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Abstract

The project is focused on developing a real-time embedded application for the subjective assess-
ment of audio parameters. This project’s scope is limited to Just Noticeable Difference (JND) testing.
The study around this project investigates the audio parameters suitable for JND while diving into
different methods of testing such parameters. This tool is developed to allow real-time equalizer
coefficients update as well as offer A/B/X testing of linear distortion. The system currently supports
stereo audio output and a graphical user interface for running training and testing sessions with sev-
eral configurable options and provides binomial distribution analysis and confusion matrix of each
conducted ABX testing session. The tool utilized the JACK audio connection kit for low latency audio,
and is optimized for general purpose computer as well as tested on Raspberry Pi 400.

Keywords: ABX Tests, Subjective Testing, Real-Time Audio, Embedded Systems, Just Noticable Differ-
ence, JACK Audio Connection Kit
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1 Introduction

This project focuses on developing a real-time embedded application, AudibleT i, for A/B/X test-
ing [1] [2] [3] of specific audio parameters, addressing a critical need in the audio industry. Over
the past three decades, listening tests have transitioned from tape recorders to computer software,
enabling more sensitive and sophisticated evaluations. However, most existing software solutions
are tailored to particular objectives, resulting in systems that neither allows on the fly equalizer al-
terations nor offer public access.

With recent advancements in computing power and CPU architectures, it is now possible to per-
form more complex and computationally intensive tests. Yet, many existing listening test tools do
not leverage these developments. This project aims to develop an efficient audio processing and
testing system comprising listener training, testing, and statistical analysis sections. The system will
facilitate real-time filter parameter adjustments to allow subtle changes to audio stimuli, assess lis-
teners’ responsiveness to processed stimuli through interactive testing sessions, and present test
results backed by statistical analysis.

Additionally, the system utilizes modern CPU resources through multi-threading and concurrent pro-
gramming approaches, ensuring compatibility with both general-purpose systems and
resource-constrained hardware like Raspberry Pi. Fundamentally, the project focuses on the system’s
real-time functionality, considering trade-offs between computational complexity, low latency, and
dropout minimization. Furthermore, the goal extends to implementing tests for relevant audio pa-
rameters and ultimately providing an efficient, user-friendly, open-source application with the aim
of turning subjective assessments into objective assessments of these parameters.

1.1 Motivation and Problem Statement

Significant work has been carried out in the field of audio testing in the past 50 years, but some of
the work has become obsolete over the period. Researchers from different fields have been active
in updating testing methods and building new tools. Still, most of them remained in-house and not
accessible to the broader community. Moreover, silicon technology has evolved significantly in the
last decades, and most of the software built before that is not able to utilize modern-day computing

iGiven name of the software, will be used later in the report.
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power. Besides, the majority of the tools built in recent years prepares the test stimuli offline before
the testing takes place, and filter parameters cannot be changed in real time and are not particularly
designed for cheap hardware. Therefore, the aim is to build a resource-efficient embedded tool that
will allow users to run configurable A/B/X tests in real-time for listening tests and get statistics of the
test results at the end. Besides, the tool is expected to be open-sourced so interested communities
can access it for their purpose and contribute to further development.

Audio professionals could also use this tool in several industries, such as music, film, and gaming, to
ensure that their audio products meet their specific standards and deliver their audiences the best
possible sound experience. Additionally, this tool could be helpful for consumer electronics com-
panies to test the performance of their audio products and improve their designs. This tool could
also enable a more accurate and comprehensive evaluation of audio performance by allowing users
to test multiple algorithms or configurations simultaneously and compare their results. Moreover,
this tool could facilitate collaboration and sharing of ideas among audio professionals by providing a
platform for conducting and sharing experiments and results.

The system primarily deals with the real-time aspects of the audio testing approaches, which are also
related to embedded Linux applications. Therefore, this system’s real-time core can also be widely
adopted by automotive applications such as buses, trains, and even airplanes since the application
can be ported on cheap single-boarded Linux computers.

1.2 Research Questions

The primary project goal was to build an embedded tool to enable configurable Just Noticeable Dif-
ference (JND) testing for two-channel audio in real-time, with the possibility of adding more testing
methods, such as rank order tests [4]. The system should consist of multiple threads, where at least
one thread should be dedicated to real-time audio processing. The real-time worker thread should
also get the highest priority from the operating system. Furthermore, the system should process
the audio buffers in suitable chunks to keep the latency to a minimum while preventing audio sam-
ple dropouts. Moreover, the system should be resource efficient, and the compatibility should be
wide enough to be accessible by the interested communities. The tool is aimed to be built on top
of JACK [5], a low latency audio server. However, the relatively newly developed PipeWire [6] has
a JACK-compatible API layer that allows JACK-compatible applications to run on PipeWire. This also
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creates a possibility to analyze and compare the overall performance of the software utilizing both
audio servers at some point in time. The project should also find appropriate audio test parameters,
enable testing for such parameters, and produce statistics for the users.

Considering the initial goals of the project, a set of research questions is listed:
• RQ1: What is the appropriate buffer scheme with low overhead to prevent sample dropouts
while maintaining a minimum or no audible latency in real-time audio processing and be de-
signed efficiently for both general-purpose computers and cheap hardware?

• RQ2: What are the audio parameters suitable for JND testing, and how should those tests be
conducted?

• RQ3: How to improve upon existing tools, in terms of processing audio in real-time, which
statistics data should be generated, ease of use, and presentation of results?

1.3 Objectives

The project development is expected to have the following phases based on the initial goals and
challenges.

• Investigation to find audio parameters suitable for JND testing and methods to perform the
tests.

• Design the system in a resource-efficient manner to be able to deploy on low-performance
processors.

• Create a user-friendly user interface to perform tests.
• Implement the audio processing engine with consideration of efficiency, performance, and
real-time issues.

• Consider thread safety and proper compiler optimization level while writing the program. Im-
proper optimization levels can affect the program behavior significantly on low-cost proces-
sors [7].

• Perform benchmark of the code using JACK API.
• Test, analyze, and compare the results from different hardware with profiling tool.
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1.4 Assumptions and Limitations

This project is developed under a set of assumptions and comes with certain limitations for reasons
such as aiming to complete a set of tasks realistic enough to be completed within the timeline pro-
vided. The constraints are acknowledged, as detailed below:

1.4.1 Assumptions

• Hardware Compatibility: The developed tool assumes a modern CPU architecture or System-
on-Chip (SoC) as the underlying hardware. It may not function optimally on older or less capa-
ble systems.

• Operating Systems: The system has been primarily designed for and tested on Linux (Ubuntu
22.04.1 LTS) [8], MacOS Ventura [9], and Raspberry Pi OS [10], leveraging JACK. Compatibility
with other operating systems and environments is not guaranteed.

• User Familiarity: The system assumes a certain level of user familiarity with the principles of
audio testing and JND.

• Modular Development: The system has been developed using a modular approach, with sepa-
rate, interchangeable components for different functionalities. This assumes that any changes
or updates can be made to individual modules without affecting the overall design of the sys-
tem.

1.4.2 Limitations

• Scope of Audio Testing: Currently, the system is primarily designed for JND testing of linear
distortions through A/B/X testing. Other forms of testing, such as non-linear distortions or
surround sound capabilities, are not included.

• Platform Dependency: While efforts have been made to design a resource-efficient system,
the real-time performance may depend on the specific hardware and software environment in
which it is used.

• User Interface: While the systemdoes include a graphical user interface, its design and features
have been optimized for functionality rather than extensive user experience design.

13



• Modular Dependency: While the modular development approach allows for a degree of flex-
ibility, it may also lead to dependencies where changes in one module could require changes
in others to maintain compatibility and seamless operation.

1.5 Thesis Contributions

The outcomes and contributions from the developed software are as follows:
• A multi-threaded real-time JACK client with the potential to be used for other real-time audio
signal processing tasks and be released as an open-source application that is useful for others
as a basis for similar applications.

• An efficient enough solution to be able to run and performwell on low-cost hardware and thus
be deployed for embedded sound systems.

• A testing tool with an easy-to-use user interface that makes the testing suitable for users with
both technical and non-technical backgrounds.

• It is also expected to be able to perform benchmarking/characterization of low-overhead real-
time processing in the context of a general-purpose operating system (Linux).

1.6 Thesis Outline

This thesis is organized into the followingmain chapters, each serving a specific purpose in the overall
narrative of this research project.

In Chapter 2 an overview of the field of audio quality assessment is provided. It explores the histor-
ical context and the current state of the audio industry to some extent, presenting a broad view of
the importance of audio quality in various sectors. Prior research relevant to this project is reviewed,
and the theoretical foundations that support the development of an audio-testing tool are examined.

In Chapter 3, the research methodology for this project is outlined. The chapter details the steps
taken to develop the real-time embedded application for Just Noticeable Difference (JND) testing of
audio. The strategies used to answer the research questions and accomplish the project objectives
are explored, presenting the journey of creating an efficient, user-friendly system for real-time audio
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processing and statistical analysis.

In Chapter 4, the conceptual design and architecture of the proposed audio testing tool is presented.
This chapter elaborates on the main components of the tool, their interactions, and the rationale
behind key design decisions as well as the tools used to implement the software.

In Chapter 5, the process of implementing the tool and the necessary tests are discussed. This chap-
ter walks through themethodologies and techniques employed during the development process and
explores the challenges encountered and the solutions found.

In Chapter 6, the tests carried out to benchmark the tool, results of the various testing and evaluation
activities are presented, followed by a detailed analysis of the results. The tool’s performance, effec-
tiveness, and potential impacts are critically examined in light of the research questions and project
objectives.

Finally, Chapter 7 concludes the thesiswith a summary of the research findings and their implications.
The chapter also points out potential future research directions and enhancements to the audio
testing tool.
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2 Literature Review

Assessing audio quality is a pivotal element across various sectors within the audio industry. This
not only includes areas like music and film but also permeates into sectors such as video gaming
and even consumer electronics to a certain extend. Providing exceptional audio experiences to end
users relies on developing reliable, efficient, and user-friendly tools for conducting these evaluations.
This chapter presents an overview of the subject, diving into its historical context and examining the
industry’s current state. It also briefly reviews prior research related to this project and investigates
the theoretical foundations underpinning an audio-testing tool’s creation.

2.1 Historical Background

Since its inception, audio testing has advanced significantly. It has a rich history spanning several
decades, marked by significant advancements in technology and methodologies. Early audio testing
was primarily concerned with evaluating analog systems, and engineers and audio specialists relied
on rudimentary methods and tools to assess audio quality. A few of the early significant events in
the history of audio testing from different domains, such as psychoacoustics, testing methodologies,
and introduction to the new technology, are as follows:

• The development of Equal-Loudness Contours by the Bell Telephone Laboratories in the 1930s
[11], which offered a framework for comprehending how humans perceive sound levels at var-
ious frequencies and sound pressure levels.

• The invention of the first audio analyzers, such as the Hewlett-Packard 200 series [12] [13], in
the 1950s and 1960smade it possible tomeasure audio characteristics like frequency response,
distortion, and noise with greater accuracy. During this period, the Danish company Brüel &
Kjær also contributed significantly to the field with their innovative audio measurement solu-
tions, further improving the precision and capabilities of audio testing equipment [14].

• The emergence of digital audio technologies in the late 1970s and early 1980s prompted the
development of new digital audio testing tools and significant advancements in audio testing
procedures.

• The public release of the compact disc (CD) in 1982 [15] brought about a new digital audio
format and necessitated more stringent both electronic and subjective testing techniques to
guarantee the highest audio quality.
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As audio technologies have become more complex, the field of audio testing has developed further,
incorporating cutting-edge algorithms, digital signal processingmethods, and automated testing pro-
cedures.

2.2 Current Industry and Field Conditions

The audio testing industry has seen significant advancements and widespread adoption of various
techniques andmethods. Perceptual coding techniques, such as theMPEG audio codec family (MP3,
AAC), are prevalent [16], relying on psychoacoustic principles to compress audio data while main-
taining perceptual quality. Objective quality measurements methods, like Perceptual Evaluation of
Audio Quality (PEAQ) and POLQA (Perceptual Objective Listening Quality Assessment) [17], have also
gained interest, providing numerical scores to assess audio quality based onmathematical models of
human perception.

Subjective listening tests, such as ITU-R BS.1116 [18] and ITU-T P.800 [19], continue to be used, in-
volving human listeners rating audio quality under controlled conditions. These tests remain a criti-
cal benchmark for validating the performance of objective quality measurement of perceived audio
quality. Additionally, specialized software tools and platforms, like Audio Precision, MATLAB, and
REW (Room EQWizard), have emerged, offering a broad range of audio testing and analysis capabil-
ities, from basic measurements to advanced signal processing and simulation tasks.

Despite the advancements in the field, challenges remain. Some of the current limitations and chal-
lenges in the audio testing industry include:

• The lack of updating equalizer coefficients in real-time.
• Platform or hardware-specific compatibility issues that restrict the use of certain testing tools
or methods.

• A lack of open-source or low-cost tools can limit access to advanced testing capabilities for
smaller organizations, researchers, and hobbyists.

• The difficulty in ensuring the reliability and consistency of subjective listening tests due to fac-
tors such as listener fatigue, bias, and varying experimental conditions.
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• The ongoing challenge to develop more accurate and reliable objective quality measurement
methods that can closely approximate human perception of audio quality.

2.3 Theoretical Foundations

The creation of an audio testing tool necessitates a thorough comprehension of many fundamental
theories, concepts, and frameworks, such as:
a) Psychoacoustics: Psychoacoustics is a branch of psychology and acoustics that studies the human
perception of sound, including pitch, loudness, timbre, and localization. It helps understand how the
human auditory system processes and interprets audio signals. Psychoacoustics plays a crucial role
in the design of audio testing tools, as it provides insights into how listeners perceive audio artifacts
and distortions, which can benefit the development of perceptual coding algorithms and subjective
listening tests. This knowledge is vital for creating reliable and accurate audio testing tools that align
with human auditory perception.

b) Just Noticeable Difference (JND): Just Noticeable Difference [20], pp. 81-127, also known as the dif-
ference limenor differential threshold, is a key concept in psychoacoustics that quantifies the smallest
change in a stimulus that a person can reliably detect. In audio testing, JND tests are often used to
identify theminimum thresholds at which changes in audio parameters, such as loudness, frequency,
or distortion, become perceptible to the human ear. Understanding JND enables the design of audio
tests that accurately assess the audibility of audio artifacts or the quality of audio processing tech-
niques.

c)Metrics for Evaluating Audio Quality: There exist multiple criteria for gauging the quality of audio.
These include the Signal-to-Noise Ratio (SNR), a measure that assesses the desired signal level rela-
tive to the background noise level; and the Mean Opinion Score (MOS) [21], a subjective evaluation
method that compiles individual listeners’ judgments on audio quality. Grasping these criteria is vital
for appropriately assessing audio quality. Moreover, it aids in deciphering test outcomes, which can
subsequently guide the enhancement and fine-tuning of audio systems and processing algorithms.

d) Real-time audio processing: Real-time audio processing is the manipulation and transformation
of audio signals with minimal latency, which is essential for applications such as live sound reinforce-
ment, interactive audio systems, and virtual reality. Key principles of real-time audio processing in-
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clude buffering, block processing, which processes audio data in chunks to balance computational ef-
ficiency and latency; and multithreading, which allows multiple processing tasks to run concurrently,
increasing the overall processing efficiency. A comprehensive understanding of real-time audio pro-
cessing principles is vital when developing an audio testing tool that aims to assess the real-time
performance and responsiveness of audio systems and processing algorithms.

These theoretical underpinnings can be utilized to create an audio testing tool that can provide a
more effective, and accessible solution for evaluating audio quality.

19



2.4 Human Perception in Subjective Testing

Schatz et al. [22] conducted a study to evaluate the impact of the duration of subjective testing on the
listeners’ exhaustiveness and on the quality of the assessments. Subjective testing results depend on
the judgment and the perception of the listeners part of the test. Therefore, it is crucial to design the
tests to not affect listeners’ judgments from tiredness, boredom, or excessive tension. The authors
initially evaluated the weariness of the listeners through a questionnaire andmeasured the eye blink
rate (EBR) [23]. Later, ECG-based measurements were also employed to crossmatch the results from
EBR testing. It was found that after 90 minutes, the listeners started to feel drowsiness, and EBR
increased by 36% on average for one hypothesis and 17% on another. Besides, the heart rate also
starts to drop, indicating that the listeners start to lose interest in the tests. Eventually that affects
their judgment; hence the reliability of the tests conducted.

