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Summary:  

Unpredictable ship accidents still claim a lot of human life every year even with so many 

technological advancements. Maritime Search and Rescue missions during such hazards 

are mostly carried out with costly equipment and manpower that have some inherent 

estimation biases in many physical quantities. With small-size, lower operational cost, 

flexible aerial maneuverability, wireless communication, and mathematical computation 

ability, drones can be useful to minimize the costs and speed up the SAR operations 

without physical intrusion in dangerous post disaster scenarios. And due to the risky nature 

of the problem, simulation was the rational path initially.  

But there was a shortage of previous literature that tried to especially solve this problem 

in proper simulation platform. Therefore, in the beginning a high fidelity dynamic marine 

simulation environment was created using Unreal Engine 4.27, Microsoft AirSim, and 

ROS which contained a Post Disaster Ship, other many debris, and human victims 

floating. Then, an autonomous SAR mission was planned and implemented for the drone 

with various pretrained YOLOv7 models that achieved high accuracy of victim detection. 

This work was published in IEEE/CVF WACV Conference, 2023. After that another 

iteration of autonomous simulation for tracking both treading and swimming victims with 

YOLOv8 pretrained models was carried out in custom environment in Unreal Engine 5.1 

which also had satisfactory results. Furthermore, the ID and detected location in latitude 

and longitude of the tracked victim was made easily accessible for use in concerned 

places. Finally, the possibility for the cooperation and control of multiple drones working 

together for SAR missions was thoroughly discussed in the end.       
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1 Introduction 
With the everlasting curiosity and dissatisfaction in human beings to evolve further, it has been 

an ultimate goal of humanity to manifest intelligence into an immortal machine making it a 

fully autonomous entity. Furthermore, the need for survival has been the major driving factor 

for innovations to homo sapiens justifying the significance of the interest to develop an 

effective and robust network of smart systems that can independently operate to mitigate the 

damage inflicted after an unforeseen disaster. Consequently, the European Union also decided 

to initiate a project named ñVALKYRIESò that works in Harmonization and Pre-

Standardization of Equipment, Training and Tactical Coordinated procedures for First Aid 

Vehicles deployment on European multi-victim Disasters [1]. The University of South-Eastern 

Norway (USN) is one of the participants of this project with allocation of several 

responsibilities which will be the basis for this Master thesis.  

This chapter will  firstly impart the introduction to the thesis with the discussion of the necessary 

background and context of the overall study, succeeded by the formulation of research problem, 

questions, and objectives, and finally, the limitations to the study that are acknowledged 

upfront. 

1.1 Context and Motivation 

Initially , the thesis topic with the preliminary background and minimum expectations in a broad 

horizon along with the primary tools and software to be used, including chiefly Unreal Engine 

4, Microsoft AirSim, and ROS, was decided, and allotted by USN. On further investigation, 

the topic was in line with the current work being carried out by the Autonomous Research 

Group, USN, in the prestigious VALKYRIES project. Therefore, with an aim to contribute to 

the ongoing work at the University as well as to augment the relevancy of the study, it was 

decided to direct the thesis in the corresponding direction. 

Now diving into the specific topic, the aim of all major technological inventions is to make 

human life easier and better accompanied by economic prosperity with minimal harm to the 

environment. But there is always a persistent risk of uncontrollable and unpredictable 

occurrence of natural calamities due to imbalance of forces in Mother Earth that jeopardizes 

the main essence of mankind to live a happy and prosperous life. Likewise, the continual 

possibility of disasters in ships, buses, airplanes, and other mechanical systems also instigates 

peril to the survival of person itself followed by the costly economic and environmental 

deterioration. Hence, the proper management of natural catastrophes and other disasters has 

captivated a lot of attention since the start of human civilization because it is related to 

safeguarding the core subconscious instinct of any living species to survive. It resulted in all 

the novel technologies developed in the process of evolution being implemented, at their 

respective times, for addressing this issue.  

Moreover, the enhancement of technology from steam powered rotatory mechanical machines 

in the first industrial revolution, to on off transistor logic powered second revolution, to 

microcontrollers, made with combination of transistors, propelled third revolution, and finally 

to internet driven fourth industrial revolution (Industry 4.0) has enabled the metamorphosis of 

machines to highly sophisticated, and self-governing entities, commonly known as autonomous 

systems, that are independently able to sense, perceive, plan, and act according to the 
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surrounding environment with proper training. It is, therefore, intriguing for people to deploy 

autonomous systems for amelioration of any post disaster condition which can reduce the 

associated risk, cost, and delay along with the increase of efficiency to salvage more lives, and 

curb down the financial and ecological loss. 

