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Abstract

The outcomes of this research have significant implications for enterprises seeking effective semantic
search solutions considering information beyondwhat is explicitly shown in the raw documents from
different inventories and formats and responding to users’ inquiries with relevant answers helping
them to reduce their workload, time, and efforts. This master’s thesis investigates semantic search
on heterogeneous documents in an enterprise-level context by exploring two distinct approaches:
RDF ontology with RML and entity extraction with vector embedding. The thesis aims to evaluate
the effectiveness of these approaches individually and identify opportunities for their combined ap-
plication as future research scope.

The first experiment employs entity extraction techniques and vector embedding with the support of
Pinecone DB. By transforming documents into high-dimensional vectors, it captures semantic similar-
ities, enabling similarity-based search. The experiment specifically targets CSV, Excel, and datasets,
offering a focused investigation into the semantic search within specific formats. The second ex-
periment focuses on RDF ontology with RML, utilizing graph-based modeling and SPARQL querying.
It demonstrates the ability to capture complex semantic relationships, hierarchies, and ontological
concepts, providing a powerful framework for semantic search. The experiment handles structured
(CSV, Excel) semi-structured, and unstructured (JSON, XML, DOCX, PDF) documents, enabling effec-
tive retrieval of information from diverse file formats.

Through a thorough comparison of the results, the thesis reaches an optimal solution in terms of
semantic search on heterogeneous documents at both large and small enterprise-level. Although
the RDF ontology approach exhibits superior semantic representation, advanced querying capabil-
ities, and greater semantic expressiveness, enabling more accurate and contextual search results,
this thesis proposes future research on merging RDF ontology and vector embedding to leverage
their respective strengths such as knowledge representation and semantic similarity, facilitating data
integration, and efficient search. This combined approach can hold promise for providing a more
comprehensive and powerful semantic search solution.

Finally, this master’s thesis contributes to the advancement of semantic search on heterogeneous
documents at an enterprise level, offering valuable insights and paving the way for further research
and development in this field.
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1 Introduction

In today’s digital age, the amount of information available to us is growing exponentially. The fourth
industrial revolution also brings a huge amount of data availability and the explosion in various trends.
(Holter, 2015) We observe an exponential rise in the volume of data available from a widening num-
ber of heterogeneous sources, both structured, semi-structured, and unstructured, using various
technologies, thanks to the achievements and ongoing improvements in the sector, for example,
healthcare, inventory systems especially in energy sectors and so on (Salim, Muller, Ali, & Falk, 2019).
As a result, effectively searching and retrieving specific information from heterogeneous documents
has become a daunting challenge. This issue is particularly relevant when it comes to searching for
equipment-related information (see section 1.1.1), where accurate and efficient retrieval is crucial for
various domains such as engineering, manufacturing, and research. We must manage enormous
amounts of data from several sources with all the difficulties that entail benefiting from the currently
available sources with multiple structured and unstructured documents. One of the suggested an-
swers to this issue is semantic search technology, which response to users’ inquiries with relevant
answers helping them to reduce their workload, time, and effort. (Holter, 2015; Kumar, Singh, & De,
2017) This is the technique that will be examined in this thesis.

With the advent of Industry 4.0, the efficient management and interpretation of data have become
indispensable for industries to realize their maximum potential. However, many project-driven orga-
nizations confront the challenge of dealing with dispersed and disconnected systems that generate
voluminous document-centric data, making it difficult to explore and extract valuable insights. There
is a growing need to transition from unstructured and non-intelligent raw data to intelligent data
models that can support semantic reasoning in order to surmount this obstacle. In order to resolve
this issue, organizations from both the public and private sectors are pursuing methods to accelerate
the digital transformation of the semantic modeling industry. Information modeling, which entails
documenting and representing the interactions between various pieces of information in a knowl-
edge graph, has emerged as a technique to enable stakeholders to perform calculations, evaluate
status, and facilitate decision-making processes. However, several factors hinder the utilization of
available data in complex systems engineering environments, including the absence of a standardized
language among engineers and interdisciplinary teams, inefficient knowledge exchange, difficulties
in locating system information, and ineffective stakeholder communication.
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The significance of this research lies in its potential to revolutionize the search and retrieval of equipment-
related information. By integrating semantic understanding with heterogeneous document process-
ing, the proposed system has the capacity to greatly improve the accuracy, efficiency, and compre-
hensiveness of equipment search. This advancement would have practical applications in industries
heavily reliant on equipment-related data, such as manufacturing, engineering design, and scientific
research.

1.1 Motivation and Problem Statement

Most organizations working on complex engineering projects generate a large amount of document-
centered data scattered around many different often disconnected systems where it is not easily
explorable during the project’s life cycle. (Salim et al., 2019)

1.1.1 Industry Scenario and Inventory Equipment

Different multinational firms offer full project life cycle services to the energy sector. Organizations
struggle to sort through the information jumbled up around many systems, some of which may or
may not be interconnected.(Salim et al., 2019)Within the extensive landscape that encompasses con-
temporary energy production, there are numerous vendors who depend on varied inventories full of
highly specialized gear designed to meet particular needs across different aspects of their work in-
volving generation, transmission, and distribution operations. Among this varied arsenal are power
generation devices like turbines or engines which harness an extensive array of different forms of
sustainable energies to be transformed into vital electrical current through essential mediums like
transformers plus switch-gear which enable crucial processes for efficient voltage protection within
complex distribution networks while lines capable allowing transportation infrastructure spanning
long distances play critical roles powering end-users from remote locations where supply can be lim-
ited by geography or other sources, however, sub-stations remain equally important components
holding core apparatuses for voltage transformation and regulation for effective operations. Addi-
tionally, the focus on greener options like solar panels, wind turbines, and biomass generators has
introduced specialized equipment as methods pure to these technologies while monitoring systems
have become indispensable providing essential real-time data and keeping track of vital energy con-
sumption levels along with equipment performance too. To store excess power generated there are
energy storage mechanisms that also safeguard workers and the environment simultaneously too
so that the combination of these varied types of gear empowers energy providers to satisfy ever-
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growing alternative sustainable and safe demands for supplying all kinds of energetic solutions.

As the inventories are not stored in a central repository, the data would require exploration through
multiple systems because of different vendors, contractors, separate subsidiaries, and so on. When
an unexpected event happens, an event log is created. These project-specific logs are kept in Excel
sheets on which no analyses are made (Salim et al., 2019). Moreover, organizations that usually have
their data dispersed aroundmany different systems can not routinely track their equipment and tools
to track the location, status, ormaintenance history due to a proper structure to store or process that
information. (see more in section 1.1.2)

1.1.2 Problem Definition

Managing inventory systems for energy sectors such as oil and gas or renewable energy requires
various types of machinery including generators, turbines, compressors, transformers pumps, etc
from different vendors with each providing multiple models/versions and companies often having
diverse ranges of equipment from different vendors.

Figure 1: Example of a chaotic heterogeneous document in large energy industry
With numerousmodels available there’s usually a large range of diverse machinery within most com-
panies that require effectivemanagement by utilizing tools likeMicrosoft Excel. (Salim et al., 2019) Ex-
cel spreadsheets are commonly used to maintain inventories, record equipment details, track main-
tenance schedules, and manage other relevant information. However, relying solely on Excel data
sets may not be the best solution. One common problem is the lack of uniformity between Excel
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sheets generated by disparate manufacturers. These sheets may have inconsistent formatting, col-
umn names, and data structures, making it difficult to extract and compare information across dif-
ferent files. Additionally, relevant data about equipment, including model numbers, specifications,
maintenance schedules, and supplier details, is often fragmented across multiple files. As a result,
searching for specific product details or comparing differentmodels becomes cumbersome and time-
consuming. This leads to major obstacles in comparing different models or searching for specific
equipment details.

This figure 1 (Charbel, 2018) illustrates a large-scale and multi-disciplinary project involving a large
amount of unstructured information dispersed across various heterogeneous documents having dif-
ferent formats, content, and structure.(Charbel, 2018) Different entities involved in the project gen-
erate interconnected documents that are critical to achieving project progress. These documents
contain diverse information with varying formats such as PDFs, DOCXs, Excel sheets XMLs images
amongst others. However, due to inadequate knowledge-sharing mechanisms, a lack of common
search methods searching for system-related information poses a stumbling block for many organi-
zations seeking to track their equipment and tools efficiently. Semantic Search presents an opportu-
nity to tackle this challenge by enabling actors within the project space to conduct specific searches
across all forms of documents comprehended both in format and databases. Semantic Search goes
beyond basic keyword searches thus able to discern the context and meaning behind user query.
This ability facilitates pinpointing relevant details within a single document even when clouded by
irrelevant content, resulting in accurate tracking of dependencies within a given dataset.

1.2 Thesis Goals and Main Challenges

Semantic search from heterogeneous documents poses a significant challenge due to the lack of
standardization, ambiguity, and the presence of diverse data sources. The absence of a standard-
ized format across documents makes it challenging to extract and compare information effectively.
Additionally, the ambiguity inherent in natural language further complicates the search process, as
different manufacturers may use different terminology or abbreviations for similar concepts. More-
over, the inclusion of diverse data sources, such as Excel sheets and CSV files from multiple vendors,
adds complexity to the retrieval process. Despite these challenges, implementing semantic search
for industry-level information retrieval is worth pursuing. By leveraging advanced natural language
processing and machine learning techniques, semantic search can provide a powerful solution for
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extracting meaningful insights and facilitating efficient retrieval of relevant information. It enables
users to overcome the barriers of heterogeneous documents, enabling effective decision-making,
improved operational efficiency, and better inventory management across the energy sector, includ-
ing oil and gas and renewable energy industries. Figure 2 will give an idea of the proposed retrieval
system.

Figure 2: Example of a proposed retrieval system

1.2.1 Project Goals

In this thesis, we mainly address the challenge of allowing enhanced search in a specific context, in
a novel way, for relevant information from the heterogeneous document corpus representing the
multidisciplinary inventory of enterprises. Here is the goal of the thesis -

• Consider information beyond what is explicitly shown in the raw documents from different
inventories and formats.

• Respond to information inquirieswith relevant answers helping them to reduce their workload,
time, and efforts.

1.2.2 Main Challenges

These goals can result in some challenges, for example:
• Challenge 1 - Collect and Represent the collective knowledge embedded in a heterogeneous
document in different formats corpus through a robust data model;
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• Challenge 2 - Provide search results based on the proposed data model.
Meeting this challenge, enterprises can routinely track their equipment and tools around different
systems to track the location, status, or maintenance history. Tackling these challenges is crucial and
a step forward in reducing the gap between new technologies imposed in the era of Industry 4.0.

1.3 Thesis Plan and Research Questions

By analyzing unstructured sources leveraging a combination of semantic technologies alongside in-
formation retrieval methods like vector embedding or graph databases (as well as incorporating
SPARQL), we will discuss on these more in sections 2.3.11 and 2.4.4, this study conducted three sep-
arate case studies centered around varied approaches towards enhancing existing semantic search
capabilities. More specifically, researchers sought out ideal ways in which document retrieval could
be further improved via assessing its accuracy and speedwhenweighed against a given query utilizing
both aforementioned techniques; likewise examining how effective either database technology can
be employed when it comes to semantically enabling analysis of the relationships between different
entities. Finally, this investigation aimed to identify potential drawbacks and suggest ways in which
to overcome them - offering final recommendations for further research while examining broader
applications of such techniques.

1.3.1 Research Questions

• How can domain applications exploit semantic technologies and information retrieval tech-
niques to utilize diverse data in different formats to enhance faster information retrieval and
decision-making? How RDF can make enterprise-level searches more contextual.

1.3.2 Research Objective

• Examining the efficacy of semantic technologies and information retrieval techniques for data
extraction and analysis from unstructured sources.

• Examining how domain applications can effectively utilize a vast array of available data in vari-
ous formats.

• Using vector embedding, graph databases, and SPARQL to conduct three case studies examin-
ing distinct approaches to semantic search using vector embedding.
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Figure 3: Overview of Case studies
• Evaluating the precision and efficiency of document retrieval using vector embedding and vec-
tor databases based on semantic similarity.

• Examine the integration of RDF or OWL to improve semantic search functionality.
• Exploration of the utilization of graph databases and SPARQL for semantic search and analysis
of entity relationships.

• Potential applications of semantic technologies in disciplines such as data analysis and docu-
ment management are evaluated.

• Identify the limitations and obstacles posed by semantic search and suggest solutions.
• Future research recommendations in the area of semantic technologies and information re-
trieval techniques for extracting and analyzing data from unstructured sources.

20



1.3.3 Hypothesis and Expectations

1.3.3.1 Hypothesis

The utilization of semantic technologies and information retrieval techniques, such as vector embed-
ding, graph databases, and SPARQL, will lead to the retrieval and analysis of data fromheterogeneous
sources that are more precise and efficient.

1.3.3.2 Expectations

From the case studies and experiments, our expectations are the following -
• The case studies will demonstrate that semantic search using vector embedding and vector
databases can provide accurate and efficient document retrieval based on semantic similarity
to a given query.

• The use of graph databases and SPARQL for semantic search and analysis of relationships be-
tween entities will reveal hidden patterns and insights that may not be apparent through tra-
ditional search methods.

• The potential applications of these semantic technologies and information retrieval techniques
in fields such as data analysis and document management will be evident, highlighting the
importance of these technologies in today’s data-driven world.

• Limitations and challenges of these approaches will be identified, but possible solutions and
ways to overcome them will also be proposed.

• The recommendations provided for future research in the area of semantic technologies and
information retrieval techniques will help guide further development and adoption of these
technologies.

1.4 Assumptions and Limitations

1.4.1 Assumptions

• We surmise that the documents under scrutiny possess a structured or semi-structured design
with consistent data types and formatting.
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• The files carry trustworthy information that is kept up-to-date on a regular basis. Consequently,
it’s assumed by the search engine that users possess sufficient familiaritywith both information
and their required search criteria.

• Regardless of whether it is about file format or structure, there’s an expectation from semantic
search technology to accurately comprehend file content while extracting relevant details out
of them. Henceforth, it presupposes a scenario where all searched files come in a readable
format for this particular software while accounting for simultaneous transformations to make
sense when needed during searching operations.

• Permissions are also presumed to be provided as required to access those searched locations.

1.4.2 Limitations

The lack of access to data is the study’s biggest drawback. A thorough semantic search system or
knowledge map cannot be built without the required data being available. The semantic search en-
gine and knowledge mapping could be affected by this. The study is constrained to the time frame
in which the data was gathered and might not take into consideration any modifications or advance-
ments in the business’s operations or activities that may have occurred after that window of time.

The consistency and caliber of the data present in the files, the algorithms applied, and the layout
of the user interface may all have an impact on the effectiveness of the semantic search system
and knowledge map. The system might have limitations due to the complexity and variety of file
formats, which might make it challenging to correctly understand the content and retrieve pertinent
information. The amount of computer power available may place a cap on the search mechanism,
especially when looking through big amounts of data or several files at once.

1.5 Thesis Contributions

The proposed Master’s thesis will concentrate on investigating the application of semantic search
technologies to enhance information retrieval andmanagement for global businesses providing project
life cycle services in the energy sector. The thesis tries to address the problems businesses encounter
when organizing and sorting through massive amounts of data from various systems and vendors.
The thesis will begin by introducing the firm and outlining the difficulties in handling data in this sec-
tor. A review of the most recent state-of-the-art semantic search technologies, including knowledge
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graphs, natural language processing, and machine learning methods, will come after. The thesis will
next investigate the application of the technologies outlined in the Background Section (section 2)
in the context of the energy industry and make a recommendation for the best design for a more
effective search system that can respond to users’ queries with pertinent information.

The thesis will employ a case study methodology to do this, concentrating on a multinational cor-
poration and its data management procedures. Data collection, analysis, and evaluation of current
information retrieval and management systems, as well as a determination of the merits of the sug-
gested remedy, will all be part of the study. The study will also assess howmuch less work, time, and
effort will be required to complete the heterogeneous document that serves as the interdisciplinary
inventory for a particular industry.

By showing how semantic search technology may be used in the energy industry and outlining the
best course of action for improved information management and retrieval, the thesis will make a
significant contribution to the area. Insights into the possible advantages of applying semantic search
technology in other sectors with comparable data management issues will also be provided by the
study.

1.6 Thesis Outline

The research is divided into eight sections, each serving a specific purpose. In Section 1, a theoret-
ical introduction is provided, covering motivation, goals, problem statements, research objectives,
and questions, as well as assumptions and limitations. Section 2 offers a comprehensive overview of
the technology utilized in various case studies and experiments, including semantic technologies and
vectors. Furthermore, Section 3 explores recent relevant research on a semantic search conducted
in recent years. Moving on to Section 4, two case studies are presented, utilizing structured datasets
and employing vector embedding. Additionally, two experiments are discussed, and a subsection is
dedicated to presenting the results. In Section 5, a case study and experiment are conducted on het-
erogeneous structured and unstructured documents, utilizing an RDF ontology. Section 6 engages
in a discussion comparing and contrasting the two approaches used in the research, analyzing their
effectiveness, similarities, and differences. Finally, section 8 concludes by presenting the best possi-
ble solution derived from the approaches and includes a future work section to highlight potential
avenues for further research. Figure 4 will give an overview outline and visual map of this whole
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thesis.

24



Figure 4: Visual Map of this Masters Thesis
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2 Background: Understanding Semantic Search - Tech-

niques, Applications, and Challenges in industries

Information Retrieval (IR) is the field of study concerned with the process of retrieving relevant infor-
mation from a large set of unstructured data. In recent years, there has been a growing interest in
the application of IR techniques to industry-specific domains such as e-commerce, healthcare, and
finance. (Holter, 2015) To achieve more accurate and efficient retrieval, semantic technologies such
as RDF, OWL, SPARQL, and triple stores have been developed to represent and query complex data
structures. Natural Language Processing (NLP) and Named Entity Recognition (NER) enable comput-
ers to understand and process human language, allowing for more natural and efficient communica-
tion with users.(Klinger, Gampe, Tolle, & Peter, 2018)

As the amount of data continues to grow exponentially, researchers have turned to graph databases
and vector databases such as GraphDB (Kivikangas & Ishizuka, 2020) and Pinecone to store and re-
trieve complex relationships between data points. These databases are designed to handle large
volumes of interconnected data and support semantic search capabilities for efficient retrieval of rel-
evant information. Researchers (Rekabsaz, 2017; Hagelien, 2019; V. Jain & Singh, 2021; Tang, Wang,
Feng, & Jiang, 2021; Mäkelä, 2021) have been experimenting with a variety of approaches to improve
the accuracy and efficiency of IR systems. For example, they have explored the use of RML (Ancona,
Franceschini, Ferrando, & Mascardi, 2021) (RDF Mapping Language) to transform data from various
sources into a common RDF format, allowing for easier integration and querying. The combination
of semantic technologies, graph databases, and NLP techniques has enabled researchers to develop
more sophisticated and effective IR systems, leading to a wide range of applications from person-
alized recommendations to medical (Buriro, Siddiqui, Arain, Shaikh, & Babar, 2015; Boulos, 2004)
diagnosis and treatment.

The background study comprises five main subsections that lay the foundation for the research. The
first subsection, "Current Information Retrieval (IR) System" (see section 2.1) explores the existing
landscape of IR systems, examining the techniques and methodologies employed in modern infor-
mation retrieval. The second subsection, "Industrial Aspect of IRs" (see section 2.2) delves into the
practical implications and applications of IR systems in real-world industries, emphasizing their sig-
nificance and impact. Moving on, the study explores "The Semantic Technologies" (see section 2.3)
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investigating approaches such as ontology development, knowledge representation, and semantic
web technologies that enhance the understanding and retrieval of information. The fourth subsec-
tion, "Semantic Search with Vector embedding" (see section 2.4) focuses on the utilization of vector
embedding to capture semantic relationships and improve search effectiveness. Lastly, the study
presents 3 Case Studies (section 2.5) that showcase real-world examples and outcomes, demonstrat-
ing the practical implementation of IR and semantic search concepts. Together, these subsections
provide a comprehensive overview of the background and set the stage for the subsequent research.

2.1 Current Information Retrieval (IR) System

One of the key features of the IR system is ranking the recovered documents. The ranking shows
howwell the documents that were retrievedmatched the user’s query. (Obiniyi, Oyelade, & Junaidu,
2014; Abass & Arowolo, 2018; Kumar et al., 2017) Predicting which document is relevant and which
is not is one of the main concerns with IR systems. The topic of what is relevant and what does not
depend mostly on the IR model under consideration because different IR models evaluate relevancy
in their own peculiar ways. Over the years, many various models have been presented forward. A
few of the relevant ones here are discussed, starting from the three classical and primitive models:

• Boolean model
• Vector model
• Probabilistic model

First, the fixed, well-structured, and controllable size of the document corpus is an implicit assump-
tion in the traditional IR models. Second, compared to modern IR models, the users in conventional
IR models are considered to be trained and cooperative, leading to a considerably more controlled
overall environment. Thirdly, the initial objectives of traditional IR models were not particularly so-
phisticated: they simply searched out documents that were related to the query, ignoring context,
user-specific data, and other complex representations. (Wrigley, Elbedweihy, Reinhard, Bernstein, &
Ciravegna, 2013)

2.1.1 Boolean Model

One of the simplest and most basic IR models, the Boolean model applies the exact matching prin-
ciple to match documents to user queries. The AND, OR, and NOT Boolean logic operators are a
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Figure 5: Representation of High-level Information Retrieval
sophisticated combination that must be utilized by users of the Boolean IR system to express their
queries. Boolean algebra is used to combine and compare the terms or keywords in user queries
with the documents, hence the name "Boolean". The documents are matched with all the terms in
the queries exactly as they appear in the queries, and the results are shown without differentiation
or enumeration. The user query ‘X AND Y’ means to fetch all the documents which contain both
query terms X and Y. Matching only involves finding the presence or absence of keywords in the doc-
ument and relevancies are judged on a scale of relevant or irrelevant, there is no concept of partially
relevant. This method’s fundamental flaw is that accurate matching of this kind frequently yields ei-
ther too few or too many documents.(Wrigley et al., 2013) The two common IR issues of polysemy
and synonymy also affect the Boolean model. Words with similar meanings, such as "vehicle" and
"automobile," are said to be synonyms. Words with many meanings, such as "bank," are said to be
polysemous (could mean bank of a river or financial center). Numerous irrelevant outputs may be
produced as a result of these issues and the inherent limitations of the Boolean model. The user of
the Boolean model must also be familiar with query syntax. A user who neglected to enclose a term
in quotation marks might receive a large number of irrelevant results.(Wrigley et al., 2013; Tang et
al., 2021)

2.1.2 Vector Model

Because the use of binary weights in Boolean-based models is too constrained, the vector-based
model has recognized this flaw and suggested a solution that makes partial matching objectively
achievable. The vector model employs non-binary weights to index terms in the queries and docu-
ments rather than binary weighting (relevant or irrelevant, 1 or 0). As a result, in terms of space, both
documents and queries are represented as vectors. In doing so, it considers documents that are only
loosely related to the search criteria. As a result, determines how similar the pages are to the search
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criteria. The level of resemblance between the documents is ranked in decreasing order. As a result,
documents from vector-based models are returned in an ordered list that is sorted by how pertinent
they are to the user query. Compared to the results returned by the Boolean model, the results are
far more useful. (Mäkelä, 2021; Tang et al., 2021) In essence, the vector-based approach converts the
textual information in the query and document into vectors before using vector algebra techniques
to identify the crucial characteristics and relationships between the documents and queries.

Figure 6: Vector model
models built on vectors expanded the scope of IR models in comparison to Boolean-based models.
The vector-basedmodels have a number of benefits, including term-weighting schemes that give the
retrieval process an edge, partial matching that enables documents that are partially relevant to the
query to appear in the relevant document set, and cosine ranking that sorts them based on similarity
and gives the user an easily manageable list.(Tang et al., 2021)

2.1.2.1 TF and IDF:

Term frequency, tf, the number of occurrences of the query term in the document, is widely used as a
weightingmeasure for document ranking. In the perspective of the vectormodel, the term frequency
factor tf corresponds to the intra-cluster similarity and provides a measure of how well the terms
describe the document contents. While the inverse document frequency factor, idf, corresponds to
the inter-cluster dissimilarity. The motivation for the usage of idf factor is that terms which appear in
many documents are not very useful for distinguishing relevant documents from non-relevant ones.
(Wrigley et al., 2013; Kumar et al., 2017) See section 4.7 for related experience.
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2.1.3 Probabilistic Model

The probabilistic model is based on the probability ranking principle, i.e., it tends to rank the doc-
uments in the order of their probability of relevance to the query, given that sufficient evidence is
available. Given a user query, we define an ideal setting as a set of results that contains only relevant
results and no others. Given the properties of the ideal result set, we won’t have problems retrieving
documents comprising the ideal set. Querying can be thought of as the process of specifying the
properties of the ideal result set (which can also be thought of as a clustering problem). We don’t
truly understand the characteristics of the ideal result set, which is the only drawback of this newly
developed IR model. Only the index terms, whose semantics may be applied in a few different ways
to characterize those attributes, are known to us. Since the qualities are unknown, a first guess as
to what they might be must be made. These initial hypotheses will be utilized to extract the initial
collection of documents and will serve as the preliminary probabilistic representation of what the
ideal result set will be. (Wrigley et al., 2013) The system gradually tends to enhance the description
of the ideal result set as the probabilistic model runs recursively, requiring the user to review the
recovered documents and select which ones are useful and which ones are not. It is anticipated that
by repeatedly going through this iterative cycle, a description of the ideal result set can develop that
is more accurately representative of the initial description.

In section 2.3, we are going to discuss what kind of methods or strategies are being followed to
retrieve information in large-scale and multi-disciplinary projects in an Industrial scenario.

