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Summary:  

Dynamic Positioning of vessels has an important role in the safety of operations in the 

industries where the use of marine vessels is involved. Therefore, it is necessary to have 

an adequate implementation of system identification and accurate control methods for the 

vessels.  

The objectives of this work are: Implementing a mathematical model of the vessel, 

performing system identification, developing accurate control methods, and comparing 

these methods under different conditions of operation. 

The model was simplified discarding the drag coefficients and then its behavior was 

measured. The system identification took place by using the inputs and response of the 

closed loop system. PID, LQ Optimal control with integral action and MPC with integral 

action were selected as control methods. These methods were then compared under 

different benchmarks. 

The simplified model behaves adequately. For the unconstrained control signals, LQ is 

the best option, whereas for the constrained case, MPC was better. The PID controllers 

are computationally cheap, however, very sensitive to wind disturbances which means 

that they need to be tuned constantly. 
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Preface 
For millennia, the seas have been a source of resources and a way of commerce for civilizations, 

almost every culture has developed some type of transport over water. The use of Dynamic 

Positioning Systems for marine vessels is a crucial part in several industries that depend on 

them for safety and effectiveness in their operations. This has been researched broadly after the 

first half of the 20th century. 

Works like that from Balchen [1] have brought models that are used nowadays to develop 

control devices which will help in the dynamic positioning. The control theory has several 

approaches for dynamic positioning. Some of the first were PID controllers; which use 

proportional, integral, and derivative action; some other methods depend on a model, that can 

either be provided analytically of obtained by using system identification. 

This thesis is concerned with the implementation of an analytical model, the identification of a 

system model, and the use of this identified system to develop and compare different control 

methods for the dynamic positioning of a marine vessel. 

 

 

Porsgrunn, May 1st of 2023 

 

Manuel Giraldo 
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Nomenclature 
LQ – Linear Quadratic 

MPC – Model Predictive Control 

NED – North, East Down 

PID – Proportional, Integrative, and Derivative 
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1 Introduction 
This document presents the results of the implementation of a marine vessel dynamic 

positioning system. The Dynamic Positioning of vessels is a well-researched topic. It has 

relevance in several industries like Oil and Gas, Logistics, Marine Research, and Aerospace, 

where the incorrect positioning of a vessel can trigger material and human lives losses, or 

irreparable damage to the sea nature life. Thus, implementing accurate control algorithms for 

the positioning of marine vessels is paramount to having a safe and reliable operation. 

1.1 Previous Work 

In 1980, Jens G. Balchen wrote the paper [1] that serves as main guide for this thesis work. 

The paper summarizes the results of developing a mathematical model for a marine vessel for 

what back then was called “Kongsberg Våpenfabrikk”. The model is divided into a Low 

Frequency and a high frequency component. The low frequency component shows the 

influence of wind and water currents in the model, while the high frequency shows the effect 

of Waves. In most subsequent works, the high frequency component is ignored, as the actuators 

of the vessels cannot compensate for the action of the waves. 

The paper of N. Bargoth, C. Dalen, and D. Di Ruscio [2] is also of considerable assistance for 

this thesis, since it contains a more clear representation of the low frequency component of the 

model found in [1]. It also provided inspiration about how to perform a comparison between 

different control methods. 

1.2 Objectives 

The purpose of this work is to implement a non-linear mathematical model of a vessel and its 

behavior at sea; perform a system identification to obtain an identified linearized model; and 

to implement control methods that will interact with the identified model to control the non-

linear model. The main source of information for this work are [1], and [2]. Where the 

mathematical model has been formulated and simplified. 

1.3 Methods 

The model implemented in [1] has low frequency and high frequency components. This work 

focuses on the low-frequency part, which accounts for the wind and the action of water 

currents. The model is then simplified by discarding the drag coefficients. A closed loop system 

is then implemented wherein the control is performed using PID controllers. 

The control signals and the outputs of the closed loop system are gathered and used to perform 

the system identification using the dsr_e function from the system identification toolbox.  

The resulting A, B, and D model matrices will be used to implement LQ Optimal Control with 

Integral action and MPC with integral action, which gives three control methods in total. These 

methods will be evaluated and compared under different benchmarks like settling time, 

overshot and input signal usage. 
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1.4 Document Structure 

In chapter 2, the mathematical model will be formulated. It then will be implemented in 

MATLAB and simplified. The initial and simplified versions of the model will be compared. 

In chapter 3 the PID controllers are implemented, then in chapter 4 the system identification 

takes place. In chapters 5 and 6, the LQ optimal control with integral action and MPC with 

integral action methods will be implemented, with a short mathematical explanation for each 

of them.  

In chapter 7 the performance of the PID, LQ with integral action, and MPC with integral action 

methods will be compared. 
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2 Working With the Model 
The equations and the workings of the dynamic model were implemented using as guidelines 

the works from [1], and [2]. Some changes were implemented in the use of the ship reference 

frame with respect to the method used in [2]. 

[1] provides the main guidelines for this master’s thesis, particularly for the mathematical 

model. The model is divided into High-Frequency motion and Low-Frequency motion 

components. The focus of this master’s thesis is the low-frequency motion component, which 

represents the motions induced by wind, thrust, and water currents. In the Surge, Sway, and 

Yaw coordinates, as explained in [1]. 

2.1 NED Coordinate Frame and Vessel’s Coordinate Systems 

The model Is described with two coordinate systems, which share the same origin. One system 

has the absolute earth-based coordinates; this will be used to define the absolute set points and 

position of the vessel during the simulation, it will be referred as the NED coordinate frame 

(short for North, East, Down, as per [3]). The other will be parallel to the vessel; as the angle 

of the vessel with respect to the NED frame changes, there will be an angle offset between the 

NED coordinate frame and the vessel’s frame. 

North

East

NED Frame

Vessel Frame

 

Figure 2-1 NED and Vessel's Coordinate Frames 

Figure 2-1 shows the interaction between the ship and both coordinate systems. As yaw 

changes, the relative values of surge and sway in the vessel’s frame with regards to the absolute 

values in the NED frame. 
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2.2 Model Equations 

The drag coefficients (𝑑1, 𝑑2, 𝑑3, and 𝑑4)  are considerably low, whereas the momentum 

coefficients (m1, m2, and m3) are higher. The coefficients values designated in equations (2.1) 

to (2.6) are shown in Table 2-1. 

Table 2-1. Values of drag and momentum coefficients. 

Coefficient Value 

𝑑1 5 ∙ 10−5 

𝑑2 21 ∙ 10−5 

𝑑3 1.1 ∙ 10−10 

𝑑4 201 ∙ 10−15 

𝑚1 4 ∙ 106 

𝑚2 4 ∙ 107 

𝑚3 4.7 ∙ 1010 

The model can be described with the following equations, as per [2]: 

𝑥̇1 = 𝑥4 (2.1) 

𝑥̇2 = 𝑥5 (2.2) 

𝑥̇3 = 𝑥6 (2.3) 

𝑥̇4 = −
𝑑1
𝑚1
|𝑥4 − 𝑣𝑐𝑠𝑢|(𝑥4 − 𝑣𝑐𝑠𝑢) + 

1

𝑚1
(𝐹𝑤𝑠𝑢 + 𝑢1) (2.4) 

𝑥̇5 = −
𝑑2
𝑚2
|𝑥5 − 𝑣𝑐𝑠𝑤|(𝑥5 − 𝑣𝑐𝑠𝑤) + 

1

𝑚1
(𝐹𝑤𝑠𝑤 + 𝑢2) (2.5) 

𝑥̇6 = −
𝑑3
𝑚3

|𝑥6|𝑥6 − 
𝑑4
𝑚3
|𝑥5 − 𝑣𝑐𝑠𝑤|(𝑥5 − 𝑣𝑐𝑠𝑤) + 

1

𝑚3

(𝑁𝑤 + 𝑢3 + 𝑁𝑐) (2.6) 

 

Equations (2.1) to (2.6) correspond to the change of different states through time, these states 

are: 

𝑥1: 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑖𝑛 𝑆𝑢𝑟𝑔𝑒 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

𝑥2: 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑖𝑛 𝑆𝑤𝑎𝑦 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

𝑥3: 𝑂𝑟𝑖𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑌𝑎𝑤 𝐴𝑛𝑔𝑙𝑒 

𝑥4: 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑖𝑛 𝑆𝑢𝑟𝑔𝑒 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 
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𝑥5: 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑖𝑛 𝑆𝑤𝑎𝑦 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

𝑥6: 𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑖𝑛 𝑌𝑎𝑤 

We also have that: 

𝑣𝑐𝑠𝑢 :𝑊𝑎𝑡𝑒𝑟 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑖𝑛 𝑆𝑢𝑟𝑔𝑒 𝐷𝑖𝑟𝑒𝑡𝑖𝑜𝑛 [𝑚/𝑠] 

𝑣𝑐𝑠𝑤:𝑊𝑎𝑡𝑒𝑟 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦 𝑖𝑛 𝑆𝑤𝑎𝑦 𝐷𝑖𝑟𝑒𝑡𝑖𝑜𝑛 [𝑚/𝑠] 

𝑁𝑐:𝑊𝑎𝑡𝑒𝑟 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑀𝑜𝑚𝑒𝑛𝑡 𝑖𝑛 𝑌𝑎𝑤 [𝑁𝑚] 

𝐹𝑊𝑠𝑢:𝑊𝑖𝑛𝑑 𝐹𝑜𝑟𝑐𝑒 𝑖𝑛 𝑆𝑢𝑟𝑔𝑒 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 [𝑁] 

𝐹𝑊𝑠𝑤:𝑊𝑖𝑛𝑑 𝐹𝑜𝑟𝑐𝑒 𝑖𝑛 𝑆𝑤𝑎𝑦 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 [𝑁] 

𝑁𝑤:𝑊𝑖𝑛𝑑 𝑀𝑜𝑚𝑒𝑛𝑡 𝑌𝑎𝑤 [𝑁𝑚] 

 

As it can be seen in equations (2.4), and (2.5), the left terms are multiplied by a division of drag 

coefficients by momentum coefficients; also, for Equation (2.6), the left and middle terms show 

the same multiplication. Considering the low magnitude of the drag coefficient, which is in the 

numerator of the division, and the high magnitude of the momentum coefficient, which is in 

the denominator; these terms could be approximated to zero without affecting the precision of 

the model. 

This also means, that for this model, the wind velocity is of greater significance than the 

velocity of the water current, as the water velocity is multiplied by the division of drag 

coefficients over momentum coefficient in (2.4), (2.5), and (2.6). 

It is worth noting that the system’s equations are expressed in relation to the vessel’s coordinate 

frame, which means that to obtain the position of the vessel in north and east coordinates, it is 

required to perform a conversion. To achieve this, it is required to use a conversion matrix, as 

seen in equation (2.7). 

𝑅 = [
𝐶𝑜𝑠(𝑥3)   − 𝑆𝑖𝑛(𝑥3)  0

𝑆𝑖𝑛(𝑥3)     𝐶𝑜𝑠(𝑥3)    0
0               0                  1 

] (2.7) 

 

The conversion matrix R will be used also to calculate the forces of the wind and water current 

in the surge and sway directions (in the vessel coordinate frame), as these phenomena will be 

first simulated in the NED frame. 

2.3 Programing the Model 

MATLAB was selected for the simulation of the system since it offers useful control libraries. 

It was decided to use classes, which provides more flexibility to implement changes in the code 

and the simulations. The scripts are based on work from [3]. The code used for this and all 

subsequent sections can be found in Appendix A. 
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2.3.1 BalchenModel Class 

A class was developed to replicate the behavior of the vessel. It has a constructor method that 

has as inputs the drag coefficients, the momentum coefficients, the initial states of the vessel, 

and parameters like the frontal windage area, the lateral windage area, and the overall length 

of the vessel. The model class is composed of other methods that will simulate the effect of 

wind and water current on the vessel. With this information, another method will calculate the 

change in the states also considering the input signals. 

2.3.1.1 Constructor Method 

In the constructor method, the parameters of the vessel model are initialized. It receives as 

inputs the drag and momentum coefficients, the initial values of the states, the neu coefficients, 

the frontal windage area the lateral windage area, and the vessel’s length: 

%% Constructor 
function obj = BalchenModel(d,m,x,neu, A_F, A_L, L)  
  obj.D = d; %Drag Coefficients 
  obj.M = m; % Momentum coefficients 
  obj.X = x; % Initial States 
  obj.Neu = neu; 
  obj.A_F = A_F; %Frontal windage area 
  obj.A_L = A_L; %Lateral windage area 
  obj.L = L; %Vessel's length 
end  

2.3.1.2 VesselModel Method 

In this method, the state equations are implemented. It receives as inputs the current states of 

a vessel’s instance, the input signals, the wind and water current forces, and the momentum 

and drag coefficients. 

As outputs, it will generate an updated rate of change of the model’s states. 

