

www.usn.no

Faculty of Technology, Natural sciences and Maritime Sciences
Campus Porsgrunn

FMH606 Master's Thesis 2023

Master of Science – Industrial IT and Automation

Development of a simulation platform and
testing of a 5 degrees of freedom

ReactorX-150 robotic arm manipulator.

Christian Lauritzen

www.usn.no

The University of South-Eastern Norway takes no responsibility for the results and

conclusions in this student report.

Course: FMH606 Master's Thesis 2023

Title: Development of a simulation platform and testing of a 5 degrees of freedom ReactorX-

150 robotic arm manipulator.

Number of pages: 182

Keywords: Robot, robotic arm, ReactorX-150, simulation, testing,

Student: Christian Lauritzen

Supervisor: Associate Professor Roshan Sharma (USN)

External partner:

Summary:

The University of South-Eastern Norway recently purchased several units of the Trossen

Robotics ReactorX-150 educational robots, enabling campus students’ access to some great

robots for education and research purposes. The same possibility could be offered to online

students with the access to a simulation platform for the ReactorX-150.

The primary objective of this thesis is to create a simulation platform for the ReactorX-

150, integrating it with ROS on a Linux platform. This platform aims to support essential

tasks such as position/trajectory control and the application of forward and inverse

kinematics. Key technologies for this task include ROS in combination with Gazebo,

RViz, and MoveIt.

With comprehensive testing and documentation of the ReactorX-150 and its control

packages, the thesis has resulted in numerous guides for setting up the simulation platform

for the ReactorX-150, providing students the ability to implement the simulation platform

to their computer from any corner of the world.

 Preface

3

Preface
This master thesis was written by one student in his final semester in the course “Industrial IT

and Automation” at the University of South-Eastern Norway, campus Porsgrunn.

The project was both initiated by and intended for the University of South-Eastern Norway.

Working with the thesis has been challenging and time consuming, but also interesting and

rewarding. Knowledge and skills obtained throughout the master course was utilized in this

thesis, and new knowledge and skills was acquired while working with the thesis. I am satisfied

with the outcome of the work presented here and with the journey this thesis has provided.

I would like to express my appreciation to the staff at the University of South-Eastern Norway,

campus Porsgrunn throughout the total of five years I have been here, since this was also the

place, I also did my bachelor’s degree in the course “Computer science and industrial

automation”.

A special thanks to my supervisor, associate professor Roshan Sharma, for the guidance,

feedback, and support throughout this entire process.

Finally, I would like to thank family and friends for their patience, understanding and support.

Recommended prior knowledge before reading this thesis is a bachelor’s degree in computer

science, automation, cybernetics or similar.

Porsgrunn, 15.05.2023

Christian Lauritzen

 Contents

4

Contents

Preface ... 3

Contents ... 4

Nomenclature .. 7

1 Introduction ... 8

1.1 Background ... 8
1.2 Objectives .. 9
1.3 Scope ... 9
1.4 Report structure .. 9

2 Specifications .. 10

2.1 ReactorX-150 ... 10
2.1.1 Arm Reach and Joint Names ... 11
2.1.2 Workspace and Working Payload ... 12
2.1.3 Linkage Dimensions and Gripper Limitations ... 13
2.1.4 Default Joint Limits and Default Servo Configurations .. 15
2.1.5 Product of Exponentials Kinematic Properties.. 16
2.1.6 Technical Drawing and CAD files .. 17
2.1.7 X-Series code names .. 17

2.2 Hardware .. 19
2.2.1 ReactorX-150 Actuators ... 19
2.2.2 ReactorX-150 Controller ... 20
2.2.3 ReactorX-150 Power hub .. 21
2.2.4 ReactorX-150 Power supply ... 22
2.2.5 3D Printed Custom End Effector ... 22
2.2.6 AprilTag .. 23
2.2.7 Raspberry Pi .. 23
2.2.8 Raspberry Pi Camera Module 2 ... 25
2.2.9 Lumens DC125 .. 25
2.2.10 Storage devices ... 25
2.2.11 Other ... 25

2.3 Software ... 26
2.3.1 Ubuntu .. 26
2.3.2 ROS ... 26
2.3.3 IRROS ... 27
2.3.4 MoveIt ... 28
2.3.5 Gazebo ... 28
2.3.6 RViz ... 29
2.3.7 DYNAMIXEL Wizard 2.0 .. 29
2.3.8 BalenaEtcher ... 30
2.3.9 Visual Studio Code ... 30
2.3.10 Main Programming Languages ... 30
2.3.11 Sharpr3D .. 31
2.3.12 FlashPrint 5 .. 31
2.3.13 Windows and Microsoft Office .. 31

3 Denavit–Hartenberg Model ... 33

3.1 Kinematic Diagram ... 33
3.2 Denavit-Hartenberg parameters .. 34

 Contents

5

4 ReactorX-150 Implementation .. 37

4.1 Arm Descriptions .. 37
4.1.1 Structure .. 37
4.1.2 Arguments ... 38

4.2 Arm Control - Python and MATLAB .. 39
4.2.1 Structure .. 39
4.2.2 Kinematics without MoveIt ... 40
4.2.3 Arguments ... 40

4.3 MoveIt Configuration, Interface, and API ... 41
4.3.1 Structure .. 41
4.3.2 Kinematics with MoveIt .. 43
4.3.3 Arguments ... 43

4.4 Gazebo Configuration .. 44
4.4.1 Structure .. 44
4.4.2 Arguments ... 45

4.5 ROS Controllers Configuration ... 46
4.5.1 Structure .. 46
4.5.2 Arguments ... 47

4.6 Perception Configuration ... 48
4.6.1 Structure .. 48
4.6.2 Arguments ... 50

4.7 Joystick Control .. 51
4.7.1 Structure .. 51
4.7.2 Arguments ... 52

4.8 Record and Playback.. 53
4.8.1 Structure .. 53
4.8.2 Arguments ... 54

4.9 Arm Diagnostic Tool ... 56
4.9.1 Structure .. 56
4.9.2 Arguments ... 57

4.10 Arm Puppeteering .. 59
4.10.1 Physical setup of two ReactorX-150 arms ... 59
4.10.2 Structure .. 60
4.10.3 Arguments ... 61

4.11 Dual Arm Control ... 62
4.11.1 Structure .. 62
4.11.2 Arguments ... 63

4.12 Dual Arm Joystick Control .. 64
4.12.1 Structure .. 64
4.12.2 Arguments ... 65

5 Simulation of ReactorX-150 ... 67

5.1 Arm Descriptions .. 67
5.2 Arm Control ... 69

5.2.1 Interbotix Control Panel ... 69
5.2.2 Python Scripts ... 70
5.2.3 Terminal window commands ... 71

5.3 MoveIt ... 73
5.4 Joystick Control .. 74
5.5 Dual Arm Control .. 75

5.5.1 Terminal window commands ... 75
5.5.2 Python Scripts ... 76

5.6 Dual Arm Joystick Control ... 77

6 Physical Testing of ReactorX-150.. 78

 Contents

6

6.1 Arm Control ... 78
6.1.1 Interbotix Control Panel ... 78
6.1.2 Python Scripts ... 80
6.1.3 Terminal window commands ... 81

6.2 MoveIt ... 82
6.3 Joystick Control .. 84
6.4 Record and Playback.. 85
6.5 Arm Diagnostic Tool ... 86
6.6 Arm Puppeteering ... 87
6.7 Dual Arm Control .. 88

6.7.1 Terminal window commands ... 88
6.7.2 Python Scripts ... 89

6.8 Dual Arm Joystick Control ... 90

7 Discussion ... 92

7.1 Motor ID correction ... 92
7.2 Homing Offset ... 92
7.3 MATLAB-ROS Interface .. 95
7.4 Virtual Machines ... 95
7.5 Network Setup ... 95
7.6 3D printing ... 96
7.7 Perception Configuration ... 98
7.8 Future Work ... 98

7.8.1 Perception package .. 98
7.8.2 AprilTag .. 98
7.8.3 Raspberry Pi .. 99

8 Conclusion .. 100

References ... 101

9 Appendices .. 107

9.1 Appendix A – Master thesis task description .. 108
9.2 Appendix B – Guide for Dual Booting Windows and Ubuntu .. 110
9.3 Appendix C – ROS Installation Guide for the X-Series Arms from Trossen Robotics 112
9.4 Appendix D – Quickstart Guide for the X-Series Arms from Trossen Robotics 114
9.5 Appendix E – User Manual with Full Arguments for Trossen Robotics X-Series arms116
9.6 Appendix F – User Manual with Main Arguments for Trossen Robotics X-Series arms149
9.7 Appendix G – Joystick controls .. 170
9.8 Appendix H – Joystick controller pairing ... 172
9.9 Appendix I – Raspberry Pi Ubuntu and ROS Setup Guide ... 174
9.10 Appendix J – bartender.py .. 178
9.11 Appendix K – “rostopic” guide .. 179
9.12 Appendix L – xsarm_dual_usn_lift.py ... 181
9.13 Appendix M – xsarm_dual_usn_down.py ... 182

 Nomenclature

7

Nomenclature
<List symbols alphabetically, with explanations and units>

API – Application Programming Interface

CAD – Computer-Aided Design

DH – Denavit-Hartenberg

Mbps – Megabits per second

N/A – Not Applicable or Not Available

POE – Product of Exponentials

ROS – Robot Operating System

RX-150 – ReactorX-150

STEP – Standard for the Exchange of Product model data [1]

STL – Stereolithography

TTL – Transistor-Transistor Logic

UART – Universal Asynchronous Receiver-Transmitter

VS Code – Visual Studio Code

Xacro – XML Macros

YAML – Yet Another Markup Language/YAML Ain’t Markup Language

 1 Introduction

8

1 Introduction
This chapter serves as an introduction to the thesis, which centers around the development of

a simulation platform for the ReactorX-150 robotic arm. The introduction includes several

key components. First, it provides the background of the thesis, setting the context and

relevance of the study. Next, it outlines the objectives, which highlight the primary focus and

goals of the thesis. The scope of the thesis, framing its extent. Finally, the report structure is

presented to give the reader an overview of the organization and flow of the thesis.

1.1 Background

The field of robotics is rapidly evolving with constant advancement in technology. Robotic

arm manipulators have emerged as versatile tools with a wide range of applications. Luckily

for humans, robots such as robotic arm manipulators are experts at performing repetitive,

tedious, and dangerous jobs. Their ability to perform precise, repetitive tasks has led to

increased efficiency and productivity in various settings, such as assembly lines. Robots are an

integral part of modern industrial processes and have significantly improved efficiency,

productivity, and quality while reducing human error and workplace accidents.

The automotive industry heavily utilizes robotic arm manipulators for tasks such as lifting,

panting and quality control. Lifting a car body to a separate location is tiering, risky and takes

multiple men, while a Robotic arm manipulator can do that all day. Notably robots and robotic

arm manipulators are used in space exploration missions, where they can endure harsh

environments that would be lethal to humans.

Robotic arm manipulators are heavily used in the production of parts for aerospace

applications. The accuracy, quality, and consistency a robot can deliver is unmatched in the

aerospace department.

In electronics/electrical industries, robots are used for assembling tiny and delicate

components, especially in the production of items like circuit boards, mobile phones, and

computers.

Shipping and trade industry have implemented the use autonomous vehicles for a while,

resulting in increased efficiency, decreased delivery times, and reduced labor costs.

The application of robots and robotic arm manipulators is extensive and growing. However,

machines do not make themselves quite yet. There are a lot of work behind the creation of

robots and the control of robots, so people need to learn about robotics.

The University of South-Eastern Norway recently purchased several units of the Trossen

Robotics ReactorX-150 educational robots. The robots are great for research purposes with

extensive capabilities. The physical ReactorX-150 units are located at the University of South-

Eastern Norway, campus Porsgrunn, which is convenient for campus students. However, that

potentially leaves the online and industry master student without the ability to interact with the

robotic arms. That where this thesis will attempt to provide a solution.

 1 Introduction

9

1.2 Objectives

The primary objective of this thesis is to create a simulation platform for the ReactorX-150,

integrating it with ROS on a Linux platform. This platform aims to support essential tasks such

as position/trajectory control and the application of forward and inverse kinematics. Key

technologies for this task include ROS in combination with Gazebo, RViz, and MoveIt.

Comprehensive testing and documentation are required for both simulated and physical testing

of the ReactorX-150. This will ensure the platform's accessibility and usefulness to both online

and campus students.

The simulation platform will be constructed in a way that enables students to convert their own

computer into their own simulation platform, providing the ability to avoid some challenges

regarding geographic location.

1.3 Scope

The project has a set timeframe set between 1.1.2023 and 15.5.2023.

Although the ReactorX-150 robotic arm possesses extensive capabilities, this thesis will not

cover all of them. Instead, it will establish a solid foundation for both the simulation and

physical testing of the ReactorX-150 robotic arms. However, to fully harness and explore the

comprehensive capabilities of the arms, additional work beyond the scope of this thesis will be

necessary."

1.4 Report structure

Chapter 2 describes the specifications regarding the ReactorX-150, and the software and

hardware utilized in the thesis.

Chapter 3 describes the Denavit–Hartenberg model of the ReactorX-150.

Chapter 4 describes the implementation of the control packages for the Trossen Robotics X-

Series arms, specifically the ReactorX-150.

Chapter 5 describes the testing of the control packages with the simulated ReactorX-150.

Chapter 6 describes the testing of the control packages using the physical ReactorX-150

Chapter 7 describes the discussion around the work with the ReactorX-150.

Chapter 8 describes the conclusion of the thesis.

 2 Specifications

10

2 Specifications
The specifications chapter provides in-depth information about the specifications related to the

thesis. The chapter provides detailed specifications of ReactorX-150, as well as the hardware

components and software used throughout the thesis.

2.1 ReactorX-150

The ReactorX-150 from Trossen Robotics is a robotic arm that is part of the X-Series family.

The X-series utilizes the DYNAMIXEL X-Series Smart Servo Motors. These actuators are

designed to deliver high performance, including high torque and efficient heat dissipation, all

in a compact form factor that surpasses the previous DYNAMIXEL servo models. The

ReactorX-150 offers five degrees of freedom and a full 360-degree range of rotation, providing

exceptional versatility and capabilities for various applications.

The ReactorX-150 is equipped with two highly sophisticated servos, the DYNAMIXEL

XM430-W350 and DYNAMIXEL XL430-W250, which offer a resolution of 4096 positions

and the ability for users to define their own PID parameters. Additionally, the servos are

equipped with temperature monitoring, positional feedback, and the capability to monitor and

adjust voltage levels, load, and compliance settings.

At the heart of the ReactorX-150 lies the Robotis DYNAMIXEL U2D2, which serves as an

interface between the servos and the DYNAMIXEL Wizard software and ROS, allowing for

easy access and integration into robotic systems.

A quick overview of the capabilities and accuracy of the ReactorX-150 can be seen in Table

2-1.

Table 2-1: ReactorX-150 capabilities quick overview [2]

ReactorX-150

Degrees of Freedom 5

Reach 450 mm

Total span 900 mm

Repeatability 2.5 mm

Accuracy 5 - 8 mm

Working payload 100 g*

Total servos 6

Rotating wrist yes

 2 Specifications

11

Weight of the arm 4 lb. (approx. 1.8 kg)

2.1.1 Arm Reach and Joint Names

The reach of the ReactorX-150 is a critical factor in its design and capabilities. The reach of a

robotic arm is an essential specification to consider when selecting or designing a robot for

specific tasks. A longer reach may be required for tasks that require the arm to reach further

distances or for larger workspaces, while a shorter reach may be more appropriate for tasks that

require more precision or in a smaller workspace.

The reach of the ReactorX-150 can be divided into sections, which can be seen in Figure

2.1.There are two categories of data that can be relevant from Figure 2.1. One being the total

length from point A to the remaining points, and the distance between each pair of points.

Figure 2.1: Arm reach with alphabetic indicators [3]

The joints of the ReactorX-150 has been given names for simpler explanation. The names of

the joints can also be used when writing python scripts. The first joint is depicted in Figure 2.1,

but not denoted by a letter. The first joint is named the “waist” and is located within the base

of the ReactorX-150. The second joint is depicted as point A, which is named the “shoulder”

joint. The third joint is the “elbow” joint, which is depicted as point B. The fourth joint is the

“wrist tilt” joint, which is depicted as point C. The fourth joint is the “wrist rotate” joint which

is depicted as point D. The final joint is the “gripper” joint, which can be depicted as point E.

The length from point A to each of the remaining points can be seen in Table 2-2.

Table 2-2: ReactorX-150 total reach points [3]

Robot Arm B C D E F

Elbow Wrist tilt Wrist rotate Gripper rail Fingertip

ReactorX-150 158 mm* 308 mm 373 mm 439 mm 482 mm

The length between each of the neighboring points can be seen in Table 2-3.

 2 Specifications

12

Table 2-3: ReactorX-150 total reach points [3]

Robot arm A - B B - C C - D D - E E - F

Upper arm Forearm Wrist tilt to

wrist rotate

Gripper (to

rail)

Fingertip

ReactorX-150 158 mm 150 mm 65 mm 66 mm 43 mm

2.1.2 Workspace and Working Payload

The workspace of a robotic arm refers to the range of motion within which it can operate. The

ReactorX-150, like other robotic arms, has a specific workspace that is determined by its

design, reach, and other factors. The recommended working space of the ReactorX-150 is 70%

of its reach, which provides ample room for the arm to move and perform various tasks.

The span and the recommended workspace of the ReactorX-150 can be seen in Table 2-4, and

is visualized in Figure 2.2.

Table 2-4: ReactorX-150 recommended workspace and total span [3]

Robot Arm Recommended workspace Total span

ReactorX-150 630 mm 900 mm

Figure 2.2: Visualization of ReactorX-150 span and recommended workspace [3]

 2 Specifications

13

The working payload of the ReactorX-150 refers to the recommended maximum weight that

the arm can lift and manipulate during operation. The working payload is an important

specification to consider when selecting or designing a robot for specific tasks since the weight

of the payload can impact the accuracy, speed, and safety of the robot's movements. It is crucial

to ensure that the arm's working payload is sufficient to handle the intended tasks to avoid

overloading, overheating, or damaging the robot, and to maintain productivity and safety in the

work environment.

The working payload for the ReactorX-150 can be seen in Table 2-5.

Table 2-5: ReactorX-150 working payload

Robot arm Working payload

ReactorX-150 100 g

There is stated by the manufacturer that the work payload should not be exceeded during any

operation. The working payload for the arm is the maximum recommended weight for periods

of repeated movement inside the recommended workspace. If intending to manipulate a 100g

object, the recommendation is to not extend the arm more than 50% of its reach. “Rest” poses

should be incorporated when intending to operate over longer periods of time to prevent the

servos from overheating. [2] [3]

2.1.3 Linkage Dimensions and Gripper Limitations

The linkage dimensions of the ReactorX-150 refer to the physical dimensions of the arm's links

or segments, which determine the arm's range of motion and workspace. The ReactorX-150's

given linkage dimensions consist of five links, including the upper arm, elbow offset, true upper

arm length, forearm, and offset angle, denoted as letter A to E.

The linkage dimensions are specified in Table 2-6 and visualized in Figure 2.3.

Table 2-6: ReactorX-150 linkage dimensions

Robot arm A B C D E

Upper arm Elbow offset True upper

arm length

Forearm Offset angle

ReactorX-150 150 mm 50 mm 158 mm 150 mm 18.4°

 2 Specifications

14

Figure 2.3: ReactorX-150 Linkage dimensions visualized [3]

The length of each link determines the range of motion of the arm, which affects its ability to

reach specific points and perform certain tasks. The ReactorX-150's linkage dimensions

provide a balance between flexibility and precision, enabling the arm to perform a wide range

of tasks with accuracy and speed.

The gripper of the ReactorX-150 Robot Arm is an essential tool for manipulating objects during

operation. The gripper's minimum and maximum opening dimensions determine the size and

shape of objects that the arm can grasp and manipulate. The ReactorX-150 is compatible with

various gripper options, which can have different opening dimensions. The minimum and

maximum gripper dimensions of the ReactorX-150 will depend on the specific gripper option

used with the arm.

The gripper minimum and maximums are specified in Table 2-7. Due to the almost unlimited

gripper variations possible, the minimum and maximum gripper opening are given as distance

from center of the gripper to the center of the gripper carriages from the manufacturer. There

have also been taken measurements within the gripper configuration used in this thesis, with

foam pads for additional grip. A visualization of the measurement points on the gripper and

gripper carriages with their respective colors from Table 2-7 can be seen in Figure 2.4.

Table 2-7: ReactorX-150 minimum and maximum gripper widths [3]

ReactorX-150 Minimum Maximum Color

Gripper carriages 30 mm 74 mm

Grippers with foam pads 5 mm 49 mm

 2 Specifications

15

Figure 2.4: Visualization of ReactorX-150 gripper measurement points [3]

2.1.4 Default Joint Limits and Default Servo Configurations

The joint limits of the ReactorX-150 refer to the maximum and minimum angles that each joint

is allowed to rotate. The default joint limits are preset in the arm's software (see chapter 2.3.7

DYNAMIXEL Wizard 2.0) and can be adjusted if needed. The ReactorX-150 has five joints,

and each joint has different default limits depending on its design and position in the arm. The

joint limits are crucial specifications to consider when programming the robot for specific tasks

since exceeding the joint limits can cause damage to the arm or decrease its accuracy and speed.

The default joint limits of the ReactorX-150 can be seen in Table 2-8, and the limits are stated

as degrees from servo center (zero degrees). The only exception being the “Gripper” joint,

which is given as mm from gripper center to minimum and maximum of center gripper

carriages.

Table 2-8: ReactorX-150 default joint limits

Joint Minimum Maximum Servo ID

Waist -180 180 1

Shoulder -106 100 2

Elbow -102 95 3

 2 Specifications

16

Wrist angle -100 123 4

Wrist rotate -180 180 5

Gripper 30 mm 74 mm 6

The default servo configurations of the ReactorX-150 Robot Arm refer to the preset settings

for the servos that control the arm's movement. The servo configurations can be customized if

needed to optimize the robot's performance for specific tasks, but it has been kept on the default

setting for this thesis. The ReactorX-150 uses the DYNAMIXEL X-Series Smart Servo

Motors, the two types of servos used in the RX150, the DYNAMIXEL XM430-W350, and the

DYNAMIXEL XL430-W250.

The default servo configurations can be seen in Table 2-9. It shall be noted that the joint names

used here are the names of the joints to be used when controlling single servos with commands

or python scripts.

Table 2-9: ReactorX-150 default servo configurations

Joint name Servo ID Servo Baud rate

waist 1 XM430-W350 1 Mbps

shoulder 2 XM430-W350 1 Mbps

elbow 3 XM430-W350 1 Mbps

wrist_angle 4 XL430-W250 1 Mbps

wrist_rotate 5 XL430-W250 1 Mbps

gripper 6 XL430-W250 1 Mbps

2.1.5 Product of Exponentials Kinematic Properties

The product of exponentials (POE) is an alternative to the DH parameterization. Although not

utilized in this thesis, and will not be elaborated on, it is available from the manufacturer as

seen below in formula 2.1 and 2.2.

𝑀 = [

1.0 0.0 0.0 0.258575
0.0 1.0 0.0 0.0
0.0 0.0 1.0 0.25457
0.0 0.0 0.0 1.0

] (2.1)

𝑆𝑙𝑖𝑠𝑡 =

[

0.0 0.0 1.0 0.0 0.0 0.0
0.0 1.0 0.0 −0.10457 0.0 0.0
0.0 1.0 0.0 −0.25457 0.0 0.05
0.0 1.0 0.0 −0.25457 0.0 0.2
1.0 0.0 0.0 0.0 0.25457 0.0]

𝑇

 (2.2)

 2 Specifications

17

For more information about the method of POE, see [4].

2.1.6 Technical Drawing and CAD files

The technical drawing of the ReactorX-150 Robot Arm is a detailed and precise representation

of the arm's physical dimensions, features, and components. The drawing includes information

such as linkage dimensions, and the position of various components such as the servos and end

effector. The technical drawing is a helpful reference tool for engineers, designers, and

technicians working with the RX150 since it provides an overview of the arm's structure and

specifications. The technical drawing of the ReactorX-150 can be seen in Figure 2.5.

Figure 2.5: ReactorX-150 technical drawing [2]

The CAD files for the ReactorX-150 consists of:

• STEP files, available for download at [5].

• Mesh files in STL format, available at [6].

2.1.7 X-Series code names

When working with X-series arms from Trossen Robotics, users refer to the arms by their code

names instead of their full names. The code names are shorter and more convenient to use,

particularly when programming. Each X-series arm has a unique code name, the X-series arms

have code names that are abbreviations of their full names. Even though this thesis revolves

around the ReactorX-150, it can be useful for testing, research, and future development

 2 Specifications

18

purposes to know the codenames of all the X-series arms. The model names and their

corresponding codenames can be seen in Table 2-10.

Table 2-10: X-Series robotic arms model names and codenames [7]

Robot arm model name Codename

PincherX-100 Robot Arm px100

PincherX-150 Robot Arm px150

ReactorX-150 Robot Arm rx150

ReactorX-200 Robot Arm rx200

WidowX-200 Robot Arm wx200

WidowX-250 Robot Arm wx250

WidowX-250 Robot 6DOF Arm wx250s

ViperX-250 Robot Arm vx250

ViperX-300 Robot Arm vx300

ViperX-300 Robot 6DOF Arm vx300s

 2 Specifications

19

2.2 Hardware

The hardware chapter of this thesis provides an overview of the ReactorX-150 robot arm's

hardware components and external hardware components. The chapter discusses the

specifications of each component, as well as their functionalities and compatibility with the

ReactorX-150 system. This information is useful for understanding the capabilities of the

ReactorX-150 and to operate it safely and effectively.

2.2.1 ReactorX-150 Actuators

The ReactorX-150 Robot Arm uses DYNAMIXEL X-Series Smart Servo Motors as actuators

to control the arm's movement. These actuators offer high torque, efficient heat dissipation,

and great durability, all at a smaller form factor than previous DYNAMIXEL servos. The

DYNAMIXEL XM430-W350 and DYNAMIXEL XL430-W250 servos provide high

resolution of 4096 positions, allowing for precise control of the arm's movement. Additionally,

these servos offer user-definable PID parameters, temperature monitoring, positional feedback,

as well as voltage levels, load, and compliance settings that are all user-accessible.

An overview/comparison of the two actuators can be seen in Table 2-11, and the location of

the different actuators is covered in Table 2-9.

Table 2-11: ReactorX-150 actuators [8] [9]

ReactorX-150 actuators

Specifications DYNAMIXEL XL430-W250-T DYNAMIXEL XM430-W350-T

Image

Baud rate 9600 bps ~ 4.5 Mbps 9600 bps ~ 4.5 Mbps

Weight 57.2 g 82 g

Dimensions (W x H

x D)

28.5 mm x 46.5 mm x 34 mm 28.5 mm x 46.5 mm x 34 mm

Resolution 4096 pulse/revolution 4096 pulse/revolution

 2 Specifications

20

Operating

temperature

-5 ~ +72 °C -5 ~ +80 °C

Gear ratio 258.5 : 1:00 353.5 : 1:00

Stall torque 1.0 Nm at 9.0 V, 1.0 A

1.4 Nm at 11.1 V, 1.3 A

1.5 Nm at 12.0 V, 1.4 A

3.8 Nm at 11.1 V, 2.1 A

4.1 Nm at 12.0 V, 2.3 A

4.8 Nm at 14.8 V, 2.7 A

No load speed 47 rev/min at 9.0 V

57 rev/min at 11.1 V

61 rev/min at 12.0 V

43 rev/min at 11.1 V

46 rev/min at 12.0 V

57 rev/min at 14.8 V

Input voltage 6.5 ~ 12.0 V

Recommended: 11.1 V

10.0 ~ 14.8 V

Recommended: 12.0 V

Feedback Position, Velocity, Load,

Realtime tick, Trajectory,

Temperature, Input Voltage, etc.

Position, Velocity, Current,

Realtime tick, Trajectory,

Temperature, Input Voltage, etc.

2.2.2 ReactorX-150 Controller

The Robotis DYNAMIXEL U2D2 is a communication converter that is at the heart of the

ReactorX-150. It enables easy access to DYNAMIXEL Wizard software as well as ROS,

providing a comprehensive set of tools to control and program the robot arm. The U2D2

facilitates communication between the control computer and the DYNAMIXEL actuators. The

layout of the U2D2 can be seen in Figure 2.6. and an overview of the technical specifications

of the U2D2 can be seen in Table 2-12. The communication used by the ReactorX-150 is the

3 Pin TTL Level communication.

Table 2-12: Robotis DYNAMIXEL U2D2 specifications [10] [11]

Specifications DYNAMIXEL U2D2

Dimensions (W x H x D) 48 mm x 18 mm x 14.6 mm

Weight 9 g

Available Ports • 3 Pin TTL Level

• 4 Pin RS-485

• 4 Pin UART

 2 Specifications

21

Baud rate 9600 bps ~ 6 Mbps

Figure 2.6: Robotis DYNAMIXEL U2D2 layout [10]

2.2.3 ReactorX-150 Power hub

The Robotis 6 Port XM/XL Power Hub is the power hub of the ReactorX-150. The power hub

houses six ports for connecting 3 Pin DYNAMIXEL X-Series cables. In the case of the

ReactorX-150, 3 Pin DYNAMIXEL X-Series cables connect from the U2D2 to the power hub

to a DYNAMIXEL servo, which is then daisy chained to the remaining DYNAMIXEL servos.

The power hub is compatible with all DYNAMIXEL XM and XL servos. A figure of the power

hub can be seen in Figure 2.7.

