

www.usn.no

Faculty of Technology, Natural sciences and Maritime Sciences
Campus Porsgrunn

FMH606 Master's Thesis 2023

Master of Science, Industrial IT, and Automation

 IOTA for Industry 4.0 to handle production
processes.

Khurram Baig

www.usn.no

 2

Course: FMH606 Master's Thesis, 2023

Title: IOTA for Industry 4.0 to handle production processes

Number of pages: 64

Keywords: Blockchain, IOTA, Tangle, Distributed Ledger Technology, Consensus

Algorithm, Process Data, Data Storage, Data Analysis, Response Time, Transaction

Confirmation Time

Student: Khurram Baig

Supervisor: Leila Ben Saad

External partner: NA

Summary:

This master thesis explores the potential of Decentralized Ledger Technologies (DLTs),

particularly IOTA Tangle, in storing and analyzing data. The objective of the study is to

develop an application that can store data on IOTA Tangle and retrieve it over the internet

for analysis and error detection. This thesis provides an overview of various DLTs, their

limitations, and challenges in developing a data storage application. Then a detailed

explanation of the system's design, implementation, and testing methodology is provided.

Furthermore, this study presents an analysis of the results obtained from the

implementation of the IOTA-based solution, and discusses its limitations, challenges, and

possible directions for improvement. Finally, the main findings, contributions, and

limitations of the study are summarized and recommendations for future research are

provided.

 3

Preface
 The 4th Industrial Revolution, commonly known as Industry 4.0, has brought significant

changes to the manufacturing industry. With the advent of new technologies such as the

Internet of Things (IoT) and blockchain, there has been a growing need for innovative solutions

that can help streamline production processes and improve efficiency.

This Master Thesis explores the use of IOTA, a cutting-edge distributed ledger technology, as

a solution for Industry 4.0 in terms of data storage. By leveraging IOTA's unique properties

such as feeless transactions, scalability, and data integrity, we aim to demonstrate how it can

be used to handle production processes data and make it available for Data Analysis.

The research presented in this thesis is the culmination of months of hard work and dedication,

and I am much obliged to share my findings with the academic community. I would like to

extend my sincere thanks to my supervisor for her invaluable support and guidance throughout

this journey. I am grateful to my family for their unwavering support and understanding during

this journey. They have been by my side, offering moments of joy and occasional distractions

when I needed them most. Their presence and encouragement have made a significant

difference, and I am deeply thankful for their love and understanding.

I hope that this thesis will contribute to the ongoing discourse around the application of

Distributed Ledger Technologies in Industry 4.0 and inspire further research into the use of

emerging technologies to address the challenges faced by modern manufacturing.

Sandvika, 13-05-2023

Khurram Baig

 4

Contents

1 Introduction ... 8

1.1 Objectives .. 8
1.2 Report Structure ... 9

2 Literature Review .. 10

2.1 Distributed Ledger Technology ... 10
2.1.1 Private Permissioned Network .. 10
2.1.2 Private Permissionless Network ... 11
2.1.3 Public Permissioned Network.. 11
2.1.4 Public Permissionless Network ... 11
2.1.5 Consensus Algorithms ... 11

2.2 Blockchain ... 13
2.2.1 Blockchain Working .. 13

2.3 Vechain .. 14
2.3.1 Vechain Working ... 14

2.4 IOTA Tangle ... 15
2.4.1 IOTA Working .. 15
2.4.2 IOTA Messages ... 17

2.5 Review of Blockchain, Vechain, and IOTA for IoT Applications 19
2.5.1 IOTA for IoT application ... 19
2.5.2 Vechain for IoT application .. 19
2.5.3 Blockchain for IoT application ... 20
2.5.4 Comparison of Blockchain, Vechain, and IOTA for IoT Applications...................... 20

3 System Analysis and Implementation ... 22

3.1 Process System Overview ... 22
3.2 System Specifications .. 23
3.3 System Requirements and Use Case ... 23

3.3.1 Requirements .. 24
3.3.2 Use case Diagram ... 24

3.4 System Sequence Diagram .. 25
3.4.1 Read/Store Process Data ... 25
3.4.2 Retrieve Process Data .. 26
3.4.3 Analyze data .. 27

3.5 System Architecture ... 28
3.6 System Implementation.. 29

3.6.1 IOTA Client ... 30
3.6.2 IOTA Node .. 32
3.6.3 IOTA Subscriber .. 32
3.6.4 Web Application .. 34
3.6.5 Code for Web Application .. 35

3.7 Testing and Validation.. 37
3.7.1 Code scheme for Testing and Validation ... 37

4 Results and Discussions .. 40

4.1 Data Analysis .. 40
4.2 Traceability of Transactions .. 42

4.2.1 Traceability with Python ... 42
4.2.2 Traceability with IOTA Explorer ... 42

4.3 Transaction Response Time and Resource Utilization ... 44

 5

4.3.1 Case-1 ... 44
4.3.2 Case-2 ... 45
4.3.3 Case-3 ... 46
4.3.4 Case-4 ... 46
4.3.5 Summary Table for Case1-4 ... 46

4.4 Confirmation Time of the Transaction .. 47
4.4.1 Case-1 ... 47
4.4.2 Case-2 ... 47

4.5 Discussion ... 48

5 Conclusion .. 50

 6

Figures
Figure 1: Transaction flow in Blockchain [12] ... 13

Figure 2: Transaction flow in Vechain. .. 14

Figure 3: IoT devices communicating with IOTA Tangle [11]. ... 16

Figure 4: Transaction flow in IOTA Tangle ... 16

Figure 5: Message structure of IOTA Message [4]. .. 18

Figure 6: Pasteurizer process diagram .. 23

Figure 7: Use case diagram of the application .. 25

Figure 8: SSD for Read/Store Process Data Use case... 26

Figure 9: SSD for Retrieve Data use case ... 27

Figure 10: SSD for Analyze Data use case ... 28

Figure 11: System Overview for data storage and analysis using IOTA Ledger 29

Figure 12: System Overview of data storage application ... 30

Figure 13: Code for IOTA Client .. 31

Figure 14: Code for IOTA Subscriber .. 34

Figure 15: Code for web application... 36

Figure 16: Code for performance testing of IOTA Tangle ... 38

Figure 17: Code for testing response time and resource utilization of IOTA Tangle 39

Figure 18: Data file stored on IOTA Tangle fetched to web application .. 41

Figure 19: Standard deviation of Pasteurizer parameters ... 41

Figure 20: Correlation of each parameter with pH value .. 42

Figure 21: Metadata for data transaction fetched from IOTA Tangle .. 42

Figure 22: Transaction information shown in IOTA Explorer ... 43

Figure 23: Data shown in IOTA Explorer .. 43

Figure 24: Metadata of transaction shown in IOTA Explorer .. 44

Figure 25: Case-1, Response time and resource utilization while sending 6 transactions, 40 samples

each including float values .. 45

Figure 26: Case-2, Response time and resource utilization while sending 3 transactions, 40 samples

each excluding float values ... 45

Figure 27: Case-3, Response time and resource utilization while sending 1 transaction of 40 samples,

containing integer data .. 46

Figure 28: Case-4, Response time and resource utilization while sending 1 transaction of 40 samples,

containing float data .. 46

Figure 29: Case-1, Response time from adding a transaction in IOTA Tangle till its gets confirmed . 47

Figure 30: Case-2, Response time from adding a transaction in IOTA Tangle until it gets confirmed 48

 7

Nomenclature

API - Application Programming Interface

BC - Blockchain

CPU - Central Processing Unit

CSS - Cascading Style Sheets

DAG - Directed Acyclic Graph

DLT - Distributed Ledger Technology

GUI - Graphical User Interface

HTML - Hyper Text Markup Language

IoT - Internet of Things

KPI - Key Performance Indicator

OPC UA - Open Platform Communications Unified Architecture

PoA - Proof of Authority

PoS - Proof of Stake

PoW - Proof of Work

SSD - System Sequence Diagram

UTF - Unicode Transformation Format

VET - Vechain Token

VETHO - Vechain Thor Token

 1 Introduction

 8

1 Introduction
Industry 4.0 [1], also known as the fourth industrial revolution, refers to the digitalization of

industrial and manufacturing processes. It has evolved over time to incorporate cyber-physical

systems, the Internet of Things (IoT) [2], and cloud computing, providing value to industrial

processes by distributing information and enabling data analysis.

In IoT, a sensor or a device is capable of acquiring and translating process data from the field

into digital form and making it available for computing for other systems over the internet,

which can further analyze the information to adds value to any process or service. It would not

be an exaggeration to state that IoTs are the eyes and ears of Industry 4.0.

The emergence of IoT has led to an exponential increase in data generation, which has to be

communicated to the algorithm running machines over the internet and thus generates the

necessity for new methods of data storage, cyber security, and data analysis. This is where

Decentralized Ledger Technologies (DLT), such as Blockchain [3] and IOTA Tangle [4] have

shown their potential to provide a secure and decentralized way to manage the vast amount of

data generated by IoT devices.

DLTs allow multiple participants to exchange and store data securely across the network of

computers rather than centralized computers, where every computer on the network validates

the data every time new data has entered the network, making it even harder to infiltrate or

temper. Blockchain is the most well-known DLT being used in transactions of cryptocurrencies

like Bitcoin, However, other DLTs have certain advantages over Blockchain in terms of

scalability, energy efficiency, data privacy and cost of the transaction, like IOTA Tangle and

Vechain blockchain.

IOTA Tangle is the most recent development among existing DLTs, and it is more suitable for

machine-to-machine transactions in the case of IoT. As claimed, IOTA Tangle is more suitable

for IoT because it uses a different architecture than blockchain called directed acyclic graph

(DAG) in which there are no miners and transaction fees are minimal or even non-existent.

This study will assess the practicality of IOTA Tangle on the basis of the performance of a

brief data storage application.

1.1 Objectives

The main objective of this master thesis is to design and develop an application, which can

interact with the IOTA ledger, store data on the Tangle and retrieve it over the internet to

analyze and detect any errors in data. Data could be acquired by an IoT device, generated by

an industrial process, and collected through OPC UA, Message Queuing Telemetry Transport

(MQTT) or any other filed communication protocol. The acquisition of data is not the matter

of interest of this study and will depend on the application specific requirements, which are left

to the reader's discretion.

The thesis will also present a brief review of various distributed ledger technologies, including

Blockchain, IOTA and Vechain [5], that can be used to store data collected from machines or

IoT devices. Additionally, the thesis will discuss the challenges and limitations encountered in

developing an IOTA-based solution and propose possible directions for improvement.

Ultimately, the goal is to explore the IOTA Tangle for its abilities and limitations in storing

process data and make it available for process handling.

 1 Introduction

 9

The main objectives of this study are:

• Review of distributed ledger technologies, including IOTA, Vechain and Blockchain

for storing machine or IoT device data.

• Design and develop an application to store and retrieve data on IOTA Tangle for

analysis and error detection.

• Develop IOTA client using Python (Application Programming Interface) API, sends

data to IOTA node on Chrysalis Devnet, stored on IOTA Tangle.

• Develop IOTA subscriber using Python API, retrieves data from IOTA node, perform

analysis, and send the data to the web app using Flask framework.

• Utilize Flask web framework for providing an interface to display analyzed data and

highlight the main existing errors in the process.

