
Appendix A
Task Description MT-70-23 Eirik

Illing - Signed

Faculty of Technology, Natural Sciences and Maritime Sciences, Campus Porsgrunn

FMH606 Master's Thesis

Title: Object detection, information extraction and analysis of operator interface images
using computer vision and machine learning

USN supervisor: Associate Professor Ole M. Brastein and Professor Nils-Olav Skeie

External partner: Emerson Automation Solutions, Geir Falkevik

Task background:
Migrating from old outdated human machine interfaces (HMI), process displays or operator
graphics to new modern high-performance HMI´s (HPHMI) is often time consuming and
costly. When creating a proposal for such migration projects, the sales and project team are
often given an overview of today´s old displays in configuration files or in plain images. If the
input is configuration files, the engineers have tools for extracting data directly from these
files, resulting in a good estimate of display complexity and therefore a fair time and cost
estimate. However, if the input is plain images, the complexity analysis of these displays is
done manually by counting custom and non-custom objects in the display, static and
dynamic objects, clustering etc. This manual analysis is very time consuming and has a much
higher degree of uncertainty that could result in poor time and cost estimates.

Emerson delivers a world known distributed control system (DCS) known as DeltaV. DeltaV
comes with a fully integrated operator graphics tool known as DeltaV Operate. This tool has
served its purpose for many years for all of Emerson´s customer and will continue to do so in
many years to come. However, this operator graphics tool is based on older technology and
a new and better fully integrated operator graphics tool known as DeltaV Live has come to
replace it. DeltaV Live is a state-of-the-art modern stable framework for high performance
operator graphics, so migrating from DeltaV Operate to DeltaV Live is in high demand. These
migration projects are the foundation for this master´s thesis, where Emerson wants to
investigate the possibility for creating a tool to do a complexity analysis of old DeltaV
Operate operator graphics, to get a good and fair estimate of migration time and cost for its
customers.

Task description:
Interim goals:

• Summary of literature review regarding object detection methods in images
(containing a large quantity of objects).

• Choose one or more suitable approaches for object detection and object
classification to extract components and information from images.

• Describe how to obtain valuable datasets for training, validating, and testing models
for this specific task. Look into the possibility of customer adjusted standard dynamo
sets for object detection.

• Suggest analytical methods for pre-processing and clean-up/preparations of datasets.
• Develop machine learning models and check the accuracy and repeatability of the

models.
• Develop an application focusing on user interface (UI) design for interacting with the

model/software.

Appendix A

Student category: IIA (EET, EPE, IIA or PT students)

Is the task suitable for online students (not present at the campus)?
No

Practical arrangements:
This project is reserved for the industry master student at Emerson, Eirik Illing.

Supervision:
As a general rule, the student is entitled to 15-20 hours of supervision. This includes
necessary time for the supervisor to prepare for supervision meetings (reading material to
be discussed, etc).

Signatures:

Supervisor (date and signature):

Student (write clearly in all capitalized letters):

Student (date and signature):

Appendix A

Appendix B
GANTT Project Planning

Company name Emerson & USN Legend:

Project lead Eirik Illing Risk: Slack:

Project Start Date: 01/01/2023 Low Risk 10 days January February
Scrolling Increment: 0

Medium Risk 5 days
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

High Risk 0 days

Milestone description Category Assigned to Progress Start Days S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S