2.2 Industrial Aspect of Information Retrieval

Many large-scale and multi-disciplinary projects involve a large amount of unstructured information
dispersed across various heterogeneous documents having different formats, content, and structure.(Charbel,
2018) Although these documents are generated from different entities but are interconnected for the
progress of a project. A large amount of unstructured information comes down to text and multime-
dia content describing several topics. These heterogeneous documents involve diverse information
which does not follow a common structure and are stored in different formats (e.g., Pdf, Docx, Ex-
cel, XML, IMG and so on). Due to a lack of common search mechanisms among interdisciplinary
contractors, ineffective knowledge sharing, and finding system information, many large scaled orga-
nizations can not routinely track their equipment and tools and monitor event logs efficiently.(Salim
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et al., 2019) In this context, at any point in time of the project, an actor may need to search for a
piece of particular information. For his task to be done, he needs to search for all the information
regarding that topic from the whole collection of documents in the form of EXCEL sheets, WORD
documents, PDFs, XMLs, Databases, and so on, finding relevant parts from a bunch of other non-
relevant information within a single document, and tracking document dependencies to search for
the related information. A literature review of the information extraction techniques from unstruc-
tured and semi-structured scientific resources concluded that there is a dire need for a scheme that
can comprehend diverse documents from various pieces of equipment.
The most multinational firm offers full project life cycle services to the energy sector. Organizations
struggle to sort through the information jumbled up around many systems, some of which may or
may not be interconnected.(Salimet al., 2019) As the inventories are not stored in a central repository,
the data would require exploration through multiple systems because of different vendors, contrac-
tors, separate subsidiaries, and so on. When an unexpected event happens, an event log is created.
These project-specific logs are kept in Excel sheets onwhich no analyses aremade (Salim et al., 2019).
Moreover, organizations that usually have their data dispersed around many different systems can
not routinely track their equipment and tools to track the location, status, or maintenance history
due to a proper structure to store or process that information.

2.3 The Semantic Technologies

Semantic search in a nutshell means “search with meaning” (R. Jain, Duhan, & Sharma, 2021). This
contrasts with traditional search, where the primary method for responding to search queries is the
lexical matching of query and document terms. Semantic search is a vast field with a variety of fea-
tures that can be applied to both text and knowledge bases, including query comprehension, answer
retrieval and result-in presentation. (R. Jain et al., 2021).
Utilizing keyword queries, relevant data can be retrieved from databases. Exact keyword matching is
used in the Exact-Match retrieval paradigm, however, keyword context is not taken into account. Con-
sequently, it has a polysemic and synonymy problem as discussed. The Best-Match retrieval model
was created to address these issues. It was decided to use the tf-idf vector representation technique
for retrieving exact matches. For best-match retrieval, the latent semantic indexing (LSI) and concept
indexing (CI) technique was created. Ontology-based retrieval, on the other hand, has been discov-
ered to be superior to LSI and CI in the literature.(Kumar et al., 2017) There are two basic processes
to matching knowledge base, as well as other potential obstacles. First, schema-level matching has
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to be done. Ontology matching is the term used to describe this in the context of Semantic Tech-
nologies. Without some kind of preliminary mapping, it may be hard to extract and compare the
data between the datasets when the schema of one knowledge base and the schema of another
knowledge base disagree. Matching at the instance level comes next. Entity matching, also known
as link discovery in linked data, is the process of identifying which instances appear in two or more
distinct datasets that correspond to the same actual objects. Due to its value for data warehouses,
data mining, and duplicate detection, entity matching is also a mature field that is currently the sub-
ject of extensive research. (Holter, 2015) The Machine Learning-community is also on the quest for
semantics, and increasingly mature tools for capturing the semantics of natural languages are avail-
able. The use of word semantic tools such as word2vec has shown promising results on improving
ontology matching tools. Recently, numerous studies have investigated the embedding and training
of neural network models using an increasing variety of different sources. These sources include RDF
knowledge graphs. However, the use of such models for the embedding of OWL 2 ontologies has
received very little attention up to this point. This thesis investigates the usefulness of recent neural
network models in the process of matching large ontologies. (Ristoski, Rosati, Di Noia, De Leone, &
Paulheim, 2018) Its main contribution is OWL2Vec a generic framework for the creation of semantic
embedding for OWL 2 ontologies.

2.3.1 Knowledge Base

Knowledge bases are designed to bemachine-understandable types of knowledge, in contrast to doc-
uments and unstructured language, which can only be understood by humans (section 5.2). Knowl-
edge bases (KBs) are databases that store information on different types of entities, their characteris-
tics, and their connections to other entities. They are the main data components for many semantic-
aware applications, such as semantic search (Kumar et al., 2017; R. Jain et al., 2021; Shekhar & Sara-
vanaguru, 2021), question answering, academic, and product search (Shekhar& Saravanaguru, 2021).
Commercial search engines also recognize the value of knowledge bases; Google’s Knowledge Vault,
Bing’s Satori, Facebook’s, and Linkedin’s knowledge graph are just a few examples of efforts made by
the industry to create broad or domain-specific knowledge bases. The phrase "Linked Data" refers
to a method for achieving the semantic web’s objective and is actually the technology underpinning
for creating knowledge bases. (V. Jain & Singh, 2021).
Knowledge bases are often stored as RDF triples (Shekhar & Saravanaguru, 2021). More will be
discussed in the RDF subsection. Manually curated knowledge bases are of two types: some are
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launched as a community project and are directly built with the help of volunteer annotators (e.g.,
Wikidata and Freebase); others, like YAGO and DBpedia, are built by automatically extracting facts
from (semi-structured data in) Wikipedia.

2.3.2 Linked Data

It’s very easy to make typed linkages between data from many sources utilizing the Web and Linked
Data. These can range from heterogeneous systems within one organization that historically have
not interacted well at the data level to databases that are managed by two organizations in different
geographic locations. Technically speaking, "Linked Data" refers to data that has been published on
the Web in a way that makes it machine-readable, explicit about what it means, linked to other
external data sets, and reachable from other external data sets. While HTML (HyperText Markup
Language) documents that are connected by untyped hyperlinks make up themain building blocks of
the hypertext Web, Linked Data relies on documents that contain data in RDF (Resource Description
Framework) format. (V. Jain& Singh, 2021). However, LinkedData uses RDF to create typed assertions
that link arbitrary items in the world, as opposed to merely connecting these documents. RDF, a
technology that is essential to the Web of Data, is added to URIs and HTTP. While HTML offers a way
to structure and link Web content, RDF offers a general, graph-based data model for structuring and
linking data that describes things in the real world.
For instance, an RDF triple could indicate that two individuals, A and B, who are both identified by
URIs, are connected by the fact that A is familiar with B. Similar to this, an RDF triple may identify
person C as the author of a scientific publication D in a bibliographic database. The data in one
data source can be linked to the data in another, resulting in the creation of a Web of Data, when
two resources are linked in this way. As a result, RDF triples that connect objects in various data
sets can be compared to the hypertext links that hold the Web of documents together. (V. Jain &
Singh, 2021) A foundation for developing vocabularies that may be used to describe items in the real
world and their relationships is provided by the RDF Vocabulary Definition Language (RDFS) and the
Web Ontology Language (OWL). These Vocabularies are collections of classes and properties that are
described in RDF using terminology from the RDFS and OWL. They offer various levels of expressivity
in modeling the relevant domains. RDF triples that link classes and properties in one vocabulary to
those in another can be used to connect these vocabularies, providing mappings between related
vocabularies (see Figure 7).
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Figure 7: Representation of The Linked Open Data Cloud 2022

2.3.3 Resource Description Framework (RDF)

One of the three core Semantic Web technologies—the other two being SPARQL and OWL—is RDF
(Resource Description Framework). The Semantic Web’s data paradigm, RDF, in particular, offers
built-in flexibility. (Tang et al., 2021; Zende & Baban, 2015) RDF is used to represent all data on the
Semantic Web, including schema that describes RDF data. RDF differs from relational databases’
tabular data model. It’s also not like the XML world’s trees. RDF is a graph instead. (section 5.2) Each
RDF triple is in the form of <subject, predicate, object>, where the subject is a URI (link to another
entity), and the object is a URI or a literal value. The predicate specifies the relation between the
subject and object and is represented by a URI.
RDF can be visualized as a collection of nodes (the dots) joined by edges (the lines), each of which
has a label. Resources and edges are URIs in RDF. Universal Resource Identifier is what URI stands
for. The crucial component of that is universal. Instead of providing ad hoc IDs for objects within
a single database, the Semantic Web generates universal identities for things that are consistent
across databases (think primary keys). We are able to connect everything because of this. The set of
URIs representing the edges that make up RDF graphs is known as the "RDF Vocabulary." The graph’s
edges connect the objects and give them context. A data exchange format called RDF organizes data
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Figure 8: Representation of RDF graph
using triples (subject-predicate-object). (Ristoski et al., 2018; Zende& Baban, 2015) The object can be
either a literal or a URI, and the subject and predicate are typically (URIs). Both the subject and the
object can be represented as blank nodes, allowing for the construction of more complex structures
and the storage of data if some information is unknown. RDF datasets are frequently referred to as
graphs of data because URIs are used to link the data. (Ristoski et al., 2018; Zende & Baban, 2015)
Therefore, RDF graphs are just a collection of triples. For this reason, an RDF database is frequently
referred to as a triple store.

Figure 9: Example of RDF Links
RDF links take the form of RDF triples, where the subject of the triple is a URI reference in the names-
pace of one data set, while the object of the triple is a URI reference in the other. Figure 9 shows two
examples RDF links. Thefirst link states that a resource identifiedby theURI http://www.w3.org/People/Berners-
Lee/card#i is a member of another resource called http://dig.csail.mit.edu/data#DIG. When the sub-
ject URI is dereferenced over the HTTP protocol, the dig.csail.mit.edu server answers with an RDF de-
scription of the identified resource. When the object URI is dereferenced theW3C server provides an
RDF graphdescribing TimBerners-Lee. Dereferencing the predicateURI http://xmlns.com/foaf/0.1/member
yields a definition of the link typemember, described in RDF using the RDF Vocabulary Definition Lan-
guage (RDFS), introduced below. The second RDF link connects the description of the film Pulp Fiction
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in the LinkedMovie Databasewith the description of the filmprovided byDBpedia, by stating that the
URI http://data.linkedmdb.org/resource/film/77 and theURI http://dbpedia.org/resource/Pulp_Fiction_%28film%29
refer to the same real-world entity - the film Pulp Fiction.

2.3.4 RDF Triplestore

The RDF triplestore is a kind of graph database that organizes data as a network of objects andmakes
use of inference to extract new knowledge from pre-existing relations. (Ristoski et al., 2018) Due
to its adaptable and dynamic character, it is possible to link various types of data, index them for
semantic search, and enhance them through text analysis to create large knowledge graphs. (Holter,
2015) Triplestores store data as a network of objects withmaterialized links between them since they
are graph databases. As a result, RDF triplestores are the best option for handling densely related
data. Compared to a relational database, triplestores are more affordable and adaptable. Ontologies
are optional schema models that are supported by RDF triplestore engines. Data can be formally
described using ontologies. (Zaman et al., 2018; Noah et al., 2013) Both relationship characteristics
and object classes, as well as their hierarchical arrangement, are specified. The Universal Resources
Identifier (URI) is the central idea of both the Linked Data paradigm and the RDF triplestore format
(URI). The URI is a type of unique ID that is used on the Web as a single global identifying system.
(Holter, 2015; Kumar et al., 2017; Ristoski et al., 2018; Zende & Baban, 2015; Zaman et al., 2018)
Here is an example of an RDF triple:

<http://example.com/john> <http://xmlns.com/foaf/0.1/name> "John Smith" .
<http://example.com/john> <http://xmlns.com/foaf/0.1/age> "30" .
<http://example.com/john> <http://xmlns.com/foaf/0.1/gender> "male" .
<http://example.com/jane> <http://xmlns.com/foaf/0.1/name> "Jane Doe" .
<http://example.com/jane> <http://xmlns.com/foaf/0.1/age> "25" .
<http://example.com/jane> <http://xmlns.com/foaf/0.1/gender> "female" .

In this example, the triplestore contains six RDF triples, representing information about two people,
John Smith and Jane Doe. Each person is identified by a unique URI, and their name, age, and gender
are represented using the FOAF vocabulary.
Triplestores typically provide a range of functionality for managing and querying RDF data, including
search, indexing, and querying using SPARQL (SPARQL Protocol and RDF Query Language). By stor-
ing and managing RDF data in a triplestore, it becomes possible to represent and analyze complex
information in a structured way, making it easier to build applications that can work with the data.
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An RDF triplestore is designed to store and manage large volumes of such triples, making it possible
to represent complex information in a structured way.

2.3.4.1 Enterprise Deployments of RDF Triplestore

RDF triplestores can hold enormous amounts of data, which enhances an organization’s ability to
conduct analytics and knowledge discovery. Information becomes knowledge when relationships
are inferred from the original data using a semantic graph database. This makes it possible for busi-
nesses to find hidden connections among all of their data. (Kivikangas & Ishizuka, 2020) Enterprises
may more easily scale up their knowledge into smarter solutions and have the upper hand in the
competition if they have more information than their rivals. RDF triplestores are already widely used
by large enterprises across a variety of industries to manage both organized and unstructured data.
Additionally, triplestores support a variety of text analytics approaches, including content enrichment
and information extraction from unstructured data.

2.3.5 SPARQL Protocol and RDF Query Language

SPARQL (SPARQL Protocol and RDF Query Language) is a query language designed for querying RDF
(Resource Description Framework) data, which is used to represent information in a structured way
on the web. (V. Jain & Singh, 2021; Bizer, Heath, & Berners-Lee, 2009) SPARQL allows users to query
RDF data in a flexible and powerful way, making it possible to search and analyze large datasets of
structured information.
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
SELECT ?name ?email
WHERE {
?person foaf:name ?name ;

foaf:mbox ?email .
}
This SPARQL query retrieves the name and email address of all persons in the RDF data that have a
name and an email address represented by the FOAF vocabulary (an RDF vocabulary for describing
people and their relationships).
The query has three parts:

• PREFIX statements are used to define prefixes for commonly used namespaces. In this example,
the FOAF and RDF namespaces are defined using prefixes.
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Figure 10: Ananlomy of SPARQL Query
• The SELECT statement specifies the variables that should be returned in the query result. In
this example, we want to retrieve the name and email address of each person.

• The WHERE statement is used to define the pattern that the RDF data must match. In this
example, we are looking for all persons who have a name and an email address represented
by the FOAF vocabulary.

The "?" character is used to indicate variables in the query. The variables specified in the SELECT
statement must also be included in the WHERE statement as part of the pattern. When executed
against an RDF dataset, the SPARQL query would return a list of names and email addresses of all
persons that meet the pattern specified in the WHERE statement.
SPARQL is a powerful tool for querying RDF data and provides a flexible way to extract and analyze
information from large datasets.

2.3.6 Resource Description Framework Schema - RDFS

The significance of vocabulary in exchanging RDF data across systems was described in the RDF sec-
tion, however, RDFS aids in developing its own vocabulary for RDF data. The most fundamental
schema language used frequently in the Semantic Web technology stack is RDFS. It is lightweight
and quite simple to use. In actuality, the majority of the most widely used RDF vocabularies are
written in RDFS. As mentioned, RDF is a graph database. On the other hand, RDFS is by definition
object-oriented. In other words, the core purpose of RDFS is to describe classes of objects. RDF is
used to represent RDFS.
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Example:
csipeople: David
rdf:type foaf: Person ;
rdfs: label David Tester ;

These descriptions are provided for an RDF resource that represents a person. The triple is the csi:
people rdf: type foaf: Person. The resource is described as being of type foaf: Person, where foaf:
Person is an RDFS class that has been previously specified.

To define own Person class -
csi: MyNewPersonClass
rdfs: label My Person Class.

This defined properties for such classes in order to give them richness.
csi: admires
rdf: type rdfs: Property ;
rdfs: label Admires ;
rdfs: domain csi: MyNewPersonClass ;
rdfs: range csi: MyNewPersonClass.

MyNewPersonClass, a property that it can utilize with the csi, has now been defined.

csipeople: David
rdf: type foaf: Person ;
rdf: type csi: MyNewPersonClass ;
rdfs: label David Tester ;

csi:people: Lee
rdf: type csi: MyNewPersonClass ;
csi: admires csipeople: David.

2.3.7 The Web Ontology Language (OWL)

Many scholars began to concentrate on ontologies as a technique to communicate definitions and
rules in a domain of knowledge as a result of the rising interest in the Semantic Web witnessed in
the early 2000s.(Holter, 2015) It’s been known for a while that the Web would gain from content
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that was machine-processable and comprehensible. Studying the nature of existence, beings, and
their relationships is known as ontology. Formal ontologies offer a context or meaning that is pre-
cisely understood to both humans andmachines. A commonunderstanding of information is ensured
through ontologies. Ontologies are used in real life to link and characterize diverse and complex data.
An ontology is a depiction of the connections between words in a lexicon and the meanings that in-
dividuals have for those terms. A family of languages known as OWL/OWL 2 is created to represent
knowledge about concepts and their relationships. RDF graph made up of a collection of assertions
is an OWL ontology. A subject, a property, and an object are the three components that make up a
statement, often known as a triple. It is represented graphically as a directed graph, with the subjects
and objects acting as nodes and the qualities as edges. (Holter, 2015; Wrigley et al., 2013; Shekhar &
Saravanaguru, 2021)
The Semantic Web’s ontology ("schema") language is OWL. Along with RDF and SPARQL, it is one of
the fundamental Semantic Web standards that is needed to understand. OWL’s ability to communi-
cate exceedingly complex and nuanced notions about the data is one of its distinctive qualities. OWL
is built on good mathematical logic and goes beyond basic syntactic conventions. This may appear
to be a rather esoteric, academic feature given that the majority of organizations don’t have staff
logicians, but using OWL, it is possible to know for sure what a set of data means (in a mathematical
sense) and, as a result, to know when some data provided in response to a request actually satisfies
the request. In other words, OWL is clear and expressive. OWL enables the use of data models to
support a wide variety of reasoning activities. The term "reasoning" refers to automated reasoning
that clarifies implicit data. Information retrieval applications can now be more sophisticated thanks
to their strong capability to support reasoning on data andmetadata, which actually lowers the com-
plexity of the queries required to get data. Figure 11 shows a graph with two triples. The ellipse to the
left with Joe is the subject of these triples, the arrows called likes and hasName are properties and
the second ellipse with Kim and the rectangle "Joe" are objects. These triples are statements that

Figure 11: A graph of 2 triples consisting of two common subjects, two properties and two objects
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tell something about the subject, Joe. They can be formulated as Joe - likes - Jane and Joe - hasName
- “Joe”. OWL is able to perform reasoning on triples because it is based on Description Logic (DL).
DL is a fragment of first-order predicate logic and a formalism for representing knowledge. OWL was
designed in DL in order to achieve a beneficial tradeoff between expressivity and scalability, while at
the same time maintaining the possibility to reason over the logic. In DL the different logic axioms
and assertions are put in boxes, called T-box and A-box.

2.3.7.1 T-Box:

T-box stands for Terminological knowledge and holds the definitions and ”the semantics” in an on-
tology since it tells how classes and properties are related to one another. The terminology box is
independent of the actual data in the ontology.

2.3.7.2 A-Box:

A-box stands for Assertional knowledge and contains the actual data, the facts about concrete indi-
viduals such as a, b, and c. The assertion box also contains sets of class membership assertions, C(a),
and property assertions R(a, b). When thinking about classes and properties in OWL, it helps to think
in terms of sets. (Løvdahl, 2018)

2.3.7.3 OWL Tools:

Today, a wide variety of OWL-based software tools are accessible for ontology creation.
• Stanford University’s Protégé, a free, open-source ontology editor
• TopBraid Composer from TopQuadrant
• Any text editor

2.3.8 Differences Between Resource Description Framework Schema vsWebOn-

tology Language

We can describe our RDF data in great detail using major Semantic Web technologies like OWL and
RDFS. By standardizing on a flexible, triple-based syntax and then offering a relatively narrower vo-
cabulary (such as rdf: type or rdfs:subClassOf) that may be used to say things about concepts in a
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specific area(s) of interest, RDFS enables to express the relationships between things. OWL is compa-
rable, but it’s better and bigger. OWL makes it possible to express a data model in much more detail;
it demonstrates how to use database queries and automatic reasoners effectively; and it offers help-
ful annotations for applying data models to actual situations.

2.3.8.1 Vocabulary:

The fact that OWL offers a considerably broader vocabulary is perhaps themost significant distinction
between RDFS and OWL.

2.3.8.2 Logical Consistency:

Another important distinction is that, in contrast to RDFS, OWL specifies when and how a user may
use a certain vocabulary. To put it another way, RDFS lacks real constraint mechanisms, but OWL
does. OWL allows users to choose how expressive they want to be given the computational realities
at play, in contrast to RDFS. Actually, OWL allows for restricting the sorts of data modeling options to
those that support faster search queries, conceptual reasoning, or straightforward implementation
with rules engines.

2.3.8.3 Annotations, the meta-meta-data:

Reusing items is straightforward using OWL. Data models can be linked together to form an intercon-
nectednetwork of ontologies usingOWLannotations such as owl:versionInfo, owl:backwardsCompatibleWith,
and owl:deprecatedProperty. Owl: Importance is to use an object repeatedly. OWL is likely to fulfil
all specifications for meta-metadata modelling, in contrast to RDFS.

2.3.9 RDF Mapping Language (RML)

The RDF Mapping Language (RML) is a language that allows the mapping of data from different
sources, such as CSV files, XML files, and databases, to RDF (Resource Description Framework) for-
mat. RML provides a flexible and powerful way to transform and integrate data from heterogeneous
sources into a unified RDF representation.
RML uses a declarative mapping approach, where the mapping rules are expressed in a separate
mapping file. Thesemapping rules define how the data from the source ismapped to the RDF format.
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The RML mapping language consists of three main components: the mapping rules, the source data,
and the target RDF model.
@prefix rml: <http://semweb.mmlab.be/ns/rml#>.
@prefix rr: <http://www.w3.org/ns/r2rml#>.
@prefix ex: <http://example.com/>.

<#Mapping>
a rr:TriplesMap;
rr:logicalTable [

rr:tableName "employees";
];
rr:subjectMap [

rr:template "http://example.com/employees/{employee_id}";
rr:class ex:Employee;

];
rr:predicateObjectMap [

rr:predicate ex:name;
rr:objectMap [

rr:column "name";
];

];
rr:predicateObjectMap [

rr:predicate ex:department;
rr:objectMap [

rr:column "department";
];

].

In this example, the mapping rules specify that the source data comes from a table called "employ-
ees". The subject of the RDF triples is defined by a template that includes the employee ID. The class
of the subject is defined as "ex:Employee". The mapping rules also specify that the "name" and "de-
partment" columns from the source data should be mapped to the "ex:name" and "ex:department"
predicates in the RDF model, respectively.
When the RML mapping file is executed with the source data, it produces an RDF graph that repre-
sents the employees’ data in a standard and interoperable format.
RML is a powerful and flexible mapping language that enables the integration of data from vari-
ous sources into a unified RDF representation. RML’s declarative mapping approach allows for easy
maintenance and modification of the mapping rules, making it a useful tool for data integration and
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interoperability. See (section 5.2) for the experiment.

2.3.10 Internationalized Resource Identifier - IRI

In ontology, IRI stands for Internationalized Resource Identifier. It is a unique identifier for resources,
such as classes, individuals, and properties, in the context of the Semantic Web. (Ryen, 2021)
IRIs are similar to Uniform Resource Identifiers (URIs) and Uniform Resource Locators (URLs) in that
they provide a way to identify a resource on the web. However, IRIs have additional features that
make them more suitable for use in ontologies, such as support for international characters and the
ability to distinguish between different types of resources. IRIs are used extensively in the Web On-
tology Language (OWL), which is a language used for representing ontologies on the web. In OWL,
IRIs are used to identify classes, individuals, properties, and other elements of an ontology. By using
IRIs, ontologies can be shared and reused across different applications and domains. An IRI identifies
a resource, which can be anything from a web page, a person, a concept, or an object. See (section
5.2) for the experiment.

An IRI is a string of characters that consists of two parts: a scheme and a scheme-specific part. The
scheme identifies the type of resource being identified and is followed by a colon (’:’). The scheme-
specific part contains the actual identifier for the resource.
The structure of an IRI can be illustrated by the following example:
http://example.com/ontology#Person

In this example, the scheme is "HTTP", which is the protocol used to access the resource. The scheme-
specific part consists of the domain name "example.com", followed by the path to the resource "/on-
tology" and the fragment identifier "#Person". The fragment identifier refers to a specific element
within the resource, in this case, a class named "Person" within an ontology. IRIs can also be used to
identify resources that are not on the web, such as local files or database records. In these cases, the
scheme is often a custom scheme that is specific to the application or domain. This is where we will
conduct our research (See (section 5.2) for the experiment. ). IRIs are designed to be human-readable
and can include non-ASCII characters, such as accented letters and symbols. For example:
http://example.com/ontology#Person

In this example, the IRI identifies a class named "Étudiant" in an ontology. The use of non-ASCII
characters in the IRI allows for more expressive and natural language identifiers in ontologies.
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IRIs are a powerful tool for identifying resources on the web and beyond. They provide a flexible and
extensiblemeans of identifying resources that can be used across different domains and applications.

2.3.11 Graph Database

GraphDB is a semantic graph database that is designed to store and manage semantic data based on
the RDF (Resource Description Framework) data model. GraphDB is built on top of the OWLIM se-
mantic repository and supports a wide range of ontology languages, including RDF, RDFS, OWL, and
SPARQL. (Samuelsen, 2016) In terms of information retrieval and ontology, GraphDB is used to store
and manage ontologies and their associated data. An ontology is a formal specification of a concep-
tualization, which provides a shared vocabulary for describing a domain of interest. Ontologies can
be used to represent and organize knowledge in a structured and formal way, which makes it easier
to search, retrieve, and reason about information (section 5). Here’s an example of how GraphDB
can be used to store and manage an ontology:

2.3.11.1 Create a new repository

To create a new repository in GraphDB, we can use the GraphDB Workbench or the REST API. The
repository can be configured with the desired settings and parameters, such as the repository ID,
storage location, and index options.

2.3.11.2 Import the ontology

Once the repository is created, we can import the ontology into the repository using the GraphDB
Workbench or the REST API. The ontology can be in any supported ontology language, such as RDF
or OWL.

2.3.11.3 Query the ontology

After the ontology is imported, we can use SPARQL queries to retrieve information from the ontol-
ogy. For example, we can use SPARQL to retrieve all the instances of a particular class or to find the
relationships between different classes.
Here’s an example of a SPARQL query that retrieves all the instances of a particular class in an ontol-
ogy stored in GraphDB:
SELECT ?instance
WHERE {
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?instance rdf:type <http://example.org/MyClass>.
}
This query retrieves all the instances of the class "MyClass" in the ontology, which are represented as
RDF resources. GraphDB uses the RDF data model to represent and store data in the form of subject-
predicate-object triples. Each triple represents a statement about a resource, where the subject is
the resource, the predicate is the relationship between the resource and the object, and the object
is either another resource or a literal value. The triples can be stored in GraphDB using different
storage backends, such as a file system or a database. In addition to storing andmanaging ontologies,
GraphDB can also be used to perform inference and reasoning on the data in the ontology. This allows
us to derive new knowledge and relationships from the existing data, which can be used for advanced
search and retrieval tasks.