Figure 2.7: DYNAMIXEL 6 Port XM/XL Power Hub [12]

 2 Specifications

22

2.2.4 ReactorX-150 Power supply

The power supply for the ReactorX-150 is a 12 V DC, 5 Amp power supply. It is connected

into the power hub with a 5.5x2.1 mm barrel jack connector with center positive polarity. [13]

2.2.5 3D Printed Custom End Effector

The customizability of the ReactorX-150 extends to its end effector (fingers) and gripper

carriages. A picture highlighting the gripper carriages and fingers can be seen in Figure 2.8.

Figure 2.8: ReactorX-150 gripper carriages and fingers [14]

A technical drawing of the gripper carriages can be seen in Figure 2.9.

Figure 2.9: ReactorX-150 gripper carriages technical drawing [14]

 2 Specifications

23

The screws used to mount the fingers to the grippers are M2 bolts, and the bolts used to attach

the gripper carriages to the motor arms are M3 bolts. The listed specifications about the gripper

carriages allows users to tailor the end effector and gripper carriages to suit their specific use

case.

2.2.6 AprilTag

AprilTag markers are a type of visual marker that are widely used in robotics for object

detection and pose estimation. These tags consist ideally of a black and white pattern that is

designed to be easily recognizable by computer vision systems. The AprilTag marker is

supposed to be used to locate the ReactorX-150 in its environment. This can be done manually,

but it is time consuming and prone to error. [15] [16]

The AprilTag marker was supposed to be utilized in the perception part of the ReactorX-150

capabilities. However due to the lack of a depth camera, the marker was not utilized. The

camera intended for the perception part was the Intel RealSense Depth Camera D415. [17]

The default AprilTag family utilized by the Perception package, covered in chapter 4.6, is the

“tagStandard41h12” family.

2.2.7 Raspberry Pi

A Raspberry Pi 3 Model B and a Raspberry Pi 4 Model B were attempted to use for the

perception part for the ReactorX-150. The Raspberry Pi 3 Model B and the Raspberry Pi 4

Model B are credit card-sized single-board computers developed by the Raspberry Pi

Foundation.

The specifications of the Raspberry Pi 3 Model B and the Raspberry Pi 4 can be seen in Table

2-13, and a figure of the Raspberry Pi 3 Model B and the Raspberry Pi 4 Model B can be seen

in Figure 2.10.

Figure 2.10: Raspberry Pi 3 Model B and Raspberry Pi 4 Model B [18] [19]

Table 2-13: Raspberry Pi 3 Model B and Raspberry Pi 4 Model B specifications [18]

Raspberry Pi specifications

Raspberry Pi 3 Model B Raspberry Pi 4 Model B

 2 Specifications

24

Quad Core 1.2GHz Broadcom BCM2837

64bit CPU

Quad core Cortex-A72 (ARM v8) 64-bit

SoC @ 1.8GHz Broadcom BCM2711

1GB RAM 4GB RAM

BCM43438 wireless LAN and Bluetooth

Low Energy (BLE) on board

2.4 GHz and 5.0 GHz IEEE 802.11ac

wireless, Bluetooth 5.0, BLE

100 Base Ethernet Gigabit Ethernet

40-pin extended GPIO Raspberry Pi standard 40 pin GPIO header

4 USB 2 ports 2 USB 3.0 ports and 2 USB 2.0 ports

4 Pole stereo output and composite video

port

4-pole stereo audio and composite video

port

Full size HDMI 2 × micro-HDMI ports (up to 4kp60

supported)

CSI camera port for connecting a Raspberry

Pi camera

2-lane MIPI CSI camera port

DSI display port for connecting a Raspberry

Pi touchscreen display

2-lane MIPI DSI display port

Micro SD port for loading the operating

system and storing data

Micro-SD card slot for loading operating

system and data storage

Upgraded switched Micro USB power

source up to 2.5A

5V DC via USB-C connector

5V DC via GPIO header

 Power over Ethernet (PoE) enabled

(requires separate PoE HAT)

 H.265 (4kp60 decode), H264 (1080p60

decode, 1080p30 encode)

OpenGL ES 3.1, Vulkan 1.0

 2 Specifications

25

2.2.8 Raspberry Pi Camera Module 2

The Raspberry Pi Camera Module 2 connects to a Raspberry pi using a 15 cm ribbon cable

connected to the CSI port on the Raspberry Pi. The Raspberry Pi Camera Module 2 has a Sony

IMX219 8-megapixel sensor, it supports 1080p30, 720p60 and VGA90 video modes and still

capture. The camera is compatible with all models of Raspberry Pi 1, 2, 3 and 4. [20]

2.2.9 Lumens DC125

The Lumens DC125 is a high-definition document camera, known for its portability and

excellent image capabilities. The camera connects to a computer with a USB 2.0 cable. The

Lumens DC125 has a 1/3" 3M CMOS Color Image Sensor, some of the output resolutions it

supports are supports 720p30, 1080p30 and QXGA(2048x1536) for both video and still

capture. The gooseneck design allows for 360 degrees of rotation. [21]

2.2.10 Storage devices

A USB flash drive was utilized for the setup of the Ubuntu operating system. The Ubuntu

operating system is covered in chapter 2.3.1 and the actual setup of the Ubuntu operating

system is covered in [Appendix B – Guide for Dual Booting Windows and Ubuntu]. The USB

flash drive utilized for the setup was:

• SanDisk Ultra 128GB Dual Drive Go

A micro-SD card with a SD card adapter was used for the use and setup of Raspberry Pi. The

Raspberry Pi is covered in chapter 2.2.7 and the Raspberry Pi setup is covered in [Appendix I

– Raspberry Pi Ubuntu and ROS Setup]. The micro-SD card utilized for the setup was:

• PNY Elite Micro SDXC 64 GB

2.2.11 Other

Other hardware used for this thesis, but where specifications are less important:

• PC: Acer Predator Helios 300

• Monitor with HDMI capability: For use and setup of the Raspberry Pi

• USB keyboard: For use and setup of the Raspberry Pi

• USB mouse: For use and setup of the Raspberry Pi

• HDMI cable: For use and setup of the Raspberry Pi

• Ethernet cable: For use and setup of the Raspberry Pi

• 3D printer: FlashForge Adventurer 3 [22]

• Camera for filming: iPhone 12 Pro Max

 2 Specifications

26

2.3 Software

The software chapter of this thesis provides an overview of the software used, and how or

where some the software was used. This chapter also covers the decisions made regarding

software used in the thesis.

2.3.1 Ubuntu

Ubuntu is a Linux distribution based on the Debian architecture. Debian is designed to be

reliable and secure, while Ubuntu is designed to be user friendly. The combination results in a

flexible, reliable, secure, and user-friendly Linux distribution. The Ubuntu logo can be seen in

Figure 2.11.

Figure 2.11: Ubuntu logo

The supported Ubuntu versions for the X-series arms were Ubuntu 18.04, Ubuntu 20.04, and

Ubuntu 22.04. The Ubuntu version utilized in this thesis was the Ubuntu 20.04. The reason for

utilizing Ubuntu 20.04 is covered in chapter 2.3.2.

The installation guide for dual booting with Ubuntu can be seen in [Appendix B – Guide for

Dual Booting Windows and Ubuntu].

The installation guide for Ubuntu with MATE desktop on a Raspberry Pi can be seen in

[Appendix I – Raspberry Pi Ubuntu and ROS Setup Guide].

2.3.2 ROS

ROS (Robot Operating System) is an open-source framework for building robot software. It

provides a set of libraries and tools to help developers create complex robot applications,

including drivers, algorithms, and communication protocols. ROS was developed by Willow

Garage, a robotics research lab, and is now maintained by the Open Robotics organization. The

ROS logo can be seen in Figure 2.12.

Figure 2.12: ROS logo [23]

Packages for ROS and the newer version ROS2 are supported for the ReactorX-150, as well as

for the whole X-Series lineup of robotic arms.

The available supported ROS distributions on different Ubuntu versions for the X-Series arm

are listed below:

• ROS 1 Melodic, Ubuntu Linux 18.04

 2 Specifications

27

• ROS 1 Noetic, Ubuntu Linux 20.04

• ROS 2 Galactic, Ubuntu Linux 20.04

• ROS 2 Humble and Rolling on Ubuntu Linux 22.04

ROS 1 was the preferred ROS version requested by the supervisor. This narrowed down the

choice of ROS versions to ROS 1 Melodic and ROS 1 Noetic. The choice was made to utilize

the latest supported ROS 1 distribution. The ROS distribution used in this thesis is ROS 1

Noetic, which is compatible with Ubuntu 20.04. The logo for ROS 1 Noetic can be seen in

Figure 2.13.

Figure 2.13: ROS 1 Noetic logo [24]

The installation guide to ROS 1 Noetic can be seen in [Appendix C – ROS Installation Guide

for the X-Series Arms from Trossen Robotics]. To test if ROS has been correctly installed and

is working with the robotic arm, see the quickstart guide in [Appendix D – Quickstart Guide

for the X-Series Arms from Trossen Robotics].The Appendix includes some packages such as

the Description and Control packages which are covered in chapter 4.1 and 4.2.

2.3.3 IRROS

IRROS (Interbotix Research Robotics Open Standard) is a framework developed by Trossen

Robotics to provide a common hardware and software platform for their line of research-grade

robots, such as the X-Series arms. The framework is designed to simplify the development and

integration of custom hardware and software components for Interbotix robots. IRROS is based

on ROS and utilizes many of its features and tools, such as the ROS middleware, message

passing system, and visualization tools. The overview of IRROS can be seen in Figure 2.14.

The repository utilized by the robotic arms, and in this thesis is the

“interbotix_ros_manipulators”.

 2 Specifications

28

Figure 2.14: IRROS overview [25]

2.3.4 MoveIt

MoveIt is an open-source software framework for motion planning and manipulation in

robotics. It provides a set of tools, libraries, and APIs for creating and executing motion plans

for robotic systems, such as the Trossen Robotics X-Series arms. The MoveIt logo can be seen

in Figure 2.15.

Figure 2.15: MoveIt logo [23]

In the context of the X-Series arms, MoveIt can be used to plan and execute complex motion

trajectories for the robot arms, including path planning, obstacle avoidance, collision checking

and 3D perception.

2.3.5 Gazebo

Gazebo is an open-source, 3D robotics simulator that allows users to simulate and test robotic

systems in a virtual environment. It provides a physics engine that can accurately model the

 2 Specifications

29

dynamics and behavior of a wide range of robotic systems, including robots, drones, and

vehicles. The Gazebo logo can be seen in Figure 2.16.

Figure 2.16: Gazebo logo [23]

Gazebo was used in this thesis for testing of the robotic arms, specifically the ReactorX-150.

Gazebo is a powerful tool for testing with the ReactorX-150 and the Trossen Robotics X-Series

arms, increasing safety, flexibility, reproducibility, and cost-effectiveness.

2.3.6 RViz

ROS Visualization (RViz) is a 3D visualization tool that is used in the field of robotics to

provide a graphical representation of data from robots and robotic systems. It is a powerful tool

that enables users to visualize and debug robots and robotic systems in a 3D environment,

facilitating the analysis of robot perception systems, motion planning, and control algorithms.

The RViz logo can be seen in Figure 2.17.

Figure 2.17: RViz logo

RViz was used in thesis as a tool for displaying and/or controlling a virtual model of the

simulated robot arm(s) in Gazebo or for visualizing the real robot arm(s) in a virtual

environment.

2.3.7 DYNAMIXEL Wizard 2.0

DYNAMIXEL Wizard 2.0 is a software tool developed by Robotis for configuring and

managing DYNAMIXEL servos. The software tool supports a variety of communication

protocols, including USB, RS-232, and TTL. This allows connection and configuration of

DYNAMIXEL servos using different communication methods. It also provides a real-time

display of servo status and feedback, enabling users to monitor and debug servo systems in

real-time. The DYNAMIXEL Wizard 2.0 logo can be seen in Figure 2.18.

 2 Specifications

30

Figure 2.18: DYNAMIXEL Wizard 2.0 logo [26]

The DYNAMIXEL Wizard 2.0 was primarily used in this thesis to deal with troubleshooting

of the DYNAMIXEL servos and correcting any offset in the servos. The full guide for

installation, uninstallation, basic features, and advanced features can be found at [27].

2.3.8 BalenaEtcher

BalenaEtcher is a cross-platform application that simplifies the process of creating bootable

USB drives or SD cards from ISO and IMG files. It is compatible with Windows, macOS, and

Linux operating systems. The BalenaEtcher logo can be seen in Figure 2.19.

Figure 2.19: BalenaEtcher logo [28]

BalenaEtcher was used in this thesis to create a bootable USB drive for the installation of

Ubuntu and for creating a bootable SD card for the Raspberry Pi.

2.3.9 Visual Studio Code

Visual Studio Code (VS Code) is a free open-source code editor developed by Microsoft. VS

Code includes a modular and extensible architecture, with the ability to add custom

functionality and integrate with other tools and services. The Visual Studio Code logo can be

seen in Figure 2.20.

Figure 2.20: Visual Studio Code logo [29]

VS Code was primarily used in this thesis for creating and editing executable scripts for the

ReactorX-150 arms and editing configuration files.

2.3.10 Main Programming Languages

The main programming languages used for everything from config and launch files, to

executable scripts are listed below:

 2 Specifications

31

• Python

• C++

• MATLAB

2.3.11 Sharpr3D

Sharpr3D is a 3D modelling software tool designed with intuition at its core. Sharpr3D is

designed to be compatible with Windows PCs and tablets, macOS and iPadOS, making

Sharpr3D versatile and accessible. The Sharpr3D logo can be seen in Figure 2.21.

Figure 2.21: Sharpr3D logo [30]

Sharpr3D was used in this thesis for modelling objects to be manipulated by the ReactorX-150

arms, see chapter 7.6. Although Sharpr3D was also intended to model a stand for a camera to

be used in the perception part of the ReactorX-150, it was not utilized for this purpose.

2.3.12 FlashPrint 5

FlashPrint 5 is a slicing and printing software used for 3D printing with FlashForge printers, in

this case the FlashForge Adventurer 3. [22] FlashPrint 5 enables preparation and optimization

of 3D models for printing by slicing the models into layers and generating machine-readable

code that controls the printer's movements. The logo for FlashPrint can be seen in Figure 2.22.

Figure 2.22: FlashPrint logo [31]

FlashPrint 5 was used in this thesis as a slicing and printing software for the models created in

Sharpr3D, see chapter 7.6.

2.3.13 Windows and Microsoft Office

Ubuntu was utilized for the work with the robotic arms, but Windows operating system was

also utilized due to the lack of compatibility between Ubuntu and Microsoft Office. Microsoft

Office applications can be used on Linux systems via a web browser, a virtual machine running

Windows or installed via third-party installers. However, none of these solutions were found

optimal for this thesis and therefore was not utilized. Since the computer used was dual booted

with Windows and Ubuntu, the Microsoft Office applications on Windows was utilized. The

Windows version used was Windows 10 Home.

 2 Specifications

32

Microsoft Office is a collection of applications developed by the Microsoft Corporation.

Microsoft office covers an array of applications, but the applications used in this thesis are

listed below:

• Microsoft Word: Used for report writing.

• Microsoft Project: Creation of gantt chart

• Microsoft Visio: Creation of visualizations and small-scale photo editing

• Microsoft PowerPoint: Creation of videos and video editing

 3 Denavit–Hartenberg Model

33

3 Denavit–Hartenberg Model
The Denavit-Hartenberg (DH) representation is a way of representing almost all robotic arm

manipulators. The DH representation is widely used in the industry to configure industrial

robotic arms and makes it possible to calculate forward kinematics for complex robot arms

with the help two displacement parameters for displacement in the direction of the x- and z-

axis, and two rotation parameters. For this application the rotation is defined such that

clockwise rotation is negative.

3.1 Kinematic Diagram

A DH representation in the form of a kinematic diagram can be seen in Figure 3.1. The

kinematics was made following “The three rules for coordinate frames” and “The steps for DH

representation” seen below the kinematics.

Figure 3.1: DH representation with kinematic diagram of the ReactorX-150 [32]

The three rules for coordinate frames: [33] [32]

1. The z-axis was chosen in the direction of the joint axis.

2. The y-axis followed the right-hand rule, where the thumb is in the direction of the z-

axis, the index finger in the direction of the x-axis and the middle finger in the

direction of the y-axis.

3. The xi axis must interest the zi – 1 axis.

The “Steps for DH representation” step 1 to 5 from [33] was followed.

 3 Denavit–Hartenberg Model

34

3.2 Denavit-Hartenberg parameters

Utilizing the specifications of the arm from chapter 2 and the kinematic diagram in Figure 3.1,

a DH table can be made using the previously mentioned displacement parameters and rotation

parameters: [32]

• ai is the distance in the x-axis between the joints.

• αi is the rotation around the xi axis to get zi-1 axis to match zi.

• θi is the rotation around the zi-1 axis.

• di is the distance in the z-axis.

All the z axis in Figure 3.1 points the same direction, except 𝑧0, so it is rotated -90 degrees

revolving around 𝑥1 to match up with 𝑧1 and θi is then equal to the 𝑞1 variable since the rotation

is around the 𝑧𝑖−1 axis.

There is a displacement between coordinate frame one and two in the y-axis, which means it

does not fit directly into the DH table. 𝑧2 and 𝑧3 are then rotated to compensate for the

displacement. The angle seen in (Eq. 1) was then found by utilizing Pythagoras.

sin−1 (
150

157.7
) = 72.02° (𝐸𝑞. 1)

Filling in the known parameters in the DH table, seen in Table 3-1.

Table 3-1: DH table

i ai di αi θi

1 0 103.91 -90° q1

2 157.7 0 0° q2-72.02°

3 150 0 0° q3+72.02°

4 174.15 0 0° q4

Next up is to insert the parameters from Table 3-1 into the homogeneous transformation matrix

in (Eq. 2).

𝐴𝑖 = [

cos(𝜃𝑖) − sin(𝜃𝑖) cos(𝛼𝑖) sin(𝜃𝑖) sin(𝛼𝑖) 𝑎𝑖 cos(𝜃𝑖)

sin(𝜃𝑖) cos(𝜃𝑖) cos(𝛼𝑖) − cos(𝜃𝑖) sin(𝛼𝑖) 𝑎𝑖sin(𝜃𝑖)

0 sin(𝛼𝑖) cos(𝛼𝑖) 𝑑𝑖

0 0 0 1

] (Eq. 2)

The result is four matrices seen in (Eq. 3 – 6).

𝐴1 = [

cos(𝑞1) 0 −sin(𝑞1) 0

sin(𝑞1) 0 cos(𝑞1) 0
0 −1 0 103.91
0 0 0 1

] (Eq. 3)

 3 Denavit–Hartenberg Model

35

𝐴2 = [

cos(𝑞2 − 72.02) − sin(𝑞2 − 72.02) 0 157.7 cos(𝑞2 − 72.02)

sin(𝑞2 − 72.02) cos(𝑞2 − 72.02) 0 157.7sin(𝑞2 − 72.02)
0 0 1 0
0 0 0 1

] (Eq. 4)

𝐴3 = [

cos(𝑞3 + 72.02) − sin(𝑞3 + 72.02) 0 150 cos(𝑞3 + 72.02)

sin(𝑞3 + 72.02) cos(𝑞3 + 72.02) 0 150sin(𝑞3 + 72.02)
0 0 1 0
0 0 0 1

] (Eq. 5)

𝐴4 = [

cos(𝑞4) − sin(𝑞4) 0 174.15 cos(𝑞4)

sin(𝑞4) cos(𝑞4) 0 174.15sin(𝑞4)
0 0 1 0
0 0 0 1

] (Eq. 6)

Multiplying the 𝐴1−4 matrices as seen in the H-matrix in (Eq. 8 – 8.4)

H = 𝐴1𝐴2𝐴3𝐴4 (𝐸𝑞. 7)

H = [

𝐻11 𝐻12 −sin(𝑞1) 𝑥𝑒

𝐻21 𝐻22 cos(𝑞1) 𝑦𝑒

−sin(𝑞2 + 𝑞3 + 𝑞4) − cos(q2 + q3 + q4) 0 𝑧𝑒

0 0 0 1

] (𝐸𝑞. 8)

𝐻11 = 0.5 cos(𝑞2 − 𝑞1 + 𝑞3 + 𝑞4) + 0.5 cos(𝑞1 + 𝑞2 + 𝑞3 + 𝑞4) (𝐸𝑞. 8.1)

𝐻12 = − 0.5 ∗ sin(𝑞2 − 𝑞1 + 𝑞3 + 𝑞4) − 0.5 ∗ sin(𝑞1 + 𝑞2 + 𝑞3 + 𝑞4) (𝐸𝑞. 8.2)

𝐻21 = 0.5 ∗ 𝑠𝑖𝑛(𝑞1 + 𝑞2 + 𝑞3 + 𝑞4) − 0.5 ∗ 𝑠𝑖𝑛(𝑞2 − 𝑞1 + 𝑞3 + 𝑞4) (𝐸𝑞. 8.3)

𝐻22 = 0.5 ∗ cos(𝑞1 + 𝑞2 + 𝑞3 + 𝑞4) − 0.5 ∗ cos(𝑞2 − 𝑞1 + 𝑞3 + 𝑞4) (𝐸𝑞. 8.4)

The 𝑥𝑒, 𝑦𝑒 and 𝑧𝑒 define the x, y, and z equations of the end effector.

Table 3-2: Denavit-Hartenberg end-effector position equations [32]

End-effector position equations

𝒙𝒆 75.0 ∗ cos(𝑞1 + 𝑞2 + 𝑞3) + 87.075 ∗ cos(𝑞2 − 1.0 ∗ 𝑞1 + 𝑞3 + 𝑞4)

+ 87.075 ∗ cos(𝑞1 + 𝑞2 + 𝑞3 + 𝑞4) + 78.85

∗ cos(𝑞1 − 1.0 ∗ 𝑞2 + 1.257) + 75.0 ∗ cos(𝑞2 − 1.0 ∗ 𝑞1 + 𝑞3)

+ 78.85 ∗ cos(𝑞1 + 𝑞2 − 1.257)

 3 Denavit–Hartenberg Model

36

𝒚𝒆 78.85 ∗ sin(𝑞1 + 𝑞2 − 1.257) + 75.0 ∗ sin(𝑞1 + 𝑞2 + 𝑞3) − 87.075

∗ sin(𝑞2 − 1.0 ∗ 𝑞1 + 𝑞3 + 𝑞4) + 87.075

∗ sin(𝑞1 + 𝑞2 + 𝑞3 + 𝑞4) + 78.85

∗ sin(𝑞1 − 1.0 ∗ 𝑞2 + 1.257) − 75.0 ∗ sin(𝑞2 − 1.0 ∗ 𝑞1 + 𝑞3)

𝒛𝒆 103.91 − 157.7 ∗ sin(𝑞2 − 1.257) − 150.0 ∗ sin(𝑞2 + 𝑞3) − 174.15

∗ sin(𝑞2 + 𝑞3 + 𝑞4)

 4 ReactorX-150 Implementation

37

4 ReactorX-150 Implementation
The implementation chapter provides an explanation of the building blocks and implementation

of the different software packages designed to operate and manipulate the Trossen Robotics X-

Series robot arms. The primary focus is on the various software packages developed with the

ROS framework. The specific robot arm in focus is the ReactorX-150, but the packages

covered in this chapter are compatible with any X-Series arm.

The chapter begins with an introduction to what can be considered the main packages, the Arm

Descriptions and Arm Control packages. These packages provide the base structure and

functionalities upon which the other packages are built.

The subsequent sections describe the additional packages developed to extend the functionality

of the robot arms. Each of these sections provides a detailed account of the purpose of the

package, its structural breakdown, and the key arguments required for their operation. The

structure of each package is visualized for better understanding of the relationships and

interactions with the ROS nodes and other components.

The user manual for the X-series arms with the main arguments for the packages can be seen

in [Appendix F – User Manual with Main Arguments for Trossen Robotics X-Series arms].

The more extensive user manual containing the full list of arguments for the packages can be

seen in [Appendix E – User Manual with Full Arguments for Trossen Robotics X-Series arms].

4.1 Arm Descriptions

The Arm Descriptions package (“interbotix_xsarm_descriptions”) is responsible for accurately

representing the X-Series arms’ appearance, structure, and kinematics in a simulation or

visualization environment. The package contains the URDFs and meshes for all the X-Series

arms. The appearance and textures of the arms come from the “interbotix_black.png” picture

located in the “meshes” directory. The URDF’s are stored in xacro format, which enables

customizability regarding which parts of the URDF’s shall be utilized. All packages for

visualizing and/or controlling the X-Series arms reference this package.

The Arm Description package launched as a standalone package enables users to manipulate

the individual joints for performing forward kinematics.

The simulated testing of the Arm Description package is covered in chapter 5.1.

4.1.1 Structure

The structure of the Arm Descriptions package can be seen visually represented in Figure 4.1.

 4 ReactorX-150 Implementation

38

Figure 4.1: Arm descriptions package structure [34]

The launch file for the Arm Descriptions package is the “xsarm_description.launch” file. The

launch file is an XML file that specifies the ROS nodes, parameters, and other settings required

to launch the package. The nodes, parameters and other setting can be customized with the

package arguments covered in chapter 4.1.2.

The Arm Descriptions package launches up to four nodes:

• robot_state_publisher: Responsible for calculating the forward kinematics of the

robot. The node utilizes the joint positions from the “joint_states” topic and the URDF

specified by the “robot_description” parameter for the calculations. The results are

published via the “tf” topic.

• joint_state_publisher: Parses the “robot_description” parameter to identify all non-

fixed joints and subsequently publishes a JointState message containing the definitions

of these joints.

• joint_state_publisher_gui: Launches a GUI for manipulation of the joints of the robot.

• rviz: Utilizes the “tf” topic transforms to display a virtual model of the robot.

4.1.2 Arguments

The arguments seen in Table 4-1 are the utilized and/or most important arguments in the Arm

Descriptions package regarding the simulation of the arm. The full list of arguments together

with a simple user manual can be seen in [Appendix E – User Manual with Full Arguments for

Trossen Robotics X-Series arms].

Table 4-1: Arm Descriptions package main arguments

Argument Default Value Description

robot_model “” Requires the codename for the specific robot

arm. “rx150” in the case of the ReactorX-150

use_rviz true Launches RViz

use_joint_pub_gui false Launches a user-friendly GUI for controlling

joint angles called the joint_state_publisher GUI

 4 ReactorX-150 Implementation

39

4.2 Arm Control - Python and MATLAB

The Arm Control package (“interbotix_xsarm_control”) is responsible for controlling the

physical robot. The package contains YAML files for all the X-Series arms. The YAML files

specify initial register values, and names for the actuators for each robot arm, as well as

publishing frequency, joint-group names, etc. The “modes.yaml” file is a common file for all

the X-Series arms. The file defines operating mode parameters for the group of joints and the

single joint. All packages that control the physical X-Series arm(s) reference this package.

The Arm Control package has the ability to run both Python and MATLAB scripts. It is made

possible by utilizing the Python and MATLAB API of the “Interbotix_xs_modules” node seen

in Figure 4.2. The simulated and physical testing of the Arm Control package with “Interbotix

Control Panel” in RViz, Python scripts and “rostopic” commands from the terminal window is

covered chapter 5.2 and 6.1. Controlling the physical or simulated robot arm with MATLAB

scripts is not covered in this thesis. How to code Python and the Python scripts is not covered

in this thesis, but to understand the commands in the Python scripts, see [35].

There are a few requirements that must be fulfilled in order to utilize the Python and MATLAB

API:

• Arm joints must be set to “position” control.

• Gripper set to “PWM” control.

• Drive Mode registers of the arm-joint motors set to Time-Based-Profile.

The requirements above are conveniently enough the default values when running the Arm

Control package.

4.2.1 Structure

The structure of the Arm Control package can be seen visually represented in Figure 4.2.

Figure 4.2: Arm Control package structure for Python and MATLAB [36] [37]

 4 ReactorX-150 Implementation

40

The launch file for the Arm Control package is the “xsarm_control.launch” file. The launch

file is an XML file that specifies the ROS nodes, parameters, and other settings required to

launch the package. The nodes, parameters and other setting can be customized with the

package arguments covered in chapter 4.2.3. The Arm Control package is built on top of the

“interbotix_xsarm_descriptions” package covered in chapter 4.1.

The Arm Control package launches up to two nodes and a separate package:

• xsarm_control.launch: Launches the “interbotix_xsarm_descriptions” package, see

chapter 4.1.

• xs_sdk: Controls the DYNAMIXEL motors of the robotic arm and loads the URDF to

the “robot_description” parameter.

• robot_manipulation: The node launches when a Python or MATLAB script is run,

publishes data to the necessary ROS topics and upon completion of the script the node

is killed. This node cannot be launched from a launch file or the terminal window, it

can only be launched by executing a Python or MATLAB script.

4.2.2 Kinematics without MoveIt

Forward/direct and inverse kinematics are handled within the “interbotix_xs_sdk” package.

The package utilizes custom-written kinematic solvers from the “xs_sdk” node for the X-Series

arms to handle direct and inverse kinematics. The package is designed to work with various

Interbotix robot arm models, and the custom kinematic solvers account for the differences in

robot configurations and joint constraints. This approach allows the “interbotix_xs_sdk”

package to provide control of the X-Series arms without relying on a separate kinematics

library.

4.2.3 Arguments

The arguments seen in Table 4-2 are the utilized and/or most important arguments in the Arm

Control package regarding the simulation and physical testing in chapter 5.2 and 6.1. The full

list of arguments together with a simple user manual can be seen in [Appendix E – User Manual

with Full Arguments for Trossen Robotics X-Series arms].

