4, Microsoft AirSim, and ROS, was decided, and allotted by USN. On further investigation,

the topic was in line with the current work being carried out by the Autonomous Research

Group, USN, in the prestigious VALKYRIES project. Therefore, with an aim to contribute to

the ongoing work at the University as well as to augment the relevancy of the study, it was

decided to direct the thesis in the corresponding direction.

Now diving into the specific topic, the aim of all major technological inventions is to make

human life easier and better accompanied by economic prosperity with minimal harm to the

environment. But there is always a persistent risk of uncontrollable and unpredictable

occurrence of natural calamities due to imbalance of forces in Mother Earth that jeopardizes

the main essence of mankind to live a happy and prosperous life. Likewise, the continual

possibility of disasters in ships, buses, airplanes, and other mechanical systems also instigates

peril to the survival of person itself followed by the costly economic and environmental

deterioration. Hence, the proper management of natural catastrophes and other disasters has

captivated a lot of attention since the start of human civilization because it is related to

safeguarding the core subconscious instinct of any living species to survive. It resulted in all

the novel technologies developed in the process of evolution being implemented, at their

respective times, for addressing this issue.

Moreover, the enhancement of technology from steam powered rotatory mechanical machines

in the first industrial revolution, to on off transistor logic powered second revolution, to

microcontrollers, made with combination of transistors, propelled third revolution, and finally

to internet driven fourth industrial revolution (Industry 4.0) has enabled the metamorphosis of

machines to highly sophisticated, and self-governing entities, commonly known as autonomous

systems, that are independently able to sense, perceive, plan, and act according to the

11

surrounding environment with proper training. It is, therefore, intriguing for people to deploy

autonomous systems for amelioration of any post disaster condition which can reduce the

associated risk, cost, and delay along with the increase of efficiency to salvage more lives, and

curb down the financial and ecological loss.

 In congruence, the European Union decided to commence the VALKYRIES project in 2020

with 17 main participants, including various universities and research institutes, hailing from

several countries inside Europe [1]. The primary goal of the project, in simple words, is the

creation of a uniform multi-country framework of autonomous post-disaster response system

that can work together independently for multi-faceted operations like search and rescue, first

aid, health, and safety of the victims, in the event of catastrophes encompassing various nations.

Every country has some unique subtle and inconspicuous legal, socio-economic, and security

fabric which substantiates the pertinency of this project. As a result, common concordance

between the states is vital for cooperation and coordination in case of detrimental hazards.

Finally, USN is one of the member universities of the VALKYRIES project who has been

allotted various duties. The elementary task relevant to the thesis topic is described in Task 4.1

titled as ñFirst aid vehicles and supportive autonomous unitsò [1]. Basically, beginning with

scrutinizing the cutting-edge technical possibilities for the reaction of unaided and sovereign

artificial agents in first aid, USN needs to replenish the inconsistencies in their

institutionalization and standardization to put forward a guideline for their embracement by the

EU first aid responders. Furthermore, to showcase the application, USN has been designated

an explicit use case involving post-disaster scenario of an oil tanker ship in the region of North

Sea between Norway, Denmark, and Netherlands [1]. The fundamental aspects of the use case

demonstration are the search and rescue of the victims with emergency care, oil spill detection,

and salvage cargo with collaboration between the different responsible governmental

authorities in many fronts. For that, the principal anticipated self-governing systems to be

deployed are Unmanned Surface Vehicles (USVs) that need to replicate the tasks otherwise

carried out by human first aid responders by sovereignly infiltrating the affected region, and

Unmanned Aerial Vehicles (UAVs), especially drones, that can gather the essential information

from higher elevation with minimum penetration into the potentially risky and treacherous

areas. Moreover, it is also expected that the information gathered should be transmitted to a

common framework, named as SIGRUN, developed of cloud-based database with linkage to

web and mobile based applications.