• Discuss the challenges and limitations of developing IOTA-based solutions and

possible directions for improvements.

1.2 Report Structure

This thesis is structured as follow:

1. Introduction: This chapter introduces the thesis's background, motivation, and

objectives. It also provides an overview of the structure of the thesis.

2. Literature Review: This chapter presents a review on uses and limitations of IOTA,

Vechain and Blockchain ledger technologies in IoT applications.

3. Methodology: This chapter provides a detailed explanation of the methodology used in

the development of the IOTA-based solution, which is discussed in Chapter 1, including

the tools and technologies used, the design and implementation of the system, and the

testing methodology.

4. Results Analysis and Discussion: This chapter provides an analysis of the results

obtained from the implementation of the IOTA-based solution. It also provides a

detailed discussion of the challenges and limitations encountered in the development of

the IOTA-based solution. It also discusses possible directions for improvement.

5. Conclusion: This chapter summarizes the main findings of the thesis, the contributions

made to the field, and the study's limitations. It also suggests some recommendations

for future research.

 2 Literature Review

 10

2 Literature Review
This chapter presents a literature review of distributed ledgers and discusses the working

principles, differences, advantages, and disadvantages of the most popular ledgers such as

Blockchain, Vechain, and IOTA Tangle.

2.1 Distributed Ledger Technology

The emergence of concepts and practices like Industry 4.0, digitalization, and the Internet of

Things has resulted in unprecedented data exchange and storage requirements in the

technological era. This new technological trend has already surpassed the limits of current

practices of data exchange and storage, which are mostly centralized in nature. This

centralization makes scaling difficult, increases the risk of a single point of failure, makes the

system vulnerable to cyber-attacks as the number of users in the network grows, and is

expensive to maintain.

Distributed Ledger Technology, as the terminology is self-explanatory, is an ever-growing

record of transactions and data exchange which is continuously being validated and updated

by various nodes within a network. Nodes operate in a peer-to-peer (P2P) fashion, where each

of them maintains an identical copy of this shared record, thus without requiring a central

authority to update and communicate. DLT allows each participant to securely verify and store

data and makes it decentralized to overcome all the challenges mentioned earlier in the case of

centralized storage. However, there are multiple users over the network trying to transfer or

access the data simultaneously, it is inevitable to have a robust mechanism in place that is

secure and implacable [6-8].

There are several DLTs in use today and categorized as public or private/permissioned or

permissionless networks, which allow information to be stored using cryptography. The data

is exchanged or accessed using unique “Keys” and signatures. Once the transaction is executed

into the ledger, it becomes part of the immutable database and it is updated through the network

using rules and techniques, which ensure the state of the database is synchronized. This is done

by so-called consensus algorithm which is programmed for fully automated data audit across

the DLT. Different DLTs use different consensus algorithms, their advantages and

disadvantages are discussed later in this chapter [6-8].

2.1.1 Private Permissioned Network

DLT that uses a private permissioned network, offers no decentralization. It is a managed

network, where groups of specific participants are permitted to exchange data or host their

nodes that meet the criteria of that network. This type of ledger is more suitable for enterprises

and organizations who require the benefits of DLTs with controlled and restrictive access.

Examples can be government, finance, or health sectors [6], [8].

 2 Literature Review

 11

2.1.2 Private Permissionless Network

In a private permissionless DLT, participants can participate after they gain permission from

the governing entity and are not able to exchange data or deploy their application before gaining

access to the network. The network is decentralized and created or managed by participants

without any need to acquire permission [6], [9].

2.1.3 Public Permissioned Network

In a public permissioned DLT, participants are free to exchange data or deploy their

applications. The nodes within the network must be invited or gain permission before they are

established. This type of network is decentralized but still managed by a group of entities to

increase the number of nodes [6], [9].

2.1.4 Public Permissionless Network

A public permissionless network is a fully decentralized DLT, any participant can join the

network and nodes can be operated without any permission. No single entity manages the

participants or nodes within the network and transactions are governed by an automated

consensus algorithm, example of such DLTs is Blockchain and Ethereum [6], [9].

2.1.5 Consensus Algorithms

Although every node on the network contains its own copy of the ledger, it is imperative for

these distributed ledgers to be identical. Any discrepancy in the state of these ledgers can

challenge the usability of DLTs. To ensure the distributed ledgers remain identical, a consensus

algorithm is necessary to synchronize the ledger state across the distributed system. This

mechanism guarantees that copies distributed across the network are consistent. There are

many different types of consensus algorithms in use by DLTs. This study will discuss

consensus algorithms used by Blockchain, Vechain, and IOTA networks [6], [10].

2.1.5.1 Proof of Work

Proof of Work (PoW) is a popular consensus algorithm implemented in blockchain DLT like

Bitcoin. In this consensus algorithm, whenever the new transactions are broadcasted to the

network and stored in a block, multiple nodes on the network also called “miners” compete to

solve a complex cryptographic function to validate the transactions and create a new block in

the blockchain network. The miner who solves the cryptographic puzzle first broadcasts the

solution to a network, where other nodes verify the solution and add the new block in the

network if it is valid. The miner who successfully adds a block gets Bitcoin as a reward. As

this consensus algorithm performs a lot of computations it requires that the computing node

essentially a miner must invest in physical resources and provide energy for processing power.

These constraints make PoW a poor choice when it comes to scalability [6], [10].

2.1.5.2 Proof of Stake

Proof of Stake (PoS) is another consensus algorithm that is in use by DLTs like Ethereum. In

PoS, there are validator nodes instead of miner nodes that validate the transaction as they are

 2 Literature Review

 12

selected based on how much value or cryptocurrency they hold and are willing to put on a stake

as collateral (willing to lose in case of an unsuccessful transaction). When transactions are

broadcasted on the network, validators on the network offer to put a value on stake, and the

validator is randomly selected based on stake value. A higher stake value means more chances

of getting selected. The selected validator validates the transaction and adds a new block in

the network. Upon a successful transaction, the validator receives a transaction fee and a

portion of the cryptocurrency that they had staked earlier. PoS is comparatively more energy

efficient and requires less computational power than PoW [6], [10].

2.1.5.3 Proof of Authority

Proof of Authority (PoA) is a consensus algorithm used by VechainThor DLT. It is mainly

designed for energy efficiency, scalability, and security, and unlike PoW and PoS, there is no

competition among nodes to get the right to validate the transaction or add a new block. Instead,

this right is granted to a selected group of nodes known as Authority Masternodes. These node

operators should reveal their identity and reputation to Vechain foundation to get the right for

producing the blocks according to the foundation's governance policy. The fixed set of

Authority Masternodes allows for faster and more reliable transaction processing, reducing the

risk of network congestion and delays, which is one of the reasons why Vechain is suitable for

enterprise users [5].

2.1.5.4 Tangle Coordinator

The Tangle is a DLT used in the IOTA network, which uses a directed acyclic graph (DAG)

structure to store transactions. The innovation that makes the Tangle different than other DLTs

is that it does not rely on a traditional consensus algorithm, such as PoW or PoS to validate

transactions and secure the network. Instead, in Tangle, each new transaction must approve at

least two previous transactions before it can be added to the network. This mechanism makes

a web of transactions validate each other eliminating the concept of a miner or validator node

from the network. This web of transactions creates a data structure called a Directed Acyclic

Graph (DAG) of blocks where each new transaction is attached to multiple previous ones. This

data structure or ledger is replicated across the network on all nodes, and consensus is reached

on the state of the ledger using a milestone, which is a special type of transaction that confirms

a set of previous transactions and marks a checkpoint in the Tangle’s history. All transactions

directly or indirectly referenced by the milestone are confirmed and part of the irreversible

Tangle. The milestone is generated by the central node called the Coordinator, and it is worth

mentioning that since the Coordinator affects the decentralization of the whole Tangle concept.

It is a temporary solution and will be eliminated in the next version of Tangle 2.0 [4], [11].

2.1.5.5 Tangle 2.0 Coordicide

Tangle 2.0, the latest version of the IOTA Tangle, is currently under development in 2023 and

comes with several new features and enhancements. One of the most significant changes is the

introduction of Coordicide, a roadmap for removing the coordinator and achieving complete

decentralization of the IOTA network. This step is crucial for achieving greater scalability,

improved security, and increased functionality, including Sybil protection. With better

consensus, reduced communication overhead, and a lightweight protocol, the IOTA Tangle is

becoming increasingly attractive for IoT applications. [4], [11], [16].

 2 Literature Review

 13

2.2 Blockchain

Blockchain [3] is a DLT commonly associated with the cryptocurrency Bitcoin as its

application in performing secure and immutable transactions has been very successful since

2009. Although Blockchain is a type of DLT and shares similarities with traditional databases,

it differs significantly in terms of information storage and management. Unlike a database that

stores data in rows, columns, and tables, Blockchain stores data in digital blocks that are linked

to each other through a cryptographic hash. Furthermore, it is decentralized, meaning that data

is distributed across multiple computers on the network, rather than being centralized on a

single server as with traditional databases.

Blockchain technology has diverse applications beyond cryptocurrency. For instance, logistics

companies utilize blockchain to track and trace goods as they move through the supply chain.

The finance industry is constantly developing blockchain-based applications, and various other

industries are exploring its usability to replace traditional databases. Additionally, this study

will provide an overview of its applications in IoT, which is of great interest for digitalization

and industry 4.0 [1].

2.2.1 Blockchain Working

A transaction in blockchain goes through multiple steps before it gets finally executed

successfully. A breakdown of these steps is shown in Figure 1

Figure 1: Transaction flow in Blockchain [12].

Newly initiated transactions are assembled into a data block that is not yet added to the

blockchain. The first block consists of a header, transaction data, timestamp, and other

cryptographic parameters. Under the verification stage, all these parameters become input for

computational nodes responsible for performing Pow and generating Hash, which represents a

unique digital fingerprint of the original input. Hash is added to the block when it is created

and each subsequent block in the ledger uses the previous block’s hash to calculate its hash,

though making a blockchain. Once a block is added to the blockchain, it cannot be changed. If

an attempt is made to tamper with the block, it will disrupt the hash of the previous block and

cause a ripple effect through the blockchain, which will create inconsistency in the ledger state.

Computational nodes will stop adding new blocks and discard the problematic block and run

the PoW again to solve the inconsistency. In this way, the blockchain ledger is nearly

impossible to tamper with and provides the highest degree of security and immutability.

 2 Literature Review

 14

2.3 Vechain

Vechain [5] is a blockchain platform that focuses on supply chain management for enterprises.

Its native cryptocurrency is Vechain tokens (VET), and it utilizes Proof of Authority (PoA) as

its consensus algorithm, as discussed in Chapter 2.1.5.3. On the other hand, VechainThor is an

upgraded version of Vechain that provides a more robust blockchain infrastructure for

governments and enterprises. VechainThor boasts faster transaction processing, high

scalability, and high-volume transaction processing capabilities [5].

VechainThor blockchain is not built from scratch but inherits many features of the Ethereum

blockchain, to mention few, are the account model and Ethereum Virtual Machine (EVM) that

enables smart contracts. Despite being successful technology, Ethereum lacks in ability to host

large-scale decentralized applications due to the absence of a governance structure to enhance

the working protocol to tackle new challenges and innovations. Furthermore, Ethereum does

not have a stable economic model that can be used by enterprises. For instance, the volatility

of ether price is a big concern for companies, as they cannot predict the cost of running

decentralized applications.