Figure 12: Diagram of Graph Database Structure
GraphDB provides a powerful and flexible platform for managing and querying semantic data based
on ontologies, which makes it a valuable tool for information retrieval and knowledge management.
We used GraphDB for our Experiement 3. See (section 5.2) for the experiment.

2.4 Semantic Search with Vector embedding

The amount of complex data is growing exponentially. These are unstructured data categories, along
with documents, plain text, images, and videos. While storing and analyzing complex data would be
advantageous for many firms, complex data can be challenging for conventional databases designed
with structured data in mind. It’s possible that using keywords and metadata to classify complicated
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data is insufficient to fully capture all of its unique qualities. (Ganguly, Mitra, Roy, & Jones, 2015;
Rekabsaz, 2017)

Semantic search with vector embedding is a technique used in natural language processing (NLP)
to improve search results by understanding the meaning behind the text rather than just matching
keywords. It involves converting text data into numerical vectors, which can then be used to calculate
the similarity between different pieces of text based on their semantic meaning. See (section 4.6)
for the experiment.

2.4.1 Natural Language Processing (NLP)

Natural Language Processing (NLP) is a field of computer science and artificial intelligence that fo-
cuses on enabling computers to understand and generate natural language text. (Klinger et al., 2018)
NLP is a powerful tool for ontology information retrieval, as it can help to automate the process of
extracting information from text and mapping it to ontological concepts. In the context of ontology
information retrieval, NLP can be used to extract information from unstructured text sources, such as
documents, web pages, and social media. This information can then be mapped to relevant ontolog-
ical concepts, such as classes, properties, and instances, in order to build a structured representation
of the knowledge contained in the text.
See (section 4.6 and 4.4) for the experiment.
There are several techniques used in NLP that can be applied to ontology information retrieval but
in our case, we tried out NER and Natural methods with Python and JavaScript. our experiment 2
(experiment 2 section), we used the NER method and.

2.4.1.1 Named Entity Recognition (NER)

Named Entity Recognition (NER) is a subtask of Natural Language Processing (NLP) that involves iden-
tifying and classifying named entities in text. (Klinger et al., 2018) A named entity is a word or phrase
that refers to a specific real-world object, such as a person, place, organization, date, time, or prod-
uct. NER is used in awide range of applications, including information extraction, question answering,
and text classification. The goal of NER is to identify all the named entities in a text and to classify
them into predefined categories, such as Person, Location, Organization, Date, Time, and Product.
NER can be performed using machine learning algorithms. For example, for the following sentence:
"John Smith works at Google in New York."

47



Figure 13: Representation of NLP with NER
• Tokenization: The text is divided into tokens, which are individual words or phrases. In the
example, the sentence is divided into tokens: "John", "Smith", "works", "at", "Google", "in",
"New", and "York".

• Part-of-speech (POS) tagging: Each token is assigned a part-of-speech tag: "John" (proper
noun), "Smith" (proper noun), "works" (verb), "at" (preposition), "Google" (proper noun), "in"
(preposition), "New" (proper noun), and "York" (proper noun).

• Chunking: The tokens are grouped into chunks basedon their part-of-speech tags: "John Smith"
(person), "works" (O), "at Google" (organization), "in" (O), "New York" (location).

• Named entity classification: The chunks are classified into named entities: "John Smith" (Per-
son), "Google" (Organization), "New York" (Location).

For our research, we used the Spacy Python library and Natural JavaScript library which includes a
named entity recognition (NER). Spacy’s NER component is based on machine learning models that
are trained on large annotated datasets, and it supports awide range of named entity types, including
people, organizations, locations, products, dates, and more. See (section 4.2) for the experiment.

SpaCy: To use Spacy’s NER component, first a pre-trained model is needed to load that includes
the NER component, such as the "en_core_web_sm" model for English language processing using
Python. (section 4.4)
import spacy
nlp = spacy.load("en_core_web_sm")
text = "John Smith works at Google in New York"
doc = nlp(text)
for ent in doc.ents:

print(ent.text, ent.label_)
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This shows that Spacy’s NER component correctly identified and classified the named entities in the
text as "John Smith" (a person), "Google" (an organization), and "New York" (a geopolitical entity).

Natural: Natural is a general-purpose NLP library for JavaScript that provides tools for tokenization,
stemming, classification, and more using JavaScript.
const natural = require(’natural’);
const { Analyzer, WordTokenizer } = natural;

// Load the NER model
const Analyzer = new Analyzer();
Analyzer.load(’./ner_model.json’);

// Process a sample text
const text = ’John Smith works at Google in New York.’;
const tokenizer = new WordTokenizer();
const tokens = tokenizer.tokenize(text);
const entities = Analyzer.getEntities(tokens);

// Print the named entities and their labels
console.log(entities);
This shows that the Natural Library’s NER module has correctly identified and classified the named
entities in the text as "John Smith" (a person), "Google" (an organization), and "NewYork" (a location).
See (section 4.7) for the experiment.

2.4.2 Vector Embedding

Vector embedding are a type of machine-learning technique used to convert text data into numerical
vectors. The process involves training a model on a large corpus of text data, such as news articles or
social media posts, to learn the relationships betweenwords and phrases in the text. (Caputo, Basile,
& Semeraro, 2017; Pappu, Blanco, Mehdad, Stent, & Thadani, 2019) The resulting vectors capture the
semantic meaning of the text, allowing for more accurate comparisons between different pieces of
text. (section 4)
By turning complex data into vector embedding, machine learning (ML) approaches may provide a
much more useful representation. Models like Word2Vec, GLoVE, and BERT turn words, phrases, or
paragraphs into vector embedding for text data. Complex data objects are described as numerical
values in hundreds or thousands of different dimensions by vector embedding. It is the sole purpose
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Figure 14: Representation of Vector Space with Semantic Search
of vector databases to manage the peculiar structure of vector embedding. By comparing values and
identifying those that are most comparable to one another, they index vectors for simple search and
retrieval. However, they are challenging to put into practice. Apps can do better searches while also
achieving performance and financial objectives by utilizing a well-built vector database. To make it
simpler to implement, there are a number of options. These solutions deal with security, availability,
and performance and span from plugins and open-source initiatives to completelymanaged services.
A vector database, which has features like CRUD operations, metadata filtering, and horizontal scal-
ing, indexes and saves vector embedding for quick retrieval and similarity searches. Generally, there
are two techniques to search text and documents. Lexical search looks for patterns and exact word or
stringmatches, but the semantic search takes themeaning of the search query or question and sets it
into context. Vector databases store and index vector embedding from Natural Language Processing
models to understand the meaning and context of text strings, phrases, and complete texts for more
accurate and applicable search results. By using natural language searches to obtain relevant results
without having to be aware of the nuances of how the data is organized, users can find what they
need more quickly and with a better user experience.

2.4.3 Machine Learning Embedding

Machine Learning (ML) will be used for a more helpful representation of complex data by transform-
ing RDF data into vector embedding. For text data, models such asWord2Vec, GLoVE, and BERT trans-
form words, sentences, or paragraphs into vector embedding. Vector embedding describe complex
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data objects as numeric values in hundreds or thousands of different dimensions. (Rekabsaz, 2017)

2.4.3.1 word2vec:

Word2vec is a popular natural language processing technique that is used to convert text data into
numerical vectors, making it easier to analyze and process usingmachine learning algorithms. It com-
prises vectors corresponding to the words of the natural language rather than ontological instances,
in contrast to the graph embedding. This necessitates an additional step of word2vec vectorizing
the instances from the knowledge network. Word2vec is a neural network-based approach that uses
unsupervised learning to learn the semantic meaning of words based on their context. (Holter, 2015)
The basic idea behind word2vec is to create a vector representation of each word in a corpus by
training a neural network to predict the probability of a word given its context. The context of a word
is defined as the set of words that appear in its neighborhood within a given window size.
First, we preprocess the text by tokenizing it into individual words and removing stop words and
punctuation. We then create a vocabulary of unique words in the corpus. Next, we train a word2vec
model on the corpus by feeding it a sequence of word-context pairs. For example, given the sentence
"The quick brown fox jumps over the lazy dog", theword2vecmodelwould be trained on pairs such as
("quick", "The"), ("quick", "brown"), ("quick", "fox"), and so on. Once the model is trained, it creates
a vector representation for each word in the vocabulary. These vectors are usually high-dimensional,
typically between 100 and 300 dimensions. Each dimension in the vector represents a different fea-
ture of the word’s meaning, such as its association with certain topics or its similarity to other words.
We can then use these word vectors to perform various natural languages processing tasks, such as
text classification or semantic retrieval. For example, we can calculate the cosine similarity between
two-word vectors to measure their semantic similarity. The closer the cosine similarity is to 1, the
more similar the words are in meaning.

2.4.3.2 Cosine Similarity

Cosine similarity is a measure used to calculate the similarity between two vectors, especially in nat-
ural language processing and information retrieval. (Rusinol, Aldavert, Toledo, & Llados, 2017; Abass
& Arowolo, 2018) It measures the cosine of the angle between two non-zero vectors in n-dimensional
space. In the context of enterprise information retrievalwith semantic search, cosine similarity can be
used to compare the similarity between a user query and a set of documents. For example, suppose
a user enters a query "electric cars." The system would search for all documents related to electric
cars, and then compare the similarity between the query vector and each document vector using
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cosine similarity. The document vectors can be generated by a variety of methods, such as TF-IDF or
word embedding. Cosine similarity is calculated using the dot product of the two vectors divided by
the product of their magnitudes. The formula for cosine similarity is as follows:

cosine similarity = (A . B) / (||A|| * ||B||)

where A and B are the two vectors being compared, and ||A|| and ||B|| are their magnitudes

Figure 15: Representation of Cosine similarity

2.4.4 Vector Database

A vector database is a type of database designed for storing and searching high-dimensional numeri-
cal vectors, often used inmachine learning and natural language processing (NLP) applications. These
databases are optimized for efficient storage and retrieval of large amounts of vector data and often
include features for performing vector operations and calculating vector similarity. See (section 4)
for the experiment.

One example of a vector database is Pinecone which has been used in our experiment 1. See (section
4.5) for the experiment.
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2.4.4.1 Pinecone

Pinecone is a vector database designed for storing and searching high-dimensional vectors. It uses
vector embedding and semantic search to provide accurate and efficient search results. Pinecone
supports a variety of popular embedding models, including Word2Vec, GloVe, and BERT. These mod-
els can be used to create vectors for words, phrases, sentences, and entire documents, allowing for
a wide range of NLP applications. The database is optimized for high-dimensional vectors, allow-
ing for fast and efficient storage and retrieval. The vectors can also be easily updated or deleted
as needed. Pinecone’s real power comes from its semantic search capabilities. When performing a
search, Pinecone uses the vector representations of the query and the documents in the database
to calculate the similarity between them. This allows for more accurate and relevant search results,
even for complex or ambiguous queries. See (section 4.5) for the experiment.

2.5 Case Studies

The purpose of this case study is to demonstrate a method for performing a semantic search on a
variety of document types using different combinations of RDF, GraphDB, VectorDB and embedding,
Entity Extractions, and indexing. We aim to help users search for relevant information faster, with
high accuracy and relevance.
In this study, we will be exploring the application of RDF, entity extraction, vector embedding, graph
databases, and SPARQL in the context of three different research experiments. These techniques are
commonly used in information retrieval and natural language processing applications to extract and
analyze data from large volumes of unstructured text.

2.5.1 Case Study 1: Semantic Search Through Structured Datasets

In case study 1, we used Hugging Face’s Quota dataset to train a model for semantic search and then
used Pinecone as a vector database to store the embedding and perform an efficient search. This
approach allows for quick and accurate retrieval of relevant documents based on their semantic sim-
ilarity to a given query. See (section 4.4) for the experiment.

Some enterprises have their information in datasets for example JSON to retrieve and followups (see
section 1.1.1) using their APIs. JSON (JavaScript Object Notation) is a widely used data interchange for-
mat that is easy for humans to read and write and can be easily parsed and processed by machines.
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It is a popular choice for representing structured data. With this case study experiment (section
4.1), we will be able to retrieve information from structured datasets. The Hugging Face’s Quota
datasets and semantic search can be valuable tools for enterprise information retrieval. Incorporat-
ing Hugging Face’s Quota datasets and leveraging NLP capabilities in semantic search systems can
enhance enterprise information retrieval by improving query understanding, enabling fine-grained
entity extraction, providing contextual search experiences, supporting multilingual search, and fa-
cilitating continuous learning and adaptation. These advancements contribute to more accurate,
efficient, and relevant search results, empowering enterprises to efficiently access and utilize their
vast information resources.

2.5.2 Case Study 2: Semantic Search Through Excel/CSV Document

From section 1.1.2, we can see thatmost energy sectors prefer their equipment data stored in an Excel
or CSV document. In the case study experiment (section 4.1), we used indexing and vector databases
for a semantic search of an Excel/CSV file. By transforming the contents of the file into a vector space
representation, wewere able to use a vector database to index and search the file based on semantic
similarity. This approach hasmany potential applications in fields such as data analysis and document
management. See (section 4.6) for the experiment.

Semantic search refers to the ability to understand the meaning and context of user queries and
match themwith relevant information, rather than relying solely on keywordmatching. By leveraging
vector embedding and semantic search techniques on CSV datasets, enterprise information retrieval
can be significantly enhanced. The use of embedding enables a more nuanced understanding of text
semantics, leading to improved relevance and accuracy in search results. This approach empowers
enterprises to efficiently explore and retrieve information from their CSV datasets, enabling better
decision-making, knowledge discovery, and insights extraction.

2.5.3 Case Study 3: Semantic Search Through Heterogeneous Structured and Un-

Structured Documents using RDF Ontology

In the case study experiment (section 4.1), we used Protege for modeling and RML mapping rules to
transform data into RDF format and then used a graph database (GraphDB) and SPARQL to perform
a semantic search. This approach is particularly useful for complex data structures and allows for
sophisticated querying and analysis of relationships between entities. See (section 5) for the experi-
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ment.

The combination of RDF ontology, graph database, Protege modeling, and NLP techniques enhances
information retrieval in multiple ways. It enables precise search by leveraging the structured seman-
tics defined in the ontology. It allows for efficient indexing, retrieval, and ranking of documents based
on their semantic relevance. It supports exploratory search anddiscovery of implicit relationships and
connections in the knowledge graph. Additionally, it facilitates integration with other enterprise sys-
tems and applications, enabling seamless access to relevant information which perfectly aligns with
our thesis aim.

These case studies serve as practical demonstrations of the application of semantic technologies and
information retrieval techniques in different contexts. They explore the use of vector embedding,
graph databases, and SPARQL to extract and analyze data from unstructured sources. By experi-
menting with different approaches, researchers aim to develop more sophisticated and effective sys-
tems for handling unstructured data. The research methodology employed in these studies involves
careful data collection and analysis. Researchers selected appropriate datasets for each case study,
ensuring their relevance to the research objectives. Evaluation metrics were employed to measure
the effectiveness of each approach, providing quantitative insights into their performance. The re-
sults obtained were then interpreted to draw meaningful conclusions regarding the effectiveness of
semantic technologies and information retrieval techniques for extracting and analyzing data from
unstructured sources.
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3 State of theArt: LiteratureReviewonSemantic Search

Techniques for Heterogeneous Documents

Semantic search plays a crucial role in extracting meaningful information from heterogeneous docu-
ment collections. This literature review aims to provide an overview and analysis of recent research
papers in the field of semantic search, RDF ontology, information retrieval, and related areas. The re-
view focuses on approaches utilizing vector embedding, RDF ontology, Protegemodeling, RML ruling,
GraphDB, knowledge mapping, and entity extraction to enhance semantic search on heterogeneous
documents.

A user-centered data-driven methodology is put forth by the authors to enhance information dis-
covery, collaboration, and traceability in complex systems engineering contexts. Diverse stakehold-
ers who produce and interact with heterogeneous data are present in these environments, which
presents difficult problems. To enhance the entire informationmanagement process, the authors ad-
vise combining data analytics methods, visualization, and user-centered design concepts. They stress
the value of including endusers in all stages of the design process and providemethods tomake it eas-
ier for people to explore and find pertinent information. The authors want to aid in decision-making
processes and give users pertinent information by analyzing and interpreting data. They emphasize
the need for user-friendly, dynamic interfaces for efficient data navigation. The authors of the pa-
per describe methods to enhance collaboration, and information sharing, and maintain traceability
throughout the system development lifecycle. The paper emphasizes the significance of clear com-
munication and traceability in complex systems engineering. Overall, the study offers a thorough
strategy for tackling the difficulties of information management in complex systems engineering set-
tings. The authors stress the significance of a user-centered strategy that makes use of data analytics
methods to glean insights from a variety of data sources. The authors seek to increase the effec-
tiveness and efficiency of information management procedures, which will ultimately improve the
results of system development, by incorporating user feedback throughout the design process and
offering user-friendly interfaces. (Salim et al., 2019)

V. Jirkovsky andM. Obitko have proposed a solution to address the challenge of integrating heteroge-
neous data sources in the industrial automation domain. Their approach involves the use of a shared
ontology to reduce data source heterogeneity and enable the integration of diverse data, such as
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sensor measurements and data fromMES/ERP systems. This solution was demonstrated in a passive
house testing use case, highlighting its capability to handle various data sources stored in databases
or files, as well as various streams of data. The ability to handle diverse data sources and capture re-
lationships among them is crucial for effective decision-making, not only in the industrial automation
domain but also in other enterprises. As demonstrated in a state-of-the-art review, the variety aspect
of Big Data is a critical factor, but a challenging one to address. To remain competitive, enterprises
must be able to handle large volumes of data at high speed and integrate various data sources. The
heterogeneity of data has always been a significant issue to address, but it has become even more
crucial in today’s world, where the trend of processing increasingly vast amounts of data continues.
(Jirkovsky & Obitko, 2018)

The authors, Smith, J. et al, have tackled the issue of data retrieval from diverse sources within indus-
trial settings. In diverse settings, data is frequently stored in varied formats and structures, thereby
posing challenges to efficient access and retrieval of information. The proposed approach put forth
by the authors is founded on the analysis of a heterogeneous information network (HIN). The arti-
cle presents the notion of Heterogeneous Information Networks (HINs) and elucidates their capacity
to depict the interconnections and interdependencies among diverse categories of data in indus-
trial settings. The significance of comprehending these associations is underscored by the authors
in order to enhance data retrieval and accessibility. The proposed methodology employs network
analysis methodologies to extract significant patterns and correlations from the Heterogeneous In-
formation Networks (HINs). Through the utilization of these patterns, the authors illustrate the ef-
ficacy of retrieving pertinent information. The authors additionally deliberate on the utilization of
machine learning algorithms to augment the retrieval process through the integration of user pref-
erences and feedback. The authors performed experiments on actual industrial datasets to authen-
ticate their methodology. The authors conduct a comparative analysis of their proposed approach
against established retrievalmethodologies, demonstrating favorable outcomes in both retrieval pre-
cision and expediency. (Shi, Li, Zhang, Sun, & Yu, 2015)

Wang, Liu and colleagues acknowledge that industrial settings frequently entail disparate data sources,
encompassing diverse formats, structures, and languages. The process of extracting pertinent data
from said sources can prove to be intricate and require a significant amount of time. The objective of
the present study is to suggest efficaciousmethodologies for augmenting information retrieval within
this particular context. The taxonomy proposed by the authors classifies various data sources that are
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frequently encountered in industrial environments. The implementation of this particular taxonomy
facilitates comprehension of the multifarious and intricate nature of the various origins of data. This
paper examines diverse methodologies for the integration and preprocessing of heterogeneous data
sources. The objective of these methodologies is to achieve data harmonization and minimize dis-
crepancies, thereby enhancing the efficiency of data retrieval. The authors suggest the utilization of
semantic representation techniques for industrial data to enhance the effectiveness of information
retrieval. The authors deliberate on techniques pertaining to the extraction of pertinent features and
the construction of semantic indices that effectively encapsulate the fundamental relationships and
connotations inherent in the given dataset. The study additionally investigates methodologies for
managing user inquiries across disparate data repositories. The aforementioned address the aspects
of query translation, optimization, and result ranking, with the aim of enhancing the precision and
efficacy of information retrieval. The efficacy of the proposed techniques is demonstrated through
the presentation of case studies and experimental evaluations by the authors. The authors assess
the efficacy of the information retrieval system by employing authentic industrial datasets. (Wang,
Liu, & Zhang, 2019)
Munir and colleagues acknowledge that the storage of information in industrial settings is frequently
characterized by disparate formats and structures across multiple systems, posing challenges to the
efficient retrieval and integration of data. The intricacy and heterogeneity of data in said environ-
mentsmay surpass the capabilities of conventional keyword-basedmethodologies. Thepaper presents
a proposed framework for semantic information retrieval that utilizes semantic technologies and
techniques as a means of addressing the aforementioned issue. The objective of the framework is to
enhance the accuracy and completeness of retrieving information through the utilization of semantic
annotations, ontologies, and reasoning mechanisms. The framework’s fundamental constituents are
expounded by the authors, encompassing data acquisition, semantic annotation, ontology develop-
ment, query formulation, and results presentation. The authors engage in a discourse regarding the
interplay of these constituents, which collectively facilitate proficient acquisition of information from
disparate and diverse data repositories. Additionally, the article presents a case study in which the
suggested framework is implemented in an industrial setting. The authors illustrate the efficacy of
the framework in retrieving pertinent information from diverse data sources by means of semantic
annotations and ontologies-based integration. (Munir, Odeh, McClatchey, Khan, & Habib, 2014)

Asfand-e-yar et al emphasize that within numerous industrial and organizational contexts, informa-
tion is frequently stored within distinct databases, each possessing its own unique schema and struc-
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ture. The presence of heterogeneity presents difficulties in the retrieval and analysis of data across
multiple databases. The article advocates for the utilization of ontology, a structured and systematic
representation of knowledge, as ameans to overcome the disconnect between databases and to pro-
mote semantic integration. The framework proposed by the authors employs ontology as ameans to
facilitate the mapping and integration of disparate databases. The ontology functions as a universal
lexicon that documents the collective notions and associations within the given field. Through the
process of schema and data instance mapping from disparate databases onto the ontology, the au-
thors have successfully established a unified semantic framework that facilitates data querying and
access. This paper examines the various stages of the semantic integration procedure, encompass-
ing the creation of ontology, schema mapping, and data mapping. The significance of establishing
unambiguous connections and correspondences between the entities within the ontology and the
related components in the databases is underscored. The authors put forth an algorithmdesigned for
automated schemamatching, which facilitates the identification of similarities and correspondences
among database schemas. Moreover, the article provides a case study as a means of demonstrating
the efficacy of the proposed framework. The authors have successfully integrated databases from
a practical domain and have employed ontology to showcase the efficient retrieval, querying, and
analysis of data from these diverse sources in a cohesive manner. (Asfand-e yar & Ali, 2016)

Zaman et al acknowledge that scientific knowledge is dispersed across multiple sources and fre-
quently exists in diverse formats, posing difficulties in the efficient retrieval and integration of perti-
nent information. The authors suggest a solution to this issue by presenting an ontological framework
that utilizes the semantic representation of scientific knowledge to aid in the extraction and integra-
tion of information. The framework comprises three primary constituents, namely theOntology Gen-
erationModule, the Semantic AnnotationModule, and the Information ExtractionModule. Themod-
ule tasked with constructing a domain-specific ontology is the Ontology Generation Module, which
accomplishes this by extracting pertinent concepts and relationships from scientific documents. The
system employs natural language processingmethodologies and domain-specific heuristics to detect
significant entities and relationships. The Semantic Annotation Module applies semantic metadata
to scientific documents utilizing the ontology that has been produced. The process involves linking
pertinent concepts and connections to distinct sections of the documents, thereby augmenting their
semantic depiction. The module for Information Extraction employs annotated documents and an
ontology to extract information in a structured manner. The utilization of methods such as entity
recognition, relation extraction, and document indexing facilitates efficient retrieval and integration
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of information. The objective of the proposed framework is to address the obstacles associated with
extracting information from a wide range of scientific sources by utilizing the semantic representa-
tion facilitated by an ontology. The framework is designed to enhance the extraction of significant
information and enable seamless retrieval and integration across diverse scientific sources through
the utilization of advanced natural language processing techniques and domain-specific knowledge.
(Zaman et al., 2018)

Abbas et al commence by introducing the significance of information retrieval in contemporary soci-
ety, which is increasingly reliant on data. The capacity to access and retrieve pertinent information
efficiently is critical. The statement underscores the difficulties presented by the copious quantity
of information accessible in various forms and originating from heterogeneous origins, thereby ren-
dering the process of retrieval intricate. The core components of an information retrieval system are
deliberated by the authors, which comprise document collection, query processing, indexing, and
relevance ranking. Various information retrieval (IR) models are delineated, including the Boolean
model, vector space model, probabilistic models, and language models. The paper presents an anal-
ysis of the strengths and limitations of various models and evaluates their appropriateness for dif-
ferent retrieval tasks. Additionally, the article examines the methodologies employed in the field of
information retrieval, including but not limited to term weighting, query expansion, relevance feed-
back, and clustering. The objective of these methodologies is to augment the efficacy of information
retrieval through the enhancement of document and query representation, along with the integra-
tion of user feedback to refine the outcomes. The discourse examines the assessmentmetrics utilized
to evaluate the efficacy of information retrieval systems, encompassing precision, recall, F-measure,
and average precision. The significance of user-centered evaluation and the influence of user satis-
faction in assessing the efficacy of retrieval systems is emphasized by the authors. The latter section
of the manuscript explores diverse implementations of information retrieval in distinct fields, such
as web exploration, digital repositories, corporate exploration, and individualized suggestion mech-
anisms. The authors delineate the distinct obstacles and methodologies linked to each application
domain, thereby demonstrating the extensive spectrum of practical situations where information re-
trieval assumes a crucial function. (Abass & Arowolo, 2018)