Additionally, it is stressed that the implementations should be able to cope with the damage to

the conventional communication framework when employed without the precise outlook of the

cross-frontier and cross-sectorial BLOS (Beyond Line of Sight) missions [1].

1.2 Research Problem

Due to the inherent terrain intrusive nature of USVs with limited range of visibility compared

to the flexible aerial maneuverability of drones with higher spectrum of perceptibility at a

secure altitude, it is preferable to utilize drones for the initial surveillance of the potentially

fatal vicinity of the disaster struck ship that forms the foundation for the deployment of USVs.

Moreover, the elementary aim of establishment of any emergency management systems is to

strengthen the probability of detecting and emancipating any threat from the survival of human

life.

12

Based on these postulations, the research problem for this master thesis is formulated as

follows: Develop a virtual reality simulation environment of a post-disaster scenario of an oil-

tanker ship positioned in North Sea between Norway, Denmark, and Netherlands using Unreal

Engine, and implement a network of multiple drones in ROS with interface to Microsoft

AirSim that autonomously carry out reconnaissance missions with the focus on search and

rescue of victims.

1.3 Research Objectives

Based on the context and the research problem, the following are the paramount objectives of

the study:

a. To design and construct a sea simulation environment using Unreal Engine, Microsoft

AirSim, and ROS.

b. To conceptualize as well as actualize the various strategies for cooperation between several

self-governing drones to effectively inspect the locality of the wrecked ship prioritizing the

detection of victims.

c. To convey useful information to concerned authorities from hazardous territory.

1.4 Research Questions

The following fundamental questions were triggered with the research objectives that guided

the overall thesis study:

a. How to develop a high-fidelity sea simulation environment with a post disaster ship where

multiple drones can be spawned and controlled?

b. How to distribute responsibilities among the individual drones?

c. How to locate the victims within the vicinity of the ship?

d. How to handle the dynamic sea environment where the victims and objects keep on moving?

e. How to plan the time and energy efficient path for the drones ensuring full coverage of the

solicited area?

f. How to make the drones carry out the missions autonomously collaborating with each other?

g. How to communicate between the multiple agents in real-time?

h. How to transmit the information gathered by the drones to the concerned authorities

remotely?

13

1.5 Limitations

The following are the major limitations of the study recognized upfront:

a. There will always be some bias and discrepancies in the simulation from the real world.

b. The downward facing camera in the drone even with the gimbal might not be completely

stable, which might cause error in the georeferencing process.

c. The Odometry NED values are prone to errors because they are estimated values calculated

based on other motion sensors.

14

2 Theory
This chapter introduces the major tools and the theory behind some of the methods used in this

Master thesis.

2.1 Unreal Engine

Unreal Engine is an incredibly powerful and popular game development tool which is created

and maintained by Epic Games [2]. It is a game engine especially popular for the creation of

real-time 3D games, but it also supports creators across various industries to develop cutting-

edge real-time 3D content, interactive experiences, and immersive virtual worlds. Therefore,

lots of industries and academia use Unreal Engine which has a large user base around the world

with a solid support framework. The basic introduction to installation and use of Unreal Engine

with explanation of various features is available in structured form in [3].

2.2 Microsoft AirSim

AirSim is an open-source simulator platform built on Unreal Engine that is developed by the

Microsoft Research Team with the primary goal to narrow the gap between simulation and

reality to facilitate the development of autonomous vehicles, with elementary focus on aerial

systems, by providing physically and visually realistic simulations [4]. It can offer real-time

hardware-in-the-loop (HITL) simulations, with support for popular lighweight messaging

protocols for drones like MavLink [5] working on popular hardware platforms like Pixhawk,

by the help of a physics engine able to operate at a high frequency. In addition, it also supports

software-in-the-loop (SITL) simulations with the availability of built-in default flight controller

called simple_flight, which is used in this Master thesis, with also the support for PX4 and

Ardupilot as external flight controllers [6].

The overall architecture of the AirSim system is shown in Figure that illustrates the core

components and the interactions between them.