%% Method that contains the vessel model, it will be called by Runge-Kutta 
function f = VesselModel(obj, x, u, F_w, V_c, m, d, neu) 
 

f=zeros(6,1); 
f(1) = x(4); 
f(2) = x(5); 
f(3) = x(6); 

             
f(4) = - (d(1)/m(1))*abs(x(4) - V_c(1))*(x(4) - V_c(1)) +   
(1/m(1))*(F_w(1) + u(1)) + neu(1); 
f(5) = - (d(2)/m(2))*abs(x(5) - V_c(2))*(x(5) - V_c(2)) + (1/m(2))*(F_w(2) 
+ u(2)) + neu(2); 
f(6) = - (d(3)/m(3))*abs(x(6))*x(6) - (d(4)/m(3))*abs(x(5) - V_c(2))*(x(5) 
- V_c(2)) + (1/m(3))*(F_w(3) + u(3) + V_c(3)) + neu(3); 

         
end  

2.3.1.3 RungeKutta Method 

To obtain the state values, it is needed to integrate the output of the VesselModel method. The 

differential equations of the model are solved using Runge-Kutta’s method, as obtained from 

[4]. 
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This method receives as inputs the same inputs of the VesselModel method. It calls the 

VesselModel method several times to obtain an averaged calculation of the value of x in the 

next timestep. 

        %% Runge Kutta to integrate and get updated state values 
        function x_next = RungeKutta(obj, x, u, F_w, v, dt, m, d, neu) 
 
            K1 = obj.VesselModel(x, u, F_w, v, m, d, neu); 
            K2 = obj.VesselModel(x+K1.*(dt/2), u, F_w, v, m, d, neu); 
            K3 = obj.VesselModel(x+K2.*(dt/2), u, F_w, v, m, d, neu); 
            K4 = obj.VesselModel(x+K3.*(dt), u, F_w, v, m, d, neu); 
             
            x_next = x + (dt/6).*(K1+2.*K2+2.*K3 + K4); 
 
        end  

2.3.1.4 CurrentVelocity Method 

The method receives the current velocity in the north, east and yaw components in the NED 

system and converts them to the vessel’s coordinate frame. 

        %% Transform the water velocity to the Ship reference 
        function V_c = CurrentVelocity(obj, W_c, state)  %Receives as input the 

current velocities and converts them to the ship frame of reference. 
 
            R = [cos(state(3)) -sin(state(3)) 0; 
                sin(state(3)) cos(state(3)) 0; 
                0 0 1]; 
             
            V_c = R.'*W_c; 
         
        end  

 

2.3.1.5 WindForce Method 

This method receives as inputs an absolute wind velocity value, its incidence angle, the vessel’s 

yaw, the vessel’s velocity in surge, the vessel’s velocity in sway, and vessel’s body parameters. 

These are used to calculate the force applied by the wind on the vessel in the surge and sway 

axis. The logic and the values in this method were obtained from [3]. 
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        %% Calculate wind forces in the ship frame of reference 
        function forcesArray = WindForce(obj, windVel, wAngle, vYaw,vSpeedSurge, 

vSpeedSway, A_F, A_L, L) 
            %windVel: wind speed [m/s] in NED frame 
            %wAngle: wind direction [deg] in NED frame 
            %vYaw: vessel heading [rad] 
            Cx = 0.6; 
            Cy = 0.8; 
            Cn = 0.1; 
            % Cx, Cy, Cn: wind coefficients: assumed to be constants 
            wAngle = wAngle * pi/180;  
            uw = windVel * cos(wAngle - vYaw); % windspeed in surge 
            vw = windVel * sin (wAngle - vYaw);% windspeed in sway 
            urw = vSpeedSurge - uw; % wind relative speed in surge 
            vrw = vSpeedSway - vw; % wind relative speed in sway 
            Vr = sqrt(urw^2 + vrw^2);%wind relative speed 
            rho = 1.23; % wind density [kg\m^3] 
            windForceSurge = 0.5*rho*Cx*A_F*cos(wAngle)* Vr^2; %Wind force in 

surge 
            windForceSway = 0.5*rho*Cy*A_L*sin(wAngle)* Vr^2; %wind force in sway 
            windMoment = 0.5*rho*Cn*A_L*L*sin(2*wAngle)* Vr^2; %Wind moment 
            forcesArray = [windForceSurge, windForceSway, windMoment]'; 
        end  

2.3.1.6 UpdateState Method 

With the UpdateState method, the other methods are called and used to update the state of the 

class’s instance. It first generates a calculation of the water current and wind forces in the 

vessel’s reference frame. Then, using these values, it calls the RungeKutta method, which itself 

will call the VesselModel’s method. The output will be the updated states values, which will 

be also changed as the class’s instance’s properties. 

        %% Method that will be called to update the state  
        function [x, Y] = UpdateState(obj, u, W_c, W_v,gamma, dt) 
            %W_c = Water current velocities in the NED frame 
            %W_v = wind velocities in the NED frame 
            %gamma = wind direction [deg] in NED frame 
 
            V_c = obj.CurrentVelocity(W_c, obj.X); 
            F_w = obj.WindForce(W_v, gamma, obj.X(3),obj.X(4), obj.X(5), obj.A_F,  

obj.A_L, obj.L); 
            new_state = obj.RungeKutta(obj.X, u, F_w, V_c, dt, obj.M, obj.D, 

obj.Neu); 
            obj.X = new_state; 
            x = obj.X; 
            Y = ConvertToNED(obj, obj.X(1:3)); 
 
        end  

2.3.2 EnvironmentCondition Class 

An instance of this class will be called to simulate the weather conditions. The class does not 

have a creator method; however, it has methods to represent the wind and water current. 
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2.3.2.1 SimulateWind Method 

This method will receive as input, an average wind speed, which will be multiplied by random 

values to obtain a varying wind velocity vector, the size of this vector will be given by an input 

“N” corresponding to the number of wind speed values to be generated, this N value should be 

equal to the number of timesteps of the simulation. 

It will also output an array of angles, which represent the direction of the wind in the NED 

coordinate frame. 

2.3.2.2 SimulateWater Method 

This method will receive as inputs “N” for the length of the simulation, an average current 

speed, and a typeOfSignal value, which indicates if the method will simulate sinusoidal water 

currents or steps. 

2.4 Simulation and comparison of Drag Coefficients 

A simulation script was developed, in which the model is subject to wind and water current 

disturbances; then, its position in the west axis of the NED framework is plotted against the 

position in the north axis of the NED framework. 

The water current disturbances were recreated using sinusoidal signals, as seen in Figure 2-2; 

whereas the wind disturbances were simulated using random values that were smoothed using 

the smooth function from MATLAB, as displayed in Figure 2-3. With this in place, it was 

possible to simulate the response of the model to said disturbances with the given drag 

coefficient values and with these approximated to zero. 

After performing the simulation, the position in the NED framework of the model in both cases 

was compared and the covariance of the differences between the two cases was calculated. 

 

Figure 2-2 Water Current Simulation for Drag Coefficients Comparison 
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Figure 2-3 Wind Speed Simulation for Drag Coefficients Comparison 

 

Figure 2-4 Position of the Vessel in the NED Framework for both Drag Coefficient Values 

In Figure 2-4 the change in the position for the vessel in the NED framework is shown. In the 

top plot there is the position for the given drag coefficients in [2], while in the bottom plot, 

there is the same but for the drag coefficients equal to zero. 

After performing a visual inspection of Figure 2-4, it can be concluded that both alternatives 

have a similar behavior. This can also be evidenced in Figure 2-5, where the difference between 

the two alternatives to each of the states is shown; the difference in positions in the North and 

East axis in NED, and in Yaw have absolute values that could be deemed insignificant. 

 This will be further demonstrated by calculating the variance of the difference between both 

results. 
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Figure 2-5 Difference of the Three Main Outputs of the Models with Given Drag Coefficients and with these 

Equal to Zero 

2.4.1 Covariance of Differences of the model with given Drag Coefficients and 
with Them Equal to Zero 

The covariance calculation is given by: 

𝐸 =  
∆𝑥𝑇 ∙ ∆𝑥

𝑁
 (2.8) 

Where ∆𝑥 is the difference between the two alternatives of the model; N is the number of 

samples, and E is the covariance.  

This value needs to be calculated three times, as three vectors of values need to be analyzed: 

Position in North axis of NED during the simulation time, position in East axis of NED during 

the simulation time, and Yaw during the simulation time. 

This is implemented in MATLAB and the results are seen in Figure 2-6. The low covariance 

means that there is a considerable similarity in the outputs between the model with the given 

drag coefficient values and with the drag coefficients equal to zero. This aligns with the results 

showcased in Figure 2-4 and Figure 2-5. Which brings to the conclusion that the terms in the 

left in equations (2.4), (2.5), and (2.6) can be made equal to zero without a meaningful effect 

in the accuracy of the model. 

 

Figure 2-6 Results of Covariance Analysis for the Model's Alternatives 
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Figure 2-6 Shows the result of calculating the covariance of the differences, which is zero. This 

means that for this vessel’s parameters, there is no need to use the drag coefficients in the 

model. 

2.5 Conversion of the Setpoint from the NED Coordinate Frame 
to the Vessel’s 

The positions of a marine vessel are given in absolute earth-based coordinates, in longitude 

and latitude. However, the controls in the ship send signals to actuators that are inside the 

vessel and therefore, within its coordinate frame. 

 

Figure 2-7 Setpoints and Positions of Vessel in NED and Vessel Coordinate Frames 

 

Figure 2-7 shows the setpoints and positions pertaining to each of the coordinate frames. As 

the vessel changes position and angle throughout the simulation, the setpoints values in its 

frame of reference will change too.  

This makes it necessary to convert the setpoints from the absolute NED coordinates to the 

vessel’s coordinate frame before feeding them to the control algorithms in every timestep of 

the simulation. Likewise, the positions obtained from the control algorithm, which are 

established in the vessel’s coordinate frame, need to be converted back to the NED frame to 

compare them against the setpoints. 

2.6 Linearization of the Model 

The linearized model is required to implement LQ and MPC controllers with integral action. It 

will be used to calculate an optimized output signal that will be used to control the model. 

According to [5], the linearization will be implemented to obtain a state-space model in the 

form: 
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𝑥̇(𝑡) =  𝐴𝑐𝑥(𝑡) + 𝐵𝑐𝑢(𝑡) (2.9) 

𝑦(𝑡) =  𝐷𝑐𝑥(𝑡) (2.10) 

To make this, the matrices 𝐴𝑐, 𝐵𝑐, and 𝐷𝑐 need to be obtained. The non-linear model can be 

expressed in the form: 

𝑥̇(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡)) (2.11) 

𝑦(𝑡) = 𝑔(𝑥(𝑡), 𝑢(𝑡)) (2.12) 

So, 

 

𝐴𝑐 =

[
 
 
 
 
 
 
 
𝜕𝑓1
𝜕𝑥1

 ,
𝜕𝑓1
𝜕𝑥1

  , ⋯
𝜕𝑓1
𝜕𝑥𝑛𝑥

𝜕𝑓2
𝜕𝑥1

 ,
𝜕𝑓2
𝜕𝑥1

  , ⋯
𝜕𝑓2
𝜕𝑥𝑛𝑥

⋮
𝜕𝑓𝑛𝑥
𝜕𝑥1

 ,
𝜕𝑓𝑛𝑥
𝜕𝑥1

  , ⋯
𝜕𝑓𝑛𝑥
𝜕𝑥𝑛𝑥]

 
 
 
 
 
 
 

, 

  

𝐵𝑐 =

[
 
 
 
 
 
 
 
𝜕𝑓1
𝜕𝑢1

 ,
𝜕𝑓1
𝜕𝑢1

  , ⋯
𝜕𝑓1
𝜕𝑢𝑛𝑢

𝜕𝑓2
𝜕𝑢1

 ,
𝜕𝑓2
𝜕𝑢1

  , ⋯
𝜕𝑓2
𝜕𝑢𝑛𝑢

⋮
𝜕𝑓𝑛𝑢
𝜕𝑢1

 ,
𝜕𝑓𝑛𝑢
𝜕𝑢1

  , ⋯
𝜕𝑓𝑛𝑢
𝜕𝑢𝑛𝑢]

 
 
 
 
 
 
 

 , 

And 

𝐴𝑐 =

[
 
 
 
 
 
 
 
 
𝜕𝑔1
𝜕𝑥1

 ,
𝜕𝑔1
𝜕𝑥1

  , ⋯
𝜕𝑔𝑛𝑦
𝜕𝑥𝑛𝑥

𝜕𝑔2
𝜕𝑥1

 ,
𝜕𝑔2
𝜕𝑥1

  , ⋯
𝜕𝑔𝑛𝑦
𝜕𝑥𝑛𝑥

⋮
𝜕𝑔𝑛𝑥
𝜕𝑥1

 ,
𝜕𝑔𝑛𝑥
𝜕𝑥1

  , ⋯
𝜕𝑔𝑛𝑦
𝜕𝑥𝑛𝑥 ]

 
 
 
 
 
 
 
 

, 

These expressions for 𝐴𝑐, 𝐵𝑐, and 𝐷𝑐 need to be evaluated close to a stable operating point, 

which in this case, will be zero for y, u, and x. Then, these values are discretized using 

MATLAB’s c2d function. 
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2.6.1 Use of the Simplified Model 

As seen before, for this vessel’s characteristics, the drag coefficients can be approximated to 

zero, which simplifies the equations considerably. Equations (2.4), (2.5), and (2.6) become: 

𝑥̇4 =  
1

𝑚1
(𝐹𝑤𝑠𝑢 + 𝑢1) (2.13) 

𝑥̇5 = 
1

𝑚1
(𝐹𝑤𝑠𝑤 + 𝑢2) (2.14) 

𝑥̇6 = 
1

𝑚3

(𝑁𝑤 + 𝑢3 + 𝑁𝑐) (2.15) 

These simplified expressions are used in the function linearize_model.m which will produce 

matrices A, B, and D as outputs; by creating the matrices 𝐴𝑐, 𝐵𝑐, and 𝐷𝑐, performing the 

derivatives on equations (2.1), (2.2), (2.3), (2.13), (2.14), and (2.15); and discretizing them. 