 In congruence, the European Union decided to commence the VALKYRIES project in 2020 

with 17 main participants, including various universities and research institutes, hailing from 

several countries inside Europe [1]. The primary goal of the project, in simple words, is the 

creation of a uniform multi-country framework of autonomous post-disaster response system 

that can work together independently for multi-faceted operations like search and rescue, first 

aid, health, and safety of the victims, in the event of catastrophes encompassing various nations. 

Every country has some unique subtle and inconspicuous legal, socio-economic, and security 

fabric which substantiates the pertinency of this project. As a result, common concordance 

between the states is vital for cooperation and coordination in case of detrimental hazards. 

Finally, USN is one of the member universities of the VALKYRIES project who has been 

allotted various duties. The elementary task relevant to the thesis topic is described in Task 4.1 

titled as ñFirst aid vehicles and supportive autonomous unitsò [1]. Basically, beginning with 

scrutinizing the cutting-edge technical possibilities for the reaction of unaided and sovereign 

artificial agents in first aid, USN needs to replenish the inconsistencies in their 

institutionalization and standardization to put forward a guideline for their embracement by the 

EU first aid responders. Furthermore, to showcase the application, USN has been designated 

an explicit use case involving post-disaster scenario of an oil tanker ship in the region of North 

Sea between Norway, Denmark, and Netherlands [1]. The fundamental aspects of the use case 

demonstration are the search and rescue of the victims with emergency care, oil spill detection, 

and salvage cargo with collaboration between the different responsible governmental 

authorities in many fronts. For that, the principal anticipated self-governing systems to be 

deployed are Unmanned Surface Vehicles (USVs) that need to replicate the tasks otherwise 

carried out by human first aid responders by sovereignly infiltrating the affected region, and 

Unmanned Aerial Vehicles (UAVs), especially drones, that can gather the essential information 

from higher elevation with minimum penetration into the potentially risky and treacherous 

areas. Moreover, it is also expected that the information gathered should be transmitted to a 

common framework, named as SIGRUN, developed of cloud-based database with linkage to 

web and mobile based applications.  

Additionally, it is stressed that the implementations should be able to cope with the damage to 

the conventional communication framework when employed without the precise outlook of the 

cross-frontier and cross-sectorial BLOS (Beyond Line of Sight) missions [1]. 

1.2 Research Problem 

Due to the inherent terrain intrusive nature of USVs with limited range of visibility  compared 

to the flexible aerial maneuverability of drones with higher spectrum of perceptibility at a 

secure altitude, it is preferable to utilize drones for the initial surveillance of the potentially 

fatal vicinity of the disaster struck ship that forms the foundation for the deployment of USVs. 

Moreover, the elementary aim of establishment of any emergency management systems is to 

strengthen the probability of detecting and emancipating any threat from the survival of human 

life. 
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Based on these postulations, the research problem for this master thesis is formulated as 

follows: Develop a virtual reality simulation environment of a post-disaster scenario of an oil-

tanker ship positioned in North Sea between Norway, Denmark, and Netherlands using Unreal 

Engine, and implement a network of multiple drones in ROS with interface to Microsoft 

AirSim that autonomously carry out reconnaissance missions with the focus on search and 

rescue of victims.     

1.3 Research Objectives 

Based on the context and the research problem, the following are the paramount objectives of 

the study: 

a. To design and construct a sea simulation environment using Unreal Engine, Microsoft 

AirSim, and ROS. 

b. To conceptualize as well as actualize the various strategies for cooperation between several 

self-governing drones to effectively inspect the locality of the wrecked ship prioritizing the 

detection of victims.  

c. To convey useful information to concerned authorities from hazardous territory.  