Liebetrau et al. [24] explored the challenges associated with evaluating emotions in multimedia sys-
tem quality assessment, particularly regarding user affective states. They investigate the direct com-
parison of stimuli as a potentially more efficient and straightforward method for assessing emotions,
as opposed to traditional self-report methods, which have inherent limitations such as demand char-
acteristics, self-presentation biases, limited emotional awareness, and difficulties in articulating emo-
tional perception. The experimental procedure consisted of two sessions in which subjects evaluated
induced emotions in terms of arousal or valence ii using the direct comparison method. Tests were
conducted in an audio lab designed in compliancewith ITU-R BS.1116-1, [25], andDIN 15996 standards.
The authors sought to replicate the results obtained from a Forced Choice Profiling (FCP) experiment
by comparing items predominantly rated on a single emotion dimension. The assessment task was
designed for easy comprehension by the subjects, enabling a more rapid evaluation process. The
study’s findings reveal that although the direct comparison method yielded reasonable results for
the valence dimension, the outcomes for the arousal dimension were less interpretable. The au-
thors ascribe this to the multidimensionality of the stimuli, which can influence ratings even when
the assessment task is explicitly defined. Consequently, they suggest that the paired comparison
method might be unsuitable for evaluating multidimensional items or problems commonly encoun-
tered in multimedia applications. The study highlights the need for further research to investigate
this hypothesis and develop more reliable methodologies for assessing the emotional aspects of au-
dio quality and user affective states in multimedia systems.

iiValence: Describes the musical positiveness conveyed by a track.
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In [26] the researchers investigated the preferences of recording professionals for high-frequency
content in audio material. Fifteen trained subjects were asked to control a simple shelving equalizer,
adjusting the high-frequency content of high-quality stereo program material over repeated trials.
The results indicated awide range of preferences for high-frequency content among the participants,
with a total subject pool mean of +0.34 dB and a standard deviation of 2.8 dB. Interestingly, the re-
searchers found no significant correlation between the participants’ preferences and their years of
experience or themusical genre they frequently worked on. The study also explored the effect of the
randomized starting level of the equalizer on subjects’ preferences. For two subjects, the initial high-
frequency content had a statistically significant effect on their preferences, leading the researchers to
exclude their data from the final analysis. After excluding these two subjects, the equalizer’s starting
position was found to be statistically insignificant at the p=.05 level [27]. This research highlights the
diversity of preferences for high-frequency content among recording professionals and challenges
some common beliefs about the influence of experience or muscial genre on these preferences.

Lund et al. [28] evaluated the importance of time and perception in subjective audio testing. The au-
thor focused on human sensation history and how consciousness works. Several factors, such as age,
exhaustion, or even lack of attention, can drastically impact the perception bandwidth. However,
experiences, previous learning, and expectations positively impact human perception. Nonetheless,
the author iterated that subjective testing is not always dependent on the perception bandwidth [29],
as it is still significantly hard to find out how human consciousness works.

Brook [30] presented an observation from a study conducted over 143 participants of different ages,
gender, background, and experience. The goal of the author was to play two tracks, one unedited
and another edited version of the original track, and see how users would rate the quality of the
tracks. The original track was recorded in 1975, and then an edited version of the original track was
prepared. After the survey, it was found that respondents below 24 years prefer the original track,
while respondents from 25-44 years old prefer the processed and more polished edited track more.
And respondents above 50 years have an equal preference for both tracks. However, musicians and
audio professionals highly preferred the original track. It was also noticed that gender or educational
background does not have a significant impact on audio preference. It is the listeners being accus-
tomed to a certain quality of audio that has a higher impact on the listening tests.

21



2.5 Listening Tests and Methodologies

Toole [31] discusses subjective evaluations’ crucial role and inherent variability in determining sound
quality within the audio industry, suggesting potential avenues for improvement. He underscores the
influential role that subjective evaluations play in shaping various sectors within the industry, includ-
ing decisions about music production and consumer behavior. The author discusses the importance
of listening tests in the audio industry and their considerable effect on shaping its trajectory. De-
spite their significance, the author argues that many tests need more controls and standardization
to yield meaningful, reliable results. It explores the various sources of variability in subjective eval-
uations, such as technical factors like different audio hardware and listening environments, along
with psychological elements that can affect listeners’ opinions. The author also compares subjective
and objective measurements, emphasizing the former’s need for greater precision and standardiza-
tion. While objectivemeasurements are reliable due to their standardized procedures and calibrated
instruments, subjective measurements depend on the human listeners as the "measuring devices",
leading to potential biases and inconsistencies. Toole also highlights efforts by the International Elec-
trotechnical Commission (IEC) to create standardized guidelines for conducting listening tests, ensur-
ing uniformity in the acoustic and electrical requirements for these tests, and establishing specific
procedures for conducting experiments and statistically processing data. This process seeks to en-
hance the consistency and overall value of the results obtained from listening tests.
Moreover, the concept of an ideal listening test is also introduced, which should be reproducible and
accurately reflect the audible characteristics of the product or system under evaluation. However,
the author acknowledges that accomplishing these goals entirely may pose some challenges. Fur-
thermore, the choice of source material for listening tests is also discussed to a certain extent. Given
the impact of recording manipulations on sound quality, selecting commercially available recordings
for testing purposes presents its own challenges. The choice of music used for testing should be
carefully evaluated for both its ability to reveal acoustic qualities and its entertainment value. The
author suggests a few potential future research directions, which include exploring the relationship
betweenmeasurements and perceptions, identifying the point of diminishing returns and just notice-
able differences, and understanding the most influential subjective factors. It suggests that adopting
standardized listening tests could elevate subjective testing to a scientific level, enabling more real-
istic comparisons and discussions across different tests carried out in various environments.

Clark [1] presented a detailed description of a system designed to perform double-blind audibility
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tests in a practical, reliable manner. This system, referred to as the "A/B/X" method, addresses the
weaknesses of traditional audio equipment listening tests, which often lack scientific rigor and don’t
adequately isolate variables. The A/B/X method is a robust system that incorporates techniques
for improving discrimination ability, safeguards for upholding validity, and the use of purpose-built
double-blind testing equipment. The author emphasizes the importance of rigorous scientific test-
ing to generate meaningful data and stretches the necessity of controlling all potential influencing
factors during the test, except for the specific variable under study. The author also highlighted the
critical role of control experiments in providing a baseline for evaluating the results and in measuring
random variations that could stem from the testing technique.
Moreover, several suggestions for optimizing the resolution of the A/B/X test are proposed. These
include an immediate comparison of the signals being tested, emphasizing discerning differences
rather than making qualitative judgments, ensuring sufficient time for the listener to decide, man-
dating a definitive decision without a "no difference" choice, offering the ability to compare similarity
or dissimilarity, enabling listener control over the test, employing sensitizing tests or amplified differ-
ences to enhance sensitivity, allowing for perfect repetition of signals, and using statistical methods
for analyzing the data from groups. Clack also emphasized maintaining validity in audibility testing.
This involves managing factors such as maintaining equal volume levels, ensuring polarity consis-
tency, and excluding unwanted noises and influences. They detail the criteria for frequency response
matching and stress the necessity of careful control over these variables to ensure meaningful test
results.
Furthermore, the author outlined the A/B/X comparator system’s hardware components, which in-
cluded the logic/display module, control module, and relay module. The logic/display module han-
dles the random selection of components A and B. The control module enables the listener to make
judgments and provide responses. The relay module assists in switching components for compari-
son purposes. The author’s argument emphasizes the significance of frequency response and volume
level matching in audibility testing and shares examples of tests conducted on various audio equip-
ment like preamplifiers, amplifiers, pickup cartridges, and loudspeakers. The author also suggested
potential areas for further research and underscored the educational benefits of the double-blind
comparator in training individuals to identify and measure differences in audio signals.

Zielinski et al. [32] investigated the biases often encountered in modern audio quality listening tests.
They highlights three primary types of biases that can distort test results: affective judgment bias,
responsemapping bias, and interface bias, while discussing several other biases. The authors also dis-
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cussed potential bias due to the use of perceptually nonlinear graphic scales. They also explored the
testing methods like ITU-R BS.1116 [18], MUSHRA (ITU-R BS.1534-1) [33], and ITU-T P.800 [19], and ar-
gued that despite considerable advancements in those testingmethods. Biases persist and can affect
the interpretation of results and the development of prediction algorithms. The authors emphasized
biases can be introduced during the selection of audio stimuli or even from the listener’s physiologi-
cal and psychological characteristics. Besides, cognitive processes can also influence judgments. Fur-
thermore, the design of the testing interface, whether traditional paper-based or computer-based,
can also lead to errors. It is also argued that biases related to affective judgments can occur due to
factors like the appearance of equipment, branding, expectation, and personal preference. The situ-
ational context can also introduce biases, as certain audio quality levels might be acceptable in one
context but not another. When listeners translate their internal judgments into external responses,
response mapping bias can occur. This bias can significantly distort listening test results and data
interpretation. It’s essential to consider the influence of these biases when designing and analyzing
audio quality assessments. The authors focused on the importance of awareness of these biases and
using mitigation strategies like blind listening tests, experimental design, and statistical analysis tech-
niques. This can reduce the impact of biases and improve the reliability of results.

Jack et al. [34] presented a study exploring the impact of latency on the quality and interaction of
a digital musical instrument. Musicians played a percussive digital instrument under various latency
conditions, including no latency, 10 ms with jitter iii, and 20 ms. The authors assessed the perceived
instrument quality through improvisation tasks and measured timing accuracy with rhythmic tasks.
The authors also emphasized the importance of minimal, consistent latency in digital musical instru-
ments. They also explored the concept of ’control intimacy,’ which emphasizes a close connection
between a performer’s action and the instrument’s response. The authors also mentioned previous
research on latency perception in a musical setting and how musicians react to timing differences.
The instrument used, was a percussive instrument with ceramic tiles and piezo disks, controlled by
the Bela platform [35] for low-latency processing. Eleven participants played the instrument under
different latency conditions. The authors split the study into two parts: firstly, participants evaluated
the instrument’s quality based on various attributes while improvising. In the second part, the focus
shifted to the objective performance measurement, where participants executed rhythmic exercises
under different latency conditions, and their timing accuracy and dynamic performance were evalu-

iiiVariability in the timing of data transmission due to network congestion, route changes, or other unforeseen com-plications.
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ated. The results illustrated that higher latency or jitter negatively affected the subjective perception
of instrument quality, while not significantly altering timing performance. The findings emphasized
the significance of low, stable latency and its influence on subjective instrument quality assessment.

2.6 Listening Tests Parameters

Geddes et al. [36] introduced an innovative method to measure distortion in audio systems using
the GedLee (Gm) metric, based on nonlinear system theory. Traditional metrics, Total Harmonic Dis-
tortion (THD) and Intermodulation Distortion (IMD), have been questioned for their correlation with
perceived sound quality. In the experiment, thirty-seven normal hearing individuals rated twenty-one
distinct stimuli for perceived distortion iv. The authors calculated THD, IMD, and Gm for each stimu-
lus. The data showedweak negative correlations for THD and IMDwith subjective ratings, suggesting
their limited reliability in predicting sound quality. Conversely, Gm had a strong positive correlation
with the ratings, demonstrating its potential as a reliable predictor. The Gmmetric’s correlation with
subjective ratings improved significantly when focusing on stimuli with low to moderate distortion
levels. The authors concluded that Gm outperforms THD and IMD in predicting perceived sound
quality for nonlinear distortion. While acknowledging that specific stimuli could influence results,
the authors argued that the general conclusions remain applicable.

Moore et al. [37] explored how different types of distortion in music and speech signals affect their
perceived naturalness or quality. They focused on two types of distortion: linear distortion, which
alters the tone quality of the signal, and nonlinear distortion, which adds unwanted noises to the sig-
nal. They sought to develop a model that could predict how these distortions affect perceived signal
quality. The initial phase of the study looked at how various forms of nonlinear and linear distortion
changed the perceived quality of music and speech signals. For linear distortion, they used filters
that caused various spectral changes, such as tilts, ripples, and variations in the cutoff frequency. Lis-
teners then rated the quality of the filtered signals. The findings showed consistent and reproducible
effects on perceived quality based on the type of distortion.

The authors then developed a model to predict the perceived naturalness of these distortions. The
model calculated the changes in the excitation pattern caused by the filtering. It also factored in how
quickly the excitation pattern changed with frequency and how little effect low and high frequencies

ivSubjective experience or awareness of a listener regarding the alteration or modification of an audio signal from itsoriginal form.
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had on perceived naturalness. This model was validated using new sets of spectral distortions, in-
cluding those from actual transducers. The model, while successful, did not consider the impact of
spectral distortion due to imperfect phase responses, as this was considered less perceptible com-
pared to amplitude distortion. The authors concludes, the findings are most applicable to sound
reproduction via headphones or earpieces, not sounds played via loudspeakers in typical listening
environments.

Suzuki et al. [38] examined how changes in the phase response of loudspeakers impact the perceived
sound quality. At the time of the research, there had been ongoing debate in the field of acoustics
on whether phase response matters as much as amplitude response. The authors aimed to provide
a more nuanced perspective on this debate. They suggested that both viewpoints might be correct,
but the key factor is the extent to which phase response changes affect sound quality. This required
detailed analysis for different kinds of phase responses and sound sources. The focus of the study
was to assess whether the phase distortions seen in real-world loudspeakers (even those labeled as
linear-phase) have a discernible impact on high-fidelity sound reproduction. The author used all-pass
filters for their experiments because these have constant amplitude responses and can effectively
simulate the phase responses of loudspeakers. This allowed them to isolate the phase response
variable while keeping other factors constant, which would have been challenging using real-world
loudspeakers due to their inherent variability. Their experiments revealed that phase change has
a smaller effect on the quality of transient sound than one might expect from viewing waveform
changes due to phase distortion. For musical signals, the phase distortions present in their experi-
ment were too small to be detected by the listeners. The authors also pointed out that traditionally,
the emphasis in audio quality analysis has been on amplitude response, partly because it’s easy to
measure and significantly influences sound quality. However, they suggested that the importance of
phase response should not be overlooked, as it can affect the accurate reproduction of waveforms.

Gabrielsson et al. [39] studied how frequency response and sound level variations in sound-reproducing
systems, such as headphones and loudspeakers, affect the perceived sound quality. Sound quality
was analyzed on several perceptual dimensions including loudness, clarity, fullness, spaciousness,
brightness, softness/gentleness, nearness, and fidelity. Three different audio types (female voice,
jazz music, and pink noise) were played using four distinct frequency responses and two different
sound levels. The researchers asked 14 participants with normal hearing to rate the sound quality
they perceived through earphones on the aforementioned perceptual scales. Results indicated signif-
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icant differences in perceived sound quality, attributable to variations in frequency response, sound
level, or both. Also, the researchers observed a link between the program’s spectrum and the fre-
quency responses used, explaining the interactions observed between different reproductions and
programs. The authors concluded that the influence of frequency response on perceptual dimen-
sions is complicated and not fully understood. For instance, factors like brightness and sharpness
increased with rising frequency response toward higher frequencies, while other characteristics like
clarity, spaciousness, and nearness were favored by a broader frequency range. Similarly, the sound
level was found to affect the perceived sound quality. Increasing sound level generally resulted in a
perceived increase in fullness, spaciousness, and nearness as well as sharpness and brightness, with
the reverse effects observed with a decrease in sound level. The authors also explored the interac-
tions between sound level and the frequency response or the program’s spectrum.

2.7 Tools for Listening Test

Hynninen [40] developed a system to enable easy access to subjective testing. Several test categories
are supported by the system, including A/B/X testing. The system also supports multichannel audio
output. Although the system addressed several aspects of audio testing, there are somemajor draw-
backs of the system at the present day. The system was developed based around and limited to the
SGI Hardware platform, which has become obsolete. Besides, The system utilized Alesis Digital Au-
dio Tape (ADAT) interface, which also has become obsolete. Moreover, the system does not support
real-time filter coefficient changes, among other limitations. However, the system was designed to
be easily customizable and modular to support the creation of new customized tests not covered by
existing standardized tests.