1 PROJECT STARTUP 01/01/2023 31

1.1 Sign final project description Goal Ole, Nils-Olav, Eirik, Geir 100% 31/01/2023 1

1.2 Startup meeting Milestone Ole, Nils-Olav, Eirik, Geir 100% 06/01/2023 1

1.3 Project structure setup On Track Eirik 100% 01/01/2023 5

1.4 Get familiar with subject (Canvas) Low Risk Eirik 100% 05/01/2023 1

1.5 Complete fast.ai course On Track Eirik 100% 01/01/2023 13

1.6 Collect datasets Med Risk Eirik 100% 09/01/2023 7

1.7
Adjust project description (if
applicable)

Milestone Ole, Nils-Olav, Eirik, Geir 100% 27/01/2023 1

2 LITERATURE STUDY 09/01/2023 33

2.1 Note keywords Low Risk Eirik 100% 10/01/2023 15

2.2 Setup citing software (Zotero) On Track Eirik 100% 03/01/2023 1

2.3 Literature review Milestone Eirik 100% 28/01/2023 1

2.3.1
Search for previous work or
knowledge on the subject

Low Risk Eirik 100% 10/01/2023 5

2.3.2
Look into detection of objects in
large images

Low Risk Eirik 100% 15/01/2023 5

2.3.3
Look into picture analysis done by
using machine learning methods

Low Risk Eirik 100% 17/01/2023 3

2.3.4 Search, read, note Low Risk Eirik 100% 10/01/2023 18

2.4 Object detection Milestone Eirik 100% 10/02/2023 1

2.4.1
How to train model for detection /
bounding of objects

Low Risk Eirik 100% 28/01/2023 7

2.4.2
How to obtain metadata of the
bounded objects

Low Risk Eirik 100% 02/02/2023 7

2.4.3
How to display detected objects and
data related to them

Low Risk Eirik 100% 03/02/2023 7

2.5
Mandatory meeting. Deside upon
method / how to proceed.

Milestone Eirik 100% 27/02/2023 1

3 PROJECT EXECUTION 01/02/2023 98

3.1 Final execution Milestone Eirik 10/05/2023 1

3.2 Obtain datasets Milestone Eirik 100% 20/02/2023 1

3.2.1 Collect available data from Emerson Med Risk Eirik 100% 10/02/2023 2

3.2.2
Look into generating new data using
GAN, Stable Diff?

Med Risk Eirik 100% 12/02/2023 3

3.2.3
Verify quality of training, validation
and test data

Med Risk Eirik 100% 15/02/2023 2

3.2.4
Look into transfer learning used to
adjust models based on new dataset?

Low Risk Eirik 100% 10/02/2023 7

3.3 Pre-process datasets Milestone Eirik 100% 20/02/2023 1

3.3.1 Lable data for image classification High Risk Eirik 100% 10/02/2023 10

3.3.2
Look into optimal sizing, shape,
orientation, flips, colors etc.

Med Risk Eirik 100% 15/02/2023 5

3.3.3 Annotate images for object detection Med Risk Eirik 100% 05/03/2023 3

3.3.4
Look into auto annotation using
image classifier and sliding window

Med Risk Eirik 100% 05/03/2023 3

3.4 Develop and test models and tools Milestone Eirik 100% 30/03/2023 1

3.4.1
Set up test environment and
notebook for iterative testing

Med Risk Eirik 100% 17/02/2023 3

3.4.2
Test different deep learning models
for classification

Low Risk Eirik 100% 20/02/2023 30

3.4.3
Compare models and methods based
on accuracy and repeatability

Low Risk Eirik 100% 20/02/2023 38

3.4.4
Develop sliding window object
detection using the image classifier

On Track Eirik 100% 25/02/2023 4

3.4.5
Develop tool for annotating images
for object detection

On Track Eirik 100% 28/02/2023 10

3.4.6
Test different object detection
methods and compair them

Low Risk Eirik 100% 10/03/2023 5

3.4.7
Extract, understand and store text in
image

On Track Eirik 100% 15/03/2023 5

3.4.8
Develop export format tool where
object and tag is correlated

Low Risk Eirik 100% 30/03/2023 3

3.5 Develop host application Milestone Eirik 100% 25/04/2023 1

3.5.1
UML Diagrams - UCD, Sequence
diagram, Class diagram

Low Risk Eirik 100% 29/03/2023 5

3.5.2
Design multi-platform application
using HCD principles

Low Risk Eirik 100% 01/04/2023 5

3.5.3
Implement solution, develop
application, wrap / host model

High Risk Eirik 100% 04/04/2023 20

3.5.4 Test and build application High Risk Eirik 100% 19/04/2023 7

4 REPORT WRITING 01/03/2023 75

4.1 Deadline for delivering Thesis Goal Eirik 14/05/2023 2

4.2 Create outline of report Low Risk Eirik 100% 01/03/2023 2

4.3
Write introduction, literature review
and system description

Low Risk Eirik 100% 03/03/2023 72

4.4 Write method Med Risk Eirik 100% 25/03/2023 50

4.5 Write result High Risk Eirik 100% 25/03/2023 50

4.6 Write discussion and conclusion High Risk Eirik 100% 25/04/2023 7

4.7 Write summary and abstract High Risk Eirik 100% 30/04/2023 14

4.8
Spell check, grammar, layout, pdf
print and check, cleanup

High Risk Eirik 100% 02/05/2023 1

4.9 Nils-Olav review of repport On Track Nils-Olav 100% 03/05/2023 5

4.10
Review feedback from Nils-Olav,
make changes and deliver

On Track Eirik 100% 08/05/2023 5

5 EXPO 15/05/2023 9

5.1 Create poster or video for Expo High Risk Eirik 50% 25/04/2023 29

5.2
Expo, thesis are to be presented for
the public

Milestone Eirik 24/05/2023 1

6 ORAL PRESENTATION

6.1 Prepare oral presentation Med Risk Eirik 0% 16/05/2023 38

6.2
Deadline for oral presentation and
examination

Milestone Ole, Nils-Olav, Eirik, Geir 23/06/2023 1

7 OTHER 01/01/2023 173

7.1
Deadline for supervisor to find
external assessor

Milestone Ole, Nils-Olav 100% 04/04/2023 1

7.2
Deadline for deciding date for oral
precentation and examination

Milestone Ole, Nils-Olav, Eirik, Geir 100% 25/04/2023 1

7.3 Deadline for grading the thesis Goal Ole, Nils-Olav, External 23/06/2023 1

7.4 Presentation at Emerson Milestone
Examination? Open for all

June 6.
23/06/2023 1

7.5
Deadline for submitting 250 word
abstraction for the paper

Milestone Nils-Olav, Eirik 100% 15/02/2023 1

7.6
Deadline for submitting the paper to
SIMS

Milestone Nils-Olav, Ole, Eirik 15/05/2023 1

To add more data, Insert new rows
ABOVE this one

High risk Unassigned

Master's Thesis MT-70-23

On track Low risk Med risk

Appendix B

Company name Emerson & USN Legend:

Project lead Eirik Illing Risk: Slack:

Project Start Date: 01/01/2023 Low Risk 10 days February March April
Scrolling Increment: 56

Medium Risk 5 days
26 27 28 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

High Risk 0 days

Milestone description Category Assigned to Progress Start Days S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S

