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Summary:  

With the growing global demand for offshore wind energy, it is imperative to design wind farms in an 

optimal and efficient manner. However, a challenge arises when wind turbines are grouped together, as 

wake interactions between them can cause downstream wind speeds to decrease, leading to a reduction 

in power production. Several wake models are available to simulate this effect and aid engineers in 

optimizing wind farm designs.  

This thesis report compare several offshore wind farms and evaluates the accuracy of commonly used 

wake models for assessing wake losses in offshore wind farms. The aim is to provide insight into the 

accuracy of these models in estimating power output while taking wake effects into account. Three wake 

models: NOJ, BastankhahGaussian, and TurbOPark, implemented in the Pywake tool, were compared 

using data collected from previous studies on Horns Rev 1 offshore wind farm as a reference. While all 

models showed some errors in estimating real power production, the TurbOPark model gave the closest 

result to the real Annual Energy Production value and was able to predict the pattern of power variation 

while overestimating it. The NOJ provided good agreement with observed data in estimating the power 

deficit of the entire farm, while all models produced similar results for the normalized power of turbines 

in row 7. These findings suggest that the Pywake wake models can be considered reliable tools for 

optimizing offshore wind farm production. 
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1 Introduction 

The first chapter of the thesis serves as an introduction to the research, outlining its background 

and objectives. Additionally, It outlines the various tasks that will be carried out throughout 

the thesis and finishes by defining the structure of the report. 

1.1 Background and objective 

Over the last two decades, the global demand for wind turbines has increased rapidly. Most of 

this demand has been driven by the necessity for "greener energy" electric power plants. Wind 

farms with multiple turbines are being built in the multi-megawatt range [1]. Wind farms are 

built both onshore and offshore based on wind availability, construction costs, and other 

dependencies or limitations to maximize wind power production or annual energy production 

(AEP). In 2021, 93% of the total 830 GW of installed wind capacity was onshore, with the 

remaining 7% being offshore wind farms. Onshore wind is a mature technology that is present 

in 115 countries worldwide, whereas offshore wind is still in its early stages of development, 

with the capacity present in only 19 countries [2]. However, as more countries develop or plan 

to develop their first offshore wind farms, offshore reach is expected to grow in the coming 

years due to both global decarbonization efforts and the increasingly competitive economics of 

offshore wind. Figure 1.1 shows the growth of offshore wind energy in the past years. The 

majority of the existing offshore wind capacity is in Europe, but there is a significant 

development in China, the United Kingdom, and elsewhere. A huge proportion of offshore 

wind projects are currently in the planning stages around the world.[3]  
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Figure 1.1: Global growth of offshore wind energy [2] 

Teaming up wind turbines to form a wind farm might face some problems. One of these issues 

is wake loss, which occurs after the wind passes through the turbine's blades.[4] Seeing as wind 

turbines use wind energy to generate electricity, it stands to reason that the wind on the other 

side of the wind turbine has less energy. As a result, the wind downstream of the wind turbine 

is turbulent and has a reduced wind speed; this is known as the wind turbine's wake effect. [5] 

Therefore, precisely modeling performance and estimating the annual energy production of 

wind farms while taking the wake effect into account in the early stages of the development is 

critical, as it has a significant impact on energy production, wind turbine life span, the success 

of wind energy projects as well as decreasing the CO2 emissions and enhancing the energy 

transition [6]. Computational Fluid Dynamics (CFD) can be used to evaluate wind farms. 

However, engineering models, such as those implemented in PyWake, are faster and thus more 

suitable when evaluating multiple design configurations [3]. 

In this work, wake effect simulations will be performed on Horns Rev 1 (described in Section 

3.1), as it’s available in PyWake, with the wake being simulated using three different wake 

deficit models implemented in PyWake: N.O Jensen (NOJ), TurbOPark, and 

BastankhahGaussian. The objective is to determine which of the wake models produces the 

most accurate results when compared to the wind farm's measured data. 
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1.2 Thesis task description 

The tasks required to accomplish this work are as follows: 

1st task: Literature study and previous works, as well as a collection of offshore wind farm 

production data from public sources and publications. 

2nd task: Choose the dataset. 

3rd task: Run the PyWake simulator and compare simulated production to observed production 

using different wake models that should be tested for accuracy. 

1.3 Report structure 

The report has been structured in the following manner: In Chapter 2, a review of studies on 

wake effects in wind farms is presented, highlighting previous works that have utilized various 

wake models. Chapter 3 compares and outlines the features of several offshore wind farms 

located in the North Sea. The subsequent chapter, Chapter 4, offers a comprehensive 

explanation of the Pywake simulation tool, defines the wake effect, and details the three wake 

models that were utilized in this investigation. In Chapter 5, the results of the simulations are 

discussed and presented. The report concludes with Chapter 6, which provides a summary of 

the findings of this study. 
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2 Literature review 

The upcoming chapter provides a literature review that showcases a variety of wake studies 

conducted within wind farms, along with past research that employed different wake models. 

The purpose of this review is to better understand the accomplishments of others in this 

particular domain. 

2.1 Wake effect studies in wind farms 

It is essential to consider the wake effect when designing a wind farm. This is because wake 

can reduce a wind farm's annual energy production (AEP), resulting in low wind energy 

production efficiencies. Thereby, studying the wake assists us in optimizing and evaluating the 

real capacity of wind farms. It is also important to have a look at what other 

researchers have done in this area and how they are measuring and estimating the wake losses 

in wind farms. 

Jang-Oh Mo et al. investigated wake instability and its breakdown behind a wind turbine using 

a Large Eddy Simulation (LES) of an NREL (National Renewable Energy Laboratory) phase 

VI wind turbine inside a virtual wind tunnel with a section of 24.4 m by 36.6 m, using ANSYS 

FLUENT, a CFD software. They positioned the wind turbine approximately two rotor 

diameters upstream and twenty rotor diameters downstream. The simulation results were then 

compared to the experimental data posted by NREL, and no significant differences were 

discovered. They also noticed that the wake behind the wind turbine is made up of a network 

of intense and steady rotating helical vortices, then became unstable after some distance 

downstream of the wind turbine. The distance at which the instability occurs was later found 

to be a function of the upstream wind. For instance, when the upstream wind was 7m/s, the 

unsteady vortex structure appeared at four rotor diameters and full collapse occurred at six rotor 

diameters, however, when the upstream wind was increased to 15.1 m/s, the instability 

happened at eleven rotor diameters downstream and complete breakdown was seen two more 

rotor diameters further. Moreover, they found that the distance at which turbulence intensity 

(TI) decreases during the wake uncertainty and vortex breakdown process is also a function of 

upstream wind speed. Then, they used four different velocities, 7m/s, 10m/s, 13.1m/s, and 15.1 

m/s, in order to determine the location of the boundary between the near and far wakes. [7] 
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In their study, D. Vahidi and F. Porté-Agel examined whether there is a scaling of the 

near distance from a wind turbine that leads to a collapse of the mean wake velocity shortfall 

under various ambient levels by performing an LES of the wake of a wind turbine under neutral 

atmospheric conditions with multiple turbulence levels. It was discovered that the higher the 

level of atmospheric turbulence, the faster the wake recovers and the shorter the near-wake 

length. They also looked into the potential of using the correlation obtained for the normalized 

optimum wake velocity deficit as a function of the normalized streamwise length in the sense 

of analytical wake modeling, taking two approaches: a) using the relationship as a stand-alone 

model to assess the maximum wake velocity deficit, and b) using the new relationship to 

calculate the wake advection velocity inside a physics-based wake expansion model. A good 

agreement between simulation data and model predictions was observed. [8] 

R. J. Barthelmie et al. examined measurements from Denmark's Middelgrunden offshore wind 

farm, which has a curved-line shape of turbines placed 2.4 rotor diameter D apart, and 

discovered that average power losses due to wakes are approximately 10% of total production, 

with a down sequence turbulence intensity increase of 20%. [9]. In another work, R.J. 

Barthelmie and L. E. Jensen examined the consequences of wind distribution, atmospheric 

stability, and wind farm arrangement at the Nysted offshore wind farm in Denmark and 

concluded that wake losses are mostly linked to wind speed variation, whereas direction, 

atmospheric stability, and turbulence have second-order impacts. Besides that, wind farm 

efficiency is highly dependent on turbine spacing. [10] 

De-Prada-Gil et al. conducted research on the possible advantages of a wind farm control 

strategy whose primary goal was to enhance total energy yield over its lifetime by taking into 

account that the wake effect in the wind farm differs based on the activity of each wind turbine. 