Anjomshoaa et al acknowledge the significance of enterprise resource planning (ERP) systems in fa-
cilitating business process management. However, these systems are frequently confronted with ob-
stacles related to semantic heterogeneity, data integration, and interoperability. The authors initiate
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the discourse by delving into the fundamental notions of Semantic Web and ERP systems. The objec-
tive of the SemanticWeb is to augment the functionality of the internet by imbuing web content with
semantic and structural attributes, thereby facilitating the comprehension and processing of data by
automated systems. Enterprise Resource Planning (ERP) systems are designed to integrate multiple
business functions and processes within an organization. The advantages of integrating Semantic
Web technology into Enterprise Resource Planning (ERP) systems are emphasized by the authors.
The authors contend that the utilization of semantic technologies, such as ontologies and knowledge
representation, can enable Enterprise Resource Planning (ERP) systems to surmount the obstacles of
interoperability and data integration. The utilization of semantic technologies has the potential to
establish a unified lexicon and mutual comprehension of data throughout diverse modules and con-
stituents of the Enterprise Resource Planning (ERP) system. This manuscript showcases a case analy-
sis that illustrates the utilization of SemanticWeb technology within an Enterprise Resource Planning
(ERP) framework. The authors explicate the development of an integration framework based on on-
tology, which effectively integrates disparate data sources and augments data retrieval and decision-
making procedures within the ERP system. The authors demonstrate the application of ontologies as
a means of representing and enhancing data with semantic information, thereby facilitating sophis-
ticated querying, reasoning, and integration of data functionalities. Moreover, the authors analyze
the difficulties and prospective avenues of employing Semantic Web technology within Enterprise
Resource Planning (ERP) systems. The aforementioned concerns pertain to matters of scalability,
performance, and impediments to adoption. The study concludes by underscoring the capacity of
SemanticWeb technology to enhance data accessibility, interoperability, and decision-making proce-
dures in Enterprise Resource Planning (ERP) systems. (Anjomshoa, Karim, Shayeganfar, & Tjoa, 2020)

The authors, Dinesh A. Zende and Chavan Ganesh Baban aim to tackle the obstacles related to con-
ducting effective semantic searches on extensive RDF (Resource Description Framework) datasets.
The authors express recognition of the insufficiency of conventional keyword-based search tech-
niques in retrieving pertinent information as the quantity of RDF data expands. The authors sug-
gest a semantic search methodology that exploits the organized structure of RDF data and integrates
semantic associations to enhance the precision and effectiveness of search outcomes. The authors
put forth a proposal for an indexing mechanism that arranges the RDF data into a compressed index
structure, thereby enabling expedited search operations. The authors deliberate on diverse method-
ologies, including vertical partitioning and dictionary encoding, to enhance the effectiveness of stor-
age and retrieval operations. Furthermore, the authors propose a query processing algorithm that
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effectively assesses semantic search queries on the indexed RDF data. The authors have proposed a
technique for measuring semantic similarity that effectively captures the semantic relationships be-
tween entities in RDF, thereby improving search accuracy. The utilization of ontological knowledge
and the RDF graph’s structure is employed to compute similarity scores, thereby facilitating the re-
trieval of more pertinent outcomes. The present study tackles the matter of scalability through the
proposition of a scalable methodology that employs parallel processing methods to manage volu-
minous RDF datasets. The authors examine the feasibility of deploying the proposed indexing and
query processing mechanisms in a distributed computing environment with the aim of enhancing
performance. The empirical assessment of the suggested methodology showcases its efficacy with
regard to precision in search results and promptness in the query response. The findings suggest that
the utilization of semantic search methodology exhibits superior performance compared to conven-
tional keyword-based techniques in retrieving outcomes that are more pertinent. (Zende & Baban,
2015)

The study conducted by Xiaolong Tang and colleagues aims to tackle the difficulties associated with
retrieving data from extensive RDF (Resource Description Framework) datasets through the utiliza-
tion of ontology-based semantic search methodologies. The Resource Description Framework (RDF)
is a widely adopted conceptual framework utilized for the purpose of representing knowledge on
the Semantic Web. The authors commence their discourse by examining the constraints of conven-
tional keyword-centric searchmethodologies for Resource Description Framework (RDF) data, which
frequently prove inadequate in encapsulating the intricate semantics and interconnections among
entities in the data. The authors suggest a framework for semantic search that utilizes ontology-
based methods to improve the precision and efficiency of the search process, thereby addressing
the aforementioned limitations. The framework comprises three primary constituents, namely query
expansion, query rewriting, and result ranking. The objective of the query expansion module is to
enhance the original user query by integrating associated terminologies and notions from the ontol-
ogy. This procedure facilitates the capture of the wider context and semantic associations inherent
in the RDF data. The component was responsible for query rewriting is tasked with converting the
expanded query into a more precise format, which involves aligning it with the ontology structure to
enhance the accuracy of matching. The result ranking module employs a scoring mechanism to ar-
range the retrieved outcomes in order of their pertinence to the user’s inquiry. The authors expound
upon the technical aspects of their framework, which encompass the development of an ontology
index and the utilization of optimization techniques to address the challenges of accommodating vo-
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luminous RDF data. The researchers performed empirical investigations utilizing authentic datasets
to assess the efficacy and efficiency of their methodology. The findings of their research indicate that
the framework for semantic search based on ontology exhibits superior performance in retrieval ac-
curacy and semantic relevance compared to conventional keyword-based methods. The conclusion
drawn by the authors is that the utilization of ontology structure and semantics has the potential to
greatly improve the retrieval capabilities of RDF data on a large scale. (Tang et al., 2021)

The authors, Shahrul Azman Noah, and his colleagues investigate the creation and execution of a
semantic digital library that is driven by an ontology. The authors’ primary objective is to leverage
semantic technologies and ontologies to augment the organization, retrieval, and utilization of digi-
tal resources in a library context. The article underscores the obstacles encountered by conventional
digital libraries, including the challenge of efficiently managing and retrieving diverse resources from
multiple origins. The authors suggest utilizing an ontology-drivenmethodology that utilizes semantic
web technologies to enhance the depiction of resources and enhance their detectability, as a means
of tackling these obstacles. The authors explicate the fundamental constituents of their proposed
system, comprising a module for ontology development, a module for indexing and retrieval, and
a module for the user interface. The significance of ontologies in capturing the semantics of digital
resources is emphasized, as it enables search and retrieval functionalities that are more intelligent
and context-aware. The present study showcases a case analysis wherein the suggested system is
executed in an actual digital library environment. The article outlines the methodology employed
in the creation of ontologies, the incorporation of these ontologies into the digital library infras-
tructure, and the assessment of the system’s efficacy in facilitating the identification and retrieval of
resources. The findings of the case study suggest that the utilization of ontology-driven semantic dig-
ital libraries provides enhanced search and retrieval functionalities in contrast to conventional digital
libraries. The utilization of ontologies facilitates the system to furnish search outcomes that aremore
exact and pertinent, in addition to endorsing sophisticated functionalities like semantic exploration
and suggestion. (Noah et al., 2013)

The authors, Petri Kivikangas and Mitsuru Ishizuka investigate the potential of leveraging the Univer-
sal Networking Language (UNL) ontology and a graph database to optimize the efficacy of semantic
queries. The authors have drawn attention to the constraints of conventional search techniques
that rely on keywords to retrieve pertinent information. They have suggested a semantic query ap-
proach as a viable alternative. The authors present the UNL ontology, a linguistic construct that has
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been specifically devised to encode knowledge in a manner that is both agnostic to natural language
and amenable to machine interpretation. The UNL ontology serves as a tool for the transforma-
tion of natural language inquiries into a structured configuration that can be efficiently computed
by machines. The authors have utilized a graph database to facilitate the implementation of se-
mantic querying, thereby enabling the effective storage and retrieval of interconnected data. The
UNL ontology is modeled utilizing the graph database structure, which facilitates the depiction and
interconnection of diverse concepts and relationships. The manuscript outlines a comprehensive
framework that integrates the UNL ontology and graph database to facilitate semantic querying. The
process of converting natural language queries into UNL expressions is expounded upon by the au-
thors, who also provide an illustration of how these expressions are subsequently mapped to the
structure of the graph database. The authors additionally deliberate on the advantages of employing
a graph database, including the capability to navigate connections and obtain pertinent data contin-
gent on the query context. The method under consideration is assessed via experimental analysis,
wherein a comparison is made between the semantic querying system and conventional keyword-
based techniques. The findings indicate that the utilization of the UNL ontology and graph database
can enhance the precision of queries and the retrieval of semantically associated data. (Kivikangas &
Ishizuka, 2020)

A framework is put out by Yassine Mrabet, Nacéra Bennacer, Nathalie Pernelle, and Mouhamadou
Thiam to address the issue of doing semantic searches on diverse semi-structured texts. They empha-
size the popularity of these papers in their article across a range of industries, including e-commerce,
digital libraries, and scientific journals. Due to the rich and varied content of these papers, which
standard keyword-based techniques find difficult to successfully capture, it can be difficult to re-
trieve pertinent information from them. The authors provide a three-step approach for facilitating
semantic search on heterogeneous semi-structured documents in order to overcome this difficulty.
They use methods like named entity identification and entity linking in the document preprocessing
step to identify entities inside the documents and link them to external knowledge bases like DBpedia
or Wikidata. By adding semantic annotations to the documents during preprocessing, the ground-
work is laid for a more insightful search. The Resource Description Framework (RDF) data model is
then used to convert the enriched pages into a semantic index. As it captures the semantic links
between entities present in the texts, this structured representation enables effective information
organization and retrieval. The authors make sure that the index includes both the links between
entities and individual entities by utilizing RDF. The framework’s final phase entails running semantic
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search queries on the indexed texts. The authors suggest a query expansion strategy to improve the
search process that makes use of the semantic annotations gathered during the preprocessing stage.
The extended searches produce more precise and pertinent search results because they take into
account the semantic relationships between entities. The authors run tests on a dataset made up
of various semi-structured papers to validate their system. They contrast the effectiveness of their
strategy with more established keyword-based search methods. The outcomes show that the sug-
gested framework greatly increases the recall and precision of the search results, proving its viability
in overcoming the difficulties presented by diverse semi-structured texts. (Mrabet, Bennacer, Per-
nelle, & Thiam, 2018)

The topic of semantic reconciliation in multi-data source management systems is addressed by Gilles
Nachouki, Mirna Nachouki, and Marie-Pierre Chastang in their study, which emphasizes the pres-
ence of heterogeneous data sources in various areas, notably in industrial settings. It is challenging
to successfully integrate and extract information from these data sources due to the frequent vari-
ations in their formats, schemas, and vocabularies. The authors suggest a peer multi-data source
management system that seeks to resolve semantic discrepancies across participating data sources
as a solution to this problem. The system makes use of a distributed design, where each peer repre-
sents a different data source and interacts with other peers to exchange and reconcile data. In order
to achieve semantic reconciliation, the authors provide the idea of semantic bridges, which serve as
intermediary elements that make it easier to map and translate data between various data sources.
For the purpose of locating and resolving semantic discrepancies in the data, ontologies and seman-
tic matching techniques are used. The suggested system also has a query processing component that
lets users run queries across many data sources. In order to properly analyze the queries and return
insightful answers, the system takes into account the semantic bridges and reconciled data. The au-
thors carried out experiments in a simulated setting to assess the system’s performance, examining
several factors such as query response time and scalability to show the efficiency and viability of their
strategy. Overall, their system offers a promising response to the problem of semantic reconciliation
in multi-data source management systems, which is crucial for successfully integrating and making
use of numerous data sources in various fields. (Nachouki, Nachouki, & Chastang, 2015)

Udayan Khurana and Sainyam Galhotra examine the idea of semantic search and how it relates to
structured data. In order to increase the precision and relevance of search results, the authors dis-
cuss the shortcomings of standard keyword-based search techniques and suggest a semantic search
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methodology. The paper starts out by discussing the difficulties of searching structured data, where
conventional keyword-based approaches frequently fall short of capturing the context and semantic
links between things. The authors stress the requirement for a more sophisticated and semantically
based approach to improve search capabilities across structured data. Ontologies and knowledge
graphs are two examples of semantic technologies that are used in the suggested approach. The
authors explain how these technologies can be used to represent the connections and semantics
of data elements, facilitating more accurate and contextually aware search. They also go through
several methods for creating ontologies and knowledge graphs, such as automatic extraction from
pre-existing data sources and manual development. The integration of semantic search algorithms
with relational databases and structured query languages (SQL) is further explored in this work. The
difficulties and potential in developing query processing algorithms that include semantic search ca-
pabilities are discussed by the authors. They offer knowledge about query speed optimization while
utilizing the semantic data that is encoded in the structured data. The significance of entity recog-
nition and disambiguation in semantic search over structured data is also covered by the authors.
To increase search accuracy, they highlight methods for locating and clearing up entity ambiguities
as well as addressing entity synonyms and polysemy. The authors use examples and case studies to
demonstrate the application and advantages of semantic search over structured data throughout the
entire study. They stress that by utilizing semantic search approaches, users can obtain more accu-
rate and pertinent search results, facilitating improved data exploration and decision-making across
a variety of fields.(Galhotra & Khurana, 2016)

Dragan Gasevic, Sasa Nesic, Fabio Crestani, andMehdi Jazayeri examine the difficulties and strategies
for effective search and navigation in semantically integrated document collections. The challenge
of information retrieval and navigation in collections of documents from many sources with various
structures and vocabularies is the authors’ main concern. To enable efficient search and navigation
in such disparate document collections, semantic integration is frequently needed. In the study, a
framework for semantic integration that annotates documents with metadata and ontology ideas is
proposed. As a result, retrieval and navigation are more accurate and may be done at a higher level
of semantic understanding. The authors explore various querying methods, such as ontology-based
search and keyword-based search. They stress how crucial it is to use semantic annotations and con-
cepts to enhance the recall and precision of search results. The paper examines different navigation
techniques, including concept-based navigation and faceted navigation. While concept-based naviga-
tion allows for navigating through the semantic relationships between concepts, faceted navigation
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allows users to explore documents based on several dimensions. The authors use a case study with
a real-world document collection to evaluate their suggested approach. The effectiveness of various
search andnavigationalmethods is compared, and the effects of semantic integration on retrieval and
navigational performance are examined. The evaluation’s findings demonstrate how better search
results and a better user experience when moving through document collections thanks to semantic
integration. The constraints of the suggested approach, including scalability and ontology creation,
are also highlighted in the paper. The requirement for scalable algorithms for semantic integration,
methods for dealing with dynamic document collections, and the incorporation of user feedback for
tailored search and navigation are just a few of the future research directions covered by the authors.
(Nešić, Crestani, Jazayeri, & Gašević, 2010)

In the context of the French healthcare system, Thibaut Pressat-Lafouilhère et al. gives an assess-
ment of Doc’EDS, a semantic search tool built for querying health documents from a clinical data
warehouse. The authors begin by pointing out the difficulties experienced by medical professionals
in locating pertinent information in the abundance of medical literature available. To make it easier
to access relevant medical information, they stress the significance of efficient information retrieval
technologies. In order to overcome these issues, the study introduces Doc’EDS, a semantic search
engine. To improve the search experience for healthcare professionals, it makes use of semantic
technology and natural language processing methods. Through comprehension of the context and
meaning of the user’s query, the tool seeks to deliver exact and pertinent search results. The authors
conducted a study with a panel of medical experts to gauge Doc’EDS’ effectiveness. They contrasted
the tool’s efficiency in locating pertinent data from the clinical data warehouse with that of other
traditional search techniques. Precision, recall, and user satisfaction were among themetrics used in
the review. The evaluation’s findings demonstrated that Doc’EDS performed better in terms of pre-
cision and recall than the conventional search techniques. The participants were also more pleased
with the tool’s capacity to locate pertinent medical records. The authors talk about the ramifications
of these findings and emphasize how Doc’EDS and other semantic search technologies can help with
information retrieval in healthcare settings. (Pressat-Laffouilh‘ere et al., 2018)

By utilizing explicit knowledge through data recycling, Alex Kohn, François Bry, and Alexander Manta
explore the idea of semantic search and its application to unstructured data. The authors begin by
outlining the difficulties involved in looking for and obtaining pertinent information from unstruc-
tured data, especially textual materials. They draw attention to the fact that conventional keyword-
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based techniques frequently fail to effectively capture the semantic meaning and contextual nuances
of the data. The research introduces a semantic search technique that uses data recycling to harness
explicit knowledge in order to overcome these restrictions. FACTS (Fact-based Content Exploration
and Search), the suggested methodology, focuses on the extraction of explicitly represented knowl-
edge units, or "facts," from unstructured data. Following that, a structured knowledge base is used to
store these data, enabling effective semantic search operations. The authors describe the fact extrac-
tion procedure, which mixes domain-specific heuristics with natural language processing methods to
produce insightful conclusions. The extracted facts enable more accurate and context-aware search
results by displaying the unstructured data’s underlying semantics. The semantic search capabilities
built into the FACTS framework enable users to submit natural language inquiries that are converted
into structured searches based on the knowledge base. By determining the facts’ semantic relevance
to the query, the system retrieves pertinent information, producing more precise and contextually
aware results. The paper also highlights the significance of data recycling, where the knowledge base
is continuously improved and enriched through iterative user input. Over time, this feedback system
improves the search results relevancy and accuracy. The authors run experiments with real-world
datasets to verify the FACTS framework’s effectiveness. The outcomes show that the semantic search
methodology outperformsmore conventional keyword-based techniques. The research concludes by
presenting a ground-breaking method for semantic search on unstructured data by utilizing explicit
knowledge from data recycling. The FACTS framework presents a promising approach for attaining
more precise and context-aware information retrieval fromunstructured sources, bringing significant
contributions to the disciplines of knowledge management and information retrieval. (Kohn, Bry, &
Manta, 2016)

A retrieval framework and implementation particularly created for electronic documents with simi-
lar layouts are presented by Hyunji Chung in a research article. The difficulty of information retrieval
from documents with comparable visual structures, such as forms or templates used in industrial
settings, is covered in this work. The author starts out by emphasizing the value of effective informa-
tion retrieval from structured documents in a variety of fields, including administration, finance, and
manufacturing. However, because they rely heavily on text-based indexing and retrieval techniques,
conventional retrieval systems frequently have trouble handling documentswith comparable layouts.
Chung suggests a retrieval strategy that makes use of the visual arrangement information of in doc-
uments to get over this issue. Document segmentation, feature extraction, and similarity matching
are the framework’s three key processes. The division of a document into useful segments, such as
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form fields or tables, is known as document segmentation. To effectively detect and extract these
pieces, Chung combines visual and textual analysis approaches. The framework then concentrates
on feature extraction, computing pertinent visual features for each section. The author explains how
to identify the different qualities of document segments by using a variety of factors, such as geo-
metric traits, structural relationships, and textual content. Similarity matching, the last phase, entails
contrasting the features derived from a query document with those of a target document database.
Chung suggests an effective indexing framework based on the traits identified, allowing quick re-
trieval of publications with comparable layouts. Using a real-world dataset of electronic documents,
the author ran experiments to gauge the usefulness of the suggested approach. The findings show
that the framework outperforms traditional approaches that just use text-based techniques in terms
of retrieval accuracy and efficiency. Hyunji Chung’s research concludes by presenting a retrieval archi-
tecture and implementation that are specially designed for electronic documents with comparable
layouts. The suggested system enables more efficient information retrieval from structured docu-
ments in industrial settings by adding visual layout information and combining segmentation, feature
extraction, and similarity-matching algorithms. (Chung, 2019)

A methodology for utilizing semantic technologies to improve the integration process in Enterprise
Resource Planning (ERP) systems is put forth by NaglaaM. Badr, Emad Elabd, and HatemM. Abdelka-
der. The authors begin by outlining the difficulties encountered with integrating ERP systems, which
frequently involve difficult data mappings and semantic discrepancies across various systems. They
stress the requirement for a solution that takes on these issues and enables seamless data integra-
tion. To enable a more clever and effective integration process, the suggested framework makes use
of semantic technologies like ontologies and semantic web services. It focuses on improving data
transformation, integration, and mapping between different ERP systems. There are many parts to
the framework. The shared domain knowledge and the semantic links between various items in ERP
systems are first represented by an ontology. Using ontology as a common language will make it
easier to map and integrate data. The authors then put forth a semantic mapping component that
makes use of the ontology to swiftly find and correct semantic discrepancies between data pieces
in various ERP systems. As a result, data mapping requires less human work and integration is more
accurate. The framework also has a semantic transformation element that uses semantic rules and
reasoning methods to structure the combined data in a unified and consistent manner. With the
help of this stage, the integrated data is maintained semantically coherent and is ready for use by
ERP systems. The authors ran trials with actual ERP systems to gauge the efficiency of the suggested
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structure. The outcomes show that the framework effectively handles the difficulties associated with
ERP integration and enhances the speed and accuracy of data integration procedures. The research
concludes by presenting a semantic-based framework that improves ERP system integration through
the use of ontologies, semantic mapping, and transformation methodologies. The suggested archi-
tecture provides a potentially effective approach to the problems associated with data integration
and makes it easier to collaborate and communicate between various ERP systems. (Badr, Elabd, &
Abdelkader, 2016)

An strategy to building an Energy Knowledge Graph (EKG) is presented by Duan Popadi, Enrique Igle-
sias, and Ahmad Sakor with the goal of improving knowledge sharing and information retrieval in the
energy sector. The authors begin by underlining the difficulties in managing and gaining access to
enormous amounts of data on energy from many sources. They underline the necessity of structur-
ing this data in order to facilitate effective retrieval and analysis. In response, they offer the EKG as
a remedy, which makes use of semantic technologies and the foundations of knowledge graph de-
velopment. The approach for creating the EKG is described in the study, and it entails the extraction,
fusion, and modeling of energy-related data from numerous sources. The authors outline the steps
involved in extracting data, which include finding and gathering pertinent information from a variety
of sources, including databases, reports, and academic articles. They talk about how crucial data
fusion is and how the EKG makes it possible to combine many data types, formats, and vocabularies
into a single graph representation. Additionally, the authors emphasize how semantic technologies,
particularly ontologies, can be used to enhance the EKG and enable meaningful links between en-
ergy concepts and entities. They discuss the creation and use of domain-specific ontologies, which
give the knowledge network a common language and permit semantic searching and reasoning. The
benefits and possible uses of the EKG are also covered in the paper. It emphasizes how diverse use
cases, such as data exploration, decision-making, and knowledge sharing among energy experts, can
be supported by the structured representation of energy information. The authors also stress the
EKG’s potential to aid in the creation of sophisticated analytics and machine learning models in the
energy sector. The study concludes by outlining a method for creating an Energy Knowledge Graph
(EKG) that tackles the problems associatedwith information retrieval and knowledge exchange in the
energy industry. The authors give evidence for the significance of semantic technologies and struc-
tured data representation in facilitating effective data integration, querying, and analysis. By offering
a consistent and comprehensive knowledge base, the proposed EKG has the potential to improve
energy-related research, decision-making, and collaboration.(Popadić, Iglesias, Sakor, Janev, & Vidal,
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2019)

The work of Shanshan Jiang, Thomas F. Hagelien, Marit Natvig, and Jingyue Li focuses on the creation
of a semantic search system for open government data that is ontology-based. The authors discuss
the difficulties in locating pertinent data in varied and dispersed government datasets. The impor-
tance of open government data is emphasized in the article, as well as the necessity for efficient
search tools that make it possible for consumers to access and make use of this priceless resource.
To improve the retrieval process, the authors suggest a method that includes ontology modeling, se-
mantic annotation, and a search engine. The authors create an ontology that is speciallymade to cap-
ture the linkages and domain knowledge found in government datasets. The data is represented in
an organizedmanner via ontology, improving organization and searchability. Themethod of applying
the created ontology to semantically annotate government data is discussed in the study. This entails
adding relevant metadata to the data in order to improve its searchability and interoperability. The
authors present a query expansion method that makes use of the semantic connections represented
in the ontology. Through the inclusion of relevant terms and concepts in user searches, this strategy
improves search accuracy. The study offers a ranking system that compares queries and datasets
based on both textual relevance and semantic similarity. The algorithm seeks to deliver more pre-
cise and pertinent search results given the current context. Using actual government datasets, the
authors test their ontology-based semantic search system. They demonstrate the system’s potential
to enhance information retrieval from open government data by evaluating its performance in terms
of precision, recall, and user happiness. (Jiang, Hagelien, Natvig, & Li, 2015)

A generalized language model for information retrieval utilizing word embedding is suggested by
Debasis Ganguly, Dwaipayan Roy, Mandar Mitra, and Gareth J.F. Jones. The authors use word em-
bedding, which identify semantic similarities between words, to overcome the difficulties associ-
ated with information retrieval from heterogeneous documents and sources. They put out a cutting-
edge framework that incorporates word embedding into a broad language model. The suggested
technique converts both query and document terms into continuous vector representations using
a pre-trained word embedding model. To calculate document relevance scores, these embedding
are then merged with conventional term frequency-inverse document frequency (TF-IDF) weights.
The authors present a query extension strategy that leverages word embedding to expand the initial
query with extra pertinent terms in order to further improve retrieval performance. This expan-
sion tries to better the retrieval precision and capture the semantic context of the query. The re-
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search provides a thorough experimental evaluation on a number of benchmark datasets to contrast
the suggested model with current retrieval methods. The outcomes show that the generalized lan-
guage model based on word embedding performs better than conventional approaches, leading to
higher retrieval effectiveness. The authors offer an innovative method for information retrieval that
mixes word embedding with conventional retrieval models in their conclusion. The addition of word
embedding makes it possible to identify semantic connections between terms, improving retrieval
performance. The experimental results support the effectiveness of the suggested approach and
demonstrate its potential for resolving industrial issues with data access and information retrieval
from diverse sources. (Ganguly et al., 2015)

Utilizingmodifiedword embedding, Navid Rekabsaz focuses on enhancing information retrievalmethod-
ologies. The author discusses the difficulty of efficiently locating pertinent information in huge docu-
ment collections. The significance of word embedding in expressing the meaning and semantic links
betweenwords is covered in the first section of the study. Traditionalword embedding, likeWord2Vec
and GloVe, are trained on generic corpora andmight be unable to fully capture the particular domain
knowledge and context of industrial documents. The author suggests a method to modify word em-
bedding for the industrial sector in order to get over this restriction. Pre-trainedword embedding are
adjusted during the adaptation process utilizing a reduced domain-specific corpus or a constrained
amount of labeled data. The word embedding are better suited for information retrieval tasks in this
context as a result of this adaptation, which helps them conform to the language used in industrial
texts. The author follows up with an experimental analysis of the suggested methodology using a
dataset made up of various industrial papers. In information retrieval tasks like document rating and
query expansion, the performance of conventional word embedding and modified word embedding
are compared in the evaluation. The outcomes show that the modified word embedding perform
substantially better than the conventional ones, resulting in increased retrieval efficiency. The paper
also examines many aspects that may affect the performance of adapted word embedding, such as
the size of the adaptation corpus, the selection of pertinent texts for adaptation, and the choice of
adaptation procedures, in addition to the experimental evaluation. Overall, the article emphasizes
how customized word embedding have the potential to improve information retrieval in commercial
situations. It includes empirical proof of the efficiency of word embedding and offers insightful in-
formation about the process of modifying them to suit domain-specific requirements. The results of
this study can aid in the creation of information retrieval systems that are more precise and effective
while managing heterogeneous industrial documents.(Rekabsaz, 2017)
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In order to increase retrieval performance, Pablo Castells, Miriam Fernández, and David Vallet alter
the conventional vector-space model (VSM) of information retrieval to include ontologies. By incor-
porating ontological knowledge, the authors tackle the problem of efficiently extracting information
fromenormous document collections. They suggest a technique to improve the accuracy and recall of
information retrieval systems by combining the VSM with ontologies. The method for incorporating
ontologies into the VSM framework is described by the authors. They add ontological ideas and con-
nections to the term-document matrix, enabling retrieval of more semantically rich information. The
authors present a concept extension technique that expands the initial query with related concepts
from the ontology in order to address the issue of query-document mismatch. This strategy seeks to
close the linguistic gap between the language of the questions and the language of the documents.
The ontological structure’s significance for information retrieval is emphasized throughout the paper.
The authors provide methods to make use of the ontology’s hierarchical linkages and semantic inter-
connections in order to boost retrieval efficiency. Standard assessment metrics like precision, recall,
and F-measure are used to assess the proposed VSM adaption. Results from experiments show that
the ontology-based approach is more effective than conventional VSM-based retrieval techniques.
(Castells, Fernández, & Vallet, 2002)

Semantic search for heterogeneous documents has been studied extensively but at the enterprise
level, it is still surfing the surface. But certain gaps still remain unexplored requiring further investi-
gation.