2.3.1 Vechain Working

VechainThor addresses issues by providing a governance model, an economical model, and

an efficient consensus algorithm Proof of Authority (PoA). Overall, VechainThor offers the

following enhancements in the interest of enterprises [5].

• Low computation power to achieve consensus while extending blockchain securely.

• Built-In contracts which make the network more autonomous and robust.

• Governance model which offers an adjustable balance between decentralization and

centralization to achieve efficiency and transparency.

• Two token-based economic model Vechain Token and VechainThor Token (VET +

VTHO), where VET serves as a value transfer medium in the VechainThor

ecosystem, VETHO separates the cost of usage of VechainThor blockchain [5].

Figure 2 shows a rough sketch of how transactions proceed in the VechainThor blockchain

platform.

Figure 2: Transaction flow in Vechain.

 2 Literature Review

 15

2.4 IOTA Tangle

The mathematical concept of the Tangle was first introduced in 2015 in a white paper authored

by Serguei Popov [14]. Till now, there have been 31 versions of this white paper. The IOTA

Foundation, a non-profit organization, was founded in 2017 to support the development and

adoption of the IOTA Tangle technology [14].

IOTA is a distributed ledger technology, which is very suitable for supporting Internet of

Things applications due to salient features like security, scalability, and feeless transactions.

Unlike other protocols, IOTA does not use existing blockchain data transfer structures but uses

a Directed Acyclic Graph (DAG) structure, which is called the Tangle. The Tangle allows

transactions to be validated by each other in a way that each new transaction should validate

two previous transactions creating a decentralized network where each participant contributes

to the security and verification of transactions. This type of data structure allows a high degree

of scalability and fast transaction time since

IOTA’s core functionality is its ability for peer-to-peer data transactions, which are secure,

decentralized, and feeless efficient, making it very attractive for industrial applications where

handling of mass data is required.

2.4.1 IOTA Working

IOTA’s Tangle is composed of computer nodes across the network that verify transactions and

hold all the necessary information to trace back the origin of the data or value. As shown in

Figure 4, each new transaction must validate the two previous ones, it creates a DAG of data

blocks where each block is attached to multiple older blocks. In this way, transactions are

validated in parallel and provide much higher scalability and throughput than blockchains.

 The ledger status reaches consensus across the network with the help of a special node called

the Coordinator (COO), which is shown in Figure 4. The coordinator is a central entity in

Tangle that helps transactions reach their finality (transaction is confirmed and is irreversibly

part of the Tangle) in the ledger by generating milestone transactions at regular intervals. When

the transaction is initiated, a node accepts the new incoming transaction and adds it into Tangle,

and broadcast further to peer nodes, but the transaction has not reached its finality yet and

waiting to be directly or indirectly referenced by milestone transaction. Milestone transactions

contain a signature from the coordinator which allows nodes to recognize whether the authentic

coordinator did sign them. To ensure every transaction gets a fair chance of reaching its finality

Coordinator sends milestones transactions every 10 seconds [4], [11].

 2 Literature Review

 16

Figure 3: IoT devices communicating with IOTA Tangle [11].

In Figure 3, blue blocks represent signed milestones generated by Coordinator, which directly

or indirectly confirms the previous transactions represented by green blocks, while the

transactions in yellow are not yet confirmed [11].

Figure 4: Transaction flow in IOTA Tangle

Figure 4 shows the stages involved in the data flow, which is initiated from an IoT device and

stored immutably on the Tangle. This stored data over the Tangle is securely saved and can be

fetched by connecting a client to the Tangle node and presenting the necessary credentials

(messageid) for the required data and the node will trace the data pack and send it back to the

client. After the discussion on the workings of IOTA Tangle, the next sub-chapter will focus

on the types of messages that transactions can carry across the ledger and how the structure of

these messages assists IOTA Tangle in managing transactions for sending or retrieving data.

Practical implementation of the IOTA sender client and subscriber client will be discussed in

Chapter 3.

 2 Literature Review

 17

2.4.2 IOTA Messages

In IOTA Tangle, there are two types of messages, The first one carries value such as a crypto

asset or an IOTA token and the second one is the non-value message, which contains no value

but only data. Value-type transactions are used between two parties in exchange for assets

while non-value or zero-value transactions are mostly used by data storage applications like

the one this study will demonstrate later. When a client prepares a message to send to Tangle,

it creates a message label that contains information to inform the node about the type of

message and the payload so that node can differentiate the message from others and know what

to do, the details of these messages elements are as follow.

2.4.2.1 Network ID

There are several individual IOTA networks running independently of each other like Mainnet

(Chrysalis), Chrysalis Devnet, Shimmer, and Testnet. The purpose of these networks is

different for instance Mainnet is the most stable network while Chrysalis Devnet and Testnet

are used by the IOTA community for development and testing purposes. The IOTA message

is equipped with a Network ID, which assists nodes in determining whether the message is part

of the network they are currently operating in [4].

2.4.2.2 Message ID

The client application also creates a unique cryptographic hash and incorporates it into the

message, which helps the node to trace the transaction when some other client tries to retrieve

it from the Tangle [4].

2.4.2.3 Parents

The number and identification of the messages referenced by the new messages are referred to

as parents’ length and parents’ ID. To establish the graph structure of the Tangle, each new

message in the Tangle must refer to one to eight preceding messages. The node selects these

two messages and sends the IDs to the client, and the client must include this information in

the message label. Thus, nodes ensure that the Tangle's data structure evolves by the protocol

[4].

2.4.2.4 Payload

IOTA message usually contains a payload. As of 2023, there are three types of payloads

allowed: Mainnet Transaction payload, Indexation payload, and Milestone payload. These

payloads can be mainly categorized as valued payloads and non-valued payloads since it is

only the transaction payload that contains the actual data, carrying valued information about

the sender, receiver, and amount of IOTA tokens being transferred. Indexation payload only

carries non-valued data which can be string, integers, or any supported datatype packed and

sent according to Tangle rules, while the Milestone payload handles information essential to

confirm previous transactions and help them reaching to finality. Processing the data over the

ledger requires that the payload must be within the allowed range of 32kb, and its type should

be mentioned by using Payload Length and Payload Type elements in the message structure

[4].

 2 Literature Review

 18

2.4.2.5 Nounce (Number Used Once)

This is a randomly generated number by the node to create a hash of the transaction, which is

complex enough to satisfy the proof of work requirements for adding a transaction to the Tangle

[4].

Figure 5 explains the elements in the IOTA Message structure which is important to understand

how to implement any client/subscriber application using the Tangle [4].

Figure 5: Message structure of IOTA Message [4].

 2 Literature Review

 19

2.5 Review of Blockchain, Vechain, and IOTA for IoT
Applications

This section provides an analysis of the advantages and limitations of Blockchain [3], IOTA

[4], and Vechain [5] individually. Each distributed ledger technology is examined in terms of

its specific strengths and weaknesses. Furthermore, a comparative evaluation is presented

based on existing research, which is also referenced for further reading.

2.5.1 IOTA for IoT application

The research paper "Blockchain Technologies for IoT Applications: Use-cases and

Limitations" [13] provides a survey of different DLTs and discusses their advantages and

limitations in IoT applications.

The paper evaluated DLTs on their capability to solve five major issues for IoT, which are

security, data privacy, identity management, trust and governance, and fault tolerance. Though

most DLTs seem to address the aforementioned issues, they lack the amount of scalability and

cost-effectiveness per transaction, which are required by IoT applications. The paper

mentioned a particular example of public DLTs, Bitcoin and Ethereum, which are too slow and

have non-negligible transaction fees making them unrealistic for larger IoT applications.

Sensing the lack of compatibility of DLTs towards IoT applications, the IOTA foundation

came up with a DAG-based DLT the Tangle, remarkably enhancing the throughput of

transactions, and low computational PoW, which as a result offer no-fee transactions. IOTA

Tangle is promising, But for its fast and fee-less structure, it needs a lot of node contribution

within the network, which is not the case today, where the Tangle uses a temporarily centralized

solution called Coordinator. Fully decentralized DAG still has not been functional in practice

and is currently under the research and development phase.

The research paper argues that private DLTs could be the solution for the successful use of

DLTs in IoT applications. Private DLTs eliminate the need for complex consensus algorithms

as all nodes are governed by a single entity and rules are defined. Nodes can be trusted, and

data on the ledger can be managed using Proof of Authority (PoA), similar to Vechain DLT.

Overall, the paper concludes that blockchain technology has the potential to revolutionize the

way IoT devices interact and share data. However, the limitations of the technology must be

carefully considered and addressed to ensure its successful integration into IoT applications.

2.5.2 Vechain for IoT application

Vechain [5] is DLT specifically designed for supply chain management system and IoT

applications. Vechain offers several features highly required by IoT applications. It provides

end-to-end transparency in supply chain process making it easier to track a product from start

to the end. Vechain is efficient and have automated mechanisms in place to reduce overall

processing time on network (RFID technology and smart contracts). It can handle many

transactions per second making it suitable for high throughput applications. Alongside the

advantages shared with other blockchain technologies, Vechain differentiates itself by

providing a governance model and costing system using two-token design which makes it

attractive for businesses and organizations. [5], [13].

 2 Literature Review

 20

However, the benefits of Vechain do come with a trade-off between advatanges and limitations.

These features make Vechain a complex platform, which needs investment and management.

Vechain loses its decentralization while providing governance, which may raise concerns about

trustworthiness. To use Vechain for transactions, organizations need to use VeThor tokens as

a means of payment. This means that businesses are dependent on VeThor tokens to use

Vechain [5], [13].

Overall, Vechain does have potential to change the way data handling in IoT applications work

today, but it highly depends upon the benefits contra dependency weighing scale of

organization or businesses.

2.5.3 Blockchain for IoT application

Blockchain [3], provides excellent security and immutability for IoT applications through its

highly decentralized consensus. It also eliminates the requirement of any centralized entities

through the use of private and public blockchains. Blockchain, through its trustless network,

can be leveraged for data transactions in IoT applications. It also enables access control policies

and ensures data confidentiality and integrity through the possibility of implementing smart

contracts.

While blockchain offers benefits for IoT applications such as security and immutability, it also

poses challenges related to scalability, energy efficiency, privacy, and device identification.

The Proof of Work (PoW) consensus method, which is commonly used in blockchain, can be

complex for IoT transactions and hinder scalability as IoT devices are usually low-capability,

battery-powered devices. Additionally, the increasing energy requirements of blockchain

transactions are not sustainable for IoT nodes. Privacy is another challenge posed by the use of

blockchain in IoT applications, as all transactions are shared, and IoT devices may reveal

private user data. While private blockchains may mitigate the privacy issue, they do not

guarantee accountability since they are not sufficiently decentralized [9], [10].

2.5.4 Comparison of Blockchain, Vechain, and IOTA for IoT Applications

Based on the existing research studies, [5], [9],[10], [13], and [15] the performance of DLTs

such as Blockchain, Vechain, and IOTA Tangle can be compared in terms of various factors

including scalability, transaction speed, consensus algorithm, data privacy, energy efficiency,

and use case.

In terms of scalability, Blockchain has limitations due to its linear structure, where the addition

of new blocks can lead to increased transaction confirmation time and resource requirements.

