

www.usn.no

Faculty of Technology, Natural sciences and Maritime Sciences
Campus Porsgrunn

FMH606 Master’s Thesis 2023

Industrial IT and Automation

System Identification and Dynamic
Positioning of Ships

Manuel Giraldo

250912

www.usn.no

The University of South-Eastern Norway takes no responsibility for the results and

conclusions in this student report.

Course: FMH606 master’s Thesis, 2023

Title: System Identification and Dynamic Positioning of Ships

Number of pages: 113

Keywords: MPC, PID Controller, LQ Optimal Control, Dynamic Positioning

Student: Manuel Giraldo

Supervisor: David Di Ruscio

External partner: None

Summary:

Dynamic Positioning of vessels has an important role in the safety of operations in the

industries where the use of marine vessels is involved. Therefore, it is necessary to have

an adequate implementation of system identification and accurate control methods for the

vessels.

The objectives of this work are: Implementing a mathematical model of the vessel,

performing system identification, developing accurate control methods, and comparing

these methods under different conditions of operation.

The model was simplified discarding the drag coefficients and then its behavior was

measured. The system identification took place by using the inputs and response of the

closed loop system. PID, LQ Optimal control with integral action and MPC with integral

action were selected as control methods. These methods were then compared under

different benchmarks.

The simplified model behaves adequately. For the unconstrained control signals, LQ is

the best option, whereas for the constrained case, MPC was better. The PID controllers

are computationally cheap, however, very sensitive to wind disturbances which means

that they need to be tuned constantly.

 Preface

3

Preface
For millennia, the seas have been a source of resources and a way of commerce for civilizations,

almost every culture has developed some type of transport over water. The use of Dynamic

Positioning Systems for marine vessels is a crucial part in several industries that depend on

them for safety and effectiveness in their operations. This has been researched broadly after the

first half of the 20th century.

Works like that from Balchen [1] have brought models that are used nowadays to develop

control devices which will help in the dynamic positioning. The control theory has several

approaches for dynamic positioning. Some of the first were PID controllers; which use

proportional, integral, and derivative action; some other methods depend on a model, that can

either be provided analytically of obtained by using system identification.

This thesis is concerned with the implementation of an analytical model, the identification of a

system model, and the use of this identified system to develop and compare different control

methods for the dynamic positioning of a marine vessel.

Porsgrunn, May 1st of 2023

Manuel Giraldo

 Contents

4

Contents

1 Introduction ... 7

1.1 Previous Work ... 7
1.2 Objectives .. 7
1.3 Methods ... 7
1.4 Document Structure ... 8

2 Working With the Model ... 9

2.1 NED Coordinate Frame and Vessel’s Coordinate Systems.. 9
2.2 Model Equations ... 10
2.3 Programing the Model .. 11

2.3.1 BalchenModel Class ... 12
2.3.2 EnvironmentCondition Class ... 14

2.4 Simulation and comparison of Drag Coefficients ... 15
2.4.1 Covariance of Differences of the model with given Drag Coefficients and with Them
Equal to Zero .. 17

2.5 Conversion of the Setpoint from the NED Coordinate Frame to the Vessel’s 18
2.6 Linearization of the Model ... 18

2.6.1 Use of the Simplified Model ... 20

3 Dynamic Positioning Using PID Controllers ... 21

3.1 Tuning the PID Controllers for Surge, Sway, and Yaw ... 22
3.1.1 Coupling of States .. 25

3.2 PID Controllers and Disturbances .. 29
3.2.1 Wind Disturbance .. 29
3.2.2 Water Current Disturbance .. 29
3.2.3 Response with the Disturbances... 29

3.3 Viability of the Use of PID Controllers .. 35

4 System Identification .. 36

4.1.1 Obtaining the Input and Output Signals ... 36
4.1.2 Using the U and Y signals in dsr_e function .. 38
4.1.3 The resulting Model .. 39

5 LQ Optimal Control with Integral Action ... 41

5.1 Implementation of LQ Optimal Control in MATLAB .. 42
5.1.1 Finding the Kalman Filter Gain .. 42
5.1.2 G Matrix and Extended Model .. 47
5.1.3 Calculation of Control Signal, Update of Outputs and State Estimation 47
5.1.4 Selection of q and p weights .. 48

6 MPC with Integral Action .. 54

6.1 Implementation of Integral MPC in MATLAB ... 55
6.1.1 Unconstrained vs Constrained MPC ... 57

7 Comparison of PID, LQ, and MPC Methods .. 66

7.1 Experiment Design ... 66
7.1.1 Benchmarks ... 66
7.1.2 Input Signals .. 67

7.2 Control with PID Controllers .. 68
7.2.1 Performance Without Clipping the Control Signal .. 68

 Contents

5

7.2.2 Performance of PID Controller Limiting the Input Signal ... 74
7.3 Performance with LQ-Optimal Control with Integral Action ... 80

7.3.1 Performance Without Clipping the Control Signal .. 80
7.3.2 Performance Clipping the Control Signal ... 86

7.4 Performance with MPC and Integral Action ... 92
7.4.1 Performance Without Clipping the Control Signal .. 92
7.4.2 Performance Clipping the Control Signal ... 98

7.5 Comparison of the Three Methods ... 103
7.5.1 With Input Signal Limits ... 103
7.5.2 Without Limiting Input Signals .. 106

7.6 Analysis of the Results .. 109

8 Conclusions .. 111

References ... 112

 Nomenclature

6

Nomenclature
LQ – Linear Quadratic

MPC – Model Predictive Control

NED – North, East Down

PID – Proportional, Integrative, and Derivative

 1 Introduction

7

1 Introduction
This document presents the results of the implementation of a marine vessel dynamic

positioning system. The Dynamic Positioning of vessels is a well-researched topic. It has

relevance in several industries like Oil and Gas, Logistics, Marine Research, and Aerospace,

where the incorrect positioning of a vessel can trigger material and human lives losses, or

irreparable damage to the sea nature life. Thus, implementing accurate control algorithms for

the positioning of marine vessels is paramount to having a safe and reliable operation.

1.1 Previous Work

In 1980, Jens G. Balchen wrote the paper [1] that serves as main guide for this thesis work.

The paper summarizes the results of developing a mathematical model for a marine vessel for

what back then was called “Kongsberg Våpenfabrikk”. The model is divided into a Low

Frequency and a high frequency component. The low frequency component shows the

influence of wind and water currents in the model, while the high frequency shows the effect

of Waves. In most subsequent works, the high frequency component is ignored, as the actuators

of the vessels cannot compensate for the action of the waves.

The paper of N. Bargoth, C. Dalen, and D. Di Ruscio [2] is also of considerable assistance for

this thesis, since it contains a more clear representation of the low frequency component of the

model found in [1]. It also provided inspiration about how to perform a comparison between

different control methods.

1.2 Objectives

The purpose of this work is to implement a non-linear mathematical model of a vessel and its

behavior at sea; perform a system identification to obtain an identified linearized model; and

to implement control methods that will interact with the identified model to control the non-

linear model. The main source of information for this work are [1], and [2]. Where the

mathematical model has been formulated and simplified.

1.3 Methods

The model implemented in [1] has low frequency and high frequency components. This work

focuses on the low-frequency part, which accounts for the wind and the action of water

currents. The model is then simplified by discarding the drag coefficients. A closed loop system

is then implemented wherein the control is performed using PID controllers.

The control signals and the outputs of the closed loop system are gathered and used to perform

the system identification using the dsr_e function from the system identification toolbox.

The resulting A, B, and D model matrices will be used to implement LQ Optimal Control with

Integral action and MPC with integral action, which gives three control methods in total. These

methods will be evaluated and compared under different benchmarks like settling time,

overshot and input signal usage.

 1 Introduction

8

1.4 Document Structure

In chapter 2, the mathematical model will be formulated. It then will be implemented in

MATLAB and simplified. The initial and simplified versions of the model will be compared.

In chapter 3 the PID controllers are implemented, then in chapter 4 the system identification

takes place. In chapters 5 and 6, the LQ optimal control with integral action and MPC with

integral action methods will be implemented, with a short mathematical explanation for each

of them.

In chapter 7 the performance of the PID, LQ with integral action, and MPC with integral action

methods will be compared.

 2 Working With the Model

9

2 Working With the Model
The equations and the workings of the dynamic model were implemented using as guidelines

the works from [1], and [2]. Some changes were implemented in the use of the ship reference

frame with respect to the method used in [2].

[1] provides the main guidelines for this master’s thesis, particularly for the mathematical

model. The model is divided into High-Frequency motion and Low-Frequency motion

components. The focus of this master’s thesis is the low-frequency motion component, which

represents the motions induced by wind, thrust, and water currents. In the Surge, Sway, and

Yaw coordinates, as explained in [1].

2.1 NED Coordinate Frame and Vessel’s Coordinate Systems

The model Is described with two coordinate systems, which share the same origin. One system

has the absolute earth-based coordinates; this will be used to define the absolute set points and

position of the vessel during the simulation, it will be referred as the NED coordinate frame

(short for North, East, Down, as per [3]). The other will be parallel to the vessel; as the angle

of the vessel with respect to the NED frame changes, there will be an angle offset between the

NED coordinate frame and the vessel’s frame.

North

East

NED Frame

Vessel Frame

Figure 2-1 NED and Vessel's Coordinate Frames

Figure 2-1 shows the interaction between the ship and both coordinate systems. As yaw

changes, the relative values of surge and sway in the vessel’s frame with regards to the absolute

values in the NED frame.

 2 Working With the Model

10

2.2 Model Equations

The drag coefficients (𝑑1, 𝑑2, 𝑑3, and 𝑑4) are considerably low, whereas the momentum

coefficients (m1, m2, and m3) are higher. The coefficients values designated in equations (2.1)

to (2.6) are shown in Table 2-1.

Table 2-1. Values of drag and momentum coefficients.

Coefficient Value

𝑑1 5 ∙ 10−5

𝑑2 21 ∙ 10−5

𝑑3 1.1 ∙ 10−10

𝑑4 201 ∙ 10−15

𝑚1 4 ∙ 106

𝑚2 4 ∙ 107

𝑚3 4.7 ∙ 1010

The model can be described with the following equations, as per [2]:

𝑥̇1 = 𝑥4 (2.1)

𝑥̇2 = 𝑥5 (2.2)

𝑥̇3 = 𝑥6 (2.3)

𝑥̇4 = −
𝑑1
𝑚1
|𝑥4 − 𝑣𝑐𝑠𝑢|(𝑥4 − 𝑣𝑐𝑠𝑢) +

1

𝑚1
(𝐹𝑤𝑠𝑢 + 𝑢1) (2.4)

𝑥̇5 = −
𝑑2
𝑚2
|𝑥5 − 𝑣𝑐𝑠𝑤|(𝑥5 − 𝑣𝑐𝑠𝑤) +

1

𝑚1
(𝐹𝑤𝑠𝑤 + 𝑢2) (2.5)

𝑥̇6 = −
𝑑3
𝑚3

|𝑥6|𝑥6 −
𝑑4
𝑚3
|𝑥5 − 𝑣𝑐𝑠𝑤|(𝑥5 − 𝑣𝑐𝑠𝑤) +

1

𝑚3

(𝑁𝑤 + 𝑢3 + 𝑁𝑐) (2.6)

Equations (2.1) to (2.6) correspond to the change of different states through time, these states

are:

𝑥1: 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑖𝑛 𝑆𝑢𝑟𝑔𝑒 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

𝑥2: 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑖𝑛 𝑆𝑤𝑎𝑦 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

𝑥3: 𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑌𝑎𝑤 𝐴𝑛𝑔𝑙𝑒

𝑥4: 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑖𝑛 𝑆𝑢𝑟𝑔𝑒 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

 2 Working With the Model

11

𝑥5: 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑖𝑛 𝑆𝑤𝑎𝑦 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

𝑥6: 𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑖𝑛 𝑌𝑎𝑤

We also have that:

𝑣𝑐𝑠𝑢 :𝑊𝑎𝑡𝑒𝑟 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑖𝑛 𝑆𝑢𝑟𝑔𝑒 𝐷𝑖𝑟𝑒𝑡𝑖𝑜𝑛 [𝑚/𝑠]

𝑣𝑐𝑠𝑤:𝑊𝑎𝑡𝑒𝑟 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑖𝑛 𝑆𝑤𝑎𝑦 𝐷𝑖𝑟𝑒𝑡𝑖𝑜𝑛 [𝑚/𝑠]

𝑁𝑐:𝑊𝑎𝑡𝑒𝑟 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑀𝑜𝑚𝑒𝑛𝑡 𝑖𝑛 𝑌𝑎𝑤 [𝑁𝑚]

𝐹𝑊𝑠𝑢:𝑊𝑖𝑛𝑑 𝐹𝑜𝑟𝑐𝑒 𝑖𝑛 𝑆𝑢𝑟𝑔𝑒 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 [𝑁]

𝐹𝑊𝑠𝑤:𝑊𝑖𝑛𝑑 𝐹𝑜𝑟𝑐𝑒 𝑖𝑛 𝑆𝑤𝑎𝑦 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 [𝑁]

𝑁𝑤:𝑊𝑖𝑛𝑑 𝑀𝑜𝑚𝑒𝑛𝑡 𝑌𝑎𝑤 [𝑁𝑚]

As it can be seen in equations (2.4), and (2.5), the left terms are multiplied by a division of drag

coefficients by momentum coefficients; also, for Equation (2.6), the left and middle terms show

the same multiplication. Considering the low magnitude of the drag coefficient, which is in the

numerator of the division, and the high magnitude of the momentum coefficient, which is in

the denominator; these terms could be approximated to zero without affecting the precision of

the model.

This also means, that for this model, the wind velocity is of greater significance than the

velocity of the water current, as the water velocity is multiplied by the division of drag

coefficients over momentum coefficient in (2.4), (2.5), and (2.6).

It is worth noting that the system’s equations are expressed in relation to the vessel’s coordinate

frame, which means that to obtain the position of the vessel in north and east coordinates, it is

required to perform a conversion. To achieve this, it is required to use a conversion matrix, as

seen in equation (2.7).