Figure 2.1. Architecture of the AirSim simulator with core components and interactions between them [4]

15

The Figure portrays the core components with modular design that includes simulator part with

environment model, vehicle model, physics engine, sensor models, rendering interface, public

API layer, and an interface layer for vehicle firmware or the companion computer [4]. This

research thesis focuses on SITL simulation, and hence does not use physical firmware. So, the

focus will be on the simulation in the local computer as if it is the companion computer of the

drone which sends the desired state wish to the Simulator through the API layer and gets back

the current estimated state as well as sensor, and perception data required for the autonomous

search and rescue mission planning from the API layer of the simulator.

Basically, the built-in flight controller inside the simulator obtains desired state input from the

companion computer, and sensor data from Sensor models and perception data from the

Rendering engine which is Unreal Engine, then calculates the current state estimate and outputs

the actuator control signals to the Vehicle Model to achieve the desired state. The Vehicle Model

computes the forces, including forces generated from drag, friction and gravity simulated by

various models for them, and torques generated by the simulated actuators to send to the

Physics Engine that calculates the next kinematic state, expressed in term of 6 quantities as

position, orientation, linear velocity, linear acceleration, angular velocity, and angular

acceleration. The Physics Engine also considers the Environment models for gravity, air

density, air pressure, magnetic field, and geographic location which together with kinematics

forms the ground truth for the simulated Sensor Models. Also, the Physics Engine sends the

current calculated pose of the drone to the Rendering Engine for the display, and the loop

continues as seen in Figure. All the models used for simulating physical properties in [4] are

proven dynamic physical models which justifies the high fidelity visual and physical

simulation.

Furthermore, even though Microsoft has officially shutdown the further development of

AirSim from 2022 and archived the official AirSim repository [7] to launch their new platform

called Project AirSim [8], Codex laboratories LLC have forked the official AirSim repository,

and continued the development of AirSim with a new name Colosseum [9] working with

Unreal Engine 5 which was used for the solution in Chapter 4 of this Master thesis.

2.3 Robot Operating System (ROS)

ROS is an popular open-source robotics middleware framework running mainly on Unix-based

platforms such as Ubuntu and Mac OS X systems [10]. It is not an operating system but

provides similar functionalities such as hardware abstraction, low-level device control,

implementation of commonly used functionality, message-passing between processes, and

package management. Basically, the main goal of ROS is to provide a common, scalable,

flexible, and language independent platform for robotics developers to share and reuse the

code. The detailed explanation of all the concepts, installation procedures, tutorials, and other

information about ROS can be found in an systematic form in its official documentation [10].

Furthermore, AirSim has a built-in wrapper for ROS that helps to interface the AirSim API as

shown in Figure with ROS directly whose detailed explanation is given in [11]. This is

extensively used throughout the Master thesis.

16

2.4 Archimedean Spiral

The Archimedean spiral (also known as the arithmetic spiral) is a spiral named after the 3rd-

century BC Greek mathematician Archimedes [12]. It is the locus comprising of the locations

of a point moving away from a fixed center point over time with a constant speed along a line

that rotates with constant angular velocity as shown in Figure.

Figure 2.2. Archimedean spiral represented on a polar graph [12]

In polar coordinates (r, ɗ) it can be represented by the {equation}.

ὶ ὥ
ὦ

ς“
ẗ—

where a and b are real numbers.

The parameter ὥ controls the position of the center point of the spiral. If a is positive then the

center is shifted outward towards ɗ = 0, and if a is negative then the center of the spiral moves

outward from the origin towards ɗ = ˊ. Whereas parameter b controls the distance between the

loops, which is equal for all the loops. This property of Archimedean spiral makes it suitable

for full coverage of the unknown desired region with low or no overlap in search and rescue

missions if the distance b between the loops is selected according to the Field of View (FOV)

and height of the camera from the ground as shown in Figure which is discussed also by the

authors in [13], [14], and [15].