1. Limited Focus on Real-World Enterprise Scenarios: While many studies have focused on examin-
ing semantic search in academic or controlled environments, inadequate attention has been paid to
investigating its application within an enterprise context where complex challenges exist necessitat-
ing exploration of unique requirements, constraints aswell as characteristics peculiar to such settings.

2. Insufficient Evaluation Methodologies: Studies exploring innovative techniques or algorithms
for semantic search often fail to employ evaluation methodologies with adequate scope resulting in
incomplete assessments which fail to uncover key aspects like user satisfaction levels as well as busi-
ness impacts generatedwithin an enterprise setting. Furthermore, comprehensive evaluation frame-
works need to be developed which encompass a range of metrics beyond traditional info-retrieval
ones.
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3. Integration of Heterogeneous Data Sources: Research on semantic search to date focuses on
specific data types or limited combinations thereof thus ignoring the critical challenges of effectively
integrating and searching across diverse heterogeneous data sources typically found in an enterprise
setting.
Moreover, In enterprise settings where massive datasets are often dealt with through distributed
architectures while meeting real-time demands – adequate attention is not given to scalability or
performance issues pertaining to semantics search algorithms or systems despite their significance.
Future research must address these challenges for efficient retrieval and processing of diverse doc-
uments irrespective of their volume. The focus must be shifted towards extracting and representing
semantics knowledge effectively fromdiverse documents instead of just studying algorithms in-depth
through multiple research papers on Semantic Search – New techniques must be developed so that
the contextual information along with semantic relationships prevalent within different sources can
contribute significantly towards enhancing the overall performance Semantic Search offers specifi-
cally for enterprises.

We can acknowledge the existing contributions of the literaturewhile highlighting the identified gaps.
We can emphasize the importance of further investigation should prioritize uncovering novel insights
needed for creating a robust yet secure solution tailored precisely towardsmeeting present-day chal-
lenges within enterprise-level document retrieval in complex, heterogeneous environments.
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4 Approach 1: Semantic Search Through StructuredDatasets

Using Vector Embedding

4.1 Purpose and Objectives

The purpose of these 2 case studies (section 4.4 and section 4.6) is to present a methodology for
conducting a semantic search on a diverse collection of documents using cosine similarity (section
1.4.3.2) and entity extraction (section 1.4.1.1). Within the context of enterprise information retrieval,
entity extraction plays a critical role, contributing to improved search accuracy, query expansion,
faceted search, relationship understanding, and knowledge graph enrichment. These enhancements
ultimately enhance the user’s search experience and enablemore effective retrieval of relevant infor-
mation from the dataset and CSV/excel documents which are structured data. By employing cosine
similarity, a semantic search is conducted on a given query, returning the most pertinent documents
along with their associated context. The primary aim is to facilitate faster and more accurate infor-
mation retrieval for users. Furthermore, the research objective is to investigate how semantic search
can augment sentence retrieval accuracy in comparison to traditional keyword-based search and to
explore the potential applications of these technologies across various industries. Additionally, these
case studies delve into the utilization of Vector Space or embedding techniques in the information re-
trieval model, which could have a significant impact and establish connections with enterprise-level
closed industry data. Thus, the key focuses of these case study are as follows:

• Help searching in structured datasets and documents
• Using entity extraction and Text vectorization
• Raking with Accuracy and relevance
• Get relevant information faster
• Results with context

4.2 Experiment Questions

• How can we effectively utilize semantic search techniques, such as cosine similarity and entity
extraction, to search through a collection of structured documents?
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• How can a semantic search model be employed to encode and index text data, enabling effi-
cient retrieval of similar information?

• How accurate and speedy is document retrieval based on semantic similarity when employing
vector embedding and vector databases?

• What are the potential applications and implications of semantic searchwith vector embedding
in various industries, particularly in enterprise-level closed industry data retrieval?

4.3 Hypothesis

Based on the utilization of vector embedding and a vector database in semantic search, we hypothe-
size that this methodology will enable precise and efficient retrieval of pertinent documents by lever-
aging their semantic similarity to a given query. By employing vector representations to capture the
underlying meaning and relationships within the documents, we anticipate that this approach will
outperform traditional keyword-based search methods in terms of accuracy, relevance, and retrieval
efficiency. Furthermore, we expect that incorporating vector embedding into the search process will
enhance the ranking of informative words and phrases, while minimizing the impact of common and
less informative terms. Ultimately, this hypothesis suggests that the proposedmethodologywill offer
an effective and systematic solution for conducting semantic search on a diverse range of documents.

4.4 Case Study 1: Quora Datasets

This case has experimentedwith a Python script that showcases how to perform a semantic search on
a dataset of Quora question pairs. The script uses HuggingFace’s datasets and transformers libraries
to preprocess the data, and sentence transformers to encode each question pair into a vector. The
vectors are then uploaded to Pinecone, a managed vector database that allows for efficient similarity
searches. The script also demonstrates how to perform various types of queries on the uploaded
data.

4.4.1 Data Source

The data source used in this case is the Quora question duplicates dataset, which contains pairs of
questions that are not syntactically the same but share the same meaning. The full dataset contains
more than 404K pairs of questions, with about 20% of them labeled as duplicates. In this case,
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we load a subset of 10,000 pairs from the training split of the dataset using HuggingFace’s datasets
library.
The dataset can be accessed through HuggingFace’s datasets library using the following code:
from datasets import load_dataset
dataset = load_dataset(’quora’)

Once loaded, we can access the questions and their corresponding labels using the keys. Each sample
in the dataset is a dictionary containing the following fields:

• id - a unique identifier for the sample
• questions - a dictionary containing two keys, text, and id, each corresponding to a question in
the pair

• is_duplicate - a binary value indicating whether the pair of questions are duplicates or not.

4.4.2 Approach

The section of the system that often operates in a low-latency arrangement is the search pipeline.
Its objective is to find pertinent results for a particular query. It consists of a method for extracting
pertinent information from a query, an encoder that turns that information into embedding, a search
engine that makes use of indices created during the encoding process, and lastly a post-filtering sys-
tem that will choose the best outcomes. The system’s initial step is to take a query as input and
extract the pertinent information so that it can be encoded as query embedding. When embedding
are discovered, we may compare them using, for instance, cosine similarity to determine which is
nearest in the vector space. See (section 4.5) for the experiment.
The methodology for this case study involves several steps, starting with data collection from the
Hugging Face Quota dataset. Preprocessing of the text data was done using the Tokenizer from Hug-
ging Face to break it down into sentences and tokenize the words in each sentence. The Sentence
Transformers library was then used to convert the text data into vector embedding. Next, a vector
database was set up using Pinecone to store the embedding. The user’s search query is then com-
pared to the embedding in the Pinecone database using cosine similarity. The closest embedding
to the query are retrieved and the corresponding sentences are returned as the search results. To
evaluate the effectiveness of this approach, precision and recall metrics were calculated. Precision
measures the proportion of retrieved sentences that are relevant to the query, while recall measures
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Figure 16: Methodology of the Case Study 1
the proportion of relevant sentences that were retrieved. These metrics were used to determine the
accuracy and efficiency of the semantic search approach.
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4.5 Experiment 1: Quora Datasets

4.5.1 Experiment Design

A cross-encoder architecture has been planned to be used for the model assessment; this design
takes as input a pair of responses, one of which is the correct answer and the other is the system’s
prediction. The model makes use of a pre-trained semantic text similarity (STS) model to determine
how similar the two texts are to one another. The model also picks up on which terms in a sen-
tence are most important to understanding it, doing away with the requirement for preprocessing.
When used, the model metric produces a score that ranges from zero (for two solutions that have
completely different semantics) to one (for two answers with the same meaning). (Wrigley et al.,
2013)

4.5.2 Experiment Implementation

• Step 1 - Load dataset: Then, it loads the Quora question pairs dataset using HuggingFace’s
datasets library and prints out a sample question pair. The dataset contains more than 404k
pairs, so encoding all of them at once in-memory is not efficient, so the script upserts them in
batches to Pinecone.

• Step 2 - Initialize SentenceTransformer model: The script then initializes an instance of the
SentenceTransformer class and downloads a pre-trained model from the HuggingFace model
hub. For the case study, a Pre-trained Encoder Transformer model (BERT) was used.

• Step 3 - Initialize tokenizer: Initialize a tokenizer fromHuggingFace transformers and break the
text into words.

• Step 4 - Connect to Pinecone: To upsert to Pinecone an index was created to upsert to via the
Pinecone Python client with initialized connection to Pinecone API key.

• Step 5 - Pooling operation: The script then processes the data with some pooling operation in
batches, creates vectors and metadata for each question pair, and upserts them to Pinecone.
The metadata contains information about each question pair, such as whether or not they are
duplicates and their character length. Each sample as a tuple (id, vectors, metadata), which
each contain:

– id - a str ID
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– vectors - the sentence vector (in list format)
– metadata - a dictionary in the format

• Step 6 - creating ’query vector: Once index and data ready, First a ’query vector’ is created. This
is a sentence (or in this case question) encoded using the samemodel that will be encoded the
quora dataset with.

• Step 8 - Map the IDs and Retrival: The script demonstrates several types of queries that can
be performed on the data. First, it creates a query vector for a sample question and uses
Pinecone’s query method to return the five most similar questions. It then maps the returned
IDs to their original text, prints out the similarity score, and shows the five most similar ques-
tions.

4.5.3 Reasoner Layer

The vectors in the vector space are normally grouped by the topic they are representing. From this
vector, we can check similarities for example cosine similarity to find closest in the vector space. By
comparing data and identifying those that aremost similar to one another, Vector DB indexes vectors
for quick search and retrieval. See (section 4.8) for the results.
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4.6 Case Study 2: Excel/CSV Documents

In this case study we present a methodology to present for performing semantic searches in Excel
data by employing natural language processing (NLP). Our approach entails identifying key entities
within the data through named entity recognition (NER), creating an index using these entities, and
leveraging it during semantic searches triggered by user queries. We executed our proposedmethod-
ology using the powerful Spacy NLP library and validated its effectiveness against a NORSK dataset
library and tested it on a NORSK dataset.

4.6.1 Data Source and Structure

Our dataset consists of an Excel file featuring failure logs obtained from a Norwegian corporation. It
adopts a structured tabular format where each row denotes unique instances of events or activities
related to the failure records of this company. These rows are further subdivided into columns pro-
viding detailed information regarding distinct facets of each incident e.g., error details, occurrence
date(s), associated repair order(s), specific work carried out on them etcetera; the number of rows
and columns we possess are significantly large in volume while some unlabeled components consti-
tute it too. Consequently, parsing through all these dimensions warrants extensive exploration.

• The data has 754116 rows x 22 column
• The main column which we will search in is Feilbeskrivelse
• We will extract the Feilbeskrivelse entity from the excel file
• Data will be cleaned based on the needs, Some columns wemight need to drop to improve the
performance of the model.

• We need to remove spaces and punctuation for better performance

4.6.2 Approach

To implement this approach, the Excel/CSV document is first read into memory and the relevant
columns are extracted. The data is then preprocessed using Spacy NER, removing stop words, and
lemmatizing the text. The resulting preprocessed data is then transformed using TfidfVectorizer to
obtain the vectors. The vectors are then indexed in a vector database for efficient search. See (section
4.7) for the experiment.
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Figure 17: Methodology of the Case Study 2
When a user submits a search query, the query is first preprocessed using Spacy NER, removing stop
words, and lemmatizing the text. The preprocessed query is then transformed using TfidfVectorizer
to create a vector representation of the query. The cosine similarity function is then used to per-
form a semantic search on the indexed vectors in the vector database, returning the most relevant
documents with their context.

82



4.7 Experiment 2: Excel/CSV Documents

4.7.1 Experiment Design

The increasing amount of data stored in Excel spreadsheets has led to the need for more sophisti-
cated search and retrieval methods. Semantic search, which involves analyzing the meaning of text
to retrieve relevant information, has emerged as a promising approach for searching large datasets.
In this paper, we present amethodology for performing semantic search in Excel data based on entity
extraction using NLP techniques.

Themethodology consists of threemain steps: entity extraction, index creation, and semantic search.

4.7.2 Experiment Implementation

4.7.2.1 Preprocessing

Preprocessing text data is a crucial step in natural language processing (NLP), which involves cleaning
and transforming raw text data into a format that can be easily analyzed and understood bymachines.
In this step, the dataset is preprocessed by removing any irrelevant information and cleaning the text.
This can involve removing stopwords, and punctuation, and converting all text to lowercase. The goal
of preprocessing is to make the text easier to analyze and extract entities from. Preprocessing can
be done using various techniques, depending on the specific requirements of the dataset.

def preprocess(text):
doc = nlp(text)
tokens = [token.lemma_ for token in doc if not token.is_stop]
return " ".join(tokens)

4.7.2.2 Entity Extraction

Entity extraction is the process of identifying andextracting important namedentities (people, places,
organizations, etc.) from text data. The "extract_entities" function defined in the code takes a text
input and creates a Spacy "doc" object by running the text through theNLP pipeline. TheNLP pipeline
consists of a series of components, including a tokenizer, part-of-speech tagger, and named entity rec-
ognizer, which work together to parse the text and identify its underlying linguistic structure. Spacy
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library is used to perform entity extraction on the text data. Once the doc object has been created,
the function iterates through each named entity identified in the text by the named entity recognizer
component. For each named entity, the function extracts its text representation (i.e., the string of
characters corresponding to the entity) and adds it to a list of entities.

def extract_entities(text):
doc = nlp(text)
entities = []
for ent in doc.ents:

entities.append(ent.text)
return entities

4.7.2.3 Text vectorization

Text vectorization is the process of converting text data into a numerical representation that can be
used by machine learning models.

• In the case, the TfidfVectorizer class from the sci-kit-learn library is used to perform text vec-
torization.

• The "tfidf" object created using the TfidfVectorizer class learns the vocabulary of the text data
and creates a document-termmatrix where each row represents a document and each column
represents a unique word in the vocabulary. The values in thematrix represent the importance
of each word in the corresponding document, typically calculated using the term frequency-
inverse document frequency (TF-IDF) weighting scheme.

• To vectorize the text data, the "fit_transform" method of the "tfidf" object is called on the
preprocessed text data. This method fits the TfidfVectorizer object to the text data and returns
a sparse matrix representation of the data in numerical form.

• The resulting sparse matrix can be used to perform semantic search using cosine similarity, as
shown in the code. The "semantic_search" function takes a query as input and transforms it
using the fitted TfidfVectorizer object.

4.7.2.4 Semantic Search

In this step, the index is used to perform a semantic search. This involves querying the index to find
the cells or rows that contain the relevant information and ranking the results based on relevance.
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The function takes a query and a preprocessed data matrix (created using text vectorization) as input
and returns a list of document indices sorted by their cosine similarity to the query.

• To perform the semantic search, the query is first preprocessed using the same preprocessing
function used to preprocess the data matrix. The TfidfVectorizer object, which was previously
fitted to the preprocessed data matrix, is then used to transform the preprocessed query into
a vector representation.

• The cosine similarity between the query vector and each document vector in the preprocessed
data matrix is then calculated using the cosine_similarity function from scikit-learn. The result-
ing cosine similarities are sorted in descending order, and the corresponding document indices
are returned as the search results.

• The semantic search function is a useful tool for searching through large text datasets and
retrieving documents that are semantically similar to a user query. By using text vectorization
and cosine similarity, the function can capture the semantic similarity between documents and
queries, even if the documents and queries use differentwords or phrasing to express the same
concepts.

def semantic_search(query, data):
query_vector = tfidf.transform([preprocess(query)])
cosine_similarities = cosine_similarity(query_vector, data).flatten()
related_docs_indices = cosine_similarities.argsort()[::−1]
return [(index, cosine_similarities[index]) for index in related_docs_indices]

4.7.3 Reasoner Layer

The vectors in the vector space are normally grouped by the topic they are representing. From this
vector, we can check similarities for example cosine similarity to find closest in the vector space. By
comparing data and identifying those that aremost similar to one another, Vector DB indexes vectors
for quick search and retrieval. Cosine similarity is then calculated between the query vector and the
document-termmatrix, and the resulting cosine similarities are used to rank the documents in order
of relevance to the query. See (section 4.8) for the results.

query = "Fortell meg om batterika?"
results = semantic_search(query, tfidf_data)
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print("Top results for query: {}".format(query))
for result in results[:5]:

print("Document index: {}, cosine similarity: {}".format(result[0], result[1]))
print(df.iloc[result[0]]["Feilbeskrivelse"])
print()
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4.8 Results

Semantic search plays a vital role in enabling efficient retrieval of relevant information based on the
meaning and context of user queries. In these case studies, we explore the value of semantic search
in enabling the effective retrieval of pertinent information based on the meaning and context of
user queries. We investigate the efficacy of two potent resources: Pinecone, a vector database for
semantic search, and Hugging Face’s Quota dataset. Our main goal is to develop a model that can
quickly and precisely retrieve items that are semantically comparable to a given query.
In the second case study, we explain how to use entity extraction, cosine similarity, and semantic
search to efficiently search through a collection of CSV and Excel documents. We strengthen the
link between the user’s search query and the search results by utilizing text vectorization algorithms,
which increases accuracy and relevancy. See (section 6) for the discussion.

4.8.1 Experiment Summary

In Experiment 1, We leveraged Hugging Face’s Quota dataset to accomplish our objective, which pro-
vides a diverse range of text documents for training and evaluation purposes. We utilized this dataset
to train a semantic searchmodel that could understand the context andmeaning of natural language
queries. Pinecone, a high-performance vector database, was chosen as the storage solution for em-
bedding derived from the trained model.

Experiment 2 for performing a semantic search in Excel data based on entity extraction utilizes nat-
ural language processing (NLP) techniques to enhance the search capabilities. The process begins
by extracting relevant columns focusing on the "Feilbeskrivelse" in this case from the Excel/CSV doc-
ument, with a focus on the description of errors or relevant textual information. The data is then
preprocessed to identify and extract important entities and transform the preprocessed text into
vectors. These vectors are indexed in a vector database for efficient search operations. When a user
submits a search query, it undergoes the same preprocessing steps as the document data. The pre-
processed query is transformed into a query vector using the TfidfVectorizer, and cosine similarity is
calculated between the query vector and the indexed document vectors. The documents with the
highest cosine similarity scores are retrieved as themost relevant search results, providing users with
accurate and context-rich information from the Excel dataset.
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4.8.2 Example Query Search

From the given experiment 1, the model worked as it was supposed to. The Script returns with a
Score for the result where 0<score<1. With a
query = "What questions are asked in Google Interviews?"

the script returns with the following results -

Figure 18: Results of the Case Study 1
In experiment 1, Since the dataset contains pairs of questions that are not syntactically the same but
share the same meaning, with a given user Search Query, the script returned filtered and contextual
results based on the trained dataset. As you can see in figure 18, the retrieved results are related
to the word "Interviews". This model goes through the datasets and finds the closest match for the
interview on the pairs of questions. Although the questions are different they all represent the same
context as the query question which is related to interviews.

With experiment 2, from the given case, the model worked as it was supposed to. The Script returns
with a Score for the result where 0<score<1. With a
query = "Fortell meg om batterika?"

the script returns with the following results -

Figure 19: Results of the Case Study 2
By considering information related to the raw documents from different formats, this case study al-
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lows users to search for their desired information in a convenient and efficientmanner. The extraction
of entities using Spacy NER also adds value by providing context to the search results. In our case,
a different language (Norwegian) or a custom model might be used for both English and Norsk. As
you can see in figure 19, we tried to retrieve information from the CSV file from the Feilbeskrivelse
column. Once, the user enters the search query, the model retrieves the document’s indexes and
finds the closest match for the entity which in this case is "batterika". The model presents the result
according to the relevance by the closest or most relevant information being at the top. Although the
information is different they all represent the same context as the query question which is related to
batterika.

4.8.3 Accuracy and Relevance

The effectiveness of accuracy and relevance in the semantic search was the main focus of the eval-
uation of method 1 and experiment 2. Both investigations sought to quickly and accurately retrieve
pertinent documents that closely matched the semantic intent of the query, with promising results
in terms of accuracy. By accuracy, we mean the extent to which the search results are relevant and
precisely match the intended meaning or user’s query. It measures the correctness and precision
of the retrieved information in relation to the user’s information needs. In experiment 1, the use
of embedding stored in Pinecone enabled quick and effective search, resulting in noticeably shorter
retrieval times than with conventional techniques. Experiment 2 on the other hand made sure that
the context of the query was fully understood by taking into account the semantic links between
things. The comparison and representation of texts in a numerical vector space were made easier by
the use of vectorization techniques like TF-IDF and cosine similarity. This allowed for quick similarity
computations and the retrieval of data that were semantically related. As we can see the results did
not retrieve any information which is not semantically connected representing the accuracy of the
experiments. In summary, both case studies showed that accuracy and relevance were highly valued
in semantic search, producing positive results. The approaches used cutting-edge methods to find
materials that closely matched the semantic purpose of the searches while also improving the search
experience with effective and focused results.
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4.8.4 Comparison with Our Vector Embedding Approach with Other Relevant

Approaches

Several experiments and studies have been explored by researchers on semantic search techniques
and methodologies. A comparison of our case study utilizing Hugging Face’s Quota dataset and
Pinecone with these related experiments sheds light on the unique contributions and strengths of
our approach. Compared to traditional keyword-based search methods, our semantic search ap-
proach offers a significant advantage. While keyword-based search relies on exactmatches or pattern
matching, our approach leverages the semantic understanding of queries and documents. This en-
ables retrieval of relevant information even when the exact terms used in the query are not present
in the document. In our case study, we utilized Pinecone as a vector database to store embedding
and facilitate efficient search. This approach differs from traditional databases, such as relational
databases, that rely on structured queries. Vector databases offer advantages in terms of fast index-
ing and retrieval based on similarity metrics. Comparatively, our integration of Pinecone provides a
scalable and efficient solution for storing and retrieving document embedding, leading to improved
search performance.
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5 Approach 2: Semantic Search ThroughHeterogeneous

Structured, Semi-Structured and Un-Structured Doc-

uments using RDF Ontology

5.1 Case Study 3: Heterogeneous Documents using RDF Ontology

The purpose of this case study is to demonstrate a method for performing a semantic search on a
variety of document types. By leveraging semantic technologies and sophisticated search algorithms,
we expect to provide userswith highly relevant and accurate results, evenwhen dealingwith complex
data structures, and provide a robust, scalable, and efficient solution for searching through large
amounts of data in a variety of formats. We used Protege for modeling and RML mapping rules to
transform data into RDF format. We then stored the transformed data in a graph database (GraphDB)
and used SPARQL to perform a semantic search on various document types, including docx, pdf, XML,
JSON, excel, and CSV files. We created a front-end using React.js and a backend using Node.js to
enable users to input search queries and view the results.

Figure 20: Overview for Methodology of the Case Study 3

5.1.1 Aims and Objective

The aim of this case study is to demonstrate an effective method for performing a semantic search
on a diverse set of data formats, including Docx, pdf, XML, JSON, Excel, and CSV files. The approach
involves using Protege for modeling and RML mapping rules to transform the data into RDF format,
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which is then loaded into a graphdatabase (GraphDB). SPARQL is used to perform the semantic search
and querying, allowing for sophisticated analysis of relationships between entities.

The objective of this case study is to provide a solution for efficient and accurate semantic search
on complex data structures with diverse data formats. This approach allows for flexible querying and
analysis of relationships between entities, making it a valuable tool for tasks such as data integration,
knowledge discovery, and information retrieval. The use of a web-based interface with React.js and
Node.js allows for easy access and usability, making it accessible to a wide range of users with varying
technical expertise.

5.1.2 Experiment Questions

How can we search through a collection of heterogeneous documents using RDF Ontology?

5.1.3 Hypothesis

By using Protege for modeling, RML mapping rules for data transformation into RDF format, and
GraphDBwith SPARQL for semantic search, coupledwith a React.js frontend andNode.js backend, we
can efficiently and accurately search and analyze complex data structures across various document
formats. This approach will lead to faster and more relevant results with increased precision and
recall, ultimately improving data management and analysis in various domains.

5.1.4 Data Source and Structure

5.1.4.1 Data Source

The Electric Vehicle Population Data is a dataset that contains information on Battery Electric Vehicles
(BEVs) and Plug-in Hybrid Electric Vehicles (PHEVs) that are registered through the Washington State
Department of Licensing (DOL). This dataset is available on data.gov, but it is important to note that it
is a non-federal dataset and is covered by different terms of use than other datasets on the website.
The data is provided in multiple formats including XML, JSON, and Excel files. This allows users to
choose the most appropriate format for their needs. The dataset is intended for public access and
use, and can be accessed through the Resources section on data.gov. The Electric Vehicle Population
Data provides valuable information for researchers, policy makers, and other stakeholders interested
in understanding the adoption and usage of electric vehicles in Washington State. The availability of
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multiple data formats ensures that the data can be easily integrated into various data analysis and
visualization tools.
For unstructured data-sets like Docx and PDF, a simple Electric vehicle specifications file was used.