𝑅 = [
𝐶𝑜𝑠(𝑥3) − 𝑆𝑖𝑛(𝑥3) 0

𝑆𝑖𝑛(𝑥3) 𝐶𝑜𝑠(𝑥3) 0
0 0 1

] (2.7)

The conversion matrix R will be used also to calculate the forces of the wind and water current

in the surge and sway directions (in the vessel coordinate frame), as these phenomena will be

first simulated in the NED frame.

2.3 Programing the Model

MATLAB was selected for the simulation of the system since it offers useful control libraries.

It was decided to use classes, which provides more flexibility to implement changes in the code

and the simulations. The scripts are based on work from [3]. The code used for this and all

subsequent sections can be found in Appendix A.

 2 Working With the Model

12

2.3.1 BalchenModel Class

A class was developed to replicate the behavior of the vessel. It has a constructor method that

has as inputs the drag coefficients, the momentum coefficients, the initial states of the vessel,

and parameters like the frontal windage area, the lateral windage area, and the overall length

of the vessel. The model class is composed of other methods that will simulate the effect of

wind and water current on the vessel. With this information, another method will calculate the

change in the states also considering the input signals.

2.3.1.1 Constructor Method

In the constructor method, the parameters of the vessel model are initialized. It receives as

inputs the drag and momentum coefficients, the initial values of the states, the neu coefficients,

the frontal windage area the lateral windage area, and the vessel’s length:

%% Constructor
function obj = BalchenModel(d,m,x,neu, A_F, A_L, L)
 obj.D = d; %Drag Coefficients
 obj.M = m; % Momentum coefficients
 obj.X = x; % Initial States
 obj.Neu = neu;
 obj.A_F = A_F; %Frontal windage area
 obj.A_L = A_L; %Lateral windage area
 obj.L = L; %Vessel's length
end

2.3.1.2 VesselModel Method

In this method, the state equations are implemented. It receives as inputs the current states of

a vessel’s instance, the input signals, the wind and water current forces, and the momentum

and drag coefficients.

As outputs, it will generate an updated rate of change of the model’s states.

%% Method that contains the vessel model, it will be called by Runge-Kutta
function f = VesselModel(obj, x, u, F_w, V_c, m, d, neu)

f=zeros(6,1);
f(1) = x(4);
f(2) = x(5);
f(3) = x(6);

f(4) = - (d(1)/m(1))*abs(x(4) - V_c(1))*(x(4) - V_c(1)) +
(1/m(1))*(F_w(1) + u(1)) + neu(1);
f(5) = - (d(2)/m(2))*abs(x(5) - V_c(2))*(x(5) - V_c(2)) + (1/m(2))*(F_w(2)
+ u(2)) + neu(2);
f(6) = - (d(3)/m(3))*abs(x(6))*x(6) - (d(4)/m(3))*abs(x(5) - V_c(2))*(x(5)
- V_c(2)) + (1/m(3))*(F_w(3) + u(3) + V_c(3)) + neu(3);

end

2.3.1.3 RungeKutta Method

To obtain the state values, it is needed to integrate the output of the VesselModel method. The

differential equations of the model are solved using Runge-Kutta’s method, as obtained from

[4].

 2 Working With the Model

13

This method receives as inputs the same inputs of the VesselModel method. It calls the

VesselModel method several times to obtain an averaged calculation of the value of x in the

next timestep.

 %% Runge Kutta to integrate and get updated state values
 function x_next = RungeKutta(obj, x, u, F_w, v, dt, m, d, neu)

 K1 = obj.VesselModel(x, u, F_w, v, m, d, neu);
 K2 = obj.VesselModel(x+K1.*(dt/2), u, F_w, v, m, d, neu);
 K3 = obj.VesselModel(x+K2.*(dt/2), u, F_w, v, m, d, neu);
 K4 = obj.VesselModel(x+K3.*(dt), u, F_w, v, m, d, neu);

 x_next = x + (dt/6).*(K1+2.*K2+2.*K3 + K4);

 end

2.3.1.4 CurrentVelocity Method

The method receives the current velocity in the north, east and yaw components in the NED

system and converts them to the vessel’s coordinate frame.

 %% Transform the water velocity to the Ship reference
 function V_c = CurrentVelocity(obj, W_c, state) %Receives as input the

current velocities and converts them to the ship frame of reference.

 R = [cos(state(3)) -sin(state(3)) 0;
 sin(state(3)) cos(state(3)) 0;
 0 0 1];

 V_c = R.'*W_c;

 end

2.3.1.5 WindForce Method

This method receives as inputs an absolute wind velocity value, its incidence angle, the vessel’s

yaw, the vessel’s velocity in surge, the vessel’s velocity in sway, and vessel’s body parameters.

These are used to calculate the force applied by the wind on the vessel in the surge and sway

axis. The logic and the values in this method were obtained from [3].

 2 Working With the Model

14

 %% Calculate wind forces in the ship frame of reference
 function forcesArray = WindForce(obj, windVel, wAngle, vYaw,vSpeedSurge,

vSpeedSway, A_F, A_L, L)
 %windVel: wind speed [m/s] in NED frame
 %wAngle: wind direction [deg] in NED frame
 %vYaw: vessel heading [rad]
 Cx = 0.6;
 Cy = 0.8;
 Cn = 0.1;
 % Cx, Cy, Cn: wind coefficients: assumed to be constants
 wAngle = wAngle * pi/180;
 uw = windVel * cos(wAngle - vYaw); % windspeed in surge
 vw = windVel * sin (wAngle - vYaw);% windspeed in sway
 urw = vSpeedSurge - uw; % wind relative speed in surge
 vrw = vSpeedSway - vw; % wind relative speed in sway
 Vr = sqrt(urw^2 + vrw^2);%wind relative speed
 rho = 1.23; % wind density [kg\m^3]
 windForceSurge = 0.5*rho*Cx*A_F*cos(wAngle)* Vr^2; %Wind force in

surge
 windForceSway = 0.5*rho*Cy*A_L*sin(wAngle)* Vr^2; %wind force in sway
 windMoment = 0.5*rho*Cn*A_L*L*sin(2*wAngle)* Vr^2; %Wind moment
 forcesArray = [windForceSurge, windForceSway, windMoment]';
 end

2.3.1.6 UpdateState Method

With the UpdateState method, the other methods are called and used to update the state of the

class’s instance. It first generates a calculation of the water current and wind forces in the

vessel’s reference frame. Then, using these values, it calls the RungeKutta method, which itself

will call the VesselModel’s method. The output will be the updated states values, which will

be also changed as the class’s instance’s properties.

 %% Method that will be called to update the state
 function [x, Y] = UpdateState(obj, u, W_c, W_v,gamma, dt)
 %W_c = Water current velocities in the NED frame
 %W_v = wind velocities in the NED frame
 %gamma = wind direction [deg] in NED frame

 V_c = obj.CurrentVelocity(W_c, obj.X);
 F_w = obj.WindForce(W_v, gamma, obj.X(3),obj.X(4), obj.X(5), obj.A_F,

obj.A_L, obj.L);
 new_state = obj.RungeKutta(obj.X, u, F_w, V_c, dt, obj.M, obj.D,

obj.Neu);
 obj.X = new_state;
 x = obj.X;
 Y = ConvertToNED(obj, obj.X(1:3));

 end

2.3.2 EnvironmentCondition Class

An instance of this class will be called to simulate the weather conditions. The class does not

have a creator method; however, it has methods to represent the wind and water current.

 2 Working With the Model

15

2.3.2.1 SimulateWind Method

This method will receive as input, an average wind speed, which will be multiplied by random

values to obtain a varying wind velocity vector, the size of this vector will be given by an input

“N” corresponding to the number of wind speed values to be generated, this N value should be

equal to the number of timesteps of the simulation.

It will also output an array of angles, which represent the direction of the wind in the NED

coordinate frame.

2.3.2.2 SimulateWater Method

This method will receive as inputs “N” for the length of the simulation, an average current

speed, and a typeOfSignal value, which indicates if the method will simulate sinusoidal water

currents or steps.

2.4 Simulation and comparison of Drag Coefficients

A simulation script was developed, in which the model is subject to wind and water current

disturbances; then, its position in the west axis of the NED framework is plotted against the

position in the north axis of the NED framework.

The water current disturbances were recreated using sinusoidal signals, as seen in Figure 2-2;

whereas the wind disturbances were simulated using random values that were smoothed using

the smooth function from MATLAB, as displayed in Figure 2-3. With this in place, it was

possible to simulate the response of the model to said disturbances with the given drag

coefficient values and with these approximated to zero.

After performing the simulation, the position in the NED framework of the model in both cases

was compared and the covariance of the differences between the two cases was calculated.

Figure 2-2 Water Current Simulation for Drag Coefficients Comparison

 2 Working With the Model

16

Figure 2-3 Wind Speed Simulation for Drag Coefficients Comparison

Figure 2-4 Position of the Vessel in the NED Framework for both Drag Coefficient Values

In Figure 2-4 the change in the position for the vessel in the NED framework is shown. In the

top plot there is the position for the given drag coefficients in [2], while in the bottom plot,

there is the same but for the drag coefficients equal to zero.

After performing a visual inspection of Figure 2-4, it can be concluded that both alternatives

have a similar behavior. This can also be evidenced in Figure 2-5, where the difference between

the two alternatives to each of the states is shown; the difference in positions in the North and

East axis in NED, and in Yaw have absolute values that could be deemed insignificant.

 This will be further demonstrated by calculating the variance of the difference between both

results.

 2 Working With the Model

17

Figure 2-5 Difference of the Three Main Outputs of the Models with Given Drag Coefficients and with these

Equal to Zero

2.4.1 Covariance of Differences of the model with given Drag Coefficients and
with Them Equal to Zero

The covariance calculation is given by:

𝐸 =
∆𝑥𝑇 ∙ ∆𝑥

𝑁
 (2.8)

Where ∆𝑥 is the difference between the two alternatives of the model; N is the number of

samples, and E is the covariance.

This value needs to be calculated three times, as three vectors of values need to be analyzed:

Position in North axis of NED during the simulation time, position in East axis of NED during

the simulation time, and Yaw during the simulation time.

This is implemented in MATLAB and the results are seen in Figure 2-6. The low covariance

means that there is a considerable similarity in the outputs between the model with the given

drag coefficient values and with the drag coefficients equal to zero. This aligns with the results

showcased in Figure 2-4 and Figure 2-5. Which brings to the conclusion that the terms in the

left in equations (2.4), (2.5), and (2.6) can be made equal to zero without a meaningful effect

in the accuracy of the model.

Figure 2-6 Results of Covariance Analysis for the Model's Alternatives

 2 Working With the Model

18

Figure 2-6 Shows the result of calculating the covariance of the differences, which is zero. This

means that for this vessel’s parameters, there is no need to use the drag coefficients in the

model.

2.5 Conversion of the Setpoint from the NED Coordinate Frame
to the Vessel’s

The positions of a marine vessel are given in absolute earth-based coordinates, in longitude

and latitude. However, the controls in the ship send signals to actuators that are inside the

vessel and therefore, within its coordinate frame.

Figure 2-7 Setpoints and Positions of Vessel in NED and Vessel Coordinate Frames

Figure 2-7 shows the setpoints and positions pertaining to each of the coordinate frames. As

the vessel changes position and angle throughout the simulation, the setpoints values in its

frame of reference will change too.

This makes it necessary to convert the setpoints from the absolute NED coordinates to the

vessel’s coordinate frame before feeding them to the control algorithms in every timestep of

the simulation. Likewise, the positions obtained from the control algorithm, which are

established in the vessel’s coordinate frame, need to be converted back to the NED frame to

compare them against the setpoints.

2.6 Linearization of the Model

The linearized model is required to implement LQ and MPC controllers with integral action. It

will be used to calculate an optimized output signal that will be used to control the model.

According to [5], the linearization will be implemented to obtain a state-space model in the

form:

 2 Working With the Model

19

𝑥̇(𝑡) = 𝐴𝑐𝑥(𝑡) + 𝐵𝑐𝑢(𝑡) (2.9)

𝑦(𝑡) = 𝐷𝑐𝑥(𝑡) (2.10)

To make this, the matrices 𝐴𝑐, 𝐵𝑐, and 𝐷𝑐 need to be obtained. The non-linear model can be

expressed in the form:

𝑥̇(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡)) (2.11)

𝑦(𝑡) = 𝑔(𝑥(𝑡), 𝑢(𝑡)) (2.12)

So,

𝐴𝑐 =

[

𝜕𝑓1
𝜕𝑥1

 ,
𝜕𝑓1
𝜕𝑥1

 , ⋯
𝜕𝑓1
𝜕𝑥𝑛𝑥

𝜕𝑓2
𝜕𝑥1

 ,
𝜕𝑓2
𝜕𝑥1

 , ⋯
𝜕𝑓2
𝜕𝑥𝑛𝑥

⋮
𝜕𝑓𝑛𝑥
𝜕𝑥1

 ,
𝜕𝑓𝑛𝑥
𝜕𝑥1

 , ⋯
𝜕𝑓𝑛𝑥
𝜕𝑥𝑛𝑥]

,

𝐵𝑐 =

[

𝜕𝑓1
𝜕𝑢1

 ,
𝜕𝑓1
𝜕𝑢1

 , ⋯
𝜕𝑓1
𝜕𝑢𝑛𝑢

𝜕𝑓2
𝜕𝑢1

 ,
𝜕𝑓2
𝜕𝑢1

 , ⋯
𝜕𝑓2
𝜕𝑢𝑛𝑢

⋮
𝜕𝑓𝑛𝑢
𝜕𝑢1

 ,
𝜕𝑓𝑛𝑢
𝜕𝑢1

 , ⋯
𝜕𝑓𝑛𝑢
𝜕𝑢𝑛𝑢]

 ,

And

𝐴𝑐 =

[

𝜕𝑔1
𝜕𝑥1

 ,
𝜕𝑔1
𝜕𝑥1

 , ⋯
𝜕𝑔𝑛𝑦
𝜕𝑥𝑛𝑥

𝜕𝑔2
𝜕𝑥1

 ,
𝜕𝑔2
𝜕𝑥1

 , ⋯
𝜕𝑔𝑛𝑦
𝜕𝑥𝑛𝑥

⋮
𝜕𝑔𝑛𝑥
𝜕𝑥1

 ,
𝜕𝑔𝑛𝑥
𝜕𝑥1

 , ⋯
𝜕𝑔𝑛𝑦
𝜕𝑥𝑛𝑥]

,

These expressions for 𝐴𝑐, 𝐵𝑐, and 𝐷𝑐 need to be evaluated close to a stable operating point,

which in this case, will be zero for y, u, and x. Then, these values are discretized using

MATLAB’s c2d function.