The research suggested that the control strategy optimizes the entire system by running some 

wind turbines at sub-optimal speeds. This was done to minimize the wake effect inside the 

wind farm and, as a result, maximize total energy production. This was done with two different 

wind roses. One wind rose was only at 90 degrees, while the other was at 30 degrees. The blade 

element momentum (BEM) theory is applied in the study. It moreover includes an in-depth 

wake model that takes into account single, partial, and multiple wake effects. The researchers 

noted that by employing the control strategy, the annual energy capacity of a wind farm could 

be increased from 1. 86% to 6.24%, by running specific wind turbines slightly off their ideal 

level and thus reducing the wake consequence.[11] 
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A wide range of analysis tools from the atmospheric science, economic and legal communities 

was used by J. K. Lundquist et al. in order to estimate the cost and implications of the wake 

effect generated by upwind wind farms. They also noticed that the wake could stretch to more 

than 50 kilometers downstream (behind the wind rotor), resulting in huge financial losses. [12] 

Based on experimental data and field measurements, Li et al. evaluated the wake properties of 

a horizontal axis wind turbine (HAWT) in a wind farm. The HAWT generator has a 30kW 

capacity and a 10m rotor diameter. They began by measuring the reference wind speed and 

then reviewed the wake under various tip speed ratios and pitch angles at the turbine position 

x/D=2.0, where D is the rotor diameter. They then used the Gaussian function to foresee the 

wake model. As an outcome, the non-dimensional wind velocity ratio dropped as the pitch 

angle increased, and the full wake widths were seen at 0 degrees of pitch angle.[13] 

2.2 Previous work using different wake models. 

To better understand the behavior of the wakes forming behind the wind turbines as well as 

their effect on the AEP of a wind farm and other challenges they present, it is necessary to have 

some models to be used to simulate these wakes and estimate the energy production of wind 

farms. Several types of wake models are currently available and many more are expected in 

the near future. Below, some previous studies on different wake models will be presented. 

Charhouni et al. looked into the effectiveness of three analytical wake models, Jensen, Ishihara, 

and Frandsen, in predicting wind velocity in the wake region using three criteria: parsimony, 

precision, and inaccuracy. As an outcome, it was discovered that the Jensen wake model was 

a very parsimonious model when compared to the two other wake models and that several 

factors taken into account have a significant influence on the accuracy of estimating velocity 

deficit. Nevertheless, the imprecision of the wake model was caused by the uncertainty on the 

trust level linked with some variable values, specifically, the trust coefficient and wake decay 

constant, which are related to wind farm characteristics. They also reached the conclusion that 

neither of the three analytical wake models can accurately estimate the wind velocity deficit, 

but the Jensen wake model, as per their research, is still the model that provides a good 

argument in terms of the three criteria.[14] 

Three different wake models (Jensen wake model, 2D Jensen wake model, and Jensen-gaussian 

wake model) were utilized by Haiying Sun and Hongxing Yang to calculate Hong Kong's 
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offshore wind energy output. They also used the wake models to compare total electricity 

generation and power output from each wind turbine. The results revealed that the three wake 

models obtained no important differences in their total energy output estimations. After 

comparing the models, it was found that the Jensen wake model overestimates the power loss. 

Estimation errors for the 2D Jensen wake model and Jensen-Gaussian wake model were 1.55% 

and 0.38%, respectively, when compared to the Jensen wake model. Furthermore, they 

concluded that the wake model's influence on wind turbine structure is significant and warrants 

further investigation as it may indirectly affect the economic efficiency of wind farms.[15] 

Göçmen et al. described six different wake modeling approaches developed at the Technical 

University of Denmark (DTU). Data from the Sexbierum onshore wind farm and the Lillgrund 

offshore wind farm were evaluated and compared to understand how to best utilize the models. 

The cases used illustrated that the Jensen model, the Larsen model, and Fuga are useful for 

large wind farm calculations because they are strong and computationally affordable, and they 

produced satisfactory results both onshore and offshore when the far wake region is taken into 

account and the atmospheric conditions are well defined. The CFD solvers, k–ε–𝑓𝑃  and LES, 

in particular, are found to be very nearly equal to the measurements. The study also 

demonstrates that introducing wind direction uncertainty improves the accuracy of the Jensen 

model, Larsen model, and Fuga power predictions for the Lillgrund wind farm case. 

Whereas, Even the most advanced model, Ellipsys3D LES, fails to replicate the depth of the 

wake deficit in the Sexbierum wind farm case.[16] 

In their research, Shakoor et al. distinguished between the far and near wake effect in large 

wind farms. After comparing various far wake models on the basis of wake effect prediction 

and wind turbine power computation, it was deduced that Jensen's far wake model is an 

effective choice to solve the wind farm layout problem considering that it is simple and has a 

fairly high degree of accuracy. Also, they concluded that the prediction accuracy of all wake 

models is heavily influenced by the formatting and downstream distance between windmills in 

a wind farm. Upon studying the wind farm layout optimization problem, they discovered that 

more optimization techniques are needed to tackle the layout problem.[17] 

Sadaghatizadeh et al. used numerical models to develop wind turbine wakes using LES, Jensen, 

Frandsen, 1st Larsen, and 2nd Larsen models. The models were validated with experimental 

data. In the investigation, the CFD program ICEM was used to generate a hexahedral mesh on 

the turbine blades in the cylindrical region. The researchers came to the conclusion that the 
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models overestimated the wake expansion while underestimating the velocity recovery rate. 

This could result in a wind farm with fewer wind turbines, producing less power. According to 

the researchers, the LES model can be used to obtain information about the flow field, which 

can then be used to plan a wind farm that operates under ideal circumstances.[18] 

2.2.1 Studies using PyWake 

Some previous research has been conducted using wake models implemented in PyWake, and 

since PyWake will be used in this thesis research, it is beneficial to look at these previous works 

and see how other researchers simulated wakes in wind farms. 

Fischereit et al. compared, by simulations, a variety of wind farm models with varying 

complexity, fidelity, scale, and computational costs to Supervisory Control And Data 

Acquisition (SCADA). They selected two regional scale wind farm parameterizations 

implemented in the mesoscale Weather Research and Forecasting model (WRF), ExplicitWake 

Parameterization (EWP) and the wind Farm Parameterization (FIT), as well as 2 distinct high-

resolution RANS simulations using PyWakeEllipSys installed with an actuator disk model, and 

three rapid engineering wake models from the PyWake suite. These models were utilized to 

wind farms of Nysted and Rødsand II, found in the Baltic Sea. They concluded that WRF+FIT 

using a resolution of 2 km is a good choice for capturing the average intra-farm variability in 

wind energy applications, whereas WRF+EWP was not efficient in estimating wind speed 

deficits. Besides that, they realized that all of the PyWake suite's engineering wake models 

simulate intra-farm wakes comparable to high-fidelity Reynolds-averaged Navier–Stokes 

(RANS) simulations, but they fail to accurately predict the farm wake effect of an upstream 

farm. According to their investigation, PyWakeEllipSys and WRF are found to be more 

accurate than PyWake for farm-to-farm wakes.[19] 

Valotta Rodrigues et al. developed a surrogate model of Annual Energy Production (AEP) in 

PyWake for economic analysis methods for large offshore wind farms in their early stages of 

development, taking into account design spacing, turbine sizes, wind resource conditions, and 

farm layout arrangement. The model had a coefficient of accuracy of 0.994, indicating that it 

was a useful AEP calculator for financial evaluation. They observed that wind resources, 

turbine characteristics, and turbine number were more influential than the wind turbine 

spacing. However, keeping in mind the layout features (spacing) can improve the surrogate's 

exactness for economic analysis.[3] 
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Riva et al. optimized a wind farm design and operational techniques in both onshore and 

offshore applications using TOPFARM, a DTU wind energy software platform that includes a 

PyWake component. The goal was to allow the design of wind farms with limitations on 

Lifetime Damage Equivalent Loads (LDEL), where regions of the site and layouts that generate 

excessive loads could be excluded. With the addition of load constraints and the use of various 

types of surrogate models, quicker and more precise load predictions were obtained, while 

gradient-based optimization was enabled.[20] 

Krabben et al. used two engineering wake models implemented in PyWake to evaluate wake 

losses in different offshore wind farms with curved and straight wind turbine rows. The NO 

Jensen model was the first engineering wake model used, followed by the Gaussian wake 

model. As an outcome, the curved wind farm layout has less fluctuation in energy supply than 

the rectangular wind farm layout since the curved wind farm's power generation is less reliant 

on wind direction than the rectangular wind farm layout. Their analysis showed that wind farms 

with curved rows outperform wind farms with straight rows.[21] 

Van der Laan et al. suggest and use a simple wind speed independent actuator disk control 

method to decrease the number of iterations required and quicken the calculation of the annual 

energy production from RANS simulations of a 5×5 rectangular wind farm with 5 rotor 

diameter spacing using PyWake. By tilting the wind farm layout and using the new wind speed 

independent actuator disk control method, the effect of different wind directions and wind 

speeds are calculated sequentially in a single simulation. Since the global inflow wind speed 

and direction are kept constant, only local changes from a previously converged result must be 

reevaluated, and due to this, the total number of iterations is minimized by a factor of 2 to 3, 

and therefore, according to their finding, the wind speed independent actuator disk control 

method has the greatest chance of reducing the computation time of wind farm annual energy 

production calculations. [22] 
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3 Overview of offshore wind farms 
production data 

 

The chapter showcases various offshore wind farms located in the Scandinavian region and 

their corresponding turbine production statistics that are collected from previous publications. 