Vechain and IOTA, on the other hand, offer high scalability and allow for parallel processing

of transactions.

Transaction speed is another important aspect to consider. Blockchain, particularly in public

networks like Bitcoin, has relatively slow transaction speeds due to the PoW consensus

algorithm, which requires significant computational resources. Vechain, using the PoA

consensus algorithm, achieves faster transaction speeds compared to Blockchain. IOTA Tangle

also offers high transaction and overall confirmation time compared to the Blockchain [17].

Consensus algorithms play a crucial role in the energy efficiency of a DLT. Blockchain relies

on PoW, which involves solving complex mathematical problems, leading to high energy

 2 Literature Review

 21

consumption. Vechain's PoA consensus algorithm, on the other hand, improves energy

efficiency by relying on a limited number of trusted nodes. IOTA Tangle utilizes a consensus

mechanism through Coordinator, aiming to achieve high energy efficiency and scalability [4],

[5], [13].

Data privacy is an important consideration in DLTs. Blockchain offers partial data privacy, as

transactions are transparent and visible to all participants, although the identities of users can

remain protected. Vechain, focusing on supply chain and enterprise solutions, provides full

data privacy through its permissioned blockchain architecture. IOTA Tangle offers partial data

privacy, with transaction information being public but user identities remaining hidden [5], [9],

[10], [13], [15].

The following Table 1 compares the key features of three popular DLT technologies: IOTA

Tangle, Vechain Blockchain, and Bitcoin Blockchain. These features include consensus

algorithm, transaction fees, scalability, transaction speed, data privacy, energy efficiency, and

use case focus.

Key Features IOTA Tangle Vechain Blockchain Bitcoin Blockchain

Consensus

Algorithm

DAG (Directed Acyclic

Graph)
PoA (Proof of Authority) PoW (Proof of Work)

Transaction Fees No transaction fees Transaction fees depend

on usage

Transaction fees depend on

usage

Scalability High scalability High scalability Limited scalability

Transaction

Speed

High transaction speed High transaction speed Relatively slow transaction

speed

Data Privacy Partial data privacy Full data privacy Partial data privacy

Energy

Efficiency

Highly energy-efficient Energy-efficient Relatively energy-

intensive

Use Case Focus IoT data storage and

machine economy

Supply chain and

enterprise solutions

Store of value and peer-to-

peer payment

Table 1: Comparison among Tangle, Vechain and Blockchain DLTs [5], [9], [10], [13], [15].

Despite the promising features exhibited by these DLTs, it is important to acknowledge the

limitations highlighted in existing research studies. While these studies have identified

significant performance indicators for DLTs in the context of IoT applications and drawn

conclusions regarding the superiority of one DLT over another, there remains a critical need

for practical performance comparisons among these DLTs. Particularly in IoT scenarios where

real-time data and efficient resource utilization are crucial, it is essential to investigate whether

these DLTs can meet the requirements of IoT devices with limited processing power and

demands for real-time data storage and retrieval. Although a DLT may demonstrate relative

efficiency and cost-effectiveness when compared to other DLTs, its real-world performance in

actual applications necessitates further research. Future studies should focus on evaluating the

performance of these DLTs in practical IoT settings to determine their suitability and

effectiveness.

 3 System Analysis and

Implementation

 22

3 System Analysis and Implementation
This chapter focuses on the practical approach used to showcase the data storage capabilities

of IOTA Tangle, a Distributed Ledger Technology. It starts with an overview of the system

used in this study, followed by detailed specifications and use-cases. The chapter then delves

into the system architecture and development process in the implementation section.

Additionally, a testing and validation methodology will be proposed to ensure the accuracy and

effectiveness of the system.

3.1 Process System Overview

Consider a dairy facility that produces milk products and operates multiple Pasteurizers, which

are the heart of dairy production lines, as nearly every product goes through a Pasteurizer before

reaching its final stage. Figure 6 illustrates a simplified industrial process of a milk pasteurizer.

The process begins with milk entering the pasteurizer, where it passes through pasteurizer units

responsible for heating it to a specific temperature. The milk then proceeds to the holding cell,

which maintains the heated temperature for a predetermined time period and regulates the flow

based on its design. After leaving the holding cell, the milk is cooled down before being stored

in tanks for use in production. To ensure the highest product quality, the pasteurizer is designed

with specific capacity and parameters that carefully control the temperature, flow, and pressure

of the milk throughout the entire pasteurization process.

Optimizing the pasteurization process can greatly benefit manufacturers. Third-party

pasteurizer optimization service providers may require access to the pasteurizer data for

performing data analysis. By analyzing this data, they can identify opportunities to optimize

the process and enhance overall production efficiency, thereby adding value to the final

product. Data should be strictly secure and stakeholders like production managers and

operators should have access to Data and analysis results through a web portal. There should

be a secure gateway to make data available to the third party using one of various field

communication protocols like Modbus, OPC UA or a local History Server, deployed within

the control net. The method of data acquisition is out of the scope of this study, and a set of

static data is utilized instead. This static data mimics the process data of an operational milk

Pasteurizer. Parameters Temperature, Holding Time, Flow Rate, Pressure, pH Value, and

Cooling Rate can be considered Key Performance Indicators (KPIs) for monitoring the product

quality and overall performance of a milk Pasteurizer.

 3 System Analysis and

Implementation

 23

Figure 6: Pasteurizer process diagram.

3.2 System Specifications

Considering a typical scenario explained in section 3.1, the specifications of the core system

are as follow:

1. The developed system should store process data on the Distributed Ledger the Tangle.

2. Data should be accessible through a secure web portal.

3. The system should permit tracking of the process parameter name, parameter value,

time-stamp, and unit of measurement.

4. The system should give the service provider and the client access to see the data stored

on the Tangle and reports of data analysis.

5. Data analysis should provide a visual explanation of any possible diagnosis and current

state of Pasteurizer performance and allow clients to adjust in their production

processes accordingly.

3.3 System Requirements and Use Case

This section summarize the main requirements of the system, which are further used to build

the use case diagram.

 3 System Analysis and

Implementation

 24

3.3.1 Requirements

Considering the specific scenario explained in Chapter 3.1, and the system specification

explained in Chapter 3.2, the system's requirements are defined based on the FURPS+ method

as follow:

• Functionality:

o Read/Store Process data: The process data must be stored in the distributed

ledger the IOTA Tangle.

o Access data: Users such as service provider companies and clients at the dairy

facility can read the data and data analysis reports.

o Diagnosis: The service provider company should be able to diagnose process

errors or anomalies in the process, which should hinder the loss of product or

marginalize the product quality.

• Usability:

o Data should be presented in an easily accessible user interface like a web page.

o Data analysis reports should be intuitive and graphically present the status of

the process.

• Reliability:

o The script should be running continuously without unhandled exceptions.

o Web portal should be light enough to be reached in case of low bandwidth

internet connection.

o Application scripts should work across platforms in case of machine change.

• Performance:

o None.

• Supportability

o Data should be accessible using web devices running on any platform.

• +

o None.

3.3.2 Use case Diagram

The use case diagram describes the main requirements discussed earlier in chapter 3.3.1.

 3 System Analysis and

Implementation

 25

Figure 7: Use case diagram of the application.

3.4 System Sequence Diagram

The use case diagram is being utilized here to model the behavior of the system from the users’

perspective. To do so, each use case is analyzed further using System Sequence Diagram

(SSD).

3.4.1 Read/Store Process Data

Figure 8 shows the SSD for the “Read/Store Process Data” use case analysis. In this use case,

the application is in run mode and imports the data from the data source, and checks if the data

is not empty and valid. Then it extracts the data into data lists and categorizes the data into

required parameters, followed by the encoding of data using Unicode Transformation Format

(UTF-8) to convert it into bytes, as IOTA Tangle accepts data in byte format. Client connection

is initiated towards the IOTA node and message details are required to the node to make a

transaction and successfully store the data on Tangle. Once data is successfully stored, the node

will provide the Tangle parameters associated with the data or else give a connection error if

there is no response.

 3 System Analysis and

Implementation

 26

Figure 8: SSD for Read/Store Process Data Use case.

3.4.2 Retrieve Process Data

Figure 9 explains the functionality of the use case “Retrieve Process Data”. Firstly, the client

connection is initiated with the Tangle Node, and a request for retrieving data is made by

providing credentials like message ID previously received by the node at the time of successful

data storage. As a message is received, data should be extracted from the indexation payload

within the message and decoded from bytes form to decimal form to further use in the

application.

 3 System Analysis and

Implementation

 27

Figure 9: SSD for Retrieve Data use case.

3.4.3 Analyze data

Figure 10 shows an analysis of the third use case “Analyze Data”. After data is retrieved from

the tangle, the main functionality of this use case is to perform data analysis by implementing

required functions and making it available for clients and service providers through a web

portal.

 3 System Analysis and

Implementation

 28

Figure 10: SSD for Analyze Data use case.

3.5 System Architecture

Figure 11 depicts a higher-level system overview of the application in which the data should

be acquired as per application requirement, then the data is to be packed and sent from an IOTA

client to a node on the Tangle, which should store the data on multiple nodes across the

network. An IOTA subscriber should be responsible for querying the Tangle for the stored data

and converting it to a usable form for further programming or data analysis. The retrieved data

will be presented on Graphical User Interface (GUI), allowing the user to understand and

analyze the data. A more detailed system overview along with software and tools used for each

layer will be discussed in this chapter.

 3 System Analysis and

Implementation

 29

Figure 11: System Overview for data storage and analysis using IOTA Ledger.

3.6 System Implementation

Figure 12 depicts a working overview diagram of the system. The transfer of data from an

IOTA client to an IOTA subscriber is carried out through IOTA node on Chrysalis Devnet, and

data analysis and interpretation of data is accessible on a web app which is built using the

Python-Flask web-framework. IOTA client, IOTA Node and subscriber will be discussed in

detail in following section whereas the data analysis and results will be discussed in Chapter 4.

 3 System Analysis and

Implementation

 30

Figure 12: System Overview of data storage application.

3.6.1 IOTA Client

In IOTA client, the IOTA protocol is used to store data over the Tangle ledger on Chrysalis

Devnet [4] that will be explained later in the following chapter. IOTA client is built in Python

using the iota.rs library [4], which is the RUST implementation of the IOTA protocol. The

following are dependencies and tools used in the development of IOTA client.

3.6.1.1 iota.rs:

Iota.rs [4] is a library that implements the real IOTA protocol in Rust programming language,

and it is the only language IOTA protocol is written in. This library provides a high-level

Application Programming Interface (API) for developers to interact with the IOTA network

and perform various transactions such as sending and receiving IOTA tokens, as well as

sending data to the IOTA Tangle [4].

3.6.1.2 Python bindings:

Python binding is a bridge between Rust code (iota.rs) and Python code. This allows developers

to use the iota.rs library in Python code to interact with the IOTA protocol. In order to work

properly Python binding should be installed along with required iota.rs dependencies in the

development computer. A detailed procedure for installation is available at [4].

3.6.1.3 Python APIs:

Python APIs are interfaces for the IOTA protocol available in Python library iota_client that

allow the developer to interact with an application or a library using Python. There are many

node-level and high-level APIs available in Python with detailed functions and parameters

which can be accessed here [4].