 2 Working With the Model

20

2.6.1 Use of the Simplified Model

As seen before, for this vessel’s characteristics, the drag coefficients can be approximated to

zero, which simplifies the equations considerably. Equations (2.4), (2.5), and (2.6) become:

𝑥̇4 =
1

𝑚1
(𝐹𝑤𝑠𝑢 + 𝑢1) (2.13)

𝑥̇5 =
1

𝑚1
(𝐹𝑤𝑠𝑤 + 𝑢2) (2.14)

𝑥̇6 =
1

𝑚3

(𝑁𝑤 + 𝑢3 + 𝑁𝑐) (2.15)

These simplified expressions are used in the function linearize_model.m which will produce

matrices A, B, and D as outputs; by creating the matrices 𝐴𝑐, 𝐵𝑐, and 𝐷𝑐, performing the

derivatives on equations (2.1), (2.2), (2.3), (2.13), (2.14), and (2.15); and discretizing them.

This script can be found in Appendix A.

unction [A, B, D] = linearize_model(u, d, m, dt)
Ac = [0 0 0 1 0 0;
 0 0 0 0 1 0;
 0 0 0 0 0 1;
 0 0 0 0 0 0;
 0 0 0 0 0 0;
 0 0 0 0 0 0;];
%The last three rows of Ac are zero because we are using the simplified
%model where d is approximated to zero as it is very small compared to the
%m values.

Bc = [0 0 0;
 0 0 0;
 0 0 0;
 (1/m(1)) 0 0;
 0 (1/m(2)) 0;
 0 0 (1/m(3))];
%Same here, the terms where there is a d divided by m are approximated to
%zero.

Dc = [1 0 0 0 0 0;
 0 1 0 0 0 0;
 0 0 1 0 0 0;];

sys = ss(Ac,Bc,Dc,0);
ds = c2d(sys,dt);
A = ds.a; B = ds.b; D = ds.c;
end

 3 Dynamic Positioning Using PID Controllers

21

3 Dynamic Positioning Using PID
Controllers

PID is the acronym for Proportional, Integral, and Derivative. This type of controller can be

tuned without the need to have a lot of knowledge about the dynamic model of the vessel. It

can be tuned in a trial-and-error fashion, which makes it very simple to implement. It is

important to know that the model has a double integrator and hence, the derivative term will

be needed.

The mathematical expression for the parallel PID controller is:

𝑢𝑘 = 𝐾𝑝 (𝑠𝑝𝑘 − 𝑦𝑘) +
𝐾𝑃𝑇𝑠
𝑇𝑖

∑(𝑠𝑝𝑖 − 𝑦𝑖)

𝑘

𝑖=1

+ 𝐾𝑝𝑇𝑑
𝑒𝑘 − 𝑒𝑘−1

𝑇𝑠
 (3.1)

Where:

𝑢: 𝑇ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑠𝑖𝑔𝑛𝑎𝑙

𝑠𝑝: 𝑇ℎ𝑒 𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡

𝑦: 𝑇ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑎𝑙𝑢𝑒

𝐾𝑝: 𝑇ℎ𝑒 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟

𝑇𝑖: 𝑇ℎ𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟

𝑇𝑑: 𝑇ℎ𝑒 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟

𝑇𝑠: 𝑇ℎ𝑒 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝

𝑒𝑘: 𝑇ℎ𝑒 𝑒𝑟𝑟𝑜𝑟, 𝑜𝑟 𝑡ℎ𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑝 𝑎𝑛𝑑 𝑦 𝑖𝑛 𝑎 𝑔𝑖𝑣𝑒𝑛 𝑡𝑖𝑚𝑒 𝑘

The derivative term of the controller provides increased response to sudden changes in

disturbances in setpoints. However, this response needs to be relaxed as it would generate

violent changes in the control signal and the outputs. It is necessary to add a lowpass filter to

smooth the change in the error.

The equation for the lowpass filter was obtained from [6], and is:

𝑦𝑘 = (1 − 𝑎)𝑦𝑘−1 + 𝑎𝑢𝑘 (3.2)

𝑎 =
𝑇𝑠

𝑇𝑓 + 𝑇𝑠
 (3.3)

Where:

𝑇𝑓: 𝑇ℎ𝑒 𝑓𝑖𝑙𝑡𝑒𝑟 𝑡𝑖𝑚𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 𝑇𝑠 𝑢𝑠𝑢𝑎𝑙𝑙𝑦)

𝑇𝑠: 𝑇𝑖𝑚𝑒𝑠𝑡𝑒𝑝

𝑢𝑘: 𝑈𝑛𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝑖𝑛𝑝𝑢𝑡 𝑠𝑖𝑔𝑛𝑎𝑙, 𝑖𝑛 𝑡ℎ𝑖𝑠 𝑐𝑎𝑠𝑒, 𝑡ℎ𝑒 𝑒𝑟𝑟𝑜𝑟 𝑒𝑘

𝑦𝑘: 𝑇ℎ𝑒 𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑖𝑔𝑛𝑎𝑙, 𝑖𝑛 𝑡ℎ𝑖𝑠 𝑐𝑎𝑠𝑒, 𝑡ℎ𝑒 𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝑒𝑟𝑟𝑜𝑟 𝑒𝑘

 3 Dynamic Positioning Using PID Controllers

22

These equations are implemented in MATLAB using a class named PIDcontroller.m. Surge,

Sway and Yaw will have independent PID controllers, each will be initialized as an instance

of the PIDcontroller class, with specific proportional, integrative, and derivative parameters.

3.1 Tuning the PID Controllers for Surge, Sway, and Yaw

Since there is a closed loop, the method selected for the tuning of the controllers will be the

Ziegler Nichols Method, without the wind and water current disturbances, as described in [7].

A 𝐾𝑝 is selected for the surge control signal, while 𝑇𝑖 is set to a high value so that the integrative

term of the PID is approximated to zero; and the 𝑇𝑑 term is set to zero. This process will be

repeated for the sway and yaw controllers, so it will be only shown for surge.

𝐾𝑝 = 1000

Figure 3-1 Tunning of PID controller using Ziegler-Nichols, first value of Kp

As seen in Figure 3-1, the oscillatory position signal has a period of approximately 400 seconds.

According to the Ziegler-Nichols method, 𝑇𝑖 should be 𝑇𝑖 = 𝑃𝑢/2. So, 𝑇𝑖 should be equal to

200. Then, 𝐾𝑝 = 0.6 ∙ 𝐾𝑝𝑢 and 𝑇𝑑 = 𝑇𝑖/4.

 3 Dynamic Positioning Using PID Controllers

23

Figure 3-2 Behavior of PID Controller for Surge Kp=600, Ti=200, Td=50

Figure 3-2 shows that there is some instability, so the constants need to be tweaked. The

response is improved by increasing the value of the derivative term, hence increasing the 𝑇𝑑

constant value.

Figure 3-3 Behavior of the PID Controller with Kp=600, Ti=200, and Td=150

As seen in Figure 3-3, there is an improvement on the behavior of the controller after manually

changing the constants of the PID controller.

 3 Dynamic Positioning Using PID Controllers

24

For the sway PID controller, the process is repeated, with the result shown in Figure 3-4. It

displays some overshot produced by the derivative term. However, since there is a double

integrator in the model, it is necessary to use the derivative term of the PID controller.

Figure 3-4. Behavior of Sway PID Controller with Kp=900, Ti=550, and Td=300

Then, for the yaw controller, the process is repeated until the system reaches stability, with the

result shown in Figure 3-5. The magnitude of the 𝐾𝑝 constant is noticeably bigger than for the

other controllers.

Figure 3-5. Yaw Controller with Kp=500000, Ti=1500, and Td=350.

 3 Dynamic Positioning Using PID Controllers

25

3.1.1 Coupling of States

The Yaw of the ship has significance in the performance of the controllers for surge and sway.

As the setpoint for yaw is increased, the response of the surge and sway controllers deteriorates.

After a threshold, the position in north and east of the ship in the NED coordinate system is

unsatisfactory.

When the Setpoint for Yaw is 20, the response of the three controllers is acceptable but starts

showing instability this is portrayed in Figure 3-6. The oscillations start to show in the Surge

and Sway controllers.

 3 Dynamic Positioning Using PID Controllers

26

Figure 3-6 Behavior of Controllers when Yaw's Set Point is Set to 20 Degrees

The response is still adequate for the three controllers and at the end, the ship is positioned

where it should be. However, when the yaw setpoint is increased to 60 degrees, the responses

deteriorate:

 3 Dynamic Positioning Using PID Controllers

27

 3 Dynamic Positioning Using PID Controllers

28

Figure 3-7. Behavior of Controllers When the Yaw's Set Point is 60 Degrees.

Figure 3-7 shows that, although the controller makes the vessel achieve the desired setpoint of

60 degrees in Yaw, the controller in Surge starts showing suboptimal performance, with

oscillations in the positioning of the vessel.

It could be argued that the yaw could act as an additional disturbance in the model over the

surge and sway subsystems.

 3 Dynamic Positioning Using PID Controllers

29

3.2 PID Controllers and Disturbances

Now, having tuned the PIDs, it is necessary to add the disturbances; in this case, these will be

low frequency components of wind and water current. To simulate them, a MATLAB class

was created, with methods that simulate the wind speed and direction, and the water current in

the north and east directions of the NED framework. The code to simulate the disturbances was

obtained from [3].

3.2.1 Wind Disturbance

The simulation time is split in 4 and a random multiplier is selected for each segment. Then,

this multiplier will multiply a selected average wind speed. This will create a vector of N wind

speeds, which will be smoothed out using MATLAB’s smooth function.

Then, another function will produce a vector of angles, which will represent the wind direction.

This is needed to further simulate the angle of attack of the wind on the vessel.

3.2.2 Water Current Disturbance

For this disturbance, sinusoidal functions are used for each of the axis of the NED frame.

These have an amplitude in m/s which is selected manually.

3.2.3 Response with the Disturbances

First, the amplitudes of the disturbances are selected as low values; with a wind speed of 5

m/s.

 3 Dynamic Positioning Using PID Controllers

30

Figure 3-8 PID Controllers Response with 5 m/s Wind Speed

Figure 3-8 shows that the controllers let the vessel reach the north and east setpoints, but not

the yaw setpoint. In general, for the three controllers, the tuning must be performed again when

the average wind speed is increased.

 3 Dynamic Positioning Using PID Controllers

31

Figure 3-9 Controller's Response in Northe After Retuning

As seen in Figure 3-9, the setpoints are reached after using different parameters for the

controllers, however, the performance of the system drops after introducing the disturbances.

The current parameters of the Controllers are in Table 3-1.

 3 Dynamic Positioning Using PID Controllers

32

Table 3-1 PID Parameters for 5 m/s average winds

Parameter Value

Kp Surge PID 600

Ti Surge PID 200

Td Surge PID 300

Kp Sway PID 1200

Ti Sway PID 550

Td Sway PID 300

Kp Yaw PID 800000

Ti Yaw PID 1500

Td Yaw PID 350

Nevertheless, when the wind speed is increased, the behavior of the system deteriorates

considerably. Now, the average wind speed will be increased to 20 m/s.

 3 Dynamic Positioning Using PID Controllers

33

Figure 3-10 Controllers and System Response with Average Wind Speed of 20 m/s

It is possible to see in Figure 3-10 that the controllers are not able to take the vessel to the

desired setpoints. The Surge controller gets to the setpoint later, but its performance is

inadequate.

The parameters of the PID controllers need to be changed again to match the environment

conditions, this is a trial-and-error process which stops when the behavior of the system is close

to desired. With the magnitude of the disturbances, it is difficult to guarantee that the setpoints

will be matched completely.

 3 Dynamic Positioning Using PID Controllers

34

Figure 3-11 Performance of System with Average Wind Speed of 20 m/s and Tuned PID Controllers

In Figure 3-11, the controllers reach the setpoints, however, the Yaw controller displays severe

oscillations right after the change in its setpoint, which means that it could be unstable. It can

be also seen in Table 3-2 that a considerable increment in the proportional gain of the Yaw

controller is needed.

 3 Dynamic Positioning Using PID Controllers

35

Table 3-2 PID Controllers Parameters for Average Wind Speeds of 20 m/s

Parameter Value

Kp Surge PID 600

Ti Surge PID 200

Td Surge PID 300

Kp Sway PID 1200

Ti Sway PID 550

Td Sway PID 300

Kp Yaw PID 800000

Ti Yaw PID 1500

Td Yaw PID 350

3.3 Viability of the Use of PID Controllers

Given the coupling of the yaw with the other states and the susceptibility of the system to

disturbances, the sole use of PID controllers does not seem to be practical for Dynamic

Positioning. It could be useful to have a way to integrate all the states in the same controller.

Also, the use of feedforward control can improve the response of the controllers. It seems that

with every set of disturbances or change in the yaw set point, there is a need to tune the

controllers once again.

 4 System Identification

36

4 System Identification
The system identification is performed through an experiment in which a set of impulses are

generated in the input signals; these impulses will produce an effect on the model, which will

produce a set of outputs. In the case of the vessel, the outputs are in the positions in north,

east and yaw.

The system identification is performed on the closed loop model, which means that this will

also account for the presence of a controller.

The result will be matrices A, B, D from the state space model.

4.1.1 Obtaining the Input and Output Signals

The linearized model is used to simulate the closed loop response of the system following a

set of predefined setpoints. The resulting input values (u) and output (y) are stored in a .mat

file, which will be used then for the system identification.