1 PROJECT STARTUP 01/01/2023 31

1.1 Sign final project description Goal Ole, Nils-Olav, Eirik, Geir 100% 31/01/2023 1

1.2 Startup meeting Milestone Ole, Nils-Olav, Eirik, Geir 100% 06/01/2023 1

1.3 Project structure setup On Track Eirik 100% 01/01/2023 5

1.4 Get familiar with subject (Canvas) Low Risk Eirik 100% 05/01/2023 1

1.5 Complete fast.ai course On Track Eirik 100% 01/01/2023 13

1.6 Collect datasets Med Risk Eirik 100% 09/01/2023 7

1.7
Adjust project description (if
applicable)

Milestone Ole, Nils-Olav, Eirik, Geir 100% 27/01/2023 1

2 LITERATURE STUDY 09/01/2023 33

2.1 Note keywords Low Risk Eirik 100% 10/01/2023 15

2.2 Setup citing software (Zotero) On Track Eirik 100% 03/01/2023 1

2.3 Literature review Milestone Eirik 100% 28/01/2023 1

2.3.1
Search for previous work or
knowledge on the subject

Low Risk Eirik 100% 10/01/2023 5

2.3.2
Look into detection of objects in
large images

Low Risk Eirik 100% 15/01/2023 5

2.3.3
Look into picture analysis done by
using machine learning methods

Low Risk Eirik 100% 17/01/2023 3

2.3.4 Search, read, note Low Risk Eirik 100% 10/01/2023 18

2.4 Object detection Milestone Eirik 100% 10/02/2023 1

2.4.1
How to train model for detection /
bounding of objects

Low Risk Eirik 100% 28/01/2023 7

2.4.2
How to obtain metadata of the
bounded objects

Low Risk Eirik 100% 02/02/2023 7

2.4.3
How to display detected objects and
data related to them

Low Risk Eirik 100% 03/02/2023 7

2.5
Mandatory meeting. Deside upon
method / how to proceed.

Milestone Eirik 100% 27/02/2023 1

3 PROJECT EXECUTION 01/02/2023 98

3.1 Final execution Milestone Eirik 10/05/2023 1

3.2 Obtain datasets Milestone Eirik 100% 20/02/2023 1

3.2.1 Collect available data from Emerson Med Risk Eirik 100% 10/02/2023 2

3.2.2
Look into generating new data using
GAN, Stable Diff?

Med Risk Eirik 100% 12/02/2023 3

3.2.3
Verify quality of training, validation
and test data

Med Risk Eirik 100% 15/02/2023 2

3.2.4
Look into transfer learning used to
adjust models based on new dataset?

Low Risk Eirik 100% 10/02/2023 7

3.3 Pre-process datasets Milestone Eirik 100% 20/02/2023 1

3.3.1 Lable data for image classification High Risk Eirik 100% 10/02/2023 10

3.3.2
Look into optimal sizing, shape,
orientation, flips, colors etc.

Med Risk Eirik 100% 15/02/2023 5

3.3.3 Annotate images for object detection Med Risk Eirik 100% 05/03/2023 3

3.3.4
Look into auto annotation using
image classifier and sliding window

Med Risk Eirik 100% 05/03/2023 3

3.4 Develop and test models and tools Milestone Eirik 100% 30/03/2023 1

3.4.1
Set up test environment and
notebook for iterative testing

Med Risk Eirik 100% 17/02/2023 3

3.4.2
Test different deep learning models
for classification

Low Risk Eirik 100% 20/02/2023 30

3.4.3
Compare models and methods based
on accuracy and repeatability

Low Risk Eirik 100% 20/02/2023 38

3.4.4
Develop sliding window object
detection using the image classifier

On Track Eirik 100% 25/02/2023 4

3.4.5
Develop tool for annotating images
for object detection

On Track Eirik 100% 28/02/2023 10

3.4.6
Test different object detection
methods and compair them

Low Risk Eirik 100% 10/03/2023 5

3.4.7
Extract, understand and store text in
image

On Track Eirik 100% 15/03/2023 5

3.4.8
Develop export format tool where
object and tag is correlated

Low Risk Eirik 100% 30/03/2023 3

3.5 Develop host application Milestone Eirik 100% 25/04/2023 1

3.5.1
UML Diagrams - UCD, Sequence
diagram, Class diagram

Low Risk Eirik 100% 29/03/2023 5

3.5.2
Design multi-platform application
using HCD principles

Low Risk Eirik 100% 01/04/2023 5

3.5.3
Implement solution, develop
application, wrap / host model

High Risk Eirik 100% 04/04/2023 20

3.5.4 Test and build application High Risk Eirik 100% 19/04/2023 7

4 REPORT WRITING 01/03/2023 75

4.1 Deadline for delivering Thesis Goal Eirik 14/05/2023 2

4.2 Create outline of report Low Risk Eirik 100% 01/03/2023 2

4.3
Write introduction, literature review
and system description

Low Risk Eirik 100% 03/03/2023 72

4.4 Write method Med Risk Eirik 100% 25/03/2023 50

4.5 Write result High Risk Eirik 100% 25/03/2023 50

4.6 Write discussion and conclusion High Risk Eirik 100% 25/04/2023 7

4.7 Write summary and abstract High Risk Eirik 100% 30/04/2023 14

4.8
Spell check, grammar, layout, pdf
print and check, cleanup

High Risk Eirik 100% 02/05/2023 1

4.9 Nils-Olav review of repport On Track Nils-Olav 100% 03/05/2023 5

4.10
Review feedback from Nils-Olav,
make changes and deliver

On Track Eirik 100% 08/05/2023 5

5 EXPO 15/05/2023 9

5.1 Create poster or video for Expo High Risk Eirik 50% 25/04/2023 29

5.2
Expo, thesis are to be presented for
the public

Milestone Eirik 24/05/2023 1

6 ORAL PRESENTATION

6.1 Prepare oral presentation Med Risk Eirik 0% 16/05/2023 38

6.2
Deadline for oral presentation and
examination

Milestone Ole, Nils-Olav, Eirik, Geir 23/06/2023 1

7 OTHER 01/01/2023 173

7.1
Deadline for supervisor to find
external assessor

Milestone Ole, Nils-Olav 100% 04/04/2023 1

7.2
Deadline for deciding date for oral
precentation and examination

Milestone Ole, Nils-Olav, Eirik, Geir 100% 25/04/2023 1

7.3 Deadline for grading the thesis Goal Ole, Nils-Olav, External 23/06/2023 1

7.4 Presentation at Emerson Milestone
Examination? Open for all

June 6.
23/06/2023 1

7.5
Deadline for submitting 250 word
abstraction for the paper

Milestone Nils-Olav, Eirik 100% 15/02/2023 1

7.6
Deadline for submitting the paper to
SIMS

Milestone Nils-Olav, Ole, Eirik 15/05/2023 1

To add more data, Insert new rows
ABOVE this one

High risk Unassigned

Master's Thesis MT-70-23

On track Low risk Med risk

Appendix B

Company name Emerson & USN Legend:

Project lead Eirik Illing Risk: Slack:

Project Start Date: 01/01/2023 Low Risk 10 days April May June
Scrolling Increment: 112

Medium Risk 5 days
23 24 25 26 27 28 29 30 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

High Risk 0 days

Milestone description Category Assigned to Progress Start Days S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S S M T W T F S