Ciba et al. [41] introduced a listening test tool called WhisPER, built for windows platform using Mat-
Lab. The authors illustrated the limitation of most of the commercial and non-commercial tools in
terms of available test methods, playback options, and supported channels. The authors also iter-
ated the limited availability of commercial listening software and their lack of customization options.
Hence, the authors aimed to produce a listening test tool with customizable tests and a graphical user
interface. The tool provided three types of tests, and they are a selection of adaptive psychophysical
methods, the Repertory Grid Technique (RGT) and the Semantic Differential. The tool is also made
available for free for the community to explore and continue the development of the tool, although,
the MatLab licenses are not free.
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The LIStening Test ENvironment (LisTEn) [42] offers a versatile and platform-independent system for
the subjective evaluation of speech and audio signal processing algorithms, supporting various test
types. However, despite its many benefits, the tool presents certain limitations, particularly in the
test setup process and audio file preparation. The process of preparing audio files can be tedious,
as it requires processing test files using candidate codecs and placing them in separate folders. The
audio player’s flexibility in handling different sampling rates and wordlengths is advantageous, but
it does not negate the time-consuming nature of the preparation process. Streamlining the audio
file preparation workflow could further enhance the user experience. Setting up the testing environ-
ment is another area that could be improved. While LisTEn outlines the requirements for an optimal
testing environment, including low background noise, minimal visual distractions, and a high-quality
audio reproduction system, it offers little assistance in facilitating the actual setup. Providing guide-
lines, recommendations, or tools to support users in creating the ideal testing environment would
be a valuable addition to the system. Overall, while LisTEn has proven to be a valuable tool for re-
searchers in audio engineering and related fields, addressing these limitations could make the test
setup process more efficient and user-friendly, ultimately saving time and effort for those conducting
subjective listening tests.

Johnston [43] presented an open-sourced framework for spatial audio perceptual testing to be able
to take advantage of fast-growing virtual reality (VR) technology. The authors created a user-friendly
interface for the users to create listening tests by simply dragging and dropping elements and sharing
the test parameters and results between different users. The framework encompasses standard test
paradigms, such as MUSHRA, 3GPP TS 26.259, and audio localization with different pointing meth-
ods with the capability of more customization by the users. For the user interface, the Unity 3D game
engine is utilized. The test configuration of the environment can be exported as a JavaScript Object
Notation (JSON) file with other users, and the test results also can be exported as a comma-separated
values (CSV) file for further analysis. The audio rendering engine, which is a stand-alone application
used on the SALTE framework, is explained by Rudzki [44]. The tool enables listening tests using Am-
bisonics stimuli and especially focuses on the development of spatial audio technology.

Murgela et al. [45] investigated the utilization of hearing loss simulations and extended the authors’
previous prototype design to aworking solutionwith added features such as real-time audio process-
ing, two-channel audio support, andmore customization. According to the authors, the tool performs
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well in terms of accuracy at a certain level, but it was compromised significantly to ensure good real-
time performance. The digital signal processing algorithm used in the implementation needed to be
more efficient to ensure good results and performance.

Gorzynski et al. [46] came up with a sophisticated listening test tool widely available for public users.
The tool explored different standard audio testing methods for sound grading. It also supports mul-
tichannel audio processing. Besides, the authors built a VR-specific version of the tool to provide
a better experience than the typical desktop testing experience for the user. However, the authors
maintained two separate builds to achieve that, although it was mentioned that they aimed to unify
the builds. Moreover, the tool focused on complex systems like spatial audio and virtual reality.

2.8 Hardware and Test Equipment

McPherson et al. [47] presented a new environment for hard real-time embedded audio process-
ing application that demands ultra-low latency. It is based on BeagleRT, which at the time of writ-
ing, is known as the Bela. The environment is based on the cheap BeagleBone Black single-board
computer [48]. The authors discussed the latency and dropout risks of audio processing in general-
purpose computers and emphasized the dedicated environment for audio processing to provide high
performance while keeping the latency below 1ms for a round trip. The environment is built on Linux
with the Xenomai [49] real-time kernel extensions to achieve such low latency by giving the Xenomai
tasks higher priority than the kernel itself.

Langer [50] proposed an embedded Linux audio system that supports multichannel audio as well as
addressed the real-time aspect of the audio processing. The author emphasized the need for more
applications in this particular area since single-board computers like Raspberry Pi are cheap and pop-
ular nowadays. The authors chose Bela Platform to achieve ultra-low latency in the audio processing.
The platform is suitable for hard real-time applications which require extremely low latency and good
performance.

Coler [51] presented a real-time additive sound synthesis application based on the JACK [5] sound
server. The software architecture of this application is designed to enable the use of additive syn-
thesis or sinusoidal modeling in sound field synthesis systems or other audio reproduction setups.
This allows for greater flexibility and versatility in the way the synthesized audio can be reproduced
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and experienced. An individual JACK client was developed to enable the connection of all individ-
ual synthesizer output channels to a JACK-capable renderer, such as the SoundScape Renderer (SSR),
or [52]. This allows for the integration of the synthesizer with a range of different audio rendering
technologies, giving users more options for how they can experience the synthesized audio. While
the focus of this paper is primarily on additive sound synthesis and its real-time implementation, it
provides valuable insights into the use of the Jack API and Open Source Control (OSC) interface for
control in the context of audio processing applications.

Kuhr and Carôt [53] presented how JACK [5] can be utilized in audio video bridging (AVB) processing
servers while illustrating the evolution of a media clocking scheme. The author aimed to minimize
the latencies in real-time audio-video streaming. It was also argued that JACK is a suitable audio
server solution when audio sample data has to be shared between applications in real time and with
minimum latency. It can significantly minimize the latency as many Digital Signal Processing (DSP)
applications and algorithms are available for JACK. Besides, the JACK server runs independently and
communicates with client applications through an interface, which makes the client application ar-
chitecture modular and easily adjustable.

Taymans [54] introduced PipeWire, which is a sound server system that aimed to combine the func-
tionality of PulseAudio [55] and JACK [5]. PulseAudio in the Linux system is mainly used for consumer
audio and video streaming, while JACK is utilized for Pro audio. The author initially aimed PipeWire to
serve as a daemon that would separate access to the camera and the application, similar to existing
audio daemons. Its purpose was to decouple these two elements and allow them to function inde-
pendently. This approach is not unlike the way existing audio daemons work. But, later, with some
designmodifications, a necessary rewrite, and the support of the Linux Audio Developers (LAD) com-
munity, it adopted audio support as well. Eventually, PipeWire was able to provide the best features
from both PulseAudio and JACK and added compatibility for PulseAudio and JACK applications by
providing an API layer. PipeWire is a technology that aims to improve the way audio and video are
handled on computers. PipeWire aimed to provice a solid foundation for new multimedia applica-
tions by unifying the audio stack [56]. This technology is designed to be future-proof, supporting
the development of exciting new multimedia applications. And, with Fedora 34, it was planned to
replace JACK and PulseAudio with PipeWire, and the authors’ plan involved deploying PipeWire in
other Linux distros too. From April 2021 onwards PipeWire has been the default sound server on
Fedora.
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Viganti et al. [57] presented a comparison between two different but actively used approaches of
real-time audio processing in Linux audio. One is based on PREEMPT_RT kernel patch and the Ad-
vanced Linux Sound Architecture (ALSA) and JACK framework, and the other is the Xenomai patch
and the Elk Audio OS. The authors mainly focused on comparing the most critical aspects, such as
performance, real-time processing latency, scheduling latency, and digital signal processing load of
each system. It was found on the comparison that the ALSA/JACK framework is suitable for soft real-
time and not recommended for the safety-critical system due to comparatively low performance
and higher latency than the Xenomai system. The Xemonai system provides uncompromising perfor-
mance, which makes it the best candidate for a hard real-time system, and that is one of the main
reasons high performing and low latency system like Bela is backed by Xenomai system.

2.9 Audio Processing Techniques

Henk L Muller [58] introduced an innovative approach to digital audio system design, which utilizes
the predictability of hardware to minimize buffering. Muller introduces the application of multi-
threading and multi-core design in real-time systems, notably in audio systems, and showcases their
benefits through examples such as Asynchronous USB-Audio 2 and AVB over Ethernet. Muller’s study
emphasizes multi-threading and multi-core design as effective strategies for digital audio systems. It
explores the advantages of using the XMOS XCore processor for instruction-level thread schedul-
ing over traditional context-switching platforms like Linux. By partitioning the system into different
threads, including network protocol stack, clock recovery, and DSP tasks, the efficiency and perfor-
mance of the system are enhanced. The author also examines the concept of digital audio, high-
lighting its advantages over analog audio in terms of precision, reliability, transmission, and storage.
Muller pays special attention to buffering in digital audio systems and the challenges in determining
appropriate buffer sizes. Moreover, Muller underscores the importance of clocking in digital audio
systems, suggesting a dedicated thread for clock measurement and frequency consistency. The au-
thor advocates for multi-threaded and multi-core design approaches for digital audio systems, argu-
ing that they offer a promising and efficient route for real-time system design. However, he suggests
that further research is needed to evaluate these methods’ scalability and efficiency in larger scale
applications.

Wang [59] presented a low latency multichannel audio processing evaluation platform with a sub-
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stantial potential.Its standout features, such as precise latency control, comprehensive evaluation
capabilities, and the ability to estimate synchronization and delay across channels, are foundational
for optimizing live digital audio systems. The programmability of its Field Programmable Gate Array
(FPGA) and DSP components allows for the implementation of diverse audio processing algorithms, a
feature that significantly enhances its utility. Additionally, it presents a robust platform for research,
opening avenues for investigation in areas like audio signal capturing, intelligent mixing, and latency
measurement such as analog-to-digital conversion (ADC) and digital-to-analog conversion (DAC) dig-
ital filter architectures, buffer subsystem design, interrupt and scheduling, and high-level audio pro-
cessing algorithms. Despite these promising attributes, there are some limitations that need con-
sideration. The hardware prototype, being a first-version, might have potential limitations in perfor-
mance and scalability, particularly in large-scale applications or real-world scenarios. Its complexity,
combiningmultiple components, could present challenges in development and implementation. The
paper does not clarify the cost or availability of the platform, which could impact its accessibility for
users with limited resources. Additionally, the absence of comparisons with existing low latencymul-
tichannel audio processing platforms leaves an uncertainty in assessing the platform’s distinctiveness
or superiority.

2.10 Statistical Analysis

Leventhal [60] underscores the critical role of statistical significance testing in ascertaining the re-
liability of listening tests. It is commonly observed that these tests utilize a 0.05 significance level,
mitigating the risk of type 1 errors v to 5%. However, they frequently neglect to report the risk of
type 2 errors vi . This lapse can culminate in a high type 2 error risk and low power when the sample
size (represented by the number of trials or listeners) is inadequate. The author introduces a novel
fairness coefficient (FC), which serves as a comparative tool for the probabilities of type 1 and type
2 errors. This coefficient provides an objective measure of the fairness of the significance test em-
ployed in a listening study. Furthermore, this coefficient can be adjusted to assess the fairness of a
conclusion of listening tests. The author also warns that combining biased studies might result in an
overall more unfair conclusions.
The author also argues for equalizing the probabilities of type 1 and type 2 errors, primarily by aug-
menting the number of trials or listeners. If such an increase is not feasible, it was proposed to
increase the level of significance to offset bias and balance the escalation in type 1 errors with a re-

vWhen listeners conclude the differences are audible when they are not actually audible.viWhen listeners find differences inaudible when they are actually audible.
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duction in type 2 errors. Leventhal also acknowledged the challenge inherent in selecting a p-value
to balance errors and suggest several remedies for this quandary. An arbitrary p-value, such as 0.7 or
0.8, could be chosen for the equal-error analysis, or the type 2 error could be reported for a range
of p-values. By reporting statistical power vii or type 2 error for a variety of p-values in conjunction
with type 1 error, the author believed that a balanced discussion and response to the work can be
facilitated. Type 1 and Type 2 errors are discussed more in section 5.1.10.2.

Srednicki [61] used Bayesian statisticalmethods to analyze A-B listening tests, which are used to deter-
mine if there’s an audible difference between two audio components. These tests are often debated
due to the difficulties in designing a fair test and interpreting the results. The author’s approach in-
volved calculating the probability that a listener can hear a difference between the two components
during the test. This probability is represented as a fraction (denoted as ’h’) of the total number of
trials. The goal was to determine the upper and lower limits of this fraction with a 95% confidence
level. In the A-B-X testing arrangement, for some trials, the listener can hear a difference and cor-
rectly identify X; in other trials, they guess the identity of X. The probability of correctly identifying
X is represented as ’p’, which is calculated from the fraction ’h’ and the fraction of guesses. The au-
thor provided a mathematical formulation for the probability of getting a certain number of correct
answers, given the number of trials and the probability ’p’. A result is deemed significant if the cumu-
lative probability of the result and all better results is less than 0.05 when ’h’ is zero, suggesting that
’h’ is greater than zero. The author argued that it’s more informative to determine howmuch greater
than zero ’h’ could be. This is where Bayesian analysis comes into play. Based on Bayes’ theorem, the
author formulated a new probability distribution for ’p’, called the posterior distribution, given the
values of the number of trials and correct answers. The author then defines minimum andmaximum
values for ’p’ at the 95% confidence level and demonstrates how these can be used to find the mini-
mum and maximum values for ’h’. The results indicated that it is difficult to confidently establish the
absence of any audible difference unless one either runs several hundred trials or chooses a prior dis-
tribution which is strongly biased. However, the author argued that, it is relatively easier to establish
the absence of a reliably audible difference. The author also discussed the implications of changing
the prior distribution for ’p’, demonstrating that this could significantly impact the maximum value
of ’h’. Srednicki’s new statistical approach to interpreting the results of A-B listening tests provided
insights into how these tests could be improved to yield more reliable and meaningful results.

viiStatistical power is the probability of correctly rejecting the null hypothesis in a future study when the alternativehypotesis is in fact true. The null hypothesis is the claim that there is no audible difference between the reference andthe modified audio stream.
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Boley [3] examines the effectiveness of signal detection theory in interpreting the results of ABX
listening tests, a standard psychoacoustic test used to determine audible differences between two
audio signals. Traditionally, the interpretation of ABX test results relies on percentage correct scores.
However, the authors argue that the use of signal detection theory can help prevent potential false
conclusions and provide more accurate results while discussing experimental design considerations
and statistical analyses, providing insights into the appropriate ways to interpret and report results
from ABX listening tests. They also suggest a set of reporting guidelines for all listening tests, which
include a well-defined hypothesis, detailed method section, information on subject selection, trial
numbers, and confidence levels. They also recommend avoiding certain pitfalls, such as combining
results from different subjects or stimuli that are not quantitatively similar. The study concludes that
while the binomial distribution method is appropriate for ABX test analysis, signal detection theory
offers advantages in terms of accuracy and the need for fewer total trials. The authors emphasize
that good experimental design is crucial and that statistical analysis cannot compensate for poor de-
sign. Overall, the authors provide valuable insights into enhancing the interpretation of ABX listening
test results and suggests that the adoption of signal detection theory could lead to more accurate
conclusions in audio engineering research.
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3 Research Methodology

The purpose of this chapter is to outline the research methods used in the development of this real-
time embedded application for subjective testing. This consists of the approach, design, and imple-
mentation of the system, as well as how the research questions were answered.

The project utilized the Design Science Research (DSR) methodology [62], which is commonly used
in computer science and information systems research. The method involves an iterative process
where each step informs and refines the next. Upon considering different research methodologies,
the ones that stand out as potentially applicable to this project are Design Science Research, Exper-
imental Research [63], and Case Study Research [64]. Although Experimental Research offers some
congruence with this project due to its systematic approach to conducting experiments to validate
hypotheses, it falls short of fully aligningwith the project’s core aim. This project’s focal point extends
beyond hypothesis testing, leaning more towards tool development and understanding its potential
impact. Consequently, Experimental Research’s scope seems limited for this undertaking. Case Study
Research, which emphasizes the detailed exploration of a single instance or event, does resonatewith
some facets of this project. For example, applying the developed tool in a particular audio testing
scenario could be viewed as a case study. However, the overall objective transcends the scrutiny of
a solitary event and aims to craft a tool with broader applications. As such, the applicability of Case
Study Research is circumscribed.