This script can be found in Appendix A. 

unction [A, B, D] = linearize_model(u, d, m, dt) 
Ac = [0 0 0 1 0 0; 
      0 0 0 0 1 0; 
      0 0 0 0 0 1; 
      0 0 0 0 0 0; 
      0 0 0 0 0 0; 
      0 0 0 0 0 0;]; 
%The last three rows of Ac are zero because we are using the simplified 
%model where d is approximated to zero as it is very small compared to the 
%m values. 
 
Bc = [0 0 0; 
      0 0 0; 
      0 0 0; 
      (1/m(1)) 0 0; 
      0 (1/m(2)) 0; 
      0 0 (1/m(3))]; 
%Same here, the terms where there is a d divided by m are approximated to 
%zero. 
 
Dc = [1 0 0 0 0 0; 
      0 1 0 0 0 0; 
      0 0 1 0 0 0;]; 
 
sys = ss(Ac,Bc,Dc,0); 
ds = c2d(sys,dt); 
A = ds.a; B = ds.b; D = ds.c;  
end  
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3 Dynamic Positioning Using PID 
Controllers 

PID is the acronym for Proportional, Integral, and Derivative. This type of controller can be 

tuned without the need to have a lot of knowledge about the dynamic model of the vessel. It 

can be tuned in a trial-and-error fashion, which makes it very simple to implement. It is 

important to know that the model has a double integrator and hence, the derivative term will 

be needed. 

The mathematical expression for the parallel PID controller is: 

𝑢𝑘 = 𝐾𝑝 (𝑠𝑝𝑘 − 𝑦𝑘) + 
𝐾𝑃𝑇𝑠
𝑇𝑖

∑(𝑠𝑝𝑖 − 𝑦𝑖) 

𝑘

𝑖=1

+ 𝐾𝑝𝑇𝑑
𝑒𝑘 − 𝑒𝑘−1

𝑇𝑠
 (3.1) 

Where: 

𝑢: 𝑇ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑠𝑖𝑔𝑛𝑎𝑙 

𝑠𝑝: 𝑇ℎ𝑒 𝑠𝑒𝑡𝑝𝑜𝑖𝑛𝑡 

𝑦: 𝑇ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑎𝑙𝑢𝑒 

𝐾𝑝: 𝑇ℎ𝑒 𝑝𝑟𝑜𝑝𝑜𝑟𝑡𝑖𝑜𝑛𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 

𝑇𝑖: 𝑇ℎ𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 

𝑇𝑑: 𝑇ℎ𝑒 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 

𝑇𝑠: 𝑇ℎ𝑒 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 

𝑒𝑘: 𝑇ℎ𝑒 𝑒𝑟𝑟𝑜𝑟, 𝑜𝑟 𝑡ℎ𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑝 𝑎𝑛𝑑 𝑦 𝑖𝑛 𝑎 𝑔𝑖𝑣𝑒𝑛 𝑡𝑖𝑚𝑒 𝑘 

 

The derivative term of the controller provides increased response to sudden changes in 

disturbances in setpoints. However, this response needs to be relaxed as it would generate 

violent changes in the control signal and the outputs. It is necessary to add a lowpass filter to 

smooth the change in the error. 

The equation for the lowpass filter was obtained from [6], and is: 

𝑦𝑘 = (1 − 𝑎)𝑦𝑘−1 + 𝑎𝑢𝑘 (3.2) 

𝑎 =  
𝑇𝑠

𝑇𝑓 + 𝑇𝑠
 (3.3) 

Where: 

𝑇𝑓: 𝑇ℎ𝑒 𝑓𝑖𝑙𝑡𝑒𝑟 𝑡𝑖𝑚𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (𝑎 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 𝑇𝑠 𝑢𝑠𝑢𝑎𝑙𝑙𝑦) 

𝑇𝑠: 𝑇𝑖𝑚𝑒𝑠𝑡𝑒𝑝 

𝑢𝑘: 𝑈𝑛𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝑖𝑛𝑝𝑢𝑡 𝑠𝑖𝑔𝑛𝑎𝑙, 𝑖𝑛 𝑡ℎ𝑖𝑠 𝑐𝑎𝑠𝑒, 𝑡ℎ𝑒 𝑒𝑟𝑟𝑜𝑟 𝑒𝑘 

𝑦𝑘: 𝑇ℎ𝑒 𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝑜𝑢𝑡𝑝𝑢𝑡 𝑠𝑖𝑔𝑛𝑎𝑙, 𝑖𝑛 𝑡ℎ𝑖𝑠 𝑐𝑎𝑠𝑒, 𝑡ℎ𝑒 𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝑒𝑟𝑟𝑜𝑟 𝑒𝑘 
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These equations are implemented in MATLAB using a class named PIDcontroller.m. Surge, 

Sway and Yaw will have independent PID controllers, each will be initialized as an instance 

of the PIDcontroller class, with specific proportional, integrative, and derivative parameters. 

3.1 Tuning the PID Controllers for Surge, Sway, and Yaw 

Since there is a closed loop, the method selected for the tuning of the controllers will be the 

Ziegler Nichols Method, without the wind and water current disturbances, as described in [7]. 

A 𝐾𝑝 is selected for the surge control signal, while 𝑇𝑖 is set to a high value so that the integrative 

term of the PID is approximated to zero; and the 𝑇𝑑 term is set to zero. This process will be 

repeated for the sway and yaw controllers, so it will be only shown for surge.  

𝐾𝑝 = 1000 

 

Figure 3-1 Tunning of PID controller using Ziegler-Nichols, first value of Kp 

As seen in Figure 3-1, the oscillatory position signal has a period of approximately 400 seconds. 

According to the Ziegler-Nichols method, 𝑇𝑖 should be 𝑇𝑖 = 𝑃𝑢/2. So, 𝑇𝑖 should be equal to 

200. Then, 𝐾𝑝 = 0.6 ∙ 𝐾𝑝𝑢 and 𝑇𝑑 = 𝑇𝑖/4. 
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Figure 3-2 Behavior of PID Controller for Surge Kp=600, Ti=200, Td=50 

Figure 3-2 shows that there is some instability, so the constants need to be tweaked. The 

response is improved by increasing the value of the derivative term, hence increasing the 𝑇𝑑 

constant value. 

 

Figure 3-3 Behavior of the PID Controller with Kp=600, Ti=200, and Td=150 

As seen in Figure 3-3, there is an improvement on the behavior of the controller after manually 

changing the constants of the PID controller. 
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For the sway PID controller, the process is repeated, with the result shown in Figure 3-4. It 

displays some overshot produced by the derivative term. However, since there is a double 

integrator in the model, it is necessary to use the derivative term of the PID controller. 

 

Figure 3-4. Behavior of Sway PID Controller with Kp=900, Ti=550, and Td=300 

 

Then, for the yaw controller, the process is repeated until the system reaches stability, with the 

result shown in Figure 3-5. The magnitude of the 𝐾𝑝 constant is noticeably bigger than for the 

other controllers. 

 

Figure 3-5. Yaw Controller with Kp=500000, Ti=1500, and Td=350. 
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3.1.1 Coupling of States 

The Yaw of the ship has significance in the performance of the controllers for surge and sway. 

As the setpoint for yaw is increased, the response of the surge and sway controllers deteriorates. 

After a threshold, the position in north and east of the ship in the NED coordinate system is 

unsatisfactory.  

When the Setpoint for Yaw is 20, the response of the three controllers is acceptable but starts 

showing instability this is portrayed in Figure 3-6. The oscillations start to show in the Surge 

and Sway controllers. 
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Figure 3-6 Behavior of Controllers when Yaw's Set Point is Set to 20 Degrees 

The response is still adequate for the three controllers and at the end, the ship is positioned 

where it should be. However, when the yaw setpoint is increased to 60 degrees, the responses 

deteriorate: 
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Figure 3-7. Behavior of Controllers When the Yaw's Set Point is 60 Degrees. 

Figure 3-7 shows that, although the controller makes the vessel achieve the desired setpoint of 

60 degrees in Yaw, the controller in Surge starts showing suboptimal performance, with 

oscillations in the positioning of the vessel.  

It could be argued that the yaw could act as an additional disturbance in the model over the 

surge and sway subsystems. 
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3.2 PID Controllers and Disturbances 

Now, having tuned the PIDs, it is necessary to add the disturbances; in this case, these will be 

low frequency components of wind and water current. To simulate them, a MATLAB class 

was created, with methods that simulate the wind speed and direction, and the water current in 

the north and east directions of the NED framework. The code to simulate the disturbances was 

obtained from [3]. 

3.2.1 Wind Disturbance 

The simulation time is split in 4 and a random multiplier is selected for each segment. Then, 

this multiplier will multiply a selected average wind speed. This will create a vector of N wind 

speeds, which will be smoothed out using MATLAB’s smooth function. 

Then, another function will produce a vector of angles, which will represent the wind direction. 

This is needed to further simulate the angle of attack of the wind on the vessel. 

3.2.2 Water Current Disturbance 

For this disturbance, sinusoidal functions are used for each of the axis of the NED frame. 

These have an amplitude in m/s which is selected manually.  

3.2.3 Response with the Disturbances 

First, the amplitudes of the disturbances are selected as low values; with a wind speed of 5 

m/s. 
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Figure 3-8 PID Controllers Response with 5 m/s Wind Speed 

Figure 3-8 shows that the controllers let the vessel reach the north and east setpoints, but not 

the yaw setpoint. In general, for the three controllers, the tuning must be performed again when 

the average wind speed is increased. 
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Figure 3-9 Controller's Response in Northe After Retuning 

As seen in Figure 3-9, the setpoints are reached after using different parameters for the 

controllers, however, the performance of the system drops after introducing the disturbances. 

The current parameters of the Controllers are in Table 3-1. 
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Table 3-1 PID Parameters for 5 m/s average winds 

Parameter Value 

Kp Surge PID 600 

Ti Surge PID 200 

Td Surge PID 300 

Kp Sway PID 1200 

Ti Sway PID 550 

Td Sway PID 300 

Kp Yaw PID 800000 

Ti Yaw PID 1500 

Td Yaw PID 350 

Nevertheless, when the wind speed is increased, the behavior of the system deteriorates 

considerably. Now, the average wind speed will be increased to 20 m/s. 
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Figure 3-10 Controllers and System Response with Average Wind Speed of 20 m/s 

It is possible to see in Figure 3-10 that the controllers are not able to take the vessel to the 

desired setpoints. The Surge controller gets to the setpoint later, but its performance is 

inadequate. 

The parameters of the PID controllers need to be changed again to match the environment 

conditions, this is a trial-and-error process which stops when the behavior of the system is close 

to desired. With the magnitude of the disturbances, it is difficult to guarantee that the setpoints 

will be matched completely. 
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Figure 3-11 Performance of System with Average Wind Speed of 20 m/s and Tuned PID Controllers 

In Figure 3-11, the controllers reach the setpoints, however, the Yaw controller displays severe 

oscillations right after the change in its setpoint, which means that it could be unstable. It can 

be also seen in Table 3-2 that a considerable increment in the proportional gain of the Yaw 

controller is needed. 
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Table 3-2 PID Controllers Parameters for Average Wind Speeds of 20 m/s 

Parameter Value 

Kp Surge PID 600 

Ti Surge PID 200 

Td Surge PID 300 

Kp Sway PID 1200 

Ti Sway PID 550 

Td Sway PID 300 

Kp Yaw PID 800000 

Ti Yaw PID 1500 

Td Yaw PID 350 

 

3.3 Viability of the Use of PID Controllers 

Given the coupling of the yaw with the other states and the susceptibility of the system to 

disturbances, the sole use of PID controllers does not seem to be practical for Dynamic 

Positioning. It could be useful to have a way to integrate all the states in the same controller. 

Also, the use of feedforward control can improve the response of the controllers. It seems that 

with every set of disturbances or change in the yaw set point, there is a need to tune the 

controllers once again. 
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4 System Identification 
The system identification is performed through an experiment in which a set of impulses are 

generated in the input signals; these impulses will produce an effect on the model, which will 

produce a set of outputs. In the case of the vessel, the outputs are in the positions in north, 

east and yaw. 

The system identification is performed on the closed loop model, which means that this will 

also account for the presence of a controller. 

The result will be matrices A, B, D from the state space model. 

4.1.1 Obtaining the Input and Output Signals 

The linearized model is used to simulate the closed loop response of the system following a 

set of predefined setpoints. The resulting input values (u) and output (y) are stored in a .mat 

file, which will be used then for the system identification. 
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Figure 4-1 Setpoints, Input and Output Signals Using Linearized Model 

In Figure 4-1 the behavior of the system for the three main states is observed. The setpoints in 

surge and sway resemble but do not match exactly step impulses as they were transformed to 

the vessel’s coordinate frame and then fed to the closed loop system before generating the 

control signals. 
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4.1.2  Using the U and Y signals in dsr_e function 

The input and output arrays are then used in a system identification script. Using the dsr_e 

function from the DSR toolbox obtained from [8]. The purpose is to identify a deterministic 

and stochastic state-space model in the form: 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝐶𝑒𝑘 (4.1) 

𝑦𝑘 = 𝐷𝑥𝑘 + 𝐸𝑢𝑘 + 𝐹𝑒𝑘  (4.2) 

Where 𝑥 represents the states, 𝑢 the control inputs, 𝑦 the outputs, and 𝑒 represents random error 

with unit variance 𝐸(𝑒𝑘𝑒𝑘
𝑇) = 𝐼. 