 4 System Identification

37

Figure 4-1 Setpoints, Input and Output Signals Using Linearized Model

In Figure 4-1 the behavior of the system for the three main states is observed. The setpoints in

surge and sway resemble but do not match exactly step impulses as they were transformed to

the vessel’s coordinate frame and then fed to the closed loop system before generating the

control signals.

 4 System Identification

38

4.1.2 Using the U and Y signals in dsr_e function

The input and output arrays are then used in a system identification script. Using the dsr_e

function from the DSR toolbox obtained from [8]. The purpose is to identify a deterministic

and stochastic state-space model in the form:

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝐶𝑒𝑘 (4.1)

𝑦𝑘 = 𝐷𝑥𝑘 + 𝐸𝑢𝑘 + 𝐹𝑒𝑘 (4.2)

Where 𝑥 represents the states, 𝑢 the control inputs, 𝑦 the outputs, and 𝑒 represents random error

with unit variance 𝐸(𝑒𝑘𝑒𝑘
𝑇) = 𝐼.

The dsr_e function receives as inputs the array of output signals, Y; the array of input values,

U; The estimation horizon L; a g value, which is equal to zero if the function will work with a

closed loop system; a number of past horizons, which in this case is equal to 2; and the model

order, which for this case, is 6, as the system has 6 states.

The U and Y values are imported from a .mat file called sysIdData.mat. This file is created

with another MATLAB script called input_output_generation.m, which generated the input

and output signals and exported them.

When the U and Y values are read in a MATLAB script, these are then introduced in the

dsr_e function to produce a model. The system identification is executed in a script called

system_identification.m.

Figure 4-2 Input Signals for System Identification

 4 System Identification

39

Figure 4-3 Output Values for System Identification

Figure 4-2 and Figure 4-3 display the input and output values used in the

system_identification.m script, it is possible to notice that they have the same values as the

arrays generated in the input_output_generation.m script. The system_identification.m script

will generate the matrices for the state space model.

4.1.3 The resulting Model

After the executing the system_identification.m script, found in appendix A. Matrices A, B,

and D as per equations (16) and (17) are obtained, with the values as shown in Table 4-1, Table

4-2, and Table 4-3 respectively:

Table 4-1 System Identification A Matrix Values

1.000116 -0.00059 0.592608 0.186525 1.055447 0.005346

-4.37E-05 1.000865 -1.01657 -0.28442 0.62102 0.004036

-3.11E-06 7.19E-06 0.999288 -6.41E-05 -0.00144 0.339657

1.08E-05 -2.20E-05 -0.00082 0.9993 0.006541 -1.17656

-1.22E-07 4.46E-07 -8.42E-05 -1.71E-05 0.999857 0.017156

-3.28E-09 -1.12E-08 2.49E-05 7.38E-06 -5.55E-06 1.00056

 4 System Identification

40

Table 4-2 System Identification B Matrix Values

-6.33E-07 -1.44E-08 -1.88E-13

1.44E-07 -6.34E-08 -1.83E-13

-2.31E-07 2.48E-08 -1.53E-11

-7.31E-08 6.55E-09 5.31E-11

-2.57E-07 -2.42E-08 -7.74E-13

1.08E-10 -6.09E-12 -3.01E-11

Table 4-3 System Identification D Matrix Values

-0.562867 0.1277356 0.4646695 0.1393493 0.5146498 -0.0002304

-0.128179 -0.562528 -0.496132 -0.138544 0.4848966 0.0001565

-0.002698 -0.001728 -0.159969 0.555015 -0.0080428 0.7068428

According to [9], the system is observable and controllable if the controllability and

observability matrices have the same number of singular values as states of the system, which

in this case is 6. The observability matrix is formed using matrices A, and D; whereas the

controllability matrix is made of matrices A, and B.

Table 4-4 System Identiffication Observability Matrix

4.0542

4.054

4.0538

1.0319

1.0319

1.0319

Table 4-5 System Identification Controllability Matrix

4.68E-06

4.68E-07

3.35E-07

3.40E-08

0.00E+00

0.00E+00

The result of the single value decompositions of the observability and controllability matrices

can be seen in Table 4-4, and Table 4-5 respectively.

For the observability matrix, all the single values are bigger than zero. This means that all the

states of the system are observable. However, for the controllability matrix, only the four first

single values are bigger than zero. So, only the first four states of the system are controllable.

This does not make the control algorithms inviable since there are only three outputs to be

controlled, which are the same as the first three states of the closed loop system.

The performance of this identified model will now be tested by using it in the LQ with integral

action and the MPC with integral action control algorithms.

 5 LQ Optimal Control with Integral Action

41

5 LQ Optimal Control with Integral Action
LQ is the short version of Linear Quadratic optimal control, where the goal is to reduce a cost

function in the form of:

𝐽𝑖 =
1

2
∑((𝑦𝑘 − 𝑟)

𝑇𝑄(𝑦𝑘 − 𝑟) + ∆𝑢𝑘
𝑇𝑃∆𝑢𝑘)

∞

𝑘=𝑖

 (5.1)

As explained in [10], to make a model that is independent to the unknown disturbances;

integral action must be included, which is achieved by augmenting it. This augmented model

can be expressed in the discrete state-space form, but first, some modifications need to be set

in place:

[
∆𝑥𝑘+1
𝑦𝑘 − 𝑟

]
⏟
𝑥̃𝑘+1

= [
𝐴 0𝑛 × 𝑚
𝐷 𝐼𝑚 ×𝑚

]
⏟

𝐴̃

[
∆𝑥𝑘

𝑦𝑘−1 − 𝑟
]

⏟
𝑥̃𝑘

+ [
𝐵

0𝑚 ×𝑟
]

⏟
𝐵̃

∆𝑢𝑘
(5.2)

𝑦𝑘 − 𝑟⏟
𝑦̃𝑘

= [𝐷 𝐼𝑚 ×𝑚]⏟
𝐷̃

[
∆𝑥𝑘

𝑦𝑘−1 − 𝑟
]

⏟
𝑥̃𝑘

(5.3)

With this augmentation, the state-space model can be expressed as:

𝑥̃𝑘+1 = 𝐴̃𝑥̃𝑘 + 𝐵̃∆𝑢𝑘 (5.4)

𝑦̃𝑘 = 𝐷̃𝑥̃𝑘 (5.5)

The use of the state-space model in equations (5.4) and (5.5), and the cost function in

equation (5.1) represents the LQ optimal control problem, which can be synthetized like:

∆𝑢𝑘 = [𝐺1 𝐺2] [
∆𝑥𝑘

𝑦𝑘−1 − 𝑟
] (5.6)

Or,

𝑢𝑘 = 𝑢𝑘−1 + 𝐺1∆𝑥𝑘 + 𝐺2(𝑦𝑘−1 − 𝑟) (5.7)

It is not common to be able to measure the states. That is why an observer can be included in

the deviation model. The difference between the estimated states of two iterations will be

used in the second term of equation (5.7).

∆𝑥̅𝑘+1 = 𝐴∆𝑥̅𝑘 + 𝐵∆𝑢𝑘 +𝐾(𝑦𝑘 − 𝑦𝑘−1 − 𝐷∆𝑥̅𝑘) (5.8)

Where K is a Kalman gain.

 5 LQ Optimal Control with Integral Action

42

5.1 Implementation of LQ Optimal Control in MATLAB

The LQ optimal control is implemented in a script called dlq_integral.m. It unpacks A, B, and

D matrices from the identified system, which were stored in the closedLoopModel.mat file.

Then used them to create a Kalman gain matrix and to extend the state-space model to include

the integral action and to generate the G1 and G2 matrices.

5.1.1 Finding the Kalman Filter Gain

To obtain the Kalman gain, which will be used in the state estimation, the dlqe function from

the control toolbox [10] Is used.

%% kalman filter gain
% The kalman filter is recalculated, as the K matrix from the identified
% model does not perform well during the state estimation.
G=0.01*eye(6);
Q_k = diag([0.09, 0.11, 0.09,0.8,0.5,1.5]);
R_k = diag([1e3,1e3,1e3]);
K=dlqe(A,G,D,Q_k,R_k);

The dlqe function receives as arguments the matrices A, and D from the identified state space

model; a matrix G which accounts for noise, with the same size as there are states, so 6; and

Q_k, and R_k which are process and sensor noise covariance matrices.

Although the dsr_e function the system identification generates a K matrix as output, the

performance of the system with this is not adequate. Figure 5-1 shows the behavior of the three

outputs while using the Kalman gain matrix obtained from the system identification. The

controllers never achieve their setpoints.

 5 LQ Optimal Control with Integral Action

43

 5 LQ Optimal Control with Integral Action

44

Figure 5-1 Response of the System with LQ and K from Identified Model

 5 LQ Optimal Control with Integral Action

45

This behavior improves when the Kalman gain used is obtained from the dlqe function, as seen

in Figure 5-2. The controllers maintain the vessel on the setpoints almost during the whole

simulation.

 5 LQ Optimal Control with Integral Action

46

Figure 5-2 Response of the System with LQ and K from dlqe Function

 5 LQ Optimal Control with Integral Action

47

5.1.2 G Matrix and Extended Model

The dlqu_pi.m function from [10] is used. This function receives as inputs A, B, D matrices

from the identified model, and column vectors q and p, which are used to create Q and P

diagonal weight matrices. It then creates extended 𝐴𝑡, 𝐵𝑡, and 𝐷𝑡 matrices, which are used in

the dlqr function to find the G matrix.

%% Obtaining the G matrix
q = [1e6 0 0; 0 1e7 0; 0 0 1e8];
p = [1e-5 0 0; 0 1e-6 0; 0 0 1e-10];

[G1, G2, At, Bt, Dt, Rr]=dlqdu_pi(A,B,D,q,p);

Inside the dlqu_pi.m function:

function [G1,G2,At,Bt,Dt,Rr]=dlqdu_pi(A,B,D,Q,Rw);
%% Make augmented state space model for LQ-design.
nx=size(A,1); nu=size(B,2); ny=size(D,1);
At=[A,zeros(nx,ny);D,eye(ny,ny)];Bt=[B;zeros(ny,nu)];Dt=[D,eye(ny,ny)];
Qt=Dt'*Q*Dt;

%% Solve Riccati-equation and compute feedback matrix.
[K,Rr]=dlqr(At,Bt,Qt,Rw);
G=-K;
G1=G(:,1:nx); G2=G(:,nx+1:nx+ny);

5.1.3 Calculation of Control Signal, Update of Outputs and State Estimation

Inside the main loop, the control signal is calculated, then it is used along with the current

values of the disturbances to simulate the model’s response. Inside the iteration, the states are

estimated once again and the output values are updated.

 5 LQ Optimal Control with Integral Action

48

%Obtaining the updated control signal
 u = u + G1*(x_est-x_old) + G2*(y_old - sp_ship);

 U(:,i)=u; %Storing the control signal for ploting

 x_old = x_est; %Updating the old states for the next iteration
 y_old = y; %Uptading the outputs for the next iteration

%Obtaining the value of the weather disturbance for plotting
 F_w(:,i) = model.WindForce(W_v(i),gamma(i), x(3), x(4), x(5), A_F, A_L, L);

%Calculating the water current force for plotting
 V_c(:,i)= model.CurrentVelocity(W_c(:,i),x);

%Generating the non-linear model's response
 [x, NED_Position] = model.UpdateState(u, W_c(:,i), W_v(i), gamma(i), dt);

%Updating the state estimation
 x_est = A*x_est + B * u + K*(y - D*x_est);

5.1.4 Selection of q and p weights

The selection of the q and p values could be described as trial-and-error. The q and p vectors

represent the weights given in the algorithm to minimize the error and the change in the control

signal respectively. In other words, these values determine how important the suppression of

the error or keeping a small change in the u values are. These values are relative to each other,

so a bigger q and a smaller p state that there is a much bigger priority in keeping the error in

check than keeping smooth changes in u.

Let us say, that the following values of q and p are used:

% Controller weights
q = [1e4 0 0; 0 1e4 0; 0 0 1e6];
p = [1e-3 0 0; 0 1e-3 0; 0 0 1e-6];

In this case, for a wind speed of 15 m/s, the behavior of the system would look like in Figure

5-3. The response of the controllers does not align the vessel completely to the set points, while

the disturbances manage to deviate the vessel. However, the magnitude of the control impulses

is smaller compared to the values in Figure 5-4, which indicates that this configuration could

use less energy in the dynamic positioning.

 5 LQ Optimal Control with Integral Action

49

 5 LQ Optimal Control with Integral Action

50

Figure 5-3 Behavior of LQ System with Relatively Higher p Values

Now, running the simulation with the original values, where the p vector has considerably

lower values:

 5 LQ Optimal Control with Integral Action

51

%% Obtaining the G matrix
q = [1e6 0 0; 0 1e7 0; 0 0 1e8];
p = [1e-5 0 0; 0 1e-6 0; 0 0 1e-10];

 5 LQ Optimal Control with Integral Action

52

Figure 5-4 Behavior of the System with Relatively Lower p Values

Figure 5-4 displays the response of the system with higher q values compared to the p values.

In this case, error suppression is prioritized. In which, the controller performs a considerably

better job. Nevertheless, the absolute values of the control signals are one order of magnitude

higher.

At the end, there needs to be a balance between the error tolerance and the amount of energy

used to keep that error to a minimum. It is also worth noting that the wind disturbance is 15

 5 LQ Optimal Control with Integral Action

53

m/s, which is in the upper bounds of the winds found in the northern sea, meaning that it would

be an extreme case, were most likely, the use of dynamic positioning would not be enough.

 6 MPC with Integral Action

54

6 MPC with Integral Action
MPC is the acronym for Model Predictive Control, where a linearized model of the vessel is

found and then used to obtain an input signal based on a simulated response of this linearized

model to the setpoints, the current state of the disturbances, and preestablished inequality and

equality constraints. This calculation of the response and of the input signal is performed in

every timestep for L future timesteps. L represents the prediction horizon; namely, a set of

predicted future responses of the model based on its current state.