Weighing these alternatives brings DSR to the forefront as the most suitable methodology. With its
primary focus on creating and evaluating IT artifacts intended to resolve identified issues, DSR per-
fectly matches the intent of this project. Furthermore, DSR’s inherent iterative nature blends well
with the project’s development process, making it even more relevant. The systematic yet flexible
approach afforded by DSR permits ongoing refinement and alignment with the project’s evolving
requirements. Thus, despite the potential merits of Experimental and Case Study Research, DSR pro-
vides this project’s most comprehensive and fitting methodology. This led to the research method-
ology used for the development of the software. The approach, design, and implementation of the
system were tailored to respond to the research questions comprehensively. An iterative process
was followed, where each step informed and refined the subsequent ones.

The amount of audio signal processing overhead in real-time systems depends on several factors,
35



such as the arithmetic and structural complexity of the processing algorithms, the sample rate, and
the performance of the hardware and software being used. Real-time audio signal processing can
be computationally intensive and require significant processing power, especially for complex algo-
rithmsor high sample rates. Tominimize the overheadof audio signal processing in real-time systems,
it is essential to carefully optimize the algorithms and use efficient implementations that enable the
program to run on both high-performance and cheap hardware. Additionally, it may be necessary
to carefully manage the amount of processing performed in real-time to ensure that the system can
keep up with the incoming audio data. This can involve using techniques such as buffering, schedul-
ing, and parallel processing to distribute the workload onto multiple cores and avoid overloading the
system.

Although the scope of this project’s implementation is confined to JND and linear distortion testing,
which is conducted through A/B/X testing methods, initially, the study involved an extensive litera-
ture review in obtaining a deeper understanding of the relevant subject matter not limited to the
scope particularly and explored areas such as human perception in subjective testing which has a
significant impact in the tool and test design. It is also worth mentioning that not all of the literature
studies directly contributed to the full scope of the project, but their overall contribution to the im-
plementation can’t be denied. The study dived into the previous work in the domain of audio testing
methods, tools, hardware, and test equipment, as well as the digital signal processing to a certain
extent that aided in identifying the theoretical base for the configurations for the software to be de-
veloped. Subsequent to this, the design and system architecture were conceptualized.

This takes us to the actual coding and implementation of the tool, focusing on creating a tool to meet
the project’s objectives. In this part, the first step was to design the tests and user interface, which
was carried out by taking the various aspects of the listening tests into account observed from the lit-
erature study, such as listeners’ experience in listening tests, sound preference, and headphone and
speaker quality utilized on the test. The user interface design also considers the statistical analysis
of the testing sessions. The next step was to implement the algorithms as well as making the tool
functional. In this part, a suitable amount of experiments was carried out with different buffering
schemes to find the one that provides the best balance of latency and efficiency. Besides, algorithms
are also designed efficiently to not break the processors’ instruction pipeline, which, in general, can
potentially cause dropouts and latency. The applications’ hard and soft real-time aspects are also
considered simultaneously since the goal is to develop an efficient and responsive tool for different
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hardware. This is followed by a data collection and testing phase of the developed tool that facil-
itated the capture of relevant parameters for subsequent analysis and improvements of the tool.
Later, the tool is benchmarked using JACK APIs to assess the performance under different conditions.
Further, profiling tools are utilized to conduct thorough testing and analysis of the results from differ-
ent hardwares and operating systems, enabling effective evaluation of the software’s efficiency and
performance.

Lastly, the results obtained from the testing and evaluation activities were analyzed to meet the
project objectives. The tool’s performance, effectiveness, and potential impacts were critically ex-
amined to provide insights into its capabilities and potential use in the audio industry.
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4 System Design and Architecture

In this chapter, the conceptual design and architecture of the proposed embedded tool are pre-
sented. The tool aims to run efficiently on different hardware and evaluate the perception threshold
for various stimuli, assisting researchers and people from interested fields in conducting audio test-
ing to understand human sensory perception. The system design covers the main components, their
interactions, and the rationale behind design decisions.

4.1 Requirements Analysis

The key functional and non-functional requirements of the tool are as follows:
Functional Requirements:

• FR1: Process audio in real-time utilizing multi-threading.
• FR2: Create and alter filter coefficients in real-time.
• FR3: Record participant responses from testing sessions.
• FR4: Generate reports with statistical analysis.

Non-Functional Requirements:

• NFR1: User-friendly interface for training and conducting tests.
• NFR2: Scalable for different types of filters and audio parameters.
• NFR3: Compatible with various hardware and computers.
• NFR4: Robust, resource-efficient, and reliable performance.

4.2 Technologies and Tools

The following tools, frameworks, and libraries were used in the project development:
• QT:Qt [65] is awidely used cross-platform framework for developing applications and graphical
user interfaces (GUIs). It supports various platforms and operating systems, making it an ideal
choice for our audio testing tool. With its extensive set of libraries and tools, Qt enables the
creation of high-performance, responsive, and user-friendly interfaces. The decision to use Qt
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was based on its flexibility, ease of use, and compatibility with a wide range of hardware and
software configurations.

• JACK 2: The JACK Audio Connection Kit (JACK) [5] is a professional sound server daemon that
provides low latency, high-quality audio processing, and routing capabilities. It iswritten in C++,
but it is based on C-style API to be compatible with JACK 1. It allows applications to connect and
share audio streams, making it suitable for our real-time audio processing requirements. Using
JACK, we can ensure that our testing tool has a reliable, efficient, and flexible audio processing
infrastructure capable of handling complex audio routing andmanipulation tasks with minimal
latency.

• C++: C++ [66] is a versatile, high-performance programming language widely used in the de-
velopment of system software, application software, and embedded systems. Its extensive set
of features, including object-oriented programming and the Standard Template Library (STL),
make it well-suited for implementing the testing tool’s core functionality. The choice of C++
as the primary programming language for this project was influenced by its performance ca-
pabilities, compatibility with various platforms, and the availability of numerous libraries and
frameworks, such as Qt and JACK.

• JACK-Client C++ API (JACKCPP): JACKCPP [67] is a C++ API for interacting with the JACK audio
server. It provides an object-oriented interface to JACK, simplifying the process of connecting,
controlling, and processing audio streams. The use of JACKCPP in the testing tool allowed for
seamless integration with the JACK audio server, enabling efficient real-time audio processing
and routing capabilities. By leveraging the JACKCPP library, we were able to streamline the
development process and ensure reliable, high-performance audio processing within our tool.

• AudioFile: A simple library [68] to read audio files from local storage and load the audio sam-
ples into the memory.

4.3 High-Level Design

Fig. 1 illustrates the proposed tool’s high-level architecture. The tool comprises four primary compo-
nents: the User Interface (UI), the JACK External Client, and the Data Analysis and Reporting are the
core components, and JACK2 is the sound server API that connects the tool with the system and runs
on a separate process. One of the main design goals is to provide an abstraction layer between each
module and perform the communication through simple API interfacing. The UI offers an interactive
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platform for users, enabling them to easily access the tool’s functionalities, such as running training
sessions and test sessions. Meanwhile, the JACK External Client module manages the tool’s core op-
erations, such as running the audio processing engine in a separate thread and processing audio in
real-time with the user-configured filter coefficients. Lastly, the Data Analysis and Reporting module
processes and summarizes the results obtained from the user response during the testing sessions,
providing insights for further analysis and improvement.
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Figure 1: High Level Architecture of the Tool

4.4 Detailed Design

This section dives into the internal architecture and explains the tool’s functionality.
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4.4.1 User Interface (UI)

The User Interface (UI) module is crucial in enhancing user experience and facilitating seamless in-
teraction with the system. Fig. 2 shows the internal architecture and flow of the UI module.
The tool aims to allow listeners to conduct training sessions and testing sessions andultimately review
the outcomes of the completed testing sessions in the form of various types of reports or statistics.
To achieve this, the UI module is divided into three distinct sections, each represented by a separate
tab: Training, Testing, and Statistics.

4.4.1.1 Training UI

This section of the UI module is dedicated to setting up and conducting training sessions for listeners.
It provides listeners with the necessary tools and options to configure filter type, parameters, and
the source listeners would prefer to train on, such as local audio files or any other input method
compatible with JACK, and define other settings relevant to the training process. This window also
shows the CPU load created by the software in real-time. The layout and design of this window aim to
ensure that listeners can quickly and easily understand the process and navigate the various training
options.

4.4.1.2 Testing UI

This tab focuses on facilitating the execution of testing sessions. Listeners can access and configure
the testing duration and the number of guesses, select the appropriate audio samples and define
other relevant settings to customize the testing process. This tab also provides the necessary func-
tionalities to play the reference andmodified tracks, choose their guesses, andmonitor their progress
in real-time.

4.4.1.3 Statistics UI

The Statistics section serves as a hub for reviewing and analyzing the results of completed testing
sessions. Listeners can access a variety of reports and statistics that provide detailed insights into the
performance and outcomes of the tests. This windowoffers visualization options, such as test session
summary, graphs with session results to help listeners understand and interpret the data easily. The
window also includes opportunities to export the test sessions data, allowing listeners to collaborate
with others or use the results for further analysis.
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Figure 2: User Interface

4.4.2 Interfacing

The interfacing of the UI module focuses on providing a seamless user experience while facilitating
communication with other essential modules, such as the JACK external client and the Reporting and
Analysis module. The following sections outline the design details of the interface for the Training,
Testing, and Statistics UI, highlighting their interactions with the relevant external modules.

4.4.2.1 Training UI Interfacing

The Training window is designed to allow users to configure various parameters and settings for the
training sessions. The layout consists of input controls such as a slider for volume control, amplitude
response alterations which leads to generation of the filter coefficients for the selected filter type.
The filter type can also be selected from a drop-downmenu. In addition, there is a drop-downmenu
to select the audio source, such as local files or JACK-compatible input, as well as buttons for starting
or stopping the training session.
During the training session, the user interface communicates with the associated filter classes to
obtain the filter coefficients necessary for the training process. The filter coefficients are sent to the
real-time thread and audio engine. These coefficients are then applied to the audio input buffer to
process the sound stimuli. This communication is facilitated through an abstraction layer supported
by the QT signal and slots mechanism [69].
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4.4.2.2 Testing UI Interfacing

The Testing window’s interface design focuses on enabling users to configure andmanage the testing
sessions easily. It features a drop-down menu to select the audio file to be used to run the test on as
well as an option to choose the number of trials, and three buttons, A, B, and X, to be able to play the
unlabeled tracks. Listeners can play the modified and unmodified tracks as long as they want before
making a choice. And finally, two more buttons to provide the listeners’ response.
The filter coefficient generation takes place in the UI thread in soft real time. The communication
between the testing window, the real-time thread, and the audio engine are similar to the train-
ing window. Additionally, during testing sessions, listeners’ responses are logged into the database
through an API layer which provides abstraction between the UI and the database.

4.4.2.3 Statistics UI Interfacing

The Statistics window interfacing is centered on providing listeners with an overview of the test re-
sults and related statistics. To generate the reports, the UI module communicates with the database
through an API layer. The interface sends a request to themodule, which then processes the test data
and produces the relevant reports and statistics. Once the reports are generated, they are displayed
within the Statistics window, allowing listeners to review and analyze the results.

4.5 JACK External Client (JEC)

JEC plays a pivotal role in the testing tool, as it handles the tool’s core functionality processing audio
stimuli based on the selected filter type and filter coefficients generated from the user-configured
filter parameters in real time. This module runs on a separate worker thread that ensures that the
mainUI thread is not hindered, allowing for smooth and uninterrupted user interactions. Fig. 3 shows
the internal components of the JEC.
The filter coefficient generation engine receives the user-selected filter type and filter parameters
from the controls and executes the associated algorithm to compute the filter coefficients in real
time. The filter-coefficient generations take place in the UI thread, with an abstraction layer to make
the implementation robust and scalable. Upon completion, the calculated coefficients are used to
update the frequency response graph with normalized values. Simultaneously, the generated filter
coefficients are passed to the audio processing engine, which runs on a separate worker thread that
manipulates the audio signals based on these coefficients. The processed audio is then played back
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Figure 3: JACK External Client
to the user, reflecting the effects of the chosen filter settings.

4.5.1 Interfacing

JEC interfaces with both UI and the JACK audio server. The interfacing with the UI is described in
sec. 4.4.2 UI Interfacing. On the other hand, the interfacing with the JACK audio server is performed
utilizing the JACK API, which contains a comprehensive set of functions for connecting, processing,
and managing audio streams.
Key components of this communication include creating a JACK client, registering callback functions,
creating and connecting input and output ports, activating the client, processing audio in real-time,
and cleaning up resources when the connection is no longer needed.

4.6 Data Analysis and Reporting

The module plays a crucial role in the proposed testing tool by processing the test results and pre-
senting them in a meaningful way for the testers. This module contains a database to store user
session data and is responsible for gathering data from the testing sessions, analyzing the data, and
generating reports or statistics that provide insights into the audio tests performed.
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Key components of this module include:
• Data collection: This component gathers relevant data from the testing sessions, such as user
responses, time taken by user to respond, information of the audio file used foe testing, and
number of trials configured for each test session. It organizes the data systematically for further
analysis.

• Data analysis: This component processes the collected data to derive insights and statistics.
It is to perform various calculations, such as identifying trends, calculating average values, or
comparing different test parameters, to provide a better understanding of the test results.

• Report generation: This component generates reports based on the analyzed data. The API
layer exposes a set of methods for this module to interact with the database and return pro-
cessed data to render on the UI with a visual representation.

• Export and sharing capabilities: This component allows users to export the generated reports
in CSV (Comma-Separate Value) format, facilitating easy sharing and collaboration among audio
professionals. Additionally, this feature enables users to store the reports for future reference
or comparison with other test results.

4.6.1 Interfacing

Themodulemaintains an interfacewith only the UImodule as described in 4.4.2. Fig. 4 illustrates the
interfacing of the module with UI. The API layer is responsible for transporting the user commands
to the database and data analysis engine and response from the reporting engine back to the UI.

4.6.2 Database Schema Design

Considering the tool’s functional requirements and final aim, the data model is designed and illus-
trated in Fig. 5. Thedatabase schema for the tool consists of three tables: audio_samples, test_sessions,
and trials. Each table is designed to store specific information related to the tool’s operation.

• audio_samples: This table stores information about the audio samples the user imports for
training and testing. It includes a unique sample_id (primary key), file_name, path, andother_properties.
The sample_id uniquely identifies each audio sample. The file_name stores the name of the
audio file. The path field contains the file path to the audio sample in local storage, and
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Figure 5: Data Model for Data Analysis and Reporting
other_properties is an optional field to store any additional information about the audio sam-
ple.

• test_sessions: This table contains information about each testing session conducted with the
audio samples. It includes a unique session_id (primary key), sample_id (foreign key) referenc-
ing the associated audio sample,max_trials, start_date, and end_date. The session_id uniquely
identifies each testing session, while the sample_id links the testing session to a specific audio
sample. The max_trials field stores the maximum number of trials allowed for the session, and
the start_time and end_time fields record the timestamps for the beginning and end of the
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testing session, respectively.
• trials: This table stores the individual trial data collected during the testing sessions. It includes
a unique trial_id (primary key), session_id (foreign key) referencing the associated testing ses-
sion, correct_response, user_response, and response_time. The trial_id uniquely identifies
each trial, while the session_id links the trial to a specific testing session. The correct_response
field stores the expected correct response for the trial, and the user_response field stores the
user’s actual response. The response_time field records the time taken by the user to make
their response during the trial.

4.7 Design Rationale and Trade-offs

4.7.1 System Architecture

The modular architecture was chosen for the tool to ensure better organization, maintainability, and
extensibility of the code, prevent performance bottlenecks, and ensure smooth operation through-
out the system. This design choice enables easier future modifications and improvements to individ-
ual modules without affecting the overall system. Moreover, the tool is designed to run on multiple
threads for simultaneous operations and take advantage of the modern CPUs. In order to make the
source code modular and maintainable Qt’s Model/View programming [70] paradigm is explored.
However, this paradigm is more suited for application with complex data structure or applications
where same data model could be used in different classes. In the context of AudibleT, the data struc-
tures were fairly simple and expected user experience and design components did not require the
framework of the Model/View Programming at this phase.

4.7.2 Database Schema

The database schema design aims to efficiently store, organize, and retrieve data for the JND testing
tool. The chosen schema structure allows for easy data access and management while maintaining
a balance between performance, scalability, and ease of integration with the tool. The tool did not
require any sophisticated database in particular to fit the requirements. The one fundamental re-
quirement was to select a database to handle relational data insert and management because of the
nature of the A/B/X testing. Therefore, Qt SQL [71] was a straightforward choice given that the tool
was already utilizing the Qt [65] framework and its development environment.
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4.8 Testing Strategy

A thorough testing plan has been developed to guarantee the dependability, effectiveness, and us-
ability of the tool. The testing phases included in this strategy are unit testing, integration testing,
system testing, and usability testing. The identification of potential problems and the verification of
the tool’s correct operation depend on each phase.