Table 4-2: Arm Control package main arguments

Argument Default Value Description

robot_model “” Requires the codename for the specific

robot arm. “rx150” in the case of the

ReactorX-150

use_rviz true Launches RViz

use_sim false Set to “true” if intending to simulate the

robot arm. Runs the DYNAMIXEL

simulator node if set to true

 4 ReactorX-150 Implementation

41

4.3 MoveIt Configuration, Interface, and API

This subchapter covers two packages regarding MoveIt. The first package is the MoveIt

Configuration package and the second one is the MoveIt Interface and API package. The

MoveIt packages utilize several sub packages described in other chapters. The MoveIt

packages enables users to perform both forwards and inverse kinematics.

The MoveIt Configuration package (“interbotix_xsarm_moveit”) is the basis package

containing the configuration files necessary to run MoveIt with the X-Series arms, either if it’s

with the physical arm, a Gazebo simulated arm or just a RViz simulated arm.

The MoveIt Interface and API package (“interbotix_xsarm_moveit_interface”) is built on top

of the basis “interbotix_xsarm_moveit” package. The MoveIt Interface and API package

contains a small API and GUI, enabling the user to command the arm and end-effector to

desired poses and positions. The package also contains a short Python script guide, which is a

modified version of the Move Group Python Interface Tutorial script. [38]

The simulated and physical testing of the MoveIt Configuration and the MoveIt Interface and

API packages are covered in chapter 5.3 and 6.2.

4.3.1 Structure

The structure of the MoveIt Configuration package can be seen visually represented in Figure

4.3 from the “xsarm_moveit.launch” file and down, the entire structure is the structure of the

MoveIt Interface and API package.

The launch file for the MoveIt Configuration package is the “xsarm_moveit.launch” file, and

the launch file for the MoveIt Interface and API package is the

“xsarm_moveit_interface.launch” file. The launch files are XML files that specify the ROS

nodes, parameters, and other settings required to launch the packages. The nodes, parameters

and other setting can be customized with the package arguments covered in chapter 4.3.2.

The MoveIt Configuration package contains one node which is always launched, one node

available for launch and three more packages available for launch:

• move_group: The node is always launched and is responsible for trajectory planning

for the arm and gripper of the X-Series arm.

Optional to launch:

• rviz: Responsible for visualizing the X-Series arm with the MoveIt MotionPlanning

plugin in RViz.

One of the following three packages must be launched:

• xsarm_gazebo.launch: Launches the Gazebo package for simulation of the arm in

Gazebo, see chapter 4.4.

• xsarm_ros_control.launch: Launches the Arm Control package to control the physical

X-Series arm, see chapter 4.2.

• xsarm_xsarm_description.launch: Launches the Arm Descriptions package for

simulation and visualization of the X-Series arm in RViz, see chapter 4.1.

 4 ReactorX-150 Implementation

42

The MoveIt Interface and API package is built on top of the basis “interbotix_xsarm_moveit”

package (covered above), but has three additional nodes available for launch:

• moveit_interface: A small C++ API utilizing MoveIt’s planner, designed to simplify

the process of commanding custom poses to the end-effector of an X-Series arm.

• moveit_interface_gui: A GUI with text boxes and sliders for custom end-effector

poses. Utilizes the “moveit_interface” API for planning and executing trajectories.

• moveit_python_interface: A short Python script guide, press “enter” in the terminal

window to start the tutorial.

Figure 4.3: MoveIt Interface and API package structure [39]

 4 ReactorX-150 Implementation

43

4.3.2 Kinematics with MoveIt

MoveIt does not use the default kinematic solver for the X-Series robotic arms, it utilizes the

LMA (Levenberg-Marquardt Algorithm). [40] [41] The default kinematic solver used by

MoveIt is the KDL (Kinematics and Dynamics Library) from Orocos. [42] [43]

The LMA is a kinematic solver is used for solving generic curve-fitting problems. The LMA

is also known as damped least-squares method. LMA utilizes interpolation between the

Gauss-Newton algorithm (GNA) and the method of gradient decent. [44]

4.3.3 Arguments

The arguments seen in Table 4-3 are the utilized and/or most important arguments in the

MoveIt Interface and API package regarding the simulation and physical testing covered in

chapter 5.3 and 6.2. The full list of arguments together with a simple user manual can be seen

in [Appendix E – User Manual with Full Arguments for Trossen Robotics X-Series arms].

Note that the “moveit_interface_gui” and “use_python_interface” arguments are only available

for the “interbotix_xsarm_moveit_interface” package, and not the basic

“interbotix_xsarm_moveit” package.

Table 4-3: MoveIt Interface and API package main arguments

Argument Default Value Description

robot_model “” Requires the codename for the specific

robot arm. “rx150” in the case of the

ReactorX-150

use_moveit_rviz true Launches RViz with the MoveIt plugin

use_gazebo false Simulate the robot with Gazebo

use_actual false Use the physical robot

use_fake false MoveIt generates a simulated robot to be

controlled in RViz

dof 5 Defines the degrees of freedom of the

robot arm

moveit_interface_gui true Launches a GUI customized to interface

with the moveit_interface node

use_python_interface false Launches a Python Interface Tutorial

node. Press “enter” in the terminal

window to step through the tutorial

 4 ReactorX-150 Implementation

44

4.4 Gazebo Configuration

The Gazebo Configuration package (“interbotix_xsarm_gazebo”) is responsible for simulating

the X-Series arms in Gazebo. The package contains configuration files required to simulate the

X-Series arms, such as YAML files with tuned PID gains and the “interbotix_texture.gazebo”

file. The YAML files provide “ros_control” the necessary parameters for controlling the arms

and gripper effectively.

There are two ways to utilize this package:

• Launching the package as a standalone package and controlling via the

JointPositionController interface.

• Launch the package together with MoveIt via the FollowJointTrajectory interface.

In this thesis the Gazebo Configuration package is utilized together with MoveIt. The

simulation with Gazebo and MoveIt is covered in chapter 5.3.

4.4.1 Structure

The structure of the Gazebo Configuration package can be seen visually represented in Figure

4.4.

Figure 4.4: Gazebo package structure [45]

The launch file for the Gazebo Configuration package is the “xsarm_gazebo.launch” file. The

launch file is an XML file that specifies the ROS nodes, parameters, and other settings required

to launch the package. The nodes, parameters and other setting can be customized with the

package arguments covered in chapter 4.4.2. The Arm Control package is built on top of the

“interbotix_xsarm_descriptions” package covered in chapter 4.1 and the “gazebo_ros” package

covered below.

The Gazebo Configuration package launches two packages and two nodes:

• xsarm_descriptions.launch: Launches the “interbotix_xsarm_descriptions” package,

see chapter 4.1.

• controller_manager: Loads and starts a set of controllers when launching the Gazebo

Configuration package and stops and unloads the controllers on exit.

 4 ReactorX-150 Implementation

45

• spawn_model: Responsible for adding the robot model into the Gazebo world. The

robot to add is defined by the “robot_description” parameter.

• gazebo_ros nodes:

o gzserver: In charge of executing the physics update loop and generating sensor

data in Gazebo.

o gzclient: Responsible for the GUI for visualizing the simulation of the robot in

Gazebo.

4.4.2 Arguments

The arguments seen in Table 4-4 are the utilized and/or most important arguments in the

Gazebo package regarding the simulation of the arm. The full list of arguments together with

a simple user manual can be seen in [Appendix E – User Manual with Full Arguments for

Trossen Robotics X-Series arms].

Table 4-4:Gazebo package main arguments

Argument Default Value Description

robot_model “” Requires the codename for the

specific robot arm. “rx150” in the

case of the ReactorX-150

use_rviz true Launches RViz

dof 5 Defines the degrees of freedom of

the robot arm

world_name see the Gazebo launch

package link below

File path to the world file to be

loaded by Gazebo

gui true Launches the GUI of Gazebo

paused true Launches Gazebo in a paused state

use_position_controllers false Enables commanding of arbitrary

arm joint positions in Gazebo

use_trajectory_controllers false Enables commanding of arbitrary

arm joint trajectories in Gazebo

 4 ReactorX-150 Implementation

46

4.5 ROS Controllers Configuration

The ROS Controllers Configuration package (“Interbotix_xsarm_ros_control”) is responsible

for the ROS controllers providing MoveIt with the ability to control the X-Series arms. The

ROS Controllers Configuration package is not meant to be run as a standalone package. This

package is meant to be used via MoveIt. The ROS Controllers Configuration package works

by receiving commands from the “FollowJointTrajectoryAction” interface from MoveIt and

publishing them to the topics the “xs_sdk” node subscribes to.

In this thesis the ROS Controllers Configuration package is utilized together with MoveIt. The

physical testing with the ROS Controllers Configuration package and MoveIt is covered in

chapter 6.2.

4.5.1 Structure

The structure of the ROS Controllers Configuration package can be seen visually represented

in Figure 4.5.

Figure 4.5: ROS Controllers package structure [46]

The launch file for the ROS Controllers Configuration package is the

“xsarm_ros_control.launch” file. The launch file is an XML file that specifies the ROS nodes,

parameters, and other settings required to launch the package. The nodes, parameters and other

setting can be customized with the package arguments covered in chapter 4.5.2. The ROS

Controller Configuration package is built on top of the “interbotix_xsarm_control” package

and the “interbotix_xsarm_descriptions” package covered in chapter 4.2 and 4.1, respectively.

 4 ReactorX-150 Implementation

47

The ROS Controller Configuration package launches one package and two nodes:

• xsarm_control.launch: Launches the “interbotix_xsarm_control” package, see

chapter 4.2.

• controller_manager: Loads and starts a set of controllers when launching the Gazebo

Configuration package and stops and unloads the controllers on exit.

• xs_hardware_interface: Responsible for publishing the commands received from the

ROS controllers and publish them to the topics the “xs_sdk” node subscribes to.

4.5.2 Arguments

The arguments seen in Table 4-5 are the utilized and/or most important arguments in the ROS

Controllers package regarding the physical testing of the arm. The full list of arguments

together with a simple user manual can be seen in [Appendix E – User Manual with Full

Arguments for Trossen Robotics X-Series arms].

Table 4-5: ROS Controllers main arguments

Argument Default Value Description

robot_model “” Requires the codename for the specific

robot arm. “rx150” in the case of the

ReactorX-150

use_rviz false Launches RViz

dof 5 Defines the degrees of freedom of the

robot arm

 4 ReactorX-150 Implementation

48

4.6 Perception Configuration

The Perception package (“interbotix_xsarm_perception”) enables the X-Series robotic arms to

recognize and manipulate small, non-reflective objects positioned on a non-reflective and non-

transparent surface similar to a tabletop. The package is designed to work with any Intel

RealSense color/depth camera, but only tested by Trossen Robotics with the Intel RealSense

Depth Camera SR305 and D415 cameras. [47] [48]. The package utilizes the perception

pipeline to get the point cloud data and GUI for object detection.

An Intel RealSense camera was not available for this thesis, so there was an attempt to launch

it with a Lumens DC 125 camera and with a Raspberry Pi Camera Module 2, which is covered

in chapter 7.7. The setup of the Raspberry Pi is covered in [Appendix I – Raspberry Pi Ubuntu

and ROS Setup Guide].

Note that in order to run the Perception package optimally an AprilTag marker should be

utilized. Otherwise, the position of the arm relative to the camera must be input manually. The

manual input of the position of the arm relative to the camera is prone to error and will not be

covered in this thesis.

The Perception package is not available for simulation and was not successfully tested with the

physical robot, it is therefore covered in chapter 7.7.

4.6.1 Structure

The structure of the Perception package can be seen visually represented in Figure 4.6.

Figure 4.6: Perception package structure [49]

 4 ReactorX-150 Implementation

49

The launch file for the Perception package is the “xsarm_perception.launch” file. The launch

file is an XML file that specifies the ROS nodes, parameters, and other settings required to

launch the package. The nodes, parameters and other setting can be customized with the

package arguments covered in chapter 0. The Perception package is built on top of the

“interbotix_xsarm_control” package and the “interbotix_xsarm_descriptions” package

covered in chapter 4.2 and 4.1, respectively.

The Perception package launches four packages, with sub nodes, and one optional node:

• xsarm_control.launch: Launches the “interbotix_xsarm_control” package, see

chapter 4.2.

• rs_camera.launch: Launches the nodes responsible for being able to use the Intel

RealSense cameras with ROS.

o RealSenseNodeFactory: A nodelet responsible for the creation of ROS

interface for the RealSense camera

• armtag.launch: Launches the nodes responsible for establishing the necessary

transform for accurate control of the arm’s end-effector in reference to the camera,

using the AprilTag markers.

o armtag_tuner_gui: A node responsible for generating a GUI for obtaining the

previously mentioned transform.

o apriltag_ros_single_image_server_node: The node responsible for obtaining

the transform of the end-effector in reference to the camera.

• static_transform_pub.launch: Responsible for loading, saving and publishing the

static transform to the correct ROS topic

• pc_filter.launch: Launches the nodes responsible for obtaining the point cloud and

tuning the point cloud parameters for obtaining the objects from the generated clusters.

o pointcloud_tuner_gui: The node responsible for launching a GUI with the

ability to tune filter parameters used in the perception pipeline.

o perception_pipeline: The node responsible for the implementation of the

Perception Pipeline using the PointCloud Library. [50]

Optional to launch:

• rviz: Responsible for visualizing the X-Series arm with the MoveIt MotionPlanning

plugin in RViz.

For clarification, a nodelet in ROS is a tool that allows multiple algorithms to run within the

same process for efficient message passing, and the nodelet manager is responsible for loading

and unloading nodelets as requested.

 4 ReactorX-150 Implementation

50

4.6.2 Arguments

The arguments seen in Table 4-6 are the utilized and/or most important arguments in the

Perception package regarding the physical testing of the arm. The full list of arguments together

with a simple user manual can be seen in [Appendix E – User Manual with Full Arguments for

Trossen Robotics X-Series arms].

Table 4-6: Perception package main arguments

Argument Default Value Description

robot_model “” Requires the codename for the

specific robot arm. “rx150” in

the case of the ReactorX-150

use_rviz true Launches RViz

load_configs true Set to true if the motor

configurations shall be written

to the motors. Is only necessary

to do it the first time the node

starts up, reduces startup time if

set to “false”

use_pointcloud_tuner_gui false Displays a GUI for tuning filter

parameters

use_armtag_tuner_gui false Enables the user to publish the

“ref_frame” to

“arm_base_frame” transform

via a GUI

 4 ReactorX-150 Implementation

51

4.7 Joystick Control

The Joystick Control package (“interbotix_xsarm_joy”) provides the functionality to be able

to control the X-Series arms with either a PlayStation or Xbox controller wireless controller

via Bluetooth. The package is set up to be compatible with PlayStation 3, PlayStation 4, and

Xbox 360 wireless controllers.

There are two preliminary requirements to running the Joystick Control package:

• The “arm” joint’s operating mode must be set to “position”.

• The “gripper” joint’s operating mode must be set to “pwm”.

• The wireless joystick controller must be connected to the computer, see [Appendix H

– Joystick controller pairing] to connect the joystick controller.

The requirements above are conveniently enough the default values when running the Joystick

Control package.

The simulated and physical testing of the Joystick Control package is covered in chapter 5.4

and 6.3.

4.7.1 Structure

The structure of the Joystick Control package can be seen visually represented in Figure 4.7.

Figure 4.7: Joystick control package structure [51]

The launch file for the Joystick Control package is the “xsarm_joy.launch” file. The launch file

is an XML file that specifies the ROS nodes, parameters, and other settings required to launch

the package. The nodes, parameters and other setting can be customized with the package

arguments covered in chapter 4.7.2. The Joystick Control package is built on top of the

“interbotix_xsarm_control” package and the “interbotix_xsarm_descriptions” package

covered in chapter 4.2 and 4.1, respectively.

 4 ReactorX-150 Implementation

52

The Joystick Controller package launches one package and three nodes:

• xsarm_control.launch: Launches the “interbotix_xsarm_control” package, see

chapter 4.2.

• joy: A ROS driver that interfaces with the previously mentioned joysticks, capturing

input data and publishing it as “sensor_msgs/Joy” messages. The messages are

published to the “commands/joy_raw” topic.

• xsarm_joy: Responsible for converting the “sensor_msgs/Joy” messages to “ArmJoy”

messages. [52] The result is a more readable code, and it enables the user to remap

buttons more conveniently.

• xsarm_robot: Reads the ArmJoy messages and sends commands for the joints and

gripper to the “xs_sdk” node.

4.7.2 Arguments

The arguments seen in Table 4-7 are the utilized and/or most important arguments in the

Joystick control package regarding the simulation and physical testing in chapter 5.4 and 6.3.

The full list of arguments together with a simple user manual can be seen in [Appendix E –

User Manual with Full Arguments for Trossen Robotics X-Series arms].

Table 4-7: Joystick control package main arguments

Argument Default Value Description

robot_model “” Requires the codename for the specific

robot arm. “rx150” in the case of the

ReactorX-150

use_rviz true Launches RViz

use_sim false Set to “true” if intending to simulate the

robot arm. Runs the DYNAMIXEL

simulator node if set to true

controller ps4 Define the type of controller to be used,

either “ps3”, “ps4” or “xbox360”

 4 ReactorX-150 Implementation

53

4.8 Record and Playback

The Record and Playback package is located within the “interbotix_xsarm_puppet” package

covered in 4.10. The Record and Playback package only utilizes some of the features of the

“interbotix_xsarm_puppet” package and launches with its own launch file. The Record and

Playback package enables the user to record manual manipulation of an X-Series arm, store

the recording and playback the recorded motions with the same robot. The recording is stored

in a ROS bag file, and it is possible to store multiple recordings by simply changing the name

of the bag file. The ROS bag file is a binary file format and does not have a human-readable

format.

The physical testing of the Record and Playback package is covered in chapter 6.4.

The Record and Playback package has the option of being simulated, but no user-friendly GUI

for controlling the simulated model. It is possible to control the simulated arm with “rostopic”

commands from the terminal window, but that will not be included in the thesis. The procedure

and commands for controlling the simulated arm are the same as for the simulated Arm Control

package covered in chapter 5.2.3. The only difference being the name of the topic the command

is published to.

4.8.1 Structure

The structure of the Record and Playback package can be seen visually represented in Figure

4.8.

Figure 4.8: Record and playback package structure [53]

The launch file for the Record and Playback package is the “xsarm_puppet_single.launch” file.

The launch file is an XML file that specifies the ROS nodes, parameters, and other settings

 4 ReactorX-150 Implementation

54

required to launch the package. The nodes, parameters and other setting can be customized

with the package arguments covered in chapter 4.8.2. The Record and Playback package is

built on top of the “interbotix_xsarm_control” package and the

“interbotix_xsarm_descriptions” package covered in chapter 4.2 and 4.1, respectively.

The Record and Playback package launches one package and three nodes available for launch:

• xsarm_control.launch: Launches the “interbotix_xsarm_control” package, see

chapter 4.2.

• xsarm_puppet_single: Reads the X-Series arm’s joint states, converts them to position

commands and publishes them to the “/<robot__code_name>/commands/joint_group”

and “/<robot_code_name>/commands/joint_single” topics. Node is launched together

with the “record” node.

• record: Record the “/<robot__code_name>/commands/joint_group” and

“/<robot_code_name>/commands/joint_single” topics.

• play: Responsible for interoperating the recorded ROS bag file and play back the file

as commands to the arm. The playback has a three second start delay ensuring the

“xs_sdk” node is able to load.

4.8.2 Arguments

The arguments seen in Table 4-8 are the utilized and/or most important arguments in the Record

and playback package regarding the simulation and physical testing of the arm. The full list of

arguments together with a simple user manual can be seen in [Appendix E – User Manual with

Full Arguments for Trossen Robotics X-Series arms].

Table 4-8: Record and playback package main arguments

Argument Default Value Description

robot_model “” Requires the codename for the specific

robot arm. “rx150” in the case of the

ReactorX-150

use_rviz true Launches RViz

record false Record the physical manipulation of the

robot to a bag file

playback false Playback the recorded manipulation of

the arm

bag_name $(arg

robot_name)_commands

Change this to set an arbitrary file name

to the ROS bag file

 4 ReactorX-150 Implementation

55

use_sim false Set to “true” if intending to simulate the

robot arm. Runs the DYNAMIXEL

simulator node if set to true

 4 ReactorX-150 Implementation

56

4.9 Arm Diagnostic Tool

The Arm Diagnostic Tool package (“interbotix_xsarm_diagnostic_tool”) is designed as a joint

data analyzer. One specified joint is given commands while the rest are torqued in a stationary

position. The data of one arbitrary joint is then plotted and recorded. The package enables the

user to observe live joint data over a specified period of time, which can be useful if there are

concerns about the strain on a specific joint when performing a task. The data is saved to a

ROS bag file and can be converted to a CSV file for improved readability and potential further

use.

The live joint data is shown in three plots (y-axis vs. x-axis):

• Position [rad] and velocity [rad/s] vs. time [s]

• Effort [mA] vs time [s]

• Temperature [°C] vs. time [s]

The Arm Diagnostic Tool package is reserved for the physical testing of the robot arms only.

The physical testing of the Arm Diagnostic Tool package is covered in chapter 6.5.

The commanded joint follows a symmetrical sinusoidal trajectory around 0 radians. The

minimum absolute value of the upper and lower joint limits defines the upper bound of the

sinusoidal trajectory.

4.9.1 Structure

The structure of the Arm Diagnostic Tool package can be seen visually represented in Figure

4.9.

Figure 4.9: Arm Diagnostic Tool package structure [54]

 4 ReactorX-150 Implementation

57

The launch file for the Arm Diagnostic Tool package is the “xsarm_diagnostic_tool.lauch” file.

The launch file is an XML file that specifies the ROS nodes, parameters, and other settings

required to launch the package. The nodes, parameters and other setting can be customized

with the package arguments covered in chapter 4.9.2. The Arm Diagnostic Tool package is

built on top of the “interbotix_xsarm_control” package and the

“interbotix_xsarm_descriptions” package covered in chapter 4.2 and 4.1, respectively.

The Arm Diagnostic Tool package launches a single package and four distinct nodes, with one

of these nodes being launched in three separate instances:

• xsarm_control.launch: Launches the “interbotix_xsarm_control” package, see

chapter 4.2.

• xsarm_diagnostic_tool: Responsible for sending the joint position commands to the

specified joint, and for publishing the temperatures of all the joints except the gripper

to the “/<robot_name>/temperatures/joint_group” topic.

• record: Saves the recording of the “/<robot_name>/commands/joint_single”,

“/<robot_name>/joint_states”, and “/<robot_name>/temperatures/joint_group” topics

to a ROS bag file.

• rqt_plot: Launches three instances of this node to plot the three plots specified in the

introduction of chapter 4.9.

4.9.2 Arguments

The arguments seen in Table 4-9 are the utilized and/or most important arguments in the Arm

Diagnostic Tool package regarding the physical testing of the arm covered in chapter 6.5. The

full list of arguments together with a simple user manual can be seen in [Appendix E – User

Manual with Full Arguments for Trossen Robotics X-Series arms].

Table 4-9: Arm Diagnostic Tool package main arguments

Argument Default Value Description

robot_model “” Requires the codename for the

specific robot arm. “rx150” in the

case of the ReactorX-150

use_rviz true Launches RViz

cmd_joint waist The joint name of the joint to be

rotated

observe_joint waist The joint name of the joint to be

observed

test_duration 600 Defines the duration of the test in

seconds

 4 ReactorX-150 Implementation

58

bag_name “$(arg

observe_joint)_diagnostics”

Change this to set an arbitrary file

name to the ROS bag file

use_rqt true Launches the rqt plots. The rqt plots

are set up with preloaded topics

 4 ReactorX-150 Implementation

59

4.10 Arm Puppeteering

The Arm Puppeteering package (“interbotix_xsarm_puppet”) provides the functionality to be

able to manually manipulate one X-Series arm and one or more X-series arm(s) replicate the

movements in real time.

The Arm Puppeteering package has the option of being simulated, but no user-friendly GUI

for controlling the simulated model. It is possible to control the simulated “master” arm with

“rostopic” commands from the terminal window, but that will not be included in the thesis.

The procedure and commands for controlling the simulated “master” arm and subsequently the

simulated “puppet” arm are the same as for the simulated Arm Control package covered in

chapter 5.2.3. The only difference being the name of the topic the command is published to.

The current subchapter and the two following subchapters include working with two ReactorX-

150 arms, so the physical setup of the two ReactorX-150 arms are covered in chapter 4.10.1.

The physical testing of the Arm Puppeteering package can be seen in chapter 6.6.

4.10.1 Physical setup of two ReactorX-150 arms

The physical setup of the two ReactorX-150 arms consists of the two ReactorX-150 arms lined

up parallel to each other with 60 cm distance from the center of “waist” joints. When

manipulating one of the 3D printed USN logos, the logo is placed directly at the center between

the two robotics arms. The setup with a measuring stick for reference can be seen in Figure

4.10.

Figure 4.10: Individual arms and the USN logo with measurements

The full setup with and without the measuring stick can be seen in Figure 4.11.

 4 ReactorX-150 Implementation

60

4.10.2 Structure

The structure of the Arm Puppeteering package can be seen visually represented in Figure

4.12.

Figure 4.12: Arm Puppeteering package structure [55]

Figure 4.11: Full ReactorX-150 setup with and without measurements

 4 ReactorX-150 Implementation

61

The launch file for the Arm Puppeteering package is the “xsarm_puppet.launch” file. The

launch file is an XML file that specifies the ROS nodes, parameters, and other settings required

to launch the package. The nodes, parameters and other setting can be customized with the

package arguments covered in chapter 4.10.3.

The Arm Diagnostic Tool package is built on top of the “interbotix_xsarm_control” package

and the “interbotix_xsarm_descriptions” package covered in chapter 4.2 and 4.1, respectively.

The Arm Puppeteering package launches three nodes and one package, where one of the nodes,

as well as the package, is launched in a number of instances equal to the number of arms:

• xsarm_control.launch: Launches the “interbotix_xsarm_control” package, see

chapter 4.2. This package is launched a number of instances equal to the number of

arms.

• xsarm_puppet: Reads the joint states from the “master” arm and publishes them as

position commands to the “puppet” arm(s).

• static_transform_publisher: This node is responsible for specifying the position of

the X-Series arms relative to the “world” frame in RViz. This node is launched a

number of instances equal to the number of arms.

• rviz: Launches one instance of RViz with a robot model for each arm. In the case of

this thesis, RViz displays two arms.

4.10.3 Arguments

The arguments seen in Table 4-10 are the utilized and/or most important arguments in the

Arm Puppeteering package regarding the physical of the arm. The full list of arguments

together with a simple user manual can be seen in [Appendix E – User Manual with Full

Arguments for Trossen Robotics X-Series arms].

Table 4-10: Arm Puppeteering package main arguments

Argument Default Value Description

robot_model_master “” Requires the codename for the specific

robot arm to be the master. “rx150” in

the case of the ReactorX-150

robot_model_puppet “” Requires the codename for the specific

robot arm to be the puppet. “rx150” in

the case of the ReactorX-150

use_puppet_rviz true launches RViz with visualization of both

arms

use_rviz true Launches RViz

 4 ReactorX-150 Implementation

62

4.11 Dual Arm Control

The Dual Arm Control package (“interbotix_xsarm_dual”) provides the ability to get multiple

X-Series arms working simultaneously. This thesis will cover two X-Series arms working

simultaneously, but in theory the only limitation to the number of arms working simultaneously

is the number of USB ports available.

The simulated and physical testing of the Dual Arm Control package is covered in chapter 5.5

and 6.7. The physical setup of the two ReactorX-150 arms can be seen in chapter 4.10.1.

4.11.1 Structure

The structure of the Dual Arm Control package can be seen visually represented in Figure

4.13.

Figure 4.13: Dual Arm Control package structure [56]

The launch file for the Dual Arm Control package is the “xsarm_dual.launch” file. The

launch file is an XML file that specifies the ROS nodes, parameters, and other settings

required to launch the package. The nodes, parameters and other setting can be customized

with the package arguments covered in chapter 4.11.2.

The Arm Diagnostic Tool package is built on top of the “interbotix_xsarm_control” package

and the “interbotix_xsarm_descriptions” package covered in chapter 4.2 and 4.1, respectively.

 4 ReactorX-150 Implementation

63

The Dual Arm Control package launches one package and one node, where the package is

launched in a number of instance equal to the number of arms, which in this case is two:

• xsarm_control.launch: Launches the “interbotix_xsarm_control” package, see

chapter 4.2. This package is launched a number of instances equal to the number of

arms.

• xsarm_dual: Responsible for the X-Series arms to work with Python and MATLAB

scripts.

4.11.2 Arguments

The arguments seen in Table 4-11 are the utilized and/or most important arguments in the

Dual Arm Control package regarding the simulation and physical testing in chapter 5.5 and

6.7. The full list of arguments together with a simple user manual can be seen in [Appendix E

– User Manual with Full Arguments for Trossen Robotics X-Series arms].

Table 4-11: Dual Arm Control package main arguments

Argument Default Value Description

robot_model_1 “” Requires the codename for the specific

robot arm. “rx150” in the case of the

ReactorX-150

robot_model_2 “” Requires the codename for the specific

robot arm. “rx150” in the case of the

ReactorX-150

use_sim false Set to “true” if intending to simulate the

robot arm. Runs the DYNAMIXEL

simulator node if set to true

use_dual_rviz false launches RViz with visualization of both

arms

 4 ReactorX-150 Implementation

64

4.12 Dual Arm Joystick Control

The Dual Arm Joystick package (“interbotix_dual_arm_joy”) provides the ability to operate

multiple X-series arms simultaneously with either a PlayStation or Xbox controller wireless

via Bluetooth. The package is set up to be compatible with PlayStation 3, PlayStation 4, and

Xbox 360 wireless controllers.