Figure 6-1 Representation of the Sliding Horizon and Different Input Values

Figure 6-1 illustrates how MPC with and sliding horizon strategy works: In every timestep, an

array of input signals with a length of 5 is calculated. This means that the prediction horizon is

of 5 timesteps. Then, only the first element of the array is selected and used as input in the

controlled system. The process is repeated in the next time step.

The value of u, or the input signal in every timestep is obtaining by minimizing a cost function:

𝐽𝑘 = ∑(𝑦𝑘+𝑖 − 𝑟𝑘+𝑖)
𝑇𝑄(𝑦𝑘+𝑖 − 𝑟𝑘+𝑖) + ∆𝑢𝑘+𝑖−1

𝑇𝑃∆𝑢𝑘+𝑖−1

𝐿

𝑖=1

 (6.1)

In equation (6.1), L is the prediction horizon. The cost function 𝐽𝑘 is calculated in every time

step. Q and P are diagonal weighting matrices will determine which goal Is pursued more

aggressively; whether reducing the offset between y and r or controlling the size of the changes

in u for every timestep.

As with LQ optimal control, an extended model is used to include the integral action. In this

case, an extended model will be implemented too, but in a ∆𝑢 formulation:

[
∆𝑥𝑘+1
𝑦𝑘

]
⏟
𝑥̃𝑘+1

= [
𝐴 0𝑛 × 𝑚
𝐷 𝐼𝑚 ×𝑚

]
⏟

𝐴̃

[
∆𝑥𝑘
𝑦𝑘−1

]
⏟
𝑥̃𝑘

+ [
𝐵

0𝑚 ×𝑟
]

⏟
𝐵̃

∆𝑢𝑘
(6.2)

u1* u2* u3* u4* u5*

u1* u2* u3* u4* u5*

u1* u2* u3* u4* u5*

u1* u2* u3* u4* u5*

K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10 K=11 K=12 K=13 K=14 K=15 K=16 K=17 K=18

𝑈𝑘=1

𝑈𝑘=2

𝑈𝑘=3

𝑈𝑘=4

 6 MPC with Integral Action

55

𝑦𝑘 = [𝐷 𝐼𝑚 ×𝑚]⏟
𝐷̃

[
∆𝑥𝑘
𝑦𝑘−1

]
⏟
𝑥̃𝑘

(6.3)

With the formulation in Equations (6.2) and (6.3), the state-space model can be augmented

as:

𝑥̃𝑘+1 = 𝐴̃𝑥̃𝑘 + 𝐵̃∆𝑢𝑘 (6.4)

𝑦𝑘 = 𝐷̃𝑥̃𝑘 (6.5)

Parting from the augmented state space model, a prediction model can be formulated:

𝑦𝑘+1|𝐿 = 𝐹𝐿𝑢𝑘|𝐿 + 𝑝𝐿 (6.6)

Where

𝐹𝐿 = [𝑂𝐿𝐵 𝐻𝐿
𝑑] (6.7)

𝑝𝐿 = 𝑂𝐿𝐴𝑥𝑘 (6.8)

L is the prediction horizon, 𝐹𝐿 is a matrix whose values are constant and is calculated from the

augmented state space model, 𝑝𝐿 is a vector that depends on older inputs and outputs.

According to [11]. The problem can be formulated in terms of u, or which would be ∆𝑢 for

the augmented model.

𝐽 = 𝑢𝑇𝐻𝑢 + 2𝑓𝑇𝑢 + 𝐽0 (6.9)

Where

𝐻 = 𝐹𝑇𝑄𝐹 + 𝑃 (6.10)

𝑓 = 𝐹𝑇𝑄(𝑝 − 𝑟) (6.11)

𝐽0 = (𝑝 − 𝑟)
𝑇𝑄(𝑝 − 𝑟) (6.12)

The derivative of equation (6.9) can be obtained as:

𝜕𝐽

𝜕𝑢
= 2𝐻𝑢 + 2𝑓 (6.13)

Which means that:

𝑢∗ = −𝐻−1𝑓 (6.14)

6.1 Implementation of Integral MPC in MATLAB

In this case, equation 27 will have a change, in which ∆𝑥𝑘+1 will correspond to the change in

the state estimation from timestep to timestep. For this, it is necessary to use a state estimator

that will work inside the main loop; in this case, a Kalman filter, whose constant K needs to be

defined:

 6 MPC with Integral Action

56

%% Calculating Kalman filter gain
if iflag==0 || iflag==1
% if iflag==1
 % kalman filter gain
 G=0.01*eye(6);
 Q_k = diag([0.09, 0.11, 0.09,0.8,0.5,1.5]);
 R_k = diag([1e3,1e3,1e3]);
 K=dlqe(A,G,D,Q_k,R_k);
end

Again, for this controlling method, it is needed to define weights:

% Controller weights
%Weighting parameters, p is for delta u, q is for error
q = [1e6 0 0; 0 1e7 0; 0 0 1e8];
p = [1e-4 0 0; 0 1e-4 0; 0 0 1e-10];

Then, the augmented model is created with the imported A, B, and D matrices from the

identified model in state space form.

%% augmented system matrices for Integral MPC:
%x _̃(k+1)= A x̃ _̃k+ B ∆̃u_k
%y _k= D x̃ _̃k
At = [A zeros(nx,ny); D eye(ny,ny)];
Bt= [B ; zeros(ny,nu)];
Dt = [D eye(ny,ny)];
[HdL,OL,OLB]=ss2h(At,Bt,Dt,zeros(ny,nu),L,0);
FL=[OLB HdL];
Qt=q2qt(q,L);
Rt=q2qt(p,L);
H=FL'*Qt*FL+Rt; % From Theory: H= F^T QF+PH= F^T QF+P

Inside the main loop, the 𝑝𝐿 vector is calculated in every timestep, it has a length of L, which

is the prediction horizon. Also, the next L points in the setpoint vector are selected and used

with 𝑝𝐿 to calculate 𝑓 and in turn, ∆𝑢𝑘:

 %Calculation of pL
 pL=OL*At*xt;

 %Selection of L next setpoints for comparison
 ref = sp(:,i+1:L+i);
 for k=1:L
 %The selected setpoints need to be converted to the vessel's frame
 ref(:,k)=R'*ref(:,k);
 end
 %Adding just the first reference to the setpoint's vector
 sp_ship_vector(:,i)=ref(:,1);

 ref = ref(:);
 %Finding the value of f
 f=FL'*Qt*(pL-ref);

Then, the value of ∆𝑢𝑘 is calculated. According to the sliding horizon strategy, only the first

value of u is selected and used in the model:

 %du = quadprog(H,f);
 du=-inv(H)*f;
 du = reshape(du,3,L); %arranged control inputs
 u = u + du(:,1);

 6 MPC with Integral Action

57

If the MPC problem is constrained, quadprog needs to be used, but in this case, the problem

will be formulated as an unconstrained MPC.

Finally, as with LQ Optimal control, the model is simulated with the new u and disturbance

values and the states are estimated.

 %Updating the model, estimation of states and update of xt which is
 %used to calculate pL
 [x, NED_Position] = model.UpdateState(u, W_c(:,i), W_v(i), gamma(i), dt);
 x_est = A*x_est + B * u + K*(y - D*x_est);
 xt = [x_est-x_old;y_old];

6.1.1 Unconstrained vs Constrained MPC

Figure 6-2 shows the behavior of the MPC controller with a windspeed of 15 m/s. The same

speed used in the LQ Integral controller. The controller manages to follow the setpoints almost

exactly.

 6 MPC with Integral Action

58

 6 MPC with Integral Action

59

Figure 6-2 Performance of the System with Unconstrained MPC

However, as the value of u is not constrained, it reaches high values, especially for the sway

and the yaw states. This could be limited by using the upper and lower limits in the quadprog

 6 MPC with Integral Action

60

function. The limits can be stablished as a difference between u and the threshold value, which

for surge will be 2e5, for sway 3e5, and for yaw 1e6:

 %Defining lowe and upper bounds for u
 LB = [-2e5-u(1); -3e5-u(2);-1e6-u(3)];
 UB = [2e5-u(1); 3e5-u(2);1e6-u(3)];
 du = quadprog(H,f,[],[],[],[],LB,UB);

 6 MPC with Integral Action

61

Figure 6-3 Performance of Integral MPC Controller with Clipping of u Values

Using the same q and p weighting values, the system will behave as shown in Figure 6-3.

Although the controller shows oscillations after reaching the setpoints, it manages to stabilize

itself, performing especially well for the surge state (North Position in NED). The controller

for the east position presents a considerable overshot however, with a highest value of 30 m,

while the setpoint was 20m. The yaw controller shows an overshot of 3 degrees and posterior

oscillations.

Nevertheless, 15 m/s is a considerable wind speed. The average wind speeds in the northern

sea fluctuate around 10 m/s, so it is a good idea to see how the controller behaves with that

wind speed.

 6 MPC with Integral Action

62

 6 MPC with Integral Action

63

Figure 6-4 Behavior of Integral MPC Controller with 10 m/s Wind Speed

In Figure 6-4, the behavior of the sway controller improves, however it maintains the

oscillations. In a real case scenario, this behavior could be accepted, nevertheless, it could be

improved if the limit for the sway controller is relaxed:

 %Defining lower and upper bounds for u
 LB = [-2e5-u(1); -1e6-u(2);-1e6-u(3)];
 UB = [2e5-u(1); 1e6-u(2);1e6-u(3)];

 6 MPC with Integral Action

64

 6 MPC with Integral Action

65

Figure 6-5 Performance of the Integral MPC Controller with Relaxed u Limits for Sway

Figure 6-5 shows that the sway controller behaves much better, reducing the overshot to a

minimum and showing practically no oscillations. Every change in the input limits, however,

comes with a cost since higher absolute control signal values will represent a higher energy

expense in a real-life system.

 7 Comparison of PID, LQ, and MPC Methods

66

7 Comparison of PID, LQ, and MPC
Methods

The use of PID controllers, LQ Optimal control with integral action, and MPC with integral

action have been discussed before. Although all the methods have proven being effective in

positioning the vessel, it is necessary to perform a test under the same conditions for the three

methods.

7.1 Experiment Design

As per [12], the maximum average hourly wind speed in the northern sea is approximately

equal to 10 m/s. Hence, the wind conditions will be simulated with winds of this magnitude. In

that same source, it is also stated that the most frequents wind directions are from north-west

during the winter months and south-west during the summer months. That is why, to test the

different control methods, the windspeed will be kept at 10 m/s and the direction of the wind

will be maintained in north-west for the first half of the simulation and then changed to south-

west for the second half. The setpoints will be the same for all the controller types: from 0 to

10m for north and east positions, then from 10m to 20m for north and east positions, and from

0 to 5 degrees, followed by 5 to 10 degrees for the yaw angle.

7.1.1 Benchmarks

The controllers will be compared in a qualitative and quantitative way. The settling time on the

setpoints will be measured, as well as the overshot and the root mean square error for the

simulation.

7.1.1.1 Settling Time

The time at which the controller stabilizes at the setpoint (if this is the case), will be measured

on the plot after the simulation is run. Figure 7-1 shows an example of how the settling time

will be measured for each of the controllers. There is a tag for the new setpoint and a tag for

when the controller stabilizes in it.

There are 2 step changes in the setpoint. The settling time will be determined by measuring the

point in time when the oscillations disappear, even though there is still some minimal offset

that is gradually reduced.

Figure 7-1 Example of Measuring of Time for Settling

 7 Comparison of PID, LQ, and MPC Methods

67

7.1.1.2 Overshot and Oscillations

This will be a qualitative and quantitative analysis. If the controller shows overshot, it will be

measured using the tags of the figure tool in MATLAB, as seen in Figure 7-1.

The oscillations will be compared qualitatively, identifying which controller shows more

frequent and ample oscillations.

7.1.1.3 Root Mean Squared Error

The root mean squared error is a common method to measure the deviation of two arrays. In

this case, the two arrays will be the set points in the NED coordinate frame and the position

of the vessel in said frame. The RMSE is calculated using the formula:

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑠𝑝𝑖 − 𝑦𝑖)2
𝑁

𝑖=1

 (7.1)

Where:

𝑠𝑝𝑖: A given setpoint value in instant 𝑖 in the Earth coordinate frame.

𝑦𝑖: A given position measurement in instant 𝑖 in the Earth coordinate frame.

𝑁: Number of samples.

Equation 40 shows that the RMSE will be calculated using the absolute values of the

differences between the setpoints and the outputs.

The setpoint vector and the position vector will be compared. It is worth noting that the

setpoints are stablished in the earth’s coordinate frame, so the position to be compared to, is in

earth’s coordinate frame as well.

7.1.2 Input Signals

The controllers will be tested first with unrestricted input signals and then establishing limits

on them. The limits will be the same used in the last configuration of the MPC with integral

action:

 %Defining lowe and upper bounds for u
 LB = [-2e5-u(1); -1e6-u(2);-1e6-u(3)];
 UB = [2e5-u(1); 1e6-u(2);1e6-u(3)];

The Total Value index will be used to compare the amount of 𝑢 used in each of the methods.

According to [13], It is defined as:

𝑇𝑉 = ∑|∆𝑢𝑘|

∞

𝑘=1

 (7.2)

And ∆𝑢𝑘 = 𝑢𝑘 − 𝑢𝑘−1 . Which is the control signal rate of change.

 7 Comparison of PID, LQ, and MPC Methods

68

7.2 Control with PID Controllers

The controllers will have the last selected 𝑘𝑝, 𝑇𝑖, and 𝑇𝑑 parameters. The values of these can

be seen in Table 7-1.

Table 7-1 PID Controllers Parameters for Comparison

Parameter Value

Kp Surge PID 3500

Ti Surge PID 70

Td Surge PID 300

Kp Sway PID 5000

Ti Sway PID 50

Td Sway PID 500

Kp Yaw PID 800000

Ti Yaw PID 1500

Td Yaw PID 350

7.2.1 Performance Without Clipping the Control Signal

Figure 7-2 displays the behavior of the system with PID controllers. In general terms, the

controllers reach the setpoints, with some oscillations in the surge controller, and some

sluggishness in the yaw controller. The wind disturbance has an immediate effect on the

position of the vessel, causing that the input signals always have a value different from zero.