4.8.1 Unit Testing

Unit testing focuses on examining the accuracy of specific functions, classes, and components. Poten-
tial problems and bugs can be found and fixed early in the development process by separating these
components and testing them in a controlled environment. A combination of automated test cases
and manual inspection is used during unit testing to make sure that each function and component
behaves as expected and complies with predetermined specifications.

4.8.2 Integration Testing

It examines the interactions between the tool’s various modules, including the UI, the JACK external
client, and the Data Analysis and Reporting module. This stagemakes certain that thesemodules can
effectively interact with one another and communicate with one another, resulting in a unified and
seamless user experience. By developing test scenarios that mimic real-world use cases, integration
testing enables the detection and correction of any potential problems that might arise when various
tool components interact with one another.

4.8.3 System Testing

System testing uses end-to-end tests to verify the overall functionality and performance of the tool.
This phase covers both functional and non-functional requirements to make sure the tool serves its
intended purpose and functions properly in a variety of scenarios. System testing entails running a
number of test scenarios designed to replicate real-world usagewhile evaluating aspects like depend-
ability, performance, security, and compatibility with various hardware and software configurations.
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4.8.4 Usability Testing

Themain goal of usability testing is to assess howwell the tool’s user interface and overall user expe-
rience work. Aspects like usability, intuitiveness, aesthetic appeal, and responsiveness are evaluated
during this phase. User comments, professional opinions, and heuristic assessments are used to
conduct usability testing. Usability testing helps identify areas for improvement by gathering feed-
back from actual users and professionals, and it guarantees that the tool provides a satisfying user
experience.
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5 Implementation

This chapter presents the implementation process of the audio testing tool developed throughout
this research project. The tool comprises three main modules described in sec 4.3. Each of these
modules plays a vital role in ensuring the tool’s functionality, performance, and usability. It aims
to detail the implementation methodologies and techniques employed for each module, providing
insights into the development process and the decisions made along the way, and detailed analysis
of each modules functionalities.

5.1 User Interface (UI)

In this section, the implementation details of the User Interface (UI) for the tool is explored, focusing
on the technical aspects that enable users to interact effectively with the application.

5.1.1 MainWindow

The main window serves as the central component of the application, providing the user interface
for switching between different modes: Training Mode, Test Mode, and Statistics.

The customWindow class inherits fromQWidget and is responsible for creating andmanaging the ap-
plication’smainwindow. TheQMainWindow is not utilized since theUI is not sophisticated enough to
need everything QMainWindow offers out of the box. It initializes the TrainingWindow [5.1.2], Test-
ingWindow [5.1.6], and StatisticsWindow [5.1.7] objects and adds them to a QStackedWidget. This
allows the application to easily switch between the different modes by changing the current widget
in the widget container of type QStackedWidget. The Window class also sets up the database con-
nection by creating a DatabaseManager object, which is responsible for managing the application’s
database interactions. Fig. 6 represents the software’s main window.

The main window interface consists of three QPushButton objects that allow the user to switch be-
tween the different modes. The buttons are added to a QHBoxLayout, with leading and trailing QS-
pacerItems to keep the buttons centered horizontally. Finally, a QVBoxLayout is created to hold the
widgets container, and another QVBoxLayout is created to combine the buttons layout and widgets
layout vertically.
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Figure 6: Main Window

The QPushButton objects are connected to their respective slot functions. These slots are responsi-
ble for changing the current widget in the widgets container and updating the button styles to reflect
the currently active mode.

The TrainingWindow, TestingWindow, and StatisticsWindow objects are connected to various signals
and slots to ensure proper communication and synchronization between them. For example, when
the training session state changes, the TestingWindow and StatisticsWindow buttons are enabled
or disabled accordingly. Similarly, when the filter settings or audio file selection in TrainingWindow

changes, the TestingWindow is updated with the new information. Moreover, they are responsible
for showing the appropriate widget based on the button pushed. Each of the push buttons comes
with a distinctly selected and not selected style to help listeners understand which window is cur-
rently active.

5.1.2 TrainingWindow

The TrainingWindow class serves as the main window for training mode. It leverages the Qt frame-
work and its widgets extensively. The TrainingWindow class inherits from theQWidget class, allowing
it to act as a standalone window or be embedded within the main application, or be reuseable. The
constructor initializes the window by creating various Qt widgets and arranging them in layouts.
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The window interface consists of multiple sections, each represented by a Qt Widget. The File List

section utilizes the custom FileListWidget [5.1.3] widget class, which encapsulates the list of imported
audio files by the user. The FileListWidget is instantiated, and its corresponding content widget is
added to the main layout using a QVBoxLayout.

The Training Control Panel [5.1.4] section includes a variety of widgets such as labels, drop-down
menus (QComboBox), sliders (QSlider), and buttons (QPushButton). These widgets are arranged
in nested layouts (QVBoxLayout and QHBoxLayout) to achieve the desired visual structure. The
stylesheet mechanism provided by Qt is employed to define the appearance of the widgets, applying
custom colors, font sizes, and padding.

The Graph [5.1.5] section employs the custom EQGraph widget, which visualizes the frequency re-
sponse of the selected filter. The graph is updated dynamically by invoking the plot function with the
relevant data.

5.1.3 FileListWidget

The FileListWidget class represents a widget responsible for managing and displaying the list of im-
ported audio files by the users for training and testing purposes. It offers functionality to interact
with the files, such as selecting a file for training in a training window.

A QScrollArea is created to accommodate the file list. The scroll-able content area is created as a
child widget within the scroll area. It acts as a container for the individual file items, and each file
item contains aQLabel for the file name. Besides, two buttons are created: Import file and Clear files,
which allow users to import new audio files and clear the existing file list, respectively. The buttons
are styled and connected to their respective slots using the clicked signal. With respect to the signal
from the Import button, aQFileDialogwindow opens that allows listeners to select single or multiple
audio files from their computer.

A public method is utilized to populate the file list based on the provided list of audio files from an-
other parent classwhich helpsmake the classmodular and to be used fromotherwidgets if andwhen
required. It begins by clearing the existing list first, and then, for each audio file, a label is created to
display the file name. The label is customized with the file path stored as property and an event filter
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Figure 7: File List Widget
to detect mouse clicks. The styling of the label is determined based on the current selection state. A
horizontal line is added below each label to separate the items visually. The label and line are added
to the scroll layout to form each file list entry.

The eventFilter function fromQt handlesmouse-click events on the file labels. When a label is clicked,
it is identified as the clicked label. If the clicked label differs from the current selection, the visual
styling of the labels is updated to highlight the selection. The current selection is updated to the
clicked label, and a signal is emitted to indicate the selected audio file. Lastly, a signal is emitted
with the file path of the currently selected audio file, if any, when that particular item is selected. It
retrieves the file path stored in the label’s property. The parent class then uses the file path to load
the selected audio file data into the memory using AudioFile [68].

5.1.4 Training Control Panel

The Select Source drop-down menu lets users choose the audio source for the training session. It of-
fers two options: Local audio files andMicrophone/JACK. Selecting the Local audio files option reveals
the file list widget, allowing users to import and select audio files from their local storage. On the
other hand, choosing Microphone/JACK hides the file list widget and indicates that the audio input
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will be sourced from the microphone or JACK audio server.

Figure 8: Training Control Panel

The Select Filter drop-downmenu allows users to choose the type of filter to apply during the training
session. It provides two options: High Shelf Filter and Low Shelf Filter at the moment. Selecting ei-
ther option triggers the corresponding filter selection functionality and updates the audio processing
accordingly in real-time with a barely noticeable delay.

Figure 9: Source Selection Drop-down Menu

The Filter Parameters section displays the current settings of the selected filter. It consists of three
sliders: Volume, Gain (dB), and Frequency (Hz). The Volume slider controls the overall volume level
of the audio output. The Gain (dB) slider adjusts the gain applied by the selected filter, allowing users
to modify the magnitude of the filter effect. The Frequency (Hz) slider determines the crossover of
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Figure 10: Filter Type Selection Drop-down Menu
the filter setting, influencing the frequency range affected by the filter.

As users interact with the sliders, the associated slot function is triggered, updating the equalizer
parameters accordingly. The function sets the gain and cutoff frequency values based on the slider
positions and emits a signal to inform other components about the updated values.

Figure 11: Filter Parameters Control

Additionally, the control panel includes two buttons: Play Reference and Play Modified, enabling
users to play the selected audio file in its original state or with the applied filter effect. When clicked,
the buttons invoke the corresponding actions through the JackWorker 5.1.8.1 instance, which handles
audio playback.

Figure 12: Reference and Modified track selection buttons

Moreover, the code introduces a separate JackWorker [5.1.8.1] class and a worker thread (QThread)
to handle audio-related operations. The JackWorker class encapsulates the setup and control of the
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JACK audio server. It is moved to the worker thread using the QObject’s class’ moveToThread func-
tion to offload audio processing tasks from the main thread, ensuring a responsive user interface.
Signals and slot connections are established between the JackWorker, the worker thread, and the
TrainingWindow class to facilitate communication, such as starting/stopping the audio engine and
updating the engine’s status label [72].

Consequently, The control panel section in the TrainingWindow class also includes the Start Training
/ Stop Training button, which allows users to initiate or halt the training session. Initially labeled as
Start Training, the button serves as a trigger to begin the training process. When clicked, it invokes
the corresponding slot function connected to the button’s clicked signal. Upon activation, the but-
ton title changes to Stop Training, indicating the active training state and updating necessary state
variables. Upon starting the training session, the button triggers several actions.

It starts the JACK audio server by invoking the appropriate function of the JackWorker class, which
handles the audio processing engine. The audio source, either as a local audio file or JACK input, is
set properly before starting the JACK audio server since the audio input and output port setup holds
dependency with the said configuration. The active filter type is also set and passed to the audio
processing engine. Simultaneously, the button disables the Select Source drop-down menu to pre-
vent changes during the ongoing training session. It updates the button’s tooltip to inform users that
audio source selection is disabled while the training session is active.

Conversely, when the training session is already running, clicking the button triggers the Stop Training
functionality. It stops the JACK audio server using the corresponding function of the JackWorker class.
The button text reverts to Start Training, indicating that the training session has been halted. The
Select Source drop-down menu becomes enabled again, allowing users to change the audio source
for future sessions.

5.1.5 EQ Graph

The EQGraphwidget within the TrainingWindow class is responsible for displaying an equalizer graph
representing the selected filter’s frequency response. It utilizesQtChartsmodule to produce a graph-
ical representation that could help users visualize and understand the impact of the applied filter on
different frequency ranges.
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The EQGraph widget sits on the right side of the control panel section of the TrainingWindow. The
behavior of the EQGraph widget is driven by the selected filter type and the corresponding filter
parameters set by the user. When the user changes the filter parameters using the gain and cutoff
frequency sliders or when the selected filter type changes from the drop-down menu, the corre-
sponding function is invoked. The appropriate FilterType [5.1.12.3] and the corresponding gain and
cutoff frequency values are determined inside the method. The necessary filter coefficients (B and
A) are computed based on the filter type where B and A refers to non-recursive and and recursive
coefficient vectors respectively. These coefficients represent the filter’s transfer function and deter-
mine the filter’s effect on the audio signal.

Next, a set of frequency points is chosen to represent the frequency range of interest, spanning from
20 Hz to 24 kHz. The gain (in dB) at each frequency point is calculated by applying the filter’s transfer
function to the selected frequency values. This determines how the filter modifies the audio signal’s
amplitude at different frequency regions.

Figure 13: EQ Graph

In the end, the EQGraph widget is updated by invoking its plot function. The frequency points and
corresponding gain values, along with axis labels and graph titles, are passed as parameters to gener-
ate the visual representation of the frequency response. The graph is displayed within the EQGraph
widget, allowing users to observe the changes in the frequency response as they adjust the filter
parameters.
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5.1.6 TestingWindow

The TestingWindow component is the core part of the tool that allows listeners to conduct audio
testing sessions. The implementation involves creating a QWidget-based class that encapsulates the
functionality and visual layout of the window. The Control Panel section of the testing window is
designed using QLabel, QPushButton, and QSpinBox widgets. It allows users to configure the testing
session by selecting the number of trials and the audio file to test with for that particular session. The
Start/Stop button triggers the initiation or termination of the testing session. The Control Panel lay-
out is organized using QVBoxLayout and QHBoxLayout to achieve the desired vertical and horizontal
alignment of the widgets.

Figure 14: Test Control Panel
Fig. 15 shows the Testing Panel section, that provides real-time feedback during the testing session.
It displays how many attempts are left out of desired trials and the currently playing audio track and
provides buttons to play the respective tracks (Track A, Track B, Track X). It is worth mentioning that
the currently playing status only shows the abstract label of the track, such as Track A, Track B, or
Track X. It doesn’t indicate which one is the modified track or the reference track. Assigning of track
label, whether modified or reference track, will get Track A or Track B label is controlled by a sepa-
rate method which performs a seed generation and random label distribution after each trial, hence,
making the labeling is entirely random. Finally, listeners can select their response indicating which
track (A or B) they perceive asmost similar to Track X. The Testing Panel layout is also structured using
QVBoxLayout and QHBoxLayout to arrange the widgets in a visually appealing and intuitive manner.

The implementation includes event handling and signal-slot connections to enable interaction with
the user interface. For example, when the Start/Stop button is clicked, it triggers the corresponding
slot function to start or stop the testing session. Similarly, selecting an audio file from the dropdown
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Figure 15: Test Area
menu emits a signal that triggers the associated slot function to update the selected audio file.

Furthermore, the window interacts with the Jack server to handle audio playback and processing, as
stated in 5.1.2. Additionally, the Play buttons (Play A, Play B, Play X) are connected to slots that trigger
the playback of the respective audio tracks through the JackWorker. These buttons interact with the
JackWorker to set the audio file to be played, and the currently playing label is updated accordingly.
The window also involves integrating additional components, such as aDatabaseManager, to handle
data storage and retrieval. The Testing Window interacts with the DatabaseManager to populate
the available audio files imported by the listeners from the local computer for selection in a testing
session. It also creates a new testing session record in the databasewhen a new session is started and
logs the listener responses and other information, such as expected response, into a separate table
associated with the corresponding session. These records are later utilized for report generation,
which is explained in 5.1.10.

5.1.7 StatisticsWindow

The Statistics Window is responsible for displaying statistical graphs and session information related
to the testing sessions. It provides visual representations of the data gathered during the testing
process. The implementation of the Statistics Window which is illustrated in fig. 16 involves the
following key components:

• Statistics Summary Widget: This widget displays some specific summary of the total sessions
conducted within the tool such as average trials per session, average response time per trial,
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Figure 16: Statistics Window
average duration per session, and average success rate per session. A custom class Statistic-
sSummaryWidget is utilized to create the widget using QLabel, QVBoxLayout and QHBoxLay-

out.
• Session ListWidget: Thiswidget displays a list of testing sessions. It is created using the Session-
ListWidget class, which provides the necessary UI elements to present the session information.
The implementation is similar to FileListWidget [5.1.3]. The main difference between the Ses-
sionListWidget and FileListWidget is the SessionListWidget contains one extra label for each
item in the scroll view that shows the duration of each session in a user-readable format. The
session list is populated by retrieving session data from the database through the DatabaseM-

anager. The corresponding binomial graphs and confusion matrix are updated upon selecting
a testing session from the list.

• Session Data Export: The statistics window allows listeners to export both single test session
data as well as all sessions data into a CSV file. A custom class called CSVExporter is created
that communicates to the DatabaseManager to prepare the export data based on listeners’
selection from the UI. When the data is ready, a systemmodal opens on the listeners computer
to select the location for the file to store. Fig. 18 shows the buttons available for exporting the
session data.

• Binomial Graph: A custom class is created utilizing QtCharts bar chart modules to represent a
graphical display of the binomial distribution. It visualizes the results of the trials conducted
during a selected testing session. The graph is updated by retrieving the trial data for the se-
lected session from the DatabaseManager and passing it to the object created from the Bino-
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Figure 17: Session List Widget

Figure 18: Session Data Export Options
mial Graph class for display through the correspondingmethod for creating and populating the
chart. The reasoning behind implementing Binomial Graph is discussed in 5.1.10.3.