The objective is to gain an overall understanding of the production performance of offshore 

wind turbines and select a wind farm for simulation using Pywake simulator and its 

implemented wake models. 

3.1 Horns Rev 1 

Horns Rev 1 is one of the wind farms that are already implemented in Pywake, together with 

its site specifications, wind speeds, and directions as well as its turbines. 

3.1.1 Horns Rev 1 wind turbines and site specifications 

Horns Rev 1 is a substantial offshore wind farm situated in a region with minimal turbulence. 

Its optimal configuration and position make it suitable for conducting comprehensive research 

on wake effects. With 80 Vestas V80-2000 wind turbines, it produces a total electricity capacity 

of 158 MW [23]. Each wind turbine at Horns Rev 1 possess a 2 MW energy capacity and stand 

at a hub height of 70 m with a rotor diameter of approximately 80 m. A visual representation 

of the turbine's dimensions can be observed in Figure 3.1. 

 

Figure 3.1: Vestas V80-2000 wind turbine dimensions.[24] 
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 Horns Rev 1 is located in Denmark around 14 km far from the coast of the North Sea [25] as 

shown in Figure 3.2. At Horns Rev 1, wind speeds maintain an average velocity of 10 m/s 

facilitating optimal conditions for generating wind power. The water depth at the site varies 

between 6 to 14 meters. To ensure maximum capacity utilization, each wind turbine is placed 

560 meters apart, equivalent to approximately 7 rotor diameters. The 80 wind turbines span 

over a 20-square-kilometer region and have been functional since 2002.[23]  

 

Figure 3.2: Horns Rev 1 location. [26] 

Figure 3.3 illustrates the placement of three met masts surrounding the offshore wind farm, 

with the oldest mast named M2, which was established before the wind farm was constructed 

and was leveraged to assess the wind resource at the location. In the summer of 2003, the other 

two met masts (M6 and M7) were installed to study the recovery of wake flow behind the wind 

farm and to develop advanced scientific and technical models for computing wake effects from 

extensive offshore wind farms [24]. 

 

Figure 3.3: Installed met masts around Horns Rev 1 wind farm.[27] 
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Figure 3.4 below illustrates the wind distribution at Horns Rev 1 site, plotted with the Pywake 

simulator.  

 

Figure 3.4: Wind Rose for the Horns Rev 1 site. 

The wind rose chart illustrates the distribution of wind directions and corresponding wind 

speeds at the wind farm, by displaying the percentage of time that the wind blew from each 

direction. The above wind rose is divided into 8 sections with 45 degrees per section, and in 

each section, the wind velocity is divided into 5 ranges with each of interval 5 m/s. According 

to the chart, the wind blew from the 270˚ direction for approximately 15% of the time, and 

from the [55˚- 90˚] direction for roughly 7% of the time. 
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3.1.2 Horns Rev 1 turbine power data 

As previously stated, the wind turbines utilized at the Horns Rev 1 offshore wind farm are the 

Vestas V80-2000 model. Table 3.1 depicts the power output and thrust coefficient of an 

individual wind turbine at various wind speeds. 

Table 3.1: Electric power and thrust coefficient of Vestas-V80-2000 wind turbine.[24] 

Wind Speed Electric 

Power (kW) 

Thrust 

Coefficient 

Wind Speed Electric 

Power (kW) 

Thrust 

Coefficient 

4 66.6 0.818 15 1997 0.249 

5 154 0.806 16 1999 0.202 

6 282 0.804 17 2000 0.167 

7 460 0.805 18 2000 0.14 

8 696 0.806 19 2000 0.119 

9 996 0.807 20 2000 0.102 

10 1341 0.793 21 2000 0.088 

11 1661 0.739 22 2000 0.077 

12 1866 0.709 23 2000 0.067 

13 1958 0.409 24 2000 0.06 

14 1988 0.314 25 2000 0.053 

 

The Electric power as well as the thrust coefficient are plotted against the wind speed and can 

be seen in Figure 3.5, below. 

 

Figure 3.5: Vestas-V80-2000 nominal power generation and thrust coefficient as a function of the wind speed. 
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3.2 Lillgrund wind farm 

Lillgrund farm, has also been integrated into PyWake along with its turbines and sites. 

3.2.1 Lillgrund location and wind turbine description 

Lillgrund offshore wind farm is located in the Baltic Sea, it is far from the Swedish and Danish 

coasts around 7 and 9 km, respectively, as seen in Figure 3.6. It is Sweden’s largest offshore 

wind farm and the third largest worldwide. Each year, around 330 GWh of electricity is 

generated from the wind farm, supplying not less than 60,000 houses in Sweden. [28]  

 

Figure 3.6: Lillgrund wind farm location and layout. [29] 

Lillgrund farm has 48 wind turbines of type Siemens SWT-2.3-93. It has a larger rotor diameter 

(93 m) than that of Horns Rev 1 turbine (80 m), as well as a higher hub height of 80 m. A 

drawing of the turbine is shown in Figure 3.7 with the dimensions. 

 

Figure 3.7: Schematic representation of Siemens SWT-2.3-93 wind turbine.[30] 
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The wind rose of Lillgrund wind farm is plotted in PyWake, and presented in Figure 3.8 

below: 

 

Figure 3.8: Wind rose at the Lillgrund site. 

3.2.2 Lillgrund turbine power data 

The Siemens SWT-2.3-93 turbine has a rated power output of 2300 kW and is designed to 

operate efficiently in a wind speed range of 4 m/s to 25 m/s. Table 3.2 shows the power data 

for the Siemens SWT-2.3-93. 

Table 3.2: The electric power of Siemens SWT-2.3-93 turbine at different wind speeds. [31] 

Wind Speed Electric Power 

(kW) 

Wind Speed Electric Power 

(kW) 

4 65 15 2299 

5 180 16 2300 

6 352 17 2300 

7 590 18 2300 

8 906 19 2300 

9 1308 20 2300 

10 1767 21 2300 

11 2085 22 2300 

12 2234 23 2300 

13 2283 24 2300 

14 2296 25 2300 
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The power curve, which illustrates the relationship between wind speed and power output, can 

be found in Figure 3.9. It is worth noting that the cut-in and cut-off wind speeds indicate the 

minimum and maximum wind speeds at which the turbine can start generating power and must 

shut down, respectively. This information is crucial for understanding the turbine's 

performance and ensuring its safe operation. 

 

Figure 3.9: Thrust coefficient and power curve for Siemens SWT-2.3-93. [32] 

3.3 Nysted wind farm 

Unlike the two previously mentioned wind farms, Nysted wind farm has not been included yet 

in Pywake libraries. 

3.3.1 Nysted location and wind turbines  

The farm is considered one of the largest of its kind, and it is located off the coast of Denmark, 

around 11km to the south of Nysted town in the island of Lolland in the Baltic Sea, Figure 

3.10. This location was chosen due to the favorable wind conditions in the area, which are ideal 

for generating electricity from wind power. The farm has been recognized for its contribution 

to the reduction of carbon emissions and transition to renewable energy, as well as it played an 

important role in making Denmark a leader in the green shift. 
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Figure 3.10: Location of Nysted wind farm [10] 

Nysted wind farm was officially commissioned in December 2003. It has a total of 72 wind 

turbines of type Bonus 2.3 MW, each with a capacity of 2.3 MW, which is the same capacity 

as the wind turbine, Siemens SWT-2.3-93, of Lillgrund wind farm. The turbines of Nysted 

wind farm are situated in relatively shallow waters, with a depth between 6 and 10 m [33], 

which makes installation and maintenance of the turbines easier and more cost-effective. These 

turbines have 82.4 m rotor diameter and a hub height of 69 m as presented in Figure 3.11. 

 

Figure 3.11: Bonus 2.3 MW dimensions. [34] 

The distribution of wind speed over 5 m/s at the Nysted site, under different directions is 

displayed in Figure 3.12. 
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Figure 3.12: Wind Rose at Nysted wind farm site [10] 

3.3.2 Wind turbine power and thrust coefficient curves. 

As previously stated, the Bonus 2.3 MW wind turbine is employed in the Nysted wind farm, 

capable of producing 2300 kW and designed to operate at a rated wind speed of 25 m/s. The 

turbine initiates power generation at a wind speed of 3.5 m/s and ceases at 25 m/s, however, it 

can endure wind speeds up to 55 m/s. Figure 3.13 displays both the power curve and the thrust 

coefficient curve for the Bonus 2.3 MW turbine, providing a visual representation of the 

turbine's performance characteristics. It is worth noting that these curves are critical in 

determining the optimal operating conditions of the turbine and ensuring its maximum 

efficiency. 