1.4 Research Questions 

The following fundamental questions were triggered with the research objectives that guided 

the overall thesis study:  

a. How to develop a high-fidelity sea simulation environment with a post disaster ship where 

multiple drones can be spawned and controlled? 

b. How to distribute responsibilities among the individual drones? 

c. How to locate the victims within the vicinity of the ship? 

d. How to handle the dynamic sea environment where the victims and objects keep on moving? 

e. How to plan the time and energy efficient path for the drones ensuring full coverage of the     

solicited area?  

f. How to make the drones carry out the missions autonomously collaborating with each other? 

g. How to communicate between the multiple agents in real-time? 

h. How to transmit the information gathered by the drones to the concerned authorities 

remotely? 
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1.5 Limitations 

The following are the major limitations of the study recognized upfront: 

a. There will always be some bias and discrepancies in the simulation from the real world. 

b. The downward facing camera in the drone even with the gimbal might not be completely 

stable, which might cause error in the georeferencing process. 

c. The Odometry NED values are prone to errors because they are estimated values calculated 

based on other motion sensors. 
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2 Theory 
This chapter introduces the major tools and the theory behind some of the methods used in this 

Master thesis. 

2.1 Unreal Engine 

Unreal Engine is an incredibly powerful and popular game development tool which is created 

and maintained by Epic Games [2]. It is a game engine especially popular for the creation of 

real-time 3D games, but it also supports creators across various industries to develop cutting-

edge real-time 3D content, interactive experiences, and immersive virtual worlds. Therefore, 

lots of industries and academia use Unreal Engine which has a large user base around the world 

with a solid support framework. The basic introduction to installation and use of Unreal Engine 

with explanation of various features is available in structured form in [3]. 

2.2 Microsoft AirSim 

AirSim is an open-source simulator platform built on Unreal Engine that is developed by the 

Microsoft Research Team with the primary goal to narrow the gap between simulation and 

reality to facilitate the development of autonomous vehicles, with elementary focus on aerial 

systems, by providing physically and visually realistic simulations [4]. It can offer real-time 

hardware-in-the-loop (HITL) simulations, with support for popular lighweight messaging 

protocols for drones like MavLink [5] working on popular hardware platforms like Pixhawk, 

by the help of a physics engine able to operate at a high frequency. In addition, it also supports 

software-in-the-loop (SITL) simulations with the availability of built-in default flight controller 

called simple_flight, which is used in this Master thesis, with also the support for PX4 and 

Ardupilot as external flight controllers [6].  

The overall architecture of the AirSim system is shown in Figure that illustrates the core 

components and the interactions between them.  

 

Figure 2.1. Architecture of the AirSim simulator with core components and interactions between them [4] 
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The Figure portrays the core components with modular design that includes simulator part with 

environment model, vehicle model, physics engine, sensor models, rendering interface, public 

API layer, and an interface layer for vehicle firmware or the companion computer [4]. This 

research thesis focuses on SITL simulation, and hence does not use physical firmware. So, the 

focus will be on the simulation in the local computer as if it is the companion computer of the 

drone which sends the desired state wish to the Simulator through the API layer and gets back 

the current estimated state as well as sensor, and perception data required for the autonomous 

search and rescue mission planning from the API layer of the simulator.   

Basically, the built-in flight controller inside the simulator obtains desired state input from the 

companion computer, and sensor data from Sensor models and perception data from the 

Rendering engine which is Unreal Engine, then calculates the current state estimate and outputs 

the actuator control signals to the Vehicle Model to achieve the desired state. The Vehicle Model 

computes the forces, including forces generated from drag, friction and gravity simulated by 

various models for them, and torques generated by the simulated actuators to send to the 

Physics Engine that calculates the next kinematic state, expressed in term of 6 quantities as 

position, orientation, linear velocity, linear acceleration, angular velocity, and angular 

acceleration. The Physics Engine also considers the Environment models for gravity, air 

density, air pressure, magnetic field, and geographic location which together with kinematics 

forms the ground truth for the simulated Sensor Models. Also, the Physics Engine sends the 

current calculated pose of the drone to the Rendering Engine for the display, and the loop 

continues as seen in Figure. All the models used for simulating physical properties in [4] are 

proven dynamic physical models which justifies the high fidelity visual and physical 

simulation. 

Furthermore, even though Microsoft has officially shutdown the further development of 

AirSim from 2022 and archived the official AirSim repository [7] to launch their new platform 

called Project AirSim [8], Codex laboratories LLC have forked the official AirSim repository, 

and continued the development of AirSim with a new name Colosseum [9] working with  

Unreal Engine 5 which was used for the solution in Chapter 4 of this Master thesis.  

 

2.3 Robot Operating System (ROS) 

ROS is an popular open-source robotics middleware framework running mainly on Unix-based 

platforms such as Ubuntu and Mac OS X systems [10]. It is not an operating system but 

provides similar functionalities such as hardware abstraction, low-level device control, 

implementation of commonly used functionality, message-passing between processes, and 

package management. Basically, the main goal of ROS is to provide a common, scalable, 

flexible, and language independent platform for robotics developers to share and reuse the 

code. The detailed explanation of all the concepts, installation procedures, tutorials, and other 

information about ROS can be found in an systematic form in its official documentation [10]. 