1 PROJECT STARTUP 01/01/2023 31

1.1 Sign final project description Goal Ole, Nils-Olav, Eirik, Geir 100% 31/01/2023 1

1.2 Startup meeting Milestone Ole, Nils-Olav, Eirik, Geir 100% 06/01/2023 1

1.3 Project structure setup On Track Eirik 100% 01/01/2023 5

1.4 Get familiar with subject (Canvas) Low Risk Eirik 100% 05/01/2023 1

1.5 Complete fast.ai course On Track Eirik 100% 01/01/2023 13

1.6 Collect datasets Med Risk Eirik 100% 09/01/2023 7

1.7
Adjust project description (if
applicable)

Milestone Ole, Nils-Olav, Eirik, Geir 100% 27/01/2023 1

2 LITERATURE STUDY 09/01/2023 33

2.1 Note keywords Low Risk Eirik 100% 10/01/2023 15

2.2 Setup citing software (Zotero) On Track Eirik 100% 03/01/2023 1

2.3 Literature review Milestone Eirik 100% 28/01/2023 1

2.3.1
Search for previous work or
knowledge on the subject

Low Risk Eirik 100% 10/01/2023 5

2.3.2
Look into detection of objects in
large images

Low Risk Eirik 100% 15/01/2023 5

2.3.3
Look into picture analysis done by
using machine learning methods

Low Risk Eirik 100% 17/01/2023 3

2.3.4 Search, read, note Low Risk Eirik 100% 10/01/2023 18

2.4 Object detection Milestone Eirik 100% 10/02/2023 1

2.4.1
How to train model for detection /
bounding of objects

Low Risk Eirik 100% 28/01/2023 7

2.4.2
How to obtain metadata of the
bounded objects

Low Risk Eirik 100% 02/02/2023 7

2.4.3
How to display detected objects and
data related to them

Low Risk Eirik 100% 03/02/2023 7

2.5
Mandatory meeting. Deside upon
method / how to proceed.

Milestone Eirik 100% 27/02/2023 1

3 PROJECT EXECUTION 01/02/2023 98

3.1 Final execution Milestone Eirik 10/05/2023 1

3.2 Obtain datasets Milestone Eirik 100% 20/02/2023 1

3.2.1 Collect available data from Emerson Med Risk Eirik 100% 10/02/2023 2

3.2.2
Look into generating new data using
GAN, Stable Diff?

Med Risk Eirik 100% 12/02/2023 3

3.2.3
Verify quality of training, validation
and test data

Med Risk Eirik 100% 15/02/2023 2

3.2.4
Look into transfer learning used to
adjust models based on new dataset?

Low Risk Eirik 100% 10/02/2023 7

3.3 Pre-process datasets Milestone Eirik 100% 20/02/2023 1

3.3.1 Lable data for image classification High Risk Eirik 100% 10/02/2023 10

3.3.2
Look into optimal sizing, shape,
orientation, flips, colors etc.

Med Risk Eirik 100% 15/02/2023 5

3.3.3 Annotate images for object detection Med Risk Eirik 100% 05/03/2023 3

3.3.4
Look into auto annotation using
image classifier and sliding window

Med Risk Eirik 100% 05/03/2023 3

3.4 Develop and test models and tools Milestone Eirik 100% 30/03/2023 1

3.4.1
Set up test environment and
notebook for iterative testing

Med Risk Eirik 100% 17/02/2023 3

3.4.2
Test different deep learning models
for classification

Low Risk Eirik 100% 20/02/2023 30

3.4.3
Compare models and methods based
on accuracy and repeatability

Low Risk Eirik 100% 20/02/2023 38

3.4.4
Develop sliding window object
detection using the image classifier

On Track Eirik 100% 25/02/2023 4

3.4.5
Develop tool for annotating images
for object detection

On Track Eirik 100% 28/02/2023 10

3.4.6
Test different object detection
methods and compair them

Low Risk Eirik 100% 10/03/2023 5

3.4.7
Extract, understand and store text in
image

On Track Eirik 100% 15/03/2023 5

3.4.8
Develop export format tool where
object and tag is correlated

Low Risk Eirik 100% 30/03/2023 3

3.5 Develop host application Milestone Eirik 100% 25/04/2023 1

3.5.1
UML Diagrams - UCD, Sequence
diagram, Class diagram

Low Risk Eirik 100% 29/03/2023 5

3.5.2
Design multi-platform application
using HCD principles

Low Risk Eirik 100% 01/04/2023 5

3.5.3
Implement solution, develop
application, wrap / host model

High Risk Eirik 100% 04/04/2023 20

3.5.4 Test and build application High Risk Eirik 100% 19/04/2023 7

4 REPORT WRITING 01/03/2023 75

4.1 Deadline for delivering Thesis Goal Eirik 14/05/2023 2

4.2 Create outline of report Low Risk Eirik 100% 01/03/2023 2

4.3
Write introduction, literature review
and system description

Low Risk Eirik 100% 03/03/2023 72

4.4 Write method Med Risk Eirik 100% 25/03/2023 50

4.5 Write result High Risk Eirik 100% 25/03/2023 50

4.6 Write discussion and conclusion High Risk Eirik 100% 25/04/2023 7

4.7 Write summary and abstract High Risk Eirik 100% 30/04/2023 14

4.8
Spell check, grammar, layout, pdf
print and check, cleanup

High Risk Eirik 100% 02/05/2023 1

4.9 Nils-Olav review of repport On Track Nils-Olav 100% 03/05/2023 5

4.10
Review feedback from Nils-Olav,
make changes and deliver

On Track Eirik 100% 08/05/2023 5

5 EXPO 15/05/2023 9

5.1 Create poster or video for Expo High Risk Eirik 50% 25/04/2023 29

5.2
Expo, thesis are to be presented for
the public

Milestone Eirik 24/05/2023 1

6 ORAL PRESENTATION

6.1 Prepare oral presentation Med Risk Eirik 0% 16/05/2023 38

6.2
Deadline for oral presentation and
examination

Milestone Ole, Nils-Olav, Eirik, Geir 23/06/2023 1

7 OTHER 01/01/2023 173

7.1
Deadline for supervisor to find
external assessor

Milestone Ole, Nils-Olav 100% 04/04/2023 1

7.2
Deadline for deciding date for oral
precentation and examination

Milestone Ole, Nils-Olav, Eirik, Geir 100% 25/04/2023 1

7.3 Deadline for grading the thesis Goal Ole, Nils-Olav, External 23/06/2023 1

7.4 Presentation at Emerson Milestone
Examination? Open for all

June 6.
23/06/2023 1

7.5
Deadline for submitting 250 word
abstraction for the paper

Milestone Nils-Olav, Eirik 100% 15/02/2023 1

7.6
Deadline for submitting the paper to
SIMS

Milestone Nils-Olav, Ole, Eirik 15/05/2023 1

To add more data, Insert new rows
ABOVE this one

High risk Unassigned

Master's Thesis MT-70-23

On track Low risk Med risk

Appendix B

Appendix C
WBS Project Planning

Project
Execution

Literature
review

Object
detection

Obtain
datasets

Pre-process
datasets

Develop and test
m

odels and tools
Develop

application

Search for previous w
ork

or know
ledge regarding

object detection in
process display im

ages.
Industrial related topics.

Look into object
detection in large

im
ages. Extracting data

regardng them
.

Look into picture
analysis done by
m

achine learning
m

odels.

Read, cite, refer: Papers,
books, videos, researc?

How
 to train m

odel for
detection / bounding of

objects in im
age.

How
 to obtain m

etadata
of the detected objects.

How
 to display detected

objects and m
etadata

related to them
.