 

Figure 3.13: Power and thrust coefficient curves of Bonus 2.3 MW turbine [10] 
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The overall capacity of Nysted wind farm is around 165.6 MW, and the annual energy output 

of the farm is 595 GWh, which is equivalent to the electricity consumption of roughly 145,000 

households over the course of a year. This highlights the significant contribution of the wind 

farm in meeting the energy needs of many households.[35] 

3.4 Hywind wind farm 

The Pywake libraries lack implementation of the Hywind offshore wind farm site and wind 

turbine objects, requiring them to be defined before simulations can be conducted on this wind 

farm. 

3.4.1 Hywind site and turbine  

Located in the North Sea off the coast of Scotland, Figure 3.14, Hywind is a floating offshore 

wind farm that was developed by Equinor (previously known as Statoil). As of now, it is the 

only floating offshore wind farm in the world, covering an area of approximately 4 square 

kilometers and providing electricity to around 20,000 homes in the UK. Since it began 

operating in October 2017, it has demonstrated the potential of floating offshore wind farms 

by achieving the highest average capacity factor among all UK offshore wind farms [36].  

 

Figure 3.14: location of Hywind offshore wind farm. [37] 

The wind conditions at the Hywind offshore wind farm site are generally considered to be 

favorable for wind energy generation. The North Sea is known for its strong and consistent 
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winds, which make it a prime location for offshore wind farms. The average wind speed at the 

site is around 10 meters per second (m/s), or approximately 22 miles per hour. However, wind 

speeds can vary depending on the time of year and weather conditions. The turbines at Hywind 

are designed to operate in wind speeds of up to 60-70 m/s, which are relatively high compared 

to some other offshore wind farms like the previous farms presented [38]. 

In addition to the wind speed, wind direction is also an important factor in determining the 

performance of wind turbines. Overall, the wind conditions at the Hywind offshore wind farm 

site are considered to be suitable for wind energy generation. Figure 3.15, displays the wind 

rose at Hywind Scotland wind farm site. 

 

Figure 3.15: Wind rose at Hywind Scotland site. [39] 

3.4.2 Turbine specifications 

Hywind offshore wind farm consists of five floating wind turbines of the type Siemens SWT-

6.0-154, which are anchored to the seabed by mooring lines. Each of the turbines at Hywind 

has a capacity of 6 megawatts (MW), giving the entire farm a total capacity of 30 MW. The 

rotor diameter of each turbine is 154 meters, and the hub height is 98 meters above sea level. 

As the wind speed are high at the farm’s site, the turbines at Hywind are designed to rotate to 

face the wind direction, which allows them to capture as much energy as possible from the 

wind, they are equipped with blades that can adjust their pitch angle to optimize their 

performance in changing wind conditions. [38] 
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The specifications of the wind turbine at Hywind farm, along with the layout of the turbines in 

the farm, are presented in Figure 3.16. 

 

Figure 3.16: Hywind’s turbine specification and layout. [36] 

The Siemens SWT-6.0-154 begins generating electricity when the wind speed reaches 3.5 m/s 

and ceases at 25 m/s. Its rated wind speed is 13 m/s. However, it has the ability to endure high 

wind speeds without suffering mechanical damage, as previously stated. Table 3.3 presents the 

turbine's power in tabular form, while Figure 3.17 depicts it graphically against wind speed 

together with the  thrust coefficient of the turbine [40]. 

Table 3.3: Electric power of Siemens SWT-6.0-154 [41] 

Wind Speed Electric Power 

(kW) 

Wind Speed Electric Power 

(kW) 

3.5 200 14.5 6000 

4.5 320 15.5 6000 

5.5 575 16.5 6000 

6.5 945 17.5 6000 

7.5 1485 18.5 6000 

8.5 2157 19.5 6000 

9.5 2940 20.5 6000 

10.5 3930 21.5 6000 

11.5 5160 22.5 6000 

12.5 5960 23.5 6000 

13.5 6000 24.5 6000 
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Figure 3.17: Power curve and thrust coefficient against wind speed in m/s for Hywind’s farm wind turbine, 

Siemens SWT-6.0-154. 

3.5 Wind farms’ summary 

Wind turbines typically exhibit a consistent power curve shape, as seen in the cases of Vestas-

V80, SWT-2.3-93, Bonus 2.3 MW, and Siemens SWT-6.0-154 turbines, but the specific values 

of the power of wind turbines and the cut-in and cut-off speeds can vary. Similarly, the thrust 

coefficient curves for these turbines may also differ in their values and characteristics. It is 

important to note that these differences have the potential to impact the overall performance 

and efficiency of not only the individual turbines but also the entire wind farm. Additionally, 

the power curve and thrust coefficient curves of wind turbines are affected by a range of factors 

such as wind speed, air density, and blade pitch angle. These curves are important in 

determining the optimal operating conditions of a turbine and maximizing its energy output. 

Understanding the variation of these curves is crucial for engineers and operators in the wind 

power industry to make informed decisions regarding turbine design, placement, and 

maintenance. By analyzing and optimizing these curves, the efficiency and productivity of 

wind turbines can be improved, making wind energy an even more viable and sustainable 

source of power. 
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3.6 Choosing windfarm and dataset 

The aim of this thesis was to conduct a comparative analysis of production data from wind 

farms, with a specific focus on offshore wind farms. The reason why the four wind farms 

mentioned in this chapter were chosen is because they are situated in the North Sea and the 

Scandinavian region, where offshore wind energy is rapidly expanding. However, it should be 

noted that the actual power production data of these offshore wind farms is considered 

confidential and requires the signing of confidentiality agreements, making it inaccessible to 

the public, and due to the limited time available, obtaining such agreements may be difficult. 

The selected offshore wind farm for this study is Horns Rev 1, described in Section 3.1. The 

selection of the Horns Rev 1 offshore wind farm was based on several factors, including the 

availability of real power data collected from previous studies that have simulated this wind 

farm. By utilizing this real data, the accuracy and reliability of the results obtained from this 

study can be improved. Another reason for selecting Horns Rev 1 is its inclusion in Pywake 

libraries, which provides a pre-existing model of the wind turbines (Vestas-V80) and the site 

specifications and wind conditions there, streamlining the process of implementing the wind 

farm object and site. As the timeline for this thesis work is tight, utilizing an existing model 

instead of building one from scratch can save precious time and resources.  

The real data used in this study were collected from previous publications, such as the works 

of Barthelme et al., 2010 [42] and Pena et al. [43], which serve as valuable references for this 

study.  
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4 Pywake, wake effect and wake models 
definitions 

 

This chapter provides a brief definition and description of Pywake's usage. It also explores the 

impact of wake effect on wind energy and how it affects the energy production in wind farms. 

Additionally, the three wake models used in this thesis work are numerically described along 

with their consideration of the wake after the wind turbine. 

4.1 PyWake 

PyWake is a Python-based accessible wind farm simulation tool developed at DTU that can 

compute flow fields, the power production of individual turbines, as well as annual energy 

production (AEP) of a wind farm while considering wake losses using a variety of engineering 

wake models implemented in Python, as well as CDF RANS. The reason behind choosing is 

that it is incredibly effective at estimating how wake propagates within a wind farm and can 

evaluate turbine interaction using different formats of wind resource data, in addition to its 

capability of visualizing flow maps for the wind farm’s layout in the study [44]. Moreover, it 

is a relatively fast tool and can handle more than one variable at a time.  

PyWake’s architecture is shown in Figure 4.1. The WindFarmModel, which is created with a 

Site and a WindTurbines object, is the primary object in PyWake's architecture. It returns a 

SimulationResult object with the results of the calculated effective wind speed, power output, 

and thrust coefficient of each turbine. Furthermore, it is based on methods for calculating AEP 

and generating flow maps for entire wind farms. 
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Figure 4.1: PyWake architecture [45] 

The Site object characterizes the wind conditions at a specific location, including parameters 

such as wind speed (WS), wind direction (WD), turbulence intensity (TI), as well as the 

likelihood of specific wind speed and direction combinations based on the turbine position 

(x.y), reference wind speed (WSref), and wind direction (WDref).. The Site object is also in 

charge of calculating the downwind, crosswind, and vertical distance between wind turbines. 

The WindTurbines object, on the other hand, gives the power curve, thrust coefficient (CT) 

curve, as well as the hub height (h) and diameter of the wind turbine (D). 

4.2 Wake effect 

Wake is viewed as a significant issue affecting wind energy generation. Wake is created by the 

turbulent flow of wind after it passes through the wind turbine rotor, i.e., downstream of the 

wind turbine. The wake generated by a single wind turbine can cause a drop in wind speed, 

reducing the amount of energy that can be extracted from the wind. This turbulent flow is 

primarily caused by the dynamics of vortices generated by the rotor blades. In a wind cluster, 

wakes from multiple wind turbines can interact with one another and create undesirable effects. 