Furthermore, AirSim has a built-in wrapper for ROS that helps to interface the AirSim API as 

shown in Figure with ROS directly whose detailed explanation is given in [11]. This is 

extensively used throughout the Master thesis.    
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2.4 Archimedean Spiral 

The Archimedean spiral (also known as the arithmetic spiral) is a spiral named after the 3rd-

century BC Greek mathematician Archimedes [12]. It is the locus comprising of the locations 

of a point moving away from a fixed center point over time with a constant speed along a line 

that rotates with constant angular velocity as shown in Figure.  

 

Figure 2.2. Archimedean spiral represented on a polar graph [12] 

In polar coordinates (r, ɗ) it can be represented by the {equation}. 

ὶ ὥ  
ὦ

ς“
ẗ— 

where a and b are real numbers.  

The parameter ὥ controls the position of the center point of the spiral. If a is positive then the 

center is shifted outward towards ɗ = 0, and if a is negative then the center of the spiral moves 

outward from the origin towards ɗ = ˊ. Whereas parameter b controls the distance between the 

loops, which is equal for all the loops. This property of Archimedean spiral makes it suitable 

for full coverage of the unknown desired region with low or no overlap in search and rescue 

missions if the distance b between the loops is selected according to the Field of View (FOV) 

and height of the camera from the ground as shown in Figure which is discussed also by the 

authors in [13], [14], and [15]. 

 

Figure 2.3. Effect of Camera FOV and Height from the surface on the Camera footprint 
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3 Published Paper 
This chapter presents the paper [16] published by the author of this thesis,  PhD Student 

Luciano Lima, and the supervisor of this thesis Fabio Andrade in Proceedings of the IEEE/CVF 

Winter Conference on Applications of Computer Vision (WACV) Workshops, 2023 during the 

duration of this Master thesis, and is an integral part of this Master thesis. 

3.1 Abstract 

This work presents a novel framework providing the ability to control an Unmanned Aerial 

System (UAS) while detecting objects in real-time with visible detections, containing class 

names, bounding boxes, and confidence scores, in a changeable high-fidelity sea simulation 

environment, where the major attributes like the number of human victims and debris floating, 

ocean waves and shades, weather conditions such as rain, snow, and fog, sun brightness and 

intensity, camera exposure and brightness can easily be manipulated. Developed using Unreal 

Engine, Microsoft AirSim, and Robot Operating System (ROS), the framework was firstly used 

to find the best possible configuration of the UAS flight altitude, and camera brightness with 

high average prediction confidence of human victim detection, and then only autonomous real-

time test missions were carried out to calculate the accuracies of two pretrained You Only Look 

Once Version 7 (YOLOv7) models: YOLOv7 retrained on SeaDronesSee Dataset (YOLOv7-

SDS) and YOLOv7 originally trained on Microsoft COCO Dataset (YOLOv7-COCO), which 

resulted in high values of 97.8% and 93.79%, respectively. Furthermore, it is proposed that the 

framework developed in this study can be reverse engineered for autonomous real-time training 

with automatic ground-truth labeling of the images from the gaming engine that already has all 

the details of all objects placed in the environment for rendering them onto the screen. This is 

required to be done to avoid the cumbersome and time-consuming manual labeling of large 

amount of synthetic data that can be extracted using this framework which could be a 

groundbreaking achievement in the field of maritime computer vision. 

 

3.2 Introduction 

Unforeseeable in nature, disasters involving ships at sea not only inflict costly economic and 

environmental damage, but also jeopardize the invaluable life of crew and passengers onboard. 

According to [17], there were a total of 892 shipping losses worldwide between 2012 to 2021 

with 54 total mishaps alone in 2021. Even though the total number of global vessel hazards 

declined by around 57% over the decade, it is still a substantial amount with each case 

necessitating prompt and costly deployment of Search and Rescue (SAR) teams to rapidly curb 

down the resulting harm. And, naturally, the primary focus of all rescue missions is to first 

scour the inhospitable post-disaster region for victims and safeguard their lives. All this 

substantiates the research interest to effectively and efficiently utilize the existing cutting-edge 

scientific innovations to alleviate the threat on human life emanating from unpredictable 

maritime accidents. 