Collect w
hat is available

from
 Em

erson.

Generate new
 data by

crapification,
augm

entation, GAN
,

Stable Diffusion? If
possible.

Verify quality of training,
validation and test data.

U
se transfer learning to

adjust m
odel based on

new
 custom

er datasets,
to further analyse new

operator graphic im

ages

Lable data for im
age /

object classification.

Look into augm
entation

of data such as sizing,
shape, orientation, flips,

colors etc.

Setup test environm
ent,

create notebook for
iterative testing and

deploying.

Test different deep
learning m

odels: neural
nets size, layers, epocs,
training, validation and

test sets.

Com
pare

m
odels,

m
ethods based on

accracy and
repeatability.

Develop sliding w
indow

object detection using

the im
age classifier.

U
M

L -U
se Case

Diagram
, Sequence

diagram
, Class diagram

.

Design m
ulti-plattform

application, using best

principles from
 HCD

(Hum
an Centered

Design, U
I &

 U
X).

Im
plem

ent solution,
develop application.

W
rap or host M

L m
odel?

If w
rap (size of input?), if

host (api?).

Test and build
application.

2.3.1

2.3.2

2.3.3

2.3.4

3.2.1

3.2.2

3.2.3

3.2.4

3.3.1

3.3.2

3.1.3

3.1.4

3.4.1

3.4.2

3.4.3

3.4.4

3.5.1

3.5.2

3.5.3

3.5.4

2.4.1

2.4.2

2.4.3

3.1.4

2.3
2.4

3.2
3.3

3.4
3.5

Literature
Study

Look into annotating of
im

ages for object
detection

3.3.3

Look into auto
annotation using im

age
classifier and sliding

w
indow

3.3.4

Develop tool for
annotating im

ages for
object detection

3.4.5

Test different object
detection m

ethods and
com

pare them
3.4.6

Extract, translate and
store text in im

age
3.4.7

Develop export form
at

tool w
here object and

tag is correlated
3.4.8

Appendix C

Appendix D
Development Environment

Elaborated

Appendix D Development Environment Eirik Illing

1 Development environment
Machine learning tasks can be computationally heavy to perform. Specially during
development of certain applications while training and testing. A decent hardware and
software environment is key for efficiency and performance. This development station and
environment will be hosted on a local computer in the office, with remote access via
TeamViewer. The computer will also be connected to a Raspberry PI4 that is configured to
reboot if/after power loss. This Raspberry PI4 can also be reached with TeamViewer, where a
wake on LAN magic package can be sent from the Raspberry PI4 to the development station,
thus turning it on. The development station is configured with Wake On LAN in bios and on
the Ethernet Controller.

1.1 Hardware environment
The most demanding task while developing machine learning models is the training of
models and predicting large quantity of information. For this process, GPUs are key
components, as they are built to perform complex parallel computation. GPUs are more
suited for these kinds of tasks compared to CPU because they are specifically designed for
calculations related to graphics and rendering. GPUs are equipped with more cores and
higher bandwidth than CPUs, thus able to perform a lot more tasks at once. CPUs are on the
other hand equipped with more powerful cores, better suited for sequential processing. One
significant difference between these two is that GPUs does not dynamically allocate and
dump memory the same way that CPUs does, so memory management is a key factor when
working with GPU computation. There are varies methods for handling these “out of
memory” error cases when working with machine learning, such as reducing batch size in
training, use smaller/less complex model, mixed precision training and killing processes. So,
when deciding upon hardware components for machine learning development, GPU and
cooling will be the most crucial components.

For this project, an old gaming computer seemed to be a good fit. The computer has a
GTX1080 overclocked GPU, an Intel Core i5-8400 processor, 16gib of DDR4 RAM, 250gib
M.2 SSD. Table 1 gives an overview of components and part numbers used in the
development machine.

Table 1: List of development environment hardware

Part name Part number Description

MSI B360I Gaming Pro AC,
Socket-1151

B360I GAMING PRO AC Motherboard

Intel Core i5-8400 Processor BX80684I58400 CPU

Asus GeForce GTX 1080 Rog
Strix

ROG STRIX-GTX1080-A8G-GAMING GPU

Corsair Vengance LPX DDR4
2400MHz 16gb

CMK16GX4M2A2400C14 RAM

WD Black SSD 250GB M.2 PCIe WDS250G2X0C SSD

Appendix D Development Environment Eirik Illing

Cooler Master MasterWATT 650 MPX-6501-AMAAB-EU PS

1.2 Software environment
The pc was reinstalled with Windows 10, student edition. Windows 10 is a perfectly fine
multipurpose OS designed for everything from everyday use to development. However, more
advanced development requiring a large quantity of open-source packages and flexibility can
get tedious when working with Windows. This is mainly because Windows focus on a
graphical user interface experience, while developing software often limits itself to working
with command line tools. Using some sort of Linux distro therefore seems like a more
appealing approach.

One thing to note about Windows is that it has better commercial software and hardware
drives support. Some sort of mix, running Windows as main OS and virtualizing an Ubuntu
environment is a good idea. However, running Ubuntu as a virtual machine will result in
hardware limitations as it is predefined with a specific amount of computing power when set
up. A virtual machine also requires some recourses just to run, and this could affect the
overall machine performance. It is also tedious to set up, allocate memory and configure file
sharing between Windows and virtual machine.

Second option is to dual boot the system with a native Ubuntu distro. This will give the distro
full access to computing power, but the disk space needs to be partitioned giving 50/50 to
Windows and Ubuntu. File sharing between these two OS’s is also a hassle, and it requires
the user to turn the machine on and off to switch environment. The hardware drives can also
become an issue on the Linux system.

The final and most diffidently best approach is to set up a Windows Subsystem for Linux
directly from Windows 10 terminal (CMD). WSL is Microsoft’s answer to more flexible
open-source Linux environments directly on Windows. Preventing developers from switching
to Linux distros as they advance in their carrier and making it more appealing for Linux users
to switch too Windows. WSL is a lightweight and integrated solution running Linux on a
Windows operating system. It can directly access files and share resources with the Windows
host. And since WSL also shares the same kernel as the Windows host, it also inherits the
security protections. This is not the case for a virtual machine running on Windows services
such as Hyper-V, VirtualBox or WMware Workstation.