When wakes overlap, they can lead to a rise in turbulence intensity, causing an increase in 

dynamic loadings on downstream wind turbines. This increase in turbulence intensity can also 

result in unwanted blade vibrations, which can cause fatigue damage to the structural 

components of the turbine. As a result, the wind energy generated by downstream turbines is 

reduced, impacting the overall efficiency and productivity of the wind farm. [46] 
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The growth of the wake after a wind turbine is illustrated in Figure 4.2. 

 

Figure 4.2: Axisymmetric flow-based wake growth [47] 

A wind turbine's wake can be classified into three regions: near wake, intermediate wake, and 

far wake. The near wake is generally defined as the area right behind the rotor and can be seen 

up to 2 rotor diameters downstream, obviously, it depends on the incoming flow [48]. The 

intermediate wake lies between the near and far wakes at around 3 to 5 rotor diameters 

downstream of the wind turbine. The far wake, on the other hand, is the region further than 6 

rotor diameters, Figure 4.3. Due to the fact that far wakes have a greater influence on 

downstream wind turbine energy production, the focus should be more on far wakes instead of 

near wakes when designing a wind farm. When considering the performance and physical 

process of power extraction, then a near wake is critical. 

 

Figure 4.3: Illustration of near, intermediate, and far wake regions with respect to the wind turbine [49]. 
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4.3 Wake models 

4.3.1 N.O. Jensen (NOJ) 

The N.O. Jensen’s wake model was created in 1983 and is regarded as a simple wake model 

[33]. Since the near field behind the wind turbine is ignored in this model, the resulting wake 

behind the generator is treated as turbulent, implying that this wake model is only strictly 

applicable in the far wake region. Furthermore, the wake behind the wind turbine expands 

linearly, and the velocity deficit is only affected by the distance downstream of the turbine. 

Based on their research, Duckwork et al. [34] recommended using N.O. Jensen's model for 

energy production in offshore wind farms because it obtained small errors when compared to 

experimental data. The model is derived from applying the law of conservation of momentum 

for wind turbines as shown in equation 4.1. [50] 

𝜋𝑟𝑡
2𝑣 +  𝜋(𝑟2 − 𝑟𝑡

2)𝑣0 = 𝜋𝑟𝑐
2𝑣1 (4.1) 

In the above equation, 𝑣 stands for the wake speed just behind the turbine, 𝑣0 is the free stream 

wind speed entering the wind turbine, 𝑟𝑡 denotes the wind turbine’s rotor radius, 𝑟𝑐 and 𝑣1 

represent the wake radius and wake velocity at the downwind distance 𝑥, respectively. 

When solving equation 4.1, with respect to the velocity, a relationship between the downstream 

velocity and the upstream one can be obtained. And according to Betz’s theory, the relation 

can be seen in equation 4.2 [17]: 

𝑣 = (1 − 2𝑎)𝑣0 (4.2) 

Where 𝑎 is the axial flow induction factor. 

Based on the assumption of linear expansion of the wake, the wind follows a conical shape 

behind the wind turbine's rotor, and the radius, 𝑟𝑐, of this conical shape can be estimated using 

equation 4.3: 

𝑟𝑐 = 𝑟𝑡 + 𝛼𝑥 (4.3) 

Where 𝛼 (or 𝑘𝑤 in some articles) is a dimensionless scalar that determines the rate at which the 

wake grows with the distance, and usually taken as 0.04 for offshore wind farms [21], and it is 

defined as:  
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𝛼 =  
1

2
ln (

ℎ

𝑧0
) 

(4.4) 

Here, ℎ is the wind turbine’s hub height, and 𝑧0 represents the surface roughness of the wind 

farm and depends on the location of the wind farm. 

Equation 4.5 shows how to compute the speed in the wake area, or wake velocity, at a distance 

𝑥 from the wind turbine as a function of the incoming free stream wind speed; however, this 

velocity function is imprecise in the near wake area and can only be used in far wake regions, 

which are at about 6-8D in offshore wind farms. 

𝑣1 = 𝑣0 + 𝑣0 (√1 − 𝐶𝑇 − 1) (
𝑟𝑡
𝑟𝑐
) 

(4.5) 

In the fully developed regime, this velocity is given by: 

𝑣1 = 𝑣0 [1 − 
1 − √1 − 𝐶𝑇
(1 + 2𝛼𝑠)²

] 𝜋𝑟𝑐
2 

(4.6) 

Where, 𝐶𝑇 is the thrust coefficient of the upwind turbine and a function of the induction factor 

𝑎,computed from the turbine characteristics curve [47]. 𝑠 is a function of the wake location, 

𝑠 = 𝑥/2𝑟𝑐. In the case where 𝑠 = 0, i.e., just behind the rotor, the velocity equation becomes: 

𝑣1(𝑠=0) = 𝑣0√1 − 𝐶𝑇 (4.7) 

Figure 4.4 shows the concept of the single wake Jensen model assuming linear expansion of 

the wake cone. 

 

Figure 4.4: Wake shape assumption by Jensen wake model [5] 
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4.3.2  TurbOpark 

The TurbOpark wake model (Turbulence Optimized Park Model) is a popular model in 

offshore wind farm simulations for predicting wind turbine wake characteristics. [51] The 

model includes additional features, such as the wake expansion, to better represent wake 

behavior in real-world wind farms, it assumes that the wake expands with distance downstream 

from the turbine in a Gaussian manner, but it differs from other analytical models in its 

definition of the wake expansion by using a non-linear streamwise wake expression rather than 

the more commonly used linear expansion. The model also takes into account how atmospheric 

turbulence affects the wake. The TurbOpark model requires inputs such as the diameter of the 

turbine rotor, the height of the hub, the wind speed and direction, and the intensity of 

atmospheric turbulence.[52] 

TurbOpark is implemented in Pywake and is employed in two different configurations: one 

represents the original model by Nygaard et al, [51], and the other is a revised configuration in 

which the ground model for the wake deficit is turned off and a wake expansion coefficient B 

of 0.06 is used instead of 0.04. [52] 

The wake growth rate, 
𝑑𝐷𝑤

𝑑𝑥
 , equation 4.8, is a function of the turbulence intensity, 𝐼𝑥, in the 

wake and a wake expansion coefficient B. 

𝑑𝐷𝑤
𝑑𝑥

= 𝐵𝐼𝑥 
(4.8) 

The turbulence intensity is a function of the atmospheric turbulence intensity, 𝐼𝑎𝑡𝑚 , and the 

additional turbulence intensity generated in the wake, 𝐼𝑤,𝑥, as shown in equation 4.9. 

𝐼𝑥 = √𝐼𝑎𝑡𝑚
2 + 𝐼𝑤,𝑥

2  
(4.9) 

Where the additional turbulence is described as: 

𝐼𝑤,𝑥 =
1

𝑐1 + 𝑐2
𝑥

𝐷√𝐶𝑇𝑣

 
(4.10) 

𝑐1 and 𝑐2 are two constants given as 1.5 and 0.8, respectively [52], 𝑣 is the incoming wind 

speed, and 𝐷 is the rotor diameter. 
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With increasing downstream distance, the combined turbulence intensity approaches the 

ambient atmospheric turbulence intensity. As a result, the wake expands fastest closest to the 

turbine, where the wake contribution to turbulence is greatest. The wake expansion slows down 

further downstream, eventually reaching a linear expansion at a constant rate. The width of the 

wake at a specific downstream distance can be found using the analytical expression 4.11. 

𝐷𝑤,𝑥 = 𝐷 +
𝐵𝐼𝑎𝑡𝑚𝐷

𝛽

{
 
 

 
 

√(𝛼 +
𝛽𝑥

𝐷⁄ )
2

+ 1 − √1 + 𝛼2 − 𝑙𝑛

[
 
 
 
 (√(𝛼 +

𝛽𝑥
𝐷⁄ )

2

+ 1 + 1)𝛼

(√1 + 𝛼2 + 1) (𝛼 +
𝛽𝑥

𝐷⁄ )

]
 
 
 
 

}
 
 

 
 

 

 

(4.11) 

Here, 𝛼 and 𝛽 are two auxiliary positive variables introduced, where 𝛼 = 𝑐1𝐼𝑎𝑡𝑚, and 𝛽 =

𝑐2𝐼𝑎𝑡𝑚

√𝐶𝑇𝑣
 . 

4.3.3  BastankhahGaussian 

The BastankhahGaussian wake model is another model used in wind energy for predicting 

wind speed deficits caused by wind turbines. The model was first introduced by Majid 

Bastankhah in 2016 [53]. 

The model assumes that a wind turbine's wake can be approximated as a Gaussian distribution 

(also known as the normal distribution) of wind speed deficits, thus the velocity deficit in the 

turbine wake has a gaussian shape regardless of the incoming conditions, as seen in Figure 4.5, 

below. 