The dsr_e function receives as inputs the array of output signals, Y; the array of input values, 

U; The estimation horizon L; a g value, which is equal to zero if the function will work with a 

closed loop system; a number of past horizons, which in this case is equal to 2; and the model 

order, which for this case, is 6, as the system has 6 states.  

The U and Y values are imported from a .mat file called sysIdData.mat. This file is created 

with another MATLAB script called input_output_generation.m, which generated the input 

and output signals and exported them. 

When the U and Y values are read in a MATLAB script, these are then introduced in the 

dsr_e function to produce a model. The system identification is executed in a script called 

system_identification.m. 

 

Figure 4-2 Input Signals for System Identification 
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Figure 4-3 Output Values for System Identification 

Figure 4-2 and Figure 4-3 display the input and output values used in the 

system_identification.m script, it is possible to notice that they have the same values as the 

arrays generated in the input_output_generation.m script. The system_identification.m script 

will generate the matrices for the state space model. 

4.1.3  The resulting Model 

After the executing the system_identification.m script, found in appendix A. Matrices A, B, 

and D as per equations (16) and (17) are obtained, with the values as shown in Table 4-1, Table 

4-2, and Table 4-3 respectively: 

 

Table 4-1 System Identification A Matrix Values 

1.000116 -0.00059 0.592608 0.186525 1.055447 0.005346 

-4.37E-05 1.000865 -1.01657 -0.28442 0.62102 0.004036 

-3.11E-06 7.19E-06 0.999288 -6.41E-05 -0.00144 0.339657 

1.08E-05 -2.20E-05 -0.00082 0.9993 0.006541 -1.17656 

-1.22E-07 4.46E-07 -8.42E-05 -1.71E-05 0.999857 0.017156 

-3.28E-09 -1.12E-08 2.49E-05 7.38E-06 -5.55E-06 1.00056 
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Table 4-2 System Identification B Matrix Values 

-6.33E-07 -1.44E-08 -1.88E-13 

1.44E-07 -6.34E-08 -1.83E-13 

-2.31E-07 2.48E-08 -1.53E-11 

-7.31E-08 6.55E-09 5.31E-11 

-2.57E-07 -2.42E-08 -7.74E-13 

1.08E-10 -6.09E-12 -3.01E-11 

 

Table 4-3 System Identification D Matrix Values 

-0.562867 0.1277356 0.4646695 0.1393493 0.5146498 -0.0002304 

-0.128179 -0.562528 -0.496132 -0.138544 0.4848966 0.0001565 

-0.002698 -0.001728 -0.159969 0.555015 -0.0080428 0.7068428 

According to [9], the system is observable and controllable if the controllability and 

observability matrices have the same number of singular values as states of the system, which 

in this case is 6. The observability matrix is formed using matrices A, and D; whereas the 

controllability matrix is made of matrices A, and B. 

Table 4-4 System Identiffication Observability Matrix 

4.0542 

4.054 

4.0538 

1.0319 

1.0319 

1.0319 

 

Table 4-5 System Identification Controllability Matrix 

4.68E-06 

4.68E-07 

3.35E-07 

3.40E-08 

0.00E+00 

0.00E+00 

The result of the single value decompositions of the observability and controllability matrices 

can be seen in Table 4-4, and Table 4-5 respectively.  

For the observability matrix, all the single values are bigger than zero. This means that all the 

states of the system are observable. However, for the controllability matrix, only the four first 

single values are bigger than zero. So, only the first four states of the system are controllable. 

This does not make the control algorithms inviable since there are only three outputs to be 

controlled, which are the same as the first three states of the closed loop system. 

The performance of this identified model will now be tested by using it in the LQ with integral 

action and the MPC with integral action control algorithms. 

 



 

 

  5 LQ Optimal Control with Integral Action 

41 

5  LQ Optimal Control with Integral Action 
LQ is the short version of Linear Quadratic optimal control, where the goal is to reduce a cost 

function in the form of: 

𝐽𝑖 = 
1

2
∑((𝑦𝑘 − 𝑟)

𝑇𝑄(𝑦𝑘 − 𝑟) + ∆𝑢𝑘
𝑇𝑃∆𝑢𝑘)

∞

𝑘=𝑖

 (5.1) 

As explained in [10], to make a model that is independent to the unknown disturbances; 

integral action must be included, which is achieved by augmenting it. This augmented model 

can be expressed in the discrete state-space form, but first, some modifications need to be set 

in place: 

[
∆𝑥𝑘+1
𝑦𝑘 − 𝑟

]
⏟    
𝑥̃𝑘+1

= [
𝐴 0𝑛 × 𝑚
𝐷 𝐼𝑚 ×𝑚

]
⏟        

𝐴̃

[
∆𝑥𝑘

𝑦𝑘−1 − 𝑟
]

⏟      
𝑥̃𝑘

+ [
𝐵

0𝑚 ×𝑟
]

⏟    
𝐵̃

∆𝑢𝑘 
(5.2) 

𝑦𝑘 − 𝑟⏟  
𝑦̃𝑘

= [𝐷 𝐼𝑚 ×𝑚]⏟      
𝐷̃

[
∆𝑥𝑘

𝑦𝑘−1 − 𝑟
]

⏟      
𝑥̃𝑘

 
(5.3) 

With this augmentation, the state-space model can be expressed as: 

𝑥̃𝑘+1 = 𝐴̃𝑥̃𝑘 + 𝐵̃∆𝑢𝑘 (5.4) 

𝑦̃𝑘 = 𝐷̃𝑥̃𝑘 (5.5) 

The use of the state-space model in equations (5.4) and (5.5), and the cost function in 

equation (5.1) represents the LQ optimal control problem, which can be synthetized like: 

∆𝑢𝑘 = [𝐺1 𝐺2] [
∆𝑥𝑘

𝑦𝑘−1 − 𝑟
] (5.6) 

Or, 

𝑢𝑘 = 𝑢𝑘−1 + 𝐺1∆𝑥𝑘 + 𝐺2(𝑦𝑘−1 − 𝑟) (5.7) 

It is not common to be able to measure the states. That is why an observer can be included in 

the deviation model. The difference between the estimated states of two iterations will be 

used in the second term of equation (5.7). 

∆𝑥̅𝑘+1 = 𝐴∆𝑥̅𝑘 + 𝐵∆𝑢𝑘 +𝐾(𝑦𝑘 − 𝑦𝑘−1 − 𝐷∆𝑥̅𝑘) (5.8) 

 

Where K is a Kalman gain. 
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5.1 Implementation of LQ Optimal Control in MATLAB 

The LQ optimal control is implemented in a script called dlq_integral.m. It unpacks A, B, and 

D matrices from the identified system, which were stored in the closedLoopModel.mat file. 

Then used them to create a Kalman gain matrix and to extend the state-space model to include 

the integral action and to generate the G1 and G2 matrices. 

5.1.1 Finding the Kalman Filter Gain 

To obtain the Kalman gain, which will be used in the state estimation, the dlqe function from 

the control toolbox [10] Is used.  

%% kalman filter gain 
% The kalman filter is recalculated, as the K matrix from the identified 
% model does not perform well during the state estimation. 
G=0.01*eye(6); 
Q_k = diag([0.09, 0.11, 0.09,0.8,0.5,1.5]); 
R_k = diag([1e3,1e3,1e3]); 
K=dlqe(A,G,D,Q_k,R_k); 
  

The dlqe function receives as arguments the matrices A, and D from the identified state space 

model; a matrix G which accounts for noise, with the same size as there are states, so 6; and 

Q_k, and R_k which are process and sensor noise covariance matrices. 

Although the dsr_e function the system identification generates a K matrix as output, the 

performance of the system with this is not adequate. Figure 5-1 shows the behavior of the three 

outputs while using the Kalman gain matrix obtained from the system identification. The 

controllers never achieve their setpoints. 
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Figure 5-1 Response of the System with LQ and K from Identified Model 
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This behavior improves when the Kalman gain used is obtained from the dlqe function, as seen 

in Figure 5-2. The controllers maintain the vessel on the setpoints almost during the whole 

simulation. 
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Figure 5-2 Response of the System with LQ and K from dlqe Function 
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5.1.2 G Matrix and Extended Model 

The dlqu_pi.m function from [10] is used. This function receives as inputs A, B, D matrices 

from the identified model, and column vectors q and p, which are used to create Q and P 

diagonal weight matrices. It then creates extended 𝐴𝑡, 𝐵𝑡, and 𝐷𝑡 matrices, which are used in 

the dlqr function to find the G matrix. 

 

%% Obtaining the G matrix 
q = [1e6 0 0; 0 1e7 0; 0 0 1e8]; 
p = [1e-5 0 0; 0 1e-6 0; 0 0 1e-10]; 
 
[G1, G2, At, Bt, Dt, Rr]=dlqdu_pi(A,B,D,q,p); 

 

Inside the dlqu_pi.m function: 

function [G1,G2,At,Bt,Dt,Rr]=dlqdu_pi(A,B,D,Q,Rw); 
%% Make augmented state space model for LQ-design. 
nx=size(A,1); nu=size(B,2); ny=size(D,1); 
At=[A,zeros(nx,ny);D,eye(ny,ny)];Bt=[B;zeros(ny,nu)];Dt=[D,eye(ny,ny)]; 
Qt=Dt'*Q*Dt; 
 
%% Solve Riccati-equation and compute feedback matrix. 
[K,Rr]=dlqr(At,Bt,Qt,Rw); 
G=-K;  
G1=G(:,1:nx); G2=G(:,nx+1:nx+ny); 

 
 

5.1.3 Calculation of Control Signal, Update of Outputs and State Estimation 

Inside the main loop, the control signal is calculated, then it is used along with the current 

values of the disturbances to simulate the model’s response. Inside the iteration, the states are 

estimated once again and the output values are updated. 
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%Obtaining the updated control signal 
    u = u + G1*(x_est-x_old) + G2*(y_old - sp_ship); 
 
    U(:,i)=u; %Storing the control signal for ploting 
 
    x_old = x_est; %Updating the old states for the next iteration 
    y_old = y; %Uptading the outputs for the next iteration 
 
%Obtaining the value of the weather disturbance for plotting 
    F_w(:,i) = model.WindForce(W_v(i),gamma(i), x(3), x(4), x(5), A_F, A_L, L);  
 
%Calculating the water current force for plotting 
    V_c(:,i)= model.CurrentVelocity(W_c(:,i),x);  
 
%Generating the non-linear model's response 
    [x, NED_Position] = model.UpdateState(u, W_c(:,i), W_v(i), gamma(i), dt);  
 
%Updating the state estimation 
    x_est = A*x_est + B * u + K*(y - D*x_est);  

 
 

5.1.4 Selection of q and p weights 

The selection of the q and p values could be described as trial-and-error. The q and p vectors 

represent the weights given in the algorithm to minimize the error and the change in the control 

signal respectively. In other words, these values determine how important the suppression of 

the error or keeping a small change in the u values are. These values are relative to each other, 

so a bigger q and a smaller p state that there is a much bigger priority in keeping the error in 

check than keeping smooth changes in u.  

Let us say, that the following values of q and p are used: 

% Controller weights  
q = [1e4 0 0; 0 1e4 0; 0 0 1e6]; 
p = [1e-3 0 0; 0 1e-3 0; 0 0 1e-6];  

In this case, for a wind speed of 15 m/s, the behavior of the system would look like in Figure 

5-3. The response of the controllers does not align the vessel completely to the set points, while 

the disturbances manage to deviate the vessel. However, the magnitude of the control impulses 

is smaller compared to the values in Figure 5-4, which indicates that this configuration could 

use less energy in the dynamic positioning. 
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Figure 5-3 Behavior of LQ System with Relatively Higher p Values 

Now, running the simulation with the original values, where the p vector has considerably 

lower values: 



 

 

  5 LQ Optimal Control with Integral Action 

51 

%% Obtaining the G matrix 
q = [1e6 0 0; 0 1e7 0; 0 0 1e8]; 
p = [1e-5 0 0; 0 1e-6 0; 0 0 1e-10]; 
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Figure 5-4 Behavior of the System with Relatively Lower p Values 

Figure 5-4 displays the response of the system with higher q values compared to the p values. 

In this case, error suppression is prioritized. In which, the controller performs a considerably 

better job. Nevertheless, the absolute values of the control signals are one order of magnitude 

higher. 

At the end, there needs to be a balance between the error tolerance and the amount of energy 

used to keep that error to a minimum. It is also worth noting that the wind disturbance is 15 
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m/s, which is in the upper bounds of the winds found in the northern sea, meaning that it would 

be an extreme case, were most likely, the use of dynamic positioning would not be enough. 
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6  MPC with Integral Action 
MPC is the acronym for Model Predictive Control, where a linearized model of the vessel is 

found and then used to obtain an input signal based on a simulated response of this linearized 

model to the setpoints, the current state of the disturbances, and preestablished inequality and 

equality constraints. This calculation of the response and of the input signal is performed in 

every timestep for L future timesteps. L represents the prediction horizon; namely, a set of 

predicted future responses of the model based on its current state. 