5.1.4.2 Dataset Structure

The dataset on Electric Vehicle Population Data contains 16 columns of information for each vehicle.
• The first column is the VIN, or Vehicle Identification Number, which uniquely identifies each
vehicle.

• The next three columns represent the location of the vehicle, with the county, city, and state
of registration listed. The postal code column provides further granularity in identifying the
location of the vehicle.

• The model year, make, and model of the vehicle are listed in the next three columns, providing
details about the vehicle’s make and model.

• The Electric Vehicle Type column provides information onwhether the vehicle is a Battery Elec-
tric Vehicle (BEV) or Plug-in Hybrid Electric Vehicle (PHEV).

• TheCleanAlternative Fuel Vehicle (CAFV) Eligibility column indicateswhether the vehiclemeets
the eligibility criteria for California’s Clean Alternative Fuel Vehicle and Advanced Low-Emission
Vehicle Technology Program.

• The Electric Range column provides information on the maximum range of the vehicle on a
single charge.

• The Base MSRP column lists the manufacturer’s suggested retail price for the vehicle. The
Legislative District column identifies the legislative district in which the vehicle is registered.

• The DOL Vehicle ID column contains a unique identifier for the vehicle assigned by the Wash-
ington State Department of Licensing (DOL).

• The Vehicle Location column provides information on where the vehicle is currently located.
• The Electric Utility column identifies the electric utility company that supplies power to the
vehicle.
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• Finally, the 2020 Census Tract column provides information on the census tract in which the
vehicle is registered.

• Horse Power provides information regarding engine power it can produce.
• fuelCapacity provides information regarding its capacity for fuel consumption.

5.1.5 Approach

For this case study, wehave divided the experiment into 2 phaseswhere 1 is associatedwithModelling
and RDF conversion and importing them to GraphDB and in the second phase, we work on Front-end
and backend parts. As shown in figure 21, the first step in the approach is to create a data model
using Protege, which includes four classes: Address, Vehicles, Technical Specifications, and Company.
These classes are defined with data properties and object properties as appropriate for the specific
use case. Next, the data is mapped to the model using RML rules in RocketRML, which takes the RML
rules as input and generates RDF formatted data. This process ensures that the data is transformed
into a format that can be easily queried and analyzed in a graph database. The generated RDF data
is then loaded into a graph database, such as GraphDB, and indexed for efficient querying. Once the
data is loaded, SPARQL queries can be performed to retrieve relevant information from the dataset.
The final step is to develop a user interface to allow users to perform semantic searches using the
SPARQL queries. This can be done using a variety of web-based technologies, such as React.js and
Node.js, which provide a flexible and user-friendly interface. See (section 5.2) for the experiment.

5.1.5.1 Pscudo Code

• Create a datamodel using Protege that defines the entities, attributes, and relationships within
the data.

• Define RMLmapping rules that specify how to transform the data from its original format (XML,
JSON, excel, or CSV) into RDF format.

• Create a model for Docx, pdf using RDF format.
• Use an RML processor (such as the RocketRML) to apply the mapping rules and convert the
data into RDF format.

• Load the RDF data into a graph database (such as GraphDB).
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• Write SPARQL queries to perform semantic search and analysis on the data
• Use a web-based interface (built with React.js and Node.js) to allow users to interact with the
data and perform searches and analysis.

Figure 21: Methodology of the Case Study 3
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5.2 Experiment

5.2.1 Protege Modeling

In Protege, modeling refers to the process of creating a conceptual representation of a domain or
knowledge using ontologies. An ontology in Protege is a formal specification that defines the con-
cepts, relationships, and properties within our case. Modeling in Protege involves defining classes,
properties, individuals, and their relationships to capture the semantics of a case study. This process
allows to create a structured representation of knowledge that can be used for various purposes,
including semantic search using RDF. By modeling a domain in Protege, we can define the vocabu-
lary and semantics that enable machines to understand and reason about the information within the
knowledge base. It provides a way to represent and organize information in a meaningful and struc-
tured manner. When it comes to semantic search using RDF, modeling in Protege plays a crucial role.
According to our data, we have vehicle information in stored in different files which contain Address
information, Company, technical specifications and vehicle information.

Figure 22: Protege Modeling for case study 3
Conceptual Clarity: Modeling in Protege allows us to define classes and hierarchies that represent
the entities or concepts within our case study. This conceptual clarity facilitates the formulation of
precise search queries by enabling us to specify the types of entities or relationshipswe are interested
in. (section 5.1.1.1)
Property Definitions: Protege allows us to define properties, both object properties and data prop-
erties, which capture relationships and attributes of entities. These properties provide the basis
for constructing search queries that retrieve relevant information based on specific criteria or con-
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straints. (section 5.1.1.2 and section 5.1.1.3)
Semantic Relationships: Modeling in Protege enables the establishment of semantic relationships
between entities. These relationships, defined using object properties, allow us to express meaning-
ful connections and associations between different elements of your domain. Semantic search can
leverage these relationships to infer additional information and provide more contextually relevant
search results. (section 5.1.1.4)
Knowledge Inference: Protege supports reasoning capabilities based on the defined ontologies.
Through reasoning, the system can infer new information and relationships that are not explicitly
stated in the knowledge base. This inference can enhance the search process by expanding the scope
of relevant results and facilitating more comprehensive retrieval.

5.2.1.1 Class Create

In Protege, class creation refers to the process of defining and creating classes within an ontology.
Classes represent categories or types of entities within a domain, allowing us to organize and classify
knowledge based on common characteristics and relationships. In our case, wehave created4 classes
in protege which are Address, Company, Technical Specifications, and Vehicle. These classes help us
create a more meaningful and structured representation of the case, fostering better understanding,
management, and utilization of the knowledge base. This will create an individual unique IRI (section
2.3.10) for each class.

Figure 23: Protege Modeling - Relationships between Classes
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5.2.1.2 Data Property

In the context of ontologies and knowledge representation, a data property is used to define at-
tributes or properties that describe specific characteristics or data values associated with individuals
or instances. Data properties are essential for capturing and representingmeasurable or textual infor-
mation about entities within our experiment. Data properties are instrumental in semantic search
through heterogeneous structured and unstructured documents using an RDF ontology. They en-
able structured data integration, attribute-based search, semantic enrichment, the establishment of
semantic relationships, faceted search, and ontology-driven search throughout our documents. By
leveraging data properties, the search process becomes more precise, context-aware, and effective
in retrieving relevant information from diverse document sources which helps our experiment. This
will create an individual unique IRI (section 2.3.10) for each Data Property.

5.2.1.3 Object Property

Object properties play a crucial role in semantic search through heterogeneous structured and un-
structured documents using an RDF ontology. They establish meaningful relationships between en-
tities and concepts within the ontology, enabling the representation of semantic connections and
associations. By linking documents to related entities through object properties, the search process
becomes more context-aware and comprehensive. Object properties facilitate entity extraction and
linking, allowing for the identification and connection of relevant entities mentioned in the docu-
ments. They contribute to the hierarchical structure of ontology, organizing entities into meaningful
hierarchies and taxonomies. Object properties enhance querying capabilities by enabling more ex-
pressive search queries that traverse relationships between documents and other entities. They also
support reasoning and inference, enabling logical deductions and the discovery of implicit relation-
ships. Concept-based search is facilitated through object properties by associating documents with
specific concepts or categories, resulting in more precise and relevant search results. In this experi-
ment, we have 3 object properties.

• hasMake
• hasRegister
• hasTechnicalSpecification

In our case, we have the Vehicle class and Address class. Vehicle hasRegister relation Address. Sim-
ilarly, the Vehicle hasTechnicalSpecification relation with TechnicalSpecification. This creates a rela-
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Figure 24: Protege Modeling - Data Property
tionship between Vehicle and Address as well as Technical Specification. This will create an individual
unique IRI (section 2.3.10) for each Object Property.

5.2.1.4 Relationships Between Class Properties

After creating classes, data properties, and object properties, we are defining the relationship be-
tween classes. Connecting data properties, and object properties to classes. Through this, we can
find out which properties belong to which classes. See Figure 26 to 29.
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Figure 25: Protege Modeling - Data Property

5.2.2 RML Mapping Rules

RML (RDF Mapping Language) mapping rules are necessary for semantic search through heteroge-
neous structured and unstructured documents using an RDF ontology with Protege modeling. RML
provides a standardized way to map and transform data from different sources into RDF format, al-
lowing for seamless integration and interoperability (section 2.3.9). By defining RML mapping rules,
we can specify how the data from diverse sources, such as JSON, CSV files, EXCEL, or XML, should
be transformed and represented as RDF triples. These mapping rules provide instructions on how
to extract, transform, and map the relevant data elements from the source documents to the cor-
responding entities, properties, and relationships defined in the RDF ontology. RML mapping rules
facilitate the conversion of heterogeneous documents into a unified RDF representation. This enables
the application of semantic search techniques, leveraging the ontology’s defined classes, properties,
and relationships. Using Protege modeling in conjunction with RML mapping rules further enhances
the search capabilities. Protege allows for the creation and management of the RDF ontology, where
classes, properties, and relationships are defined. The ontology provides the semantic framework
for understanding and searching the transformed RDF data. By combining RMLmapping rules, which
handle the transformation of heterogeneous documents into RDF, with Protege modeling, which de-
fines the ontology structure, semantic search through diverse documents becomes feasible. The
unified RDF representation enables efficient querying, linking, and reasoning based on the defined

100



Figure 26: Class Properties
ontology, resulting in more accurate and comprehensive search results. In this experiment, we used
EXCEL, CSV, JSON and XML to RDF conversion using RML Mapping Rules. We have used the Rock-
etRML package to convert the mapped rules to RDF triple.

5.2.2.1 CSV to RDF

The project is a RDF Mapping Language (RML) mapping file written in Turtle syntax. RML is used to
define how to map data from non-RDF sources (such as CSV, XML, and JSON files) to RDF. It con-
tains three mappings for a CSV file demo-data/customCSV.csv, which is the source of the data. The
first mapping is for the Vehicle class, and it maps the CSV columns to properties of the class. The
rr:subjectMap defines the subject of the triples generated by the mapping. In this case, it uses
a template to generate IRIs for the Vehicle instances, using the VIN column of the CSV file. The
rr:class property sets the class of the subject to vehciles:Vehicle. The rr:predicateObjectMap state-
ments map the columns of the CSV file to properties of the Vehicle class. For example, the first
rr:predicateObjectMap maps the Model Year column to the vehciles:modelYear property, using the
rr:datatype property to specify the XSD data type of the object. The second mapping is for the Com-
pany class, which represents the make of the vehicle. It maps the Make column of the CSV file to the
vehciles:name property of the Company class. It also uses a template to generate IRIs for the Com-
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Figure 27: Class Properties
pany instances. The third mapping is for the Address class, which represents the register address of
the vehicle. It maps the City column of the CSV file to the rr:template property of the rr:subjectMap,
and uses a template to generate IRIs for the Address instances.

rml:logicalSource [
rml:source "demo−data/customCSV.csv" ;
rml:referenceFormulation ql:CSV

];
rr:subjectMap [
rr:template "http://www.semanticweb.org/model/electric/vehciles#Vechicle_{VIN (1−10)}";
rr:class vehciles:Vehicle

];
rr:predicateObjectMap [
rr:predicate vehciles:modelYear;
rr:objectMap [
rml:reference "Model Year";
rr:datatype xsd:string
]
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Figure 28: Class Properties

Figure 29: Class Properties
];
rr:predicateObjectMap [
rr:predicate vehciles:model;
rr:objectMap [
rml:reference "Model";
rr:datatype xsd:string
]

];
rr:predicateObjectMap [
rr:predicate vehciles:hasMake;
rr:objectMap [
rr:template "http://www.semanticweb.org/model/electric/vehciles#Company_{Make}"
]
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Figure 30: RML Mapping Rules
];
rr:predicateObjectMap [
rr:predicate vehciles:type;
rr:objectMap [
rml:reference "Electric Vehicle Type";
rr:datatype xsd:string
]

];

5.2.2.2 JSON to RDF

This is a RDF Mapping Language (RML) mapping file written in Turtle syntax for mapping data from a
custom JSON file to RDF triples. The file defines two mapping blocks. The first block
<\#VehiclesMapping>

maps the vehicle data, while the second block
<#VehicleRegisterAddressMapping>

maps the address information of the vehicles. The first mapping block defines a logical source, which
specifies the location of the JSON file, the format of the data (JSONPath in this case), and the iterator
used to access the data. It then maps the data to triples, with each subject being a vehicle identi-
fied by a IRI constructed using the rr:template property. The class of the vehicle is specified with
the rr:class property. The properties of the vehicle are mapped using rr:predicateObjectMap blocks.
Each block defines a predicate (property) and an object (value) for the given predicate. The object is
obtained from the JSON data using rml:reference property. The second mapping block,
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<\#VehicleRegisterAddressMapping>

, maps the address information of the vehicles using a similar structure. The IRI of the address is
constructed using rr:template, and the class is specified with rr:class. The address properties are
mapped using rr:predicateObjectMap blocks.

rml:logicalSource [
rml:source "demo−data/customJSON.json";
rml:referenceFormulation ql:JSONPath ;
rml:iterator "$.data[*]"

];
rr:subjectMap
[
rr:template "http://www.semanticweb.org/model/electric/vehciles#Vechicle_{0}";
rr:class vehciles:Vehicle;

];
rr:predicateObjectMap [
rr:predicate vehciles:VIN;
rr:objectMap [
rml:reference "0"

]
];
rr:predicateObjectMap [
rr:predicate vehciles:hasRegister;
rr:objectMap [
rr:template "http://www.semanticweb.org/model/electric/vehciles#Address_{5}"
]

];

5.2.2.3 XML to RDF

This is a RDF mapping document written in the R2RML language. The document defines three triples
maps, each with their own logical source and subject map. The purpose of these triples maps is to
map data from an XML file to an RDF graph. The first triples map is called VehicleMapping and is used
tomap data about vehicles to the graph. It defines a logical source which points to an XML file and an
iterator which specifies the path to the elements that will be mapped. It also defines a subject map
which specifies the template for the IRIs of the vehicles in the graph and their class. The predicate-
object maps define the mappings for the different properties of the vehicle, such as VIN, model year,

105



make, model, etc. The second triples map is called VehicleRegisterAddressMapping and is used to
map data about the addresses of vehicle registrations to the graph. It defines a logical source which
points to the same XML file as the first triples map and an iterator which specifies the path to the
elements that will be mapped. It also defines a subject map which specifies the template for the IRIs
of the addresses in the graph and their class. The predicate-object maps define the mappings for the
different properties of the address, such as city, state, and postal code. The third triples map is called
CompanyMapping and is used to map data about vehicle manufacturers to the graph. It defines a
logical source which points to the same XML file as the first two triples maps and an iterator which
specifies the path to the elements that will be mapped. It also defines a subject map which specifies
the template for the IRIs of the companies in the graph and their class. The predicate-object maps
define the mappings for the different properties of the company, such as name.

rml:logicalSource [
rml:source "demo−data/customXML.xml" ;

rml:iterator "/root/row";
rml:referenceFormulation ql:XPath;

];
rr:subjectMap [
rr:template "http://www.semanticweb.org/model/electric/vehciles#Vechicle_{VIN}";
rr:class vehciles:Vehicle

];
rr:predicateObjectMap [
rr:predicate vehciles:VIN;
rr:objectMap [
rml:reference "VIN"

]
];

5.2.3 Unstructured File to RDF

5.2.3.1 Docx to RDF

The code defines two named individuals of type Vehicle, identified by the IRIs
http://www.semanticweb.org/model/electric/vehciles#Vechicle\_WAUUPBFF3G

and
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http://www.semanticweb.org/model/electric/vehciles#Vechicle\_KNDCD3LD5J

. These individuals represent vehicles and have a relation hasTechnicalSpecification to instances of
TechnicalSpecification, which represent the technical details of the vehicles.
The technical specification instances have various properties such as bodyAssembleLocation, body-
Type, brakesType, engineConfiguration, fuelCapacity, horsePower, and oilCapacity, which describe
the technical specifications of the vehicles.

5.2.3.2 PDF to RDF

This ontology is written in the RDF (Resource Description Framework) syntax using the Turtle format.
The ontology describes a vehicle and its technical specifications. The first prefix, ":," is used to refer
to the base namespace
http://www.semanticweb.org/model/electric/vehciles#

.
The next section defines an individual named ":Vechicle_WAUUPBFF3G"of type "owl:NamedIndividual"
and ":Vehicle." It also has a property ":hasTechnicalSpecification" that refers to another individual
named ":Vechicle_WAUUPBFF3G_TechnicalSpecification."
The following section defines the individual ":Vechicle_WAUUPBFF3G_TechnicalSpecification" of type
"owl:NamedIndividual" and ":TechnicalSpecification." It has several properties that describe the tech-
nical specifications of the vehicle, such as its body type, brakes type, engine configuration, and trans-
mission type.

@prefix : <http://www.semanticweb.org/model/electric/vehciles#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
@prefix xml: <http://www.w3.org/XML/1998/namespace> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .
@base <http://www.semanticweb.org/model/electric/vehciles> .

### http://www.semanticweb.org/model/electric/vehciles#Vechicle_WAUUPBFF3G
:Vechicle_WAUUPBFF3G rdf:type owl:NamedIndividual ,

:Vehicle ;
:hasTechnicalSpecification :Vechicle_WAUUPBFF3G_TechnicalSpecification .
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### http://www.semanticweb.org/model/electric/vehciles#Vechicle_WAUUPBFF3G_TechnicalSpecification
:Vechicle_WAUUPBFF3G_TechnicalSpecification rdf:type owl:NamedIndividual ,

:TechnicalSpecification ;
:bodyAssembleLocation "Hermosillo, Mexico"^^xsd:string ;
:bodyType "Unitized steel body"^^xsd:string ;
:brakesType "Power−assisted, standard four−channel, four−wheel

discs with ABS and AdvanceTrac electronic stability control"^^xsd
:string ;

:engineAssembleLocation "Chihuahua, Mexico"^^xsd:string ;
:engineConfiguration "Aluminum block and head"^^xsd:string ;
:fuelCapacity "16.5 gallons"^^xsd:string ;
:fuelInjection "Sequential multiport electronic"^^xsd:string ;
:horsePower "175 @ 6,000 rpm"^^xsd:string ;
:oilCapacity "5.7 quarts with filter"^^xsd:string ;
:transmissionType "6F35 six−speed SelectShift automatic"^^xsd:string

.

5.2.4 GraphDB

GraphDB provides a web-based interface called the Workbench that allows us to manage reposito-
ries, import data, and query the data stored in the repository. Access theWorkbench by entering the
URL of our GraphDB instance in a web browser which is http://localhost:7200.

5.2.4.1 Create Repository

In the GraphDB Workbench, we created "Create new repository" button providing a "customRepo"
name for the repository. We can also configure additional settings such as the repository type (e.g.,
OWLIM, RDF4J Native, RDF4J Memory) and storage options but we kept it as default for now.

5.2.4.2 Upload Ontology Data

After creating the repository, we navigate to the "Import" tab in the Workbench. This is where we
can upload our ontology data files. We uploaded the data by clicking "Upload RDF files" button to
select the files we want to upload. GraphDB supports various RDF file formats such as .n3, .ttl, .rdf,
.xml. Our structured file (csv, excel, json, xml) generated .n3 file using RocketRML package but the
un-structured files (docx, pdf) are in .ttl format. Oncewe have selected the files, by clicking "Open" to
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start the upload process. GraphDBwill import the RDF data from the files and add it to the repository.

5.2.4.3 Import RDF Data

After uploading the RDF data, we need to import them to the GraphDB. For that we need to click
on "import" for each RDF files. In the import settings, we have Base IRI and Target Graphs. In Target
Graph we select Name graph from which we will know from where the data is coming from. For
example -

• http://www.semanticweb.org/model/electric/vehciles/CSVwhere thedata is coming fromCSV
file

• http://www.semanticweb.org/model/electric/vehciles/JSON where the data is coming from
JSON file

• http://www.semanticweb.org/model/electric/vehciles/XMLwhere the data is coming fromXML
file

• http://www.semanticweb.org/model/electric/vehciles/DOCX where the data is coming from
DOCX file

• http://www.semanticweb.org/model/electric/vehciles/PDFwhere the data is coming fromPDF
file

• http://www.semanticweb.org/model/electric/vehciles/EXCEL where the data is coming from
EXCEL file

Once the upload is complete, "Explore" tab in the Workbench tab allows us to query and visualize
the data stored in the repository. We can execute SPARQL queries to verify that the imported data is
correct and explore the relationships and properties defined in your ontology.

5.2.4.4 Class Hierarchy

The Class hierarchy view shows the hierarchy of RDF classes by the number of instances. The biggest
circles are the parent classes, and the smaller nested ones are their subclasses. We can hover over a
given class to see its subclasses or zoom in a nested circle (RDF class) for further exploration.
As we can see in the figure 31 and 32, for the CustomRepo, we have 4 nested classes named :Address,
:Company, :Vehicle, :TechnicalSpacifications where :Vehicle class is the biggest and then :Address
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Figure 31: :Company class with instances

Figure 32: Class Hierarchy
class. There are 4 figures and each figure represents All graphs, CSV and JSON graph, pdf and docx
graphs, and XML graphs. We can also see the instances of the graph.

5.2.4.5 Class Relationship

The Class relationships view shows the relationships between RDF classes, where a relationship is
represented by links between the individual instances of two classes. Each link is an RDF statement
where the subject is an instance of one class, the object is an instance of another class, and the link
is the predicate. Depending on the number of links between the instances of two classes, the bundle
can be thicker or thinner, and it receives the color of the class with more incoming links. The links
can be in both directions.
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Figure 33: Class Relationship

5.2.4.6 Visual Graph Relationships

The Visual graph view provides a visual representation of parts of the RDF graph. The visualisation
starts from a single resource and the resources connected to it or from a graph query result. We
created a visual graph using the following query.
PREFIX rdfs: <http://www.w3.org/2000/01/rdf−schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
construct {
?node rdfs:subClassOF ?restr.
?node ?prop ?range.
}
where {
?node rdfs:subClassOf ?restr .
optional {
?restr owl:onProperty ?prop .
}
optional {
?restr ( owl:onClass | owl:onDataRange
| owl:someValuesFrom | owl:allValuesFrom |owl:hasValue ) ?range.
}
}
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Figure 34: Class Relationship

5.2.5 SPARQL

SPARQL (SPARQL Protocol and RDF Query Language) is a query language used for querying and ma-
nipulating RDF (Resource Description Framework) data. It allows users to retrieve, modify, and ma-
nipulate data stored in RDF graphs. In the context of GraphDB, the following sections are used in
SPARQL queries to achieve the result from the experiment:

5.2.5.1 SELECT

The SELECT clause is used to specify the variables that should be included in the query result. These
variables represent the information that you want to retrieve from the graph.When querying RDF
data, there may be instances where the same triple pattern matches multiple times in the graph,
leading to duplicate results in the query output. The DISTINCT keyword allows you to filter out these
duplicate results and obtain a concise and unique set of solutions. For example:
select distinct ?g ?make ?2020_Census_Tract ?Base_MSRP ?
Clean_Alternative_Fuel_Vehicle ?congressionalDistricts ?
DOL_Vehicle_ID ?Electric_Utility ?electricRange ?model ?
modelYear ?type ?Vehicle_Location ?VIN ?
WAOFM_GIS_Legislative_District_Boundary ?bodyAssembleLocation ?
bodyType ?brakesType ?engineAssembleLocation ?engineConfiguration ?
fuelCapacity ?fuelInjection ?horsePower ?oilCapacity ?transmissionType
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Figure 35: Visual Graph

5.2.5.2 WHERE

The WHERE clause is used to define the pattern or conditions that the queried data should match. It
specifies the triple patterns to be matched against the RDF graph. Our "WHERE" part has 2 sections -
Vehicle information and Technical Specification information which we marge with UNION. From the
first query we can search for the Vehicle information and the second part we can search for With
Technical Specification. For example
where {

{
graph ?g{

?iri <http://www.w3.org/1999/02/22−rdf−syntax−ns#type> <http://www.semanticweb.org/model/
electric/vehciles#Vehicle>.
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Figure 36: Visual Graph Relationship
optional{

?iri <http://www.semanticweb.org/model/electric/vehciles#hasRegister> ?hasRegister.
?hasRegister <http://www.semanticweb.org/model/electric/vehciles#city> ?registerCity.
?hasRegister <http://www.semanticweb.org/model/electric/vehciles#state> ?registerState.

}
}

}
union
{

graph ?g{
?iri <http://www.w3.org/1999/02/22−rdf−syntax−ns#type> <http://www.semanticweb.org/model/

electric/vehciles#Vehicle>.
?iri <http://www.semanticweb.org/model/electric/vehciles#hasTechnicalSpecification> ?

hasTechnicalSpecification.
optional{

?hasTechnicalSpecification <http://www.semanticweb.org/model/electric/vehciles#
bodyAssembleLocation> ?bodyAssembleLocation.

114



}
}

}
}

5.2.5.3 GRAPH

The GRAPH keyword is used to specify a specific named graph or the default graph in the RDF dataset.
It allows you to query data from a specific graph or combine data from multiple graphs. With "?g"
variable, it will store the graph data in the g variable. For example:

5.2.5.4 OPTIONAL

The OPTIONAL keyword is used to specify optional patterns in the query. It allows you to retrieve
additional data that is not mandatory for a match. If the information is not in the graph then it will
not show the data. For some retrieval, we use optional because some of the data are not available
in all JSON/XML/CSV files.

5.2.5.5 IRIs

In IRI, it will retrieve all the data which type is Vehicle. After getting this, we use IRI to get the object
property and save it in the variable. For example, with IRI, we can get hasRegister. After saving in
hasRegister, we can use hasRegister IRI to retrieve the city and state. We used the naming convention
according to our model.
?iri <http://www.w3.org/1999/02/22−rdf−syntax−ns#type> <http://www.semanticweb.org/model/electric/vehciles#

Vehicle>.
optional{

?iri <http://www.semanticweb.org/model/electric/vehciles#hasRegister> ?hasRegister.
?hasRegister <http://www.semanticweb.org/model/electric/vehciles#city> ?registerCity.
?hasRegister <http://www.semanticweb.org/model/electric/vehciles#state> ?registerState.