• Inverse Binomial Graph: For inverse binomial graph, the same Binomial Graph class is utilized
but with a different method to create the chart and populate the data since the algorithm
to generate inverse binomial graph is fairly different than the binomial graph. More in-depth
insight into the data analysis is presented in 5.1.10.3.

• Confusion Matrix: The presentation of the each test session data confusion matrix required
creating a custom widget class ConfusionMatrixWidgetwith utilizing QtableWidget to create a
3×3 table. The class exposed a public method which is called from the StatisticsWindow class
when user selects an item from the SessionListWidget to update the table with with confusion
matrix data prepared by the data analysis module. An in-depth theory behind this analysis is
presented in 5.1.10.2.
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5.1.8 JACK External Client (JEC)

JEC is one of the core parts of the tool that does the heavy lifting, such as processing the audio in
real-time with the equalizer configuration and filter coefficients generated in the UI real-time. How-
ever, it is worth mentioning that the JACK client can be both external and internal [72]. An external
JACK client is appropriate in this scope as it simplifies the tool design.

The JackClientAudioEngine class is the heart of the project’s real-time audio processing functionality.
It extends an AudioIO [67] class that provides a framework for real-time audio input/output (I/O) us-
ing the JACK Audio Connection Kit. The real-time audio processing operation is set up, customized,
and executed in this class. This class is managed by JackWorker, which runs in a separate worker
thread. The constructor of the class configures the audio I/O by setting the client name and the
number of input and output channels. It also created a filter object with default filter configuration
settings and sets the initial position of the audio sample to 0 (zero) to reset the sample position at
the beginning of a session.

The most significant method in the class is the audio callback function, where the real-time audio
processing takes place. The JACK server invokes the function whenever there are an incoming block
of audio frames to process. The function begins by creating an instance of a BaseFilter [5.1.9.2] ob-
ject, the type of which depends on the user’s selection of filter type [5.1.12.3]. The filter is used to
process the audio data in real time.

The audio data processed in the function can come from an external JACK input or an audio file. If the
source is an external input, each sample of the incoming audio data is fetched, optionally processed
by the filter (depending on the user’s choice), and scaled by the user-set volume level. The processed
sample is then sent to the output buffer.

If the source is an audio file, the function fetches each audio sample from the file, optionally pro-
cesses it with the filter, and scales it with the volume level. The processed sample is then written to
the output buffer. The function keeps track of the current position in the audio file and moves to the
next sample position after processing each sample, looping back to the beginning of the file if the
end is reached.
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The class also provides methods for configuring the audio processing operation. These methods
allow the user to set the volume level, the parameters for the filter, the audio file to be processed,
whether the audio data should be filtered, the source of the audio data, and the type of filter to
use. The audio data filter flag is utilized both in the training mode [5.1.2] and testing mode [5.1.6].
When listeners choose to play a modified track, the filter flag is set to true, which then processes the
audio sample based on the selected filter and configurations. In contrast, when a reference track is
chosen, the filter flag is set to false, which writes back the original input buffer to the output buffer
without any filters being applied. These methods are all expected to ensure that the audio engine
is flexible and adaptable enough to various use cases, allowing listeners to customize the real-time
audio processing operation to their specific needs.

5.1.8.1 JackWorker

This class handles the project’s audio processing management as this serves as an intermediary be-
tween the user interface and the JEC [5.1.8]. This class takes responsibility for initiating the setup of
the real-time audio server. Once instantiated, the class sends a status update indicating the readi-
ness of the audio engine to the UI by Qt signal, and the UI then notifies this class to start the JACK
audio server as soon as listeners push the start button. Qt’s signal and slot mechanism enables real-
time inter-object communication aswell as being capable of communication across different threads.

Upon receiving a signal to start the audio server, the intermediary class checks whether the audio
engine is active. If it is not, the intermediary resets the audio engine, initiates its operation, and
connects the audio engine’s outputs and inputs to the physical ports. When the audio source is an
external input, the class ensures that the source ports are also connected to the audio engine’s in-
puts. After successfully starting the audio engine, it sends a status update to the parent class to
indicate that the audio server is now running.

Similarly, when it receives a signal to stop the audio server, it first checks if the audio engine is active.
If it is, it stops the engine, resets it, and sends a status update indicating that the audio server has
been stopped.

This class alsomanages various configurations for the audio engine. These configurations include set-
ting the audio source, the type of active filter, the volume level, and the filter parameters. In addition,
it sets the audio file for playback and a flag that indicates whether the audio file’s playback state has
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been modified as described in 5.1.8. After any change in these configurations, it checks whether the
audio engine is active before applying the changes to prevent any unexpected behavior from the tool.

Should the audio engine need a reset, the JackWorker class deletes the current instance of the audio
engine, creates a new one, and sends a status update.

5.1.9 Digital Filters

A discrete-time signal can be selectively enhanced or suppressed using a digital filter. Digital filters’
main objective is frequently changing a digital signal’s frequency content by damping or enhancing
undesired frequencies, boosting specific frequency bands, or changing the phase relationships be-
tween different frequency components.

Finite impulse response (FIR) filters and Infinite impulse response (IIR) filters are the two basic sub-
types of digital filters. Because FIR filters have a finite impulse response, their output for a given
input will eventually reach zero after a predetermined number of samples. IIR filters have an infinite
impulse response, meaning their outputmight theoretically continue long after the input stops. They
are often more computationally economical than FIR filters [73, p.364-368]

However, this project focused on designing shelving filters, and updating filter coefficients in real-
time.

5.1.9.1 ShelfFilter

Digital filters are employed in the context of audio processing to modify the signal’s frequency spec-
trum to provide various effects, including equalization, noise reduction, and spatialization. To create
a frequency response that resembles a shelf, shelving filters, a particular form of the digital filter, can
modify the amplitude of frequencies in a signal above or below a given cutoff frequency [74].
The ShelfFilter class in this project is implemented to represent such a shelving filter. The filter is
initialized with key parameters, including the sample rate (Fs), cutoff frequency (Fc), gain in decibels
(g), and filter type. After initialization, the filter coefficients are updated based on these parameters.
The gain multiplier (G) is computed from the gain in decibels using the formula:

G = 10g /20, (1)
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where G is the gain.

The cutoff frequency is normalized to the sample rate and represented in radians per sample using
the formula:

ω= 2π(F c/F s). (2)
Two sets of coefficients are calculated - one set for scaling the input samples (b0, b1, b2) and the
other for scaling the output samples (a0, a1, a2). These coefficients are determined based on the
filter type, which can either be a high-shelf or low-shelf filter.

For low-frequency region, the coefficients are calculated from the transfer function:
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For a high-frequency region, the coefficients are calculated from the transfer function:
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The notations are given respectively in [74], (18)-(19). These coefficients are normalized by the a0 co-
efficient to ensure a unity gain at mid frequency. Normalizing the coefficients in this way guarantees
that the filter does not alter the gain of the mid-frequency region of the signal, effectively preserving
the signal’s average value.

The filter processes input samples by storing them in a buffer and calculating the output sample based
on the stored input and output samples, scaled by their respective coefficients. The output sample
is computed using the equation which is a representation of a liner time-invariant system [75], pp.
20-34:

y[n] = b0x[n]+b1x[n −1]+b2x[n −2]−a1 y[n −1]−a2 y[n −2], (5)
where x[n] is the current input sample, x[n-1] and x[n-2] are previous input samples, and y[n-1] and
y[n-2] are previous output samples.

In the end, the filter provides access to the computed vectors of input and output scaling coefficients
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which are utilized to calculate normalized frequency response through FrequencyResponseHelper

[5.1.12.1] class to plot the EQGraph [5.1.5].

5.1.9.2 BaseFilter

This is an abstract class that provides skeleton of a basic audio filter. It forms a blueprint for creating
different types of audio filters. The class provides a common interface for all filters in the form of
a method that processes an audio block. The process_sample() method of this abstract class takes
each audio block as input and returns the processed audio block.

However, the actual implementation of this function is left to the derived classes. This allows each
derived class to implement its own version of the audio processing function, which might involve ap-
plying different filtering algorithms or transformations to the audio sample. In this project, ShelfFlter
[5.1.9.1] inherits from this class.

This abstract class effectively sets a standard interface for all audio filters and allows the integration
of different types of filters in the audio processing pipeline to keep the implementation consistent.

5.1.10 Data Analysis and Reporting

This section presents the approach followed to implement another vital part of the tool, Data Analysis
and Reporting. The type of analysis offered within the tool is detailed as follows:

5.1.10.1 Session Summary

In the statistics window, a simple summary stat is presented at the top. The summary data is calcu-
lated from database records such as the total number of sessions, listeners response time for each
trial, duration for each session and the actual correct and incorrect response from the trials. The
DatabaseManager exposes different methods that returns the computed average number of trials a
listener attempter in each test sessions, average time(seconds) taken by the listener to choose A/B
in an attempt, average time duration of each testing session, and average success rate listener had
for each testing session. These values then presented through StatisticsSummaryWidget.
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Figure 19: Sessions Summary Widget

5.1.10.2 Confusion Matrix

This section provides a detailed explanation of Type I and Type II errors, both of which are common
terms in statistical hypothesis testing and how it is utilized in this software.

A Type I error marked by mistake, also known as a false positive, occurs when one rejects a null
hypothesis that is actually true. The probability of making a Type I error is determined by the sig-
nificance level, also known as alpha (α). This error may lead to false conclusions about statistical
significance. On the other hand, a Type II error, or false negative, happens when one fails to reject
a null hypothesis that is actually false. This error occurs when one overlooks an actual effect due to
lack of statistical power, which could be a result of smaller effect size, larger measurement errors,
small sample size, or low significance level. Beta (β) represents the probability of making a Type II
error. While this error might lead to missed opportunities for innovation or improvement, its impact
is generally considered less severe than a Type I error [60].

The concept of Type I and Type II error is utilized to develop a confusion matrix and present the
results of an audio testing sessions. In the context of ABX testing, listeners’ responses produce a
confusion matrix as follows. Fig. 20 provides visual representation of a testing session of 14 trials
using confusion matrix.

• Cell [1,1]: True Positives (TP): The listener correctly chosen Track A as X.
• Cell [1,2]: False Positives (FP): The listener incorrectly chosen Track A as X when it was actually
B.

• Cell [2,1]: True Negatives (TN): The listener correctly chosen Track B as X.
• Cell [2,2]: False Negatives (FN): The listener incorrectly chosen Track B as Xwhen it was actually
A.
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Through this, the confusion matrix can provide detailed insights about the listener’s ability to cor-
rectly identify the difference. It can also highlight the occurrence of Type I and Type II errors in the
test. A Type I error, in this context, would be when a listener incorrectly identifies the original track as
distorted (False Positive). A Type II error would occur when the listener fails to identify the distorted
track and believes it to be the original (False Negative).

Figure 20: Confusion Matrix of a Test Session Result

5.1.10.3 Binomial and Inverse Binomial Distribution

The ABX testing methodology evaluates whether an audible difference exists between two audio sig-
nals, "A" and "B", by asking listeners to identify an unknown signal "X" as either "A" or "B". It is also
worth mentioning that, It can only be verified that a difference is audible, but it is not possible to
prove that is is inaudible. The premise of ABX testing aligns with the principles of binomial distribu-
tion: if there is no audible difference between the signals, the listener’s responses are expected to
be binomially distributed, with equal probability for both "X=A" and "X=B". Therefore, the correct
interpretation of ABX test results fundamentally depends on an appropriate statistical analysis. This
need is thoroughly addressed by Boley [3], where the authors emphasize the role of proper statistical
analysis in drawing meaningful conclusions from ABX tests.
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Figure 21: Binomial and Inverse Binomial Distribution
As outlined in the research, if there is no perceptible difference between the two audio signals under
test, listeners’ responses to whether stimulus "X" is the same as "A" or "B" will follow a binomial
distribution, even when there a difference is detected. The binomial distribution can effectively vi-
sualisation the probability of a certain number of successes (correct identifications of "X") in a fixed
number of trials (total number of identifications), making it a practical and valid choice for statistical
analysis in this context. Similarly, the use of inverse binomial distribution is justified to determine
the confidence with which a perceived difference between two signals can be declared significant.
The inverse binomial distribution, or the negative binomial distribution, is typically used to model
the number of trials required to achieve a specified number of successes randomly. In the context of
an ABX test, it can be utilized to approximate the number of trials needed before a certain number of
correct identifications (or "successes") occur. This aids in understanding the confidence level of the
test results, which is critical for the interpretation of the results. BinomialHelper [5.1.12.2] discusses
more the implementation of the distribution algorithms. Additionally, it is worth noting that as the
number of trials increases significantly, the binomial distribution approximates a Gaussian distribu-
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tion, also known as the normal distribution. Fig. 21 shows the visual representation of Binomial and
Inverse Binomial of a test session with 14 trials.

The decision to include binomial and inverse binomial distribution in theABX audio testing tool aswell
as the confusion matrix was notably influenced by previous academic research in the field [60]. They
ultimately serve to improve the accuracy and reliability of the implemented tool’s results, thereby
contributing to our goal of enhancing the understanding of perceptual differences in audio signals.

5.1.11 Database

5.1.11.1 DatabaseManager

This acts as amiddleware betweenQtSql database and theUI, such as the training, testing or statistics
modules. The class encapsulates the database operations such as opening and closing the database,
executing queries, and setting up the database schema, and exposes necessary public methods ac-
cessible from outside.

The database schema consists of three tables illustrated in fig 5. The class provides the capability to
insert audio file paths into the database. This operation requires the path and the name of the audio
file. This method is particularly used when listeners import audio files from their local computers.
In addition to inserting audio files, the class also exposed a method to retrieve all audio files from
the database. It does this by returning a list of AudioSample [5.1.11.2] objects which represent the
audio files. Moreover, If there is a need to delete all audio files, the class also provides a method that
removes all records of the audio sample from the database.
Furthermore, the class also provides functionalities related to themanagement of test sessions, such
as creating a testing session and updating a session when it ends. A method is exposed to retrieve
all test sessions along with their duration from the database. It does this by returning a vector of
TestingSession [5.1.11.3] objects which represent the test sessions.

Moreover, this class also provides functionalities for managing trials within test sessions. It can insert
a new trial record into the database. This operation requires the unique identifier of the session for
the trial, the correct response for the trial, the listener’s response for the trial, and the time the user
takes to respond. Consequently, there’s a method to retrieve all trials for a specific session from
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the database. This operation requires the unique identifier of the session for which the trials are to
be retrieved, and it returns a vector of SessionTrial [5.1.11.4] objects representing the trials that are
utilized in constructing the Binomial Graph and Inverse Binomial Graph.

5.1.11.2 AudioSample

This structure represents an audio sample fetched from a database. It’s a simple blueprint that holds
crucial information about each audio sample. Each audio sample is uniquely identified by an ID,
which is stored in sampleId. This is important for differentiating between the samples and allows
for efficient retrieval from the database. The fileName field represents the name of the audio file
corresponding to the sample. This name can be used to present the file to the user or to perform
operations on the file. The path field stores the exact location of the file within the file system. This
information is essential when the audio file needs to be read, manipulated or moved.

5.1.11.3 TestingSession

This struct represents a single testing session. The sessionId is a unique identifier for each testing
session, allowing for the tracking and management of individual sessions within the database. The
sampleId refers to the specific audio sample being tested in this particular session. This allows for
the association of testing sessions with specific audio samples, which is vital for interpreting the
outcomes within the framework of the audio sample under test. The trialsCount field represents
the maximum number of trials configured for this session. This gives an indication of the length and
extent of the session. The duration field represents the total length of the testing session in seconds.
This provides a measurement of the total time that the user spent on the testing session, offering
insights into the user’s engagement and persistence.

5.1.11.4 SessionTrial

The SessionTrial struct represents a single trial within a testing session. It contains several properties.
The trialId is a unique identifier for a trial within a given session. The sessionId represents the iden-
tifier of the session to which this trial belongs. The responseTime is an integer value representing
the time the listener takes to respond to the trial, measured in milliseconds. This is crucial in under-
standing listeners’ performance and responsiveness during the testing session. The correctResponse
is a string value representing the correct response for this trial. This mainly represents the expected
output or reaction from the listener in response to the audio stimulus presented during the trial. The
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userResponse is another string value that represents the actual response provided by the listener
for this trial. By comparing the correctResponse and userResponse, the application can evaluate the
accuracy and correctness of the listeners’ response.