However, the abundance of all the applicable contemporary technologies introduces perplexity 

in deciding the perfect combination between them for optimum performance. In general, almost 
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all major research conundrums are resolved with the thorough comprehension of the problem 

domain and taking inspirations from the phenomenon already occurring in nature. On 

breakdown of present real-life search and rescue operations, intuitively most of the associated 

expense including time and money is attributed to the transportation of human first responders 

in boats, helicopters, and aircrafts [18]. In addition, the involvement of humans, pursuant to 

[19], brings upon various errors due to estimation biases of different physical quantities such 

as under-estimation of horizontal distance, over-estimation of height when looking down and 

under-estimation when looking up. These drawbacks can be overcome using Unmanned Aerial 

Systems (UAS) that have small-size, lower operational cost, flexible aerial maneuverability, 

wireless communication, and mathematical computation ability. UAS equipped with simple 

RGB and/or thermal cameras and either onboard or cloud-based processing capability which 

facilitates the use of deep convolutional neural networks (CNN) based object detection models, 

as discussed by the authors in  [20], [21], [22], [23], [24] and [25], can best mimic the action 

of rescue personnel flying in helicopters or aircrafts for finding the victims in hazardous 

territories, making the rescue process more efficient. Furthermore, among different modern 

deep learning based object detection models [26], the state-of-the-art YOLOv7 that transcends 

all other recognized object detectors in speed and accuracy [27] is here considered the most 

suitable one because in critical real-time SAR missions both response time and accuracy are 

equally important for saving human life. Therefore, the starting scientific dilemma is now 

narrowed down to the paramount research question that forms the main basis for this work 

which is: How to find the best possible configurations of the UAS and state-of-the-art object 

detection models for working together in real-time with optimal accuracy of victim detection 

at an erratic post-disaster ship scenario? 

With this question in mind, simulation seems to be the only plausible path forward initially 

because of the risk, price, time, and effort involved to set up the physical test environment at 

sea with real persons and UAS with cameras, not to mention the absurd complications in the 

re-enactment of the alternating scenario in the aftermath of an actual ship accident. Moreover, 

the general prerequisites of the simulation platform to be used can also be deduced from the 

research question as: (1) It should be able to produce detailed reproduction of a disaster-struck 

ship surroundings with high quality of graphics; (2) It should allow the replica of UAS with 

various sensors to be spawned and controlled in the fabricated environment; (3) It should have 

an interface to a mechanism capable to control as well as read and process sensor data from a 

real UAS, and execute object detection models, enabling transferability to real-world 

applications; and (4) It should have the ability to pass a continuous image stream from the 

replicated UAS that can be fed as input to object detection models for real-time processing.   

Unreal Engine 4 [28] with the integration of AirSim [29], and Robot Operating System (ROS) 

[30], on the basis of [31], [32], [33], [34] and [35], has the potential to fulfill all the 

requirements of the simulation platform for this work as mentioned above. But when the 

requirements are actually materialized with the combination of Unreal Engine, AirSim, ROS, 

and Object Detection Models, a novel framework originates that answers the research question. 

Therefore, this work follows the steps according to the requirements to firstly develop the 

framework. Then, using this framework, the object detection models are evaluated to find the 

finest configurations for achieving high accuracy of victim detection in real-time. 
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Hence, the main contributions of this paper are summarized as: 

¶ The creation of a high-fidelity changeable sea simulation environment, where the deep-

rooted challenges in the maritime computer vision such as the different light conditions, 

altitudes, sea colors, buoyancy, objects movement, camera exposures, brightness, 

weather, size of the objects, among many others, can be easily controlled. This also 

allows to inexhaustibly generate synthetic data for training new models. 

 

¶ The development of a framework with the constructed simulation environment to 

evaluate the performance of the cutting-edge object detection models with the input 

images from the UAS in real-time autonomous SAR missions, which can directly be 

transferred to real-world UAS applications. 

 

¶ The proposal to reverse engineer the created framework for autonomous real-time 

training of object detection models with the automatic ground-truth labeling of the 

desired objects in the images from the UAS which could be a breakthrough in maritime 

computer vision. 

 

3.3 Development of the Novel Framework 

This section describes the overall steps carried out based on the requirements of the 

simulation platform mentioned in the previous section. 

3.3.1 Virtual Environment 

In this section, all the steps to build the simulated environment will be presented. 

The simulation environment is composed of a oil tanker, objects and people in water, and a 

small boat where the drones are deployed from. 