3.6.1.4 Python IDE:

Integrated Development Environment (IDE) that provides a comprehensive environment for

developers to write, test, and debug Python code. In the development of the IOTA client,

Spyder IDE [18] is used.

3.6.1.5 Code for IOTA Client

Figure 13 is a code snippet of IOTA Client which is written to integrate the main functionalities

of the client explained earlier. The code reads an Excel file called "PasteurizerData.xlsx"

(explained in Chapter 3.1) using the pandas library [19], and stores the data into a pandas data

frame “df”. Then, it converts each column into separate lists, namely temp_list, Htime_list,

flow_list, pressure_list, pH_list, and cooling_list.

The next step is to encode before sending the data to the IOTA ledger, this requires to encode

the data into bytes. In the code provided above, the temperature, pH, and cooling rate data are

encoded into bytes using UTF-8 encoding.

 3 System Analysis and

Implementation

 31

Finally, the data is sent to the IOTA ledger on Chrysalis Devnet using the iota_client module.

The Client() method from this module is used to create an IOTA client instance. This instance

is then used to send messages to the IOTA Tangle.

For each list of data, a message is created using the message() method of the client instance.

Each message is given a unique index to identify the data and is associated with the

corresponding list of data. The message() method returns a message object that contains the

transaction ID, which can be used to retrieve the data from the Tangle later.

Finally, the transaction IDs of all the messages are printed to the console using the print()

function. These IDs can be used to retrieve data from the IOTA ledger in the future.

Figure 13: Code for IOTA Client.

 3 System Analysis and

Implementation

 32

3.6.2 IOTA Node

IOTA node [7] is a gateway between IOTA Client and the Tangle network. It is the node in the

Tangle network which receives or sends messages to and from the client. Client connects to

the node via the iota_client library, which provides the Python APIs to communicate with the

node. For instance, node APIs let clients inquire about the health of the node, addresses,

network information or can even let it know the IOTA protocol specific parameters like

milestones.

3.6.2.1 Code for IOTA Node

In the code snippet, that is illustrated in Figure 13, the iota_client.client is used to create an

instance of IOTA client, which connects to a node according to IOTA protocol written in

RUST. The client connects to a node by default on the Chrysalis Devnet, which was previously

called testnet before the Chrysalis update. Client instance in Python allows to connect to nodes

on other networks or even to private network but in this demonstration of applications holds to

the recommendation from IOTA community to develop and test application in Devnet.

Once the client is connected to the node, it can use the client. message() method to send the

data packed in a message to the IOTA network. Each message contains an index which is used

to identify the message on the IOTA network and data to be sent. The data parameter takes the

list of the data as an argument, which is then encoded into bytes and sent to the node.

After a successful transaction of the message, the node returns an object that contains

information about the message including messageid and transactionid, which will be discussed

further in Chapter 4.

3.6.3 IOTA Subscriber

IOTA subscriber is a gateway on the receiver end, which is responsible for retrieving data from

the Tangle and making it available in the Python environment for further development. IOTA

subscribers use the main iota.rs library and Python APIs to interact with the Tangle and retrieve

the data. Background tools and dependencies that are explained earlier in Chapter 3.6.1 are also

valid for IOTA subscribers. Development computers, must provide this framework in order to

communicate with the Tangle.

To retrieve and decode data from the IOTA Tangle, the following tools are used:

• iota.rs: IOTA protocol library built in RUST.

• Python bindings: Python binding of RUST library.

• Flask: A lightweight web framework for Python that provides a simple web server to

host our web application and allows to integrate HTML into Python code.

• Python IDE: Spyder IDE.

3.6.3.1 Code for IOTA Subscriber

The code snippet, shown in Figure 14, is the implementation of the IOTA subscriber. To

retrieve data from the IOTA Tangle, the iota.rs library's Client class is used. This allows

get_message_data method to retrieve the data of a specific message on the IOTA Tangle. All

 3 System Analysis and

Implementation

 33

the parameters from Pasteurizer data are stored on different nodes and hence have unique

messageid. To retrieve the specific parameter data, get_message_data function is used and the

relative messageid must be provided as an argument, as shown in the code.

Now that data is successfully retrieved, it is not yet useful and must be converted to compatible

form. IOTA Tangle stores the data in binary format known as Trytes. In the example code

provided, data from messages that contain Pasteurizer data, including temperature, Holding

Time, flow, pressure, pH and cooling values are retrieved. To decode the data, we first extract

the data from the message using the payload field, and then extract the indexation data using

the indexation field. We then decode the indexation data from bytes to string using the UTF-8

decode method, and finally convert the string into a list of float values using the split method

to use it in further development related to data analysis.

 3 System Analysis and

Implementation

 34

Figure 14: Code for IOTA Subscriber.

3.6.4 Web Application

The code shown in Figure 15 is a part of a web application that analyzes and displays data

collected from a Pasteurizer process. The application uses the Flask framework [20], which is

a popular web framework written in Python, to provide server for the web pages and handle

requests from the user. The web application consists of two pages in “table” and “dashboard”

in which the former presents the stored data and data analysis functions on data like correlation

and deviation and the latter presents data graphically in form of charts. The following are details

on dependencies and tools used in the development of this web application.

 3 System Analysis and

Implementation

 35

3.6.4.1 Flask Python

Flask Python [20] is a lightweight web framework that provides easy to use interface for

creating web applications within Python environment. Main functionality of Flask is to provide

the developer set of tools for creating web application like running web server for handling

HTTP requests, rendering .html templates within the Python environment and managing web

sessions.

As IOTA client and subscriber are developed using Python bindings of the IOTA Protocol,

Flask is the natural selection of web development part of this application since it directly

integrates into Python and eliminates the need for integration towards any other web

development platform.

3.6.4.2 HTML, CSS, JavaScript, and Bootstrap

The HTML and CSS templates are used to render the web pages and display the data. The

templates include a table that displays the data, as well as several charts that show the trends

in the data over time. The charts are created using JavaScript and the Chart.js library [21].,

which is a powerful and flexible charting library that allows developers to create complex and

dynamic charts with ease. The application also uses Bootstrap [22], which is a popular CSS

framework that provides a set of pre-built components and styles for creating responsive web

pages.

3.6.4.3 Web Application IDE

There are many choices available for coding web pages, in the development of this application,

Visual Studio Code [23] is used as this is probably the most popular choice and provides syntax

highlighting and code debugging features. It can also support Python programming and can be

used as the sole IDE in this application development.

3.6.5 Code for Web Application

Figure 15 shows code implementation for the “table” and “dashboard” pages of the web

application. It defines a route for the URL '/table' and a function called 'table'. The function

retrieves some data from an external source, calculates statistical values (mean and standard

deviation) for each parameter, and then calculates the correlation coefficient between the pH

parameter and each of the other parameters, to show how every parameter is changing in

relation to pH value of the product, which can provide an insight of product quality.

The function then renders a web page called 'table.html' using the data and calculated values.

The web page displays a table of the data with the calculated statistical values and correlation

coefficients for each parameter.

“/dashboard” Flask route function that renders a dashboard template with data passed to it. The

dashboard function retrieves data from global variables decoded_Temp_value,

data_value_Htime, data_value_Flow, data_value_Pressure, decoded_pH_value, and

decoded_cooling_value, converts each list to a JSON string using the json. dumps method, and

stores each string in a dictionary named data. The dictionary data is then passed to the

dashboard.html template using the render_template method.

 3 System Analysis and

Implementation

 36

The if __name__ == '__main__' line ensures that the app.run method is called only when the

script is run directly. The debug=True parameter sets Flask's debug mode to True, which can

be useful for development but should not be used in production.

Figure 15: Code for web application.

 3 System Analysis and

Implementation

 37

3.7 Testing and Validation

Though the application is implemented successfully, it is important to evaluate objectively the

utilization of this application in this study. It is also important to propose a mechanism to test

and validate the performance of the application. There are several ways to measure the

performance of the client and subscriber of the IOTA Tangle. In this study a code is designed

to evaluate transaction response time of a Tangle, CPU and memory utilization of the IOTA

client and transaction confirmation time. Following the code explanation for testing scheme is

explained.

3.7.1 Code scheme for Testing and Validation

The code in Figure 16 reads temperature data from an Excel file "PasteurizerData.xlsx", and

converts it into a list of strings. Then, it uses the IOTA client library to send this data to the

Tangle network as a message with the index "Pasteur1_Tempdata". The messageid is obtained

from the response, and the metadata of the message is retrieved.

The code then enters a loop where it checks the metadata of the message until it is confirmed

by a referenced_by_milestone_index parameter within the message. As soon as the message

referenced by a milestone is used, it should be confirmed in IOTA Tangle. The loop sleeps for

2 seconds between checks to avoid overloading the network. Once the message is confirmed,

the loop breaks, and the confirmation response time is calculated and printed along with the

metadata of the message.

The purpose of this code is to measure the confirmation response time of the IOTA Tangle

network, which is the time taken for the network to confirm that the message has been received

and stored in a block. The response time can be used to evaluate the performance of the network

and optimize it for real-world data storage applications.

 3 System Analysis and

Implementation

 38

Figure 16: Code for performance testing of IOTA Tangle.

Figure 17 shows the code that measures the resource utilization, including CPU and memory,

and the response time of sending data to the IOTA ledger on Chrysalis Devnet. The code uses

the psutil library to get the CPU and memory usage before and after sending the data. The

measurement starts by getting the CPU and memory usage before sending the data using the

psutil library. The code then sends the data to the IOTA ledger on Chrysalis Devnet using the

IOTA Client library. It sends data for temperature, humidity, flow, pressure, pH, and cooling.

The response time measurement starts by recording the current time before sending the data.

After sending the data, the current time is recorded again, and the difference between the two

times is calculated to get the response time. The code then gets the CPU and memory usage

again, after sending the data. The CPU and memory utilization are calculated by subtracting

the values obtained before sending the data from those obtained after sending the data.

 3 System Analysis and

Implementation

 39

Figure 17: Code for testing response time and resource utilization of IOTA Tangle.

The complete code for each component of the application discussed in this chapter is

provided in Appendix B, accompanying this report.

 4 Results and Discussions

 40

4 Results and Discussions
This chapter demonstrates the data storage application based on the IOTA Tangle, which is a

Distributed Ledger Technology. The application was developed by applying the knowledge

obtained from the literature review discussed in Chapter 2. This chapter aims to provide a

comprehensive outcome obtained from the practical implementation of the application.

Initially, we will focus on the results, which can be evaluated visually by examining the

Graphical User Interface (GUI) of the application. This will provide insights into how data is

being retrieved from the IOTA Tangle without being altered and how it is presented for

analysis. Additionally, this chapter aims to provide a detailed analysis of the overall

performance of the application, including the key aspects of using the IOTA Tangle as a

Distributed Ledger Technology. The subsequent subchapters will delve into the application's

performance and provide insights on its major aspects:

• Data Analysis

• Traceability of Transactions

• Transaction Response Time and Resource Utilization

• Confirmation Time of a Transaction

• Data Security

The analysis parameters discussed earlier offer a comprehensive insight into the strengths and

weaknesses of adopting the IOTA Tangle for data storage and processing in Industry 4.0. In

the end, we will explore how the results of the analysis relate to the goals of the study.