Figure 2.3. Effect of Camera FOV and Height from the surface on the Camera footprint

17

3 Published Paper
This chapter presents the paper [16] published by the author of this thesis, PhD Student

Luciano Lima, and the supervisor of this thesis Fabio Andrade in Proceedings of the IEEE/CVF

Winter Conference on Applications of Computer Vision (WACV) Workshops, 2023 during the

duration of this Master thesis, and is an integral part of this Master thesis.

3.1 Abstract

This work presents a novel framework providing the ability to control an Unmanned Aerial

System (UAS) while detecting objects in real-time with visible detections, containing class

names, bounding boxes, and confidence scores, in a changeable high-fidelity sea simulation

environment, where the major attributes like the number of human victims and debris floating,

ocean waves and shades, weather conditions such as rain, snow, and fog, sun brightness and

intensity, camera exposure and brightness can easily be manipulated. Developed using Unreal

Engine, Microsoft AirSim, and Robot Operating System (ROS), the framework was firstly used

to find the best possible configuration of the UAS flight altitude, and camera brightness with

high average prediction confidence of human victim detection, and then only autonomous real-

time test missions were carried out to calculate the accuracies of two pretrained You Only Look

Once Version 7 (YOLOv7) models: YOLOv7 retrained on SeaDronesSee Dataset (YOLOv7-

SDS) and YOLOv7 originally trained on Microsoft COCO Dataset (YOLOv7-COCO), which

resulted in high values of 97.8% and 93.79%, respectively. Furthermore, it is proposed that the

framework developed in this study can be reverse engineered for autonomous real-time training

with automatic ground-truth labeling of the images from the gaming engine that already has all

the details of all objects placed in the environment for rendering them onto the screen. This is

required to be done to avoid the cumbersome and time-consuming manual labeling of large

amount of synthetic data that can be extracted using this framework which could be a

groundbreaking achievement in the field of maritime computer vision.

3.2 Introduction

Unforeseeable in nature, disasters involving ships at sea not only inflict costly economic and

environmental damage, but also jeopardize the invaluable life of crew and passengers onboard.

According to [17], there were a total of 892 shipping losses worldwide between 2012 to 2021

with 54 total mishaps alone in 2021. Even though the total number of global vessel hazards

declined by around 57% over the decade, it is still a substantial amount with each case

necessitating prompt and costly deployment of Search and Rescue (SAR) teams to rapidly curb

down the resulting harm. And, naturally, the primary focus of all rescue missions is to first

scour the inhospitable post-disaster region for victims and safeguard their lives. All this

substantiates the research interest to effectively and efficiently utilize the existing cutting-edge

scientific innovations to alleviate the threat on human life emanating from unpredictable

maritime accidents.

However, the abundance of all the applicable contemporary technologies introduces perplexity

in deciding the perfect combination between them for optimum performance. In general, almost

18

all major research conundrums are resolved with the thorough comprehension of the problem

domain and taking inspirations from the phenomenon already occurring in nature. On

breakdown of present real-life search and rescue operations, intuitively most of the associated

expense including time and money is attributed to the transportation of human first responders

in boats, helicopters, and aircrafts [18]. In addition, the involvement of humans, pursuant to

[19], brings upon various errors due to estimation biases of different physical quantities such

as under-estimation of horizontal distance, over-estimation of height when looking down and

under-estimation when looking up. These drawbacks can be overcome using Unmanned Aerial

Systems (UAS) that have small-size, lower operational cost, flexible aerial maneuverability,

wireless communication, and mathematical computation ability. UAS equipped with simple

RGB and/or thermal cameras and either onboard or cloud-based processing capability which

facilitates the use of deep convolutional neural networks (CNN) based object detection models,

as discussed by the authors in [20], [21], [22], [23], [24] and [25], can best mimic the action

of rescue personnel flying in helicopters or aircrafts for finding the victims in hazardous

territories, making the rescue process more efficient. Furthermore, among different modern

deep learning based object detection models [26], the state-of-the-art YOLOv7 that transcends

all other recognized object detectors in speed and accuracy [27] is here considered the most

suitable one because in critical real-time SAR missions both response time and accuracy are

equally important for saving human life. Therefore, the starting scientific dilemma is now

narrowed down to the paramount research question that forms the main basis for this work

which is: How to find the best possible configurations of the UAS and state-of-the-art object

detection models for working together in real-time with optimal accuracy of victim detection

at an erratic post-disaster ship scenario?