 

Figure 4.5: Gaussian distribution of the velocity deficit in the wake area [53]. 
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The wind speed and direction, turbine diameter, distance between turbines, and the ambient 

turbulence intensity are all factors considered by the model. The wake velocity in the x-

direction, 𝑈𝑤, according to this model is given by:  

𝑈𝑤 = 𝑈∞ (1 − 𝐶𝑥𝑒𝑥𝑝 
− 
𝑟2

2𝜎2) 
(4.12) 

Where, 𝑈∞ is the free stream wind velocity entering the turbine, and 𝐶𝑥 (equation 4.13) stands 

for the maximum normalized velocity deficit at each downstream location that occurs at the 

center of the wake, 𝑟 identifies the wake radius, and 𝜎 represents the standard deviation of the 

Gaussian-shaped velocity profiles at each distance 𝑥 downstream the rotor. 

𝐶𝑥 = 1 − √1 −
𝐶𝑇

8(𝜎 𝐷⁄ )²
 

(4.13) 

Here, 𝐶𝑇 and 𝐷 are the thrust coefficient and the wind turbine diameter, respectively. 

The BastankhahGaussian model introduces a different coefficient from the Jensen model, 

which is the growth rate of the wake, 𝑘∗, which is based on the turbulence intensity, 𝑘∗ =

0.003678 + 0.3837𝐼𝑎. The standard deviation 𝜎 is a function of the growth rate and can be 

calculated using equation 4.14 [54]. 

𝜎 = 𝑘∗𝑥 + 𝐷𝜀 (4.14) 

𝜀 denotes the value of 𝜎 𝐷⁄  as 𝑥 reaches zero. 

Now, the velocity deficit according to the BastankhahGaussian model can be formulated from 

equation 4.12, taking ∆𝑈 =  𝑈∞ − 𝑈𝑤, is written as: 

 
∆𝑈

𝑈∞
= (1 − √1 −

𝐶𝑇

8(𝜎 𝐷⁄ )²
)𝑒𝑥𝑝 

− 
𝑟2

2𝜎2 

(4.15) 

The value of 𝜀 should be calculated before utilizing equation 4.14, and this can be done by 

calculating the total mass flow rate at 𝑥 = 0. The velocity profile cannot be predicted 

accurately at 𝑥 = 0, since it is assumed to have a uniform distribution and then changes to a 

Guassian profile. 
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5 Results and Discussion 

The upcoming chapter presents the outcomes of power generation simulations conducted at the 

offshore wind farm Horns Rev 1. The purpose of the simulation study is to demonstrate that 

the wake models implemented in Pywake tool are suitable for studying wake effects on power 

production of offshore wind farms. These simulations involved using three wake models: NOJ, 

BastankhahGaussian, and TurbOPark, that are implemented in the Pywake simulator in Python. 

However, it is crutial to mention that default parameters of these models where used in the 

simulation.  

Real data obtained from earlier studies by Pena et al. [43] (First data case) and Barthelmie et 

al. [42] (Second data case) on Horns Rev1 were employed in the analysis to validate the 

accuracy of the models. The simulations were carried out considering various wind directional 

bands, which were selected based on the availability of real data to compare the simulated 

results. The average wind speed at Horns Rev1 varies between 8 and 10 m/s, and since both 

Pena et al. and Barthelmie et al. used 8m/s as the wind speed in their studies, it remains 

unchanged in this study so that the results can be compared with the real data.. 

5.1 Power and Thrust coefficient of Vestas V80 using Pywake. 

The real power and the real thrust coefficient of the Vestas V80-2000 wind turbine were 

compared with the simulated values at various wind speeds using the Pywake simulator in 

Python. The results of this analysis are presented in Figure 5.1. The data utilized for this chart 

were sourced from the research paper by Leo E. Jensen et al. [24],which presents a compelling 

example of the insights that can be obtained from the SCADA system and the met masts (M2, 

M6, and M7). 
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Figure 5.1: Simulated and real Power curve and thrust coefficient using Pywake. 

As seen in Figure 5.1, the simulated results perfectly match the real data, to confirm this, a 

Python code was utilized to compute the percentage error for both the power curve and thrust 

coefficients, and the outcome indicated that both curves had no error, with a 0% value for each. 

This demonstrates the reliability and accuracy of the Pywake simulator in calculating the thrust 

coefficients and power of any wind turbine that is already implemented in its WindTurbines 

objects.  

5.2 Total AEP of Horns Rev 1 

The Annual Energy Production is an estimate of the amount of electricity that a wind farm is 

expected to generate over the course of a year. This estimate takes into account several factors 

such as wind conditions, turbine performance, and downtime for maintenance. Therefore, the 

actual energy output of a wind farm may differ from the estimated one. The AEP is an important 

characteristic of a wind farm, as it helps wind energy developers to determine the potential 

output of the farm and to plan its capacity and profitability.   

Based on the information found on the website of the Danish Energy Agency [55], the average 

annual energy production of Horns Rev 1 in 2022 amounted to 566.982 GWh, where it is 

ideally around 600 GWh [56], thus it will be used as reference. In section 4.1, it was noted that 

Pywake can be used to simulate the total annual energy production of Horns Rev 1 as well as 

any other implemented wind farm. Thus, Figure 5.2(a) displays the correlation between the 

AEP and wind speed, while Figure 5.2(b) exhibits the relationship between the AEP and wind 

direction. In this simulation, default parameters were utilized due to the unavailability of actual 

data on the annual energy production of Horns Rev 1.  
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(a) 

 

(b) 

Figure 5.2: The Annual energy production of horns rev 1 against wind speed (a), as well as against wind 

direction (b) using three wake models. 

The confidential nature of the data required certain agreements that could not be made within 

the given time frame. Therefore, the AEP was plotted as a means of comparing the performance 

of different models in estimating it. The results, as illustrated in Figure 5.2, demonstrate that 

the NOJ model yielded the highest estimate of the AEP, while the TurbOPark model generated 

the lowest. The Bastankhah model's estimates were positioned between those of the other 

models. 

In addition, Table 5.1 presents the results of the AEP simulation, which is the integrated values 

of the curves, using the three different models. 

Table 5.1: Simulated AEP of Horns Rev 1 using three wake models. 

Real AEP = 566.982 GWh 

Wake Model BastankhahGaussian NOJ TurbOPark 

Total AEP (GWh) 682.040725 702.435158 634.458807 

Based on the results seen in Figure 5.2 and Table 5.1, the three wake models overestimated the 

actual annual energy production, with the closest result being from the TurbOPark model at 

634.46 GWh.  

It should be emphasized that simulation outcomes are frequently employed as approximations 

or forecasts and may not invariably align with real-world outcomes. The variability of wind 

conditions from year to year, which affects the wakes within the farm and ultimately influences 



 

 

5 Results and Discussion 

43 

the annual energy production, could be the primary cause for the minor discrepancies observed 

between the simulated and actual data impacting the power output of wind farms. 

5.3 First data case 

The initial dataset corresponds to the simulation that utilized the data collected by Pena et al. 

[43] as a reference for simulating on row 7, as shown in Figure 5.3, with a wind direction of 

270˚, which corresponds to the wind direction that is parallel to row 7 of the farm, in addition 

to wind directions of  221˚ and 132˚ with their corresponding turbine rows shown in Figure 5.6 

and Figure 5.8 respectively. As a result, different scenarios are associated with different widths 

of wind direction in the simulations. 

 

Figure 5.3: Schematics of the Horns Rev 1 farm turbines the those of row 7 for the wind direction 270˚. 

Turbines 6, 14, 22, 30, 38, 46, 54, 62, 70, and 78 form row 7, and thus the power of each turbine 

is simulated and compared to its reference value collected, and the results are displayed as the 

power deficit versus the wind turbine number. 

As a definition, power deficit refers to the difference between the ideal power that a wind 

turbine should produce under normal operating conditions, and the actual power output that it 

generates due to various factors such as turbulence, wake effects, and other environmental or 

technical limitations. It is a measure of the lost energy potential and can have a significant 

impact on the overall performance and efficiency of wind farms. Therefore, the less the power 

deficit, the better efficiency. 
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The outcomes of the simulation and SCADA analysis by Pena et al.[43] are expressed by taking 

the power deficit as:  

𝑃𝑜𝑤𝑒𝑟 𝐷𝑒𝑓𝑖𝑐𝑖𝑡 = 1 −
𝑃𝑖
𝑃𝑗

 
(6.1) 

Here,  𝑃𝑖 represents the power of the turbine 𝑖 that is downstream the first turbine of the row, 

which is experiencing the free stream wind and has power value of 𝑃𝑗.  