4.1 Data Analysis

Figure 18 shows a file containing data set from a milk Pasteurizer provided for process

handling. This data is unconventionally stored on a decentralized ledger and then acquired by

a remote node using a web application. The dataset in the Figure 15 has 40 samples and 6

columns representing the process parameters of a milk pasteurizer as follows:

• Temperature (°C): Temperature of milk at the output of the Pasteurizer.

• Holding Time (s): Holding time of milk in a Pasteurizer tube to ensure homogenized

heating of the whole product for a certain time.

• Flow Rate (L/min): Flow rate of milk through Pasteurizer.

• Pressure (psi) pH: pH value of the milk.

• Cooling Rate (°C/min): Time it takes to cool down the milk after Pasteurizing.

 4 Results and Discussions

 41

Figure 18: Data file stored on IOTA Tangle fetched to web application.

Figure 19 provides the mean and standard deviation of different parameters for a dataset. The

first column represents the name of the parameter, while the second column represents the

mean value of the parameter in the dataset. For example, the mean temperature in the dataset

is 72°C.

The third column represents the standard deviation of the parameter in the dataset. The standard

deviation is a measure of the spread of the data points around the mean. A smaller standard

deviation indicates that the data points are clustered more closely around the mean, while a

larger standard deviation indicates that the data points are more spread out. This is an effective

way of monitoring process Key Performance Indicators (KPIs) and ensure that they are within

quality range.

For example, the standard deviation of the temperature parameter in the dataset is 1.56°C. This

indicates that the temperature values in the dataset are relatively tightly clustered around the

mean value of 72°C, with most values falling within about 1.56°C of the mean. Similarly, the

other parameters can be analyzed by their mean and standard values to verify that process is

operational within allowed deviation limits.

Figure 19: Standard deviation of Pasteurizer parameters.

Figure 20, shows that the temperature has a moderate negative correlation with pH, which

means that a higher pasteurization temperature may result in a lower pH, indicating a potential

decrease in product quality. Additionally, the cooling rate has a moderate positive correlation

 4 Results and Discussions

 42

with pH, suggesting that a faster cooling rate may result in a higher pH and better product

quality. This analysis can be further expanded to include other parameters and factors that may

affect product quality, but this gives a basic idea of how data analysis can be used to assess the

quality of milk products produced by a pasteurizer.

Figure 20: Correlation of each parameter with pH value.

4.2 Traceability of Transactions

IOTA Tangle offers extensive transparency regarding transaction traceability. The following

two methods are presented to explore the transaction traceability within the IOTA Tangle.

4.2.1 Traceability with Python

In data storage applications, traceability is crucial for maintaining data integrity and ensuring

that the data can be trusted for use in decision-making and other critical tasks. The IOTA

provides comprehensive traceability for data transactions made via Tangle. Parameters related

to data transactions are available at the developer level in Python and can easily be accessed

by using High-level API “get_message_metadata(messageid)” in the iota_client library.

Figure 21 shows the traceability parameters of a transaction with a specific messageid fetched

from the Tangle. This metadata tells the parent’s ids related to data the status of transactions in

the Tangle, milestone information, and other important parameters available in the

programming environment to use in the application development.

Figure 21: Metadata for data transaction fetched from IOTA Tangle.

4.2.2 Traceability with IOTA Explorer

IOTA Explorer [24] is a web-based tool developed by IOTA Foundation, which provides a

GUI that allows users to search for transactions and graphically provide detailed information

about each transaction, as shown in Figures 22-24. In addition to traceability parameters IOTA

Explorer also shows the data stored in the node.

 4 Results and Discussions

 43

Figure 22: Transaction information shown in IOTA Explorer.

Figure 23: Data shown in IOTA Explorer.

 4 Results and Discussions

 44

Figure 24: Metadata of transaction shown in IOTA Explorer.

4.3 Transaction Response Time and Resource Utilization

Transaction response time and resource utilization by IOTA clients are important performance

parameters as they help in measuring the efficiency of the transaction process. Response time

is the time taken for the client to receive a response from the Tangle after initiating a

transaction, which is important for real-time data storage applications or applications which

requires high throughput in storing data, such as large data is to be stored after short intervals.

On the other hand, resource utilization such as CPU and memory usage by the IOTA client

during transaction submission is important as it can impact the overall performance of the

system. High resource utilization can lead to slower processing times and potentially cause the

system to crash, especially in resource-constrained environments like IoT devices. In this study

IOTA client is tested for different data transfer cases as discussed earlier in Chapter 3.7.

4.3.1 Case-1

Figure 25 displays the computed results of transaction Response Time, CPU utilization, and

memory usage, when initiating transactions for all six parameters, including integer and float

data. The outcomes reveal a considerably high response time and CPU utilization of 103

seconds and 584%, respectively. This unexpectedly high CPU utilization suggests that five out

of seven CPU cores are operating at over 100%. Meanwhile, the memory is not significantly

 4 Results and Discussions

 45

impacted by the transaction process and displays a negative value due to unrelated background

processes on the machine.

Figure 25: Case-1, Response time and resource utilization while sending 6 transactions, 40 samples each

including float values.

4.3.2 Case-2

The outcome of the transaction Response Time and CPU and Memory utilization for the 3

parameters, which only includes integer data, are presented in Figure 26. The results indicate a

relatively lower response time and CPU utilization, at 35s and 658%, respectively. The memory

usage is not significantly affected by the transaction process, with a value of approximately 2.6

Megabyte. However, storing float values on the Tangle is more complex as they need to be

converted into bytes before being sent to the Tangle, resulting in a message with a large

indexation payload. This highlights the challenges associated with storing float values on the

Tangle.

Figure 26: Case-2, Response time and resource utilization while sending 3 transactions, 40 samples each

excluding float values.

 4 Results and Discussions

 46

4.3.3 Case-3

Similarly Figure 27 of Case-3 further strengthens the understanding of transaction process by

indicating that greater number of transactions with float value data in their messages cause

delay in response but still use high CPU resources. The Response Time is very fast

approximately 1.8s and the CPU utilization is 508%, while the memory utilization is 74

Megabyte

Figure 27: Case-3, Response time and resource utilization while sending 1 transaction of 40 samples, containing

integer data.

4.3.4 Case-4

Figure 28 shows Response Time of 55s, CPU utilization of 712% and memory utilization of

75MB. In comparison with Case-3 where there is a single transaction consisting of only integer

data in message, the results show that float data requires more time and resources to store it on

the Tangle.

Figure 28: Case-4, Response time and resource utilization while sending 1 transaction of 40 samples, containing

float data.

4.3.5 Summary Table for Case1-4

Table 2 presents a comprehensive overview of various performance parameters related to

transactions, including the number of messages sent simultaneously, data types, average

response time, average CPU utilization, and average memory utilization. Each row in the

table represents a distinct scenario with specific characteristics. The measurements were

conducted for 10 consecutive transactions, and the average values of the performance

parameters are calculated for each row in Table 2.

 4 Results and Discussions

 47

No. of

messages

Data Type Av. Response Time/10

Transactions

Av.CPU Utilization/10

Transactions *

Av. Memory Utilization/10

Transactions

6 Float & Integer 225.8 Sec 91% 14 MB

3 Integers 49.5 Sec 91% 2.6 MB

1 Float 26.7 sec 91% 0.7 MB

1 Integer 12.8 Sec 91% 0.63 MB

Table 2: Average Response Time, CPU Utilization and Memory Utilization.

* During the testing, a computer with 7 cores was utilized, which resulted in the conversion

of CPU utilization from a scale of 700% (100% per core) to an overall 100% scale.

4.4 Confirmation Time of the Transaction

The transaction confirmation time is an important performance parameter in IOTA Tangle

when it comes to data storage applications like continuously generated data coming from IoT

or an industrial process. This transaction confirmation time determines how quick data

becomes reliable and trustworthy. Only confirmed transactions become final and immutable.

The delay in confirmation time can lead to data inconsistencies and integrity issues, which can

result in loss or corruption of data. That is why this study has tested the confirmation time of a

data transaction on the Tangle.

4.4.1 Case-1

In Figure 29, the confirmation response time in seconds for a transaction that only contains

integer data in its payload indexation is displayed. The response time for this case is

approximately 6 seconds, which is the duration it took from the moment the client-initiated

transaction until it was confirmed and referenced by milestone index 5657147.

Figure 29: Case-1, Response time from adding a transaction in IOTA Tangle till its gets confirmed.

4.4.2 Case-2

The outcome for confirmation response time in seconds for a transaction with float data in its

payload indexation is presented in Figure 30. The transaction took around 47 seconds from

the moment it was initiated by the client until it was confirmed by referencing the milestone_

index_number of 5657181.

 4 Results and Discussions

 48

Figure 30: Case-2, Response time from adding a transaction in IOTA Tangle until it gets confirmed.

4.5 Discussion

The limitations and issues of IOTA Tangle are discussed in this section. One of the major

limitations that is discovered under the testing is the high resource utilization, particularly CPU

usage, during requesting a transaction. This can impact the overall performance of the system,

especially IoT devices with limited processing power. Another issue is the complexity of

storing values greater than 255 or float values on the Tangle, this is because IOTA uses an

encoding format that treats the data as a sequence of bytes, and the encoding for a number

greater than 255 requires more than one byte.

If the data is not properly formatted, the message will fail to be sent to the IOTA Tangle. To

avoid this issue, you need to use an encoding format like UTF-8 or split the data into smaller

chunks that can be encoded within the size limits of the IOTA protocol. Ultimately this type of

transaction will result in higher response times and CPU utilization compared to transactions

with only integer data.

Confirmation time of the transaction is another important performance parameter, as delay in

confirmation time can lead to data inconsistencies and integrity issues, resulting in loss or

corruption of data. The confirmation time for a transaction with float data in its payload

indexation is found to be slower than the confirmation time for a transaction with only integer

data, but it can be still considered to be much faster than reported confirmation delays in

Blockchain type ledgers [18].

Another limitation of IOTA Tangle regarding data storage application is that each transaction

is identified by unique hash and each message has unique messageid. Therefore, when using

the iota_client library in Python, it is not possible to send non-value transactions with the same

messageid as a previous transaction, as each transaction must have a unique transaction hash.

When existing data has to be appended or updated, it will be stored by different messageids

which has to be updated on the subscriber side in order to get the latest data. This issue, though

can be resolved by programming at the application level, raises concerns about the overall data

storage efficiency of the IOTA Tangle. Finding a solution to cope with this issue could be

investigated in future works.

One major security concern regarding the IOTA Tangle is the use of a Coordinator as a

centralized authority to prevent attacks on the Tangle. Critics argue that this makes the network

vulnerable to attacks, as the coordinator could be targeted by hackers or malicious actors. In

addition, the coordinator has been shown to cause performance issues and limit the scalability

of the network, despite the IOTA foundation has presented a road map for replacing the

Coordinator with a more secure and decentralized version of IOTA (Coordicide) [4].The later

is still under development phase and its performance, in reality, requires to be evaluated in the

future.

 4 Results and Discussions

 49

 Furthermore, IOTA was subjected to an attack on its Trinity wallet in 2020 leading to

significant losses [17]. There are more than one security vulnerabilities issues, which are not

being handled by IOTA foundation, among them are Byzantine node creation (node which does

not forward message to other nodes in network or create conflicts) [10], [17], Sybil identities

(creating fake identities to take control of network) and Eclipsing (targeting single user within

network). Overall, many studies encourage the scientific community to focus on improving the

security of IOTA for the benefit of industry and society [17].