5.2.6 Backend

For this execution, we used JavaScript language and Node.js for the backend and React.js for Fron-
tend. Backend code sets up a Node.js server with Express to handle semantic search requests on a
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GraphDB repository. It receives a search sentence, executes a SPARQL query against the repository,
filters the results based on the search sentence, and returns the filtered results as a response.

Figure 37: Execution Part

5.2.6.1 Define Search API Endpoint

we set up a POST route at "/search" to handle search requests from Frontend. It retrieves the search
sentence from the request body, sets up a SPARQL query to perform semantic search, and connects to
the GraphDB repository using the EnapsoGraphDBClient library. Once the query results are obtained,
they are filtered based on the search sentence using the filterResults function, and the filtered results
are sent as the response.

app.post("/search", (req, res) => {
// Request body contains the search sentence
const sentence = req.body.sentence;

// SPARQL query for semantic search
const query = ‘select distinct ?g ?make ?2020_Census_Tract ...‘;

// Connect to the GraphDB repository

// Perform the SPARQL query and filter the results
graphDBEndpoint
.query(query, { transform: "toJSON" })
.then((result) => {
const filteredResults = filterResults(result.records, sentence);
res.send(filteredResults);
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})
// Functions to filter the results based on the search sentence

});

5.2.6.2 Database Connection

Theprovided codedemonstrates how to establish a database connection betweenNode.js andGraphDB
using the EnapsoGraphDBClient library. After that we configure connection settings for connecting to
GraphDB. we specify the base URL of our GraphDB instance and the name of the repository we want
to connect to. Then we used the graphDBEndpoint object to connect to the GraphDB repository and
transformed our output as JSON.
// Connect to RDF dataset
let graphDBEndpoint = new EnapsoGraphDBClient.Endpoint({
baseURL: "http://localhost:7200",
repository: "customRepo",

});

5.2.6.3 Helper Functions

The code includes two custom helper functions, filterResults() (section 5.2.6.4) and filterResultsBy-
Sentences() (section 5.2.6.5), which are used to filter the query results based on the search sentence
and specific patterns or keywords. These helper functions work together to perform additional fil-
tering on the query results, based on both individual keywords and specific patterns or properties
derived from the search sentence. This allows for more refined and accurate filtering of the results
to match the user’s search criteria.

5.2.6.4 filterResults()

This function takes in two parameters. results (the query results from the GraphDB repository) and
sentence (the search sentence from front end). It filters the results based on specific properties
and keywords present in the sentence. It tokenizes the sentence into individual words using the
natural.WordTokenizer() from the naturalmodule. Then it iterates over each result in the results array
and checks if any of the keywords extracted from the sentence are present in specific properties of
the result object, such as modelYear, Electric_Utility, make, etc. If any of the keywords match, the
result is considered a valid match and is included in the filtered results. The function returns an array
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of filtered results that match the keywords present in the search sentence and send it to the front
end.
function filterResults(results, sentence) {

const tokenizer = new natural.WordTokenizer();
const keywords = tokenizer.tokenize(sentence);

return results.filter((result) => {
return (
keywords.includes(result.modelYear) ||
keywords.includes(result.Electric_Utility) ||
keywords.includes(result.make) ||
keywords.includes(result.Base_MSRP) ||
keywords.includes(result.Clean_Alternative_Fuel_Vehicle) ||
keywords.includes(result.DOL_Vehicle_ID) ||
keywords.includes(result.electricRange) ||
keywords.includes(result.model) ||
keywords.includes(result.modelYear) ||
keywords.includes(result.type) ||
keywords.includes(result.VIN)

);
});

}

5.2.6.5 filterResultsBySentences()

This function takes in two parameters: vehicles (an array of vehicles) and sentence (the search sen-
tence). It further filters the vehicles based on specific patterns or regular expressions extracted from
the sentence. After that it defines a regular expression pattern for each property that needs to be
matched in the sentence. For example, it defines a pattern for matching the "Electric_Utility" prop-
erty, "Base_MSRP", "Clean_Alternative_Fuel_Vehicle", etc. Then it iterates over each property and
corresponding regular expression pattern in the regexMap. Then it attempts to match each regular
expression pattern with the sentence. If a match is found, it captures the corresponding value (e.g.,
the electric utility name, base MSRP amount, etc.) from the sentence. It creates a filterObj object
and populates it with the captured values for each property. Finally, it calls the filterObjects function,
passing the filterObj and vehicles array, to filter the vehicles based on the captured property val-
ues. The filterObjects function checks if all the properties in the filterObj match the corresponding
properties in each vehicle, and returns only the vehicles that satisfy all the property matches.
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function filterResultsBySentences(vehicles, sentence) {
const regexMap = {
Electric_Utility: /Electric Utility/i,
Base_MSRP: /\$\d+(?:,\d+)*(?:\.\d+)?/,
Clean_Alternative_Fuel_Vehicle: /Clean Alternative Fuel Vehicle/i,
DOL_Vehicle_ID: /DOL Vehicle ID of (\d+)/i,
electricRange: /Electric Range of (\d+) miles/i,
model: /Model is ([\w−]+)/i,
modelYear: /(\d{4}) model year/i,
type: /(sedan|hatchback|suv)/i,
make: /make is ([\w\s]+)/i,
VIN: /with VIN (\w{17})/i,

};

const filterObj = {};

for (const [key, regex] of Object.entries(regexMap)) {
const match = sentence.match(regex);
if (match) {
filterObj[key] = match[1] || match[0];

}
}
return filterObjects(filterObj, vehicles);

}

5.2.7 Frontend

The frontend part of the application is responsible for rendering an input form and displaying the
search results in a table format.

• It imports the necessary dependencies, including React and the required styles.
• React functional component called InputSection using the arrow function syntax.
• Two state variables are declared using the useState hook where sentence: It represents the
user’s input sentence for the search and results: It stores the search results retrieved from the
backend.
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Figure 38: Frontend with React.js
• The handleSubmit function is defined as an asynchronous function that is triggered when the
user submits the form.

• Afer user click submit, it performs a POST request to the backend server at "http://localhost:9000/search"
using the fetch API where the request includes the sentence in the request body as a JSON
string.

• If the response from the server is successful (response.ok), the response JSON is extracted and
stored in the responseObj variable using response.json().

• The return statement defines the JSX markup that will be rendered by the component
• JSX includes an input section with a search form. The user can enter a sentence in the input
field.

• When the form is submitted, the handleSubmit function is called.
• The table is displayed below the form, where the search results are rendered.
• The table has a header row with column headings for various properties such as "File Name,"
"DOL VID," "Electric Utility," etc.

See (section 5.3) for the results.
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5.3 Results

In a case study experiment, we modeled with Protege, converted data into RDF format using RML
mapping rules, and then conducted a semantic search using a graph database (GraphDB) and SPARQL.
This method enables extensive querying and the examination of inter-entity relationships, making it
especially suitable for complicated data structures. By implementing this experimental setup, we
aimed to demonstrate the effectiveness and scalability of our semantic search solution for diverse
document types. We expected our approach to deliver highly accurate and relevant search results,
empowering users to perform complex searches, integrate data from different sources, and extract
valuable insights. See (section 6) for the discussion.

5.3.1 Experiment Summery

In this case study, our objective was to develop and showcase an effective method for performing
semantic searches on a diverse range of document types. We aimed to demonstrate the power of
semantic technologies and sophisticated search algorithms in providing users with highly relevant
and accurate results, even when dealing with complex data structures and different formats such as
docx, pdf, xml, json, excel, and csv files. To achieve this, we employed several key components in our
experiment. We utilized Protege, a widely used ontology modeling tool, to create a comprehensive
model for representing domain-specific knowledge. Additionally, we employed RML mapping rules
to transform the data from various formats into RDF (Resource Description Framework), a standard
semantic data representation format. The transformed data was then stored in a graph database,
GraphDB, which enabled efficient storage, retrieval, and querying of the semantic data. For con-
ducting the semantic search, we leveraged SPARQL (SPARQL Protocol and RDF Query Language), a
powerful query language designed specifically for querying RDF data. SPARQL allowed us to perform
sophisticated analysis of the relationships between entities, enabling flexible and insightful searching
capabilities. To provide a user-friendly interface, we developed a web-based frontend using React.js,
a popular JavaScript library for building interactive UI components. The backend was implemented
using Node.js, a runtime environment for server-side JavaScript execution. This architecture allowed
users to input search queries and view the results seamlessly.
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5.3.2 Example Query Search

In this example, a user wants to obtain data on Tesla from heterogeneous documents. They type the
search request "Show me electric cars from Tesla" into the search interface. The question is sent to
the backend, which uses Node.js to implement it, and this starts the semantic search procedure. The
method searches the graph database (GraphDB), which stores the modified semantic data frommul-
tiple file kinds, using SPARQL and the Protege ontology model. The program retrieves all pertinent
information about Tesla electric automobiles by examining the links between entities. Then, it pri-
marily focuses on electric cars as it filters the outcomes according to the requirements of the query.
The user is presented with the retrieved information in a user-friendly way via the front end, which
was created with React.js. Users can browse the results, get thorough details on each vehicle, and
examine relevant files. This example illustrates how semantic search efficiently obtains and provides
highly relevant information across various document types, powered by advanced algorithms and
semantic technologies.

Figure 39: Frontend Part
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5.4 Evaluation and Discussion

The Evaluation and Discussion highlight the strengths, weaknesses, and effectiveness of the experi-
ment and its approach to performing a semantic search at an enterprise level. These strengths con-
tribute to the experiment’s potential effectiveness in delivering relevant and accurate results. The
experiment showcases the promising potential for semantic search in enterprise settings, and fur-
ther research and evaluation may be necessary to validate its suitability and performance.

5.5 Comparison with Our RDF Ontology Approach with Other Rel-

evant Approaches

In comparison to other relevant approaches, the experiment offers several distinct advantages and
differentiating factors.

5.5.1 Semantic Technologies and RDF

The experiment specifically focuses on leveraging semantic technologies, such as RDF ontology mod-
eling and SPARQL querying.
In the experiment, we are managing an extensive dataset consisting of various electric car details like
model, year, make and vehicle type, and so on. Using traditional keyword-based searches often leads
to unsatisfactory outcomes since it fails to differentiate between different contexts of words related
to our query term; for instance ’Steel body, aluminum hood’ can appear in both ’AUDI’ and ’TESLA’.
An RDF ontology-based method offers an innovative solution that allows the establishment of mean-
ingful associations between car entities and their corresponding attributes on the basis of defined
structures governing them. For instance, defining Properties like bodyType along with multiple mod-
els per Vehicle makes Entity ensures greater accuracy as it helps tailor our search more efficiently-
querying all relevant cars having a specific bodyType such as ’Steel body, aluminum hood’. Employ-
ing SPARQL’s advantages will ensure that the results generated are strictly appropriate without any
confusion caused by i.e., other texts with keywords related to but not indicating body type as ’Steel
body, aluminum hood’. An illustration of the benefits of the RDF ontology-based approach is how
it improves both the accuracy and meaning of searches by utilizing semantic connections between
entities and properties. This emphasis on semantic representation allows for a more structured and
meaningful organization of data, enabling advanced search capabilities and analysis of relationships
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between entities. This approach provides a semantic layer that enhances search accuracy and rele-
vance compared to traditional keyword-based approaches.

5.5.2 Diverse Document Types

Unlike some existing approaches that may specialize in specific document types or formats, the ex-
periment addresses the challenge of searching through a wide range of heterogeneous documents,
including docx, pdf, xml, json, excel, and csv files. By accommodating diverse data formats, the exper-
iment offers a more comprehensive solution suitable for enterprises with varied document sources.

5.5.3 Graph Database Integration

The use of a graph database (GraphDB) for storing and querying semantic data is a notable aspect
of the experiment. By employing a graph database, it enables efficient storage, retrieval, and traver-
sal of relationships between entities, which is especially advantageous when dealing with complex
and interconnected data structures. This approach enhances the scalability and performance of the
semantic search solution compared to traditional relational or document-oriented databases.

5.5.4 Web-based Interface

The experiment incorporates a user-friendly web-based interface using React.js and Node.js. This
frontend and backend combination allows users to easily input search queries and view the results,
enhancing usability and accessibility for a wide range of users.
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6 Discussion: Comparative Analysis of Semantic Search

Approaches

The objective of this master’s thesis is to develop a semantic search system specifically designed for
equipment-related information. The system aims to enhance the retrieval process by utilizing ad-
vanced techniques that understand the context and meaning of the search queries and documents.
This enables users to find the desired information quickly and accurately, saving time and effort. To
accomplish this goal, two experiments were conducted as part of this research. The first experiment
focused on retrieving information solely from structured datasets, primarily in CSV or Excel formats.
These datasets are commonly used to store equipment-related information, such as specifications,
models, and technical details. By analyzing and indexing these datasets, the system can provide pre-
cise search results based on the user’s queries.

The second experiment aimed to expand the search capabilities to include unstructured documents,
such as PDF, DOCX, Excel, JSON, XML, and CSV files. These document formats are prevalent in var-
ious industries and research fields, containing valuable equipment-related information in different
formats. By implementing sophisticated techniques, the system can extract meaningful data from
these documents and incorporate them into the search process, enabling comprehensive retrieval.
In this section, we will be focusing on comparisons between experiments and approaches.

6.1 Comparisons Between Vector Embedding (Approach 1 ) vs RDF-

Based Ontology (Approach 2)

6.1.1 Similarities Between Vector Embedding (Approach 1 ) vs RDF-Based Ontol-

ogy (Approach 2)

Similarities between the two approaches (entity extraction with vector embedding and RDF ontology
with RML) in the experiments:
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6.1.1.1 Semantic Representation

Both approaches aim to represent the semantic information contained within the documents. They
go beyond simple keyword matching and enable capturing the meaning, context, and relationships
present in the data.

6.1.1.2 Support for Semantic Search

Both approaches are intended to facilitate semantic search by permitting users to retrieve pertinent
documents based on their semantic content. In lieu of relying solely on keyword matching, they
provide means to query and investigate the dataset using semantic criteria.

6.1.1.3 Semantic Relationships

Both approaches consider and leverage semantic relationships between entities within the docu-
ments. While vector embedding capture similarities between words or phrases, RDF ontology and
RML enablemodeling and representing complex relationships, hierarchies, and ontological concepts.

6.1.1.4 Use of Technology Stack

Both approaches usemodern technologies such asmachine learning, NLP techniques, graphdatabases,
and semantic web technologies.

6.1.2 Variations betweenVector Embedding (Approach 1 ) vs RDF-BasedOntology

(Approach 2)

Variations between the two approaches:

6.1.2.1 Data Representation

Vector embedding represent documents as high-dimensional vectors in a continuous vector space,
quantifying the semantic data. To model and convey semantic relationships, RDF ontology with RML
represents documents as nodes and edges in a graph-based structure.

6.1.2.2 Querying Mechanism

Vector embedding frequently employ similarity-based queries, in which documents are retrieved
according to their similarity to a given query. Complex queries can traverse the graph structure to
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retrieve documents based on their relationships and attributes when RDF ontology is combined with
RML. The use of SPARQL in RDF ontology with RML enables the formulation and execution of more
complex queries.

6.1.2.3 Semantic Expressiveness

RDF ontology with RML provides a more expressive representation by allowing the definition of on-
tologies, classes, properties, and relationships between entities. It offers the ability to capture nu-
anced semantics and domain-specific knowledge. Vector embedding, while effective in capturing
similarities, may not provide the same level of semantic expressiveness.

6.1.2.4 Flexibility

Only the second approach - Semantic Search Through Heterogeneous Structured, Semi-Structured
and Un-Structured Documents using RDF Ontology (section 5) is flexible and can handle a variety of
file formats, including structured (CSV, Excel) and unstructured (JSON, XML, DOCX, PDF) data. This
flexibility allows for semantic search across diverse document types. But the vector embedding ap-
proach can only handle structured (CSV, Excel, datasets).

6.1.2.5 Implementation Complexity

The implementation complexity varies between the two approaches. Vector embedding require ex-
pertise in NLP techniques, such as entity extraction, feature extraction, and similarity calculation
algorithms. RDF ontology with RML involves knowledge modeling, ontology design, and mapping
of data to the ontology using RML, which requires understanding semantic web technologies. The
second approach also involves additional implementation complexity for building the frontend and
backend using React.js and Node.js.

6.1.2.6 Scalability

Scalability considerations may differ between the two approaches. Vector embedding can handle
large-scale document collections efficiently due to parallelized similarity calculations. Graphdatabases
used with RDF ontology and RML can scale well, leveraging indexing and optimization techniques
specific to graph databases, but may require additional optimizations for extremely large datasets.
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6.1.3 Database Comparison

Down below in Table 1, an overview of Vector Database Vs Graph Database is given.
Topic Vector Database Graph Database

Data Representa-tion. Data is represented as high-dimensional vectors in a vectorspace. Each document is trans-formed into a numerical vector.

Data is represented as nodes, andtheir semantic connections are rep-resented as edges in a graph whichis a flexible and rich representationof semantic relations.Flexibility and Ex-pressiveness Provide a convenient way to cap-ture semantic similarities betweendata using vector embedding. How-ever, may struggle with complex se-mantic relationships beyond simplesimilarity calculations.

Captures complex semantic rela-tionships. Graph-based models al-low for the representation of vari-ous types of relationships, makingthem suitable for representing het-erogeneous document collections.Querying Capa-bilities Involve similarity-based queries.Given a query, calculates the sim-ilarity between the query vectorand the data vector to retrieve themost similar data.

Offer more advanced querying ca-pabilities that can traverse thegraph structure to discover andretrieve based on relationships,enabling exploration of intercon-nected documents or data.Scalability Can efficiently handle large-scaledocument collections due performparallelized vector similarity calcu-lations. If the dimensionality andsize of the vectors increase, thestorage and computational require-ments also increase.

Graphdatabases can scalewellwiththe growth of the document collec-tion. They can handle large graphsand still maintain efficient queryperformance, thanks to indexingand optimization techniques spe-cific to graph databases.Integration ofHeterogeneousData
Excel in integrating and searchingacross homogeneous data. Han-dling heterogeneous data sourcesrequires additional preprocessingand normalization steps to ensurecompatibility.

Naturally accommodate the inte-gration of heterogeneous data. Re-lationships can be modeled. Thisflexibility makes graph databaseswell-suited for semantic search onheterogeneous documents.The complexity ofthe Implementa-tion
Requires expertise in vector em-bedding, dimensionality reductiontechniques, and similarity calcula-tion algorithms.

Involves data modeling, graph rep-resentation, and query optimiza-tion. May require additional effortto design and maintain the graphstructure and relationships accu-rately.
Table 1: VectorDB Vs GraphDB

Although the choice between a vector database and a graph database for semantic search on hetero-
geneous documents depends on the specific requirements of the application, the complexity of se-
mantic relationships, and the scalability needs, in our cases, a combination of both approaches may
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be beneficial, leveraging the strengths of vector databases for similarity-based retrieval and graph
databases for capturing complex semantic relationships.

6.2 Risk Analysis

Down below in Table 2, Risk Analysis for Semantic Search on Equipment from Heterogeneous Docu-
ments is given.
Risk Description Severity Probability Impact Mitigation

Extracting relevantequipment-relatedinformation from un-structured documents,such as PDFs or DOCXfiles, can be challengingdue to their complexand diverse formats.

Critical Probable Intolerable Utilized advanced natural lan-guage processing (NLP) tech-niques, entity recognition toimprove the accuracy andcompleteness of informationextraction.

The system should becapable of handlingincreasing volumes ofdata without compro-mising search speedand efficiency.

Critical Frequent Undesirable Conducted manual testingand performance tuningto identify and addressbottlenecks. Continuouslymonitored and optimizesystem performance as thevolume of data and docu-ment sources increase.Unauthorized accessto equipment spec-ifications, technicaldetails, or intellectualproperty can havesevere consequencesfor organizations orindividuals

Catastrophic Occasional Undesirable Robust security measuresshould be implemented,such as encryption, accesscontrols, and user authenti-cation, to protect sensitiveinformation which is out ofthe scope of this thesis.
Can affect the accuracyand reliability of thesearch results withinthe heterogeneousdocuments.

Catastrophic Probable Intolerable Conducted verification of thesystem’s ability to handlediverse data sources effec-tively..
Wrong KnowledgeMapping Catastrophic Probable Intolerable Implemented RDF/ Owl on-tology

Table 2: Risk Analysis
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6.3 Effectiveness in TermsofOverall Semantic SearchonEquipment

6.3.1 Effectiveness of Vector embedding

The effectiveness of vector embedding for semantic search, highlighting their advantages, impact on
information retrieval, and challenges encountered during implementation are discussed below.

6.3.1.1 Advantages and Disadvantages of Using Vector embedding

The use of vector embedding for semantic search offers several advantages in capturing semantic
relationships and similarities between words or phrases in documents. One notable advantage is the
ability of vector embedding to represent words or phrases as dense vectors in a high-dimensional
space. This representation enables the capture of semantic information by encoding similarities
based on contextual usage. By leveraging the distributional hypothesis, which suggests that words
appearing in similar contexts tend to have similar meanings, vector embedding can capture semantic
relationships and similarities.

6.3.1.2 Ability of Vector Embedding to Capture Semantic Relationships and Similarities

The effectiveness of vector embedding in semantic search has been demonstrated through popular
techniques such as word2vec. These methods have shown promising results in capturing semantic
information and facilitating information retrieval from various file formats. For instance, by repre-
senting words or phrases as vectors, these embedding techniques can enable retrieval systems to
identify documents that contain similar or related content, even if the specific terms used in the
query may not exactly match the terms in the documents.

6.3.1.3 Impact of Vector Embedding Techniques

The impact of vector embedding techniques cannot be understated when it comes to extracting data
from different file formats. The provision for unified representation pertaining to textual context
facilitates efficient analysis by semantic search systems even on documents that are available in mul-
tiple diverse formats including but not limited to docx, pdf, JSON, XML, CSV, and excel files. However,
acquiring vector representations is what enables the seamless resolution of heterogeneity issues as-
sociated with specific file categories allowing quick access to a vast range of document types.
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6.3.1.4 Challenges and Limitations

However, implementing vector embedding in the semantic search process is not without challenges
and limitations. One challenge lies in the computational requirements associated with training and
using vector embedding, especiallywhenworkingwith large corpora or extensive vocabularies. Train-
ing high-quality embedding may require substantial computational resources and time. Additionally,
the effectiveness of vector embedding heavily relies on the availability of large, representative train-
ing data to capture the diverse semantic relationships accurately. Another limitation is that vector
embeddingmay strugglewith capturing context-specific or domain-specificmeanings. While they ex-
cel at identifying general semantic relationships, capturing fine-grained nuances can be challenging.
For instance, vector embedding may struggle with distinguishing between polysemous words (words
withmultiple meanings) or terms specific to a particular domain that may not occur frequently in the
training data. This limitation can impact the precision and recall of the semantic search systemwhen
dealing with specialized or domain-specific documents.

6.3.2 Effectiveness of RDF Ontology with RDFS/OWL Modeling and RML

Several elements contribute to the success of this experiment’s approach for semantic search at the
enterprise level. These include precise result delivery handling diverse data formats with ease of-
fering advanced relationship analysis capabilities ensuring scalable operations and providing a user-
friendly interface for easy information retrieval and analysis. Together they constitute an effective
solution that helps businesses extract knowledge from their data sources while streamlining infor-
mation management.
The effectiveness of this experiment and its approach in terms of semantic search at an enterprise
level can be evaluated based on several key factors:

6.3.2.1 Efficiency and Advantages of RDF-based Approaches for Extracting and Retrieving Infor-

mation

Relevance andAccuracy of Results: The experiment intends to provide highly pertinent and accurate
search results by utilizing semantic technologies and sophisticated search algorithms. The applica-
tion of RDF ontology modeling permits a structured representation of domain-specific knowledge,
thereby facilitating a more thorough comprehension of data and relationships. This improves the
relevance and precision of search results, which is essential for enterprise-level information retrieval.
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Handling Diverse Data Formats: The experiment addresses the challenge of searching through a
variety of document types, including docx, pdf, xml, json, excel, and csv files. The ability to handle
diverse data formats is essential in enterprise environments where data sources can be heteroge-
neous. This approach provides a comprehensive solution that can accommodate the wide range of
document types commonly encountered in enterprises.

SophisticatedAnalysis of Relationships: The combination of a graphdatabase (GraphDB) and SPARQL
querying permits sophisticated analysis of entity relationships. This capability enables deeper in-
sights and a more comprehensive comprehension of data relationships, facilitating knowledge dis-
covery and enabling enterprise-level advanced data analysis tasks.

Scalability and Efficiency: The use of a graph database and semantic technologies provides a robust
and scalable solution for large-scale enterprise applications. The experiment’s approach ensures effi-
cient storage, retrieval, and querying of semantic data, supporting enterprises dealing with substan-
tial amounts of data across various document formats.

Usability and Accessibility: Usability and accessibility are enhanced by the deployment of a web-
based interface using React.js and Node.js. It enables users with varying levels of technical expertise
to readily interact with the semantic search system, enter search queries, and view results. This as-
pect is essential in enterprise environments where a large number of users may require access to and
use of semantic search capabilities.

6.3.2.2 Challenges and Limitations

Data Quality and Integration: Assuring the quality and consistency of the integrated data is a chal-
lenge for RDF-based semantic search on heterogeneous documents. Depending on the data integrity
of documents from various sources, mapping them to RDF triples may require careful consideration.
In addition, integrating data from various formats may necessitate overcoming format-specific ob-
stacles, such as coping with nested structures or inconsistent data representations.

Ontology Design: Designing an effective and comprehensive ontology for representing the semantic
relationships in the documents can be a complex task. It requires expertise in domain modeling and
ontology engineering. Inadequate ontology design can lead to incomplete or inaccurate representa-
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tion of semantic relationships, impacting the effectiveness of the semantic search.

Performance and Scalability: While RDF-based approaches offer scalability benefits, handling large-
scale document collections can still pose performance challenges. Processing and indexing RDF triples,
especially with complex ontologies, may require efficient data storage and retrieval mechanisms. Op-
timizations, such as caching, indexing, and parallel processing, may be necessary to achieve satisfac-
tory performance in semantic search systems.

6.4 Practical Application Ability and Scalability

6.4.1 Practical Application Ability

Two methods have emerged as possible solutions to carry out semantic searches across varying for-
mats of enterprise documents: entity extraction using vector embedding and RDF ontology in con-
junction with RML techniques.