In Figure 3.1, the environment is presented, highlighting the oil tanker. Another angle of the 

environment, highlighting the objects and people can be seen in Figure 3.2. 

 

Figure 3.1. Simulated environment from oil tanker side. 
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Figure 3.2. Simulated environment from objects side. 

 

3.3.1.1 Environment Project 

The Environment Project [36] is an open source environment simulation project for Unreal 

Engine 4. It is the continuation of the Ocean Project, and has many features, such as ocean 

simulation, sky simulation, buoyancy, time, and fish plugins. In this work, the simulation 

environment was built on top of an existing example world that is made available by the 

Environment Project. 

Two important configurations that are only present when building sea environments are the 

color of the ocean and the waves. It is possible to choose a darker or brighter ocean or more 

blue or green, for example. Regarding the waves, it is possible to choose the height, direction, 

among others, to make a more stormy or calm sea. In the Environment Project world, these 

configurations are in the Blueprint "BP_Ocean". Additionally, the various environmental 

aspects like sunlight intensity, brightness, atmospheric light, fog, and others were present in 

the blueprint "BP_Sky". 

In addition, it is possible to configure weather parameters such as wind, rain, among others, 

which are also present in any world of Unreal Engine 4 but have their own plugin in the 

Environment Project. 

 

3.3.1.2 Post-Disaster Oil Tanker 

The first element that was added to the environment was a post disaster ship. 
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Figure 3.3. Post Disaster Oil Tanker. 

Unreal Engine 4 Marketplace has much content available for download, both free and paid. 

The content that was chosen for this work is called "Post-Apocalyptic Oil Tanker" and was 

made available for purchase in 2017 by the content creator "mikkotahtinen". An illustration of 

the ship can be seen in Figure 3.3. It is important to note that the content that is downloaded is 

composed by many separate blueprints (Figure 3.4). The creator of the world needed to build 

the oil tanker with the desired content. One advantage was that in the content there were many 

other interesting objects such as containers, that were added in the environment developed by 

this work. 

 

Figure 3.4. Blueprints available in the "Post-Apocalyptic Oil Tanker" product. 

 

3.3.1.3 People 

As the goal of this proposed framework was to provide a realistic environment, it was required 

to populate it with people. This work focused on including people treading water to simulate 
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victims in a sea disaster. However, it is also possible to include people walking in the ship or 

swimming. Many characters and animations can be downloaded for free at Mixamo [37] by 

Adobe. 

In this work, around six different characters were used, all of them with the animation of 

treading water. 

After downloading the animation, the physics aspects must be properly configured. The two 

configurations that allow the person to properly tread water and be affected by the water 

movement are to enable collision and choose the "SK_Mannequin_PhysicsAsset" as the 

"Physics Asset Override". This was implemented with the proper understanding of similarity 

in the bone structure and hierarchy of the "SK_Mannequin" Asset which is the default third 

person character of Unreal Engine, and the Mixamo character. This also allows the manual 

control of the Mixamo characters using the physics control capability of the "SK_Mannequin". 

 

3.3.1.4 Buoyancy Configuration 

One of the main aspects of this work is to have objects which are affected by the stream and 

waves of the environment. Therefore, the buoyancy must be correctly configured, otherwise, 

the objects would just be with a static position, frozen in the 3D space, without following the 

water movement. 

To configure the buoyancy, first the "Buoyant Force" component was added to the Blueprint, 

then, the buoyancy points were decided with the assistance of the arrow tool as shown in Figure 

3.5. Therefore, it is possible to know the exact position to add the buoyancy in the "Test Points" 

configuration element. For the swimmer, three buoyancy points were added. This varies for 

different objects.   

 

Figure 3.5. Buoyancy points configuration. 
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Finally, Figure 3.6 presents the three test points which were included for the swimmer 

blueprint. 

 

Figure 3.6. Buoyancy points placement. 

It is important to note that the same procedure must be performed for all objects placed on the 

sea, such as the oil tanker, containers, oil barrels, buoys, among others. Nevertheless, the 

buoyancy points should be added to only one blueprint of any object, and then the same object 

can be easily replicated with the same settings.   

 

3.3.1.5 Other Aspects 

In addition, buoys, and other objects, such as containers and oil barrels with buoyancy added 

following the same procedure as people, were placed as seen in Figure 3.7. 