 5 Conclusion

 50

5 Conclusion

In conclusion, this study aims to demonstrate the use of IOTA Tangle, a distributed ledger

technology, for data storage applications. The practical implementation of the application was

based on the literature review presented in Chapter 2. The results of the study showed that the

IOTA Tangle can be effectively used for storing data, which can be further analyzed to handle

the industrial process or any real-world application in the case of IoT.

Data extracted from a static source was successfully stored on the Tangle and retrieved

unaltered to perform data analysis to monitor the pasteurizer process. The correlation analysis

showed that the temperature and cooling rate parameters have a moderate correlation with pH

value, indicating their effect on product quality. Experiments showed that the IOTA Tangle

can be used to store and analyze process data, with the ability to monitor process Key

Performance Indicators within quality range, this can also show its ability to handle any

industrial process.

In addition, the analysis of the application's performance revealed that the IOTA Tangle

provides comprehensive traceability for data transactions, data can easily be traced and

retrieved unaltered by using available APIs. The response time and resource utilization of the

IOTA Tangle were found to be more efficient and effective than other Blockchain based DLTs,

but there is still sluggish for real-time data requirements. Appending or updating the same

instance of data is challenging due to the way the Tangle process transactions operate, which

leads to creation of new instance of dataset each time.

Data security is an essential guarantee required by industries and organizations to adopt any

new technology. To be a reliable future data storage solution, IOTA Tangle has to be more

secure than it is now. Although further development in IOTA Tangle shows positive trends but

its functional version is still to be investigated.

Overall, this study has contributed to the understanding of the advantages and limitations of

using the IOTA Tangle for data storage and process handling in Industry 4.0 applications.

Further research can focus on exploring the solutions for the issues discussed in this study. It

will be also interesting to adopt the IOTA Tangle in other applications and process industries

to enhance its applicability and functionality.

 51

References

[1] Bundesministerium für Bildung und Forschung, "Industrie 4.0,"

Bundesministerium für Bildung und Forschung. [Online]. Available:

https://www.bmbf.de/bmbf/de/forschung/digitale-wirtschaft-und-gesellschaft/industrie-4-

0/industrie-4-0. [Accessed: May 12, 2023].

[2] K. Ashton, "That 'Internet of Things' Thing: In the Real World Things Matter More than

Ideas," RFID Journal, 2009.

[3] S. Nakamoto, "Bitcoin: A Peer-to-Peer Electronic Cash System," 2008.

[4] IOTA Foundation, "The Tangle," IOTA Wiki. [Online]. Available:

https://wiki.iota.org/learn/about-iota/tangle/. [Accessed: Apr. 9, 2023].

[5] VeChain Foundation, "VeChain Developer Documentation," VeChain, [Online].

Available: https://docs.vechain.org/. [Accessed: Apr. 9, 2023].

[6] B. Farahani, F. Firouzi, and M. Luecking, "The convergence of IoT and distributed ledger

technologies (DLT): Opportunities, challenges, and solutions," Journal of Network and

Computer Applications, vol. 177, pp. 102739, 2021.

[7] Investopedia, "Distributed Ledger Technology (DLT)," Investopedia, [Online]. Available:

https://www.investopedia.com/terms/d/distributed-ledger-technology-dlt.asp#toc-the-

bottom-line. [Accessed: April 9, 2023].

[8] Hedera Hashgraph, "What is Distributed Ledger Technologies (DLTs)?" Hedera

Hashgraph Learning Center. [Online]. Available:

https://hedera.com/learning/distributed-ledger-technologies/what-are-distributed-

ledger-technologies-dlts. [Accessed: April 9, 2023].

[9] T. M. Fernández-Caramés and P. Fraga-Lamas, "A Review on the Use of Blockchain for

the Internet of Things," in IEEE Access, vol. 6, pp. 32979-33001, 2018. doi:

10.1109/ACCESS.2018.2842685.

[10] Ali, M. S., Vecchio, M., Pincheira, M., Dolui, K., Antonelli, F., & Rehmani, M. H.

(2019). Applications of Blockchains in the Internet of Things: A Comprehensive Survey.

IEEE Communications Surveys & Tutorials, 21(2), 1676-1717. doi:

10.1109/COMST.2018.2886932

[11] A. Rawat, V. Daza, and M. Signorini, "Offline Scaling of IoT Devices in IOTA

Blockchain," Sensors, vol. 22, no. 4, Feb. 2022, art. no. 1411, doi: 10.3390/s22041411.

[12] TechTarget, "What is blockchain? - Definition from WhatIs.com," SearchCIO.

[Online]. Available: https://www.techtarget.com/searchcio/definition/blockchain.

[Accessed: Apr. 9, 2023].

[13] VeChain Foundation, "VeChainThor: The Blockchain Platform for Business 3.0,"

Whitepaper, VeChain Foundation, Dec. 2018. [Online]. Available:

https://www.vechain.org/assets/whitepaper/whitepaper-3-0.pdf. [Accessed: Apr. 9, 2023].

[14] S. Popov, "The Tangle," Apr. 30, 2018, Version 1.4.3

 52

[15] E. Vieira, J. Ferreira and P. C. Bartolomeu, "Blockchain Technologies for IoT

Applications: Use-cases and Limitations," 2020 25th IEEE International Conference on

Emerging Technologies and Factory Automation (ETFA), 2020, doi:

10.1109/ETFA46521.2020.9211927.

[16] N. Sealey, A. Aijaz and B. Holden, "IOTA Tangle 2.0: Toward a Scalable, Decentralized,

Smart, and Autonomous IoT Ecosystem," 2022 International Conference on Smart

Applications, Communications, and Networking (SmartNets), Nov. 29 2022-Dec. 1 2022,

doi 10.1109/SmartNets55823.2022.9994016.

[17] M. Conti, G. Kumar, P. Nerurkar, R. Saha and L. Vigneri, "A survey on security challenges

and solutions in the IOTA," Journal of Network and Computer Applications, vol. 203, p.

103383, Jul. 2022, doi: 10.1016/j.jnca.2022.103383.

[18] The Spyder community, "Spyder Integrated Development Environment," [Online].

Available: https://www.spyder-ide.org/. [Accessed: May 12, 2023].

[19] PyData Development Team, Pandas, 2021. Available: https://pandas.pydata.org.

Accessed on: May 9, 2023.

[20] "Flask Documentation (2.3.x)," 2021. [Online]. Available:

https://flask.palletsprojects.com/en/2.3.x/. [Accessed: May 9, 2023].

[21] Chart.js contributors, "Chart.js," [Online]. Available: https://www.chartjs.org/.

[Accessed: May 12, 2023].

[22] The Bootstrap Team, "Bootstrap," [Online]. Available: https://getbootstrap.com/.

[Accessed: May 12, 2023].

[23] Microsoft, "Visual Studio Code," [Online]. Available: https://code.visualstudio.com/.

[Accessed: May 12, 2023].

[24] IOTA Foundation, "Devnet Explorer," [Online]. Available:

https://explorer.iota.org/devnet. [Accessed: May 9, 2023].

 53

Appendices

Appendix A Thesis Description

Appendix B Program Code

1 | A

Appendix A

Faculty of Technology, Natural Sciences and Maritime Sciences, Campus Porsgrunn

Title: IOTA for Industry 4.0 to handle production processes

USN supervisor: Leila Ben Saad

External partner: N/A

Task background:
In advanced industrial operations, data traceability related to critical systems and services
should be assessed and continuously monitored. In this context of Industry 4.0, designing
solutions based on distributed ledgers like IOTA can be very interesting and useful. IOTA [1-
3] is an open, feeless, and scalable distributed ledger for storing transactions that adapts
some principles from Blockchain. It is decentralized and based on a structure known as
Directed Acyclic Graph (DAG), which in the IOTA community is referred as the Tangle. IOTA
can be used for instance as a distributed ledger for detecting, tracking, analysing and
correcting errors that can occur in production processes.

Task description:
We consider the example/fabricated data from an industrial process i.e. automated ma-
chines with labels affixed to the work-pieces that tell the machines how they need to be pro-
cessed or choose parameters of any production process of a factory. This information is sent
to its respective processing stations via the IOTA Tangle. All the production steps are
recorded in the IOTA ledger so that any occurring error can be analysed and corrected imme-
diately.
The goal of the master thesis is to design and develop an application that acquires production
data from machines or IoT devices, store it in the decentralized ledger IOTA, and then process
and analyse the production data to detect eventual errors.
In this master thesis, a review of the use of distributed ledgers such as IOTA, Vechain [5] and
blockchain [4] in storing data collected from (IoT) devices or machines will be conducted.
A discussion about the limitations and challenges encountered in developing IOTA based
 solution will be made and possible improvement directions will be proposed.
Student category: IIA

The task is suitable for online students (not present at the campus): Yes
Practical arrangements: N/A

Supervision:

2 | A

As a rule, the student is entitled to 15-20 hours of supervision. This includes necessary time
for the supervisor to prepare for supervision meetings (reading material to be discussed, etc).

References:

[1] IOTA https://www.iota.org/

[2] Popov, Serguei Yu.. “The Tangle.” (2015).
https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85d
9f4a3a218e1ec/iota1_4_3.pdf

[3] Mauro Conti, Gulshan Kumar, Pranav Nerurkar, Rahul Saha, Luigi Vigneri. A survey on
security challenges and solutions in the IOTA. Journal of Network and Computer Applications,
Volume 203, 2022, 103383, ISSN 1084-8045.

[4] M. Ali, M. Vecchio, M. Pincheira, K. Dolui, F. Antonelli and M. Rehmani, "Applications of
Blockchains in the Internet of Things: A Comprehensive Survey", IEEE Communications
Surveys & Tutorials, vol. 21, no. 2, pp. 1676-1717, 2019. Available:
10.1109/comst.2018.2886932.