Setting up WSL and installing a distro is easy. Find a good tutorial online, such as the one
referred to in this section [1]. Follow it and do adjustments required for different hardware
specifications. It is recommended to have some basic understanding of Linux file system and
package installation. Otherwise, use the internet to search for help and solve error messages.
Start by installing Docker Desktop on Windows, this is handy for containerizing projects
running on the Linux kernel using the WSL as backend. It is not required to have Docker
installed, but recommended. Next install WSL by running the wsl --install -d Ubuntu. Where
Ubuntu specifies the Linux distro for installation. Ubuntu will then be installed on the
machine, and can be opened by searching for “Ubuntu” in the Windows menu. A new
terminal with the Ubuntu terminal will open, representing the Ubuntu machine. Next it is
recommended to set up git and connect to a online git source-code storage and management
service such as GitKraken or GitHub. Then install Visual Studio Code as a code editor on
Windows, and connect it to WSL by adding the Remote Development extension pack. This
gives the possibility to open any folder from the Ubuntu terminal in VSC by running the

Appendix D Development Environment Eirik Illing

“code .” command. After the IDE or Code editor is integrated, it is time to install
development environment and packages in Ubuntu. Install MiniConda or Mamba, which is
lightweight Python Conda package manager. This will give the bare minimum to create
Conda environments and start Python development. Create a new Conda environment by
running the “conda create -n newEnv” command. It is recommended to work in separate
environments when developing to easier manage packages, prevent conflicts and backup.
Finally there is one last thing that needs to be taken care of to access the processing power of
the GPU hardware both in Windows and on the Ubuntu distro.

Installing packages for NVIDIA CUDA toolkit and cuDNN drivers. Go to the NVIDIA for
developers website, download and install the latest CUDA driver on the Windows OS. Then
download and install the cuDNN drivers for the Windows OS. Extract the cuDNN drivers
from the installation folder and move them into and overwrite exiting driver folders in the
\Program Files\NVIDIA GPU Computing Toolkit\CUDA\driver folder on the Windows
machine. Both the bin and libnvvp folder need to be added to the Environment Variable path.
A complete guide written by Bex T. can be found at towardsdatascience.com referenced here
[2]. When installation on Windows machine is done, it is recommended to test it locally
before installing the same driver support on the WSL Ubuntu system. This was found to be
unnecessary in this project.

Next, install the same support on WSL in the Ubuntu terminal using a few simple commands
shown in step 16 by Bex T. in towardsdatascience.com referenced here [1]. Then install the
preferred Machine Learning libraries such as PyTorch, Tensorflow, Keras in the Conda
environment created earlier or separate environments. It is recommended to keep some these
separated as they may cause conflict with each other. This, however, needs to be tested and
researched before use. If a mistake is made and conflicts occur, simply create new Conda
environment and reinstall. Remember to install the packages that are supported for WSL and
with GPU support. This can be found on the packages official cites. A list of packages used
in this project can be seen in …. In this project, a WSL Ubuntu distro was created, set up with
Git and MiniConda and multiple new template Conda environments were created with all
packages and GPU functionality. This template is then copied into new development
environments for testing and developing. This way, a fresh working environment is always
available if something should go wrong in the developing environment. This environment can
also be exported to a .yaml file and imported on other machines running a Conda setup on
Ubuntu distro.

Appendix D Development Environment Eirik Illing

[1] B. T, “How to Create Perfect Machine Learning Development Environment With WSL2
on Windows 10/11,” Medium, Dec. 09, 2022. https://towardsdatascience.com/how-to-
create-perfect-machine-learning-development-environment-with-wsl2-on-windows-10-
11-2c80f8ea1f31 (accessed Feb. 14, 2023).

[2] B. T, “How to Finally Install TensorFlow 2 GPU on Windows 10 in 2022,” Medium,
Dec. 09, 2022. https://towardsdatascience.com/how-to-finally-install-tensorflow-gpu-on-
windows-10-63527910f255 (accessed Feb. 14, 2023).

Appendix E
Single-Label Classifier

Jupyter Notebook

Appendix E

Appendix E

Appendix E

Appendix E

Appendix E

Appendix E

Appendix E

Appendix E

Appendix F
Multi-Label Classifier

Jupyter Notebook

Appendix F

Appendix F

Appendix F

Appendix F

Appendix F

Appendix F

Appendix F

Appendix F

Appendix F

Appendix G
Pyramid Scaled Sliding Window

NMS Classifier

Jupyter Notebook

Appendix G

Appendix G

Appendix G

Appendix G

Appendix G

Appendix G

Appendix I
Split Image Annotation YOLO

Prep

Jupyter Notebook

Appendix I

Appendix I

Appendix I

Appendix J
OCR Prep

Python code

Appendix J OCR Eirik Illing

import re
import cv2
import numpy as np
import pytesseract
from PIL import Image

img_path = 'img/111.jpg'

Define a list of regular expression patterns to match the desired formats
"""patterns = [r'\d{3}[a-zA-Z]+\d{2}',
 r'[a-zA-Z]+-\d{4}',
 r'[a-zA-Z]?\d{4}',
 r'[a-zA-Z]{2}-\d{4}',
 r'\d{3},\d{2},\d{2}'
]"""

patterns = [
 r'\d{3}[a-zA-Z]+\d{2}',
 r'[a-zA-Z]+-\d{4}',
 r'[a-zA-Z]?\d{4}',
 r'[a-zA-Z]{2}-\d{4}',
 r'\d{3}[,]\d{1}[a-zA-Z]+[,]\d{2}',
 r'\d{3}[,]\d{1}[a-zA-Z]+[,]\d{2}[a-zA-Z]+',
 r'\d{3}[,]\d{1}[a-zA-Z]+[,]\d{1}[a-zA-Z]+[,]\d{1}[a-zA-Z]+[,]\d{1}[a-zA-
Z]+[,]\d{2}[a-zA-Z]+',
 r'\d{3}[,]\d{1}[a-zA-Z]+[,]\d{1}[a-zA-Z]+[,]\d{1}[a-zA-Z]+[,]\d{1}[a-zA-
Z]+[,]\d{1}[a-zA-Z]+[,]\d{1}[a-zA-Z]+[,]\d{1}[a-zA-Z]+[,]\d{1}[a-zA-Z]+',
 r'\d{3}[,]\d{1}[a-zA-Z]+[,]\d{1}[a-zA-Z]+[,]\d{1}[a-zA-Z]+[,]\d{1}[a-zA-
Z]+[,]\d{1}[a-zA-Z]+[,]\d{1}[a-zA-Z]+[,]\d{1}[a-zA-Z]+[,]\d{1}[a-zA-Z]+[,
]\d{2}[a-zA-Z]+',
 r'\d{3}[,]\d{1}[a-zA-Z]+[,]\d{1}[a-zA-Z]+[,]\d{1}[a-zA-Z]+[,]\d{1}[a-zA-
Z]+[,]\d{1}[a-zA-Z]+[,]\d{1}[a-zA-Z]+[,]\d{1}[a-zA-Z]+[,]\d{1}[a-zA-Z]+[,
]\d{1}[a-zA-Z]+[,]\d{1}[a-zA-Z]+[,]\d{1}[a-zA-Z]+[,]\d{1}[a-zA-Z]+[,]\d{1}[a-
zA-Z]+[,]\d{1}[a-zA-Z]+[,]\d{1}[a-zA-Z]+[,]\d{1}[a-zA-Z]+[,]\d{2}[a-zA-Z]+',
 r'\d{3},\d{2},\d{2}',
 r"\d{3}[A-Za-z]{3}\d{2}",
]