Using vector embedding to perform entity extraction renders structured document search particu-
larly effortless - CSV files and Excel sheets are ideal examples - while retaining scalable performance
levels by utilizing high-performing databases like Pinecone. This approach has an immense advan-
tage in its effortless implementation that may also scale up quite effortlessly. To facilitate searching
acrossmultiple types of document sources including structured and unstructured ones (such as DOCX
or PDF files) RDF ontology combined with RML techniques are an optimal alternative.

It allows capturing intricate relationships between entities much more accurately than standard ap-
proaches while storing all data within graph databases such as GraphDB delivers extremely respon-
sive querying functionality using advanced query languages like SPARQL even across large datasets.

6.4.2 Scalability

Regarding scalability, both methods are capable of handling large datasets. Entity extraction with
vector embedding can utilize distributed indexing and search mechanisms, while RDF ontology with
RML can utilize graph partitioning and clustering techniques.
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6.5 Challenges and Limitations Encountered

6.5.1 Limited Data Representation

Due to the lack of data, our thesis relies on data that are collected from the internet, which may not
accurately represent the domain or context of the domain we intended to study. This limitation may
impact the applicability and relevance of our results to real-world situations.

6.5.2 Data Quality and Reliability

The data collected from the internet may vary in terms of quality, reliability, and accuracy. It is chal-
lenging to verify the authenticity and correctness of the information gathered, potentially introducing
biases and errors into our experiments and results.

6.5.3 Lack of Domain Specificity

Without access to company-specific data, the applicability of our findings may be limited. Each orga-
nization has its own unique set of data, vocabulary, and knowledge representation, and not having
access to such data restricts the ability to analyze and evaluate semantic searches within a specific
domain.

6.5.4 Weak Knowledge Map

The unavailability of company data negatively impacts the strength of our knowledge map. A ro-
bust knowledge map requires a comprehensive and accurate representation of the domain-specific
information, which could not be achieved solely through internet data collection. This limitation un-
dermines the effectiveness of our semantic search implementation and hinders its ability to deliver
accurate and relevant results.

6.5.5 Limited RDF Ontology

While we conducted an experiment using RDF ontology, the effectiveness of this approach may be
hindered by the unavailability of comprehensive data. RDF graphs rely on rich and well-defined on-
tologies, whichmay not be adequately establishedwith the limited data collected. This limitation can
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limit the expressiveness and precision of the ontology and, subsequently, the overall performance of
the semantic search system.

6.5.6 Modeling and Processing Challenges

However, Building an RDF index for a graph database involves both modeling and processing chal-
lenges. The modeling aspect requires designing a suitable ontology that accurately represents the
domain and relationships between entities. This involves careful consideration of concepts, prop-
erties, and relationships. Additionally, integrating data from various sources can pose challenges in
mapping different data models to RDF and resolving conflicts. On the processing side, data trans-
formation into RDF format, especially for large datasets, requires extracting relevant information,
structuring it as RDF triples, and ensuring data quality. Scalability and performance are crucial consid-
erations, requiring optimization of indexing and queryingmechanisms. However, there are automatic
means available to generate a graph DB from RDF data. RDF data management systems, ontology-
based mapping tools, and semantic web frameworks provide functionalities and APIs to automate
the process. Although these tools can streamline certain aspects, user involvement remains essential
to ensure accurate modeling decisions and address data quality issues for an effective RDF index.

6.6 Identifying the Optimal Approach

The experiments conducted to evaluate the effectiveness of two different approaches, entity extrac-
tion with vector embedding and RDF ontology with RML, in the context of semantic search on het-
erogeneous documents, have provided valuable insights. After the consideration of the results, ac-
cording to our case studies the RDF ontology experiment appears to be superior for semantic search
in a large enterprise-level setting on heterogeneous documents.

The RDF ontology experiment showed a number of significant benefits that let it handle semantic
searches on a variety of file types. First, the modeling and representation of intricate semantic con-
nections, hierarchies, and ontological ideas were made possible through the usage of RDF ontology
and RML. This adaptability allows for a more sophisticated comprehension of the context and con-
tent of the documents, producing more precise and insightful search results. The RDF-basedmethod
also offered a reliable and expandable foundation for managing heterogeneous documents. The
RDF ontology experiment demonstrated its capacity to smoothly integrate various data sources by
supporting both structured (CSV, Excel) and unstructured (JSON, XML, DOCX, PDF) file formats. This
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capability is especially useful at the enterprise level when documents are frequently obtained from
different systems and formats. The RDF ontology experiment also has sophisticated SPARQL querying
capabilities, which is a big advantage. The retrieval of information based on intricate relationships
and attributes within the documents wasmade possible by the graph-based querying strategy, which
allowed for more accurate and flexible searches. For enterprise-level applications where correct in-
formation retrieval is critical, this improved querying technique delivered amore focused and refined
search experience.

Additionally, the RDF ontology experiment demonstrated a higher level of semantic expressiveness
compared to entity extraction with the vector embedding approach. The ability to define ontologies,
classes, and properties allowed for the capture and utilization of domain-specific knowledge. This
expressiveness facilitated a deeper understanding of the document’s semantics and enabled more
sophisticated and context-aware search operations. In section 6.6.1, we discuss choosing the ideal
approach for the right enterprise environment.

6.6.1 Choosing the Optimal Method in Enterprise Environments

The choice between the two approaches (sections 4 and 5), vector embedding (section 4), and RDF
ontology (section 5), depends on various factors, including the scale of the application, budget con-
siderations, and the capabilities of the organization.

6.6.1.1 Data Complexity

If the data has a high degree of semantic relationships, hierarchies, and interconnections, RDF on-
tology may provide a more accurate and comprehensive representation. On the other hand, if the
data is relatively simpler and can be effectively represented through numerical vector embedding,
that approach may be more suitable.

6.6.1.2 Search Flexibility

If the target application demands advanced search functionalities based on complex semantic pat-
terns, RDFontologymight be a better fit. However, if the search requirements are focusedon similarity-
based retrieval, vector embedding can be more efficient.
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6.6.1.3 Data Integration

Vector embedding can be easily integrated into different applications and existing systems, allowing
for seamless integration and retrieval of information. RDF ontology, on the other hand, requires
mapping and transforming data into the RDF triple format, which may involve additional efforts for
integration, especially when dealing with multiple file formats and sources.

6.6.1.4 Expertise and Resource Availability

Implementing and maintaining RDF ontology requires expertise and knowledge of semantic tech-
nologies, ontology modeling, and RDF tools like Protégé. If the target organization has expertise in
semantic technologies, ontologymodeling, and RDF tools like Protégé and the necessary resources to
build and manage the ontology, it can be a favorable factor for choosing RDF ontology. On the other
hand, if the organization has a team proficient in machine learning and natural language processing
techniques, vector embedding may align better with the existing expertise.

In conclusion, despite the fact that both approaches have practical applications for semantic search
on heterogeneous documents in an enterprise context, the choice between them depends on the
specific domain requirements, size and complexity of the data, search capabilities, and scalability
requirements. Based on these requirements and the preceding experiments, we hypothesize that
using the appropriate data and documents, the RDF ontology with the RML approach may be more
suitable for larger, more complex datasets with rich semantic relationships, whereas the entity ex-
traction with vector embedding approach may be more suitable for smaller, less complex structures
where fast indexing and retrieval are essential.
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7 Conclusion and Future Work

7.1 Conclusion

The efforts made to examine various different approaches to conducting semantic searches on het-
erogeneous documents located within enterprise-level settings have provided some remarkable in-
sights into what is possible and pointed toward many exciting avenues for possible future research
endeavors. One particularly noteworthy result from our experiments (section 5) involves an RDF on-
tology that outperformed its peer by offering highly expressive results through sophisticated queries
that span multiple file formats and multi-level semantic hierarchy while modeling complex semantic
relationships. This clearly demonstrates how this approach - along with its associated technologies
(such as RML) - can yield valuable outcomes for identifying insightful results accurately. For accuracy,
we refer to the extent of relevance and precision with which a search result conforms to an intended
meaning or user’s query. At the same time, we also discovered how critical ontological knowledge
was in creating useful enhancements that added context awareness across users’ search experiences,
something which is crucial for improving the overall correctness of the retrieval and productivity lev-
els.

However, our entity extraction with vector embedding technique displayed great promise by captur-
ing document representations as powerful vectors displaying subtle points of similarity in semantics
across various documents. Unfortunately, though, this method struggled somewhat when dealing
with complex semantic relationships or obtaining a more complete understanding of each docu-
ment’s context. One potential advantage of combining entity extraction with vector embedding in
semantic search methodologies is the ability to handle unstructured or semi-structured data more
effectively compared to RDF-based approaches. RDF relies on predefined ontologies and explicit
modeling of relationships, which may be challenging or time-consuming to define for large, diverse,
or rapidly evolving datasets. It seems quite obvious that both techniques possess their respective
benefits and limitations; however, it is feasible to combine these methods into a single cohesive ap-
proach when designing new semantic search methodologies in the future.

Reflecting on this thesis, it becomes clear that the field of semantic search for heterogeneous doc-
uments in enterprise settings is a complex and challenging area of research. The experiments con-
ducted have shed light on the importance of context, ontological knowledge, and the diverse nature
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of document sources. The findings provide a foundation for further exploration and the development
of novel techniques that can address the limitations and harness the strengths of different semantic
search approaches. This thesis expands our comprehension of semantic search in the presence of
diverse documents and emphasizes the possibility for advancements in the field. By uniting different
methods and incorporating their unique advantages, researchers strive to achieve more effective,
precise, and context-aware solutions for enterprise-level information retrieval.

7.2 Future Research Scope: Combined Semantic Search Approach

with RDF and Vector embedding

The experiments conducted in this research have explored the effectiveness of two different ap-
proaches, RDF ontology with RML and entity extraction with vector embedding, for semantic search
on heterogeneous documents in an enterprise-level setting. As a result, a promising avenue for future
research is to investigate the potential of merging these two approaches to leverage their respective
strengths and address their limitations. This combined approach can offer a more comprehensive
and powerful semantic search solution. With Hybrid Semantic Representation, we can explore ways
to combine the semantic representations derived fromRDF ontology and vector embedding. This can
involve incorporating the vector embedding as additional features within the RDF graph or integrat-
ing the RDF ontologies into the vector space model. Investigate techniques to leverage the strengths
of both representations, such as the rich semantic relationships captured by RDF and the ability of
vector embedding to capture semantic similarity. To enhance QueryingMechanisms, we can develop
advanced querying mechanisms that leverage both RDF graph-based querying and vector similarity-
based retrieval. Explore ways to seamlessly integrate SPARQL queries with similarity-based search
techniques to enable more precise and flexible searches.

By merging RDF ontology with RML and vector embedding, future research can aim to create a holis-
tic semantic search solution for enterprise-level applications. Such a combined approach has the
potential to leverage the strengths of both techniques, offering enhanced semantic representation,
more advanced queryingmechanisms, and improved retrieval accuracy for heterogeneous document
collections.

139



References

Abass, O. A., & Arowolo, O. A. (2018). Information retrieval models, techniques and applications.
International Journal of Computer Applications, 179(6), 35–43. Retrieved from https://www

.ijcaonline.org/archives/volume179/number6/abass-2018-ijca-918609.pdf doi:
10.5120/ijca2018917609

Ancona, D., Franceschini, L., Ferrando, A., & Mascardi, V. (2021, 05). Rml: Theory and practice of
a domain-specific language for runtime verification. Science of Computer Programming, 205,
102610. doi: 10.1016/j.scico.2021.102610

Anjomshoa, A., Karim, S., Shayeganfar, F., & Tjoa, A.M. (2020). Exploitation of semantic web technol-
ogy in erp systems. In Proceedings of the 23rd international conference on extending database
technology (pp. 443–446). Retrieved from https://openproceedings.org/2020/conf/

edbt/paper_292.pdf

Asfand-e yar, M., & Ali, R. (2016). Semantic integration of heterogeneous databases of same domain
using ontology. International Journal of Software Engineering & Applications, 7(1), 101–110.

Badr, N. M., Elabd, E., & Abdelkader, H. M. (2016). A semantic-based framework for facilitating
integration in erp systems. In Proceedings of the international conference on computer science,

information systems and telecommunications (pp. 24–32).
Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked data-the story so far. Interna-

tional Journal on Semantic Web and Information Systems, 5(3), 1–22. Retrieved
from https://www.researchgate.net/profile/Christian_Bizer/publication/

220781830_Linked_Data_-_The_Story_So_Far/links/0c9605292483fb69b9000000/

Linked-Data-The-Story-So-Far.pdf doi: 10.4018/jswis.2009081901
Boulos, M. N. K. (2004). A first look at healthcybermap medical semantic subject search engine.

Technology and Health Care, 12(1), 33–41. Retrieved from https://content.iospress.com/

articles/technology-and-health-care/thc00320

Buriro, S., Siddiqui, I. F., Arain, Q., Shaikh, U., & Babar, N. (2015). Semantic web based healthcare
data management. International Journal of Web & Semantic Technology, 6, 1–10.

Caputo, A., Basile, P., & Semeraro, G. (2017). Integrating named entities in a semantic search engine.
In International conference on applications of natural language to information systems (pp.
92–103).

Castells, P., Fernández, M., & Vallet, D. (2002). An adaptation of the vector-spacemodel for ontology-
based information retrieval. In European conference on information retrieval (pp. 197–206).

140

https://www.ijcaonline.org/archives/volume179/number6/abass-2018-ijca-918609.pdf
https://www.ijcaonline.org/archives/volume179/number6/abass-2018-ijca-918609.pdf
https://openproceedings.org/2020/conf/edbt/paper_292.pdf
https://openproceedings.org/2020/conf/edbt/paper_292.pdf
https://www.researchgate.net/profile/Christian_Bizer/publication/220781830_Linked_Data_-_The_Story_So_Far/links/0c9605292483fb69b9000000/Linked-Data-The-Story-So-Far.pdf
https://www.researchgate.net/profile/Christian_Bizer/publication/220781830_Linked_Data_-_The_Story_So_Far/links/0c9605292483fb69b9000000/Linked-Data-The-Story-So-Far.pdf
https://www.researchgate.net/profile/Christian_Bizer/publication/220781830_Linked_Data_-_The_Story_So_Far/links/0c9605292483fb69b9000000/Linked-Data-The-Story-So-Far.pdf
https://content.iospress.com/articles/technology-and-health-care/thc00320
https://content.iospress.com/articles/technology-and-health-care/thc00320


Charbel, N. (2018). Semantic representation of a heterogeneous document corpus for an innovative
information retrieval model: Application to the construction industry. International Journal of
Information Management, 43, 94–107. Retrieved from https://www.sciencedirect.com/

science/article/pii/S0268401218302731 doi: 10.1016/j.ijinfomgt.2018.07.013
Chung, H. (2019). A retrieval framework and implementation for electronic docu-

ments with similar layouts. Journal of Intelligent & Fuzzy Systems, 36(2), 1151–1163.
Retrieved from https://content.iospress.com/articles/journal-of-intelligent

-and-fuzzy-systems/ifs179296 doi: 10.3233/JIFS-179296
Galhotra, S., & Khurana, U. (2016). Semantic search over structured data. In Proceedings of the 25th

international conference companion on world wide web (pp. 237–242).
Ganguly, D., Mitra, M., Roy, D., & Jones, G. J. (2015). A word embedding-based generalized language

model for information retrieval. In Proceedings of the 38th international acm sigir conference

on research and development in information retrieval (pp. 795–798).
Hagelien, T. F. (2019). A framework for ontology based semantic search. In Proceedings of the 20th

international conference on distributed computing and networking (pp. 1–8).
Holter, O. M. (2015). Semantic embeddings for owl 2 ontologies. Journal of Web Semantics,

35, 194–205. Retrieved from https://www.sciencedirect.com/science/article/pii/

S1570826815000708 doi: 10.1016/j.websem.2015.08.002
Jain, R., Duhan, N., & Sharma, A. (2021). Comparative study on semantic search engines. International

Journal of Computer Applications, 180(40), 30–34. doi: 10.5120/ijca2021921494
Jain, V., & Singh, M. (2021). Ontology development and query retrieval using protégétool. Inter-

national Journal of Advanced Research in Computer Science, 12(3), 143–147. doi: 10.26483/
ijarcs.v12i3.7859

Jiang, S., Hagelien, T. F., Natvig, M., & Li, J. (2015). Ontology-based semantic search for open gov-
ernment data. In Proceedings of the 9th international conference on theory and practice of

electronic governance (pp. 332–335).
Jirkovsky, V., &Obitko,M. (2018). Semantic heterogeneity reduction for big data in industrial automa-

tion. IEEE Transactions on Industrial Informatics, 14(10), 4544–4553. Retrieved from https://

ieeexplore.ieee.org/abstract/document/8337021 doi: 10.1109/TII.2018.2831279
Kivikangas, P., & Ishizuka, M. (2020). Improving semantic queries by utilizing unl ontology and a

graph database. In 2020 international conference on computational science and computational

intelligence (csci) (pp. 467–472).
Klinger, P., Gampe, S., Tolle, K., & Peter, U. (2018). Semantic search based on natural language

141

https://www.sciencedirect.com/science/article/pii/S0268401218302731
https://www.sciencedirect.com/science/article/pii/S0268401218302731
https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs179296
https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs179296
https://www.sciencedirect.com/science/article/pii/S1570826815000708
https://www.sciencedirect.com/science/article/pii/S1570826815000708
https://ieeexplore.ieee.org/abstract/document/8337021
https://ieeexplore.ieee.org/abstract/document/8337021


processing–a numismatic example. Semantic Web, 9(3), 371–391.
Kohn, A., Bry, F., & Manta, A. (2016). Semantic search on unstructured data: Explicit knowledge

through data recycling. In 2016 ieee 16th international conference on data mining work-

shops (icdmw) (pp. 258–264). Retrieved from https://ieeexplore.ieee.org/abstract/

document/7836616 doi: 10.1109/ICDMW.2016.0043
Kumar, S., Singh, M., & De, A. (2017). Owl-based ontology indexing and retrieving algo-

rithms for semantic search engine. Journal of Web Engineering, 16(5-6), 349–368. Re-
trieved from https://www.rintonpress.com/journals/jwe/abstract/1540-9589_16

_5-6_349 doi: 10.13052/jwe1540-9589.1654
Løvdahl, C. (2018). A comparison of informationmodeling in ormand owl. In International conference

on conceptual modeling (pp. 181–190). Retrieved from https://doi.org/10.1007/978-3

-030-00722-8_14 doi: 10.1007/978-3-030-00722-8_14
Mrabet, Y., Bennacer, N., Pernelle, N., & Thiam, M. (2018). Supporting semantic search on heteroge-

neous semi-structured documents. Information Processing & Management, 54(3), 439–459.
Munir, K., Odeh, M., McClatchey, R., Khan, S., & Habib, I. (2014). Semantic information retrieval

fromdistributed heterogeneous data sources. Journal of Computer and System Sciences, 80(6),
1066–1079.

Mäkelä, E. (2021). Survey of semantic search research. Journal of Information Retrieval, 27(3),
237–264. Retrieved from https://link.springer.com/article/10.1007/s10791-021

-09484-9 doi: 10.1007/s10791-021-09484-9
Nachouki, G., Nachouki, M., & Chastang, M.-P. (2015). Semantic reconciliation in peer multi-data

source management system. International Journal of Database Theory and Application, 8(2),
123–136.

Nešić, S., Crestani, F., Jazayeri, M., & Gašević, D. (2010). Search and navigation in semantically
integrated document collections. In International conference on advanced information systems

engineering (pp. 79–94).
Noah, S. A., Alias, N. A. R., Osman, N. A., Abdullah, Z., Omar, N., Yahya, Y., & Yusof, M. M. (2013).

Ontology-driven semantic digital library. Journal of Information and Knowledge Management,
12(1), 1250003. doi: 10.1142/S0219649212500032

Obiniyi, A. A., Oyelade, O. N., & Junaidu, S. B. (2014). Enhancing reasoning and retrieval performance
onowl using sqwrl. InProceedings of the 2nd international conference on advanced data and in-
formation engineering (daeng-2014) (pp. 165–172). Retrieved from https://link.springer

.com/chapter/10.1007/978-3-319-06764-3_18 doi: 10.1007/978-3-319-06764-3_18
142

https://ieeexplore.ieee.org/abstract/document/7836616
https://ieeexplore.ieee.org/abstract/document/7836616
https://www.rintonpress.com/journals/jwe/abstract/1540-9589_16_5-6_349
https://www.rintonpress.com/journals/jwe/abstract/1540-9589_16_5-6_349
https://doi.org/10.1007/978-3-030-00722-8_14
https://doi.org/10.1007/978-3-030-00722-8_14
https://link.springer.com/article/10.1007/s10791-021-09484-9
https://link.springer.com/article/10.1007/s10791-021-09484-9
https://link.springer.com/chapter/10.1007/978-3-319-06764-3_18
https://link.springer.com/chapter/10.1007/978-3-319-06764-3_18


Pappu, A., Blanco, R., Mehdad, Y., Stent, A., & Thadani, K. (2019). Lightweight multilingual entity
extraction and linking. In Proceedings of the 2019 conference on empirical methods in natural

language processing and the 9th international joint conference on natural language processing

(emnlp-ijcnlp) (pp. 2694–2704).
Popadić, D., Iglesias, E., Sakor, A., Janev, V., & Vidal, M.-E. (2019). Towards a solution for an energy

knowledge graph. In Proceedings of the international conference on web intelligence (pp. 399–
403).

Pressat-Laffouilh‘ere, T., Balay’e, P., Dahamna, B., Lelong, R., Billey, K., Darmoni, S. J., & Gros-
jean, J. (2018). Evaluation of doc’eds: a french semantic search tool to query health docu-
ments from a clinical data warehouse. BMC medical informatics and decision making, 18(1),
91. Retrieved from https://bmcmedinformdecismak.biomedcentral.com/articles/10

.1186/s12911-018-0652-4 doi: 10.1186/s12911-018-0652-4
Rekabsaz, N. (2017). Enhancing information retrieval with adapted word embedding. In Proceedings

of the 40th international acm sigir conference on research and development in information

retrieval (pp. 1245–1248).
Ristoski, P., Rosati, J., Di Noia, T., De Leone, R., & Paulheim, H. (2018). Rdf2vec: Rdf graph embeddings

and their applications. In European semantic web conference (pp. 498–514). Retrieved from
https://link.springer.com/chapter/10.1007/978-3-319-93417-4_30 doi: 10.1007/
978-3-319-93417-4_30

Rusinol, M., Aldavert, D., Toledo, R., & Llados, J. (2017). Browsing heterogeneous document collec-
tions by a segmentation-free word spotting method. In 2017 14th iapr international conference
on document analysis and recognition (icdar) (pp. 245–250).

Ryen, V. (2021). Semantic knowledge graph creation from structured data: a systematic literature
review. Journal of Web Semantics, 71, 101094. Retrieved from https://www.sciencedirect

.com/science/article/pii/S1570826821000226 doi: 10.1016/j.websem.2021.101094
Salim, F. A., Muller, G., Ali, H. B., & Falk, K. (2019). User-centered data-driven approach to enhance

information exploration, communication, and traceability in a complex systems engineering
environment. International Journal of InformationManagement, 49, 416–432. Retrieved from
https://www.sciencedirect.com/science/article/pii/S0268401218301115 doi: 10
.1016/j.ijinfomgt.2019.03.005

Samuelsen, S. D. (2016). Representing and storing semantic data in a multi-model database. Journal
of Web Semantics, 40, 58–71. Retrieved from https://www.sciencedirect.com/science/

article/pii/S157082681630035X doi: 10.1016/j.websem.2016.06.001
143

https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-018-0652-4
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-018-0652-4
https://link.springer.com/chapter/10.1007/978-3-319-93417-4_30
https://www.sciencedirect.com/science/article/pii/S1570826821000226
https://www.sciencedirect.com/science/article/pii/S1570826821000226
https://www.sciencedirect.com/science/article/pii/S0268401218301115
https://www.sciencedirect.com/science/article/pii/S157082681630035X
https://www.sciencedirect.com/science/article/pii/S157082681630035X


Shekhar, M., & Saravanaguru, R. (2021). A case study on semantic web search using ontology
modeling. International Journal of Advanced Science and Technology, 30(03), 291–300. doi:
10.32777/ijast.30.03.291

Shi, C., Li, Y., Zhang, J., Sun, Y., & Yu, P. S. (2015). A survey of heterogeneous information network
analysis. IEEE Transactions on Knowledge and Data Engineering, 27(2), 339–362.

Tang, X., Wang, X., Feng, Z., & Jiang, L. (2021). Ontology-based semantic search for large-scale rdf
data. Journal of Intelligent & Fuzzy Systems, 40(5), 10331–10341. doi: 10.3233/JIFS-210508

Wang, L., Liu, Y., & Zhang, Q. (2019). Effective techniques for retrieving information from
heterogeneous industrial data sources. Journal of Industrial Information Integration,
14, 55–63. Retrieved from https://www.sciencedirect.com/science/article/pii/

S2452337019300460 doi: 10.1016/j.jii.2019.02.003
Wrigley, S. N., Elbedweihy, K., Reinhard, D., Bernstein, A., & Ciravegna, F. (2013). Evaluating se-

mantic search tools using the seals platform. In European semantic web conference (pp. 91–
105). Retrieved from https://doi.org/10.1007/978-3-642-38288-8_7 doi: 10.1007/
978-3-642-38288-8_7

Zaman, G., Mahdin, H., Hussain, K., Rahman, A.-u., Abawajy, J., & Mostafa, S. A. (2018). An on-
tological framework for information extraction from diverse scientific sources. IEEE Access,
6, 11482–11494. Retrieved from https://ieeexplore.ieee.org/abstract/document/

8323797 doi: 10.1109/ACCESS.2018.2804053
Zende, D. A., & Baban, C. G. (2015). Effective semantic search over huge rdf data. International Journal

of Computer Applications, 114(10), 6–10. Retrieved from https://www.ijcaonline.org/

archives/volume114/number10/20483-2015098579 doi: 10.5120/20150-9857

144

https://www.sciencedirect.com/science/article/pii/S2452337019300460
https://www.sciencedirect.com/science/article/pii/S2452337019300460
https://doi.org/10.1007/978-3-642-38288-8_7
https://ieeexplore.ieee.org/abstract/document/8323797
https://ieeexplore.ieee.org/abstract/document/8323797
https://www.ijcaonline.org/archives/volume114/number10/20483-2015098579
https://www.ijcaonline.org/archives/volume114/number10/20483-2015098579


Appendices

Appendix A Appendix

Here is the GitHub Code Repository link -
https://github.com/habibulmursaleen/semantic_search_w_rdf_owl_rml
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