 

Figure 6-1 Representation of the Sliding Horizon and Different Input Values 

Figure 6-1 illustrates how MPC with and sliding horizon strategy works: In every timestep, an 

array of input signals with a length of 5 is calculated. This means that the prediction horizon is 

of 5 timesteps. Then, only the first element of the array is selected and used as input in the 

controlled system. The process is repeated in the next time step. 

The value of u, or the input signal in every timestep is obtaining by minimizing a cost function: 

𝐽𝑘 = ∑(𝑦𝑘+𝑖  − 𝑟𝑘+𝑖)
𝑇𝑄(𝑦𝑘+𝑖  −  𝑟𝑘+𝑖) + ∆𝑢𝑘+𝑖−1

𝑇𝑃∆𝑢𝑘+𝑖−1

𝐿

𝑖=1

 (6.1) 

In equation (6.1), L is the prediction horizon. The cost function 𝐽𝑘 is calculated in every time 

step. Q and P are diagonal weighting matrices will determine which goal Is pursued more 

aggressively; whether reducing the offset between y and r or controlling the size of the changes 

in u for every timestep. 

As with LQ optimal control, an extended model is used to include the integral action. In this 

case, an extended model will be implemented too, but in a ∆𝑢 formulation: 

[
∆𝑥𝑘+1
𝑦𝑘

]
⏟    
𝑥̃𝑘+1

= [
𝐴 0𝑛 × 𝑚
𝐷 𝐼𝑚 ×𝑚

]
⏟        

𝐴̃

[
∆𝑥𝑘
𝑦𝑘−1

]
⏟  
𝑥̃𝑘

+ [
𝐵

0𝑚 ×𝑟
]

⏟    
𝐵̃

∆𝑢𝑘 
(6.2) 

u1* u2* u3* u4* u5*

u1* u2* u3* u4* u5*

u1* u2* u3* u4* u5*

u1* u2* u3* u4* u5*

K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10 K=11 K=12 K=13 K=14 K=15 K=16 K=17 K=18

𝑈𝑘=1

𝑈𝑘=2

𝑈𝑘=3

𝑈𝑘=4
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𝑦𝑘 = [𝐷 𝐼𝑚 ×𝑚]⏟      
𝐷̃

[
∆𝑥𝑘
𝑦𝑘−1

]
⏟  
𝑥̃𝑘

 
(6.3) 

With the formulation in Equations (6.2) and (6.3), the state-space model can be augmented 

as: 

𝑥̃𝑘+1 = 𝐴̃𝑥̃𝑘 + 𝐵̃∆𝑢𝑘 (6.4) 

𝑦𝑘 = 𝐷̃𝑥̃𝑘 (6.5) 

Parting from the augmented state space model, a prediction model can be formulated: 

𝑦𝑘+1|𝐿 = 𝐹𝐿𝑢𝑘|𝐿 + 𝑝𝐿 (6.6) 

Where 

𝐹𝐿 = [𝑂𝐿𝐵 𝐻𝐿
𝑑] (6.7) 

𝑝𝐿 = 𝑂𝐿𝐴𝑥𝑘 (6.8) 

L is the prediction horizon, 𝐹𝐿 is a matrix whose values are constant and is calculated from the 

augmented state space model, 𝑝𝐿 is a vector that depends on older inputs and outputs. 

According to [11]. The problem can be formulated in terms of u, or which would be ∆𝑢 for 

the augmented model. 

𝐽 =  𝑢𝑇𝐻𝑢 + 2𝑓𝑇𝑢 + 𝐽0 (6.9) 

Where 

𝐻 = 𝐹𝑇𝑄𝐹 + 𝑃 (6.10) 

𝑓 =  𝐹𝑇𝑄(𝑝 − 𝑟) (6.11) 

𝐽0 = (𝑝 − 𝑟)
𝑇𝑄(𝑝 − 𝑟) (6.12) 

The derivative of equation (6.9) can be obtained as: 

𝜕𝐽

𝜕𝑢
= 2𝐻𝑢 + 2𝑓 (6.13) 

Which means that: 

𝑢∗ = −𝐻−1𝑓 (6.14) 

 

6.1 Implementation of Integral MPC in MATLAB 

In this case, equation 27 will have a change, in which ∆𝑥𝑘+1 will correspond to the change in 

the state estimation from timestep to timestep. For this, it is necessary to use a state estimator 

that will work inside the main loop; in this case, a Kalman filter, whose constant K needs to be 

defined: 
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%% Calculating Kalman filter gain 
if  iflag==0 || iflag==1 
% if iflag==1 
    % kalman filter gain 
    G=0.01*eye(6); 
    Q_k = diag([0.09, 0.11, 0.09,0.8,0.5,1.5]); 
    R_k = diag([1e3,1e3,1e3]); 
    K=dlqe(A,G,D,Q_k,R_k); 
end  

Again, for this controlling method, it is needed to define weights: 

% Controller weights  
%Weighting parameters, p is for delta u, q is for error 
q = [1e6 0 0; 0 1e7 0; 0 0 1e8]; 
p = [1e-4 0 0; 0 1e-4 0; 0 0 1e-10]; 

  

Then, the augmented model is created with the imported A, B, and D matrices from the 

identified model in state space form. 

%% augmented system matrices for Integral MPC: 
%x _̃(k+1)= A x̃ _̃k+ B ∆̃u_k   
%y _k= D x̃ _̃k   
At = [A zeros(nx,ny); D eye(ny,ny)]; 
Bt= [B ; zeros(ny,nu)]; 
Dt = [D eye(ny,ny)]; 
[HdL,OL,OLB]=ss2h(At,Bt,Dt,zeros(ny,nu),L,0);  
FL=[OLB HdL]; 
Qt=q2qt(q,L); 
Rt=q2qt(p,L); 
H=FL'*Qt*FL+Rt; % From Theory: H= F^T QF+PH= F^T QF+P  

Inside the main loop, the 𝑝𝐿 vector is calculated in every timestep, it has a length of L, which 

is the prediction horizon. Also, the next L points in the setpoint vector are selected and used 

with 𝑝𝐿 to calculate 𝑓 and in turn, ∆𝑢𝑘: 

    %Calculation of pL 
    pL=OL*At*xt; 
 
    %Selection of L next setpoints for comparison 
    ref = sp(:,i+1:L+i); 
    for k=1:L 
        %The selected setpoints need to be converted to the vessel's frame 
        ref(:,k)=R'*ref(:,k); 
    end 
    %Adding just the first reference to the setpoint's vector 
    sp_ship_vector(:,i)=ref(:,1); 
 
    ref = ref(:); 
    %Finding the value of f 
    f=FL'*Qt*(pL-ref);  

Then, the value of  ∆𝑢𝑘 is calculated. According to the sliding horizon strategy, only the first 

value of u is selected and used in the model: 

    %du = quadprog(H,f); 
    du=-inv(H)*f; 
    du = reshape(du,3,L); %arranged control inputs 
    u = u + du(:,1);  
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If the MPC problem is constrained, quadprog needs to be used, but in this case, the problem 

will be formulated as an unconstrained MPC. 

Finally, as with LQ Optimal control, the model is simulated with the new u and disturbance 

values and the states are estimated. 

    %Updating the model, estimation of states and update of xt which is 
    %used to calculate pL 
    [x, NED_Position] = model.UpdateState(u, W_c(:,i), W_v(i), gamma(i), dt); 
    x_est = A*x_est + B * u + K*(y - D*x_est); 
    xt = [x_est-x_old;y_old];  

6.1.1 Unconstrained vs Constrained MPC 

Figure 6-2 shows the behavior of the MPC controller with a windspeed of 15 m/s. The same 

speed used in the LQ Integral controller. The controller manages to follow the setpoints almost 

exactly. 
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Figure 6-2 Performance of the System with Unconstrained MPC 

However, as the value of u is not constrained, it reaches high values, especially for the sway 

and the yaw states. This could be limited by using the upper and lower limits in the quadprog 
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function. The limits can be stablished as a difference between u and the threshold value, which 

for surge will be 2e5, for sway 3e5, and for yaw 1e6: 

    %Defining lowe and upper bounds for u 
    LB = [-2e5-u(1); -3e5-u(2);-1e6-u(3)]; 
    UB = [2e5-u(1); 3e5-u(2);1e6-u(3)]; 
    du = quadprog(H,f,[],[],[],[],LB,UB);  
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Figure 6-3 Performance of Integral MPC Controller with Clipping of u Values 

Using the same q and p weighting values, the system will behave as shown in Figure 6-3. 

Although the controller shows oscillations after reaching the setpoints, it manages to stabilize 

itself, performing especially well for the surge state (North Position in NED). The controller 

for the east position presents a considerable overshot however, with a highest value of 30 m, 

while the setpoint was 20m. The yaw controller shows an overshot of 3 degrees and posterior 

oscillations. 

Nevertheless, 15 m/s is a considerable wind speed. The average wind speeds in the northern 

sea fluctuate around 10 m/s, so it is a good idea to see how the controller behaves with that 

wind speed. 
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Figure 6-4 Behavior of Integral MPC Controller with 10 m/s Wind Speed 

In Figure 6-4, the behavior of the sway controller improves, however it maintains the 

oscillations. In a real case scenario, this behavior could be accepted, nevertheless, it could be 

improved if the limit for the sway controller is relaxed: 

    %Defining lower and upper bounds for u 
    LB = [-2e5-u(1); -1e6-u(2);-1e6-u(3)]; 
    UB = [2e5-u(1); 1e6-u(2);1e6-u(3)];  
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Figure 6-5 Performance of the Integral MPC Controller with Relaxed u Limits for Sway 

Figure 6-5 shows that the sway controller behaves much better, reducing the overshot to a 

minimum and showing practically no oscillations. Every change in the input limits, however, 

comes with a cost since higher absolute control signal values will represent a higher energy 

expense in a real-life system. 
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7 Comparison of PID, LQ, and MPC 
Methods 

The use of PID controllers, LQ Optimal control with integral action, and MPC with integral 

action have been discussed before. Although all the methods have proven being effective in 

positioning the vessel, it is necessary to perform a test under the same conditions for the three 

methods. 

7.1 Experiment Design 

As per [12], the maximum average hourly wind speed in the northern sea is approximately 

equal to 10 m/s. Hence, the wind conditions will be simulated with winds of this magnitude. In 

that same source, it is also stated that the most frequents wind directions are from north-west 

during the winter months and south-west during the summer months. That is why, to test the 

different control methods, the windspeed will be kept at 10 m/s and the direction of the wind 

will be maintained in north-west for the first half of the simulation and then changed to south-

west for the second half. The setpoints will be the same for all the controller types: from 0 to 

10m for north and east positions, then from 10m to 20m for north and east positions, and from 

0 to 5 degrees, followed by 5 to 10 degrees for the yaw angle. 

7.1.1 Benchmarks 

The controllers will be compared in a qualitative and quantitative way. The settling time on the 

setpoints will be measured, as well as the overshot and the root mean square error for the 

simulation. 

7.1.1.1 Settling Time 

The time at which the controller stabilizes at the setpoint (if this is the case), will be measured 

on the plot after the simulation is run. Figure 7-1 shows an example of how the settling time 

will be measured for each of the controllers. There is a tag for the new setpoint and a tag for 

when the controller stabilizes in it. 

There are 2 step changes in the setpoint. The settling time will be determined by measuring the 

point in time when the oscillations disappear, even though there is still some minimal offset 

that is gradually reduced. 

 

Figure 7-1 Example of Measuring of Time for Settling 
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7.1.1.2 Overshot and Oscillations 

This will be a qualitative and quantitative analysis. If the controller shows overshot, it will be 

measured using the tags of the figure tool in MATLAB, as seen in Figure 7-1. 

The oscillations will be compared qualitatively, identifying which controller shows more 

frequent and ample oscillations. 

7.1.1.3 Root Mean Squared Error 

The root mean squared error is a common method to measure the deviation of two arrays. In 

this case, the two arrays will be the set points in the NED coordinate frame and the position 

of the vessel in said frame. The RMSE is calculated using the formula: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑠𝑝𝑖  −  𝑦𝑖)2
𝑁

𝑖=1

 (7.1) 

Where: 

𝑠𝑝𝑖: A given setpoint value in instant 𝑖 in the Earth coordinate frame. 

𝑦𝑖: A given position measurement in instant 𝑖 in the Earth coordinate frame. 

𝑁: Number of samples. 

Equation 40 shows that the RMSE will be calculated using the absolute values of the 

differences between the setpoints and the outputs. 

The setpoint vector and the position vector will be compared. It is worth noting that the 

setpoints are stablished in the earth’s coordinate frame, so the position to be compared to, is in 

earth’s coordinate frame as well. 

7.1.2 Input Signals 

The controllers will be tested first with unrestricted input signals and then establishing limits 

on them. The limits will be the same used in the last configuration of the MPC with integral 

action: 

    %Defining lowe and upper bounds for u 
    LB = [-2e5-u(1); -1e6-u(2);-1e6-u(3)]; 
    UB = [2e5-u(1); 1e6-u(2);1e6-u(3)];  

The Total Value index will be used to compare the amount of 𝑢 used in each of the methods. 

According to [13], It is defined as: 

𝑇𝑉 = ∑|∆𝑢𝑘|

∞

𝑘=1

 (7.2) 

And  ∆𝑢𝑘 = 𝑢𝑘 − 𝑢𝑘−1 . Which is the control signal rate of change. 
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7.2 Control with PID Controllers 

The controllers will have the last selected 𝑘𝑝, 𝑇𝑖, and 𝑇𝑑 parameters. The values of these can 

be seen in Table 7-1. 