With this question in mind, simulation seems to be the only plausible path forward initially

because of the risk, price, time, and effort involved to set up the physical test environment at

sea with real persons and UAS with cameras, not to mention the absurd complications in the

re-enactment of the alternating scenario in the aftermath of an actual ship accident. Moreover,

the general prerequisites of the simulation platform to be used can also be deduced from the

research question as: (1) It should be able to produce detailed reproduction of a disaster-struck

ship surroundings with high quality of graphics; (2) It should allow the replica of UAS with

various sensors to be spawned and controlled in the fabricated environment; (3) It should have

an interface to a mechanism capable to control as well as read and process sensor data from a

real UAS, and execute object detection models, enabling transferability to real-world

applications; and (4) It should have the ability to pass a continuous image stream from the

replicated UAS that can be fed as input to object detection models for real-time processing.

Unreal Engine 4 [28] with the integration of AirSim [29], and Robot Operating System (ROS)

[30], on the basis of [31], [32], [33], [34] and [35], has the potential to fulfill all the

requirements of the simulation platform for this work as mentioned above. But when the

requirements are actually materialized with the combination of Unreal Engine, AirSim, ROS,

and Object Detection Models, a novel framework originates that answers the research question.

Therefore, this work follows the steps according to the requirements to firstly develop the

framework. Then, using this framework, the object detection models are evaluated to find the

finest configurations for achieving high accuracy of victim detection in real-time.

19

Hence, the main contributions of this paper are summarized as:

¶ The creation of a high-fidelity changeable sea simulation environment, where the deep-

rooted challenges in the maritime computer vision such as the different light conditions,

altitudes, sea colors, buoyancy, objects movement, camera exposures, brightness,

weather, size of the objects, among many others, can be easily controlled. This also

allows to inexhaustibly generate synthetic data for training new models.

¶ The development of a framework with the constructed simulation environment to

evaluate the performance of the cutting-edge object detection models with the input

images from the UAS in real-time autonomous SAR missions, which can directly be

transferred to real-world UAS applications.

¶ The proposal to reverse engineer the created framework for autonomous real-time

training of object detection models with the automatic ground-truth labeling of the

desired objects in the images from the UAS which could be a breakthrough in maritime

computer vision.

3.3 Development of the Novel Framework

This section describes the overall steps carried out based on the requirements of the

simulation platform mentioned in the previous section.

3.3.1 Virtual Environment

In this section, all the steps to build the simulated environment will be presented.

The simulation environment is composed of a oil tanker, objects and people in water, and a

small boat where the drones are deployed from.

In Figure 3.1, the environment is presented, highlighting the oil tanker. Another angle of the

environment, highlighting the objects and people can be seen in Figure 3.2.

Figure 3.1. Simulated environment from oil tanker side.

20

Figure 3.2. Simulated environment from objects side.

3.3.1.1 Environment Project

The Environment Project [36] is an open source environment simulation project for Unreal

Engine 4. It is the continuation of the Ocean Project, and has many features, such as ocean

simulation, sky simulation, buoyancy, time, and fish plugins. In this work, the simulation

environment was built on top of an existing example world that is made available by the

Environment Project.

Two important configurations that are only present when building sea environments are the

color of the ocean and the waves. It is possible to choose a darker or brighter ocean or more

blue or green, for example. Regarding the waves, it is possible to choose the height, direction,

among others, to make a more stormy or calm sea. In the Environment Project world, these

configurations are in the Blueprint "BP_Ocean". Additionally, the various environmental

aspects like sunlight intensity, brightness, atmospheric light, fog, and others were present in

the blueprint "BP_Sky".