When the wind blows from directions 270˚ and 221˚, turbine 6 is considered the reference 

turbine because it receives a smooth and uninterrupted flow of wind without any turbulence 

from the wake of other turbines. On the other hand, when the wind comes from direction 132˚, 

turbine 78 becomes the reference turbine. 

Figure 5.4 below illustrates the results of estimating the probability of wind speed from any 

direction, including the ones being used, using Pywake at Horns Rev 1. 

 

Figure 5.4: Wind speed distribution at Horns Rev 1 

According to Figure 5.4, the wind speed with the highest probability is approximately 8-10m/s. 

For instance, when the wind is blowing from direction 221˚, there is a peak probability of 

almost 10% for wind speeds between 8-9 m/s at that direction.  

Nevertheless, It is important to  note that the estimated probabilities presented here are subject 

to variation in real-life scenarios, as wind speeds are heavily influenced by factors such as 

seasonal changes and weather conditions. Consequently, these findings serve as a useful guide 

and provide a general understanding of wind speeds, rather than providing precise predictions. 
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5.3.1 Wind direction 270˚ 

The power deficit for the wind turbines in row 7 under wind direction 270˚ is simulated using 

the three models, and the results are presented in Figure 5.5. The black dots on the curve 

represent the data extracted from the figures of Pena et al.[43] for Horns Rev 1, whereas the 

other curves represent the results from each wake model. 

The case of wind direction 270˚ with width +/- 2.5˚  was not presented as its results were similar 

to the case of +/- 0˚, since the difference is considered to be very small.  

  

  

Figure 5.5: Power deficit in row 7 results using four different widths at wind direction 270˚. 

The estimated power deficit for the turbines of row 7, as shown in Figure 5.5, is higher at 

narrow wind directions and decreases as the width of the wind direction interval increases. For 

instance, at wind direction 270 +/- 2.5˚, the estimated power deficit by TurbOPark model of 

turbine 14 is around 0.6, while at direction 270 +/-15˚, it decreased to 0.21. Moreover, it is 

noticable from the above graphs that the errors between the real data and the simulated results 
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decrease as the directional width increases. This could be attributed to the fact that with wider 

directional intervals, the upstream wakes of the turbines are less likely to directly impact the 

downstream turbines, resulting in less power loss. Therefore, when considering a very narrow 

range of wind directions for a wind turbine, the effect of wind direction uncertainty becomes 

more significant, and thus the turbines will be more sensitive to any variations in the wind 

direction. In other words, small changes in the wind direction can have a substantial impact on 

the turbine's performance, resulting in an increased level of uncertainty. Wind direction 

uncertainty may arise not only from the small natural variations but also from the yaw 

misalignment between turbines and wind, however, in this work it is not taken into 

consideration. 

The simulation results of the three models closely resembled the real data, but each model had 

its own strengths and weaknesses. Specifically, the TurbOPark wake model tended to 

overestimate the power deficit in all directional bands, while the NOJ model consistently 

underestimated the power deficit values for the wind turbines in row 7 across all directions. On 

the other hand, the BastankhahGaussian model tended to overestimate the real data for 

directional widths of +/- 2.5˚ and +/- 5˚ as well as for turbines 14, 22, 30, 38, and 46 in the case 

of +/- 7.5˚ width. However, it then underestimated the power deficit values for the downwind 

turbines. For the +/- 15˚ direction band, the BastankhahGaussian model accurately estimated 

the power deficit of the second and third turbines of row 7 (14 and 22) but underestimated the 

power deficit values for the remaining turbines in the row. 

Furthermore, an interesting observation is that as the directional band widens, the difference 

between the real data and the simulated data produced by the TurbOPark model becomes 

smaller and eventually becomes almost negligible, indicating a higher level of accuracy in the 

model's results. 

In summary, while each model produced simulation results that were similar to the real data, 

they also had their own specific tendencies and limitations. 

5.3.2 Wind direction 221 +/- 5˚ 

When wind is blowing from the 221˚ direction, the row of turbines facing this direction changes 

from row 7 to the diagonal row comprising turbines 6, 13, 20, 27, 34, 41, and 48, as illustrated 

in Figure 5.6. The spacing between the turbines in this newly facing row is greater compared 

to the turbines in row 7. Specifically, while the inter-turbine distance in row 7 is approximately 
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560 m, equivalent to roughly 7 turbine rotor diameters, the inter-turbine distance in the new 

row is approximately 750 m, which corresponds to around 9.4 rotor diameters. 

 

Figure 5.6: Turbine row that faces the wind direction of 221˚. 

The power deficit for the turbines mentioned earlier has been also simulated using Pywake 

with the aid of the three models. The results are depicted in Figure 5.7. 

 

Figure 5.7: Power deficit versus at the row that faces the wind direction 221 +/- 5˚ 

In comparison to the simulations of the case with wind direction of 270 +/- 5˚, the simulations 

of the current scenario exhibit similar behavior. However, the power deficits are lower, and 

this might be due to the greater spacing between turbines, which results in downstream turbines 

being subjected to lesser wake effects from the upstream turbines. This observation is 

consistent with the general understanding that increased spacing between wind turbines is 

conducive to minimizing wake losses and increasing overall energy production efficiency.  
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Furthermore, the results indicate that the Bastankhah-Gaussian model closely approximates the 

power deficit for the second, third, fourth, and fifth turbines in the row, with numbers 13, 20,27 

and 34 respectively, whereas the TurbOPark model provides the closest results for the last two 

turbines, 41 and 48, however, it overestimated all the real data. Conversely, the NOJ model 

exhibits a comparatively large estimation error in predicting the power deficit for the turbines, 

as it substantially underestimates the values. 

5.3.3 Wind direction 132 +/- 5˚ 

Figure 5.8 illustrates the row of turbines that face the wind direction of 132˚. Presently, the 

wind is blowing from the south-east direction towards the wind farm. This row comprises 

turbines 78, 69, 60, 51, 42, 33, and 24, where the wind first hits turbine 78. 

 

Figure 5.8: Turbine row that faces the wind direction of 132˚. 

The inter-turbine distance in the present row is greater than that of the two previously 

mentioned rows, measuring around 10.4 turbine diameters which is approximately 0.83 km. 

This greater distance between turbines is expected to result in a reduced power deficit for this 

row. 
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Figure 5.9: Power deficit versus at the row that faces the wind direction 132 +/- 5˚ 

Figure 5.9 illustrates the simulation results of the three wake models on the row facing the wind 

direction of 132˚. The BastankhahGaussian model accurately predicted the power deficit of the 

second turbine in the row, turbine number 69, and closely estimated the power deficit of the 

third turbine, turbine number 60, and underestimated the power deficit of the downstream 

turbines in the row. However, the TurbOPark model yielded results closest to the actual data 

for the fourth, fifth, sixth, and seventh turbines, although it is still overestimating the power 

deficit. The reason for this could be linked to the assumption made by the TurbOPark model 

that the wake expands as it moves downstream from the turbine. Furthermore, the model takes 

into account the level of atmospheric turbulence and assumes that the growth of the wake is a 

function of the turbulence intensity. As the distance downstream from the turbine increases 

(10.4 turbine diameters in this case), the turbulence intensity approaches the ambient 

turbulence intensity, which may explain the difference in predictions. Conversely, the NOJ 

model continues to underestimate the actual data significantly, providing no new insight into 

its effectiveness in predicting power deficits. 
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5.3.4 Power deficit of Horns Rev 1 

Using the wake models available in Pywake, it is possible to compute and visualize the power 

deficit of the entire wind farm as a function of wind direction at any wind speed, as 

demonstrated in Figure 5.10 where a wind speed of 8 m/s is utilized.  

 

Figure 5.10: Power deficit of Horns Rev 1 against all wind directions at 8 m/s wind speed. 

However, due to data constraints, only the real data for wind directions within the range of 250˚ 

to 290˚ can be obtained from Pena et al. [43]. Therefore, Figure 5.11 illustrates the power 

deficit for these specific wind directions, calculated using the three wake models. 

 

Figure 5.11: Power deficit of Horns Rev 1 as a function at wind directions relative to 270˚ at wind speed 8 m/s. 

Although the wake models implemented in Pywake resulted in similar patterns to the actual 

data, each model produced distinct values. The NOJ model had the closest approximation to 



 

 

5 Results and Discussion 

51 

the real data, but it indicated a constant power deficit value of around 0.259 for wind directions 

between 265˚ to 275˚, which was less than the value of the real data. Conversely, the 

TurbOPark model overestimated the real data in almost all directions except from 275˚ to 280˚, 

and showed fluctuations in the power deficit between directions 250˚ to 260˚ and 280˚ to 290˚. 

This fluctuation could be attributed to TurbOPark considering atmospheric turbulence intensity 

and other weather variables. Finally, the BastankhahGaussian model overestimated the real 

data in some directions and underestimated it in others. 
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5.4 Second data case 

The average normalized power as a function of wind turbine number in row 7 for a free-stream 

wind speed of 8 m/s for seven wind directions, from 255˚ to 285˚ with an interval of 5˚ as 

derived from the three wake models and observations are shown in Figure 5.12. The reference 

data for this case are collected the figure in the work of Barthelmie et al. [42], as they used 

different models to simulate the normalized power of turbines of row 7 in Horns Rev 1. 