5.1.12 Utils

This subsection explains the utility classes, structures, and enumerations used throughout the tool’s
implementation to make the source code scalable, maintainable, and clean.

5.1.12.1 FrequencyResponseHelper

This class possesses twomethods that work together to compute and return the frequency response
of the shelving filters for a logarithmically spaced sequence of frequencies.

The first method A generates a sequence of points that are spaced logarithmically between a given
start and end point, with each successive frequency increasing by a constant ratio (e.g., double the
previous frequency to get an octave or some fraction thereof). This aims to create a set of frequen-
cies that are distributed more densely at the lower end of the spectrum. This is particularly useful
in audio processing, where our perception of pitch is logarithmic, indicating that we interpret equal
frequency ratios as equal pitch variations.

The second operation calculates the frequency response of the filter, see listing. A. The frequency
response is a crucial characteristic of a filter, showing how it affects the amplitude and phase of dif-
ferent frequencies in a signal. The implementation followed the concept of complex exponential
signals, which are fundamental to the analysis of linear time-invariant (LTI) systems in the frequency
domain. The general form of the complex exponential signal is e jωt , where j is the imaginary unit
(p−1), ω is the angular frequency, and t is the time variable. In the context of signal processing and
systems analysis, e jωt represents a signal that oscillates at a frequency ω [75]. The process starts
by defining the time between each sample, known as the sampling period, and a representation of
the imaginary unit. It then iterates over the list of frequencies for which we want to calculate the
frequency response, see listing. A.

The process transposes the filter’s coefficients into the frequency domain at each frequency. This is
achieved by employing complex exponentials that represent the frequency on the unit circle in the z-
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domain, where z = r.exp( jω), and the radius r is set to 1. These complex exponentials are computed
by taking the exponential of a product involving the imaginary unit, the frequency, and the sampling
period.

The process then evaluates the filter’s transfer function at the given frequency. The transfer function
of a filter is a mathematical representation of how the filter transforms input signals into output sig-
nals.

Once the transfer function is evaluated, the process computes the magnitude of the result. This
magnitude represents the gain of the filter at the current frequency, showing how much the filter
amplifies or attenuates the signal at that frequency.

Finally, the gain is converted to decibels to express it on a logarithmic scale. This is more suitable for
audio applications, as our perception of loudness is also logarithmic [76] - we perceive equal ratios
of amplitudes as equal differences in loudness.

5.1.12.2 BinomialHelper

The class is fundamentally designed for calculations related to the binomial distribution. The bino-
mial distribution represents a probability distribution outlining the count of successful outcomes in
a predetermined number of independent trials that follow the Bernoulli distribution. In this tool, the
binomial distribution is presented as part of Data Analysis and Reportingmodule.

The class begins by calculating the logarithm of a factorial. Factorials, even for relatively small inputs,
can become very large. This can potentially lead to issues with numerical stability and precision in
calculations. By calculating and using the natural logarithm of a factorial instead of the factorial itself,
those issues can potentially be mitigated. The mathematical formula used here is given in [77]:

ln(n!) = l n(1)+ ln(2)+ ...+ ln(n). (6)
The class then uses this concept to calculate the natural logarithm of a combination. In mathematics,
a combination refers to the method of choosing elements from a larger group where the sequence
of selection is irrelevant, distinguishing it from permutations where order matters. This is often sym-
bolized as n choose k, which represents the number of possible selections of k items from a set of
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n. The combination calculation is critical in binomial distribution calculations because it determines
the number of ways a certain number of successes can occur in a given number of trials. The formula
used is:

l n[C (n,k)] = ln(n!)− [ln(k !)+ ln((n −k)!)]]. (7)
In binomial probability, the combination part of the equation represents the number of ways we can
have exactly ’k’ successes in ’n’ trials. The rest of the equation represents the probability of any one
of thoseways occurring. Therefore, the combination is used in the calculation of binomial probability.
The binomial probability is calculated in the class using these concepts: the number of combinations
and the probabilities of success and failure. The calculation followed the formula for the binomial
distribution. This probability reflects the likelihood of seeing a specific number of successes (k) in a
specific number of Bernoulli trials (n). The formula used is:

P (X = k) =C (n,k)× (pk )× ((1−p)n−k ), (8)
where ’p’ is the success probability in a single trial.
The class also provides a method to calculate the cumulative distribution function (CDF) for a bi-
nomial distribution. The Cumulative Distribution Function (CDF) at a specific point represents the
likelihood that the variable assumes a value that is less than or equal to this particular value. The
CDF is computed by summing up the probabilities of all outcomes less than or equal to the given
number of successes. The formula used here is:

P (X ≤ k) =∑
P (X = i ), (9)

for i = 0 to k

Moreover, the class provides an inverse function for the CDF. This function finds the smallest number
of successes such that the cumulative probability is greater than or equal to a target probability.

5.1.12.3 FilterType

This enumeration provides two distinct types of audio filters at thismoment: HighShelf and LowShelf.
It is utilized in several places of the application, such as the audio processing engine and the user in-
terface, to control components like computing filter coefficients, generating normalized frequency,
or plotting frequency graphs.
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The HighShelf enumeration value represents a low-frequency region. This filter allows frequencies
above a certain cutoff point to pass through unaffected, while frequencies below that point are ei-
ther boosted or attenuated.

The LowShelf enumeration value, on the other hand, represents a high-frequency region. This is
essentially the opposite of a high-shelf filter. It allows frequencies below a certain cutoff point to
pass through, while frequencies above that point are either boosted or attenuated.

5.1.12.4 SessionType

The SessionType enumeration is used to represent the current state of a testing session. This state
information is crucial as it affects what operations can be performed on the session at any given time.
It consists of three states - Stopped, Running, and Paused.

The Stopped state indicates that the session is currently not active. This could mean that the session
has not yet started or has been completed and stopped. During this state, adjusting session settings
or preparing for a new session is typically possible. The Running state indicates that the session is
currently active and ongoing. The listeners would typically interact with the application during this
time, and certain operations (like changing session parameters) are not permissible to ensure the
integrity of the session. The Paused state is used when a session is temporarily halted but not com-
pletely stopped. This statemight be used if the user needs to take a break or if there’s an interruption
that requires temporarily halting the session. In the paused state, the session can be resumed at the
point it was halted.

5.1.12.5 SourceType

This enumeration represents the source of audio input within the application. It’s used to determine
how the application accesses and processes the audio data it needs for training and testing. Besides,
the user interface [2] modules several components depending on the audio source type.

There are two possible sources of audio input at this moment:
• Local - state signifies that the audio input source is the local audio files ofWaveform Audio File

Format(WAV) stored somewhere within the listeners’ computer.
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• JACK - indicates that the audio input is sourced from a Jack Audio Connection Kit (JACK) input.
JACK is a professional-grade sound server daemon offering real-time, low-latency pathways for
audio andMIDI data exchanges between various applications. This scenario ismore common in
professional or studio setups, where audio datamight be routed between different applications
or hardware devices.

5.1.12.6 TrackType

This enumeration is fundamentally used to differentiate between two different states of the audio
tracks used for training and testing sessions, each serving a distinct purpose. The Reference value
indicates that the track is a reference track. This is the original or standard track against which oth-
ers are compared or evaluated. It is the original form of the audio track without applying any kind
of alterations. The Modified value indicates that the track is a modified track. This track has been
changed or altered in some way from the reference track. Changes could include effects added or
alterations in frequency and amplitude, among others.

5.1.13 Tests

The key components of AudibleT are covered by unit testing and benchmarking test with the goal
of ensuring the tool behaves functionally correctly and performs optimally. Both benchmarking and
unit testing was implemented for classes such as DatabaseManager, FrequencyResponseHelper, Bi-
nomialHelper, and JackClientAudioEngine since these are considered the most critical parts of the
software that shapes the behavior of the whole software and user experience. QtTest framework is
utilized to write and perform the tests.

DatabaseManager, taskedwithmanaging database operations, was subjected to speed tests for vari-
ous operations like database setup, audio file handling, test session management, and trial handling.
The performance of statistical queries, such as the average number of trials per session and the
average response time per trial was also benchmarked. The intention was to locate potential bottle-
necks and optimize database operations for enhanced performance. The FrequencyResponseHelper
class was analyzed to confirm the accurate calculation of the frequency response for given coeffi-
cients. Similarly, the accuracy of the binomial coefficient calculations in the BinomialHelper class is
also benchmarked and covered by unit testing.
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Besides, for the JackClientAudioEngine class, which deals with audio processing and interaction with
the JACK Audio Connection Kit, its performance is somewhat assessed by creating mock input and
output buffers and running the audio callback function under different conditions. The intention of
the conducted tests was to verify the effective functionality of audio callbacks and the application of
audio filters to a certain extent. It is worthmentioning that this is a primary level of benchmarking for
real-time audio processing as this doesn’t necessarily emulate the real-life scenario. Amore in-depth
benchmarking for this class is discussed in chapter 6.1.

Beyondperformance tests, unit tests for theDatabaseManager are employed to validate eachdatabase
operation, including creation, manipulation, and statistical data retrieval. FrequencyResponseHelper,
BinomialHelper, and JackClientAudioEngineunderwent unit testswith the aimofmaking sure the tool
behaves as expected.
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6 Results and Discussion

This chapter presents the experimental tests carried out tomeasure the tool’s real-time performance
under different hardware and test environments. It analyzes and compares the results in section 6.1.
A critical discussion is followed in detail in section 6.2 by examining the results in the context of the
objectives of this project as well as the previous works in this field.

6.1 Results

This section presents the results of the real-time tool developed. Two benchmarking processes were
followed to test the performance of the tool. The first is to run the benchmarking of the code execu-
tion of the critical part of the tool to get an overview of the execution of those methods. This helps
find general performance bottlenecks in the code and improve them. This benchmarking is carried
out by the QtTest [78] framework. Next, benchmarking the CPU load of the developed JACK External
Client is carried out using different hardware and buffer sizes. It utilized the j ack_cpu_load() [79]
function provided by JACK API. This provides a real-time estimate of how much load JACK is creating
on the CPU. It’s calculated by tracking how long it takes to carry out all necessary processing tasks
within each given cycle. This is then compared to the total time available for these tasks, which is
determined by the buffer size and sample rate. The result is presented as a percentage, indicating
the proportion of available time that is being used. However, this returns the CPU load for all running
clients, therefore the benchmarking is carried out ensuring only one client is active. This refers to one
of the main aspects of this thesis. The sample rate used for benchmarking is fixed at 44100 Hz.

6.1.1 Test Hardware

Several general-purpose computers were utilized for tests, and one Raspberry Pi computer is also
used to verify the usability of the tool in the embedded system. The specification of the hardware
and environments are detailed as follows in table 1. For additional information about the hardwares,
see listing. B.

6.1.2 Benchmarks

The real-time performance of the tool has been tested for different hardware devices with different
buffer size, as shown in table 2, 3, 4, 5, 6 and 7.
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Table 1: Test Hardwares
Configuration Type Apple Mac Studio MSI Creator Raspberry Pi 400
Vendor Apple Micro-Star Interna-tional Co., Ltd. N/A
Model Name Mac Studio Creator 15 A10SDT(16V2.1) Raspberry Pi 400 Rev1.1
CPU/Chip Apple M1 Max (Ap-ple Silicon based onARM64)

Intel(R) Core(TM)i7-10750H CPU @2.60GHz
Broadcom BCM2711quad-core Cortex-A72(ARM v8) 64-bit SoC@ 1.8GHz

Total Number of
Cores

10 (8 performance and2 efficiency) 6 4
Memory 32 GB LPDDR5 16 GB 4 GB LPDDR4-3200
System Version macOS 13.3.1 Ubuntu 22.04.1 Raspberry Pi OS withDesktop
Kernel Version Darwin 22.4.0 5.19.0-42-generic 6.1
GCC Version Apple clang ver-sion 14.0.3 (clang-1403.0.22.14.1)

11.3.0 10.1.0

JACK Version jackdmp 1.9.22 jackdmp 1.9.20 jackdmp 1.9.17
CMake Version 3.26.3 3.26.20230513-g7f64e92 3.18.4

Table 2: Results from Different Hardware with Buffer Size of 64 Samples

Hardware Buffer Size
CPU Load (%)
(Filter Off)

CPU Load
(Local File)

CPU Load
(JACK - Microphone/Others)

Mac Studio 64 ≈ 2.5 ≈ 4.6 ≈ 4.6MSI 64 ≈ 6.6 ≈ 9.2 ≈ 9.6Raspberry Pi 64 ≈ 3.1 ≈ 4.0 ≈ 5.6

Table 3: Results from Different Hardware with Buffer Size of 128 Samples

Hardware Buffer Size
CPU Load (%)
(Filter Off)

CPU Load
(Local File)

CPU Load
(JACK - Microphone/Others)

Mac Studio 128 ≈ 1.5 ≈ 3.2 ≈ 3.4MSI 128 ≈ 3.7 ≈ 6.8 ≈ 7.5Raspberry Pi 128 ≈ 2.4 ≈ 3.8 ≈ 3.7

Table 4: Results from Different Hardware with Buffer Size of 256 Samples

Hardware Buffer Size
CPU Load (%)
(Filter Off)

CPU Load (%)
(Local File)

CPU Load (%)
(JACK - Microphone/Others)

Mac Studio 256 ≈ 1.0 ≈ 3.4 ≈ 3.5MSI 256 ≈ 1.9 ≈ 5.0 ≈ 5.1Raspberry Pi 256 ≈ 1.5 ≈ 3.0 ≈ 2.9
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Table 5: Results from Different Hardware with Buffer Size of 512 samples

Hardware Buffer Size
CPU Load (%)
(Filter Off)

CPU Load (%)
(Local File)

CPU Load (%)
(JACK - Microphone/Others)

Mac Studio 512 ≈ 0.7 ≈ 2.9 ≈ 3.0MSI 512 ≈ 1.35 ≈ 4.2 ≈ 3.8Raspberry Pi 512 ≈ 1.1 ≈ 2.4 ≈ 2.3

Table 6: Results from Different Hardware with Buffer Size of 1024 Samples

Hardware Buffer Size
CPU Load (%)
(Filter Off)

CPU Load (%)
(Local File)

CPU Load (%)
(JACK - Microphone/Others)

Mac Studio 1024 ≈ 0.5 ≈ 2.6 ≈ 2.6MSI 1024 ≈ 0.8 ≈ 3.6 ≈ 3.4Raspberry Pi 1024 ≈ 0.5 ≈ 2.0 ≈ 2.2

Table 7: Results from Different Hardware with Buffer Size of 2048 Samples

Hardware Buffer Size
CPU Load (%)
(Filter Off)

CPU Load (%)
(Local File)

CPU Load (%)
(JACK - Microphone/Others)

Mac Studio 2048 ≈ 0.3 ≈ 2.4 ≈ 2.3MSI 2048 ≈ 0.5 ≈ 3.2 ≈ 3.1Raspberry Pi 2048 ≈ 0.3 ≈ 2.0 ≈ 1.9

A key observation is that as the buffer size increases, the CPU load decreases for all tested hard-
ware. For the buffer size of 64 samples, the Apple Studio showed the lowest CPU load, with approx-
imately 2.5% when the equalization filter is off, 4.6% when the filter is processing sample from the
file from disk storage, and 4.6% when the filter is processing audio samples from JACK compatible
input sources. This is followed by Raspberry Pi with 3.1%, 4.0%, and 5.6% for the same conditions,
respectively. The MSI showed the highest CPU loads with 6.6%, 9.2%, and 9.6% for the same condi-
tions, respectively. As the buffer size is doubled to 128 samples, all devices showed decreased CPU
loads. Again, the Mac Studio showed the lowest CPU load, while the MSI showed the highest. This
trend continued consistently as the buffer size was doubled successively to 256, 512, 1024, and 2048
samples. The Mac Studio consistently showed the lowest CPU load, followed by Raspberry Pi, and
then MSI showed the highest. For the largest buffer size of 2048 samples, CPU loads dropped to less
than 1% across all tested conditions for all hardware, indicating insignificant improvements in CPU
efficiency. However, overall the test data proves the impact of the buffer size on the CPU load, with
larger buffer sizes resulting in lower CPU loads because of the less frequent demand of real-time pro-
cessing. Among the tested hardware, Mac Studio consistently showed the best performance in terms
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of CPU load, followed by Raspberry Pi, while MSI demonstrated the highest CPU load. However, it is
also worthmentioning that these CPU load values are approximate and collected while the computer
may ormay not be running non-JACK processes. Besides, the values fluctuate consistently; therefore,
an overall approximate average value is chosen for the benchmarking. This real-time performance
benchmark reflects the performance of both the training and testing window of the tool. Other parts
of the application, such as database CRUD (Create, Read, Update, Delete) operations and computing
frequency response and filter coefficients, are benchmarked and profiled using Qt Test. Besides, the
implemented unit testing suit also helps ensure the tool behaves functionally correctly in other UI
areas, such as filter configuration settings, updating the equalizer graph, playing the correct track
with respect to the option selected, and showing the correct statistical data through statistical anal-
ysis. However, even though integration and automated system testing was planned initially, it wasn’t
covered due to time constraints. Qt framework provides out of the box solution to set up integration
and system testing that as well.