Set the path to the tesseract executable
pytesseract.pytesseract.tesseract_cmd = '/usr/bin/tesseract'

Read the image using cv2.imread
image = cv2.imread(img_path)

Appendix J OCR Eirik Illing

Convert the image to grayscale
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

Get the height and width of the image
height, width = gray.shape[:2]

Divide the height and width by 2 to get the dimensions of each quadrant
h = height // 2
w = width // 2

Create an array to store the 4 quadrants of the image
quadrants = [gray[:h, :w], gray[:h, w:], gray[h:, :w], gray[h:, w:]]

Create a list to store the annotations
annotations = []

Set the minimum confidence level to 50%
conf_level = 10

Set the Pytesseract configuration parameters
config = f"--psm 6 --oem 3 -c min_confidence_level={conf_level}"

Define the scaling factors
scales = [1.5, 2, 4]

def get_range(threshold, sigma=0.33):
 return (1-sigma) * threshold, (1+sigma) * threshold

for scale in scales:
 # Loop over the quadrants
 for j, quadrant in enumerate(quadrants):
 # Randomly scale and rotate the image
 upscaled = cv2.resize(quadrant, None, fx=scale, fy=scale,
interpolation=cv2.INTER_LINEAR)

 #upscaled = cv2.resize(scaled, None, fx=4, fy=4,
interpolation=cv2.INTER_LINEAR)
 q_height, q_width = upscaled.shape[:2]
 # Apply a Laplacian filter to sharpen the image
 laplacian = cv2.Laplacian(upscaled, cv2.CV_8U) #test
 sharpened = cv2.addWeighted(upscaled, 1.5, laplacian, -0.5, 0) #test

 # Apply thresholding to create a binary image
 thresh = cv2.threshold(sharpened, 170, 255, cv2.THRESH_BINARY_INV)[1]

Appendix J OCR Eirik Illing

 # Apply kernel to dilate the image
 kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (1,1))
 # Invert the Canny edges image
 edges_inverted = cv2.bitwise_not(thresh)
 # Apply dilation to make text more visible
 dilated = cv2.dilate(edges_inverted, kernel, iterations=1)

 cv2.imwrite(f'img/quadrant_{j}.jpg', dilated)

 # Use pytesseract to extract text and bounding boxes from the image
 data = pytesseract.image_to_data(dilated,
output_type=pytesseract.Output.DICT, config=config, lang=None) #config=config)
 #print(data['text'])

 # Loop over the words and concatenate bounding boxes that are close
together
 for i in range(len(data['text'])):
 # Extract the text and bounding box coordinates
 text = data['text'][i]
 x, y, w, h = data['left'][i], data['top'][i], data['width'][i],
data['height'][i]

 # Apply the scaling factor used in the loop
 x = x / (scale)
 y = y / (scale)
 w = w / (scale)
 h = h / (scale)

 # Rescale the coordinates and dimensions of the bounding boxes
 if j == 0: # Top-left quadrant
 x_offset = 0
 y_offset = 0
 elif j == 1: # Top-right quadrant
 x_offset = width/2
 y_offset = 0
 elif j == 2: # Bottom-left quadrant
 x_offset = 0
 y_offset = height/2
 else: # Bottom-right quadrant
 x_offset = width/2
 y_offset = height/2

 x_center = (x + x_offset) / width
 y_center = (y + y_offset) / height
 box_width = w / width

Appendix J OCR Eirik Illing

 box_height = h / height

 if not text:
 continue
 if len(text) < 3:
 continue
 #if text.replace(" ", "") == "":
 #continue

 # Check if the text matches any of the desired patterns
 matches_pattern = False

 for pattern in patterns:
 if re.match(pattern, text):
 matches_pattern = True
 break

 if not matches_pattern:
 if re.match(r'\d{3}', text):
 if i+1 < len(data['text']):
 text2 = data['text'][i+1]
 if re.match(r',\d{2}', text2):
 if i+2 < len(data['text']):
 text3 = data['text'][i+2]
 if re.match(r'\d{2}-\d{2}', text3):
 text = text + text2 + "_" + text3
 matches_pattern = True
 elif re.match(r',\d{2},\d{2}', text2):
 if i+2 < len(data['text']):
 text3 = data['text'][i+2]
 if re.match(r'\d{2}-\d{2}', text3):
 text = text + text2 + "_" + text3
 matches_pattern = True
 elif re.match(r'\d{2}', text2):
 if i+2 < len(data['text']):
 text3 = data['text'][i+2]
 if re.match(r'\d{4}-\d{2}', text3):
 text = text + "," + text2 + "_" + text3
 matches_pattern = True
 elif re.match(r',\d{2},\d{2}', text2):
 text = text + text2
 matches_pattern = True
 elif re.match(r'\d{3},\d{2},\d{2}', text):
 if i+1 < len(data['text']):
 text2 = data['text'][i+1]