 

Figure 3.7. Top view with objects. 
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3.3.2 Initial Setup of the UAS 

Firstly, the AirSim plugin was integrated into the custom Unreal environment following the 

procedures as explained in the AirSim documentation [38]. All settings, except for the camera, 

were kept as default. A single multirotor UAS named "Drone_1" was spawned in the 

environment with "PlayerStart" placed on top of a rescue fishing boat as shown in Figure 3.8. 

 

Figure 3.8. Initial UAS Setup in the Virtual Environment. 

The camera settings were modified facilitating the UAS to have a single camera of resolution 

640x640, which is the YOLOv7 model standard image resolution, field of view (FOV) of 90 

degrees, and gimbal enabled with perfect stabilization of 1 and pitch of -90 degrees making the 

camera face vertically downward. In addition, the sensors like IMU, Magnetometer, GPS, and 

Barometer were also enabled automatically if the settings were left unchanged for the 

Multirotor sim mode as mentioned in the AirSim documentation [38]. 

Furthermore, complying with the directives specified, AirSim ROS wrapper was setup for 

Noetic version of ROS inside Windows Sub-system for Linux (WSL) 2 with Ubuntu 20.04 as 

Linux distribution on a Windows 10 computer having NVIDIA GeForce RTX 2080 Ti 

Graphical Processing Unit (GPU). It primarily contained two nodes among which the mostly 

used first node named "airsim_node" was a wrapper over AirSim's multirotor C++ client library 

that was comprised of various publishers, subscribers, services, and parameters. 

 

3.3.3 Manual Control of the UAS 

Next, using the "Twist" ROS message type, the velocity command subscriber topic from the 

wrapper allowed the movement of the UAS in all directions with the input of both linear and 

angular velocities in x, y, and z coordinates. For utilizing this feature to manually move the 

UAS in a desired way in the simulation environment, a ROS package named 

"AS_RoS_Teleop" was used that linked the different keyboard keys with separate control 

commands to publish velocity twist messages in the chosen topic. 
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3.3.4 Implementation of YOLOv7 in ROS 

Subsequently, the effort of implementing YOLOv7 in ROS was eased with the ready-made 

ROS package titled "yolov7_ros" which was a ROS wrapper built over the original framework 

by the official developers of YOLOv7 [27]. After that, the weights of the chosen pertained 

YOLOv7 models were downloaded, and the class names for the respective models in the 

required txt file format were saved in separate folders. Then, the path to the model weights, 

class names, and the image topic were specified accordingly in the launch file to initiate the 

node for the real-time detection and visualization of the detections along with the bounding 

boxes, class names, and confidence scores using the desired YOLOv7 model one at a time. 

 

3.4 Evaluation of Object Detection Models 

This section explains the different procedures adopted to evaluate the performance of the object 

detection models for real-time detection of human victims in autonomous UAS missions. 

3.4.1 Selection of Pretrained YOLOv7 Models on Different Datasets for 
Evaluation 

As this study was in its early phase, it was decided to utilize the ready-to-use YOLOv7 models 

that were already trained on datasets containing people because the focus of this study was to 

detect human victims with high accuracy in the post-disaster scenarios.  

The first obvious choice was the originally trained YOLOv7 model on Microsoft COCO 

(Common Objects in Context) [39] which was a large-scale dataset developed for object 

detection, classification and segmentation with 91 labeled objects constituting also people 

designated as "person" class. Due to the core nature of any Deep CNN based models including 

YOLOv7 to learn patterns in the training image using shifting convolution operations, it was 

important to assess the type of human images in this dataset. So on further scrutiny, it was 

found that the majority of the images were taken in canonical perspective [40] with different 

viewing angles. 

Secondly, in search of datasets specially concentrating on the marine environment and aerial 

images, SeaDronesSee [41] was found, which was also a large-scale dataset from different 

aerial perspectives developed with focus on SAR operations on the sea using UAS. This was 

completely relevant for this work. In addition, the SeaDronesSee team had also trained 

YOLOv7 in their own dataset, and made the model freely available in project GitHub [42]. The 

output labels in this model were swimmer (people floating with stretched hands and legs), boat, 

jet ski, buoy, and lifesaving appliance (life jacket/lifebelt). 
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3.4.2 Experimentation with Various Configurations 

The main beauty of the developed framework was that it enabled numerous experiments with 

minimal efforts which otherwise would have been either impossible or extremely difficult in 

real-life. 