6.1.3 Report Generation and Export

The tool provides visual presentation of the test sessions through statistical analysis. And, the test
sessions data can be exported into a CSV file. There are two separate export options, one exports the
all session trials into a single CSV file and another option exports the trials from the selected session.
The file contains the following fields:

• SessionId: The unique session identifier for the conducted test session.
• SessionStartDate: The start date of the testing session, a timestamp.
• SessionEndDate: The end date of the testing session, a timestamp.
• SampleFileName: Name of the audio file used on that particular testing session.
• SessionEndDate: The end date of the testing session, a timestamp.
• SessionDuration: Session duration in seconds.
• TrialID: The unique trial id for the trial within the session. Each trial has an unique id.
• CorrectResponse: The expected response of that trial.
• ActualResponse: The actual response of that trial listener provided.
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• CorrectResponse: The expected response of that trial.
• ResponseTime: The time user taken in milliseconds to response for that particular trial.

6.2 Discussion

This section analyses the findings of this project and provides critical insight into how the objectives
and research questions have been addressed.

One addtional project goal was to investigate the appropriate buffer scheme to balance latency and
sample dropouts as illustrated in the Benchmark section 6.1.2, a suitable amount of tests carried out
with different buffer sizes and sample rates, which goes further beyond the presented data at the
development and the testing phase of the tool to find out the best and optimal performance point
of the tool that performs in cheap hardware as good as the general consumer computers. Although
the audio processing latency is not benchmarked as the real-time CPU load, a substantial amount
of test sessions have taken place to avoid sample dropouts. Based on the lab results, it was found
that a buffer size of 256 samples coupled with 44100 Hz performs well in general-purpose computers
and doesn’t show any sample dropouts while frequency response is altered and audio samples are
processed in real time, which gives a latency of 5.8ms in theory and below 10ms which the preferred
latency by themusicians [34]. However, in the cheap hardware, such as the Raspberry Pi, used to run
tests, the tool performs quite similarly to the general-purpose computers, although it occasionally
drops a few samples. In such circumstances, setting up a buffer size of 512 samples shows no sample
dropouts when audio samples are processed through the filter, although latency is increased, and in
most cases, the difference could be inaudible.

As a part of the system and test design, the project also focused on identifying suitable audio pa-
rameters for subjective testing and methods to perform the tests. The outcome of this was highly
influenced by the background study conducted at the beginning of the project, where it was de-
cided to implement ABX test design for JND to test linear distortion, such as subtle alterations of the
frequency response, such as in the high-frequency region of microphones, phonograph cartridges
used for digitizing LPs, loudspeakers, etc. However, it could also be interesting to expand the tool
to non-linear distortions too with more sophisticated test designs. Moreover, AudibleT is currently
limited to only shelving filters, although the ambition at the beginning of the project was to include
FIR filters too. Hence, fig. 3 shows a delay signal in the tool design, is then required when FIR filter
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is used. Due to the time constraints and the project’s scope getting more comprehensive, that could
not be considered in the end. Besides, the frequency response generation approach was not trivial
and works only for a particular filter design. This also limits the approach being applied to any other
filter designs and can be overcome by designing filter with an impulse response and subsequently
calculating the frequency response using the Fast Fourier Transform (FFT). Overall, AudibleT is de-
signed and implemented so that it could be extensible and scalable as it could accommodate new
filter types or even test types with minimum changes. The goal of such design decisions was made
from the thinking of modularity and scalability. Efforts have been made to structure and maintain a
clean, well-documented code base for the tool along the way. However, there’s still room for a lot of
improvements that can be done by refactoring the code, making each of the modules even smaller.
Since the focus was to build a working prototype, such details were omitted during the development
phase.

However, to make the tool compatible with different types of hardware and environment, cross-
platform tools were chosen accordingly, such as Qt framework. It allowed us to build a program for
different CPU architectures, such as x86-64 and ARM64 Cortex, as well as a relatively recently intro-
duced custom Apple Silicon SoC based on ARM64 architecture from a single codebase. One of the
primary goals of the project was to build a solution with wider compatibility, which was met by using
Qt and JACK and implementing the algorithms and audio processing pipeline efficiently, leveraging
themultiple cores of themodern CPUs, whichwas presented in Benchmark section 6.1.2, where itwas
noticed that even though Raspberry Pi is the weakest CPU in the comparison by a significant margin,
the CPU load of the Raspberry Pi is relatively low while maintaining similar performance. However,
the tool is built on top of JACK, which makes the tool limited to JACK-supported systems, although
JACK is widely available on all major Linux distros, Windows and MacOS. Therefore, the tool can be
ported into Windows too. While the tool is built considering real-time issues, and optimizations for
different hardware, it is also worth mentioning that AudibleT is currently limited to shelving filters
which aremore computationally efficient than FIR filters. Implementing FIR filters and benchmarking
under different testing conditions would also be interesting.

Moreover, for benchmarking the tool, only a specific JACK API function is utilized alongside the built-
in Qt Test framework for code execution time and performance. JACK also provides another function
jackiodelay, which provides the round trip latency measurement. That could be utilized for the la-
tency measurement of the tool alongside more sophisticated tests to analyze the real-time perfor-
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mance of the filter and audio callback method. Besides, several other comparatively better third-
party profiling tools are available for general profiling, memory graphs, CPU load for the process, or
such, which could be employed to improve the tool’s performance by running advanced analysis.

In terms of the user-friendly interface to perform the tests, the focus was to create a simple yet cus-
tomizable training, testing, and statistics interface. But, user-friendliness is a subjective term and
varies from person to person, based on one’s taste, appeal, judgment, background knowledge of the
tools being used, and so on. AudibleT is built with the aim of being usable by people from both tech-
nical and non-technical backgrounds. However, it also assumes that the interested parties in using
this software possess sufficient knowledge of subjective audio testing. The interface is created with a
combination of simple buttons, sliders, labels, and charts, avoiding complicity and best efforts made
to make it easy to use. The software also allows visualizing the testing session reports generated
encouraged by statistical analysis [3]. It allows listeners to see the confusion matrix of a particular
test session’s result as well as a binomial and inverse binomial graph. Besides, it shows the summary
of all conducted sessions, such as average trials per session, the average time is taken to respond
per trial, the average length in the duration of each testing session, and the average success rate per
training session. While these might be useful for some listeners, for some, this might be inadequate.
To accommodate that, this software also allows exporting the testing session data in CSV format,
which can be used to generate more reports from other available third-party tools. However, one
downside of the user interface is, it is not fully responsive to all screen sizes and resolutions a typical
display would offer. According to the tests, the software runs well with a screen resolution of 1080p
and above.

Furthermore, one of the initial ambitionswas to get the software out to the real-world and, do usabil-
ity testing, and gather test data. But, the scope of the project was limited to building the functional
proof of concept. Consequently, the software has not yet undergone extensive user testing outside
of the lab environment. Besides, themain goal was to offer a framework and functional prototype for
wider hardware compatibility and community to be able to convert subjective testing into objective
testing. To achieve that goal, it was required to study different areas such as psychoacoustics, subjec-
tive testings, digital signal processing, and most importantly, real-time aspects of the hardware and
software, which the literature study reflects. It is also evident that the previous work from this field is
limited to specific areas and unlike the scope of this tool, which tries to tie the abovementioned areas
into one software. Consequently, AudibleT doesn’t allow new customized tests like [40] Guineapig2,
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but AudibleT provides real-time filter coefficient changes in real-time while processing the audio as
well in real-time, which is not available Guineapig2. Similarly, LisTEn [42] supports several test types,
although one has to prepare the audio file using candidate codes before each test session and based
on the tests type. In contrast, AudibleT testing sessions are fairly easy, as a listener can train us-
ing importing WAV files directly from their storage, as well as can use JACK compatible source such
as a microphone or third-party audio player like Audacious [80] which can send audio to the JACK
client. Listeners are also allowed to run testing sessions from their imported audio files. There’s no
preparation of files or filter coefficients required on AudibleT. Besides, while Salte [43] allows differ-
ent types of tests using standard methodologies like MUSHRA, it focuses only on VR technology; on
the other hand, AudibleT focuses more on hardware compatibility of general purpose computer and
cheap hardware used on the embedded systems. It is also evident from the literature study that tools
built dedicated to hard real-time systems such as Bela [47] would essentially perform better than the
general purpose CPUs for real-time processing. However, the aim of AudibleT is to build a real-time
system for versatile hardware and systems, and not limited to certain hardware or platforms to al-
low access to a wider community and adaptability. Therefore, it is also evident that AudibleT made
an effort to improve certain areas of the existing tools, such as many of the previous tools do not
offer proper statistical analysis of the test results while AudibleT does, and many of the tools are
quite dated while AudibleT runs on the latest systems and development environments. At the same
time AudibleT falls behind in some areas too, such as customizability of the tests, testing non-linear
parameters with other standardized methods, more than 2 channels audio output, support spatial
audio or VR technology.

In summary, this project has made effective efforts to bridge the gap by offering a comprehensive
and versatile subjective audio testing tool designed for both general-purpose and low-cost hardware
systems. While there are areas for improvement and expansion, AudibleT aligns real-time audio
processing, user interface design, cross-platform compatibility, and statistical analysis into a single
accessible platform. The tool is also made available to the wider community through open-sourcing
the source code [81], which will allow interested communities to try the software and improve it.

85



7 Conclusion and Future Work

This chapter brings the conclusion to the thesis by providing a summary of the overall objectives and
how they are met and shed some light into how this software can be improved further.

7.1 Conclusion

In this thesis, the AudibleT system is developed and introduced, which is a real-time ABX testing tool
capable of running on general-purpose computers and also on resource-constrained hardware such
as Raspberry Pi. It also allows users to conduct training sessions before running a testing session using
audio files from their computers and any JACK-compatible input sources, such as microphones or
third-party audio players, to allow listeners to familiarize themselveswith the test and configurations.
The software also allows equalizer coefficient changes in real-time on the UI thread with a minimum
delay while processing the audio sample through the IIR filter in a separate worker thread to prevent
the UI from becoming non-responsive at the time of processing audio. The software also passed the
compatibility test for running on different hardware, operating systems, and Raspberry Pi, followed
by extended CPU load testing with a variable sample buffer size. AudibleT also offers visualization of
the test results through various reports generated via statistical analysis and provides the option to
export the test session data in CSV.

7.2 Proposed Future Work

During the literature study and development of the project, several interesting areaswere recognized
to make further improvements to the tool. Some of them are as follows:

• There could be a panel introduced for test supervisors, who could potentially run and manage
a listening test session for a group of listeners. Only supervisors will be able to configure the
tests, while the listeners will only hear and use the buttons to provide their responses.

• Introduce FIR filter using Parks–McClellan filter design algorithm to generate filter coefficient
vectors that apply subtle frequency response aberrations. It also allows for the flexible design
to simulate loudspeakers with limited bandwidth.

• Non-linear distortions testing can be introduced.
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• PipeWire provides a JACK-compatible API layer that allows running JACK client on PipeWire.
Running the software with PipeWire and benchmarking the overall performance using the
PipeWire API can also be carried out.

• The unit testing suit can be improved further, and integration, and system testing can be intro-
duced to cover more edge cases of the performance and resource usage bottleneck.

• The code base can be improved by refactoring, avoiding repetition of codes, and utilizing vari-
ous design paradigms.
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Appendices

Appendix A Frequency Response Helper Class Source

s t d : : vec to r < double > F requencyResponseHe lper : : l o g spa ce ( double s t a r t , double end ,
i n t num_points ) {
s t d : : vec to r < double > r e s u l t ;

/ / Conver t s t a r t and end to l o g a r i t hm i c s c a l e
double s t a r t _ l o g 1 0 = s td : : l o g 10 ( s t a r t ) ;
double end_ log10 = s td : : l o g 10 ( end ) ;

/ / Compute the s tep s i z e i n the l o g a r i t hm i c s c a l e
double s t e p_ l o g 10 = ( end_ log10 − s t a r t _ l o g 1 0 ) / ( num_points − 1 ) ;
f o r ( i n t i = 0 ; i < num_points ; ++ i ) {

/ / Compute the f requency i n the l o g a r i t hm i c s c a l e and conve r t i t back to
l i n e a r s c a l e

double f r equnecy = s t d : : pow ( 1 0 , s t a r t _ l o g 1 0 + i * s t e p_ l o g 10 ) ;
i f ( f r equnecy < s t a r t )

con t i nue ;
r e s u l t . push_back ( f r equnecy ) ;

}
r e t u r n r e s u l t ;

}
Listing 1: Method to create a logarithmically spaced vector
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s t d : : vec to r < double > F requencyResponseHe lper : : c a l c u l a t e _ f r e q u en c y _ r e s p on s e (
cons t s t d : : vec to r < double > &B ,
cons t s t d : : vec to r < double > &A ,
double sample_rate ,
con s t s t d : : vec to r < double > &f r e q u en c i e s
) {
s t d : : vec to r < double > ga in_db ;
/ / C a l c u l a t e the samp l i ng pe r i od
double T = 1 . 0 / samp le_ ra te ;
/ / De f i ne a complex number j
s t d : : complex <double > j (0 , 1 ) ;

f o r ( double f : f r e q u en c i e s ) {
/ / C a l c u l a t e the complex e x p on en t i a l s f o r the c u r r e n t f r equency
s t d : : complex <double > e_neg_ j 2 p i _ f T = s t d : : exp ( − j * 2 .0 * M_PI * f * T ) ;
s t d : : complex <double > e_neg_ j 4p i _ f T = s t d : : exp ( − j * 4.0 * M_PI * f * T ) ;

/ / Compute the f requency response H ( f ) f o r the c u r r e n t f r equency
s t d : : complex <double > H_f = ( B [ 0 ] + B [ 1 ] * e_neg_ j 2 p i _ f T + B [ 2 ] *

e_neg_ j 4p i _ f T ) / ( A [ 0 ] + A [ 1 ] * e_neg_ j 2 p i _ f T + A [ 2 ] * e_neg_ j 4p i _ f T ) ;
/ / C a l c u l a t e the magnitude of H ( f )
double magnitude = s td : : abs ( H_f ) ;
/ / Conver t the magnitude to d e c i b e l s
double ga i n = 20 * s t d : : l o g 10 ( magnitude ) ;
ga in_db . push_back ( g a i n ) ;

}

r e t u r n ga in_db ;
}

Listing 2: Method to calculate the frequency response of a filter
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Appendix B Additional Information of Test Hardware

B.1 Apple Mac Studio

Output Device: Built-in
Output Channel: 2
Transport: Built-in
Target: arm64-apple-darwin22.4.0
Thread Model: POSIX

B.2 MSI Creator

CPU Size: 3762 MHz
CPU Capacity: 5 GHz
CPU Clock: 100 MHz
Audio Devices:

• Product: TU116 High Definition Audio Controller
Vendor: NVIDIA Corporation
Width: 32 bits
Clock: 33 MHz

• Product: Comet Lake PCH cAVS
Vendor: Intel Corporation
Width: 64 bits
Clock: 33 MHz

B.3 Raspberry Pi 400

Hardware: BCM2835
Debian Version: 11 (bullseye)
Audio Devices:

• card 0: vc4hdmi0 [vc4hdmi0], device 0: MAI PCM i2shifi0 [MAI PCM i2shifi0]
• card 1: Device [USB PnP Sound Device], device 0: USB Audio [USB Audio]
• card 2: vc4hdmi1 [vc4hdmi1], device 0: MAI PCM i2shifi0 [MAI PCM i2shifi0]
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