In addition, it is possible to configure weather parameters such as wind, rain, among others,

which are also present in any world of Unreal Engine 4 but have their own plugin in the

Environment Project.

3.3.1.2 Post-Disaster Oil Tanker

The first element that was added to the environment was a post disaster ship.

21

Figure 3.3. Post Disaster Oil Tanker.

Unreal Engine 4 Marketplace has much content available for download, both free and paid.

The content that was chosen for this work is called "Post-Apocalyptic Oil Tanker" and was

made available for purchase in 2017 by the content creator "mikkotahtinen". An illustration of

the ship can be seen in Figure 3.3. It is important to note that the content that is downloaded is

composed by many separate blueprints (Figure 3.4). The creator of the world needed to build

the oil tanker with the desired content. One advantage was that in the content there were many

other interesting objects such as containers, that were added in the environment developed by

this work.

Figure 3.4. Blueprints available in the "Post-Apocalyptic Oil Tanker" product.

3.3.1.3 People

As the goal of this proposed framework was to provide a realistic environment, it was required

to populate it with people. This work focused on including people treading water to simulate

22

victims in a sea disaster. However, it is also possible to include people walking in the ship or

swimming. Many characters and animations can be downloaded for free at Mixamo [37] by

Adobe.

In this work, around six different characters were used, all of them with the animation of

treading water.

After downloading the animation, the physics aspects must be properly configured. The two

configurations that allow the person to properly tread water and be affected by the water

movement are to enable collision and choose the "SK_Mannequin_PhysicsAsset" as the

"Physics Asset Override". This was implemented with the proper understanding of similarity

in the bone structure and hierarchy of the "SK_Mannequin" Asset which is the default third

person character of Unreal Engine, and the Mixamo character. This also allows the manual

control of the Mixamo characters using the physics control capability of the "SK_Mannequin".

3.3.1.4 Buoyancy Configuration

One of the main aspects of this work is to have objects which are affected by the stream and

waves of the environment. Therefore, the buoyancy must be correctly configured, otherwise,

the objects would just be with a static position, frozen in the 3D space, without following the

water movement.

To configure the buoyancy, first the "Buoyant Force" component was added to the Blueprint,

then, the buoyancy points were decided with the assistance of the arrow tool as shown in Figure

3.5. Therefore, it is possible to know the exact position to add the buoyancy in the "Test Points"

configuration element. For the swimmer, three buoyancy points were added. This varies for

different objects.

Figure 3.5. Buoyancy points configuration.

23

Finally, Figure 3.6 presents the three test points which were included for the swimmer

blueprint.

Figure 3.6. Buoyancy points placement.

It is important to note that the same procedure must be performed for all objects placed on the

sea, such as the oil tanker, containers, oil barrels, buoys, among others. Nevertheless, the

buoyancy points should be added to only one blueprint of any object, and then the same object

can be easily replicated with the same settings.

3.3.1.5 Other Aspects

In addition, buoys, and other objects, such as containers and oil barrels with buoyancy added

following the same procedure as people, were placed as seen in Figure 3.7.

Figure 3.7. Top view with objects.

24

3.3.2 Initial Setup of the UAS

Firstly, the AirSim plugin was integrated into the custom Unreal environment following the

procedures as explained in the AirSim documentation [38]. All settings, except for the camera,

were kept as default. A single multirotor UAS named "Drone_1" was spawned in the

environment with "PlayerStart" placed on top of a rescue fishing boat as shown in Figure 3.8.

Figure 3.8. Initial UAS Setup in the Virtual Environment.