 7 Comparison of PID, LQ, and MPC Methods

69

 7 Comparison of PID, LQ, and MPC Methods

70

Figure 7-2 General Performance of PID Without Input Limits

7.2.1.1 Settling Time

The settling times for the controllers in each state and for each timestep are shown in Figure

7-3 and summarized in Table 7-2.

 7 Comparison of PID, LQ, and MPC Methods

71

Figure 7-3 Settling Times for PID Controllers without Input Limits

Table 7-2 Settling Times for Unclipped PID Controllers

Controller and Setpoint Approximate Time [s]

Surge Controller Step 1 273

Surge Controller Step 2 294

Sway Controller Step 1 418

Sway Controller Step 2 324

Yaw Controller Step 1 288

Yaw Controller Step 2 235

7.2.1.2 Overshot and Oscillations

The overshot measurements can be seen in Figure 7-4 and are summarized in Table 7-3.

 7 Comparison of PID, LQ, and MPC Methods

72

Figure 7-4 Overshot and Oscillations of PID Controllers without Input Limits

Table 7-3 Overshot and Oscillations of PID Controllers Without Input Limits

Controller and Setpoint Overshot [m or Deg.]

Surge Controller Step 1 5.86 [m]

Surge Controller Step 2 6.5 [m]

Sway Controller Step 1 3.04 [m]

Sway Controller Step 2 2.44 [m]

Yaw Controller Step 1 2 [Deg.]

Yaw Controller Step 2 1.8 [Deg.]

Figure 7-4 shows that the surge controller has the most oscillations, which decrease in

amplitude gradually around the setpoint. This behavior is not ideal, but given the model’s

sensitivity to wind, they would not affect the functionality of the vessel, especially considering

that the controller stabilizes the vessel around the setpoints.

 7 Comparison of PID, LQ, and MPC Methods

73

7.2.1.3 RMSE

The values for each of the axis of the NED frame are shown in Table 7-4:

Table 7-4 RMSE for PID Controllers without Limiting Input Values

Axis RMSE

North Position [m] 0.7923

East Position [m] 0.9551

Yaw Angle [Deg.] 0.4744

7.2.1.4 Maximum and Average U Values

The behavior of the control signals is shown in Figure 7-5, whereas the maximum and average

values are shown in Table 7-5.

Figure 7-5 U Values for PID Controllers without Limited Control Signal

Table 7-5 Maximum and Average U Values for PID Controllers without Limited Input Signal

State U Value

Max. Surge [N] 5.88E+05

Mean Surge [N] 6.00E+00

Max. Sway [N] 1.20E+06

Mean Sway [N] -4.35E+04

Max. Yaw [Nm] 2.21E+07

Mean Yaw [Nm] 2.11E+02

 7 Comparison of PID, LQ, and MPC Methods

74

The Total Values are found in Table 7-6.

Table 7-6 Total Values for PIDs without Limited Input Signals

Controller Total Value (TV)

Surge 5.92E+06

Sway 8.02E+06

Yaw 1.52E+08

7.2.2 Performance of PID Controller Limiting the Input Signal

Figure 7-6 shows the behavior of the PID controllers after limiting the input signals, the

oscillations are increased in the surge controller and the behavior of the yaw controller

deteriorates. Although it reaches the setpoints, its response is more sluggish.

 7 Comparison of PID, LQ, and MPC Methods

75

 7 Comparison of PID, LQ, and MPC Methods

76

Figure 7-6 Performance of PID Controllers with Limited Input Signals

7.2.2.1 Settling Time

The settling times for the controllers in each state and for each timestep are shown in Figure

7-7. The settling times deteriorate considerably, particularly for the yaw controller.

 7 Comparison of PID, LQ, and MPC Methods

77

Figure 7-7 Settling Times for PID Controllers with Input Limits

Table 7-7 Settling Times for PID Controllers with Input Limits

Controller and Setpoint Approximate Time [s]

Surge Controller Step 1 283

Surge Controller Step 2 600

Sway Controller Step 1 430

Sway Controller Step 2 850

Yaw Controller Step 1 1802

Yaw Controller Step 2 1761

7.2.2.2 Overshot and Oscillations

The values of the overshot for each controller are shown in Figure 7-8 and summarized in Table

7-8. The oscillations are like when the input signals are not limited. However, the overshot

decreases for all the controllers. As the input signal is limited, the reactiveness of the controllers

diminishes, so there will be less overshot as the response is slower.

 7 Comparison of PID, LQ, and MPC Methods

78

Figure 7-8 Overshot and Oscillations of PID Controllers with Input Limits

Table 7-8 Overshot and Oscillations of PID Controllers with Input Limits

Controller and Setpoint Overshot [m or Deg.]

Surge Controller Step 1 3.46 [m]

Surge Controller Step 2 2.8 [m]

Sway Controller Step 1 2.6 [m]

Sway Controller Step 2 2.3 [m]

Yaw Controller Step 1 0.6 [Deg.]

Yaw Controller Step 2 2.1 [Deg.]

7.2.2.3 RMSE

The values for each of the axis of the NED frame are shown in Table 7-9.

Table 7-9 RMSE for PID Controllers Limiting the Input Signals

State RMSE

North Position [m] 0.7965

East Position [m] 0.9608

Yaw Angle [Deg.] 1.0256

 7 Comparison of PID, LQ, and MPC Methods

79

7.2.2.4 Maximum and Average U Values

The behavior of the control signals is shown in Figure 7-9, whereas the maximum and average

values are shown in Table 7-10. It is no surprise that the maximum absolute values are the same

as the limits, as the control inputs cannot exceed these. The average values for the yaw are

doubled, most likely because the controller compensates the effect of the limit by being

activated for a longer time.

Figure 7-9 U Values for PID Controllers with Limited Control Signal

Table 7-10 Maximum and Average U Values for PID Controllers with Limited Input Signal

State U Value

Max. Surge [N] 2.00E+05

Mean Surge [N] 6.00E+00

Max. Sway [N] 1.00E+06

Mean Sway [N] -4.35E+04

Max. Yaw [Nm] 1.00E+06

Mean Yaw [Nm] 4.44E+02

The Total values for the control signals of the three controllers can be seen in

Table 7-11.

 7 Comparison of PID, LQ, and MPC Methods

80

Table 7-11 Total Values for PIDs with Limits in the Input Signals

Controller Total Value (TV)

Surge 8.97E+06

Sway 7.21E+06

Yaw 8.80E+08

7.3 Performance with LQ-Optimal Control with Integral Action

In this section, the results of the experiment with the LQ Optimal Controller with Integral

action will be shown. In this case, as the windspeed is reduced to 10 m/s, the difference

between q and p can be relaxed, so these values are used:

% Controller weights
%Weighting parameters, p is for delta u, q is for y
% p=1e-6; q=10000;

q = [1e4 0 0; 0 1e4 0; 0 0 1e6];
p = [1e-5 0 0; 0 1e-5 0; 0 0 1e-9];

7.3.1 Performance Without Clipping the Control Signal

The results are shown in Figure 7-10. At first look, this controller is more aggressive than the

PID controllers. The setpoints are followed almost exactly as specified, there are no

oscillations, and the overshot is minimal or nonexistent.

 7 Comparison of PID, LQ, and MPC Methods

81

 7 Comparison of PID, LQ, and MPC Methods

82

Figure 7-10 Performance of LQ Optimal Control with Integral Action without Input Limits

7.3.1.1 Settling time

The settling times are portrayed in Figure 7-11 and summarized in Table 7-12. There is a

considerable improvement with regard to the PID controllers. The best settling time is shown

in the surge control.

 7 Comparison of PID, LQ, and MPC Methods

83

Figure 7-11 Settling Times for LQ Optimal Control without Input Limits

Table 7-12 Settling Times for LQ Optimal Control without Input Limits

Controller and Setpoint Approximate Time [s]

Surge Controller Step 1 56

Surge Controller Step 2 105

Sway Controller Step 1 114

Sway Controller Step 2 216

Yaw Controller Step 1 107

Yaw Controller Step 2 222

7.3.1.2 Overshot and Oscillations

The overshot and oscillations of the LQ optimal controller with integral action are shown in

Figure 7-12 and summarized in Table 7-13. The overshot is considerably less than with the

PID controllers while the oscillation in the north and yaw axis is zero, and in the east axis is

severely reduced.

 7 Comparison of PID, LQ, and MPC Methods

84

Figure 7-12 Overshot and Oscillations of LQ Optimal Control without Input Limits

Table 7-13 Overshot of LQ Optimal Control without Input Limits

Controller and Setpoint Overshot [m or Deg.]

Surge Controller Step 1 0.7 [m]

Surge Controller Step 2 1 [m]

Sway Controller Step 1 0.7 [m]

Sway Controller Step 2 1.2 [m]

Yaw Controller Step 1 0.4 [Deg.]

Yaw Controller Step 2 0.3 [Deg.]

7.3.1.3 RMSE

The results can be seen in Table 7-14. These values are approximate zero, which indicates that

for most of the simulation, the controller follows the setpoints almost exactly. This is

remarkable considering the presence of the disturbances and model’s sensitivity to it.

Table 7-14 RMSE of LQ Optimal Controller without Input Limits

State RMSE

North Position [m] 0.6166

East Position [m] 0.779

Yaw Angle [Deg.] 0.414

 7 Comparison of PID, LQ, and MPC Methods

85

7.3.1.4 Maximum and Average U Values

The input values are shown in Figure 7-13 and the maximum and mean absolute values are

shown in Table 7-15. The action in the yaw axis is higher than in the other axis.

Figure 7-13 Input Values of LQ Optimal Control with Integral Action without Input Limits

Table 7-15 Input Values of LQ Optimal Control with Integral Action without Input Limits

State U Value

Max. Surge [N] 5.54E+05

Mean Surge [N] 6.00E+00

Max. Sway [N] 1.04E+06

Mean Sway [N] -4.35E+04

Max. Yaw [Nm] 1.04E+07

Mean Yaw [Nm] 2.17E+02

The total values are shown in Table 7-16.

Table 7-16 Total Values for LQ Controller without Control Signal Limits

Controller Total Value (TV)

Surge 3.69E+06

Sway 7.75E+06

Yaw 6.99E+07

 7 Comparison of PID, LQ, and MPC Methods

86

7.3.2 Performance Clipping the Control Signal

As the controller has shown to be more aggressive, it is also possible to try with lower limits

for the input signals, the values for the sway controller are an order of magnitude smaller than

in the case of the PID controllers.

 %Clipping the control signal
 if abs(u(1)) > 2e5
 u(1) = 2e5*sign(u(1));
 end
 if abs(u(2)) > 2e5
 u(2) = 2e5*sign(u(2));
 end
 if abs(u(3)) > 1e6
 u(3) = 1e6*sign(u(3));
 end

Figure 7-14 show the behavior of the system. Although the allowed control signal values are

lower, the behavior of the controller does not seem too affected. There is an overshot in the

yaw angle that stabilizes, then, the setpoints are matched almost perfectly, with a small delay

for the second setpoint.

 7 Comparison of PID, LQ, and MPC Methods

87

 7 Comparison of PID, LQ, and MPC Methods

88

Figure 7-14 Performance of LQ Optimal Control with Integral Action with Input Limits

7.3.2.1 Settling Time

The settling times have increased but in a way that is not significative for the performance of

the controller. This can be seen in Figure 7-15. The values are summarized in Table 7-17.

 7 Comparison of PID, LQ, and MPC Methods

89

Figure 7-15 Settling Times for LQ Optimal Control with Input Limits

Table 7-17 Settling Times for LQ Optimal Control with Input Limits

Controller and Setpoint Approximate Time [s]

Surge Controller Step 1 74

Surge Controller Step 2 267

Sway Controller Step 1 161

Sway Controller Step 2 253

Yaw Controller Step 1 400

Yaw Controller Step 2 300

7.3.2.2 Overshot and Oscillations

The results are shown in Figure 7-16 and summarized in Table 7-18. There is a larger overshot

for the yaw controller in the first step, the setpoint is 5 degrees but the angle jumps to 10 degrees

to then settle at 5 degrees, which is acceptable. Other than this, there is no considerable

overshot, and the oscillations are non-existent.

 7 Comparison of PID, LQ, and MPC Methods

90

Figure 7-16 Overshot and Oscillations of LQ Optimal Control with Input Limits

Table 7-18 Overshot of LQ Optimal Control with Input Limits

Controller and Setpoint Overshot [m or Deg.]

Surge Controller Step 1 0.9 [m]

Surge Controller Step 2 1.05 [m]

Sway Controller Step 1 3.9 [m]

Sway Controller Step 2 3.6 [m]

Yaw Controller Step 1 5.1 [Deg.]

Yaw Controller Step 2 0.2 [Deg.]

7.3.2.3 RMSE

Table 7-19 summarizes the values. The RMSE for the north position is like the result in the

case without input limits, whereas it increases for the east position and the yaw angle. This has

to do with the increase in the overshot for these two.

Table 7-19 RMSE of LQ Optimal Controller with Input Limits

State RMSE

North Position [m] 0.6999

East Position [m] 1.1153

Yaw Angle [Deg.] 1.013

7.3.2.4 Maximum and Average U Values

Again, as seen in Figure 7-17 and in

 7 Comparison of PID, LQ, and MPC Methods

91

Table 7-20, the maximum absolute values in the input signals correspond to the limits provided.

The averages are like the values without input limits.

Figure 7-17 Input Values of LQ Optimal Control with Integral Action with Input Limits

Table 7-20 Input Values of LQ Optimal Control with Integral Action with Input Limits

State U Value

Max. Surge [N] 2.00E+05

Mean Surge [N] 6.00E+00

Max. Sway [N] 2.00E+05

Mean Sway [N] -4.35E+04

Max. Yaw [Nm] 1.00E+06

Mean Yaw [Nm] 2.19E+02

The Total Values can be seen in Table 7-21.