 

Table 7-1 PID Controllers Parameters for Comparison 

Parameter Value 

Kp Surge PID 3500 

Ti Surge PID 70 

Td Surge PID 300 

Kp Sway PID 5000 

Ti Sway PID 50 

Td Sway PID 500 

Kp Yaw PID 800000 

Ti Yaw PID 1500 

Td Yaw PID 350 

7.2.1 Performance Without Clipping the Control Signal 

Figure 7-2 displays the behavior of the system with PID controllers. In general terms, the 

controllers reach the setpoints, with some oscillations in the surge controller, and some 

sluggishness in the yaw controller. The wind disturbance has an immediate effect on the 

position of the vessel, causing that the input signals always have a value different from zero. 
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Figure 7-2 General Performance of PID Without Input Limits 

7.2.1.1 Settling Time 

The settling times for the controllers in each state and for each timestep are shown in Figure 

7-3 and summarized in Table 7-2. 
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Figure 7-3 Settling Times for PID Controllers without Input Limits 

 

Table 7-2 Settling Times for Unclipped PID Controllers 

Controller and Setpoint Approximate Time [s] 

Surge Controller Step 1 273 

Surge Controller Step 2 294 

Sway Controller Step 1 418 

Sway Controller Step 2 324 

Yaw Controller Step 1 288 

Yaw Controller Step 2 235 

7.2.1.2 Overshot and Oscillations 

The overshot measurements can be seen in Figure 7-4 and are summarized in Table 7-3. 
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Figure 7-4 Overshot and Oscillations of PID Controllers without Input Limits 

Table 7-3 Overshot and Oscillations of PID Controllers Without Input Limits 

Controller and Setpoint Overshot [m or Deg.] 

Surge Controller Step 1 5.86 [m] 

Surge Controller Step 2 6.5 [m] 

Sway Controller Step 1 3.04 [m] 

Sway Controller Step 2 2.44 [m] 

Yaw Controller Step 1 2 [Deg.] 

Yaw Controller Step 2 1.8 [Deg.] 

 

Figure 7-4 shows that the surge controller has the most oscillations, which decrease in 

amplitude gradually around the setpoint. This behavior is not ideal, but given the model’s 

sensitivity to wind, they would not affect the functionality of the vessel, especially considering 

that the controller stabilizes the vessel around the setpoints. 
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7.2.1.3 RMSE 

The values for each of the axis of the NED frame are shown in Table 7-4: 

Table 7-4 RMSE for PID Controllers without Limiting Input Values 

Axis RMSE 

North Position [m] 0.7923 

East Position [m] 0.9551 

Yaw Angle [Deg.] 0.4744 

7.2.1.4 Maximum and Average U Values  

The behavior of the control signals is shown in Figure 7-5, whereas the maximum and average 

values are shown in Table 7-5. 

 

Figure 7-5 U Values for PID Controllers without Limited Control Signal 

 

Table 7-5 Maximum and Average U Values for PID Controllers without Limited Input Signal 

State U Value 

Max. Surge [N] 5.88E+05 

Mean Surge [N] 6.00E+00 

Max. Sway [N] 1.20E+06 

Mean Sway [N] -4.35E+04 

Max. Yaw [Nm] 2.21E+07 

Mean Yaw [Nm] 2.11E+02 
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The Total Values are found in Table 7-6. 

Table 7-6 Total Values for PIDs without Limited Input Signals 

Controller Total Value (TV) 

Surge 5.92E+06 

Sway 8.02E+06 

Yaw 1.52E+08 

7.2.2 Performance of PID Controller Limiting the Input Signal 

Figure 7-6 shows the behavior of the PID controllers after limiting the input signals, the 

oscillations are increased in the surge controller and the behavior of the yaw controller 

deteriorates. Although it reaches the setpoints, its response is more sluggish. 
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Figure 7-6 Performance of PID Controllers with Limited Input Signals 

7.2.2.1 Settling Time 

The settling times for the controllers in each state and for each timestep are shown in Figure 

7-7. The settling times deteriorate considerably, particularly for the yaw controller. 
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Figure 7-7 Settling Times for PID Controllers with Input Limits 

 

Table 7-7 Settling Times for PID Controllers with Input Limits 

Controller and Setpoint Approximate Time [s] 

Surge Controller Step 1 283 

Surge Controller Step 2 600 

Sway Controller Step 1 430 

Sway Controller Step 2 850 

Yaw Controller Step 1 1802 

Yaw Controller Step 2 1761 

7.2.2.2 Overshot and Oscillations 

The values of the overshot for each controller are shown in Figure 7-8 and summarized in Table 

7-8. The oscillations are like when the input signals are not limited. However, the overshot 

decreases for all the controllers. As the input signal is limited, the reactiveness of the controllers 

diminishes, so there will be less overshot as the response is slower.   
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Figure 7-8 Overshot and Oscillations of PID Controllers with Input Limits 

 

Table 7-8 Overshot and Oscillations of PID Controllers with Input Limits 

Controller and Setpoint Overshot [m or Deg.] 

Surge Controller Step 1 3.46 [m] 

Surge Controller Step 2 2.8 [m] 

Sway Controller Step 1 2.6 [m] 

Sway Controller Step 2 2.3 [m] 

Yaw Controller Step 1 0.6 [Deg.] 

Yaw Controller Step 2 2.1 [Deg.] 

7.2.2.3 RMSE 

The values for each of the axis of the NED frame are shown in Table 7-9. 

 

Table 7-9 RMSE for PID Controllers Limiting the Input Signals 

State RMSE 

North Position [m] 0.7965 

East Position [m] 0.9608 

Yaw Angle [Deg.] 1.0256 
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7.2.2.4 Maximum and Average U Values 

The behavior of the control signals is shown in Figure 7-9, whereas the maximum and average 

values are shown in Table 7-10. It is no surprise that the maximum absolute values are the same 

as the limits, as the control inputs cannot exceed these. The average values for the yaw are 

doubled, most likely because the controller compensates the effect of the limit by being 

activated for a longer time. 

 

 

Figure 7-9 U Values for PID Controllers with Limited Control Signal 

 

Table 7-10 Maximum and Average U Values for PID Controllers with Limited Input Signal 

State U Value 

Max. Surge [N] 2.00E+05 

Mean Surge [N] 6.00E+00 

Max. Sway [N] 1.00E+06 

Mean Sway [N] -4.35E+04 

Max. Yaw [Nm] 1.00E+06 

Mean Yaw [Nm] 4.44E+02 

The Total values for the control signals of the three controllers can be seen in  

Table 7-11. 
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Table 7-11 Total Values for PIDs with Limits in the Input Signals 

Controller Total Value (TV) 

Surge 8.97E+06 

Sway 7.21E+06 

Yaw 8.80E+08 

7.3 Performance with LQ-Optimal Control with Integral Action 

In this section, the results of the experiment with the LQ Optimal Controller with Integral 

action will be shown. In this case, as the windspeed is reduced to 10 m/s, the difference 

between q and p can be relaxed, so these values are used: 

% Controller weights  
%Weighting parameters, p is for delta u, q is for y 
% p=1e-6; q=10000;  
 
q = [1e4 0 0; 0 1e4 0; 0 0 1e6]; 
p = [1e-5 0 0; 0 1e-5 0; 0 0 1e-9];  

7.3.1 Performance Without Clipping the Control Signal 

The results are shown in Figure 7-10. At first look, this controller is more aggressive than the 

PID controllers. The setpoints are followed almost exactly as specified, there are no 

oscillations, and the overshot is minimal or nonexistent. 
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Figure 7-10 Performance of LQ Optimal Control with Integral Action without Input Limits 

7.3.1.1 Settling time 

The settling times are portrayed in Figure 7-11 and summarized in Table 7-12. There is a 

considerable improvement with regard to the PID controllers. The best settling time is shown 

in the surge control. 
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Figure 7-11 Settling Times for LQ Optimal Control without Input Limits 

 

Table 7-12 Settling Times for LQ Optimal Control without Input Limits 

Controller and Setpoint Approximate Time [s] 

Surge Controller Step 1 56 

Surge Controller Step 2 105 

Sway Controller Step 1 114 

Sway Controller Step 2 216 

Yaw Controller Step 1 107 

Yaw Controller Step 2 222 

7.3.1.2 Overshot and Oscillations 

The overshot and oscillations of the LQ optimal controller with integral action are shown in 

Figure 7-12 and summarized in Table 7-13. The overshot is considerably less than with the 

PID controllers while the oscillation in the north and yaw axis is zero, and in the east axis is 

severely reduced.   
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Figure 7-12 Overshot and Oscillations of LQ Optimal Control without Input Limits 

 

Table 7-13 Overshot of LQ Optimal Control without Input Limits 

Controller and Setpoint Overshot [m or Deg.] 

Surge Controller Step 1 0.7 [m] 

Surge Controller Step 2 1 [m] 

Sway Controller Step 1 0.7 [m] 

Sway Controller Step 2 1.2 [m] 

Yaw Controller Step 1 0.4 [Deg.] 

Yaw Controller Step 2 0.3 [Deg.] 

7.3.1.3 RMSE 

The results can be seen in Table 7-14. These values are approximate zero, which indicates that 

for most of the simulation, the controller follows the setpoints almost exactly. This is 

remarkable considering the presence of the disturbances and model’s sensitivity to it. 

 

Table 7-14 RMSE of LQ Optimal Controller without Input Limits 

State RMSE 

North Position [m] 0.6166 

East Position [m] 0.779 

Yaw Angle [Deg.] 0.414 
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7.3.1.4 Maximum and Average U Values 

The input values are shown in Figure 7-13 and the maximum and mean absolute values are 

shown in Table 7-15. The action in the yaw axis is higher than in the other axis. 

 

Figure 7-13 Input Values of LQ Optimal Control with Integral Action without Input Limits 

 

Table 7-15 Input Values of LQ Optimal Control with Integral Action without Input Limits 

State U Value 

Max. Surge [N] 5.54E+05 

Mean Surge [N] 6.00E+00 

Max. Sway [N] 1.04E+06 

Mean Sway [N] -4.35E+04 

Max. Yaw [Nm] 1.04E+07 

Mean Yaw [Nm] 2.17E+02 

 

The total values are shown in Table 7-16. 

Table 7-16 Total Values for LQ Controller without Control Signal Limits 

Controller Total Value (TV) 

Surge 3.69E+06 

Sway 7.75E+06 

Yaw 6.99E+07 

 



 

 

  7 Comparison of PID, LQ, and MPC Methods 

86 

7.3.2 Performance Clipping the Control Signal 

As the controller has shown to be more aggressive, it is also possible to try with lower limits 

for the input signals, the values for the sway controller are an order of magnitude smaller than 

in the case of the PID controllers. 

    %Clipping the control signal 
    if abs(u(1)) > 2e5 
        u(1) = 2e5*sign(u(1)); 
    end 
    if abs(u(2)) > 2e5 
        u(2) = 2e5*sign(u(2)); 
    end 
    if abs(u(3)) > 1e6 
        u(3) = 1e6*sign(u(3)); 
    end  

Figure 7-14 show the behavior of the system. Although the allowed control signal values are 

lower, the behavior of the controller does not seem too affected. There is an overshot in the 

yaw angle that stabilizes, then, the setpoints are matched almost perfectly, with a small delay 

for the second setpoint. 
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Figure 7-14 Performance of LQ Optimal Control with Integral Action with Input Limits 

7.3.2.1 Settling Time 

The settling times have increased but in a way that is not significative for the performance of 

the controller. This can be seen in Figure 7-15. The values are summarized in Table 7-17. 
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Figure 7-15 Settling Times for LQ Optimal Control with Input Limits 

 

Table 7-17 Settling Times for LQ Optimal Control with Input Limits 

Controller and Setpoint Approximate Time [s] 

Surge Controller Step 1 74 

Surge Controller Step 2 267 

Sway Controller Step 1 161 

Sway Controller Step 2 253 

Yaw Controller Step 1 400 

Yaw Controller Step 2 300 

 

7.3.2.2 Overshot and Oscillations 

The results are shown in Figure 7-16 and summarized in Table 7-18. There is a larger overshot 

for the yaw controller in the first step, the setpoint is 5 degrees but the angle jumps to 10 degrees 

to then settle at 5 degrees, which is acceptable. Other than this, there is no considerable 

overshot, and the oscillations are non-existent. 



 

 

  7 Comparison of PID, LQ, and MPC Methods 

90 

 

Figure 7-16 Overshot and Oscillations of LQ Optimal Control with Input Limits 

 

Table 7-18 Overshot of LQ Optimal Control with Input Limits 

Controller and Setpoint Overshot [m or Deg.] 

Surge Controller Step 1 0.9 [m] 

Surge Controller Step 2 1.05 [m] 

Sway Controller Step 1 3.9 [m] 

Sway Controller Step 2 3.6 [m] 

Yaw Controller Step 1 5.1 [Deg.] 

Yaw Controller Step 2 0.2 [Deg.] 

7.3.2.3 RMSE 

Table 7-19 summarizes the values. The RMSE for the north position is like the result in the 

case without input limits, whereas it increases for the east position and the yaw angle. This has 

to do with the increase in the overshot for these two. 