The camera settings were modified facilitating the UAS to have a single camera of resolution

640x640, which is the YOLOv7 model standard image resolution, field of view (FOV) of 90

degrees, and gimbal enabled with perfect stabilization of 1 and pitch of -90 degrees making the

camera face vertically downward. In addition, the sensors like IMU, Magnetometer, GPS, and

Barometer were also enabled automatically if the settings were left unchanged for the

Multirotor sim mode as mentioned in the AirSim documentation [38].

Furthermore, complying with the directives specified, AirSim ROS wrapper was setup for

Noetic version of ROS inside Windows Sub-system for Linux (WSL) 2 with Ubuntu 20.04 as

Linux distribution on a Windows 10 computer having NVIDIA GeForce RTX 2080 Ti

Graphical Processing Unit (GPU). It primarily contained two nodes among which the mostly

used first node named "airsim_node" was a wrapper over AirSim's multirotor C++ client library

that was comprised of various publishers, subscribers, services, and parameters.

3.3.3 Manual Control of the UAS

Next, using the "Twist" ROS message type, the velocity command subscriber topic from the

wrapper allowed the movement of the UAS in all directions with the input of both linear and

angular velocities in x, y, and z coordinates. For utilizing this feature to manually move the

UAS in a desired way in the simulation environment, a ROS package named

"AS_RoS_Teleop" was used that linked the different keyboard keys with separate control

commands to publish velocity twist messages in the chosen topic.

25

3.3.4 Implementation of YOLOv7 in ROS

Subsequently, the effort of implementing YOLOv7 in ROS was eased with the ready-made

ROS package titled "yolov7_ros" which was a ROS wrapper built over the original framework

by the official developers of YOLOv7 [27]. After that, the weights of the chosen pertained

YOLOv7 models were downloaded, and the class names for the respective models in the

required txt file format were saved in separate folders. Then, the path to the model weights,

class names, and the image topic were specified accordingly in the launch file to initiate the

node for the real-time detection and visualization of the detections along with the bounding

boxes, class names, and confidence scores using the desired YOLOv7 model one at a time.

3.4 Evaluation of Object Detection Models

This section explains the different procedures adopted to evaluate the performance of the object

detection models for real-time detection of human victims in autonomous UAS missions.

3.4.1 Selection of Pretrained YOLOv7 Models on Different Datasets for
Evaluation

As this study was in its early phase, it was decided to utilize the ready-to-use YOLOv7 models

that were already trained on datasets containing people because the focus of this study was to

detect human victims with high accuracy in the post-disaster scenarios.

The first obvious choice was the originally trained YOLOv7 model on Microsoft COCO

(Common Objects in Context) [39] which was a large-scale dataset developed for object

detection, classification and segmentation with 91 labeled objects constituting also people

designated as "person" class. Due to the core nature of any Deep CNN based models including

YOLOv7 to learn patterns in the training image using shifting convolution operations, it was

important to assess the type of human images in this dataset. So on further scrutiny, it was

found that the majority of the images were taken in canonical perspective [40] with different

viewing angles.

Secondly, in search of datasets specially concentrating on the marine environment and aerial

images, SeaDronesSee [41] was found, which was also a large-scale dataset from different

aerial perspectives developed with focus on SAR operations on the sea using UAS. This was

completely relevant for this work. In addition, the SeaDronesSee team had also trained

YOLOv7 in their own dataset, and made the model freely available in project GitHub [42]. The

output labels in this model were swimmer (people floating with stretched hands and legs), boat,

jet ski, buoy, and lifesaving appliance (life jacket/lifebelt).

26

3.4.2 Experimentation with Various Configurations

The main beauty of the developed framework was that it enabled numerous experiments with

minimal efforts which otherwise would have been either impossible or extremely difficult in

real-life.