Table 7-21 Total Values for LQ with Control Signal Limits

Controller Total Value (TV)

Surge 4.35E+06

Sway 2.48E+07

Yaw 6.62E+08

 7 Comparison of PID, LQ, and MPC Methods

92

7.4 Performance with MPC and Integral Action

Now, the results with MPC and integral action are presented. This method has shown to be

more sensitive to the variation in values on q and p than LQ with integral action, which makes

necessary to use the original selected values:

% Controller weights
%Weighting parameters, p is for delta u, q is for error
q = [1e6 0 0; 0 1e7 0; 0 0 1e8];
p = [1e-4 0 0; 0 1e-4 0; 0 0 1e-10];

7.4.1 Performance Without Clipping the Control Signal

As seen in Figure 7-18, the controller follows the setpoints closely. There are some oscillations

in the east position controller, but in general the behavior is very adequate. It also responds

very quickly to the changes in the wind, and the changes in setpoint do not destabilize it.

 7 Comparison of PID, LQ, and MPC Methods

93

 7 Comparison of PID, LQ, and MPC Methods

94

Figure 7-18 Performance of the System with Unconstrained MPC with Integral Action

7.4.1.1 Settling Time

The settling times are shown in Figure 7-19 and summarized in Table 7-22. There is a

reduction of these times in comparison to the LQ optimal controller.

 7 Comparison of PID, LQ, and MPC Methods

95

Figure 7-19 Settling Times for Unconstrained MPC with Integral Action

Table 7-22 Settling Times for Unconstrained MPC with Integral Action

Controller and Setpoint Approximate Time [s]

Surge Controller Step 1 51

Surge Controller Step 2 137

Sway Controller Step 1 103

Sway Controller Step 2 162

Yaw Controller Step 1 49

Yaw Controller Step 2 146

7.4.1.2 Overshot and Oscillations

The overshot values are shown in Figure 7-20 and summarized in Table 7-23. There is a

reduction regarding the LQ Optimal controller with integral action. Although there is an

increase in the oscillations in the east position controller, these are not significant, and the

controller manages to stabilize the vessel quickly. Also, the overshot in the yaw controller is

considerably reduced.

 7 Comparison of PID, LQ, and MPC Methods

96

Figure 7-20 Overshot and Oscillations of Unconstrained MPC with Integral Action

Table 7-23 Overshot values of Unconstrained MPC with Integral Action

Controller and Setpoint Overshot [m or Deg.]

Surge Controller Step 1 0.88 [m]

Surge Controller Step 2 0.6 [m]

Sway Controller Step 1 2.6 [m]

Sway Controller Step 2 2.4 [m]

Yaw Controller Step 1 0.5 [Deg.]

Yaw Controller Step 2 0.5 [Deg.]

7.4.1.3 RMSE

The RMSE values for the unconstrained MPC with integral action are shown in Table 7-24.

There are maintained bellow 1m for the north and east controllers, and below 0.5 degrees for

the yaw angle controller, which is adequate, meaning that there is practically no deviation from

the setpoints except for the settling periods of the controller and the changes in the disturbances.

Table 7-24 RMSE of Unconstrained MPC with Integral Action

State RMSE

North Position [m] 0.8615

East Position [m] 0.8583

Yaw Angle [Deg.] 0.4189

 7 Comparison of PID, LQ, and MPC Methods

97

7.4.1.4 Maximum and Average U Values

Figure 7-21 and Table 7-25 portray the values for the u signals in the unconstrained MPC

controller. This case shows increased oscillations, particularly for the east position controller.

Figure 7-21 Input Values of Unconstrained MPC with Integral Action

Table 7-25 Maximum and Average Input Values of Unconstrained MPC with Integral Action

State U Value

Max. Surge [N] 7.19E+05

Mean Surge [N] -1.60E+01

Max. Sway [N] 6.19E+06

Mean Sway [N] -4.34E+04

Max. Yaw [Nm] 6.45E+07

Mean Yaw [Nm] -8.50E+01

The Total Values are found in Table 7-26.

Table 7-26 Total Values for MPC without Constraints in the Control Signals

Controller Total Value (TV)

Surge 6.41E+06

Sway 8.65E+07

Yaw 5.49E+08

 7 Comparison of PID, LQ, and MPC Methods

98

7.4.2 Performance Clipping the Control Signal

In the case of the constrained MPC, the quadprog function will be used. This function can be

provided the limit values of u, which are defined as:

%Defining lowe and upper bounds for u
LB = [-2e5-u(1); -1e6-u(2);-1e6-u(3)];
UB = [2e5-u(1); 1e6-u(2);1e6-u(3)];

The system performs as shown in Figure 7-22. The north and east position controllers have a

similar behaviour to the unconstrained case, whereas the yaw controller shows oscillations in

the setpoint changes. However, the controllers seem to respond adequately to the disturbances.

 7 Comparison of PID, LQ, and MPC Methods

99

Figure 7-22 Performance for constrained MPC Controller with Integral Action

7.4.2.1 Settling Time

The settling times are shown in Figure 7-23 and summarized in Table 7-27. The values are

maintained somewhat similar for the north and east controller. However, they increase

considerably for the yaw controller. As the input signal is clipped, there is less momentum from

the actuator, which in other terms means that there is less energy applied to adjust the yaw

 7 Comparison of PID, LQ, and MPC Methods

100

position, hence, the controller takes more time to stabilize the vessel. Nevertheless, this

behavior continues to be acceptable, as the yaw is maintained in the setpoint after the settling.

Figure 7-23 Settling Times for Constrained MPC with Integral Action

Table 7-27 Settling Times for Constrained MPC with Integral Action

Controller and Setpoint Approximate Time [s]

Surge Controller Step 1 71

Surge Controller Step 2 73

Sway Controller Step 1 109

Sway Controller Step 2 114

Yaw Controller Step 1 750

Yaw Controller Step 2 667

7.4.2.2 Overshot and Oscillations

The values can be seen in Figure 7-24 and Table 7-28. The overshot increases in all the three

states; however, this increment is more noticeable in the yaw angle, with 4.3 degrees for the

first step increase, and 3.3 degrees for the second step increase. Nevertheless, as with the

unconstrained case, these values are acceptable since they do not represent a considerable

deviation and the controller keeps the vessel in the setpoint after the settling.

 7 Comparison of PID, LQ, and MPC Methods

101

Figure 7-24 Overshot and Oscillations for Constrained MPC with Integral Action

Table 7-28 Overshot Values for Constrained MPC with Integral Action

Controller and Setpoint Overshot [m or Deg.]

Surge Controller Step 1 2.8 [m]

Surge Controller Step 2 1.9 [m]

Sway Controller Step 1 4.3 [m]

Sway Controller Step 2 4.2 [m]

Yaw Controller Step 1 4.3 [Deg.]

Yaw Controller Step 2 3.3 [Deg.]

7.4.2.3 RMSE

The RMSE values are summarized in Table 7-29. There is a doubling in the value for the yaw

angle. This is explained by the increase in oscillations and the longer settling time for this

constrained controller.

Table 7-29 RMSE Values for Unconstrained MPC Controller with Integral Action

State RMSE

North Position [m] 0.9201

East Position [m] 1.007

Yaw Angle [Deg.] 1.0974

 7 Comparison of PID, LQ, and MPC Methods

102

7.4.2.4 Maximum and Average U Values

The values of the input signals are shown in Figure 7-25 and Table 7-30. Again, the maximum

values correspond to the predefined limits. There is an increase in the changes in the yaw

controller; the limit stops it to generate much bigger input signals, whereas for east and north,

the limits are very close to the possible maximums, that is why the change in the behavior of

north and east is not as drastic as with yaw.

Figure 7-25 Input Values of Constrained MPC with Integral Action

Table 7-30 Maximum and Average Input Values for Constrained MPC with Integral Action

State U Value

Max. Surge [N] 2.00E+05

Mean Surge [N] -1.76E+02

Max. Sway [N] 1.00E+06

Mean Sway [N] -4.34E+04

Max. Yaw [Nm] 1.00E+06

Mean Yaw [Nm] -8.50E+01

 7 Comparison of PID, LQ, and MPC Methods

103

The total values for u can be seen in Table 7-31.

Table 7-31 Total Values for MPC with Constrained Control Signals

Controller Total Value (TV)

Surge 2.61E+06

Sway 2.23E+07

Yaw 3.77E+07

7.5 Comparison of the Three Methods

Having observed the behavior of the controllers and measured the settling times, overshot and

oscillations, and the RMSE. It is possible to make a qualitative and quantitative comparison of

the results. A score will be assigned to each system based on the previously selected

benchmarks.

7.5.1 With Input Signal Limits

First, the comparison is made on the unconstrained controllers. In general, this configuration

offers the best results with the tradeoff that in some cases, the input signals will reach high

values, which in a real-life scenario could go against the specifications of the actuators in the

vessel.

7.5.1.1 General Behavior

First, with a visual inspection of the three methods, it is determined, that all achieve the goal

of reaching the setpoints and stabilizing the vessel around them. Also, their performance

against disturbances is acceptable; so, one point per state to control is given to each, as shown

in Table 7-32.

Table 7-32 Comparison of General Performance without Input Limits

Benchmark PID LQ + Integral Action MPC + Integral Action

Performance North Good Good Good

Performance East Good Good Good

 Performance Yaw Good Good Good

Score 3 3 3

7.5.1.2 Settling Times

Although the three systems present acceptable settling times, there are some notable differences

between the use of PID controllers and the other methos. LQ and MPC are almost twice as fast

as the PIDs. The average settling time for the PIDs is 305.33 seconds, whereas for LQ and

MPC it is 136.67, and 108 seconds respectively, as seen in Table 7-33. This is why two points

are awarded to MPC and LQ, and only one to PID.

 7 Comparison of PID, LQ, and MPC Methods

104

Table 7-33 Comparison of Settling Times Without Input Limits

Controller and Setpoint PID [s] LQ + Integral Action [s] MPC + Integral Action [s]

Surge Controller Step 1 273 56 51

Surge Controller Step 2 294 105 137

Sway Controller Step 1 418 114 103

Sway Controller Step 2 324 216 162

Yaw Controller Step 1 288 107 49

Yaw Controller Step 2 235 222 146

Average [s] 305.33 136.67 108

Score 1 2 2

7.5.1.3 Overshot and Oscillations

After comparing the overshot values, it is concluded that despite the differences in average

values. These are low and acceptable for all three controller types. Therefore, 2 points are

awarded to each method. The summary can be seen in Table 7-34.

Table 7-34 Comparison of Overshots Without Input Limits

Controller and Setpoint
Overshot

PID
Overshot LQ +
Integral Action

Overshot MPC +
Integral Action

North Controller Step 1 [m] 5.86 0.7 0.88

North Controller Step 2 [m] 6.5 1 0.6

East Controller Step 1 [m] 3.04 0.7 2.6

East Controller Step 2 [m] 2.44 1.2 2.4

Yaw Controller Step 1 [Deg.] 2 0.4 0.5

Yaw Controller Step 2 [Deg.] 1.8 0.3 0.5

Average for North and East [m] 4.46 0.9 1.62

Average for Yaw [Deg.] 1.9 0.35 0.5

Score 2 2 2

As per Table 7-35 shows, the oscillations for the North position in the PIDs and for the East

position with MPC can be improved, nevertheless, all controllers have an at least acceptable

behavior.

Table 7-35 Qualitative Comparison of Oscillations without Input Limits

Oscillations PID LQ + Integral Action MPC + Integral Action

Performance North Acceptable Good Good

Performance East Good Good Acceptable

Performance Yaw Good Good Good

Score 2.5 3 2.5

7.5.1.4 RMSE

The RMSE comparison can be seen in Table 7-36. The results are very similar for the three

methods. Therefore, the whole score of 2 points is granted for all. It is worth noting that these

RMSE values are low, which indicates that the three controllers behave appropriately.

 7 Comparison of PID, LQ, and MPC Methods

105

Table 7-36 Comparison of RMSE without Limiting Input Signals

Axis RMSE PIDs
RMSE LQ + Integral

Action
RMSE MPC + Integral

Action

North Position [m] 0.7923 0.6166 0.8615

East Position [m] 0.9551 0.779 0.8583

Yaw Angle [Deg.] 0.4744 0.414 0.4189

Score 2 2 2

7.5.1.5 Input Signals

The comparison of the maximum and mean input values for each state and each controller type

can be found in Table 7-37. The highest absolute values are highlighted in yellow. It is

noticeable that while unconstrained, MPC produces the highest input signals, which aligns with

the aggressive response it showed.

The biggest differences are seen in the maximum absolute values for the sway and yaw

controllers. These values, although very high, occur only in a very limited window of time,

when the controller activates a response to a change in setpoints or disturbances.

It is worth noting that there is a difference in the mean values of the yaw controller, where the

PID and LQ controllers have an absolute value close to 200, whereas the value for the MPC

controller is 85. This conveys a general tendency of the LQ controller behavior to use bigger

values of u in the yaw controller, and hence, use more energy.

Table 7-37 Comparison of Input Values without Limits for Input Signals

State U PIDs U LQ + Integral Action
U MPC + Integral

Action

Max. Surge [N] 5.88E+05 5.54E+05 7.19E+05

Max. Sway [N] 1.20E+06 1.04E+06 6.19E+06

Max. Yaw [Nm] 2.21E+07 1.04E+07 6.45E+07

Mean Surge [N] 6.00E+00 6.00E+00 -1.60E+01

Mean Sway [N] -4.35E+04 -4.35E+04 -4.34E+04

Mean Yaw [Nm] 2.11E+02 2.17E+02 -8.50E+01

To have more insight into the performance of the control signals, it is a good idea to compare
the total values of the three methods, the score will be calculated based on the Total Value
Results.

Table 7-38 Comparison of Total Values for unconstrained input signals

Controller PIDs TV LQ + Integral Action TV MPC + Integral Action TV

Surge 5.92E+06 3.69E+06 6.41E+06

Sway 8.02E+06 7.75E+06 8.65E+07

Yaw 1.52E+08 6.99E+07 5.49E+08

Score 2.1 3 1.5

As seen in Table 7-38, the total usage of u is bigger in the MPC with integral action controller

(highlighted in yellow), and less in LQ with integral action. In this benchmark, the best result

is obtained from LQ with integral action, so the biggest score is given to this controller.