Appendix J OCR Eirik Illing

 if re.match(r'\d{2}-\d{2}', text2):
 text = text + "_" + text2
 matches_pattern = True
 elif re.match(r'\d{3},\d{2}', text):
 if i+1 < len(data['text']):
 text2 = data['text'][i+1]
 if re.match(r',\d{2}', text2):
 if i+2 < len(data['text']):
 text3 = data['text'][i+2]
 if re.match(r'\d{2}-\d{2}', text3):
 text = text + text2 + "_" + text3
 matches_pattern = True
 elif re.match(r'\d{2}', text2):
 if i+2 < len(data['text']):
 text3 = data['text'][i+2]
 if re.match(r'\d{2}-\d{2}', text3):
 text = text + "," + text2 + "_" + text3
 matches_pattern = True

 if not matches_pattern:
 continue

 if any(text in annotation for annotation in annotations):
 continue
 else:
 print(text + " " + str(j))
 # Add the annotation to the list
 annotations.append(f"{text} {x_center:.6f} {y_center:.6f}
{box_width:.6f} {box_height:.6f}")

Save the image with the bounding boxes
img.save('image_with_boxes.jpg')

Save the annotations to a text file
with open('annotations.txt', 'w') as f:
 f.write('\n'.join(annotations))

Copy image
copy_img = image.copy()

Load the bounding box data from the text file CHECK
with open("/home/engineirik/git/ocr/annotations.txt") as f:
 lines = f.readlines()[1:] # Skip the header line
 for line in lines:

Appendix J OCR Eirik Illing

 cols = line.strip().split()
 x, y, w, h = map(float, cols[1:5])

 # Scale the coordinates to the image size
 x = x * width
 y = y * height
 w = w * width
 h = h * height

 # Draw a rectangle around the object
 cv2.rectangle(copy_img, (int(x), int(y)), (int(x+w), int(y+h)), (0, 255,
0), 2)

Display the image
cv2.imshow("Image with bounding boxes", copy_img)
cv2.waitKey(0)
cv2.destroyAllWindows()

Appendix L
Custom mAP Calculation

Python code

Appendix L mAP calculation Eirik Illing

import numpy as np

import os

def compute_iou(box1, box2):

 # Calculate the intersection rectangle

 x1 = max(box1[0], box2[0])

 y1 = max(box1[1], box2[1])

 x2 = min(box1[0]+box1[2], box2[0]+box2[2])

 y2 = min(box1[1]+box1[3], box2[1]+box2[3])

 inter_area = max(0, x2-x1) * max(0, y2-y1)

 # Calculate the union area

 box1_area = box1[2] * box1[3]

 box2_area = box2[2] * box2[3]

 union_area = box1_area + box2_area - inter_area

 # Calculate the IoU

 iou = inter_area / union_area

 return iou

def compute_precision_recall(yolo_data, annotated_data, class_id, iou_threshold):

 tp = 0

 fp = 0

 fn = 0

 num_annotated_objects = np.sum(annotated_data[:, 0] == class_id)

 for i in range(len(yolo_data)):

 if yolo_data[i][0] != class_id:

 continue

 yolo_box = [yolo_data[i][1], yolo_data[i][2], yolo_data[i][3], yolo_data[i][4]]

 max_iou = 0

 for j in range(len(annotated_data)):

 if annotated_data[j][0] != class_id:

 continue

Appendix L mAP calculation Eirik Illing

 annotated_box = [annotated_data[j][1], annotated_data[j][2], annotated_data[j][3], annotated_data[j][4]]

 iou = compute_iou(yolo_box, annotated_box)

 if iou > max_iou:

 max_iou = iou

 if max_iou >= iou_threshold:

 tp += 1

 else:

 fp += 1

 fn = num_annotated_objects - tp

 if tp + fp > 0:

 precision = tp / (tp + fp)

 else:

 precision = 0

 recall = tp / (tp + fn)

 return precision, recall

def compute_mAP(yolo_file, annotated_file, iou_threshold=0.50):

 yolo_data = np.loadtxt(yolo_file, delimiter=' ')

 annotated_data = np.loadtxt(annotated_file, delimiter=' ')

 class_ids = np.unique(annotated_data[:, 0])

 num_classes = len(class_ids)

 aps = []

 for i, class_id in enumerate(class_ids):

 precision, recall = compute_precision_recall(yolo_data, annotated_data, class_id, iou_threshold)

 ap = 0

 for j in range(11):

 threshold = j / 10

 if recall >= threshold:

Appendix L mAP calculation Eirik Illing

 max_precision = 0

 for k in range(len(yolo_data)):

 if yolo_data[k][0] != class_id:

 continue

 yolo_box = [yolo_data[k][1], yolo_data[k][2], yolo_data[k][3], yolo_data[k][4]]

 max_iou = 0

 for l in range(len(annotated_data)):

 if annotated_data[l][0] != class_id:

 continue

 annotated_box = [annotated_data[l][1], annotated_data[l][2], annotated_data[l][3], annotated_data[l][4]]

 iou = compute_iou(yolo_box, annotated_box)

 if iou > max_iou:

 max_iou = iou

 if max_iou >= iou_threshold:

 tp = 1

 fp = 0

 precision = tp / (tp + fp)

 if precision > max_precision:

 max_precision = precision

 ap += max_precision / 11

 aps.append(ap)

 mAP = np.mean(aps)

 return mAP

annotated_folder = 'annotated'

preanalyzed_folder = 'preanalyzed'

iou_threshold = 0.5

avgMAP = 0

numFiles = 0

Appendix L mAP calculation Eirik Illing

for annotated_file in os.listdir(annotated_folder):

 if not annotated_file.endswith('.txt'):

 continue

 preanalyzed_file = os.path.join(preanalyzed_folder, annotated_file)

 if not os.path.exists(preanalyzed_file):

 print(f'Error: preanalyzed file {preanalyzed_file} not found')

 continue

 mAP = compute_mAP(preanalyzed_file, os.path.join(annotated_folder, annotated_file), iou_threshold)

 avgMAP += mAP

 numFiles += 1

 print(f'mAP for file {annotated_file}: {mAP}')

if numFiles > 0:

 avgMAP /= numFiles

 print(f'Average mAP: {avgMAP}')

else:

 print('No files processed')

Appendix M
Semi-Automated Annotation

Tool Mockup Design

Appendix M Semi-automated annotation tool mockup design Eirik Illing

Table 1: Step by step design mockup of annotation software.

Start menu
window

Upload image
prompt

Crop image
window

Appendix M Semi-automated annotation tool mockup design Eirik Illing

Pre-Analysis
window

Progress indicator
prompt

Annotation
window

Folder save
export prompt

Appendix N
UI Figma Design ICE Software

Appendix N UI Figma design ICE software Eirik Illing

Table 1: Different UI designs for the ICE software

Blue mobile

Light mobile

Appendix N UI Figma design ICE software Eirik Illing

Blue desktop

Light desktop