However, to make the study more focused in accordance with all other experimental studies,

the variables to be considered in this work were also reduced from the plethora of the

manipulable variables. Thus, keeping constant the environmental factors such as dark blue

ocean shade, low wave amplitude and velocity, normal level of atmospheric and other lights,

only the UAS position, especially height, and camera brightness was manipulated. The camera

brightness was altered by changing the post-process settings present inside the camera

component of the main parent blueprint of AirSim Camera named "BP_PIPCAMERA". Also,

to further reduce the variables involved in this study, the camera brightness was changed as

very low, low, normal, high, and very high. When the environment is executed in AirSim Game

Mode, the images rendered on the screen are from the external camera which is also a child of

the parent AirSim Camera. Hence, when the brightness of the camera was changed, it affected

the image displayed on the viewport as seen in Figure 3.10.

Therefore, the starting experiment was carried out by freely traversing the UAS in the

environment with different camera brightness and YOLOv7 models. On doing so, some

interesting phenomenon of human victim detection were observed for both the models.

With the YOLOv7-SDS model selected, all the objects were detected as "boat" class in low or

normal camera brightness for all heights of the UAS. But when the brightness was high, the

model started to detect floating people with hands and legs moving as "swimmers" whereas

other objects were still as "boat". Meanwhile, with the YOLOv7-COCO model chosen, the

human buoyant victims were correctly classified as "person" class mostly in low heights with

low or normal brightness.

For concretizing these observations, a separate test area with just the imported six characters

was created as shown in Figure 3.9.

Figure 3.9. Isolated test region with just humans.

27

After that, the UAS was manually flown to the center of the testing region, and slowly only the

altitude of the UAS was elevated from low to high and vice versa with different camera

brightness each time for both YOLOv7-SDS and YOLOv7-COCO models. Concurrently, the

detections with bounding boxes and confidence scores, the average prediction confidences and

the altitude were closely monitored as shown in Figure 3.10.

Figure 3.10. Illustration of the experimental procedures followed in the testing region.

Finally, after exhaustive trials it was found that the YOLOv7-SDS model had the highest

average prediction confidence of detecting human victims as "swimmers" class at 8 meters

from the sea level with a very high camera brightness, whereas the YOLOv7-COCO model

had the highest average prediction confidence of detecting human victims as "person" class at

2 meters from the sea level with low camera brightness.

3.4.3 Path Planning for the Autonomous Mission

As the primary objective of this study was to evaluate the performance of the models for victim

detection by skipping the arduous process of deploying the UAS in actual post-disaster

scenarios with a simulated one, there was a need to replicate the mission that would have been

employed in real-life, which could be used to gather the test images after detection by the

models for empirical accuracy calculation.

Moreover, the predetermination of the specific height and camera settings of the UAS also laid

the foundation for the autonomous surveillance mission. Using the distributed node processing

capability of the ROS framework, the responsibilities of taking the UAS to the appropriate

location in the environment, and then covering the desired locality fully were assigned to

separate nodes. The point-to-point transfer of the UAS was implemented by modifying the

second node present in the AirSim ROS wrapper named "Simple PID Controller Node" from

service node into an action server node waiting for the position goal asynchronously where the

28

controller parameters proportional gain (K_p) and derivative gain (K_d) were set after heuristic

tuning to 0.5, and 2 respectively.

For full coverage of the desired post-disaster region by the UAS, the boustrophedon path [43],

as shown in Figure 3.11, was deemed to be the most straightforward and effective option for

this work, where the width in each step was selected to be:

ύὭὨὸὬ ς ὤ ÔÁÎ
Ὂὕὠ

ς

where ὤ is the altitude of the UAS and FOV is the field of view of the camera.

Figure 3.11. Boustrophedon Path.

Here, the boustrophedon path was implemented in a node where the odometry sensor topic was

subscribed for current UAS position and the required velocities were published to the velocity

command topic in world frame.

Furthermore, an additional path planner node was created for the autonomous systematic

execution of both the nodes.

3.4.4 Final Mission Execution

Lastly, the autonomous reconnaissance operations were carried out, where the drone

independently takes off, goes to the specified starting point of the desired area, covers the area

for predefined mission time, and returns back to land in the initial position. All these actions

were executed by the collaboration between the different nodes discussed in the previous

sections as shown in Figure 3.12.