It is recommended to be familiar with both the Joystick Control package and the Dual arm

control package covered in chapter 4.7 and 4.11, respectively.

The simulated and physical testing of the Dual Arm Joystick Control package is covered in

chapter 5.6 and 6.8. The physical setup of the two ReactorX-150 arms can be seen in chapter

4.10.1.

The wireless joystick controller of choice must be connected when running this package, see

[Appendix H – Joystick controller pairing] to connect the wireless joystick controller.

4.12.1 Structure

The structure of the Dual Arm Joystick Control package can be seen visually represented in

Figure 4.14.

Figure 4.14: Dual Arm Joystick Control package structure [57]

The launch file for the Dual Arm Joystick package is the “xsarm_dual_joy.launch” file. The

launch file is an XML file that specifies the ROS nodes, parameters, and other settings required

to launch the package. The nodes, parameters and other setting can be customized with the

package arguments covered in chapter 4.12.2.

 4 ReactorX-150 Implementation

65

The Arm Diagnostic Tool package is built on top of the “interbotix_xsarm_joy” package,

“interbotix_xsarm_dual” package, “interbotix_xsarm_control” package and the

“interbotix_xsarm_descriptions” package covered in chapter 4.7, 4.11, 4.2 and 4.1,

respectively.

The Dual Arm Joystick package launches one package and up to four nodes, where two of the

nodes are launched in a number of instance equal to the number of arms, which in this case is

two:

• xsarm_dual.launch: launches the “Interbotix_xsarm_dual” package, see chapter 4.11.

• joy: A ROS driver that interfaces with the previously mentioned joysticks, capturing

input data and publishing it as “sensor_msgs/Joy” messages. The messages are

published to the “commands/joy_raw” topic.

• xsarm_joy: Responsible for converting the “sensor_msgs/Joy” messages to ArmJoy

messages. [52] The result is a more readable code, and it enables the user to remap

buttons more conveniently. This package is launched a number of instances equal to

the number of arms.

• xsarm_robot: Reads the ArmJoy messages and sends commands for the joints and

gripper to the “xs_sdk” node. This package is launched a number of instances equal to

the number of arms.

• xsarm_dual: The node launches when a Python or MATLAB script is run, publishes

data to the necessary ROS topics of the two arms, and upon completion of the script the

node is killed. This node cannot be launched from a launch file or the terminal window,

it can only be launched by executing a Python or MATLAB script.

4.12.2 Arguments

The arguments seen in Table 4-12 are the utilized and/or most important arguments in the Dual

Arm Joystick Control package regarding the simulation and physical testing in chapter 5.6 and

6.8. The full list of arguments together with a simple user manual can be seen in [Appendix E

– User Manual with Full Arguments for Trossen Robotics X-Series arms].

Table 4-12: Dual Arm Joystick Control package main arguments

Argument Default Value Description

robot_model_1 “” Requires the codename for the specific

robot arm. “rx150” in the case of the

ReactorX-150

robot_model_2 “” Requires the codename for the specific

robot arm. “rx150” in the case of the

ReactorX-150

 4 ReactorX-150 Implementation

66

use_sim false Set to “true” if intending to simulate the

robot arm. Runs the DYNAMIXEL

simulator node if set to true

use_dual_rviz false Launches RViz with visualization of both

arms

threshold 0.75 Specifies the sensitivity of the controller

from 0 to 1, 1 being the highest sensitivity

controller ps4 Define the type of controller to be used,

either “ps3”, “ps4” or “xbox360”

 5 Simulation of ReactorX-150

67

5 Simulation of ReactorX-150
This chapter presents the simulated testing of the ReactorX-150 robotic arm. Simulation of the

ReactorX-150 accurately models the physical attributes of the robot and its environment. The

simulation tools utilized are RViz and Gazebo, both powerful visualization/simulation tools.

The user manual for the X-series arms with the main arguments for the packages can be seen

in [Appendix F – User Manual with Main Arguments for Trossen Robotics X-Series arms].

The more extensive user manual containing the full list of arguments for the packages can be

seen in [Appendix E – User Manual with Full Arguments for Trossen Robotics X-Series arms].

All commands throughout this chapter are meant to be run in an Ubuntu terminal window.

5.1 Arm Descriptions

The following command launches the Arm Descriptions package for the ReactorX-150 with

RViz for visualization/simulation, and a GUI for performing forward kinematics:

The resulting RViz window with the model of the ReactorX-150 and the GUI for performing

forward kinematics (“joint_state_publisher_gui”) can be seen in Figure 5.1. The “Interbotix

Control Panel” appears in RViz but is not possible to utilize. The “Interbotix Control Panel” is

only available for use by the Arm Control package simulated in chapter 5.2.

Figure 5.1: Arm Descriptions startup

The GUI for performing forward kinematics can be seen in Figure 5.1 appears in a separate

window from RViz. A better view of the GUI can be seen in Figure 5.2. The GUI enables the

control of all the joint individually, set random positions to all the joints with the “Randomize”

button and to set the arm to “Home” position with the “Center” button.

$ roslaunch interbotix_xsarm_descriptions xsarm_description.launch robot_model:=rx150
use_joint_pub_gui:=true

 5 Simulation of ReactorX-150

68

Figure 5.2: Forward kinematics GUI provided by the "joint_state_publisher_gui" node

A demonstration of three positions of the simulated ReactorX-150 using the forward

kinematics GUI can be seen in Figure 5.3. The first position being the “Home” position where

all motor positions are set to 0.0. The two remaining positions are two arbitrary positions.

Figure 5.3: Arm Descriptions, ReactorX-150 in three different positions

 5 Simulation of ReactorX-150

69

5.2 Arm Control

The Arm Control package has the ability to control the simulated ReactorX-150 arm in three

ways. The first method of controlling the arm is through the “Interbotix Control Panel” in RViz,

covered in chapter 5.2.1. The second method of controlling the arm is with the utilization of

Python scripts, covered in chapter 5.2.2. The third method of controlling the robotic arm is with

commands passed from the Ubuntu terminal window, covered in chapter 5.2.3.

The one thing the three control methods have in common is the startup of the Arm Control

package. The following command launches the Arm Control package for the ReactorX-150

with RViz for visualization/simulation:

The resulting RViz window with the model of the ReactorX-150 and the “Interbotix Control

Panel” available can be seen in Figure 5.4.

Figure 5.4: Arm Control RViz window

5.2.1 Interbotix Control Panel

The utilization of the “Interbotix Control Panel” requires the input of the codename of the arm

in question. In this case “rx150” was written to the input field. The “Interbotix Control Panel”

in RViz offers very limited control over the arm in terms of position of the arm, but it has a

total of six tabs that offer control of a selection of other parameters. In terms of position control,

the “Interbotix Control Panel” has the ability to set the arm in “Sleep” and “Home” position as

seen in Figure 5.5.

$ roslaunch interbotix_xsarm_control xsarm_control.launch robot_model:=rx150
use_sim:=true

Figure 5.5: ReactorX-150 "Sleep" and "Home" pose from "Interbotix Control Panel"

 5 Simulation of ReactorX-150

70

There are six tabs in the “Interbotix Control Panel”. The five tabs except the “Home/Sleep” tab

serve no practical use for the simulated model and will therefore be further covered in chapter

6.1.1.

5.2.2 Python Scripts

Python scripts provide a powerful method for controlling the simulated ReactorX-150.

Utilizing the flexibility of Python, users can create complex control sequences, enabling precise

manipulation of the robot's movements and interactions. Both forwards and inverse kinematics

are available when controlled with python scripts.

The “bartender.py” Python script is located in the “Python demos” directory and can be seen

in [Appendix J – bartender.py]. The series of figures seen in Figure 5.6 visualize the series of

movements of the simulated ReactorX-150 executed when running the “bartender.py” script.

To run the “bartender.py” Python script, navigate to the “Python demos” directory and execute

the following command:

$ python3 bartender.py

 5 Simulation of ReactorX-150

71

Figure 5.6: "bartender.py" script movements on simulated ReactorX-150

5.2.3 Terminal window commands

The Arm Control package enables control of the simulated arm through the Ubuntu terminal

window with the help of “rostopics”. The ReactorX-150 can be controlled by sending

commands to “rostopic” subscribers. For a better understanding of “rostopic” commands see

[Appendix K – “rostopic” guide].

Figure 5.7 shows four Ubuntu terminal commands controlling the simulated ReactorX-150.

 5 Simulation of ReactorX-150

72

Figure 5.7: Four Ubuntu terminal commands for the simulated ReactorX-150

The visualization of the simulated ReactorX-150 executing the Ubuntu terminal commands

can be seen in Figure 5.8, where the simulated robot arm starts in the “Home” position.

Figure 5.8: Visualization of Ubuntu terminal command to the simulated ReactorX-150

 5 Simulation of ReactorX-150

73

5.3 MoveIt

MoveIt enables the user to control the arm using both forwards and inverse kinematics. The

following command launches the MoveIt package with the simulated ReactorX-150 model and

RViz:

The resulting RViz window with the MoveIt plugin and the model of the ReactorX-150 can be

seen in Figure 5.9. “Query Goal State” shows the next goal position of the arm and end-effector,

and “Trail Step Size” shows some of the positions of the arm on the way to the goal position.

The “Query Goal State” is not checked by default but should always be checked like shown on

both the figures for both forwards and inverse kinematics. The figure on the right has “Show

Trail” checked and “Trail Step Size” set to seven.

The following command launches the MoveIt Configuration package with the ReactorX-150

model, RViz and Gazebo:

The resulting RViz window with the MoveIt plugin and Gazebo window, both with the model

of the ReactorX-150 can be seen in Figure 5.10. As seen in Figure 5.9, The “Query Goal State”

is checked.

Figure 5.11 shows a few different positions of the simulated ReactorX-150 in RViz and Gazebo

achieved with inverse kinematics.

$ roslaunch interbotix_xsarm_moveit xsarm_moveit.launch robot_model:=rx150
use_fake:=true

$ roslaunch interbotix_xsarm_moveit xsarm_moveit.launch robot_model:=rx150
use_gazebo:=true

Figure 5.9: MoveIt RViz with "Query Goal State" and "Show Trail" checked

Figure 5.10: MoveIt RViz with "Query Goal State" and Gazebo

 5 Simulation of ReactorX-150

74

Figure 5.11: RViz and Gazebo ReactorX-150 positions with MoveIt

MoveIt can also be used for forward kinematics for the simulated robot arm by utilizing the

“Joints” tab, as seen in Figure 5.12. Note that the position still has to be planned and executed

from the “Planning” tab.

5.4 Joystick Control

The Joystick Control package enables the control of the simulated ReactorX-150 to be done

via a joystick controller. The following command launches the Joystick Control package with

RViz and a simulated model of the ReactorX-150:

The Joystick Control package is not particularly suitable for demonstration with pictures, so a

video made for this thesis demonstrating the capabilities of the simulated Joystick Control

package can be viewed at [58]. The joystick controls can be seen in [Appendix G – Joystick

controls].The video shows the control of the simulated ReactorX-150 arm with the PlayStation

4 joystick controller. The video demonstrates the robot arm capabilities such as:

• Commanding the robot arm to “Home” position and “Sleep” position using the

“OPTIONS” and “SHARE” button, respectively.

Figure 5.12: MoveIt forwards kinematics

$ roslaunch interbotix_xsarm_joy xsarm_joy.launch robot_model:=rx150 use_sim:=true

 5 Simulation of ReactorX-150

75

• Controlling the “waist” joint left and right using the “L2” and “R2” buttons,

respectively.

• Commanding the opening and closing of the gripper with the circle and square buttons,

respectively.

• Controlling the roll and tilt of the wrist of the arm by manipulating the right joystick

left/right and up/down, respectively.

• Controlling the position of the end effector up/down and inwards/outwards by

manipulating the left joystick up/down and left/right, respectively.

5.5 Dual Arm Control

The Dual Arm Control package enables the control of two ReactorX-150 arms simultaneously.

The following command launches the Dual Arm Control package with two simulated

ReactorX-150 arms in RViz:

The resulting window with the two simulated ReactorX-150 models can be seen in Figure 5.13.

Unlike the Arm Control package, the Dual Arm Control package does not come with the

“Interbotix Control Panel”. The arms can be controlled with Python scripts and terminal

window commands covered in chapter 5.5.2 and 5.5.1, respectively.

Figure 5.13: Dual Arm Control RViz window

5.5.1 Terminal window commands

The terminal commands work the exact same way as seen in chapter 5.2.3. The only difference

being the names of the topics, which can be seen in Figure 5.14. The arms are to be controlled

independently, hence the separate “arm_1” and “arm_2” topics. For a better understanding of

“rostopic” commands see [Appendix K – “rostopic” guide].

$ roslaunch interbotix_xsarm_dual xsarm_dual.launch robot_model_1:=rx150
robot_model_2:=rx150 use_sim:=true use_dual_rviz:=true

 5 Simulation of ReactorX-150

76

Figure 5.14: Dual Arm Control package topics

5.5.2 Python Scripts

The following two commands executes two scripts intended for picking up a 3D printed USN

logo that can be seen in chapter 7.6. The two custom scripts below can be seen in [Appendix L

– xsarm_dual_usn_lift.py] and [Appendix M – xsarm_dual_usn_down.py]. The first script lifts

the object up, the second script lowers the object back down:

The two scripts above are visualized in a sequence in Figure 5.15, where the first script is

represented by the five first frames and the second script is represented by the four remaining

frames.

Figure 5.15: "python3 xsarm_dual_usn_lift.py" and "python3 xsarm_dual_usn_lift.py" visualized

$ python3 xsarm_dual_usn_lift.py
$ python3 xsarm_dual_usn_down.py

 5 Simulation of ReactorX-150

77

5.6 Dual Arm Joystick Control

The Dual Arm Joystick Control package enables the control of two ReactorX-150’s to be done

via one joystick controller. The following command launches the Dual Arm Joystick control

package with RViz and the simulated models of the ReactorX-150:

The resulting window is a regular RViz window with two simulated models of the ReactorX-

150, exactly like the RViz window from the launch of chapter 5.5

The Joystick Control package is not particularly suitable for demonstration with pictures, so a

video made for this thesis demonstrating the capabilities of the simulated Joystick Control

package can be viewed at [59]. The joystick controls can be seen in [Appendix G – Joystick

controls].The video shows the control of the two simulated ReactorX-150 arms controlled

simlotaniously with the PlayStation 4 joystick controller. The video demonstrates the robot

arms capabilities such as:

• Commanding the robot arms to “Home” position and “Sleep” position using the

“OPTIONS” and “SHARE” button, respectively.

• Controlling the “waist” joints left and right using the “L2” and “R2” buttons,

respectively.

• Commanding the opening and closing of the grippers with the circle and square buttons,

respectively.

• Controlling the roll and tilt of the arms wrists by manipulating the right joystick

left/right and up/down, respectively.

• Controlling the position of the end effectors up/down and inwards/outwards by

manipulating the left joystick up/down and left/right, respectively.

$ roslaunch interbotix_xsarm_joy xsarm_joy.launch robot_model:=rx150 use_sim:=true

 6 Physical Testing of ReactorX-150

78

6 Physical Testing of ReactorX-150
This chapter presents the physical testing of the ReactorX-150 robotic arm. This chapter looks

into the application of the various packages that were used to control and manipulate the

ReactorX-150, including their respective setup and configuration.

The user manual for the X-series arms with the main arguments for the packages can be seen

in [Appendix F – User Manual with Main Arguments for Trossen Robotics X-Series arms].

The more extensive user manual containing the full list of arguments for the packages can be

seen in [Appendix E – User Manual with Full Arguments for Trossen Robotics X-Series

arms].

All commands throughout this chapter are meant to be run in an Ubuntu terminal window.

6.1 Arm Control

The Arm Control package has the ability to control the physical ReactorX-150 arm in three

ways. The first method of controlling the arm is through the “Interbotix Control Panel” in RViz,

covered in chapter 6.1.1. The second method of controlling the arm is with the utilization of

Python scripts, covered in chapter 6.1.2. The third method of controlling the robotic arm is with

commands passed from the Ubuntu terminal window, covered in chapter 6.1.3.

The one thing the three control methods have in common is the startup of the Arm Control

package. The following command launches the Arm Control package for the physical

ReactorX-150 with RViz:

The resulting RViz window with the model of the ReactorX-150 with the “Interbotix Control

Panel” available and the physical ReactorX-150 can be seen in Figure 6.1.

6.1.1 Interbotix Control Panel

The utilization of the “Interbotix Control Panel” requires the input of the codename of the

arm in question. In this case “rx150” was written to the input field. The “Interbotix Control

$ roslaunch interbotix_xsarm_control xsarm_control.launch robot_model:=rx150

Figure 6.1: Arm Control RViz window with physical ReactorX-150 in “Sleep” position

 6 Physical Testing of ReactorX-150

79

Panel” in RViz offers very limited control over the arm in terms of position of the arm, but it

has a total of six tabs that offer control of a selection of other parameters. In terms of position

control, the “Interbotix Control Panel” has the ability to set the arm in “Sleep” and “Home”

position as seen in Figure 6.1and Figure 6.2, respectively.

Figure 6.2: Arm Control RViz window with physical ReactorX-150 in "Home" position

The six tabs available in the “Interbotix Control Panel” can be seen in Figure 6.3.The main

abilities of the different tabs are:

• “Home/Sleep”: Has the ability to command the arm to “Home” or “Sleep” position.

• “Torque”: Has the ability to torque the motor groups or the individual motors of the

robotic arm on and off.

• “Operating Modes”: Has the ability to configure the operating modes of the motor

groups or the individual motors of the robotic arm.

• “Reboot”: Has the ability to reboot the motor groups or the individual motors of the

robotic arm.

• “Get Register Values”: Has the ability to display the register values of the motor

groups or the individual motors of the robotic arm.

• “E-Stop”: Has the ability to kill the “xs_sdk” node, causing an immediate torque-off

in all the motors. Acts as an emergency stop button, and damage of the robot arm may

ensue.

 6 Physical Testing of ReactorX-150

80

Figure 6.3: The six tabs of the "Interbotix Control Panel"

6.1.2 Python Scripts

Python scripts provide a powerful method for controlling the physical ReactorX-150. Utilizing

the flexibility of Python, users can create complex control sequences, enabling precise

manipulation of the robot's movements and interactions. Both forwards and inverse kinematics

are available when controlled with python scripts.

The “bartender.py” Python script is located in the “Python demos” directory and can be seen

in [Appendix J – bartender.py]. The series of figures seen in Figure 6.4 visualize the series of

movements of the physical ReactorX-150 executed when running the “bartender.py” script.

To run the “bartender.py” Python script, navigate to the “Python demos” directory and execute

the following command:

$ python3 bartender.py

 6 Physical Testing of ReactorX-150

81

Figure 6.4: "bartender.py" script movements on physical ReactorX-150

6.1.3 Terminal window commands

The Arm Control package enables control of the arm through the Ubuntu terminal window

with the help of “rostopics”. The ReactorX-150 can be controlled by sending commands to

“rostopic” subscribers. For a better understanding of “rostopic” commands see [Appendix K –

“rostopic” guide].

Figure 6.5 shows four Ubuntu terminal commands controlling the physical ReactorX-150.

 6 Physical Testing of ReactorX-150

82

Figure 6.5: Four Ubuntu terminal commands for the physical ReactorX-150

The execution of the Ubuntu terminal commands by the physical ReactorX-150 can be seen

in Figure 6.6, where the physical robot arm starts in the “Home” position.

Figure 6.6: The physical ReactorX-150 executing Ubuntu terminal commands

6.2 MoveIt

MoveIt enables the user to control the arm using both forwards and inverse kinematics. The

following command launches the MoveIt package with the simulated ReactorX-150 model and

RViz:

 6 Physical Testing of ReactorX-150

83

The resulting RViz window with the MoveIt plugin and the model of the ReactorX-150

together with the physical ReactorX-150 can be seen in Figure 6.7, going from “Sleep”

positions to two other positions. “Query Goal State” shows the next goal position of the arm

and end-effector, and “Trail Step Size” shows some of the positions of the arm on the way to

the goal position. The “Query Goal State” and “Show Trail” are not checked by default but

should always be checked for both forwards and inverse kinematics. “Trail Step Size” were

in this case set to seven.

Figure 6.7: Physical ReactorX-150 visualized with RViz, moving from "Sleep" position

MoveIt can also be used for forward kinematics for the physical robot arm by utilizing the

“Joints” tab as seen in Figure 6.8. Note that the position still must be planned and executed

from the “Planning” tab.

$ roslaunch interbotix_xsarm_moveit xsarm_moveit.launch robot_model:=rx150
use_actual:=true

 6 Physical Testing of ReactorX-150

84

Figure 6.8: Forward kinematics performed on the physical ReactorX-150

6.3 Joystick Control

The Joystick Control package enables the control of the physical ReactorX-150 to be done via

a joystick controller. The following command launches the Joystick Control package with RViz

and enables control of the physical ReactorX-150:

The Joystick Control package is not particularly suitable for demonstration with pictures, so a

video made for this thesis demonstrating the capabilities of the physical Joystick Control

package can be viewed at [60]. The joystick controls can be seen in [Appendix G – Joystick

controls].The video shows the control of the physical ReactorX-150 arm with the PlayStation

4 joystick controller. The video demonstrates the robot arm capabilities such as:

• Commanding the robot arm to “Home” position and “Sleep” position using the

“OPTIONS” and “SHARE” button, respectively.

• Controlling the “waist” joint left and right using the “L2” and “R2” buttons,

respectively.

• Commanding the opening and closing of the gripper with the circle and square buttons,

respectively.

• Controlling the roll and tilt of the wrist of the arm by manipulating the right joystick

left/right and up/down, respectively.

• Controlling the position of the end effector up/down and inwards/outwards by

manipulating the left joystick up/down and left/right, respectively.

$ roslaunch interbotix_xsarm_joy xsarm_joy.launch robot_model:=rx150 use_sim:=true

 6 Physical Testing of ReactorX-150

85

6.4 Record and Playback

The Record and Playback package enables the user to record the manual manipulation of the

physical ReactorX-150 robot arm and play it back at any time. The following command

launches the Record and Playback package with RViz and records the manual manipulation of

the physical ReactorX-150:

The recording of the manual manipulation of the physical ReactorX-150 can be seen in Figure

6.9.

Figure 6.9: Recording of the manual manipulation of the ReactorX-150

The following command launches the Record and Playback package with RViz and playback

the manual manipulation of the physical ReactorX-150:

The recording of the manual manipulation of the physical ReactorX-150 can be seen in Figure

6.10.

$ roslaunch interbotix_xsarm_puppet xsarm_puppet_single.launch robot_model:=rx150
record:=true

$ roslaunch interbotix_xsarm_puppet xsarm_puppet_single.launch robot_model:=rx150
playback:=true

 6 Physical Testing of ReactorX-150

86

Figure 6.10: Playback of the manual manipulation of the ReactorX-150

6.5 Arm Diagnostic Tool

The Arm Diagnostic Tool package enables the activation and observation of the same or

different joints. The procedure for the Arm Diagnostic Tool can be seen in Figure 6.11. The

first frame displays the manual manipulation of the robot to a desired position for activation

and observation of the “waist” joint. The next for frames show a front and top view of how far

each direction the “waist” joint is tested. After the given test duration, the arm return to the

“Sleep” position as shown in the final frame.

Figure 6.11: Arm Diagnostic tool procedure

 6 Physical Testing of ReactorX-150

87

The following command launches the Arm Diagnostic Tool package for activation and

observation of the “waist” joint for 60 seconds:

The results of the test can be seen Figure 6.12 as three rqt plots. The information displayed in

the three plots (y-axis vs. x-axis):

• Position [rad] and velocity [rad/s] vs. time [s]

• Temperature [°C] vs. time [s]

• Effort [mA] vs time [s]

Figure 6.12: Arm Diagnostic tool results

6.6 Arm Puppeteering

The Arm Puppeteering package enables the manipulation of one ReactorX-150 to be repeated

in real time by a second X-Series arm, in this case a second ReactorX-150. The following

command launches the Arm Puppeteering package with two ReactorX-150s and RViz

displaying them both:

The designation of the "master" and "puppet" arm is determined by the sequence of connection

to the computer. Specifically, the arm that is connected first assumes the role of the "master"

arm.

The puppeteering of the two ReactorX-150 arms can be seen in Figure 6.13.

$ roslaunch interbotix_xsarm_diagnostic_tool xsarm_diagnostic_tool.launch
robot_model:=rx150 cmd_joint:=waist observe_joint:=waist test_duration:=60

$ roslaunch interbotix_xsarm_puppet xsarm_puppet.launch robot_model_master:=rx150
robot_model_puppet:=rx150

 6 Physical Testing of ReactorX-150

88

Figure 6.13: Puppeteering with two ReactorX-150s

6.7 Dual Arm Control

The Dual Arm Control package enables the control of two ReactorX-150 arms simultaneously.

The following command launches the Dual Arm Control package with two physical ReactorX-

150 arms together with RViz:

The resulting window with the two ReactorX-150 models in RViz and the two physical

ReactorX-150 arms can be seen in Figure 6.14. Unlike the Arm Control package, the Dual Arm

Control package does not come with the “Interbotix Control Panel”. The arms can be controlled

with Python scripts and terminal window commands covered in chapter 6.7.2 and 6.7.1,

respectively.

6.7.1 Terminal window commands

The terminal commands for the Dual Arm Control package work the exact same way as seen

in chapter 6.1.3. The only difference being the names of the topics, which can be seen in Figure

$ roslaunch interbotix_xsarm_dual xsarm_dual.launch robot_model_1:=rx150
robot_model_2:=rx150 use_dual_rviz:=true

Figure 6.14: Dual Arm Control RViz window and physical ReactorX-150 arms

 6 Physical Testing of ReactorX-150

89

6.15. The arms are to be controlled independently, hence the separate “arm_1” and “arm_2”

topics. For a better understanding of “rostopic” commands see [Appendix K – “rostopic”

guide].

Figure 6.15: Dual Arm Control package topics

6.7.2 Python Scripts

The following two commands executes two scripts intended for picking up a 3D printed USN

logo that can be seen in chapter 7.6. The two custom scripts below can be seen in [Appendix L

– xsarm_dual_usn_lift.py] and [Appendix M – xsarm_dual_usn_down.py]. It is mentioned in

the scripts, but the values for running the physical ReactorX-150 with 60 cm from center to

center are utilized. The first script lifts the object up, the second script lowers the object back

down:

The execution of two scripts above can be seen in Figure 6.16, where the first script is

represented by the five first frames and the second script is represented by the four remaining

frames.

$ python3 xsarm_dual_usn_lift.py
$ python3 xsarm_dual_usn_down.py

 6 Physical Testing of ReactorX-150

90

Figure 6.16: "python3 xsarm_dual_usn_lift.py" and "python3 xsarm_dual_usn_lift.py" executed by the physical

ReactorX-150 arms with the USN logo

6.8 Dual Arm Joystick Control

The Dual Arm Joystick Control package enables the control of two ReactorX-150’s to be done

via one joystick controller. The following command launches the Dual Arm Joystick control

package with RViz and physical ReactorX-150 arms:

The resulting window is a regular RViz window with two simulated models of the ReactorX-

150, exactly like the RViz window from the launch of chapter 6.7.

The Joystick Control package is not particularly suitable for demonstration with pictures, so a

video made for this thesis demonstrating the capabilities of the simulated Joystick Control

package can be viewed at [61]. The joystick controls can be seen in [Appendix G – Joystick

controls].The video shows the control of the two physical ReactorX-150 arms controlled

simlotaniously with the PlayStation 4 joystick controller. The video demonstrates the robot

arms capabilities such as:

• Commanding the robot arms to “Home” position and “Sleep” position using the

“OPTIONS” and “SHARE” button, respectively.

$ roslaunch interbotix_xsarm_joy xsarm_joy.launch robot_model:=rx150

 6 Physical Testing of ReactorX-150

91

• Controlling the “waist” joints left and right using the “L2” and “R2” buttons,

respectively.

• Commanding the opening and closing of the grippers with the circle and square buttons,

respectively.

• Controlling the roll and tilt of the arms wrists by manipulating the right joystick

left/right and up/down, respectively.

• Controlling the position of the end effectors up/down and inwards/outwards by

manipulating the left joystick up/down and left/right, respectively.

 7 Discussion

92

7 Discussion
The discussion chapter of this thesis presents an analysis of some parts of the development and

testing of the simulation platform for the ReactorX-150 robotic arm manipulator. This chapter

aims to provide insight into aspects of the thesis not included in the specifications or simulation

and testing of the ReactorX-150. The discussion will also identify potential limitations and

challenges encountered during the study and propose future work.

7.1 Motor ID correction

When testing the two provided ReactorX-150 arms a number of error message occurred when

testing one of the arms. The error messages appeared for each of the joints (ID 1-6), it was

roughly as follows:

"[xs_sdk] Can't find DYNAMIXEL ID '1', Joint Name: 'waist'"

The error message indicated that the system could not locate the motor with the ID '1', which

was crucial for the proper functioning of the 'waist' joint.

It turned out that the preset motor IDs were configured from 7 to 12, but the packages were

designed to recognize and interact with motor IDs ranging from 1 to 6. To resolve this issue

and ensure compatibility between the motor IDs and the software packages, a modification to

the motor IDs was implemented using the DYNAMIXEL Wizard 2.0. Figure 7.1 shows the

DYNAMIXEL Wizard 2.0 window with the motor ID selected. The motor ID was changed by

selecting the available IDs in the bottom right corner and saving it to the motor.

Figure 7.1: Motor ID correction with the DYNAMIXEL Wizard 2.0

7.2 Homing Offset

While working with the ReactorX-150 arms, it was observed that the physical arms showed a

tendency to sag or deflect under gravity, compared to the simulated arms. To resolve this issue,

 7 Discussion

93

the DYNAMIXEL Wizard 2.0 was utilized to adjust the “Homing Offset” of the associated

DYNAMIXEL motors.