Table 7-19 RMSE of LQ Optimal Controller with Input Limits 

State RMSE 

North Position [m] 0.6999 

East Position [m] 1.1153 

Yaw Angle [Deg.] 1.013 

7.3.2.4 Maximum and Average U Values 

Again, as seen in Figure 7-17 and in  
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Table 7-20, the maximum absolute values in the input signals correspond to the limits provided. 

The averages are like the values without input limits. 

 

Figure 7-17 Input Values of LQ Optimal Control with Integral Action with Input Limits 

 

 

Table 7-20 Input Values of LQ Optimal Control with Integral Action with Input Limits 

State U Value 

Max. Surge [N] 2.00E+05 

Mean Surge [N] 6.00E+00 

Max. Sway [N] 2.00E+05 

Mean Sway [N] -4.35E+04 

Max. Yaw [Nm] 1.00E+06 

Mean Yaw [Nm] 2.19E+02 

 

The Total Values can be seen in Table 7-21. 

Table 7-21 Total Values for LQ with Control Signal Limits 

Controller Total Value (TV) 

Surge 4.35E+06 

Sway 2.48E+07 

Yaw 6.62E+08 
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7.4 Performance with MPC and Integral Action 

Now, the results with MPC and integral action are presented. This method has shown to be 

more sensitive to the variation in values on q and p than LQ with integral action, which makes 

necessary to use the original selected values: 

% Controller weights  
%Weighting parameters, p is for delta u, q is for error 
q = [1e6 0 0; 0 1e7 0; 0 0 1e8]; 
p = [1e-4 0 0; 0 1e-4 0; 0 0 1e-10];  

7.4.1 Performance Without Clipping the Control Signal 

As seen in Figure 7-18, the controller follows the setpoints closely. There are some oscillations 

in the east position controller, but in general the behavior is very adequate. It also responds 

very quickly to the changes in the wind, and the changes in setpoint do not destabilize it. 
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Figure 7-18 Performance of the System with Unconstrained MPC with Integral Action 

7.4.1.1 Settling Time 

The settling times are shown in Figure 7-19 and summarized in Table 7-22. There is a 

reduction of these times in comparison to the LQ optimal controller.  
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Figure 7-19 Settling Times for Unconstrained MPC with Integral Action 

 

Table 7-22 Settling Times for Unconstrained MPC with Integral Action 

Controller and Setpoint Approximate Time [s] 

Surge Controller Step 1 51 

Surge Controller Step 2 137 

Sway Controller Step 1 103 

Sway Controller Step 2 162 

Yaw Controller Step 1 49 

Yaw Controller Step 2 146 

 

7.4.1.2 Overshot and Oscillations 

The overshot values are shown in Figure 7-20 and summarized in Table 7-23. There is a 

reduction regarding the LQ Optimal controller with integral action. Although there is an 

increase in the oscillations in the east position controller, these are not significant, and the 

controller manages to stabilize the vessel quickly. Also, the overshot in the yaw controller is 

considerably reduced. 
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Figure 7-20 Overshot and Oscillations of Unconstrained MPC with Integral Action 

 

Table 7-23 Overshot values of Unconstrained MPC with Integral Action 

Controller and Setpoint Overshot [m or Deg.] 

Surge Controller Step 1 0.88 [m] 

Surge Controller Step 2 0.6 [m] 

Sway Controller Step 1 2.6 [m] 

Sway Controller Step 2 2.4 [m] 

Yaw Controller Step 1 0.5 [Deg.] 

Yaw Controller Step 2 0.5 [Deg.] 

7.4.1.3 RMSE 

The RMSE values for the unconstrained MPC with integral action are shown in Table 7-24. 

There are maintained bellow 1m for the north and east controllers, and below 0.5 degrees for 

the yaw angle controller, which is adequate, meaning that there is practically no deviation from 

the setpoints except for the settling periods of the controller and the changes in the disturbances. 

Table 7-24 RMSE of Unconstrained MPC with Integral Action 

State RMSE 

North Position [m] 0.8615 

East Position [m] 0.8583 

Yaw Angle [Deg.] 0.4189 
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7.4.1.4 Maximum and Average U Values 

Figure 7-21 and Table 7-25 portray the values for the u signals in the unconstrained MPC 

controller. This case shows increased oscillations, particularly for the east position controller. 

 

Figure 7-21 Input Values of Unconstrained MPC with Integral Action 

 

Table 7-25 Maximum and Average Input Values of Unconstrained MPC with Integral Action 

State U Value 

Max. Surge [N] 7.19E+05 

Mean Surge [N] -1.60E+01 

Max. Sway [N] 6.19E+06 

Mean Sway [N] -4.34E+04 

Max. Yaw [Nm] 6.45E+07 

Mean Yaw [Nm] -8.50E+01 

 

The Total Values are found in Table 7-26. 

Table 7-26 Total Values for MPC without Constraints in the Control Signals 

Controller Total Value (TV) 

Surge 6.41E+06 

Sway 8.65E+07 

Yaw 5.49E+08 



 

 

  7 Comparison of PID, LQ, and MPC Methods 

98 

7.4.2 Performance Clipping the Control Signal 

In the case of the constrained MPC, the quadprog function will be used. This function can be 

provided the limit values of u, which are defined as: 

%Defining lowe and upper bounds for u 
LB = [-2e5-u(1); -1e6-u(2);-1e6-u(3)]; 
UB = [2e5-u(1); 1e6-u(2);1e6-u(3)];  

The system performs as shown in Figure 7-22.  The north and east position controllers have a 

similar behaviour to the unconstrained case, whereas the yaw controller shows oscillations in 

the setpoint changes. However, the controllers seem to respond adequately to the disturbances. 
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Figure 7-22 Performance for constrained MPC Controller with Integral Action 

7.4.2.1 Settling Time 

The settling times are shown in Figure 7-23 and summarized in Table 7-27. The values are 

maintained somewhat similar for the north and east controller. However, they increase 

considerably for the yaw controller. As the input signal is clipped, there is less momentum from 

the actuator, which in other terms means that there is less energy applied to adjust the yaw 
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position, hence, the controller takes more time to stabilize the vessel. Nevertheless, this 

behavior continues to be acceptable, as the yaw is maintained in the setpoint after the settling. 

 

Figure 7-23 Settling Times for Constrained MPC with Integral Action 

 

Table 7-27 Settling Times for Constrained MPC with Integral Action 

Controller and Setpoint Approximate Time [s] 

Surge Controller Step 1 71 

Surge Controller Step 2 73 

Sway Controller Step 1 109 

Sway Controller Step 2 114 

Yaw Controller Step 1 750 

Yaw Controller Step 2 667 

 

7.4.2.2 Overshot and Oscillations 

The values can be seen in Figure 7-24 and Table 7-28. The overshot increases in all the three 

states; however, this increment is more noticeable in the yaw angle, with 4.3 degrees for the 

first step increase, and 3.3 degrees for the second step increase. Nevertheless, as with the 

unconstrained case, these values are acceptable since they do not represent a considerable 

deviation and the controller keeps the vessel in the setpoint after the settling. 
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Figure 7-24 Overshot and Oscillations for Constrained MPC with Integral Action 

 

Table 7-28 Overshot Values for Constrained MPC with Integral Action 

Controller and Setpoint Overshot [m or Deg.] 

Surge Controller Step 1 2.8 [m] 

Surge Controller Step 2 1.9 [m] 

Sway Controller Step 1 4.3 [m] 

Sway Controller Step 2 4.2 [m] 

Yaw Controller Step 1 4.3 [Deg.] 

Yaw Controller Step 2 3.3 [Deg.] 

 

7.4.2.3 RMSE 

The RMSE values are summarized in Table 7-29. There is a doubling in the value for the yaw 

angle. This is explained by the increase in oscillations and the longer settling time for this 

constrained controller. 

Table 7-29 RMSE Values for Unconstrained MPC Controller with Integral Action 

State RMSE 

North Position [m] 0.9201 

East Position [m] 1.007 

Yaw Angle [Deg.] 1.0974 
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7.4.2.4 Maximum and Average U Values 

The values of the input signals are shown in Figure 7-25 and Table 7-30. Again, the maximum 

values correspond to the predefined limits. There is an increase in the changes in the yaw 

controller; the limit stops it to generate much bigger input signals, whereas for east and north, 

the limits are very close to the possible maximums, that is why the change in the behavior of 

north and east is not as drastic as with yaw. 

 

Figure 7-25 Input Values of Constrained MPC with Integral Action 

 

Table 7-30 Maximum and Average Input Values for Constrained MPC with Integral Action 

State U Value 

Max. Surge [N] 2.00E+05 

Mean Surge [N] -1.76E+02 

Max. Sway [N] 1.00E+06 

Mean Sway [N] -4.34E+04 

Max. Yaw [Nm] 1.00E+06 

Mean Yaw [Nm] -8.50E+01 

 

 

 

 



 

 

  7 Comparison of PID, LQ, and MPC Methods 

103 

The total values for u can be seen in Table 7-31. 

Table 7-31 Total Values for MPC with Constrained Control Signals 

Controller Total Value (TV) 

Surge 2.61E+06 

Sway 2.23E+07 

Yaw 3.77E+07 

7.5 Comparison of the Three Methods 

Having observed the behavior of the controllers and measured the settling times, overshot and 

oscillations, and the RMSE. It is possible to make a qualitative and quantitative comparison of 

the results. A score will be assigned to each system based on the previously selected 

benchmarks. 

7.5.1 With Input Signal Limits 

First, the comparison is made on the unconstrained controllers. In general, this configuration 

offers the best results with the tradeoff that in some cases, the input signals will reach high 

values, which in a real-life scenario could go against the specifications of the actuators in the 

vessel. 

7.5.1.1 General Behavior 

First, with a visual inspection of the three methods, it is determined, that all achieve the goal 

of reaching the setpoints and stabilizing the vessel around them. Also, their performance 

against disturbances is acceptable; so, one point per state to control is given to each, as shown 

in Table 7-32. 

Table 7-32 Comparison of General Performance without Input Limits 

Benchmark PID LQ + Integral Action MPC + Integral Action 

Performance North Good Good Good 

Performance East Good Good Good 

 Performance Yaw Good Good Good 

Score 3 3 3 

7.5.1.2 Settling Times 

Although the three systems present acceptable settling times, there are some notable differences 

between the use of PID controllers and the other methos. LQ and MPC are almost twice as fast 

as the PIDs. The average settling time for the PIDs is 305.33 seconds, whereas for LQ and 

MPC it is 136.67, and 108 seconds respectively, as seen in Table 7-33. This is why two points 

are awarded to MPC and LQ, and only one to PID. 
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Table 7-33 Comparison of Settling Times Without Input Limits 

Controller and Setpoint PID [s] LQ + Integral Action [s] MPC + Integral Action [s] 

Surge Controller Step 1 273 56 51 

Surge Controller Step 2 294 105 137 

Sway Controller Step 1 418 114 103 

Sway Controller Step 2 324 216 162 

Yaw Controller Step 1 288 107 49 

Yaw Controller Step 2 235 222 146 

Average [s] 305.33 136.67 108 

Score 1 2 2 

7.5.1.3 Overshot and Oscillations 

After comparing the overshot values, it is concluded that despite the differences in average 

values. These are low and acceptable for all three controller types. Therefore, 2 points are 

awarded to each method. The summary can be seen in Table 7-34. 

Table 7-34 Comparison of Overshots Without Input Limits 

Controller and Setpoint 
Overshot 

PID 
Overshot LQ + 
Integral Action 

Overshot MPC + 
Integral Action 

North Controller Step 1 [m] 5.86 0.7 0.88 

North Controller Step 2 [m] 6.5 1 0.6 

East Controller Step 1 [m] 3.04 0.7 2.6 

East Controller Step 2 [m] 2.44 1.2 2.4 

Yaw Controller Step 1 [Deg.] 2 0.4 0.5 

Yaw Controller Step 2 [Deg.] 1.8 0.3 0.5 

Average for North and East [m] 4.46 0.9 1.62 

Average for Yaw [Deg.] 1.9 0.35 0.5 

Score 2 2 2 

 

As per Table 7-35 shows, the oscillations for the North position in the PIDs and for the East 

position with MPC can be improved, nevertheless, all controllers have an at least acceptable 

behavior. 

Table 7-35 Qualitative Comparison of Oscillations without Input Limits 

Oscillations PID LQ + Integral Action MPC + Integral Action 

Performance North Acceptable Good Good 

Performance East Good Good Acceptable 

Performance Yaw Good Good Good 

Score 2.5 3 2.5 

7.5.1.4 RMSE 

The RMSE comparison can be seen in Table 7-36. The results are very similar for the three 

methods. Therefore, the whole score of 2 points is granted for all. It is worth noting that these 

RMSE values are low, which indicates that the three controllers behave appropriately. 
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Table 7-36 Comparison of RMSE without Limiting Input Signals 

Axis RMSE PIDs 
RMSE LQ + Integral 

Action 
RMSE MPC + Integral 

Action 

North Position [m] 0.7923 0.6166 0.8615 

East Position [m] 0.9551 0.779 0.8583 

Yaw Angle [Deg.] 0.4744 0.414 0.4189 

Score 2 2 2 

7.5.1.5 Input Signals 

The comparison of the maximum and mean input values for each state and each controller type 

can be found in Table 7-37. The highest absolute values are highlighted in yellow. It is 

noticeable that while unconstrained, MPC produces the highest input signals, which aligns with 

the aggressive response it showed. 