However, to make the study more focused in accordance with all other experimental studies, 

the variables to be considered in this work were also reduced from the plethora of the 

manipulable variables. Thus, keeping constant the environmental factors such as dark blue 

ocean shade, low wave amplitude and velocity, normal level of atmospheric and other lights, 

only the UAS position, especially height, and camera brightness was manipulated. The camera 

brightness was altered by changing the post-process settings present inside the camera 

component of the main parent blueprint of AirSim Camera named "BP_PIPCAMERA". Also, 

to further reduce the variables involved in this study, the camera brightness was changed as 

very low, low, normal, high, and very high. When the environment is executed in AirSim Game 

Mode, the images rendered on the screen are from the external camera which is also a child of 

the parent AirSim Camera. Hence, when the brightness of the camera was changed, it affected 

the image displayed on the viewport as seen in Figure 3.10.  

Therefore, the starting experiment was carried out by freely traversing the UAS in the 

environment with different camera brightness and YOLOv7 models. On doing so, some 

interesting phenomenon of human victim detection were observed for both the models. 

With the YOLOv7-SDS model selected, all the objects were detected as "boat" class in low or 

normal camera brightness for all heights of the UAS. But when the brightness was high, the 

model started to detect floating people with hands and legs moving as "swimmers" whereas 

other objects were still as "boat". Meanwhile, with the YOLOv7-COCO model chosen, the 

human buoyant victims were correctly classified as "person" class mostly in low heights with 

low or normal brightness. 

For concretizing these observations, a separate test area with just the imported six characters 

was created as shown in Figure 3.9. 

 

Figure 3.9. Isolated test region with just humans. 
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After that, the UAS was manually flown to the center of the testing region, and slowly only the 

altitude of the UAS was elevated from low to high and vice versa with different camera 

brightness each time for both YOLOv7-SDS and YOLOv7-COCO models. Concurrently, the 

detections with bounding boxes and confidence scores, the average prediction confidences and 

the altitude were closely monitored as shown in Figure 3.10. 

 

Figure 3.10. Illustration of the experimental procedures followed in the testing region. 

Finally, after exhaustive trials it was found that the YOLOv7-SDS model had the highest 

average prediction confidence of detecting human victims as "swimmers" class at 8 meters 

from the sea level with a very high camera brightness, whereas the YOLOv7-COCO model 

had the highest average prediction confidence of detecting human victims as "person" class at 

2 meters from the sea level with low camera brightness. 

 

3.4.3 Path Planning for the Autonomous Mission 

As the primary objective of this study was to evaluate the performance of the models for victim 

detection by skipping the arduous process of deploying the UAS in actual post-disaster 

scenarios with a simulated one, there was a need to replicate the mission that would have been 

employed in real-life, which could be used to gather the test images after detection by the 

models for empirical accuracy calculation. 

Moreover, the predetermination of the specific height and camera settings of the UAS also laid 

the foundation for the autonomous surveillance mission. Using the distributed node processing 

capability of the ROS framework, the responsibilities of taking the UAS to the appropriate 

location in the environment, and then covering the desired locality fully were assigned to 

separate nodes. The point-to-point transfer of the UAS was implemented by modifying the 

second node present in the AirSim ROS wrapper named "Simple PID Controller Node" from 

service node into an action server node waiting for the position goal asynchronously where the 
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controller parameters proportional gain (K_p) and derivative gain (K_d) were set after heuristic 

tuning to 0.5, and 2 respectively. 

For full coverage of the desired post-disaster region by the UAS, the boustrophedon path [43], 

as shown in Figure 3.11, was  deemed to be the most straightforward and effective option for 

this work, where the width in each step was selected to be: 

ύὭὨὸὬ ς ὤ ÔÁÎ 
Ὂὕὠ

ς
  

where ὤ  is the altitude of the UAS and FOV is the field of view of the camera. 

 

Figure 3.11. Boustrophedon Path. 

Here, the boustrophedon path was implemented in a node where the odometry sensor topic was 

subscribed for current UAS position and the required velocities were published to the velocity 

command topic in world frame. 

Furthermore, an additional path planner node was created for the autonomous systematic 

execution of both the nodes. 

 

3.4.4 Final Mission Execution 

Lastly, the autonomous reconnaissance operations were carried out, where the drone 

independently takes off, goes to the specified starting point of the desired area, covers the area 

for predefined mission time, and returns back to land in the initial position. All these actions 

were executed by the collaboration between the different nodes discussed in the previous 

sections as shown in Figure 3.12. 










































