By default, all Homing Offsets are set to zero. The DYNAMIXEL motors offer 4096 positions

for a full 360 degrees of rotation, equaling a unit scaling of the Homing offset of approximately

0.087891 degrees. Labeling the two arms as arm 1 and arm 2, the adjusted “Homing Offset"

for the two ReactorX-150 were as follows:

• Arm 1, “elbow” joint (ID: 3) adjusted: -50 units, equaling -4.39 degrees, see Figure 7.2

• Arm 2, “elbow” joint (ID: 3) adjusted: -40 units, equaling -3.52 degrees, see Figure 7.3

• Arm 2, “wrist_angle” joint (ID: 4) adjusted: -50 units, equaling -4.39 degrees, see

Figure 7.4

Figure 7.2: "Homing Offset" of the "elbow" joint (ID: 3) of arm 1

Figure 7.3: "Homing Offset" of the "elbow" joint (ID: 3) of arm 2

 7 Discussion

94

Figure 7.4: "Homing Offset" of the “wrist_angle" joint (ID: 4) of arm 2

The results of the “Homing Offset” adjustment can be seen in

It is important to keep in mind that the adjustment of the “Homing Offset” for this application

was relatively small and have not been tested with larger adjustments. Adjusting the “Homing

Offset” with larger offset or when pushing the operational boundaries may cause unwanted

Figure 7.5: Before and after the "Homing Offset" adjustment

 7 Discussion

95

results. However, the adjustment of the “Homing Offset” was purely beneficial for this

application.

7.3 MATLAB-ROS Interface

The implementation of MATLAB and its capabilities were not covered in this thesis, it is

noteworthy to mention the potential integration with MATLAB. MATLAB is a powerful tool

in combination with ROS, which further extends the capabilities of the ReactorX-150 and the

X-Series arms. Although the integration with MATLAB was beyond the scope of this thesis, a

separate study at USN including the integrations with MATLAB has been conducted.

Interested readers can refer to the work seen in [62].

7.4 Virtual Machines

An alternative method to dual booting, which was considered for running Ubuntu, involved the

use of a virtual machine. This approach offers several advantages for online students and

industry-based master's students. Utilizing a virtual machine would eliminate the risks

associated with dual booting such as data loss or system crashes and protect the host system

from potential threats.

An attempt was made to set up a virtual machine using Oracle VM VirtualBox. However, the

attempt was unsuccessful as the virtual machine resulted in a "kernel panic" - an error from

which the operating system could not safely recover.

It is important to note that it is stated from Trossen Robotics that virtual machines are not

tested, and therefore not supported. [63]

Being able to utilize virtual machines for working with the X-Series arms would be a great

addition and should not be dismissed. The ability to utilize virtual machines together with the

X-Series robotic arms, both in their physical and simulated states, would improve the flexibility

and accessibility of working with the robot arms.

7.5 Network Setup

During the setup of ROS, an error message appeared preventing the launch of ROS packages

with the ReactorX-150. The error message was roughly as follows:

“… RLException: Unable to contact my own server at [http:<ip-adress>] …”

The issue was resolved by adding the lines shown in Figure 7.6 to the “~/.bashrc” file.

Figure 7.6: Network setup in the "~/.bashrc" file [64]

 7 Discussion

96

7.6 3D printing

The application of 3D printing was briefly explored in this thesis. Two USN logos were

designed, and 3D printed for manipulation by the ReactorX-150, and for the presentation at the

USN Expo. The 3D models of the logos were designed using Sharpr3D. Sharpr3D offered an

intuitive way of designing the 3D models. It enabled the creation of the simple, yet intricate

USN logos, even for someone without previous experience with 3D modelling.

The reason behind the creation and printing of two USN logos was that the first USN logo had

no frame, which meant that the object had no uniform shape. Without the uniform shape,

precautions had to be taken when manipulating the logo with the arm. To eliminate the need

for precautions, the framed USN logo was created.

The framed and unframed USN logos with measurements in Sharpr3D can be seen in Figure

7.7 and Figure 7.8, respectively.

Figure 7.7: Sharpr3D USN logo with measurements

Figure 7.8: Sharpr3D framed USN logo with measurements

Once the 3D models of the logos were completed, the models were prepared for 3D printing

using FlashPrint 5, a slicing and printing software specifically designed for FlashForge printers.

 7 Discussion

97

The framed and unframed USN logos in the FlashForge software can be seen in Figure 7.9 and

Figure 7.10, respectively.

Figure 7.9: FlashForge USN logo

Figure 7.10: FlashForge framed USN logo

The two logos were then saved from the computer as “.gx” files to a flash drive. The files were

then uploaded from the flash drive to the FlashForge Adventurer 3 3D printer.

 7 Discussion

98

7.7 Perception Configuration

The Perception package with the ReactorX-150 had the potential to be an exciting aspect of

this thesis, but due to hardware constraints it could not be successfully tested. The main

hardware constraint was the unavailability of an Intel RealSense color/depth camera. The

specific camera used for testing the Perception package by Trossen Robotics was the Intel

RealSense Depth Camera D415.

Attempts were made to utilize readily accessible devices such as the Raspberry Pi and its

camera module, as well as the Lumens DC125 camera. Unfortunately, these efforts were

unsuccessful.

The Raspberry Pi’s and the Raspberry Pi Camera Module v2, widely utilized in various projects

for its affordability and accessibility, failed to provide the required compatibility with the

perception package. Similarly, the Lumens DC125 did not meet the specific hardware

requirements of the perception package for the ReactorX-150. The primary hardware limitation

of the cameras was the absence of depth perception capabilities, which are essential for

generating the point cloud data required by the Perception package.

The obstacle regarding the lack of depth perception for the cameras underscores the importance

of hardware compatibility. For future work involving the ReactorX-150, consideration should

be given to the compatibility of camera hardware with the Perception package.

7.8 Future Work

The capabilities of the Reactor-X 150 reach beyond what this thesis has been able to cover, and

there are some key areas with the possibility for future work.

7.8.1 Perception package

The perception package is an extensive package with unexplored capabilities. Future work

could focus on identifying and testing cameras for compatibility or explore the development of

custom camera hardware solutions. There exists software that can extract point cloud data from

cameras without the capabilities of depth perception, an intriguing subject regarding use of

readily accessible devices.

However, the most promising direction for future work with the Perception package would be

acquiring an Intel RealSense color/depth camera. Trossen Robotics do supply a kit containing

the Intel RealSense Depth Camera D415, a camera stand, colored blocks for manipulation,

AprilTag marker and remaining accessories needed for the Perception package at [65].

7.8.2 AprilTag

The AprilTag marker is necessary hardware for the Perception package. Although not required,

it is recommended to utilize the AprilTag markers. The alternative to the AprilTag markers is

to manually input the position of the arm/end-effector relative to the camera, and that method

is prone to error. For future work a physical AprilTag marker should be created, especially if

not intending to buy the kit seen in [65]. The AprilTag families with a small user manual on

how to rescale the AprilTag markers can be seen at [66]

 7 Discussion

99

7.8.3 Raspberry Pi

The Raspberry Pi is a powerful computer for its size. The Raspberry Pi 3 Model B and the

Raspberry Pi 4 Model B utilized in this thesis have both been fully set up to be able to run the

packages and control the ReactorX-150 in the attempt to get the Perception package up and

running. The utilization of The Raspberry Pi as a standalone computer for controlling the

ReactorX-150 arms has the potential for future work.

The utilization of the Raspberry Pi could eliminate the need for dual booting especially for

campus students with Raspberry Pi’s available at campus, or even online students with a

Raspberry Pi available.

 8 Conclusion

100

8 Conclusion
This thesis has successfully implemented the majority of the packages discussed, with

comprehensive testing and documentation that can serve as a valuable resource for future

students working with the ReactorX-150 arms. It has created a simulation platform that

students can implement on their own computers, enabling access from any corner of the world,

thus overcoming geographical limitations.

The full potential of the ReactorX-150, however, remains to be explored. Particularly, the

perception package offers exciting opportunities for future research and development. This

thesis has laid a foundation for further exploration, testing, and enhancement.

 References

101

References

[1] ISO, «ISO 10303-1:2021(en),» [Internett]. Available:

https://www.iso.org/obp/ui/#iso:std:iso:10303:-1:ed-2:v1:en. [Funnet 16 March 2023].

[2] Trossen Robotics, «ReactorX-150,» [Internett]. Available:

https://docs.trossenrobotics.com/interbotix_xsarms_docs/specifications/rx150.html.

[Funnet 13 March 2023].

[3] Trossen Robotics, «Specifications,» [Internett]. Available:

https://docs.trossenrobotics.com/interbotix_xsarms_docs/specifications.html#specificatio

ns. [Funnet 16 February 2023].

[4] Wikipedia, «Product of exponentials formula,» 21 January 2023. [Internett]. Available:

https://en.wikipedia.org/wiki/Product_of_exponentials_formula. [Funnet 16 March 2023].

[5] Trossen Robotics, [Internett]. Available:

https://docs.trossenrobotics.com/interbotix_xsarms_docs/_downloads/21a942b8312b7865

edc6de72eb57fb50/3_RXA-150-M.zip. [Funnet 16 March 2023].

[6] Trossen Robotics, «interbotix_ros_manipulators,» 22 October 2020. [Internett].

Available:

https://github.com/Interbotix/interbotix_ros_manipulators/tree/main/interbotix_ros_xsarm

s/interbotix_xsarm_descriptions/meshes/rx150_meshes. [Funnet 16 March 2023].

[7] Trossen Robotics, «Interbotix X-Series Arms,» [Internett]. Available:

https://docs.trossenrobotics.com/interbotix_xsarms_docs/. [Funnet 20 April 2023].

[8] Trossen robotics, «DYNAMIXEL XL430-W250-T Robot Actuator,» [Internett].

Available: https://www.trossenrobotics.com/dynamixel-xl430-w250-t.aspx. [Funnet 17

March 2023].

[9] Trossen Robotics, «DYNAMIXEL XM430-W350-T Robot Actuator,» [Internett].

Available: https://www.trossenrobotics.com/dynamixel-xm430-w350-t.aspx. [Funnet 17

March 2023].

[10] Robotis, «U2D2,» [Internett]. Available:

https://emanual.robotis.com/docs/en/parts/interface/u2d2/. [Funnet 20 March 2023].

[11] Trossen Robotics, «DYNAMIXEL U2D2,» [Internett]. Available:

https://www.trossenrobotics.com/dynamixel-u2d2.aspx. [Funnet 20 March 2023].

[12] Trossen Robotics, «6 Port XM/XL Power Hub (3pin),» [Internett]. Available:

https://www.trossenrobotics.com/3-pin-x-series-power-hub.aspx. [Funnet 20 March

2023].

 References

102

[13] Trossen Robotics, «12v5a Power Supply,» [Internett]. Available:

https://www.trossenrobotics.com/12v5a-power-supply.aspx. [Funnet 20 March 2023].

[14] Trossen Robotics, «Customized Grippers,» [Internett]. Available:

https://docs.trossenrobotics.com/interbotix_xsarms_docs/getting_started/customized_grip

pers.html. [Funnet 30 March 2023].

[15] W. M. Danylo Malyuta, «apriltag_ros,» [Internett]. Available:

https://github.com/AprilRobotics/apriltag_ros. [Funnet 30 March 2023].

[16] Trossen Robotics, «Perception Configuration,» [Internett]. Available:

https://docs.trossenrobotics.com/interbotix_xsarms_docs/ros1_packages/perception_pipel

ine_configuration.html. [Funnet 30 March 2023].

[17] Intel Corporation, «Intel® RealSense™ Depth Camera D415,» [Internett]. Available:

https://www.intelrealsense.com/depth-camera-d415/. [Funnet 17 April 2023].

[18] Raspberry Pi Foundation, «Raspberry Pi 3 Model B,» [Internett]. Available:

https://www.raspberrypi.com/products/raspberry-pi-3-model-b/. [Funnet 30 March 2023].

[19] Wikipedia, «Raspberry Pi 4 Model B from the side.,» [Internett]. Available:

https://en.wikipedia.org/wiki/Raspberry_Pi#/media/File:Raspberry_Pi_4_Model_B_-

_Side.jpg. [Funnet 10 May 2023].

[20] Raspberry Pi Foundation, «Raspberry Pi Camera Module 2,» [Internett]. Available:

https://www.raspberrypi.com/products/camera-module-v2/. [Funnet 30 March 2023].

[21] Lumens, «DC125,» [Internett]. Available:

https://www.mylumens.com/en/Products_detail/10/DC125-Document-Camera. [Funnet

13 May 2023].

[22] Flashforge, «Adventurer 3,» [Internett]. Available: https://www.flashforge.com/product-

detail/flashforge-adventurer-3-3d-printer. [Funnet 30 March 2023].

[23] Trossen Robotics, «ReactorX 150 Robot Arm,» [Internett]. Available:

https://www.trossenrobotics.com/reactorx-150-robot-arm.aspx. [Funnet 31 March 2023].

[24] Trossen Robotics, «ROS Interface,» [Internett]. Available:

https://docs.trossenrobotics.com/interbotix_xsarms_docs/ros_interface.html. [Funnet 31

March 2023].

[25] Trossen Robotics, «IRROS,» [Internett]. Available:

https://github.com/Interbotix/interbotix_ros_core. [Funnet 31 March 2023].

[26] Trossen Robotics, «Software,» [Internett]. Available:

https://emanual.robotis.com/docs/en/software/. [Funnet 3 April 2023].

 References

103

[27] Trossen Robotics, «DYNAMIXEL Wizard 2.0,» [Internett]. Available:

https://emanual.robotis.com/docs/en/software/dynamixel/dynamixel_wizard2/. [Funnet 20

April 2023].

[28] Wikipedia, «Etcher-icon.png,» [Internett]. Available:

https://upload.wikimedia.org/wikipedia/commons/2/2d/Etcher-icon.png. [Funnet 18 April

2023].

[29] Microsoft, «Icons and names usage guidelines,» [Internett]. Available:

https://code.visualstudio.com/brand. [Funnet 3 April 2023].

[30] Sharpr3D, «Sharpr3D,» [Internett]. Available: https://www.shapr3d.com. [Funnet 7 April

2023].

[31] Zhejiang Flashforge 3D Technology Co., Ltd, «FlashPrint,» [Internett]. Available:

https://www.flashforge.com/download-center/63. [Funnet 12 April 2023].

[32] C. L. Sindre Haugseter, «ReactorX 150 robotic arm manipulator,» Porsgrunn, 2022.

[33] R. Sharma, «Lecture Notes for IIA xxxx: Control for Robotics,» [Internett]. Available:

https://web01.usn.no/~roshans/cfr/downloads/Control-for-Robotics-Lecture-notes.pdf.

[Funnet 15 May 2023].

[34] Trossen Robotics, «Arm Descriptions,» [Internett]. Available:

https://docs.trossenrobotics.com/interbotix_xsarms_docs/ros1_packages/arm_descriptions

.html. [Funnet 19 April 2023].

[35] Trossen Robotics, «arm.py,» [Internett]. Available:

https://github.com/Interbotix/interbotix_ros_toolboxes/blob/main/interbotix_xs_toolbox/i

nterbotix_xs_modules/src/interbotix_xs_modules/arm.py. [Funnet 12 May 2023].

[36] Trossen Robotics, «Python Demos,» [Internett]. Available:

https://docs.trossenrobotics.com/interbotix_xsarms_docs/ros1_packages/python_demos.ht

ml. [Funnet 20 April 2023].

[37] Trossen Robotics, «MATLAB Demos,» [Internett]. Available:

https://docs.trossenrobotics.com/interbotix_xsarms_docs/ros1_packages/matlab_demos.ht

ml. [Funnet 20 April 2023].

[38] SRI International, «move_group_python_interface_tutorial.py,» [Internett]. Available:

https://github.com/ros-

planning/moveit_tutorials/blob/482dc9db944c785870274c35223b4d06f2f0bc90/doc/mov

e_group_python_interface/scripts/move_group_python_interface_tutorial.py. [Funnet 4

May 2023].

[39] Trossen Robotics, «MoveIt Interface and API,» [Internett]. Available:

https://docs.trossenrobotics.com/interbotix_xsarms_docs/ros1_packages/moveit_interface

_and_api.html. [Funnet 20 April 2023].

 References

104

[40] Trossen Robotics, «kinematics.yaml,» [Internett]. Available:

https://github.com/Interbotix/interbotix_ros_manipulators/blob/main/interbotix_ros_xsar

ms/interbotix_xsarm_moveit/config/kinematics.yaml. [Funnet 9 May 2023].

[41] Wikipedia, «Levenberg–Marquardt algorithm,» [Internett]. Available:

https://en.wikipedia.org/wiki/Levenberg–Marquardt_algorithm. [Funnet 9 May 2023].

[42] Orocos Kinematics and Dynamics, «KDL wiki,» [Internett]. Available:

https://www.orocos.org/kdl.html. [Funnet 9 May 2023].

[43] MoveIt, «Kinematics Configuration Tutorial,» [Internett]. Available:

https://docs.ros.org/en/indigo/api/moveit_tutorials/html/doc/pr2_tutorials/kinematics/src/

doc/kinematics_configuration.html. [Funnet 9 May 2023].

[44] Wikipedia, «Levenberg–Marquardt algorithm,» [Internett]. Available:

https://en.wikipedia.org/wiki/Levenberg–Marquardt_algorithm. [Funnet 15 May 2023].

[45] Trossen Robotics, «Gazebo Configuration,» [Internett]. Available:

https://docs.trossenrobotics.com/interbotix_xsarms_docs/ros1_packages/gazebo_simulati

on_configuration.html. [Funnet 2 May 2023].

[46] Trossen Robotics, «ROS Controllers Configuration,» [Internett]. Available:

https://docs.trossenrobotics.com/interbotix_xsarms_docs/ros1_packages/ros_control.html.

[Funnet 2 May 2023].

[47] Intel Corporation, «Intel® RealSense™ Depth Camera SR305,» [Internett]. Available:

https://www.intelrealsense.com/depth-camera-sr305/. [Funnet 9 May 2023].

[48] Intel Corporation, «Intel® RealSense™ Depth Camera D415,» [Internett]. Available:

https://www.intelrealsense.com/depth-camera-d415/. [Funnet 9 May 2023].

[49] Trossen Robotics, «Perception Configuration,» [Internett]. Available:

https://docs.trossenrobotics.com/interbotix_xsarms_docs/ros1_packages/perception_pipel

ine_configuration.html. [Funnet 2 May 2023].

[50] Open Perception, «perception_pcl,» [Internett]. Available:

http://wiki.ros.org/perception_pcl. [Funnet 9 May 2023].

[51] Trossen Robotics, «Joystick Control,» [Internett]. Available:

https://docs.trossenrobotics.com/interbotix_xsarms_docs/ros1_packages/joystick_control.

html. [Funnet 20 April 2023].

[52] Trossen Robotics, «ArmJoy.msg,» [Internett]. Available:

https://github.com/Interbotix/interbotix_ros_core/blob/main/interbotix_ros_xseries/interb

otix_xs_msgs/msg/ArmJoy.msg. [Funnet 5 May 2023].

[53] Trossen Robotics, «Record And Playback,» [Internett]. Available:

https://docs.trossenrobotics.com/interbotix_xsarms_docs/ros1_packages/record_and_play

back.html. [Funnet 2 May 2023].

 References

105

[54] Trossen Robotics, «Arm Diagnostic Tool,» [Internett]. Available:

https://docs.trossenrobotics.com/interbotix_xsarms_docs/ros1_packages/arm_diagnostic_

tool.html. [Funnet 2 May 2023].

[55] Trossen Robotics, «Arm Puppeteering,» [Internett]. Available:

https://docs.trossenrobotics.com/interbotix_xsarms_docs/ros1_packages/arm_puppeteerin

g.html. [Funnet 2 May 2023].

[56] Trossen Robotics, «Dual Arm Control,» [Internett]. Available:

https://docs.trossenrobotics.com/interbotix_xsarms_docs/ros1_packages/dual_arm_contro

l.html. [Funnet 2 May 2023].

[57] Trossen Robotics, «Dual Arm Joystick Control,» [Internett]. Available:

https://docs.trossenrobotics.com/interbotix_xsarms_docs/ros1_packages/dual_arm_joysti

ck_control.html. [Funnet 2 May 2023].

[58] C. Lauritzen, «Joystick Control - Simulated,» [Internett]. Available:

https://usn.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=01300696-9759-4011-a652-

b00300539579. [Funnet 13 May 2023].

[59] C. Lauritzen, «Dual Arm Joystick Control - Simulated,» [Internett]. Available:

https://usn.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=100f6079-7403-4110-b742-

b0030053f237. [Funnet 13 May 2023].

[60] C. Lauritzen, «Joystick Control,» [Internett]. Available:

https://usn.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=6294d56b-e7e2-4011-b7b6-

b003002669b5. [Funnet 15 May 2023].

[61] C. Lauritzen, «Dual Arm Joystick Control,» [Internett]. Available:

https://usn.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=b1d667e4-9b89-4b31-81e9-

b00300444e8f. [Funnet 15 May 2023].

[62] M. S. Chowdhury, «Real time control of robotic arm manipulators,» [Internett].

Available: https://openarchive.usn.no/usn-

xmlui/bitstream/handle/11250/3000634/no.usn%3Awiseflow%3A6583421%3A50226134

.pdf?sequence=1&isAllowed=y. [Funnet 13 May 2023].

[63] Trossen Robotics, «ROS Standard Software Setup,» [Internett]. Available:

https://docs.trossenrobotics.com/interbotix_xsarms_docs/ros_interface/ros1/software_setu

p.html. [Funnet 13 May 2023].

[64] Trossen Robotics, «ROS 1 Configuration,» [Internett]. Available:

https://docs.trossenrobotics.com/interbotix_xsarms_docs/ros_interface/ros1/config.html.

[Funnet 14 May 2023].

[65] Trossen Robotics, «Interbotix ROS Arm Vision Kit,» [Internett]. Available:

https://www.trossenrobotics.com/interbotix-arm-vision-kit.aspx. [Funnet 14 May 2023].

 References

106

[66] «AprilTag-imgs,» [Internett]. Available: https://github.com/AprilRobotics/apriltag-imgs.

[Funnet 14 May 2023].

 Appendices

107

9 Appendices

9.1 Appendix A – Master thesis task description

9.2 Appendix B – Guide for Dual Booting Windows and Ubuntu

9.3 Appendix C – ROS Installation Guide for the X-Series Arms from Trossen Robotics

9.4 Appendix D – Quickstart Guide for the X-Series Arms from Trossen Robotics

9.5 Appendix E – User Manual with Full Arguments for Trossen Robotics X-Series arms

9.6 Appendix F – User Manual with Main Arguments for Trossen Robotics X-Series arms

9.7 Appendix G – Joystick controls

9.8 Appendix H – Joystick controller pairing

9.9 Appendix I – Raspberry Pi Ubuntu and ROS Setup Guide

9.10 Appendix J – bartender.py

9.11 Appendix K – “rostopic” guide

9.12 Appendix L – xsarm_dual_usn_lift.py

9.13 Appendix M – xsarm_dual_usn_down.py

 Appendices

108

9.1 Appendix A – Master thesis task description

Faculty of Technology, Natural Sciences and Maritime Sciences, Campus Porsgrunn

FMH606 Master's Thesis
Title: Development of a simulation platform and testing of a 5 degrees of freedom ReactorX

150 robotic arm manipulator.

USN supervisor: Associate Professor Roshan Sharma (USN)

Task background:

Robotic arm manipulators are widely used in industries for various applications. They are used

in automotive, aerospace, electronic/electrical industries, shipping and trade etc. (just to name

a few), for example, for performing repetitive tasks like those involved in an assembly line.

USN has recently purchased several units of a ReactorX 150 robotic arm manipulators from

Trossen Robotics. These robotic arms are planned to be used in teaching and research activities

here at USN. The ReactorX 150 offers 5 degrees of freedom and a full 360 degree of rotation.

At the heart of the ReactorX150 is the Robotis DYNAMIXEL X-Series smart servo motors

and DYNAMIXEL U2D2 which enables easy access to Dynamixel software development kit.

Figure 1 shows the Reactorx150 robotic arm manipulator.

Figure 1: ReactorX 150 robotic arm manipulator

 Appendices

109

Aim:

It is of interest to make a simulation platform for this robotic arm in ROS (Robot Operating

System) and possibly in Linux platform. Creating such a simulation platform would allow

online students (or industry master students) to test, implement and simulate various

functionalities of this robot arm by simply sitting at any corner of world and not actually having

to be physically present at campus to use the lab equipment. Various tasks like

position/trajectory control, direct/inverse kinematics etc. can be performed using the designed

simulation platform. On the other hand, to facilitate the campus students with lab equipment,

it is also of interest to test these tasks on a real ReactorX 150 robotic arm lab unit.

Task description:

The following are the main tasks:

a) Install Linux and ROS. In addition install various ROS packages for ReactorX 150

robot arm. Learn about ROS.

b) Learn how to use Gazebo or Rviz and/or MoveIt as simulation tools to interact with

virtual ReactorX150 robot arm.

c) Simulate the robotic arm for direct and inverse kinematics using Gazebo or Rviz and/or

MoveIt and ROS

d) Test the direct and inverse kinematics on a physical RX 150 robot arm using ROS.

e) If time allows, develop and simulate your own inverse kinematic solver using simpler

kinematic model and some sort of optimization.

f) Document the work in a report. Presentation of the work.

Student category: Reserved

This thesis is reserved for campus IIA student Christian Lauritzen.

Practical arrangements:

The student will be provided with a physical ReactorX 150 robotic arm. The place for using

the physical lab unit is campus Porsgrunn.

Signatures:

Supervisor (date and signature): 01.02.2023

Student (write clearly in all capitalized letters): CHRISTIAN LAURITZEN

Students (date and signature): 01.02.2023

 Appendices

110

9.2 Appendix B – Guide for Dual Booting Windows and Ubuntu

Dual booting allows users to install multiple operating systems on a single machine,

providing the flexibility to switch between the operating systems as needed. This guide aims

to walk the user through the steps to dual boot Windows 10 and Ubuntu 20.04, using the Disk

Management tool in Windows for disk partitioning and BalenaEtcher for burning the ISO

image.

Note that this guide has used an Acer PC and some steps may be differ for computers from

other manufacturers.

Note that this guide may differ if other versions of Windows or Ubuntu is utilized.

Requirements

• A PC with Windows 10 installed

• Minimum 30 GB of available space on PC

• Wi-Fi internet access

• The Ubuntu 20.04 desktop ISO file

o Download from the Ubuntu web page at: https://releases.ubuntu.com/focal/

• A USB flash drive (recommended minimum 8 GB)

• The BalenaEtcher software

o Download from the Balena web page at:

https://www.balena.io/etcher#download-etcher

o An alternative to BalenaEtcher: Rufus (will not be covered in this guide)

Procedure
Follow the subsequent procedure in the following order.

1) Partition the hard drive using Disk Management in Windows

a) Open Disk management by one of the two methods:

i) Press Windows key + X and select “Disk Management” from the menu.

ii) Press Windows key, search for “Disk Management” and click “Create and format

hard disk partitions”.

b) Locate the primary partition (usually C: drive), or the partition of choice and right-

click on it.

c) Select “Shrink Volume” and enter the desired amount of space to allocate for Ubuntu.

Minimum 30GB is recommended, 100GB was used for the thesis.

d) Click 'Shrink' to create unallocated space for the Ubuntu installation.

2) Create a bootable USB drive with Ubuntu 20.04 ISO

a) Insert the USB flash drive into the computer.

b) Open BalenaEtcher and click “Select Image” to browse and select the Ubuntu 20.04

ISO file.

c) Ensure the correct USB drive is selected under “Select target”.

d) Click “Flash!” to begin the process. Once completed, safely eject the USB drive.

https://releases.ubuntu.com/focal/
https://www.balena.io/etcher#download-etcher

 Appendices

111

3) Boot from the USB drive

a) Restart the computer and press the appropriate key (F2, F10, F12, or Delete) to enter

the BIOS/UEFI settings.

b) Navigate to the boot options and set the USB drive as the first boot device.

i) Note that in some cases “Secure Boot” also must be disabled in the BIOS/UEFI

settings.

c) Save changes and exit BIOS/UEFI settings. The computer should now boot from the

USB drive.

4) Install Ubuntu 20.04 alongside Windows 10

a) Select desired language and click “Install Ubuntu”.

b) Select desired keyboard layout.

c) Connect to a Wi-Fi network (if applicable).

d) Choose “Normal installation” and check the boxes under “Other options”.

e) Select “Install Ubuntu alongside Windows Boot Manager” and click “Continue”.

f) Adjust the slider to allocate space for Ubuntu and Windows partitions as desired, then

click “Install Now”.

g) Confirm the partition changes and proceed with the installation.

h) Choose the region and keyboard layout, then create a user account.

i) Wait for the installation to complete, then click “Restart Now” to finish.

5) Dual booting Windows 10 and Ubuntu 20.04

a) After restarting, the computer will now display the GRUB bootloader menu, allowing

to choose between Windows 10 and Ubuntu 20.04.

b) Use the arrow keys to navigate between the options, and press “enter” to boot into the

desired operating system.

The setup is now complete, and the computer can now be dual booted with both Windows

and Ubuntu

Additional

1) Change back to normal Windows boot

a) Restart the computer and press the appropriate key (F2, F10, F12, or Delete) to enter

the BIOS/UEFI settings.

b) Navigate to the boot options and set the Windows partition as the first boot device.

i) If “Secure Boot” was disabled, it can now be enabled again in the BIOS/UEFI

settings.

c) Save changes and exit BIOS/UEFI settings. The computer should now boot from the

USB drive.