 7 Comparison of PID, LQ, and MPC Methods

106

7.5.1.6 Scores and Controller Selection

Table 7-39 contains the count of all the scores, wherein the highest score was achieved by the

LQ Optimal controller with Integral action. This controller showed good general behavior and

the generated control signals do not have the highest peaks. Nevertheless, more tuning is

needed to obtain a better performance.

Table 7-39 Scores Summary Without Control Signal Limits

Benchmark PIDs LQ + Integral Action MPC + Integral Action

General Behaviour 3 3 3

Settling Times 1 2 2

Overshot 2 2 2

Oscillations 2.5 3 2.5

RMSE 2 2 2

U usage (TV) 2.1 3 1.5

Total 12.6 15 13

7.5.2 Without Limiting Input Signals

Now the results for the controllers with constrained control signal will be compared.

7.5.2.1 General Behavior

The controllers maintain a general adequate performance, wherein the vessel is taken to the

given setpoints and stabilized. Nevertheless, there is an increase in oscillations in yaw for the

three controllers. The general assessment is seen in Table 7-40.

Table 7-40 Comparison of General Performance with Input Limits

Benchmark PID LQ + Integral Action MPC + Integral Action

Performance North Good Good Good

Performance East Good Good Good

Performance Yaw Acceptable Acceptable Acceptable

Score 2.5 2.5 2.5

7.5.2.2 Settling Times

There is an increase in the settling times, which is to be expected as the input signals are limited.

The results summarized in Table 7-41 show that the settling times average double for the MPC

and LQ controllers and almost triples for the PID controllers. The most increase is seen in the

yaw controllers, which aligns with the general behavior comparison.

 7 Comparison of PID, LQ, and MPC Methods

107

Table 7-41 Comparison of Settling Times Limiting Input Signals

Controller and Setpoint PID [s] LQ + Integral Action [s] MPC + Integral Action

Surge Controller Step 1 283 74 71

Surge Controller Step 2 600 267 73

Sway Controller Step 1 430 161 109

Sway Controller Step 2 850 253 114

Yaw Controller Step 1 1802 400 750

Yaw Controller Step 2 1761 300 667

Average 954.33 242.50 297

Score 0.5 1 1

7.5.2.3 Overshot and Oscillations

There is an increase in the overshot values for all the controllers in the three states, as seen in

Table 7-42. However, the values are deemed appropriate.

Table 7-42 Comparison of Overshot Values Limiting Input Signals

Controller and Setpoint
PID [m or

Deg.]
LQ + Integral

Action [m or Deg.]
MPC + Integral Action

[m or Deg.]

North Controller Step 1 [m] 3.46 0.9 2.8

North Controller Step 2 [m] 2.8 1.05 1.9

East Controller Step 1 [m] 2.6 3.9 4.3

East Controller Step 2 [m] 2.3 3.6 4.2

Yaw Controller Step 1 [Deg.] 0.6 5.1 4.3

Yaw Controller Step 2 [Deg.] 2.1 0.2 3.3

Average for North and East [m] 2.79 2.36 3.3

Average for Yaw [Deg.] 1.35 2.65 3.8

Score 2 2 2

The oscillations comparison is shown in Table 7-43. There is an improvement in the

oscillations in the MPC controller for the east position, with the tradeoff of more oscillations

in yaw. The PID controllers show some oscillations in the North position that are not a big

concern for the performance of the system.

Table 7-43 Comparison of Oscillations Limiting Input Signals

Oscillations PID LQ + Integral Action MPC + Integral Action

Performance North Acceptable Good Good

Performance East Good Good Good

Performance Yaw Good Good Acceptable

Score 2.5 3 2

7.5.2.4 RMSE

The RMSE increase in all controllers, but they are maintained in an acceptable range, for this

reason, the score is maintained, the comparison is given in Table 7-44.

 7 Comparison of PID, LQ, and MPC Methods

108

Table 7-44 Comparison of RMSE with Input Limits

Axis RMSE PIDs
RMSE LQ + Integral

Action
RMSE MPC + Integral Action

North Position [m] 0.7965 0.6999 0.9201

East Position [m] 0.9608 1.1153 1.007

Yaw Angle [Deg.] 1.0256 1.013 1.0974

Score 2 2 2

7.5.2.5 Input Signals

The maximum values are the same in all controllers because of the limits. The maximum mean

values are found in the MPC for the surge action, and in the PIDs for the yaw action. In Sway,

the mean values for all the controllers are very similar. As seen in Table 7-45.

Table 7-45 Comparison of Input Values with Limits for Input Signals

State U PIDs U LQ + Integral Action U MPC + Integral Action

Max. Surge [N] 2.00E+05 2.00E+05 2.00E+05

Max. Sway [N] 1.00E+06 2.00E+05 1.00E+06

Max. Yaw [Nm] 1.00E+06 1.00E+06 1.00E+06

Mean Surge [N] 6.00E+00 6.00E+00 -1.76E+02

Mean Sway [N] -4.35E+04 -4.35E+04 -4.34E+04

Mean Yaw [Nm] 4.44E+02 2.19E+02 -8.50E+01

The total values summary is found in Table 7-46. There is change in comparison to the case

without input limits. Now, the PID controller has the most usage of u in Surge and Yaw,

whereas the largest value for sway is for LQ. It is also worth noting that the total values increase

for LQ and PID controllers with the control signal constraints, while they decrease for the MPC

method. Therefore, MPC is the best in this benchmark.

Table 7-46 Comparison of Total Values of u for with Limits in the Input Signals

Controller PIDs TV LQ + Integral Action TV MPC + Integral Action TV

Surge 8.97E+06 4.35E+06 2.61E+06

Sway 7.21E+06 2.48E+07 2.23E+07

Yaw 8.80E+08 6.62E+08 3.77E+07

Score 1.5 1.5 3

7.5.2.6 Scores and Controller Selection

The final scores for the case with restrained control signals are found in Table 7-47. The

performance of the controllers decreases with regards to the case without input constraints, but

the controllers behave adequately enough. Nevertheless, MPC proves to be more resilient to

changes in the constraints by having a smaller total value index, which aligns to the logic of

MPC control, where a set of equality and inequality constraints, and input limits are considered

for the calculation of u. In this case, the best option is the MPC control with integral action.

 7 Comparison of PID, LQ, and MPC Methods

109

Table 7-47 Scores Summary with Control Signal Limits

Benchmark PIDs LQ + Integral Action MPC + Integral Action

General Behaviour 2.5 2.5 2.5

Settling Times 0.5 1 1

Overshot 2 2 2

Oscillations 2.5 3 2

RMSE 2 2 2

U usage (TV) 2 2.5 3

Total 11 12 12.5

7.6 Analysis of the Results

The three control methods show acceptable behavior either with unlimited or limited control

signals; in all methods and with the two configurations, the setpoints are followed closely and

when the setpoint is constant, the position settles nicely. However, the response of the PID

deteriorates the most when the limits are set in place.

The settling times are acceptable for the three methods in the constrained and unconstrained

case, but the increase is more substantial for the PID controllers.

The overshot is kept in adequate values for all the cases and there is even an improvement in

the values for the PID controllers, which Is seen when comparing Table 7-34 to Table 7-42.

The oscillations deteriorate with the limits in the control signals, increasing considerable in the

MPC controller for the yaw angle. Nevertheless, some slow oscillations are to be expected

giving the type of application.

The RMSE values for the three controllers in the constrained and unconstrained cases are good,

this aligns with the overall behavior of the controllers.

Perhaps the deciding factor is the usage of 𝑢. The comparison of the total values of u are

replicated here for easy of reading in Table 7-48 and

Table 7-49. The highest total values for both cases are highlighted in yellow and the lowest in

green. It is seen that PID and LQ have lower usage for the unconstrained case, but when the

constraints are implemented, the lower values are in MPC, for all the cases. This hints some

capability of the MPC method to better adapt and account for the constraints and would make

it a better option over the other two.

It comes with a cost though, as the use of quadprog makes the execution of the main control

loop much slower.

Table 7-48 Comparison of Total Values for unconstrained input signals

Controller PIDs TV LQ + Integral Action TV MPC + Integral Action TV

Surge 5.92E+06 3.69E+06 6.41E+06

Sway 8.02E+06 7.75E+06 8.65E+07

Yaw 1.52E+08 6.99E+07 5.49E+08

Score 2.1 3 1.5

 7 Comparison of PID, LQ, and MPC Methods

110

Table 7-49 Comparison of Total Values of u for with Limits in the Input Signals

Controller PIDs TV LQ + Integral Action TV MPC + Integral Action TV

Surge 8.97E+06 4.35E+06 2.61E+06

Sway 7.21E+06 2.48E+07 2.23E+07

Yaw 8.80E+08 6.62E+08 3.77E+07

Score 1.5 1.5 3

 8 Conclusions

111

8 Conclusions
After the implementation of the model, it is observed that its behavior does not change

considerably after the drag coefficients are approximated to zero. This measure was taken since

the drag coefficients have very small magnitudes and in equations (2.4), (2.5), and (2.6); it is

seen that they are divided by the momentum coefficients, which are substantially bigger. After

comparing both versions of the model, there is not a noticeable difference in behavior, as the

covariance between them for all the states was close to the computer’s mathematical zero.

The use of a PID controller poses an advantage over what could be called “model dependent”

methods, since there is no need for a deep mathematical understanding of the system before

being able to tune a controller that shows an adequate behavior. This was seen in chapter 3,

where the PID controllers were tuned using the Ziegler-Nichols method. Nevertheless, it was

also noticed that the controllers are very susceptible to disturbances and their parameters

needed to be tuned with every change in the windspeed values.

The use of the PID controllers provides an aiding hand when performing the system

identification. The position and input signals resulting from the PID simulation were then used

as inputs in the dsr_e function to obtain the matrices A, B, and D of the estimated linearized

model. This provided a much more accurate model which in turn could be better controlled

with LQ and MPC methods.

The tuning of Q and P matrices in LQ Optimal control with integral action is analog to the

tuning of a PID controller. It is a trial-and-error process where a balance had to be reached

between reducing the error and limiting the variation in the control signal u. Nevertheless, LQ

is a much more robust controller which accounts for the previously obtained model matrices

and a Kalman filter for state estimation, which makes its response considerably better than

PID’s.

It could be argued that MPC is simply the implementation of LQ Optimal control in every

iteration of the control loop with the addition of a sliding horizon. The main advantage of MPC

is that it provides a way to account for inequality and equality constraints to obtain an optimized

possible response. However, this increases the computational costs considerably.

The comparison of the three methods under the same disturbance conditions show that in

general, all have an acceptable performance, being LQ Optimal Control with Integral Action

the best for unconstrained control signals and MPC with integral action when the signals are

constrained. Nevertheless, MPC is interesting as the usage of u was reduced when the

constraints were implemented, whereas with PID and LQ this increased. So, in this case, MPC

with integral action seems like the best option.

It is important to note that in real-life cases, more than one method is used to control complex

systems like a marine vessel. MPC poses a challenge due to the high computational costs,

which only increase when more constraints are added, or the prediction horizon is increased.

As per [5]. A good idea would be to use MPC to perform a high-level control, in which It is

used to establish setpoints or most optimal operational windows, while LQ optimal control

with Integral action or the PID controllers are used to do the setpoint tracking.

 0 References

112

References

[1] N. A. J. E. M. S. S. Jens G. Balchen, "A Dynamic Positioning System Based on Kalman

Filtering and Optimal Control," Modelling, Identification and Control, vol. 1, no. 3, pp. 135-

163, 1980.

[2] C. D. D. D. R. Nour Bargoth, "Dynamic positioning, system identification and," Modeling,

Identification and Control, vol. 43, no. 3, pp. 111-117, 2022.

[3] N. M. Bargouth, "Dynamic positioning, system identification and control of marine vessels,"

University of South-Eastern Norway, Porsgrunn, 2022.

[4] H. P. L. Svein Linge, "Solving Ordinary Differential Equations," in Programming for

Computations - Python, Springer Open, 2020, pp. 254-257.

[5] R. Sharma, Lecture notes for the course IIA 4117: Model Predictive Control, Porsgrunn:

University of South-Eastern Norway, 2019.

[6] H.-P. Halvorsen, "Hardware in the Loop Simulation and Testing," [Online]. Available:

https://www.halvorsen.blog/documents/teaching/courses/industrialit/lab_assignment/Hardware-

in-the-Loop%20Simulation%20Lab.pdf. [Accessed 01 03 2023].

[7] F. A. Haugen, "Tuning of PID Controllers," in Modeling, Simulation and Control, Porsgrunn,

University of South-Eastern Norway, 2021, pp. 290-294.

[8] D. D. Ruscio, "D-SR Toolbox for MATLAB," [Online]. Available: https://davidr.no/iia2217/d-

sr/d-sr_e.html. [Accessed 17 February 2023].

[9] D. D. Ruscio, SUBSPACE SYSTEM IDENTIFICATION Theory and applications Lecture

notes, Porsgrunn: Telemark University College, 2014.

[10] D. D. Ruscio, OPTIMAL MODEL BASED CONTROL: System Analysis and Design,

Porsgrunn: Telemark University College, 2022.

[11] D. D. Ruscio, MODEL PREDICTIVE CONTROL and optimization, Porsgrunn: University of

South-Eastern Norwa, 2019.

[12] "Climate and Average Weather Year Round in North Sea," Weather Spark, [Online].

Available: https://weatherspark.com/y/25440/Average-Weather-in-North-Sea-New-York-

United-States-Year-Round. [Accessed 14 March 2023].

[13] D. D. Ruscio, "On Tuning PI Controllers for Integrating Plus Time Delay Systems," Modeling,

Identification and Control, vol. 31, no. 4, pp. 145-164, 2010.

 0 References

113

Appendices

Appendix A MATLAB Scripts: See scripts.zip file