As a definition, the normalized power of a wind turbine refers to the ratio of the actual power 

output of the turbine to the maximum power output that it could theoretically produce at its 

rated wind speed. This normalized power is used to assess the performance of the turbine under 

different wind conditions. By normalizing the power output in this way, it is possible to 

compare the performance of different wind turbines in a wind faram and evaluate their 

efficiency over time, accounting for changes in wind speed and other factors that may affect 

their output. In this study, the power output of each turbine located in row 7 is normalized to 

that of turbine number 6. The reason for this normalization is that all turbines in the row are of 

the same type, and turbine number 6 is assumed to be operating normally as it is experiencing 

unwaked wind flow. 

There is good agreement between models and measurements in most wind directions in Figure 

5.12, except at 255˚ and 260˚ where the observed values appear to be lower than the simulated 

results by the models.  

When the wind direction was at 255˚, the TurbOPark model correctly predicted the power 

output of turbine number 38. However, the model overestimated the power output of the other 

turbines in the row. Despite this, the predictions of the TurbOPark model were the closest to 

the actual data compared to the other models tested. Interestingly, all three models gave the 

same power output for the first three turbines in the row at this direction. After the third turbine, 

however, the models provided different predictions. This discrepancy might be due to the fact 

that the models assume the first three turbines are unaffected by wake effects, whereas the other 

turbines are impacted by wakes generated by the turbines upstream in the wind farm. NOJ 

model gave the least wake loss followed by the BastankhahGaussian model and then the 

TurbOPark model. 
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Figure 5.12: Normalized Power of each wind turbine of row 7 at different wind directions using the second data 

set. 
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For wind direction 260˚, both the TurbOPark and BastankhahGaussian models produced 

identical normalized power output results for the first four turbines, but diverged in their 

predictions for the remaining turbines while overestimating the actual data. Despite this, the 

TurbOPark model's results were closest to the actual data from the sixth turbine (number 46) 

to the last turbine (number 78). In contrast, the NOJ model gave the same results for the first 

three turbines, but overestimated the remaining turbines with a constant value. This disparity 

may be due to the fact that the NOJ model's velocity deficit is only affected by the downstream 

distance of the turbine. 

The models exhibited a similar trend at wind direction 265˚ as they did at 260˚, but with less 

deviation between the observed and simulated data. All three models provided almost accurate 

power predictions for the first four turbines, but began to deviate from the actual data beyond 

the fourth turbine. The NOJ and BastankhahGaussian models produced similar results, both 

overestimating the power output for the entire row of turbines. The TurbOPark model also 

overestimated the power output for sixth, seventh and eighth turbines (46, 54, and 62), but was 

able to more accurately predict the power output for the last two turbines (70 and 78). 

For wind directions 270˚ and 275˚, all three models demonstrated similar trends, with the NOJ 

model overestimating the actual values and both the BastankhahGaussian and TurbOPark 

models underestimating them. However, for both directions, the NOJ model provided the 

closest results compared to the real data. The errors were more significant for 270˚ than for 

275˚, likely due to the fact that when the wind comes from 270˚, it is parallel to row 7, resulting 

in greater wake directly affecting the downstream turbines. 

At direction 280˚, the TurbOPark and the BastankhahGaussian models produced similar power 

results for the initial five turbines while overestimating the collected farm data. 

BastankhahGaussian model continued to over predict the power for the last five turbines, at the 

time TurbOPark underestimated it. Nonetheless, TurbOPark provided the closest results to the 

actual data. The power of the second third and fourth generators calculated by the NOJ model 

were less than the actual power, while the power of the fifth and sixth turbines (38 and 46) was 

correctly predicted by the model, and then the model provided higher power values than the 

real values for the last four turbines. 

At the last wind direction used, which is 285˚, the models predicted the power for the first three 

turbines correctly and then the NOJ and BastankhahGaussian models overestimated the power 
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where TurbOPark underestimated it. This is since the wake losses after the third turbine are 

unpredictable. 

Overall, the performance of TubOPark model looked promising in most of the directions as it 

provided similar results for the normalized power of the turbines, except at direction 270˚. The 

NOJ model over predicted the results in most of the cases except at direction 280˚ for the first 

four turbines. BastankahGaussian also overestimated the data, except for directions 270˚ and 

275˚. Moreover, the values of the normalized power were high compared to direction 270˚. 

This is because, in directions other than 270˚ (at which wind flows parralel to row 7), the 

turbines in row 7 are affected by wakes from turbines in other rows in the wind farm and may 

not be influenced by the wakes produced by the turbines of row 7. The small directional width 

taken into account (+/- 2.5˚) may also explain why the values of the normalized power for 

direction 270˚ are smaller compared to the values in other directions. 

5.5 Wind farm flow map 

Using various models, Pywake can visualize the flow map across a wind farm and illustrate the 

wake flow behind the turbines at different wind speeds and wind directions. It was fascinating 

to observe the flow maps of Horns Rev 1 through the different wake models. In Figure 5.13(a), 

the flow map is illustrated using the NOJ model, while Figure 5.13(b) exhibits the flow map 

using the BastankhahGaussian model. 

 

(a) 

 

(b) 

Figure 5.13: Wake flow map for Horns Rev 1 wind farm using NOJ (a) and BastankhahGaussian (b) wake 

models. 
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In Figure 5.13(a), the NOJ model portrays the wake behind the turbines as expanding linearly 

as distance increase. However, the shape and behavior of the wake behind the turbine produced 

by BastanlhahGaussian model in Figure 5.13(b) are visibly different from the wake pattern by 

NOJ due to the use of different wake models. The BastankhahGaussian model assumes that the 

wake shape follows a Gaussian distribution, which affects the expansion rate (which is a 

funtion of the turbulence intensity) and behavior of the wake compared to the NOJ model that 

assumes the wake expands linearly with distance downstream the wind turbine. As a result, the 

flow map generated using the BastankhahGaussian model has a unique wake pattern that is 

distinguishable from the linear wake pattern seen in the NOJ model.  

It would have been informative and interesting to observe how TurbOPark represents the wake 

distribution behind the wind turbines in the farm and compare it to the other models. 

Regrettably, a coding error prevented this analysis from being conducted within the allocated 

time. Additionally, since the flow maps were generated and incorporated at the end of the 

project, there was no opportunity to address the coding issue and assess the TurbOPark wake 

distribution. 
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6 Conclusion 

In this thesis, the primary objective was to investigate the accuracy and sensitivity of three 

wake models, namely NOJ, BastankhahGaussian, and TurbOPark, implemented in the Pywake 

tool using real data from an offshore wind farm in the North Sea along the coast of Denmark, 

specifically Horns Rev 1. The models were used to simulate the Annual Energy Production 

(AEP) of the wind farm, the power deficit, and the normalized power of turbines in row 7 at 

varying wind directions. The simulated results were then compared with real data collected 

from two previous studies on Horns Rev 1. 

The findings revealed that all three models demonstrated some degree of inaccuracy in 

estimating the real data, which was expected due to the difficulty in predicting weather 

conditions and wind speeds at the farm's location and since default models paramteres where 

used that might differ from the real ones, such as wind speeds. However, TurbOPark showed 

the closest results to the real data where it predicted the trend in the variation of power while 

over predicting its amplitude. The NOJ model was effective in estimating the power deficit of 

the entire wind farm for wind directions between 250˚ and 290˚. In contrast, the models showed 

a close agreement to the collected real data in the case of normalized power of row 7 turbines. 

However, it should be noted that discrepancies between the simulated and real data may be due 

to errors in collecting the data manually from the curves of the previous works oh Pena et al 

[33] and Barthelmie et al. [32], or models not considering wakes from other turbines in the 

farm in some cases. Furthermore, practical factors that migh occur physically in the wind farm, 

such as icing on the blades of wind turbines and torque affecting the rotor can cause delays in 

power production, which were not accounted for in the simulations. Moreover, engineering 

wake models used to estimate the production of offshore wind farms usually assume inflow 

homogeneity over the whole domain. Wind direction and speed uncertainties could also 

contribute to errors between the simulated and observed data, highlighting the importance of 

considering wind direction uncertainty when evaluating wind turbine performance.  

In conclusion, the three wake models in Pywake performed satisfactorily in simulating the 

power of turbines in Horns Rev 1 while accounting for the wake effect. Further research is 

required to ensure that the models are properly calibrated and include the relevant physics, as 

in this study, default parameters of the models where used for the simulation. Although 
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engineering models of wind turbine interaction remain essential tools in energy yield 

calculations, improvements to these models are possible and additional validation with real 

data is necessary. 
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