2) Change default operating system with GRUB

a) To change the default operating system or adjust the bootloader timeout, edit the

GRUB configuration file (usually located at /etc/default/grub) within Ubuntu.

 Appendices

112

9.3 Appendix C – ROS Installation Guide for the X-Series Arms
from Trossen Robotics

The X-Series robotic arms from Trossen Robotics are versatile, high-performance robotic

arms designed for education and research. This guide aims to provide a step-by-step process

for installing ROS1 (Robot Operating System) for the X-Series robotic arms from Trossen

Robotics.

Requirements

• A PC running Ubuntu Linux 18.04, 20.04, or 22.04. In this case the computer should

be running Ubuntu Linux 20.04.

• Internet access.

Note that virtual machines running Ubuntu have not been tested, hence it is not supported.

Procedure
Follow the subsequent procedure in the following order. All commands throughout this guide

are meant to be run in a Ubuntu terminal window.

1) Install ROS1 Noetic

a) Install ROS1 Noetic with the following four commands:

2) Installation check (with the physical robot arm)

a) Connect the robot arm to a power source.

b) Connect the USB cable to the robot arm and the PC.

c) Run the following command to verify that the PC is successful in finding the U2D2:

If successful, the expected output is:

ROS 1 Noetic should now be installed and ready for use. If there is a problem with ROS or

ROS did not install correctly, see the procedure on the next page.

$ sudo apt install curl
$ curl
'https://raw.githubusercontent.com/Interbotix/interbotix_ros_manipulators/main/interboti
x_ros_xsarms/install/amd64/xsarm_amd64_install.sh' > xsarm_amd64_install.sh
$ chmod +x xsarm_amd64_install.sh
$./xsarm_amd64_install.sh -d noetic

$ ls /dev | grep ttyDXL

ttyDXL

 Appendices

113

1) Alternative installation of ROS 1 Noetic

If the installation fails or the program fails, this alternative installation of ROS1 Noetic

might be the solution.

a) Remove ROS from the PC with the following two commands:

b) Install ROS1 Noetic with the following commands:

The commands can be found here:

https://emanual.robotis.com/docs/en/platform/turtlebot3/quick-start/

c) Repeat the steps in the previous “Install ROS 1 Noetic” step.

If the alternative installation also fails, see the official ROS1 Noetic installation guide at:

https://wiki.ros.org/noetic/Installation/Ubuntu

$ sudo apt-get purge ros-*
$ sudo apt-get autoremove

$ sudo apt update
$ sudo apt upgrade
$ wget https://raw.githubusercontent.com/ROBOTIS-
GIT/robotis_tools/master/install_ros_noetic.sh
$ chmod 755 ./install_ros_noetic.sh
$ bash ./install_ros_noetic.sh
$ sudo apt install ros-noetic-dynamixel-sdk

https://emanual.robotis.com/docs/en/platform/turtlebot3/quick-start/
https://wiki.ros.org/noetic/Installation/Ubuntu

 Appendices

114

9.4 Appendix D – Quickstart Guide for the X-Series Arms from
Trossen Robotics

This guide aims to provide knowledge of interfaces and basic functions of both the simulated

and physical X-Series arms with ROS 1.

Requirements

• A PC running Ubuntu Linux 18.04, 20.04, or 22.04. In this case the computer should

be running Ubuntu Linux 20.04.

• A PC with ROS 1 Noetic and the necessary packages for the Trossen Robotics X-

Series arms installed.

• An X-Series robot arm from Trossen Robotics, in this case a ReactorX-150,

codename “rx150”.

Procedure
Follow the subsequent procedure in the following order. All commands throughout this guide

are meant to be run in an Ubuntu terminal window.

1) Simulate the robot arm for testing

a) Run the following command to simulate the ReactorX-150 with a GUI for testing

different angles:

b) Control the sliders or press “Randomize” to observe the arm in various positions and

press “Center” to set the arm back in “home position”.

c) Go to the terminal window and press Ctrl + C to exit the session, closing the windows

are not sufficient.

2) Testing the physical robot arm

a) Connect the robot arm to a power source.

b) Connect the USB cable to the robot arm and the PC.

c) Run the following command for testing basic functionality of the physical ReactorX-

150:

d) The following command will cause the physical arm to collapse, so the arm must be

manually secured before executing! Run the following command to torque off the

motors:

$ roslaunch interbotix_xsarm_descriptions xsarm_description.launch
robot_model:=rx150 use_joint_pub_gui:=true

$ roslaunch interbotix_xsarm_control xsarm_control.launch robot_model:=rx150

$ rosservice call /rx150/torque_enable "{cmd_type: 'group', name: 'all', enable:
false}"

 Appendices

115

e) Manipulate the arm to a desired position and run the following command to torque the

motors on again:

f) Insert “rx150” into the “Robot Namespace” textbox in the “Interbotix Control Panel”

window on the lower left-hand side of the RViz window.

g) In the “Home/Sleep” tab in the “Interbotix Control Panel” press “Home” to bring the

arm to the “home position”.

h) In the “Home/Sleep” tab in the “Interbotix Control Panel” press “Sleep” to bring the

arm to the “sleep position”.

i) The following command will cause the physical arm to collapse. Except for when the

arm is in “sleep position”, the arm must be manually secured before executing!

Go to the terminal window and press Ctrl + C to exit the session, closing the windows is

not sufficient.

The quickstart guide is now completed and should have given the user an introduction into

controlling the simulated and physical ReactorX-150.

$ rosservice call /rx150/torque_enable "{cmd_type: 'group', name: 'all', enable:
true}"

 Appendices

116

9.5 Appendix E – User Manual with Full Arguments for Trossen
Robotics X-Series arms

This user manual aims to serve as a guide for understanding and utilization of the Trossen

Robotics X-Series robotic arms, both for simulation and physical usage. It is designed to

provide users with an overview of the various command line arguments and package options

available for the X-Series arms. The in-depth information about the packages is covered in the

thesis.

A user manual with only the main arguments for each package can be seen in [Appendix F –

User Manual with Main Arguments for Trossen Robotics X-Series arms].

Requirements

• A PC running Ubuntu Linux 18.04, 20.04, or 22.04. In this case the computer should

be running Ubuntu Linux 20.04.

o Installation guide: [Appendix B – Guide for Dual Booting Windows and

Ubuntu]

• A PC with ROS 1 Noetic and the necessary packages for the Trossen Robotics X-Series

arms installed.

o Installation guide: [Appendix C – ROS Installation Guide for the X-Series Arms

from Trossen Robotics]

• At least one but recommending two X-Series robot arms from Trossen Robotics. In this

case two ReactorX-150’s, codename “rx150”.

Packages overview

1. Arms Descriptions

2. Arm Control – Python and MATLAB

3. MoveIt Configuration, Interface, and API

4. Gazebo Configuration

5. ROS Controllers Configuration

6. Perception Configuration

7. Joystick Control

8. Record and Playback

9. Arm Diagnostic Tool

10. Arm Puppeteering

11. Dual Arm Control

12. Dual Arm Joystick Control

 Appendices

117

Packages

The packages are sorted in no particular order but note that some packages are built upon other

packages and some packages are not meant to be run as standalone packages. All commands

throughout this guide are meant to be run in an Ubuntu terminal window.

Be sure to manually secure the arm(s) before pressing “Ctrl + C” when exiting any package.

1. Arms Descriptions

This chapter contains the commands for getting the Arms Descriptions package up and running

and the arguments available in package.

Note that the Arms Descriptions package is a visualization/simulation package only.

1.1. Commands

Launch with GUI for controlling the joints:

1.2. Arguments

The arguments for the Arms Description package can be seen in Table 9-1.

Table 9-1: Arms Descriptions arguments

Argument Default Value Description

robot_model “” Requires the codename for the specific

robot arm. “rx150” in the case of the

ReactorX-150

robot_name “$(arg robot_model)” Typically the same as “robot_model”,

but is arbitrary

base_link_frame “base_link” The name of the “root” link on the arm.

If attaching the arm to another base,

change the name.

show_ar_tag false Set to “true” if intending to use AR tag

such as the AprilTag

show_gripper_bar true If using a custom gripper attachment,

set this to “false”

$ roslaunch interbotix_xsarm_descriptions xsarm_description.launch
robot_model:=rx150 use_joint_pub_gui:=true

 Appendices

118

show_gripper_fingers true If using custom gripper fingers, set this

to “false”

use_rviz true Launches RViz

use_joint_pub_gui false Launches a user-friendly GUI for

controlling joint angles called the

joint_state_publisher GUI

use_joint_pub false Launches the joint_state_publisher node

use_world_frame true Set this to false when working with

multiple robots or if attaching the

“base_link” frame to another frame.

external_urdf_loc “” If intending to include a custom

urdf.xacro file, include the file path here

load_gazebo_configs false Set to true if Gazebo shall be used,

includes necessary

rvizconfig See the Arm

Descriptions launch

package link below

File path of RViz config file

model See the Arm

Descriptions launch

package link below

File path of URDF and argument to be

passed in for the specific robot

Arm descriptions launch package link:

https://github.com/Interbotix/interbotix_ros_manipulators/blob/main/interbotix_ros_xsarms/i

nterbotix_xsarm_descriptions/launch/xsarm_description.launch

https://github.com/Interbotix/interbotix_ros_manipulators/blob/main/interbotix_ros_xsarms/interbotix_xsarm_descriptions/launch/xsarm_description.launch
https://github.com/Interbotix/interbotix_ros_manipulators/blob/main/interbotix_ros_xsarms/interbotix_xsarm_descriptions/launch/xsarm_description.launch

 Appendices

119

2. Arm Control – Python and MATLAB

This chapter contains simple commands for getting the Arm Control package up and running

with both Python and MATLAB scripts, and the arguments available in package.

2.1. Commands

Launch with physical robot:

Lauch with simulated robot:

Navigate to the python demos script directory. Launch Python script for ROS Noetic:

Navigate to the MATLAB demo script directory. Launch MATLAB script:

The bartender scripts for both Python and MATLAB are included upon download of the

necessary packages for the X-Series arms.

2.2. Arguments

The arguments for the Arm Control package can be seen in Table 9-2.

Table 9-2: Arm Control arguments

Argument Default Value Description

robot_model “” Requires the codename for the specific

robot arm. “rx150” in the case of the

ReactorX-150

robot_name “$(arg robot_model)” Typically the same as “robot_model”,

but is arbitrary

base_link_frame “base_link” The name of the “root” link on the arm.

If attaching the arm to another base,

change the name.

show_ar_tag false Set to “true” if intending to use AR tag

such as the AprilTag

show_gripper_bar true If using a custom gripper attachment,

set this to “false”

$ roslaunch interbotix_xsarm_control xsarm_control.launch robot_model:=rx150

$ roslaunch interbotix_xsarm_control xsarm_control.launch robot_model:=rx150
use_sim:=true

$ python3 bartender.py

bartender

 Appendices

120

show_gripper_fingers true If using custom gripper fingers, set this

to “false”

use_world_frame true Set this to false when working with

multiple robots or if attaching the

“base_link” frame to another frame.

external_urdf_loc “” If intending to include a custom

urdf.xacro file, include the file path here

use_rviz true Launches RViz

motor_configs See the Arm Control

launch package link

below

File path of the YAML file containing

the motor configurations

mode_configs See the Arm Control

launch package link

below

File path of the YAML file containing

the mode configurations

load_configs true Set to true if the motor configurations

shall be written to the motors. Is only

necessary to do it the first time the node

starts up, reduces startup time if set to

“false”

use_sim false Set to “true” if intending to simulate the

robot arm. Runs the DYNAMIXEL

simulator node if set to true

Arm Control launch package link:

https://github.com/Interbotix/interbotix_ros_manipulators/blob/main/interbotix_ros_xsarms/i

nterbotix_xsarm_control/launch/xsarm_control.launch

https://github.com/Interbotix/interbotix_ros_manipulators/blob/main/interbotix_ros_xsarms/interbotix_xsarm_control/launch/xsarm_control.launch
https://github.com/Interbotix/interbotix_ros_manipulators/blob/main/interbotix_ros_xsarms/interbotix_xsarm_control/launch/xsarm_control.launch

 Appendices

121

3. MoveIt Configuration, Interface, and API

This chapter contains simple commands for getting the MoveIt Configuration and MoveIt

Interface and API package up and running, and the arguments available in package.

3.1. Commands

Lauch with physical robot and the MoveIt Interface GUI:

Lauch with simulated robot in Gazebo and the MoveIt Interface GUI, unpause the

Gazebo physics for RViz to load:

Lauch with simulated robot in RViz and the MoveIt Interface GUI:

There is also an option to run MoveIt without the interface/GUI. The plugin for MoveIt

in RViz can be used instead. Note that the MoveIt plugin in RViz is available for use

when launching both the “interbotix_xsarm_moveit_interface” and

“interbotix_xsarm_moveit” package. Enter the robot code name in the lower left corner

of RViz and press the “update” button.

Launch MoveIt without the interface/GUI with physical robot:

Launch MoveIt without the interface/GUI with simulated robot in Gazebo, unpause the

Gazebo physics for RViz to load:

Launch MoveIt without the interface/GUI with simulated robot in RViz:

$ roslaunch interbotix_xsarm_moveit_interface xsarm_moveit_interface.launch
robot_model:=rx150 use_cpp_interface:=true use_actual:=true

$ roslaunch interbotix_xsarm_moveit_interface xsarm_moveit_interface.launch
robot_model:=rx150 use_cpp_interface:=true use_gazebo:=true

$ roslaunch interbotix_xsarm_moveit_interface xsarm_moveit_interface.launch
robot_model:=rx150 use_cpp_interface:=true use_fake:=true

$ roslaunch interbotix_xsarm_moveit xsarm_moveit.launch robot_model:=rx150
use_actual:=true

$ roslaunch interbotix_xsarm_moveit xsarm_moveit.launch robot_model:=rx150
use_gazebo:=true

$ roslaunch interbotix_xsarm_moveit xsarm_moveit.launch robot_model:=rx150
use_fake:=true

 Appendices

122

3.2. Arguments

The arguments for the MoveIt Configuration, Interface and API package can be seen in

Table 9-3.

Note that the “use_cpp_interface”, “moveit_interface_gui” and “use_python_interface”

arguments only apply to the “interbotix_xsarm_moveit_interface” package, and not the

“interbotix_xsarm_moveit” package.

Table 9-3: MoveIt configuration, interface, and API arguments

Argument Default Value Description

robot_model “” Requires the codename for the specific

robot arm. “rx150” in the case of the

ReactorX-150

robot_name “$(arg robot_model)” Typically the same as “robot_model”,

but is arbitrary

base_link_frame “base_link” The name of the “root” link on the arm.

If attaching the arm to another base,

change the name.

show_ar_tag false Set to “true” if intending to use AR tag

such as the AprilTag

use_world_frame true Set this to false when working with

multiple robots or if attaching the

“base_link” frame to another frame.

external_urdf_loc “” If intending to include a custom

urdf.xacro file, include the file path here

external_srdf_loc “” If intending to include a custom

srdf.xacro file, include the file path here

mode_configs See the MoveIt launch

package link below

File path of the YAML file containing

the mode configurations

use_moveit_rviz true Launches RViz with the MoveIt plugin

rviz_frame world The value set as the fixed frame

parameter in RViz, change to an existing

frame if “use_world_frame” is set to

false

 Appendices

123

use_gazebo false Simulate the robot with Gazebo

use_actual false Use the physical robot

use_fake false MoveIt generates a simulated robot to be

controlled in RViz

dof 5 Defines the degrees of freedom of the

robot arm

world_name See the MoveIt launch

package link below

File path to the world file to be loaded

by Gazebo

use_cpp_interface false Launches the custom moveit_interface

C++ API node

moveit_interface_gui true Launches a GUI customized to interface

with the moveit_interface node

use_python_interface false Launches a Python Interface Tutorial

node. Press “enter” in the terminal

window to step through the tutorial

MoveIt launch package link:

https://github.com/Interbotix/interbotix_ros_manipulators/blob/main/interbotix_ros_xsarms/e

xamples/interbotix_xsarm_moveit_interface/launch/xsarm_moveit_interface.launch

https://github.com/Interbotix/interbotix_ros_manipulators/blob/main/interbotix_ros_xsarms/examples/interbotix_xsarm_moveit_interface/launch/xsarm_moveit_interface.launch
https://github.com/Interbotix/interbotix_ros_manipulators/blob/main/interbotix_ros_xsarms/examples/interbotix_xsarm_moveit_interface/launch/xsarm_moveit_interface.launch

 Appendices

124

4. Gazebo Configuration

This chapter contains simple commands for getting the Gazebo package up and running, and

the arguments available in package.

Note that this package is meant to be run in conjunction with MoveIt or by itself via the

JointPositionController interface. The JointPositionController interface is utilized by sending

joint position commands to the arm using ROS subscriber topics. Gazebo is a simulation tool,

so this package will not interact with the physical robot.

4.1. Commands

Launch the simulated robot with the ability to command arbitrary positions to the arm

joints:

Unpause the physics engine by pressing the “play”-button in the left-hand corner of gazebo,

or enter the following command:

Controlling the waist of the ReactorX-150 in radians:

List of topics for controlling other joints (subscribers):

$ roslaunch interbotix_xsarm_gazebo xsarm_gazebo.launch robot_model:=rx150
use_position_controllers:=true

$ rosservice call /gazebo/unpause_physics

$ rostopic pub -1 /rx150/waist_controller/command std_msg/Float64 “data: 1.0”

$ rostopic list -s

 Appendices

125

4.2. Arguments

The arguments for the Gazebo Configuration package can be seen in Table 9-4.

Table 9-4: Gazebo Configurations arguments

Argument Default Value Description

robot_model “” Requires the codename for the

specific robot arm. “rx150” in the

case of the ReactorX-150

robot_name “$(arg robot_model)” Typically the same as

“robot_model”, but is arbitrary

base_link_frame “base_link” The name of the “root” link on the

arm. If attaching the arm to another

base, change the name.

show_ar_tag false Set to “true” if intending to use AR

tag such as the AprilTag

show_gripper_bar true If using a custom gripper attachment,

set this to “false”

show_gripper_fingers true If using custom gripper fingers, set

this to “false”

use_rviz true Launches RViz

use_world_frame true Set this to false when working with

multiple robots or if attaching the

“base_link” frame to another frame.

external_urdf_loc “” If intending to include a custom

urdf.xacro file, include the file path

here

dof 5 Defines the degrees of freedom of

the robot arm

world_name see the Gazebo launch

package link below

File path to the world file to be

loaded by Gazebo

 Appendices

126

gui true Launches the GUI of Gazebo

debug false Launches Gazebo in debug mode

using GNU Debugger (gdb)

paused true Lauches Gazebo in a paused state

recording false Enables recording of Gazebo state

log

use_sim_time true When set to true ROS nodes will get

the Gazebo simulation time from the

ROS topic /clock

use_position_controllers false Enables commanding of arbitrary

arm joint positions in Gazebo

use_trajectory_controllers false Enables commanding of arbitrary

arm joint trajectories in Gazebo

Gazebo launch package:

https://github.com/Interbotix/interbotix_ros_manipulators/blob/main/interbotix_ros_xsarms/i

nterbotix_xsarm_gazebo/launch/xsarm_gazebo.launch

https://github.com/Interbotix/interbotix_ros_manipulators/blob/main/interbotix_ros_xsarms/interbotix_xsarm_gazebo/launch/xsarm_gazebo.launch
https://github.com/Interbotix/interbotix_ros_manipulators/blob/main/interbotix_ros_xsarms/interbotix_xsarm_gazebo/launch/xsarm_gazebo.launch

 Appendices

127

5. ROS Controllers Configuration

This chapter contains simple commands for getting the ROS controllers package up and

running, and the arguments available in package.

Note that this package is only meant to be used in conjunction with MoveIt but can be used

with other nodes that are able to communicate with the joint_trajectory_controller package.

5.1. Commands

Launch the package:

5.2. Arguments

The arguments for the ROS Controllers Configuration package can be seen in Table 9-5.

Table 9-5: ROS Controllers Configurations arguments

Argument Default Value Description

robot_model “” Requires the codename for the specific

robot arm. “rx150” in the case of the

ReactorX-150

robot_name “$(arg robot_model)” Typically the same as “robot_model”,

but is arbitrary

base_link_frame “base_link” The name of the “root” link on the arm.

If attaching the arm to another base,

change the name.

show_ar_tag false Set to “true” if intending to use AR tag

such as the AprilTag

use_world_frame true Set this to false when working with

multiple robots or if attaching the

“base_link” frame to another frame.

external_urdf_loc “” If intending to include a custom

urdf.xacro file, include the file path here

use_rviz false Launches RViz

mode_configs See the ROS

Controllers launch

package link below

File path of the YAML file containing

the mode configurations

$ roslaunch interbotix_xsarm_ros_control xsarm_ros_control.launch robot_model:=rx150

 Appendices

128

dof 5 Defines the degrees of freedom of the

robot arm

ROS Controllers launch package link:

https://github.com/Interbotix/interbotix_ros_manipulators/blob/main/interbotix_ros_xsarms/i

nterbotix_xsarm_ros_control/launch/xsarm_ros_control.launch

https://github.com/Interbotix/interbotix_ros_manipulators/blob/main/interbotix_ros_xsarms/interbotix_xsarm_ros_control/launch/xsarm_ros_control.launch
https://github.com/Interbotix/interbotix_ros_manipulators/blob/main/interbotix_ros_xsarms/interbotix_xsarm_ros_control/launch/xsarm_ros_control.launch

 Appendices

129

6. Perception Configuration

This chapter contains simple commands for getting the Perception package up and running and

the arguments available in package.

Note that this package is meant to be run with a physical X-Series arm with an AprilTag (AR

tag).

6.1. Setup commands

Start by finding the transform of the AprilTag relative to the camera’s color optical frame

with the following series of commands:

Manually secure the arm! In a new terminal window, torque the arm off:

Move the arm so it is visible for the camera and execute the following command:

Manually secure the arm! Torque the arm off and place it in the “sleeping position”:

6.2. Utilization commands

Launch the package:

Navigate to the “scripts” directory. Locate the “pick_place.py” script and comment out

lines 25-28, since the transform of the arm relative to the camera is already found by

running the “Setup commands”.

The following script command will make the arm pick up the objects in the field of view

of the camera and drop them in a certain location.

$ roslaunch interbotix_xsarm_perception xsarm_perception.launch robot_model:=rx150
use_pointcloud_tuner_gui:=true use_armtag_tuner_gui:=true

$ rosservice call /rx150/torque_enable "{cmd_type: 'group', name: 'arm', enable:
false}"

$ rosservice call /rx150/torque_enable "{cmd_type: 'group', name: 'arm', enable:
true}"

$ rosservice call /rx150/torque_enable "{cmd_type: 'group', name: 'arm', enable:
false}"

$ roslaunch interbotix_xsarm_perception xsarm_perception.launch robot_model:=rx200
use_rviz:=false

$ python3 pick_place.py

 Appendices

130

6.3. Arguments

The arguments for the Perception package can be seen in Table 9-6.

Table 9-6: Perception arguments

Argument Default Value Description

robot_model “” Requires the codename for the

specific robot arm. “rx150” in

the case of the ReactorX-150

robot_name “$(arg robot_model)” Typically the same as

“robot_model”, but is arbitrary

base_link_frame “base_link” The name of the “root” link on

the arm. If attaching the arm to

another base, change the name.

show_gripper_bar true If using a custom gripper

attachment, set this to “false”

show_gripper_fingers true If using custom gripper fingers,

set this to “false”

use_rviz true Launches RViz

external_urdf_loc “” If intending to include a custom

urdf.xacro file, include the file

path here

load_configs true Set to true if the motor

configurations shall be written

to the motors. Is only necessary

to do it the first time the node

starts up, reduces startup time if

set to “false”

filters pointcloud Specifies the type of filters to

use with the RealSense camera

color_fps 30 Specifies the capture frame rate

for color images on the

RealSense camera

 Appendices

131

depth_fps 30 Specifies the capture frame rate

for depth images on the

RealSense camera

color_width 640 Specifies the horizontal

resolution of the color images

captured on the RealSense

camera

color_height 480 Specifies the vertical resolution

of the color images captured on

the RealSense camera

filter_ns pc_filter Namespace pointing to the

location of the pointcloud

related nodes and parameters

filter_params See the Perception launch

package link below

File path to the tuning

parameters for the perception

pipeline filters

use_pointcloud_tuner_gui false Displays a GUI for tuning filter

parameters

enable_pipeline $(arg

use_pointcloud_tuner_gui)

Runs the perception pipeline

filters continuously. Unless

actively tuning the filter

parameters this should be set to

false, which saves processing

power

cloud_topic /camera/depth/color/points The path and name of the ROS

topic used to subscribe to the

raw pointcloud data

tag_family tagStandard41h12 Specifies which family the

utilized AprilTag belongs to

standalone_tags See the Perception Modules

link below

Specifies the individual

AprilTags for the algorithm to

look for

 Appendices

132

camera_frame camera_color_optical_frame Specifies in which camera

frame the AprilTag shall be

detected

apriltag_ns apriltag Namespace pointing to the

location of the ApilTag related

nodes and parameters

camera_color_topic camera/color/image_raw The path and name of the ROS

topic used to subscribe to the

color images

camera_info_topic camera/color/camera_info The path and name of the ROS

topic used to subscribe to the

camera color info

armtag_ns armtag Namespace pointing to the

location of the Armtag related

nodes and parameters

ref_frame $(arg camera_frame) Specifies the reference frame to

be used by the armtag node

when publishing a static

transform of the arms position

relative to the camera

arm_base_frame $(arg robot_name)/$(arg

base_link_frame)

Specifies the child frame to be

used by the armtag node when

publishing a static transform of

the arms position relative to the

camera

arm_tag_frame $(arg

robot_name)/ar_tag_link

Specifies the name of the frame

where the AprilTag is located,

which is usually defined in the

URDF for the arm

use_armtag_tuner_gui false Enables the user to publish the

“ref_frame” to

 Appendices

133

“arm_base_frame” transform

via a GUI

position_only false Specifies when calculating the

“ref_frame” to

“arm_base_frame” transform,

whether to only use the position

component of the detected

AprilTag pose.

If a tf chain connecting the

camera and arm base_link

frame is already defined in the

URDF, and the use of the

AprilTag is only to refine the

pose further, this can be set to

true

load_transforms true Specifies if the static_trans_pub

node should publish any poses

stored in the

static_transforms.yaml file at

startup. If a” tf” chain

connecting the camera and arm

base_link frame is already

defined in the URDF and

intending to use that “tf” chain

instead of the one specified in

the static_transforms.yaml file,

this can be set to false

transform_filepath See the Perception launch

package link below

Specifies the file path to the to

the static_transforms.yaml file

utilized by the static_trans_pub

node.

rviz_frame $(arg robot_name)/$(arg

base_link_frame)

The value set as the fixed frame

parameter in RViz

 Appendices

134

rvizconfig See the Perception launch

package link below

File path of RViz config file

Perception launch package link:

https://github.com/Interbotix/interbotix_ros_manipulators/blob/main/interbotix_ros_xsarms/i

nterbotix_xsarm_perception/launch/xsarm_perception.launch

Perception Modules link:

https://github.com/Interbotix/interbotix_ros_toolboxes/tree/main/interbotix_perception_toolb

ox/interbotix_perception_modules

https://github.com/Interbotix/interbotix_ros_manipulators/blob/main/interbotix_ros_xsarms/interbotix_xsarm_perception/launch/xsarm_perception.launch
https://github.com/Interbotix/interbotix_ros_manipulators/blob/main/interbotix_ros_xsarms/interbotix_xsarm_perception/launch/xsarm_perception.launch
https://github.com/Interbotix/interbotix_ros_toolboxes/tree/main/interbotix_perception_toolbox/interbotix_perception_modules
https://github.com/Interbotix/interbotix_ros_toolboxes/tree/main/interbotix_perception_toolbox/interbotix_perception_modules

 Appendices

135

7. Joystick Control

This chapter contains simple commands for getting the Joystick Control package up and

running, and the arguments available in package.

Note that this package is recommended to be used with a PS4 controller by default but will also

work with a ps3 controller or an Xbox 360 controller. If the controller is not connected to the

PC, follow one of these two guides:

[Appendix H – Joystick controller pairing]

https://docs.trossenrobotics.com/interbotix_xsarms_docs/getting_started/pairing_controller.ht

ml

7.1. Commands

Launch the package with the physical arm and start controlling the arm with the joystick

controller:

Launch the package with the simulated arm and start controlling the arm with the joystick

controller:

7.2. Arguments

The arguments for the Joystick Control package can be seen in Table 9-7.

Table 9-7: Joystick Control arguments

Argument Default Value Description

robot_model “” Requires the codename for the specific

robot arm. “rx150” in the case of the

ReactorX-150

robot_name “$(arg robot_model)” Typically the same as “robot_model”,

but is arbitrary

base_link_frame “base_link” The name of the “root” link on the arm.

If attaching the arm to another base,

change the name.

use_rviz true Launches RViz

mode_configs See the Joystick Control

launch package link

below

File path of the YAML file containing

the mode configurations

$ roslaunch interbotix_xsarm_joy xsarm_joy.launch robot_model:=rx150

$ roslaunch interbotix_xsarm_joy xsarm_joy.launch robot_model:=rx150 use_sim:=true

https://docs.trossenrobotics.com/interbotix_xsarms_docs/getting_started/pairing_controller.html
https://docs.trossenrobotics.com/interbotix_xsarms_docs/getting_started/pairing_controller.html

 Appendices

136

use_sim false Set to “true” if intending to simulate the

robot arm. Runs the DYNAMIXEL

simulator node if set to true

controller ps4 Defines the type of controller to be

used, either “ps3”, “ps4” or “xbox360”

threshold 0.75 Specifies the sensitivity of the controller

from 0 to 1, 1 being the highest

sensitivity

launch_driver true Launches the “xsarm_control.launch”

file, if intending to use a custom launch

file set this to false

Joystick Control launch package link:

https://github.com/Interbotix/interbotix_ros_manipulators/blob/main/interbotix_ros_xsarms/e

xamples/interbotix_xsarm_joy/launch/xsarm_joy.launch

7.3. Controls

The controls for the robot can be seen in Table 9-8.