The biggest differences are seen in the maximum absolute values for the sway and yaw 

controllers. These values, although very high, occur only in a very limited window of time, 

when the controller activates a response to a change in setpoints or disturbances. 

It is worth noting that there is a difference in the mean values of the yaw controller, where the 

PID and LQ controllers have an absolute value close to 200, whereas the value for the MPC 

controller is 85. This conveys a general tendency of the LQ controller behavior to use bigger 

values of u in the yaw controller, and hence, use more energy. 

Table 7-37 Comparison of Input Values without Limits for Input Signals 

State U PIDs U LQ + Integral Action 
U MPC + Integral 

Action 

Max. Surge [N] 5.88E+05 5.54E+05 7.19E+05 

Max. Sway [N] 1.20E+06 1.04E+06 6.19E+06 

Max. Yaw [Nm] 2.21E+07 1.04E+07 6.45E+07 

Mean Surge [N] 6.00E+00 6.00E+00 -1.60E+01 

Mean Sway [N] -4.35E+04 -4.35E+04 -4.34E+04 

Mean Yaw [Nm] 2.11E+02 2.17E+02 -8.50E+01 

To have more insight into the performance of the control signals, it is a good idea to compare 
the total values of the three methods, the score will be calculated based on the Total Value 
Results.  

Table 7-38 Comparison of Total Values for unconstrained input signals 

Controller PIDs TV LQ + Integral Action TV MPC + Integral Action TV 

Surge 5.92E+06 3.69E+06 6.41E+06 

Sway 8.02E+06 7.75E+06 8.65E+07 

Yaw 1.52E+08 6.99E+07 5.49E+08 

Score 2.1 3 1.5 

 

As seen in Table 7-38, the total usage of u is bigger in the MPC with integral action controller 

(highlighted in yellow), and less in LQ with integral action. In this benchmark, the best result 

is obtained from LQ with integral action, so the biggest score is given to this controller. 
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7.5.1.6 Scores and Controller Selection 

Table 7-39 contains the count of all the scores, wherein the highest score was achieved by the 

LQ Optimal controller with Integral action. This controller showed good general behavior and 

the generated control signals do not have the highest peaks. Nevertheless, more tuning is 

needed to obtain a better performance. 

Table 7-39 Scores Summary Without Control Signal Limits 

Benchmark PIDs LQ + Integral Action MPC + Integral Action 

General Behaviour 3 3 3 

Settling Times 1 2 2 

Overshot 2 2 2 

Oscillations 2.5 3 2.5 

RMSE 2 2 2 

U usage (TV) 2.1 3 1.5 

Total 12.6 15 13 

7.5.2 Without Limiting Input Signals 

Now the results for the controllers with constrained control signal will be compared.  

7.5.2.1 General Behavior 

The controllers maintain a general adequate performance, wherein the vessel is taken to the 

given setpoints and stabilized. Nevertheless, there is an increase in oscillations in yaw for the 

three controllers. The general assessment is seen in Table 7-40. 

 

Table 7-40 Comparison of General Performance with Input Limits 

Benchmark PID LQ + Integral Action MPC + Integral Action 

Performance North Good Good Good 

Performance East Good Good Good 

Performance Yaw Acceptable Acceptable Acceptable 

Score 2.5 2.5 2.5 

7.5.2.2 Settling Times 

There is an increase in the settling times, which is to be expected as the input signals are limited. 

The results summarized in Table 7-41 show that the settling times average double for the MPC 

and LQ controllers and almost triples for the PID controllers. The most increase is seen in the 

yaw controllers, which aligns with the general behavior comparison. 
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Table 7-41 Comparison of Settling Times Limiting Input Signals 

Controller and Setpoint PID [s] LQ + Integral Action [s] MPC + Integral Action 

Surge Controller Step 1 283 74 71 

Surge Controller Step 2 600 267 73 

Sway Controller Step 1 430 161 109 

Sway Controller Step 2 850 253 114 

Yaw Controller Step 1 1802 400 750 

Yaw Controller Step 2 1761 300 667 

Average 954.33 242.50 297 

Score 0.5 1 1 

7.5.2.3 Overshot and Oscillations 

There is an increase in the overshot values for all the controllers in the three states, as seen in 

Table 7-42. However, the values are deemed appropriate. 

Table 7-42 Comparison of Overshot Values Limiting Input Signals 

Controller and Setpoint 
PID [m or 

Deg.] 
LQ + Integral 

Action [m or Deg.] 
MPC + Integral Action 

[m or Deg.] 

North Controller Step 1 [m] 3.46 0.9 2.8 

North Controller Step 2 [m] 2.8 1.05 1.9 

East Controller Step 1 [m] 2.6 3.9 4.3 

East Controller Step 2 [m] 2.3 3.6 4.2 

Yaw Controller Step 1 [Deg.] 0.6 5.1 4.3 

Yaw Controller Step 2 [Deg.] 2.1 0.2 3.3 

Average for North and East [m] 2.79 2.36 3.3 

Average for Yaw [Deg.] 1.35 2.65 3.8 

Score 2 2 2 

 

The oscillations comparison is shown in Table 7-43. There is an improvement in the 

oscillations in the MPC controller for the east position, with the tradeoff of more oscillations 

in yaw. The PID controllers show some oscillations in the North position that are not a big 

concern for the performance of the system. 

Table 7-43 Comparison of Oscillations Limiting Input Signals 

Oscillations PID LQ + Integral Action MPC + Integral Action 

Performance North Acceptable Good Good 

Performance East Good Good Good 

Performance Yaw Good Good Acceptable 

Score 2.5 3 2 

7.5.2.4 RMSE 

The RMSE increase in all controllers, but they are maintained in an acceptable range, for this 

reason, the score is maintained, the comparison is given in Table 7-44. 
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Table 7-44 Comparison of RMSE with Input Limits 

Axis RMSE PIDs 
RMSE LQ + Integral 

Action 
RMSE MPC + Integral Action 

North Position [m] 0.7965 0.6999 0.9201 

East Position [m] 0.9608 1.1153 1.007 

Yaw Angle [Deg.] 1.0256 1.013 1.0974 

Score 2 2 2 

7.5.2.5 Input Signals 

The maximum values are the same in all controllers because of the limits. The maximum mean 

values are found in the MPC for the surge action, and in the PIDs for the yaw action. In Sway, 

the mean values for all the controllers are very similar. As seen in Table 7-45. 

Table 7-45 Comparison of Input Values with Limits for Input Signals 

State U PIDs U LQ + Integral Action U MPC + Integral Action 

Max. Surge [N] 2.00E+05 2.00E+05 2.00E+05 

Max. Sway [N] 1.00E+06 2.00E+05 1.00E+06 

Max. Yaw [Nm] 1.00E+06 1.00E+06 1.00E+06 

Mean Surge [N] 6.00E+00 6.00E+00 -1.76E+02 

Mean Sway [N] -4.35E+04 -4.35E+04 -4.34E+04 

Mean Yaw [Nm] 4.44E+02 2.19E+02 -8.50E+01 

The total values summary is found in Table 7-46. There is change in comparison to the case 

without input limits. Now, the PID controller has the most usage of u in Surge and Yaw, 

whereas the largest value for sway is for LQ. It is also worth noting that the total values increase 

for LQ and PID controllers with the control signal constraints, while they decrease for the MPC 

method. Therefore, MPC is the best in this benchmark. 

Table 7-46 Comparison of Total Values of u for with Limits in the Input Signals 

Controller PIDs TV LQ + Integral Action TV MPC + Integral Action TV 

Surge 8.97E+06 4.35E+06 2.61E+06 

Sway 7.21E+06 2.48E+07 2.23E+07 

Yaw 8.80E+08 6.62E+08 3.77E+07 

Score 1.5 1.5 3 

7.5.2.6 Scores and Controller Selection 

The final scores for the case with restrained control signals are found in Table 7-47. The 

performance of the controllers decreases with regards to the case without input constraints, but 

the controllers behave adequately enough. Nevertheless, MPC proves to be more resilient to 

changes in the constraints by having a smaller total value index, which aligns to the logic of 

MPC control, where a set of equality and inequality constraints, and input limits are considered 

for the calculation of u. In this case, the best option is the MPC control with integral action. 
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Table 7-47 Scores Summary with Control Signal Limits 

Benchmark PIDs LQ + Integral Action MPC + Integral Action 

General Behaviour 2.5 2.5 2.5 

Settling Times 0.5 1 1 

Overshot 2 2 2 

Oscillations 2.5 3 2 

RMSE 2 2 2 

U usage (TV) 2 2.5 3 

Total 11 12 12.5 

7.6 Analysis of the Results 

The three control methods show acceptable behavior either with unlimited or limited control 

signals; in all methods and with the two configurations, the setpoints are followed closely and 

when the setpoint is constant, the position settles nicely. However, the response of the PID 

deteriorates the most when the limits are set in place. 

The settling times are acceptable for the three methods in the constrained and unconstrained 

case, but the increase is more substantial for the PID controllers. 

The overshot is kept in adequate values for all the cases and there is even an improvement in 

the values for the PID controllers, which Is seen when comparing Table 7-34 to Table 7-42. 

The oscillations deteriorate with the limits in the control signals, increasing considerable in the 

MPC controller for the yaw angle. Nevertheless, some slow oscillations are to be expected 

giving the type of application. 

The RMSE values for the three controllers in the constrained and unconstrained cases are good, 

this aligns with the overall behavior of the controllers. 

Perhaps the deciding factor is the usage of 𝑢. The comparison of the total values of u are 

replicated here for easy of reading in Table 7-48 and  

 

Table 7-49. The highest total values for both cases are highlighted in yellow and the lowest in 

green. It is seen that PID and LQ have lower usage for the unconstrained case, but when the 

constraints are implemented, the lower values are in MPC, for all the cases. This hints some 

capability of the MPC method to better adapt and account for the constraints and would make 

it a better option over the other two.  

It comes with a cost though, as the use of quadprog makes the execution of the main control 

loop much slower. 

Table 7-48 Comparison of Total Values for unconstrained input signals 

Controller PIDs TV LQ + Integral Action TV MPC + Integral Action TV 

Surge 5.92E+06 3.69E+06 6.41E+06 

Sway 8.02E+06 7.75E+06 8.65E+07 

Yaw 1.52E+08 6.99E+07 5.49E+08 

Score 2.1 3 1.5 
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Table 7-49 Comparison of Total Values of u for with Limits in the Input Signals 

Controller PIDs TV LQ + Integral Action TV MPC + Integral Action TV 

Surge 8.97E+06 4.35E+06 2.61E+06 

Sway 7.21E+06 2.48E+07 2.23E+07 

Yaw 8.80E+08 6.62E+08 3.77E+07 

Score 1.5 1.5 3 
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8 Conclusions 
After the implementation of the model, it is observed that its behavior does not change 

considerably after the drag coefficients are approximated to zero. This measure was taken since 

the drag coefficients have very small magnitudes and in equations (2.4), (2.5), and (2.6); it is 

seen that they are divided by the momentum coefficients, which are substantially bigger. After 

comparing both versions of the model, there is not a noticeable difference in behavior, as the 

covariance between them for all the states was close to the computer’s mathematical zero. 

The use of a PID controller poses an advantage over what could be called “model dependent” 

methods, since there is no need for a deep mathematical understanding of the system before 

being able to tune a controller that shows an adequate behavior. This was seen in chapter 3, 

where the PID controllers were tuned using the Ziegler-Nichols method. Nevertheless, it was 

also noticed that the controllers are very susceptible to disturbances and their parameters 

needed to be tuned with every change in the windspeed values. 

The use of the PID controllers provides an aiding hand when performing the system 

identification. The position and input signals resulting from the PID simulation were then used 

as inputs in the dsr_e function to obtain the matrices A, B, and D of the estimated linearized 

model. This provided a much more accurate model which in turn could be better controlled 

with LQ and MPC methods. 

The tuning of Q and P matrices in LQ Optimal control with integral action is analog to the 

tuning of a PID controller. It is a trial-and-error process where a balance had to be reached 

between reducing the error and limiting the variation in the control signal u. Nevertheless, LQ 

is a much more robust controller which accounts for the previously obtained model matrices 

and a Kalman filter for state estimation, which makes its response considerably better than 

PID’s. 

It could be argued that MPC is simply the implementation of LQ Optimal control in every 

iteration of the control loop with the addition of a sliding horizon. The main advantage of MPC 

is that it provides a way to account for inequality and equality constraints to obtain an optimized 

possible response. However, this increases the computational costs considerably.  

The comparison of the three methods under the same disturbance conditions show that in 

general, all have an acceptable performance, being LQ Optimal Control with Integral Action 

the best for unconstrained control signals and MPC with integral action when the signals are 

constrained. Nevertheless, MPC is interesting as the usage of u was reduced when the 

constraints were implemented, whereas with PID and LQ this increased. So, in this case, MPC 

with integral action seems like the best option. 

It is important to note that in real-life cases, more than one method is used to control complex 

systems like a marine vessel. MPC poses a challenge due to the high computational costs, 

which only increase when more constraints are added, or the prediction horizon is increased. 

As per [5]. A good idea would be to use MPC to perform a high-level control, in which It is 

used to establish setpoints or most optimal operational windows, while LQ optimal control 

with Integral action or the PID controllers are used to do the setpoint tracking. 
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Appendices 
 

Appendix A MATLAB Scripts: See scripts.zip file 