[5] Vechain, https://www.vechain.org/

Signatures:

Supervisor (date and signature):

Student (write clearly in all capitalized letters): KHURRAM BAIG

Student (date and signature):

02.02.2023

https://assets.ctfassets.net/r1dr6vzfxhev/2t4uxvsIqk0EUau6g2sw0g/45eae33637ca92f85d

 1 | B

Appendix B

IOTA Client Program Code:

-*- coding: utf-8 -*-

"""

Created on Mon Feb 20 15:55:35 2023

@author: Khurram Baig

"""

import iota_client

import pandas as pd

import time

import psutil

df = pd.read_excel("PasteurizerData.xlsx")

Convert each column into separate lists

temp_list = list(df['Temperature (°C)'])

Htime_list = list(df['Holding Time (s)'])

flow_list = list(df['Flow Rate (L/min)'])

pressure_list = list(df['Pressure (psi)'])

pH_list = list(df['pH'])

cooling_list = list(df['Cooling Rate (°C/min)'])

#Encode temperature, pH and Cooling data to bytes to avoid loosing decimal place

temp_list_str = str(temp_list).encode('utf-8')

pH_list_str = str(pH_list).encode('utf-8')

cooling_list_str = str(cooling_list).encode('utf-8')

 2 | B

Get CPU and Memory usage before sending data

process = psutil.Process()

cpu_before = process.cpu_percent()

mem_before = process.memory_info().rss

#Maesure response time start

start_time = time.time()

#Send Data to IOTA Ledger on Chrysalis Devnet

client = iota_client.Client()

message_temperature = client.message(

 index="Pasteur1_Tempdata", data=temp_list_str

)

message_Htime = client.message(

 index="Pasteur1_Htimedata", data=Htime_list

)

message_flow = client.message(

 index="Pasteur1_Flowdata", data=flow_list

)

message_pressure = client.message(

 index="Pasteur1_Pressuredata", data=pressure_list

)

message_pH = client.message(

 index="Pasteur1_pHdata", data=pH_list_str

 3 | B

)

message_cooling = client.message(

 index="Pasteur1_Coolingdata", data=cooling_list_str

)

End response time measurement

end_time = time.time()

Get CPU and Memory usage after sending data

cpu_after = process.cpu_percent()

mem_after = process.memory_info().rss

Calculate resource utilization

cpu_utilization = cpu_after - cpu_before

mem_utilization = mem_after - mem_before

Print the results

print("Response Time: ", end_time - start_time," sec")

print("CPU Utilization: ", cpu_utilization, " %")

print("Memory Utilization: ", mem_utilization," Bytes")

print(message_temperature)

print(message_Htime)

print(message_flow)

print(message_pressure)

print(message_pH)

print(message_cooling)

 4 | B

IOTA Subscriber Code:

-*- coding: utf-8 -*-

"""

Created on Tue Feb 21 07:53:16 2023

@author: Khurram Baig

"""

import iota_client

import statistics

from scipy.stats import pearsonr

from flask import Flask, render_template

import json

app = Flask(__name__)

client = iota_client.Client()

message_temperature =

client.get_message_data("1344be7d76863269cba2f8688f027a636848d7ab4cf87394154b4400cc0f2

20b")

message_Htime =

client.get_message_data("f970d36623131b45dc573e47a8ec9b9485bc78bcfe4bbb70f8644460b4fb1

94f")

message_flow =

client.get_message_data("ab340b799752be44ace06b9cbdd7c438b7c04fc8702083dcfba26afd2f6c6f

33")

message_pressure =

client.get_message_data("e3349a9e7d1a4e4bd161e7280f2ee03441c4914c2232b7d47a562c560f7cd

951")

 5 | B

message_pH =

client.get_message_data("cfa2d1c5ab43d10adfee176c0b48b590b5c2edc8b55cbb3cc5dc4237ac6478

8d")

message_cooling =

client.get_message_data("9d0ba2527ce72abefd077cfc9454e24a1810e544714c38268c9722dafe86ef

df")

data_value_Temp = message_temperature['payload']['indexation'][0]['data']

#Decoding bytes into temperature value

data_Temp_bytes = bytes(data_value_Temp)

str_Temp_value = data_Temp_bytes.decode('utf-8')

#convert string to float

decoded_Temp_value = [float(x) for x in str_Temp_value[1:-1].split(',')]

data_value_Htime = message_Htime['payload']['indexation'][0]['data']

data_value_Flow = message_flow['payload']['indexation'][0]['data']

data_value_Pressure = message_pressure['payload']['indexation'][0]['data']

data_value_pH = message_pH['payload']['indexation'][0]['data']

#Decoding bytes into pH value

data_pH_bytes = bytes(data_value_pH)

str_pH_value = data_pH_bytes.decode('utf-8')

#Converting string to float

decoded_pH_value = [float(x) for x in str_pH_value[1:-1].split(',')]

data_value_cooling = message_cooling['payload']['indexation'][0]['data']

#Decoding bytes into cooling value

data_cooling_bytes = bytes(data_value_cooling)

str_cooling_value = data_cooling_bytes.decode('utf-8')

#Converting string to float

decoded_cooling_value = [float(x) for x in str_cooling_value[1:-1].split(',')]

 6 | B

#Optional code for storing data into local sql database

Set up the connection to the SQL Server database using Windows authentication

#server = 'DESKTOP-QT2EDBD\\SQLEXPRESS'

#database = 'PasteurizerDB'

#conn = pyodbc.connect('DRIVER={SQL

Server};SERVER='+server+';DATABASE='+database+';Trusted_Connection=yes;')

#############FLASK#############################

@app.route('/table')

#@app.route('/', methods=['GET', 'POST'])

def table():

 temp_mean = statistics.mean(decoded_Temp_value)

 temp_mean = "{:.2f}".format(temp_mean)

 temp_deviation = statistics.stdev(decoded_Temp_value)

 temp_deviation = "{:.2f}".format(temp_deviation)

 #Holding Time

 Htime_mean = statistics.mean(data_value_Htime)

 Htime_mean = "{:.2f}".format(Htime_mean)

 Htime_deviation = statistics.stdev(data_value_Htime)

 Htime_deviation = "{:.2f}".format(Htime_deviation)

 #Flow Rate

 flow_mean = statistics.mean(data_value_Flow)

 flow_mean = "{:.2f}".format(flow_mean)

 flow_deviation = statistics.stdev(data_value_Flow)

 flow_deviation = "{:.2f}".format(flow_deviation)

 #Pressure

 7 | B

 pressure_mean = statistics.mean(data_value_Flow)

 pressure_mean = "{:.2f}".format(pressure_mean)

 pressure_deviation = statistics.stdev(data_value_Flow)

 pressure_deviation = "{:.2f}".format(pressure_deviation)

 #pH Value

 pH_mean = statistics.mean(decoded_pH_value)

 pH_mean = "{:.2f}".format(pH_mean)

 pH_deviation = statistics.stdev(decoded_pH_value)

 pH_deviation = "{:.2f}".format(pH_deviation)

 #Cooling Rate

 cooling_mean = statistics.mean(decoded_cooling_value)

 cooling_mean = "{:.2f}".format(cooling_mean)

 cooling_deviation = statistics.stdev(decoded_cooling_value)

 cooling_deviation = "{:.2f}".format(cooling_deviation)

calculate and store the correlation coefficients for each pair of variables

 corr_temp, _ = pearsonr(decoded_Temp_value, decoded_pH_value)

 corr_temp = "{:.2f}".format(corr_temp)

 corr_htime, _ = pearsonr(data_value_Htime, decoded_pH_value)

 corr_htime = "{:.2f}".format(corr_htime)

 corr_flow, _ = pearsonr(data_value_Flow, decoded_pH_value)

 corr_flow = "{:.2f}".format(corr_flow)

 corr_pressure, _ = pearsonr(data_value_Pressure, decoded_pH_value)

 corr_pressure = "{:.2f}".format(corr_pressure)

 corr_cooling, _ = pearsonr(decoded_cooling_value, decoded_pH_value)

 corr_cooling = "{:.2f}".format(corr_cooling)

 8 | B

 # if the request method is GET or the form hasn't been submitted yet, just render the template

with the original data

 data =[]

 for i in range(len(decoded_Temp_value)):

 row = {

 'Temp': decoded_Temp_value[i],

 'Htime': data_value_Htime[i],

 'Flow': data_value_Flow[i],

 'Pressure': data_value_Pressure[i],

 'pH': decoded_pH_value[i],

 'Cooling': decoded_cooling_value[i]

 }

 data.append(row)

 return render_template('table.html', data=data,temp_mean=temp_mean,

temp_deviation=temp_deviation, Htime_mean=Htime_mean, Htime_deviation=Htime_deviation,

 flow_mean=flow_mean,

flow_deviation=flow_deviation,pressure_mean=pressure_mean,

pressure_deviation=pressure_deviation,

 pH_mean=pH_mean, pH_deviation=pH_deviation,

cooling_mean=cooling_mean,cooling_deviation=cooling_deviation, corr_temp=corr_temp,

 corr_htime=corr_htime, corr_flow=corr_flow,

corr_pressure=corr_pressure,corr_cooling=corr_cooling)

@app.route('/dashboard')

def dashboard():

 # Pass data to template

 data = {

 'temp': json.dumps(decoded_Temp_value),

 'htime': json.dumps(data_value_Htime),

 'flow': json.dumps(data_value_Flow),

 'pressure': json.dumps(data_value_Pressure),

 9 | B

 'pH': json.dumps(decoded_pH_value),

 'cooling': json.dumps(decoded_cooling_value)

 }

 return render_template('dashboard.html', data=data)

if __name__ == '__main__':

 app.run(debug=True)

	1 Introduction
	1.1 Objectives
	1.2 Report Structure

	2 Literature Review
	2.1 Distributed Ledger Technology
	2.1.1 Private Permissioned Network
	2.1.2 Private Permissionless Network
	2.1.3 Public Permissioned Network
	2.1.4 Public Permissionless Network
	2.1.5 Consensus Algorithms
	2.1.5.1 Proof of Work
	2.1.5.2 Proof of Stake
	2.1.5.3 Proof of Authority
	2.1.5.4 Tangle Coordinator
	2.1.5.5 Tangle 2.0 Coordicide

	2.2 Blockchain
	2.2.1 Blockchain Working

	2.3 Vechain
	2.3.1 Vechain Working

	2.4 IOTA Tangle
	2.4.1 IOTA Working
	2.4.2 IOTA Messages
	2.4.2.1 Network ID
	2.4.2.2 Message ID
	2.4.2.3 Parents
	2.4.2.4 Payload
	2.4.2.5 Nounce (Number Used Once)

	2.5 Review of Blockchain, Vechain, and IOTA for IoT Applications
	2.5.1 IOTA for IoT application
	2.5.2 Vechain for IoT application
	2.5.3 Blockchain for IoT application
	2.5.4 Comparison of Blockchain, Vechain, and IOTA for IoT Applications

	3 System Analysis and Implementation
	3.1 Process System Overview
	3.2 System Specifications
	3.3 System Requirements and Use Case
	3.3.1 Requirements
	3.3.2 Use case Diagram

	3.4 System Sequence Diagram
	3.4.1 Read/Store Process Data
	3.4.2 Retrieve Process Data
	3.4.3 Analyze data

	3.5 System Architecture
	3.6 System Implementation
	3.6.1 IOTA Client
	3.6.1.1 iota.rs:
	3.6.1.2 Python bindings:
	3.6.1.3 Python APIs:
	3.6.1.4 Python IDE:
	3.6.1.5 Code for IOTA Client

	3.6.2 IOTA Node
	3.6.2.1 Code for IOTA Node

	3.6.3 IOTA Subscriber
	3.6.3.1 Code for IOTA Subscriber

	3.6.4 Web Application
	3.6.4.1 Flask Python
	3.6.4.2 HTML, CSS, JavaScript, and Bootstrap
	3.6.4.3 Web Application IDE

	3.6.5 Code for Web Application

	3.7 Testing and Validation
	3.7.1 Code scheme for Testing and Validation

	4 Results and Discussions
	4.1 Data Analysis
	4.2 Traceability of Transactions
	4.2.1 Traceability with Python
	4.2.2 Traceability with IOTA Explorer

	4.3 Transaction Response Time and Resource Utilization
	4.3.1 Case-1
	4.3.2 Case-2
	4.3.3 Case-3
	4.3.4 Case-4
	4.3.5 Summary Table for Case1-4

	4.4 Confirmation Time of the Transaction
	4.4.1 Case-1
	4.4.2 Case-2

	4.5 Discussion

	5 Conclusion