Table 9-8: Joystick controls

Button Action

START/OPTIONS Move robot arm to its “Home” pose

SELECT/SHARE Move robot arm to its “Sleep” pose

R2 Rotate the “waist” joint clockwise

L2 Rotate the “waist” joint counterclockwise

Triangle Increase gripper pressure in 0.125 step increments (max is 1)

X Decrease gripper pressure in 0.125 step increments (min is 0)

O Open gripper

Square Close gripper

D-pad Up Increase the control loop rate in 1 Hz step increments (max of 40)

D-pad Down Decrease the control loop rate in 1 Hz step increments (min of 10)

https://github.com/Interbotix/interbotix_ros_manipulators/blob/main/interbotix_ros_xsarms/examples/interbotix_xsarm_joy/launch/xsarm_joy.launch
https://github.com/Interbotix/interbotix_ros_manipulators/blob/main/interbotix_ros_xsarms/examples/interbotix_xsarm_joy/launch/xsarm_joy.launch

 Appendices

137

D-pad Left Coarse control - sets the control loop rate to a user-preset “fast” rate

D-pad Right Fine control - sets the control loop rate to a user-preset “slow” rate

Right stick

Up/Down

Increase/decrease pitch of the end-effector

Right stick

Left/Right

Increase/decrease roll of the end-effector

R3 Reverses the Right stick Left/Right control

Left stick Up/Down Move the end-effector (defined at ‘ee_gripper_link’) vertically in

Cartesian space

Left stick Left/Right Move the end-effector (defined at ‘ee_gripper_link’) horizontally in

Cartesian space

L3 Reverses the Left stick Left/Right control

R1 If the arm has 6dof, this moves the end-effector in a negative

direction along its own ‘y’ axis

L1 If the arm has 6dof, this moves the end-effector in a positive

direction along its own ‘y’ axis

PS If torqued on, holding for 3 seconds will torque off the robot; if

torqued off, tapping the button will torque on the robot

The controls table can be seen at:

https://docs.trossenrobotics.com/interbotix_xsarms_docs/ros1_packages/joystick_control.htm

l

https://docs.trossenrobotics.com/interbotix_xsarms_docs/ros1_packages/joystick_control.html
https://docs.trossenrobotics.com/interbotix_xsarms_docs/ros1_packages/joystick_control.html

 Appendices

138

8. Record and Playback

This chapter contains simple commands for getting the Record and Playback package up and

running, and the arguments available in package.

8.1. Commands

Commands for physical and simulated record and playback

8.1.1. Physical arm

Record the position of the joints while manipulating the physical arm:

Return the arm to its initial position and press “Ctrl + C” to stop the recording.

Playback the recording of the arm on the physical arm:

8.1.2. Simulated arm

Record the position of the joints while manipulating the simulated arm:

Return the arm to its initial position and press “Ctrl + C” to stop the recording.

Playback the recording of the arm on the simulated arm:

8.2. Arguments

The arguments for the Record and Playback package can be seen in Table 9-9.

Table 9-9: Record and Playback arguments

Argument Default Value Description

robot_model “” Requires the codename for the specific

robot arm. “rx150” in the case of the

ReactorX-150

robot_name “$(arg robot_model)” Typically the same as “robot_model”,

but is arbitrary

$ roslaunch interbotix_xsarm_puppet xsarm_puppet_single.launch robot_model:=rx150
record:=true

$ roslaunch interbotix_xsarm_puppet xsarm_puppet_single.launch robot_model:=rx150
playback:=true

$ roslaunch interbotix_xsarm_puppet xsarm_puppet_single.launch robot_model:=rx150
use_sim:=true record:=true

$ roslaunch interbotix_xsarm_puppet xsarm_puppet_single.launch robot_model:=rx150
use_sim:=true playback:=true

 Appendices

139

base_link_frame “base_link” The name of the “root” link on the arm.

If attaching the arm to another base,

change the name.

use_rviz true Launches RViz

record false Record the physical manipulation of the

robot to a bag file

playback false Playback the recorded manipulation of

the arm

bag_name $(arg

robot_name)_commands

Change this to set an arbitrary file name

to the ROS bag file

use_sim false Set to “true” if intending to simulate the

robot arm. Runs the DYNAMIXEL

simulator node if set to true

launch_driver true Launches the “xsarm_control.launch”

file, if intending to use a custom launch

file set this to false

 Appendices

140

9. Arm Diagnostic Tool

This chapter contains simple commands for getting the Arm Diagnostic Tool package up and

running, and the arguments available in package.

Note that the diagnostic tool is only meant for the physical arms and that if the “test_duration”

argument is not changed, the test will run for 600 seconds.

9.1. Commands

Manipulate the arm to the desired starting position.

Launch the package for commanding and observing the “waist” joint:

To convert the rosbag data to CSV, navigate to the scripts directory and execute the

following commands:

9.2. Arguments

The arguments for the Arm Diagnostic Tool package can be seen in Table 9-10.

Table 9-10: Arm Diagnostic Tool arguments

Argument Default Value Description

robot_model “” Requires the codename for the

specific robot arm. “rx150” in the

case of the ReactorX-150

robot_name “$(arg robot_model)” Typically the same as “robot_model”,

but is arbitrary

base_link_frame “base_link” The name of the “root” link on the

arm. If attaching the arm to another

base, change the name.

use_rviz true Launches RViz

mode_configs See the Arm Diagnostic

Tool launch package link

below

File path of the YAML file containing

the mode configurations

cmd_joint waist The joint name of the joint to be

rotated

$ roslaunch interbotix_xsarm_diagnostic_tool xsarm_diagnostic_tool.launch
robot_model:=rx150 cmd_joint:=waist observe_joint:=waist bag_name:=rx150_diagnostics

$ chmod a+x bag2csv.py
$ python bag2csv.py rx150 waist rx150_diagnostics.bag rx150_diagnostics.csv

 Appendices

141

observe_joint waist The joint name of the joint to be

observed

test_duration 600 Defines the duration of the test in

seconds

bag_name “$(arg

observe_joint)_diagnostics”

Change this to set an arbitrary file

name to the ROS bag file

use_rqt true Launches the rqt plots. The rqt plots

are set up with preloaded topics

launch_driver true Launches the “xsarm_control.launch”

file, if intending to use a custom

launch file set this to false

Arm Diagnostic Tool launch package link:

https://github.com/Interbotix/interbotix_ros_manipulators/blob/main/interbotix_ros_xsarms/e

xamples/interbotix_xsarm_diagnostic_tool/launch/xsarm_diagnostic_tool.launch

https://github.com/Interbotix/interbotix_ros_manipulators/blob/main/interbotix_ros_xsarms/examples/interbotix_xsarm_diagnostic_tool/launch/xsarm_diagnostic_tool.launch
https://github.com/Interbotix/interbotix_ros_manipulators/blob/main/interbotix_ros_xsarms/examples/interbotix_xsarm_diagnostic_tool/launch/xsarm_diagnostic_tool.launch

 Appendices

142

10. Arm Puppeteering

This chapter contains simple commands for getting the Arm Puppeteering package up and

running, and the arguments available in package.

Connect the two X-Series arms to USB ports on the desired PC. The first robot arm to be

connected will be the master.

10.1. Commands

Launch the package with two physical ReactorX-150 arms:

Start manipulating the “master” arm.

Launch the package with two simulated ReactorX-150 arms:

Send commands to the ROS topic subscribers of the master arm to operate the arms.

10.2. Arguments

The arguments for the Arm Puppeteering package can be seen in Table 9-11.

Table 9-11: Arm Puppeteering arguments

Argument Default Value Description

robot_model_master “” Requires the codename for the specific

robot arm to be the master. “rx150” in

the case of the ReactorX-150

robot_model_puppet “” Requires the codename for the specific

robot arm to be the puppet. “rx150” in

the case of the ReactorX-150

base_link_master “base_link” The name of the “root” link on the

master arm. If attaching the arm to

another base, change the name.

base_link_puppet “base_link” The name of the “root” link of the

puppet arm. If attaching the arm to

another base, change the name.

master_modes See the Arm

Puppeteering launch

package link below

File path of the YAML file containing

the mode configurations for the master

arm

$ roslaunch interbotix_xsarm_puppet xsarm_puppet.launch robot_model_master:=rx150
robot_model_puppet:=rx150

$ roslaunch interbotix_xsarm_puppet xsarm_puppet.launch robot_model_master:=rx150
robot_model_puppet:=rx150 use_sim:=true

 Appendices

143

puppet_modes See the Arm

Puppeteering launch

package link below

File path of the YAML file containing

the mode configurations for the puppet

arm

use_puppet_rviz true launches RViz with visualization of both

arms

rvizconfig See the Arm

Puppeteering launch

package link below

File path of RViz config file

use_sim false Set to “true” if intending to simulate the

robot arm. Runs the DYNAMIXEL

simulator node if set to true

launch_driver true Launches the “xsarm_control.launch”

file, if intending to use a custom launch

file set this to false

Arm Puppeteering launch package link:

https://github.com/Interbotix/interbotix_ros_manipulators/blob/main/interbotix_ros_xsarms/e

xamples/interbotix_xsarm_puppet/launch/xsarm_puppet.launch

https://github.com/Interbotix/interbotix_ros_manipulators/blob/main/interbotix_ros_xsarms/examples/interbotix_xsarm_puppet/launch/xsarm_puppet.launch
https://github.com/Interbotix/interbotix_ros_manipulators/blob/main/interbotix_ros_xsarms/examples/interbotix_xsarm_puppet/launch/xsarm_puppet.launch

 Appendices

144

11. Dual Arm Control

This chapter contains simple commands for getting the Dual Arm Control package up and

running, and the arguments available in package.

Configuring udev rules are not a requirement but can be helpful if there is an error message

regarding the connection to the arms.

11.1. Configure udev rules

This is done with one arm connected at a time but shall be done for both arms.

Find the serial of the U2D2 of each of the arms:

Copy the serial id’s of both of the arms. Navigate to “/etc/udev/rules.d” and edit the “99-

interbotix-udev.rules” file with the following lines, inserting the serial id’s inside the empty

quotation marks:

In the /Interbotix_xsarm_dual/config/” directory, edit the “port” in the “modes_1.yaml”

and “modes_2.yaml” files with the new symlinks.

11.2. Commands

Launch the package with the physical arms and RViz:

Launch the package with the simulated arms:

Navigate to the scripts directory in a new terminal window and execute the example script:

$ udevadm info -a -n /dev/ttyUSB0 | grep {serial}

SUBSYSTEM=="tty", ATTRS{idVendor}=="0403", ATTRS{idProduct}=="6014",
ATTRS{serial}=="", ENV{ID_MM_DEVICE_IGNORE}="1", ATTR{device/latency_timer}="1",
SYMLINK+="ttyRBT1"
SUBSYSTEM=="tty", ATTRS{idVendor}=="0403", ATTRS{idProduct}=="6014",
ATTRS{serial}=="", ENV{ID_MM_DEVICE_IGNORE}="1", ATTR{device/latency_timer}="1",
SYMLINK+="ttyRBT2"

$ roslaunch interbotix_xsarm_dual xsarm_dual.launch robot_model_1:=rx150
robot_model_2:=rx150 use_dual_rviz:=true

$ roslaunch interbotix_xsarm_dual xsarm_dual.launch robot_model_1:=rx150
robot_model_2:=rx150 use_dual_rviz:=true use_sim:=true

$ python3 xsarm_dual.py

 Appendices

145

11.3. Arguments

The arguments for the Dual Arm Control package can be seen in Table 9-12.

Table 9-12: Dual Arm Control arguments

Argument Default Value Description

robot_model_1 “” Requires the codename for the specific

robot arm. “rx150” in the case of the

ReactorX-150

robot_model_2 “” Requires the codename for the specific

robot arm. “rx150” in the case of the

ReactorX-150

robot_name_1 “arm_1” Typically the same as “robot_model_1”,

but is arbitrary

robot_name_2 “arm_2” Typically the same as “robot_model_2”,

but is arbitrary

base_link_1 “base_link” The name of the “root” link on the first

arm. If attaching the arm to another base,

change the name.

base_link_2 “base_link” The name of the “root” link on the first

arm. If attaching the arm to another base,

change the name.

modes_1 See the Dual Arm

Control launch package

link below

File path of the YAML file containing the

mode configurations for the first arm

modes_2 See the Dual Arm

Control launch package

link below

File path of the YAML file containing the

mode configurations for the second arm

use_sim false Set to “true” if intending to simulate the

robot arm. Runs the DYNAMIXEL

simulator node if set to true

use_dual_rviz false launches RViz with visualization of both

arms

 Appendices

146

rvizconfig See the Dual Arm

Control launch package

link below

File path of RViz config file

Dual Arm Control launch package link:

https://github.com/Interbotix/interbotix_ros_manipulators/blob/main/interbotix_ros_xsarms/e

xamples/interbotix_xsarm_dual/launch/xsarm_dual.launch

https://github.com/Interbotix/interbotix_ros_manipulators/blob/main/interbotix_ros_xsarms/examples/interbotix_xsarm_dual/launch/xsarm_dual.launch
https://github.com/Interbotix/interbotix_ros_manipulators/blob/main/interbotix_ros_xsarms/examples/interbotix_xsarm_dual/launch/xsarm_dual.launch

 Appendices

147

12. Dual Arm Joystick Control

This chapter contains simple commands for getting the Dual Arm Joystick Control package up

and running, and the arguments available in package.

Note it is recommended that the udev rules are configured as seen in chapter 11.1. This package

is recommended to be used with a PS4 controller. If the controller is not connected to the PC,

follow this guide:

https://docs.trossenrobotics.com/interbotix_xsarms_docs/getting_started/pairing_controller.ht

ml

12.1. Commands

Launch the package with two physical ReactorX-150 arms:

Launch the package with two simulated ReactorX-150 arms:

12.2. Arguments

The arguments for the Dual Arm Joystick Control package can be seen in Table 9-13.

Table 9-13: Dual Arm Joystick Control arguments

Argument Default Value Description

robot_model_1 “” Requires the codename for the specific

robot arm. “rx150” in the case of the

ReactorX-150

robot_model_2 “” Requires the codename for the specific

robot arm. “rx150” in the case of the

ReactorX-150

robot_name_1 “arm_1” Typically the same as “robot_model_1”,

but is arbitrary

robot_name_2 “arm_2” Typically the same as “robot_model_2”,

but is arbitrary

$ roslaunch interbotix_xsarm_dual_joy xsarm_dual_joy.launch robot_model_1:=rx150
robot_model_2:=rx150

$ roslaunch interbotix_xsarm_dual_joy xsarm_dual_joy.launch robot_model_1:=rx150
robot_model_2:=rx150 use_sim:=true

https://docs.trossenrobotics.com/interbotix_xsarms_docs/getting_started/pairing_controller.html
https://docs.trossenrobotics.com/interbotix_xsarms_docs/getting_started/pairing_controller.html

 Appendices

148

base_link_1 “base_link” The name of the “root” link on the first

arm. If attaching the arm to another base,

change the name.

base_link_2 “base_link” The name of the “root” link on the first

arm. If attaching the arm to another base,

change the name.

modes_1 See the Dual Arm

Joystick Control launch

package link below

File path of the YAML file containing the

mode configurations for the first arm

modes_2 See the Dual Arm

Joystick Control launch

package link below

File path of the YAML file containing the

mode configurations for the second arm

use_sim false Set to “true” if intending to simulate the

robot arm. Runs the DYNAMIXEL

simulator node if set to true

use_rviz false Launches RViz with visualization of both

arms

rvizconfig See Dual Arm Joystick

Control launch package

link below

File path of RViz config file

threshold 0.75 Specifies the sensitivity of the controller

from 0 to 1, 1 being the highest sensitivity

controller ps4 Define the type of controller to be used,

either “ps3”, “ps4” or “xbox360”

topic_joy_raw “/commands/joy_raw” The path to the topic the xs_arm_joy

nodes should subscribe to. The default

path provides raw joystick commands

Dual Arm Joystick Control launch package link:

https://github.com/Interbotix/interbotix_ros_manipulators/blob/main/interbotix_ros_xsarms/e

xamples/interbotix_xsarm_dual_joy/launch/xsarm_dual_joy.launch

https://github.com/Interbotix/interbotix_ros_manipulators/blob/main/interbotix_ros_xsarms/examples/interbotix_xsarm_dual_joy/launch/xsarm_dual_joy.launch
https://github.com/Interbotix/interbotix_ros_manipulators/blob/main/interbotix_ros_xsarms/examples/interbotix_xsarm_dual_joy/launch/xsarm_dual_joy.launch

 Appendices

149

9.6 Appendix F – User Manual with Main Arguments for
Trossen Robotics X-Series arms

This user manual aims to serve as a guide for understanding and utilization of the Trossen

Robotics X-Series robotic arms, both for simulation and physical usage. It is designed to

provide users with an overview of the main command line arguments and package options

available for the X-Series arms. The in-depth information about the packages is covered in the

thesis.

A user manual including the full list of arguments for each package can be seen in [Appendix

E – User Manual with Full Arguments for Trossen Robotics X-Series arms].

Requirements

• A PC running Ubuntu Linux 18.04, 20.04, or 22.04. In this case the computer should

be running Ubuntu Linux 20.04.

o Installation guide: [Appendix B – Guide for Dual Booting Windows and

Ubuntu]

• A PC with ROS 1 Noetic and the necessary packages for the Trossen Robotics X-Series

arms installed.

o Installation guide: [Appendix C – ROS Installation Guide for the X-Series Arms

from Trossen Robotics]

• At least one but recommending two X-Series robot arms from Trossen Robotics. In this

case two ReactorX-150’s, codename “rx150”.

Packages overview

1. Arms Descriptions

2. Arm Control – Python and MATLAB

3. MoveIt Configuration, Interface, and API

4. Gazebo Configuration

5. ROS Controllers Configuration

6. Perception Configuration

7. Joystick Control

8. Record and Playback

9. Arm Diagnostic Tool

10. Arm Puppeteering

11. Dual Arm Control

12. Dual Arm Joystick Control

 Appendices

150

Packages

The packages are sorted in no particular order but note that some packages build upon other

packages and some packages are not meant to be run as standalone packages. All commands

throughout this guide are meant to be run in an Ubuntu terminal window.

Be sure to manually secure the arm(s) before pressing “Ctrl + C” when exiting any package.

1. Arms Descriptions

This chapter contains the commands for getting the Arms Descriptions package up and running

and the arguments available in package.

Note that the Arms Descriptions package is a visualization/simulation package only.

1.1. Commands

Launch with GUI for controlling the joints:

1.2. Arguments

The arguments for the Arms Description package can be seen in Table 9-14.

Table 9-14: Arms Descriptions arguments

Argument Default Value Description

robot_model “” Requires the codename for the specific robot

arm. “rx150” in the case of the ReactorX-150

use_rviz true Launches RViz

use_joint_pub_gui false Launches a user-friendly GUI for controlling

joint angles called the joint_state_publisher GUI

$ roslaunch interbotix_xsarm_descriptions xsarm_description.launch
robot_model:=rx150 use_joint_pub_gui:=true

 Appendices

151

2. Arm Control – Python and MATLAB

This chapter contains simple commands for getting the Arm Control package up and running

with both Python and MATLAB scripts, and the arguments available in package.

2.1. Commands

Launch with physical robot:

Lauch with simulated robot:

Navigate to the Python demos script directory. Launch Python script for ROS Noetic:

Navigate to the MATLAB demo script directory. Launch MATLAB script:

The bartender scripts for both Python and MATLAB are included upon download of the

necessary packages for the X-Series arms.

2.2. Arguments

The arguments for the Arm Control package can be seen in Table 9-15.

Table 9-15: Arm Control arguments

Argument Default Value Description

robot_model “” Requires the codename for the specific

robot arm. “rx150” in the case of the

ReactorX-150

use_rviz true Launches RViz

use_sim false Set to “true” if intending to simulate the

robot arm. Runs the DYNAMIXEL

simulator node if set to true

$ roslaunch interbotix_xsarm_control xsarm_control.launch robot_model:=rx150

$ roslaunch interbotix_xsarm_control xsarm_control.launch robot_model:=rx150
use_sim:=true

$ python3 bartender.py

bartender

 Appendices

152

3. MoveIt Configuration, Interface, and API

This chapter contains simple commands for getting the MoveIt Configuration and MoveIt

Interface and API package up and running, and the arguments available in package.

3.1. Commands

Lauch with physical robot and the MoveIt Interface GUI:

Lauch with simulated robot in Gazebo and the MoveIt Interface GUI, unpause the

Gazebo physics for RViz to load:

Lauch with simulated robot in RViz and the MoveIt Interface GUI:

There is also an option to run MoveIt without the interface/GUI. The plugin for MoveIt

in RViz can be used instead. Note that the MoveIt plugin in RViz is available for use

when launching both the “interbotix_xsarm_moveit_interface” and

“interbotix_xsarm_moveit” package. Enter the robot code name in the lower left corner

of RViz and press the “update” button.

Launch MoveIt without the interface/GUI with physical robot:

Launch MoveIt without the interface/GUI with simulated robot in Gazebo, unpause the

Gazebo physics for RViz to load:

Launch MoveIt without the interface/GUI with simulated robot in RViz:

$ roslaunch interbotix_xsarm_moveit_interface xsarm_moveit_interface.launch
robot_model:=rx150 use_cpp_interface:=true use_actual:=true

$ roslaunch interbotix_xsarm_moveit_interface xsarm_moveit_interface.launch
robot_model:=rx150 use_cpp_interface:=true use_gazebo:=true

$ roslaunch interbotix_xsarm_moveit_interface xsarm_moveit_interface.launch
robot_model:=rx150 use_cpp_interface:=true use_fake:=true

$ roslaunch interbotix_xsarm_moveit xsarm_moveit.launch robot_model:=rx150
use_actual:=true

$ roslaunch interbotix_xsarm_moveit xsarm_moveit.launch robot_model:=rx150
use_gazebo:=true

$ roslaunch interbotix_xsarm_moveit xsarm_moveit.launch robot_model:=rx150
use_fake:=true

 Appendices

153

3.2. Arguments

The arguments for the MoveIt Configuration, Interface and API package can be seen in

Table 9-16.

Note that the “use_cpp_interface”, “moveit_interface_gui” and “use_python_interface”

arguments only apply to the “interbotix_xsarm_moveit_interface” package, and not the

“interbotix_xsarm_moveit” package.

Table 9-16: MoveIt configuration, interface, and API arguments

Argument Default Value Description

robot_model “” Requires the codename for the specific

robot arm. “rx150” in the case of the

ReactorX-150

use_moveit_rviz true Launches RViz with the MoveIt plugin

use_gazebo false Simulate the robot with Gazebo

use_actual false Use the physical robot

use_fake false MoveIt generates a simulated robot to be

controlled in RViz

dof 5 Defines the degrees of freedom of the

robot arm

moveit_interface_gui true Launches a GUI customized to interface

with the moveit_interface node

use_python_interface false Launches a Python Interface Tutorial

node. Press “enter” in the terminal

window to step through the tutorial

 Appendices

154

4. Gazebo Configuration

This chapter contains simple commands for getting the Gazebo package up and running, and

the arguments available in package.

Note that this package is meant to be run in conjunction with MoveIt or by itself via the

JointPositionController interface. The JointPositionController interface is utilized by sending

joint position commands to the arm using ROS subscriber topics. Gazebo is a simulation tool,

so this package will not interact with the physical robot.

4.1. Commands

Launch the simulated robot with the ability to command arbitrary positions to the arm

joints:

Unpause the physics engine by pressing the “play”-button in the left hand corner of gazebo,

or enter the following command:

Controlling the waist of the ReactorX-150 in radians:

List of topics for controlling other joints (subscribers):

$ roslaunch interbotix_xsarm_gazebo xsarm_gazebo.launch robot_model:=rx150
use_position_controllers:=true

$ rosservice call /gazebo/unpause_physics

$ rostopic pub -1 /rx150/waist_controller/command std_msg/Float64 “data: 1.0”

$ rostopic list -s

 Appendices

155

4.2. Arguments

The arguments for the Gazebo Configuration package can be seen in Table 9-17.

Table 9-17: Gazebo Configurations arguments

Argument Default Value Description

robot_model “” Requires the codename for the

specific robot arm. “rx150” in the

case of the ReactorX-150

use_rviz true Launches RViz

dof 5 Defines the degrees of freedom of

the robot arm

world_name see the Gazebo launch

package link below

File path to the world file to be

loaded by Gazebo

gui true Launches the GUI of Gazebo

paused true Launches Gazebo in a paused state

use_position_controllers false Enables commanding of arbitrary

arm joint positions in Gazebo

use_trajectory_controllers false Enables commanding of arbitrary

arm joint trajectories in Gazebo

 Appendices

156

5. ROS Controllers Configuration

This chapter contains simple commands for getting the ROS controllers package up and

running, and the arguments available in package.

Note that this package is only meant to be used in conjunction with MoveIt but can be used

with other nodes that are able to communicate with the joint_trajectory_controller package.

5.1. Commands

Launch the package:

5.2. Arguments

The arguments for the ROS Controllers Configuration package can be seen in Table 9-18.

Table 9-18: ROS Controllers Configurations arguments

Argument Default Value Description

robot_model “” Requires the codename for the specific

robot arm. “rx150” in the case of the

ReactorX-150

use_rviz false Launches RViz

dof 5 Defines the degrees of freedom of the

robot arm

$ roslaunch interbotix_xsarm_ros_control xsarm_ros_control.launch robot_model:=rx150

 Appendices

157

6. Perception Configuration

This chapter contains simple commands for getting the Perception package up and running and

the arguments available in package.

Note that this package is meant to be run with a physical X-Series arm with an AprilTag (AR

tag).

6.1. Setup commands

Start by finding the transform of the AprilTag relative to the camera’s color optical frame

with the following series of commands:

Manually secure the arm! In a new terminal window, torque the arm off:

Move the arm so it is visible for the camera and execute the following command:

Manually secure the arm! Torque the arm off and place it in the “sleeping position”:

6.2. Utilization commands

Launch the package:

Navigate to the scripts directory. Locate the “pick_place.py” script and comment out lines

25-28, since the transform of the arm relative to the camera is already found by running the

“Setup commands”.

The following script command will make the arm pick up the objects in the field of view

of the camera and drop them in a certain location.

$ roslaunch interbotix_xsarm_perception xsarm_perception.launch robot_model:=rx150
use_pointcloud_tuner_gui:=true use_armtag_tuner_gui:=true

$ rosservice call /rx150/torque_enable "{cmd_type: 'group', name: 'arm', enable:
false}"

$ rosservice call /rx150/torque_enable "{cmd_type: 'group', name: 'arm', enable:
true}"

$ rosservice call /rx150/torque_enable "{cmd_type: 'group', name: 'arm', enable:
false}"

$ roslaunch interbotix_xsarm_perception xsarm_perception.launch robot_model:=rx200
use_rviz:=false

$ python3 pick_place.py

 Appendices

158

6.3. Arguments

The arguments for the Perception package can be seen in Table 9-19.

Table 9-19: Perception arguments

Argument Default Value Description

robot_model “” Requires the codename for the

specific robot arm. “rx150” in

the case of the ReactorX-150

use_rviz true Launches RViz

load_configs true Set to true if the motor

configurations shall be written

to the motors. Is only necessary

to do it the first time the node

starts up, reduces startup time if

set to “false”

use_pointcloud_tuner_gui false Displays a GUI for tuning filter

parameters

use_armtag_tuner_gui false Enables the user to publish the

“ref_frame” to

“arm_base_frame” transform

via a GUI

 Appendices

159

7. Joystick Control

This chapter contains simple commands for getting the Joystick Control package up and

running, and the arguments available in package.

Note that this package is recommended to be used with a PS4 controller by default but will also

work with a ps3 controller or an Xbox 360 controller. If the controller is not connected to the

PC, follow one of these two guides:

• [Appendix H – Joystick controller pairing]

• https://docs.trossenrobotics.com/interbotix_xsarms_docs/getting_started/pairing_contr

oller.html

7.1. Commands

Launch the package with the physical arm and start controlling the arm with the joystick

controller:

Launch the package with the simulated arm and start controlling the arm with the joystick

controller:

7.2. Arguments

The arguments for the Joystick Control package can be seen in Table 9-20.

Table 9-20: Joystick Control arguments

Argument Default Value Description

robot_model “” Requires the codename for the specific

robot arm. “rx150” in the case of the

ReactorX-150

use_rviz true Launches RViz

use_sim false Set to “true” if intending to simulate the

robot arm. Runs the DYNAMIXEL

simulator node if set to true

controller ps4 Define the type of controller to be used,

either “ps3”, “ps4” or “xbox360”

threshold 0.75 Specifies the sensitivity of the controller

from 0 to 1, 1 being the highest

sensitivity

$ roslaunch interbotix_xsarm_joy xsarm_joy.launch robot_model:=rx150

$ roslaunch interbotix_xsarm_joy xsarm_joy.launch robot_model:=rx150 use_sim:=true

https://docs.trossenrobotics.com/interbotix_xsarms_docs/getting_started/pairing_controller.html
https://docs.trossenrobotics.com/interbotix_xsarms_docs/getting_started/pairing_controller.html

 Appendices

160

7.3. Controls

The controls for the robot can be seen in Table 9-21.

Table 9-21: Joystick controls

Button Action

START/OPTIONS Move robot arm to its “Home” pose

SELECT/SHARE Move robot arm to its “Sleep” pose

R2 Rotate the “waist” joint clockwise

L2 Rotate the “waist” joint counterclockwise

Triangle Increase gripper pressure in 0.125 step increments (max is 1)

X Decrease gripper pressure in 0.125 step increments (min is 0)

O Open gripper

Square Close gripper

D-pad Up Increase the control loop rate in 1 Hz step increments (max of 40)

D-pad Down Decrease the control loop rate in 1 Hz step increments (min of 10)

D-pad Left Coarse control - sets the control loop rate to a user-preset “fast” rate

D-pad Right Fine control - sets the control loop rate to a user-preset “slow” rate

Right stick

Up/Down

Increase/decrease pitch of the end-effector

Right stick

Left/Right

Increase/decrease roll of the end-effector

R3 Reverses the Right stick Left/Right control

Left stick Up/Down Move the end-effector (defined at ‘ee_gripper_link’) vertically in

Cartesian space

Left stick Left/Right Move the end-effector (defined at ‘ee_gripper_link’) horizontally in

Cartesian space

L3 Reverses the Left stick Left/Right control

 Appendices

161

R1 If the arm has 6dof, this moves the end-effector in a negative

direction along its own ‘y’ axis

L1 If the arm has 6dof, this moves the end-effector in a positive

direction along its own ‘y’ axis

PS If torqued on, holding for 3 seconds will torque off the robot; if

torqued off, tapping the button will torque on the robot

The controls table can be seen at:

https://docs.trossenrobotics.com/interbotix_xsarms_docs/ros1_packages/joystick_control.htm

l

https://docs.trossenrobotics.com/interbotix_xsarms_docs/ros1_packages/joystick_control.html
https://docs.trossenrobotics.com/interbotix_xsarms_docs/ros1_packages/joystick_control.html

 Appendices

162

8. Record and Playback

This chapter contains simple commands for getting the Record and Playback package up and

running, and the arguments available in package.

8.1. Commands

Commands for physical and simulated record and playback

8.1.1. Physical arm

Record the position of the joints while manipulating the physical arm:

Return the arm to its initial position and press “Ctrl + C” to stop the recording.

Playback the recording of the arm on the physical arm:

8.1.2. Simulated arm

Record the position of the joints while manipulating the simulated arm:

Return the arm to its initial position and press “Ctrl + C” to stop the recording.

Playback the recording of the arm on the simulated arm:

$ roslaunch interbotix_xsarm_puppet xsarm_puppet_single.launch robot_model:=rx150
record:=true

$ roslaunch interbotix_xsarm_puppet xsarm_puppet_single.launch robot_model:=rx150
playback:=true

$ roslaunch interbotix_xsarm_puppet xsarm_puppet_single.launch robot_model:=rx150
use_sim:=true record:=true

$ roslaunch interbotix_xsarm_puppet xsarm_puppet_single.launch robot_model:=rx150
use_sim:=true playback:=true

 Appendices

163

8.2. Arguments

The arguments for the Record and Playback package can be seen in Table 9-22.

Table 9-22: Record and Playback arguments

Argument Default Value Description

robot_model “” Requires the codename for the specific

robot arm. “rx150” in the case of the

ReactorX-150

use_rviz true Launches RViz

record false Record the physical manipulation of the

robot to a bag file

playback false Playback the recorded manipulation of

the arm

bag_name $(arg

robot_name)_commands

Change this to set an arbitrary file name

to the ROS bag file

use_sim false Set to “true” if intending to simulate the

robot arm. Runs the DYNAMIXEL

simulator node if set to true

 Appendices

164

9. Arm Diagnostic Tool

This chapter contains simple commands for getting the Arm Diagnostic Tool package up and

running, and the arguments available in package.

Note that the diagnostic tool is only meant for the physical arms and that if the “test_duration”

argument is not changed, the test will run for 600 seconds.

9.1. Commands

Manipulate the arm to the desired starting position.

Launch the package for commanding and observing the “waist” joint:

To convert the rosbag data to CSV, navigate to the scripts directory and execute the

following commands:

9.2. Arguments

The arguments for the Arm Diagnostic Tool package can be seen in Table 9-23.

Table 9-23: Arm Diagnostic Tool arguments

Argument Default Value Description

robot_model “” Requires the codename for the

specific robot arm. “rx150” in the

case of the ReactorX-150

use_rviz true Launches RViz

cmd_joint waist The joint name of the joint to be

rotated

observe_joint waist The joint name of the joint to be

observed

test_duration 600 Defines the duration of the test in

seconds

bag_name “$(arg

observe_joint)_diagnostics”

Change this to set an arbitrary file

name to the ROS bag file

use_rqt true Launches the rqt plots. The rqt plots

are set up with preloaded topics

$ roslaunch interbotix_xsarm_diagnostic_tool xsarm_diagnostic_tool.launch
robot_model:=rx150 cmd_joint:=waist observe_joint:=waist bag_name:=rx150_diagnostics

$ chmod a+x bag2csv.py
$ python bag2csv.py rx150 waist rx150_diagnostics.bag rx150_diagnostics.csv

 Appendices

165

10. Arm Puppeteering

This chapter contains simple commands for getting the Arm Puppeteering package up and

running, and the arguments available in package.

Connect the two X-Series arms to USB ports on the desired PC. The first robot arm to be

connected will be the master.

10.1. Commands

Launch the package with two physical ReactorX-150 arms:

Start manipulating the “master” arm.

Launch the package with two simulated ReactorX-150 arms:

Send commands to the ROS topic subscribers of the master arm to operate the arms.

10.2. Arguments

The arguments for the Arm Puppeteering package can be seen in Table 9-24.

Table 9-24: Arm Puppeteering arguments

Argument Default Value Description

robot_model_master “” Requires the codename for the specific

robot arm to be the master. “rx150” in

the case of the ReactorX-150

robot_model_puppet “” Requires the codename for the specific

robot arm to be the puppet. “rx150” in

the case of the ReactorX-150

use_puppet_rviz true launches RViz with visualization of both

arms

use_rviz true Launches RViz

$ roslaunch interbotix_xsarm_puppet xsarm_puppet.launch robot_model_master:=rx150
robot_model_puppet:=rx150

$ roslaunch interbotix_xsarm_puppet xsarm_puppet.launch robot_model_master:=rx150
robot_model_puppet:=rx150 use_sim:=true

 Appendices

166

11. Dual Arm Control

This chapter contains simple commands for getting the Dual Arm Control package up and

running, and the arguments available in package.

Configuring udev rules are not a requirement but can be helpful if there is an error message

regarding the connection to the arms.

11.1. Configure udev rules

This is done with one arm connected at a time but shall be done for both arms.

Find the serial of the U2D2 of each of the arms:

Copy the serial id’s of both of the arms. Navigate to “/etc/udev/rules.d” and edit the “99-

interbotix-udev.rules” file with the following lines, inserting the serial id’s inside the empty

quotation marks:

In the /Interbotix_xsarm_dual/config/” directory, edit the “port” in the “modes_1.yaml”

and “modes_2.yaml” files with the new symlinks.

11.2. Commands

Launch the package with the physical arms and RViz:

Launch the package with the simulated arms:

Navigate to the scripts directory in a new terminal window and execute the example script:

$ udevadm info -a -n /dev/ttyUSB0 | grep {serial}

SUBSYSTEM=="tty", ATTRS{idVendor}=="0403", ATTRS{idProduct}=="6014",
ATTRS{serial}=="", ENV{ID_MM_DEVICE_IGNORE}="1", ATTR{device/latency_timer}="1",
SYMLINK+="ttyRBT1"
SUBSYSTEM=="tty", ATTRS{idVendor}=="0403", ATTRS{idProduct}=="6014",
ATTRS{serial}=="", ENV{ID_MM_DEVICE_IGNORE}="1", ATTR{device/latency_timer}="1",
SYMLINK+="ttyRBT2"

$ roslaunch interbotix_xsarm_dual xsarm_dual.launch robot_model_1:=rx150
robot_model_2:=rx150 use_dual_rviz:=true

$ roslaunch interbotix_xsarm_dual xsarm_dual.launch robot_model_1:=rx150
robot_model_2:=rx150 use_dual_rviz:=true use_sim:=true

$ python3 xsarm_dual.py

 Appendices

167

11.3. Arguments

The arguments for the Dual Arm Control package can be seen in Table 9-25.

Table 9-25: Dual Arm Control arguments

Argument Default Value Description

robot_model_1 “” Requires the codename for the specific

robot arm. “rx150” in the case of the

ReactorX-150

robot_model_2 “” Requires the codename for the specific

robot arm. “rx150” in the case of the

ReactorX-150

use_sim false Set to “true” if intending to simulate the

robot arm. Runs the DYNAMIXEL

simulator node if set to true

use_dual_rviz false launches RViz with visualization of both

arms

 Appendices

168

12. Dual Arm Joystick Control

This chapter contains simple commands for getting the Dual Arm Joystick Control package up

and running, and the arguments available in package.

Note it is recommended that the udev rules are configured as seen in chapter 11.1. This package

is recommended to be used with a PS4 controller. If the controller is not connected to the PC,

follow one of these two guides:

• [Appendix H – Joystick controller pairing]

• https://docs.trossenrobotics.com/interbotix_xsarms_docs/getting_started/pairing_contr

oller.html

12.1. Commands

Launch the package with two physical ReactorX-150 arms:

Launch the package with two simulated ReactorX-150 arms:

12.2. Arguments

The arguments for the Dual Arm Joystick Control package can be seen in Table 9-26.

Table 9-26: Dual Arm Joystick Control arguments

Argument Default Value Description

robot_model_1 “” Requires the codename for the specific

robot arm. “rx150” in the case of the

ReactorX-150

robot_model_2 “” Requires the codename for the specific

robot arm. “rx150” in the case of the

ReactorX-150

use_sim false Set to “true” if intending to simulate the

robot arm. Runs the DYNAMIXEL

simulator node if set to true

use_dual_rviz false Launches RViz with visualization of both

arms

$ roslaunch interbotix_xsarm_dual_joy xsarm_dual_joy.launch robot_model_1:=rx150
robot_model_2:=rx150

$ roslaunch interbotix_xsarm_dual_joy xsarm_dual_joy.launch robot_model_1:=rx150
robot_model_2:=rx150 use_sim:=true

https://docs.trossenrobotics.com/interbotix_xsarms_docs/getting_started/pairing_controller.html
https://docs.trossenrobotics.com/interbotix_xsarms_docs/getting_started/pairing_controller.html

 Appendices

169

threshold 0.75 Specifies the sensitivity of the controller

from 0 to 1, 1 being the highest sensitivity

controller ps4 Define the type of controller to be used,

either “ps3”, “ps4” or “xbox360”

 Appendices

170

9.7 Appendix G – Joystick controls

The X-series robotic arms from Trossen Robotics can be controlled with joystick controllers

when utilizing the Joystick Control package and the Dual Arm Joystick Control package. The

joystick controllers suitable for controlling the arms are the PlayStation 4, PlayStation 3 and

Xbox360 controllers. How the controllers interact with the arms can be seen in Table 9-27.

Table 9-27: Joystick controls

Button Action

START/OPTIONS Move robot arm to its “Home” pose

SELECT/SHARE Move robot arm to its “Sleep” pose

R2 Rotate the “waist” joint clockwise

L2 Rotate the “waist” joint counterclockwise

Triangle Increase gripper pressure in 0.125 step increments (max is 1)

X Decrease gripper pressure in 0.125 step increments (min is 0)

O Open gripper

Square Close gripper

D-pad Up Increase the control loop rate in 1 Hz step increments (max of 40)

D-pad Down Decrease the control loop rate in 1 Hz step increments (min of 10)

D-pad Left Coarse control - sets the control loop rate to a user-preset “fast” rate

D-pad Right Fine control - sets the control loop rate to a user-preset “slow” rate

Right stick

Up/Down

Increase/decrease pitch of the end-effector

Right stick

Left/Right

Increase/decrease roll of the end-effector

R3 Reverses the Right stick Left/Right control

Left stick Up/Down Move the end-effector (defined at ‘ee_gripper_link’) vertically in

Cartesian space

Left stick Left/Right Move the end-effector (defined at ‘ee_gripper_link’) horizontally in

Cartesian space

 Appendices

171

L3 Reverses the Left stick Left/Right control

R1 If the arm has 6dof, this moves the end-effector in a negative

direction along its own ‘y’ axis

L1 If the arm has 6dof, this moves the end-effector in a positive

direction along its own ‘y’ axis

PS If torqued on, holding for 3 seconds will torque off the robot; if

torqued off, tapping the button will torque on the robot

 Appendices

172

9.8 Appendix H – Joystick controller pairing

The X-Series robotic arms from Trossen Robotics have the ability to be controlled with a

Bluetooth joystick controller. This guide covers the setup of the SONY PlayStation 3 and 4

wireless controllers to an Ubuntu Linux computer. It is stated from Trossen Robotics that

controlling the arms with a Microsoft Xbox 360 could work, but it is neither tested nor

documented.

Requirements

• A computer with Ubuntu Linux installed and Bluetooth capability.

• A SONY PlayStation 3 or 4 wireless controller.

• A USB to Mini USB cable if intending to use a SONY PlayStation 3 wireless controller.

Procedure

Follow the subsequent procedure intended for the SONY PlayStation 3 or 4 wireless controller.

All commands throughout this guide are meant to be run in a Ubuntu terminal window.

Note that the setup for the controller should only be required to be done once unless connection

to another device is made between each time.

1) SONY PlayStation 4 wireless controller setup

a) Enter the Bluetooth setting on the computer by clicking in the top right corner of the

screen, click the Bluetooth icon and select “Bluetooth Settings”.

b) Press and hold the “Share” button while simultaneously pressing and holding the

PlayStation button.

c) Release when the triangular shaped LED on the frontside of the controller starts rapidly

flashing white.

d) A device named “Wireless Controller” should pop up shortly.

e) Click on the “Wireless Controller” and wait for it to say “connected”. The triangular

shaped LED on the frontside of the controller should now turn blue.

f) The PlayStation 4 controller is now connected.

2) SONY PlayStation 3 wireless controller setup

a) Open a terminal Linux window by pressing “Ctrl + Alt + T” and enter:

a) Connect the PlayStation 3 controller to the computer with the USB cable and something

similar to the following line should appear (with its own MAC address):

b) Then type in the same terminal:

c) Disconnect the USB cable and press the PlayStation button. The four LEDs at the

front side of the controller should flash red a couple of times. When one red LED

remains lit, the controller is paired successfully.

$ sudo bluetoothctl
[bluetooth]# power on
[bluetooth]# agent on
[bluetooth]# scan on

[NEW] Device 42:06:9Q:T3:66:S5 PLAYSTATION(R)3 Controller

[bluetooth]# trust <MAC-address>

 Appendices

173

Troubleshooting

1) Previously connected SONY PlayStation 4 wireless controller not connecting

a) Press and hold the “Share” button while simultaneously pressing and holding the

PlayStation button.

b) Release when the triangular shaped LED on the frontside of the controller starts rapidly

flashing white.

c) Select the device and click the “Connect” toggle button.

i) If the controller won’t connect, remove the device, and retry from point 1).

2) Cursor goes crazy when connecting a PlayStation 3 controller
a) Open the “~/.bashrc” file, using for example nano, with the following command:

b) Add the following line to the “~/.bashrc” file, save it and close the file:

c) From now on if the cursor goes crazy, type the following command in the terminal:

3) Controller is not turning on or LEDs flashes a few times before turning off
a) Try charging the controller for a while, or connect it to the computer with a cable.

$ sudo nano ~/.bashrc

alias joy_stop='xinput set-prop "PLAYSTATION(R)3 Controller" "Device Enabled" 0'

$ joy_stop

 Appendices

174

9.9 Appendix I – Raspberry Pi Ubuntu and ROS Setup Guide

The X-Series arms from Trossen Robotics can also be controlled from a Raspberry Pi. This

guide provides instructions to setup the Raspberry Pi with Ubuntu Linux with MATE desktop

and subsequently setting up ROS (Robot Operating System).

Note that this guide is designed for a Raspberry Pi 4 Model B. The guide has been tested with

a Raspberry Pi 3 Model B, but without any promising results.

Requirements

• Raspberry Pi 4 Model B

• USB-C power cable

• Mini-to-full-size HDMI cable

• Monitor with HDMI capability

• USB keyboard

• USB mouse

• Ethernet cable

• Computer with Wi-Fi connection, BalenaEtcher installed and an SD card port

• Full size HDMI cable (Raspberry Pi 3)

• Mini-USB power cable (Raspberry Pi 3)

Procedure

Follow the subsequent procedure in the following order. All commands throughout this guide

are meant to be run in a Ubuntu terminal window.

1) Installing Ubuntu

a) Download the Ubuntu 20.04.2 64-bit Server Image from:

https://ubuntu.com/download/raspberry-pi/thank-

you?version=20.04.2&architecture=server-arm64+raspi

b) Insert the SD card adapter with the micro-SD card and open BalenaEtcher

c) In BalenaEtcher click “Select Image” to browse and select the Ubuntu 20.04.2 64-bit

Server Image.

d) Ensure the correct SD card is selected under “Select target”.

e) Click “Flash!” to begin the process. Once completed, safely eject the USB drive.

f) Before connecting power to the Raspberry Pi! Connect the mouse, keyboard,

HDMI to the monitor and the Ethernet from to the computer.

g) Connect the power cable to the Raspberry Pi and wait for the option to log in.

h) The default computer and username is “ubuntu”, so type in “ubuntu” and create a

password.

i) Once logged in check the internet connection by pinging a website such as

“www.vg.no” with the following command:

j) If internet connection has been established, move on to step number 3, if not follow

step number 2.

$ ping www.vg.no

https://ubuntu.com/download/raspberry-pi/thank-you?version=20.04.2&architecture=server-arm64+raspi
https://ubuntu.com/download/raspberry-pi/thank-you?version=20.04.2&architecture=server-arm64+raspi

 Appendices

175

2) Allow sharing internet connection over ethernet

a) On Windows 10:

i) Press the “Windows” button, type in “View network connections” and select it.

ii) Right click the active internet connection and select “Properties”.

iii) Select the “Sharing” tab in the window that just popped up.

iv) Toggle the “Allow other network users to connect through this computer’s

Internet connection” checkbox to “checked”.

v) In the dropdown menu select the correct ethernet port and press “OK”.

vi) The Raspberry Pi should now have internet connection.

b) On Ubuntu Linux 20.04:

i) Go to the “Setting” and the “Network” tab.

ii) Under the “Wired” section click the “+” sign.

iii) Give the new setting profile a new name like “Shared connection”.

iv) Navigate to the “IPv4” tab and select “Shared to other computers” in the

dropdown menu.

v) Click “Apply” and the Raspberry Pi should now have internet connection.

c) Check the internet connection on the raspberry pi by retrying to ping “www.vg.no”:

3) Modifying username (optional)

Change the username of the Raspberry Pi to something other than “ubuntu”, for example

“interbotix”.

a) Add a temporary user to execute modifications:

b) Log in to the new “tempusr” user to make the following modifications:

c) Log into the new “interbotix” user and delete the “tempusr” as it is no longer needed:

d) Change the “hostname” if intending to have multiple Raspberry Pi’s on the same

network with the next steps. Change the “hostname” in the following file:

e) Check that Linux is not updating by typing the following command:

f) If “apt.systemd.daily” is using the “apt” process, run the previous command every

few minutes until it doesn’t.

g) Then finally reboot:

$ ping www.vg.no

$ sudo adduser tempusr
$ sudo adduser tempusr sudo
$ exit

$ sudo usermod -l interbotix ubuntu
$ sudo groupmod -n interbotix ubuntu
$ sudo usermod -d /home/interbotix -m interbotix
$ sudo usermod -c "interbotix" interbotix
$ exit

$ sudo deluser tempusr
$ sudo rm -r /home/tempusr

$ sudo nano /etc/hostname

$ ps aux | grep -i apt

$ sudo reboot

 Appendices

176

4) Install MATE desktop

a) Login and start by updating and upgrading with the following commands:

b) Login again and install MATE desktop with the following commands:

The installation may take around 20 minutes, and at boot there should now be a login

screen.

c) Before logging in after reboot, click the Ubuntu sign next to the username text box.

Select “MATE” as desktop environment and then login.

5) Enable automatic login (optional)

a) Click in the top right corner of the screen and select “System Settings”.

b) Click “Login Window” and navigate to the “Users” tab.

c) In the Automatic login text box enter the username (“interbotix”)

d) Exit and done.

6) (Do NOT do this step unless the Raspberry Pi has an onboard heat sink and an

active cooling mechanism) Overclocking Raspberry Pi CPU

Increases the CPU clock frequency from 1.5 GHz to 2.0 GHz.

a) Modify the boot config file with the following commands:

b) Add the following lines to the boot config file:

c) Save the changes to the file (“Ctrl + S”) and exit nano (“Ctrl + X”)

d) Reboot:

7) Disable password for sudo privileges (optional)

For convenience.

a) The following commands opens a file:

b) Add the following line to disable password for sudo privileges for the “interbotix”

user:

8) Enable Bluetooth

The Bluetooth module is disabled by default for some reason.

a) Enable the Bluetooth module on Ubuntu 20.04 with the following command:

$ sudo apt update && sudo apt upgrade
$ sudo reboot

$ sudo apt install ubuntu-mate-desktop
$ sudo reboot

$ cd /boot/firmware/
$ sudo nano usercfg.txt

over_voltage=6
arm_freq=2000

$ sudo reboot

$ sudo visudo

interbotix ALL=(ALL) NOPASSWD:ALL

$ sudo apt install pi-bluetooth

 Appendices

177

9) Install ROS

a) Install ROS with robot-specific packages, and pre-configured drivers and environment

variables from Interbotix:

The Raspberry Pi should now be ready to use with the X-Series arms.

$ sudo apt install curl
$ curl
'https://raw.githubusercontent.com/Interbotix/interbotix_ros_manipulators/main/inter
botix_ros_xsarms/install/rpi4/xsarm_rpi4_install.sh' > xsarm_rpi4_install.sh
$ chmod +x xsarm_rpi4_install.sh
$./xsarm_rpi4_install.sh

 Appendices

178

9.10 Appendix J – bartender.py

from interbotix_xs_modules.arm import InterbotixManipulatorXS
import numpy as np

This script makes the end-effector perform pick, pour, and place tasks

To get started, open a terminal and type 'roslaunch interbotix_xsarm_control
xsarm_control.launch robot_model:=wx250'
Then change to this directory and type 'python bartender.py # python3
bartender.py if using ROS Noetic'

def main():
 bot = InterbotixManipulatorXS("wx250", "arm", "gripper")
 bot.arm.set_ee_pose_components(x=0.3, z=0.2)
 bot.arm.set_single_joint_position("waist", np.pi/2.0)
 bot.gripper.open()
 bot.arm.set_ee_cartesian_trajectory(x=0.1, z=-0.16)
 bot.gripper.close()
 bot.arm.set_ee_cartesian_trajectory(x=-0.1, z=0.16)
 bot.arm.set_single_joint_position("waist", -np.pi/2.0)
 bot.arm.set_ee_cartesian_trajectory(pitch=1.5)
 bot.arm.set_ee_cartesian_trajectory(pitch=-1.5)
 bot.arm.set_single_joint_position("waist", np.pi/2.0)
 bot.arm.set_ee_cartesian_trajectory(x=0.1, z=-0.16)
 bot.gripper.open()
 bot.arm.set_ee_cartesian_trajectory(x=-0.1, z=0.16)
 bot.arm.go_to_home_pose()
 bot.arm.go_to_sleep_pose()

if __name__=='__main__':
 main()

 Appendices

179

9.11 Appendix K – “rostopic” guide

This guide provides a basic guide on how to control an X-Series arm with “rostopic” commands

from the Ubuntu terminal. The X-Series robotic arms can be controlled by “rostopic”

commands when launching most packages utilizing the “interbotix_xsarm_control” package

and/or the “interbotix_xsarm_gazebo” package.

1) Find the rostopic command for listing active topics

As seen in the figure below, utilize the “rostopic -h” command to locate the command for

finding the active topics, in this case it is the “rostopic list” command.

2) Filter the “rostopic list” command

As seen in the figure below, utilize the "rostopic list -h” command to see the available

options. The rostopics receiving commands are subscribers, so filter the list with the

“rostopic list -s” command.

Locate the desired subscriber topic before moving to the next step.

 Appendices

180

3) How to publish the command

As seen in the figure below, utilize the “rostopic pub -h” to view the options for publishing

a command.

In this case the command should be published only once, so the “rostopic pub -1” shal be

used.

4) Publishing the command

The figure below shows the unfiltered “rostopic” list first, then filters it on subscribers. The

“/rx150/commands/joint_single” topic is chosen.

After typing in “rostopic pub -1 /<the selected topic>” press “Tab” twice and it will

autocomplete the command. Then fill in the necessary information.

For the command in the figure below, the only thing left to do is to fill in the “name” of the

joint to command and specify the desired position of the joint in radians.

 Appendices

181

9.12 Appendix L – xsarm_dual_usn_lift.py

import math
import time
import rospy
from threading import Thread
from interbotix_xs_modules.arm import InterbotixManipulatorXS

This script is used to make two ReactorX150 lift and hold the 3D-printed USN logo

To get started, open a terminal and type 'roslaunch interbotix_xsarm_dual
xsarm_dual.launch'
Note that the 'robot_name' argument used when instantiating an
InterbotixManipulatorXS instance
is the same name as the 'robot_name_X' launch file argument

speed = 1 #s
sleep_time = 0.1
pickup_y_pose = 0.21 #0.235 when running the physical ReactorX-150 with 60cm from
center to center
pickup_z_pose = 0.05
pickup_pitch = 0.5

def robot_1_lift():
 global wait_for_robot_1

 robot_1 = InterbotixManipulatorXS(robot_model="rx150", robot_name="arm_1",
moving_time=speed, gripper_pressure=1.0, init_node=False)

 wait_for_robot_1 = True
 robot_1.arm.go_to_home_pose()
 robot_1.arm.set_ee_pose_components(y=pickup_y_pose, z=0.2)
 robot_1.gripper.open()
 robot_1.arm.set_ee_pose_components(y=pickup_y_pose, z=pickup_z_pose,
pitch=pickup_pitch)
 robot_1.gripper.close()
 robot_1.arm.set_ee_pose_components(y=pickup_y_pose, z=0.3, pitch=pickup_pitch)
 wait_for_robot_1 = False

def robot_2_lift():
 global wait_for_robot_2

 wait_for_robot_2 = True
 robot_2 = InterbotixManipulatorXS(robot_model="rx150", robot_name="arm_2",
moving_time=speed, gripper_pressure=1.0, init_node=False)

 robot_2.arm.go_to_home_pose()
 robot_2.arm.set_ee_pose_components(y=-pickup_y_pose, z=0.2)
 robot_2.gripper.open()
 robot_2.arm.set_ee_pose_components(y=-pickup_y_pose, z=0.3, pitch=pickup_pitch)
 while wait_for_robot_1:
 time.sleep(sleep_time)
 robot_2.gripper.close()

def main():
 rospy.init_node("xsarm_dual")
 Thread(target=robot_1_lift).start()
 Thread(target=robot_2_lift).start()

if __name__=='__main__':
 main()

 Appendices

182

9.13 Appendix M – xsarm_dual_usn_down.py

import math
import time
import rospy
from threading import Thread
from interbotix_xs_modules.arm import InterbotixManipulatorXS

This script is used to make two ReactorX150 put down the 3D-printed USN logo

To get started, open a terminal and type 'roslaunch interbotix_xsarm_dual xsarm_dual.launch'
Note that the 'robot_name' argument used when instantiating an InterbotixManipulatorXS instance
is the same name as the 'robot_name_X' launch file argument

speed = 1 #[s]
sleep_time = 0.1 #[s]
pickup_y_pose = 0.21 #0.235 when running the physical ReactorX-150 with 60cm from center to center
pickup_z_pose = 0.05
pickup_pitch = 0.5

def robot_1_down():
 global wait_for_robot_1
 global robot_1

 wait_for_robot_1 = True
 robot_1 = InterbotixManipulatorXS(robot_model="rx150", robot_name="arm_1", moving_time=speed,
gripper_pressure=1.0, init_node=False)

 robot_1.gripper.open()
 wait_for_robot_1 = False
 while wait_for_robot_2:
 time.sleep(sleep_time)
 robot_1.arm.set_ee_pose_components(y=pickup_y_pose, z=0.2, moving_time=speed)
 robot_1.gripper.close()
 robot_1.arm.go_to_home_pose()
 robot_1.arm.go_to_sleep_pose()

def robot_2_down():
 global wait_for_robot_2
 global robot_2

 wait_for_robot_2 = True
 robot_2 = InterbotixManipulatorXS(robot_model="rx150", robot_name="arm_2", moving_time=speed,
gripper_pressure=1.0, init_node=False)

 while wait_for_robot_1:
 time.sleep(sleep_time)
 robot_2.arm.set_ee_pose_components(y=-pickup_y_pose, z=pickup_z_pose, pitch=pickup_pitch,
moving_time=speed*2)
 robot_2.gripper.open()
 wait_for_robot_2 = False
 robot_2.arm.set_ee_pose_components(y=-pickup_y_pose, z=0.2, moving_time=speed)
 robot_2.gripper.close()
 robot_2.arm.go_to_home_pose()
 robot_2.arm.go_to_sleep_pose()

def main():
 rospy.init_node("xsarm_dual")
 Thread(target=robot_1_down).start()
 Thread(target=robot_2_down).start()

if __name__=='__main__':
 main()

