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Summary:  

Machine learning and deep learning techniques have gained significant attention in recent 

years for enhancing the precision and efficiency of velocity estimation in multiphase flow. 

This thesis aims to achieve three objectives: predicting the flow rate of multiphase flow 

using only accelerometer data from four installed accelerometers in Equinor's test rig, 

creating spectrograms from accelerometer data and then train a CNN (Convolutional 

Neural Network) model for flow type identification, and exploring the possibilities of 

applying physics-based machine learning in case of flow rate predictions of multiphase 

flow using only accelerometer data. 

The results are promising in predicting flow rate and classifying flow types using machine 

learning techniques. However, the denoising process applied was assumed to be effective, 

and a more reliable and accurate denoising process for filtering out the noise in the 

accelerometer data caused by the installed Coriolis meter is necessary for future studies. 

The study has demonstrated the potential to predict flow rate using fewer than all four 

accelerometers. However, the models' proficiency is linked to the number of samples 

available for training. It is worth noting that more samples are required for single-phase 

flows to further improve the accuracy of the model. 

The thesis has successfully demonstrated that accelerometer data from Equinor test rig 

contains the information to predict multiphase flow rate and to identify flow types of 

multiphase flow utilizing machine learning techniques. Moreover, the study has shown 

the potential use of physics-based machine learning in the case of making predictions of 

multiphase flow rate. 
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1 Introduction 
Multiphase flow, a phenomenon where two or more phases of matter, such as oil, gas, and 

water, flowing simultaneously, is ubiquitous in the oil and gas industry [1]. Accurate 

monitoring and prediction of each phase velocity in these flows is essential for various 

purposes, including production system design, optimization, flow pattern prediction, and 

identification of flow regimes. The magnitude and complexities involved in multiphase flow 

necessitate accurate predictions of fluid phase velocities, which can only be accomplished 

through sophisticated monitoring techniques.  

In recent years, there has been growing interest in using machine learning and deep learning 

techniques to improve the accuracy and efficiency of velocity estimation in multiphase flow 

[2]. These techniques have the potential to provide insights into the complex physical 

phenomena that occur during multiphase flow and enable the development of more accurate 

predictive models. 

The objective of this thesis is to investigate machine learning and deep learning techniques for 

monitoring and predicting phase velocities in oil/gas/water multiphase flow using data from 

accelerometers. Data from Equinor's multiphase flow rig in Porsgrunn, Norway, will be used 

to train and assess the performance of these models. The focus will be on developing data 

driven models capable of estimating the velocities of all three phases simultaneously based on 

the sensor input data. To identify flow types, image recognition techniques are to be 

implemented utilizing machine learning and deep learning techniques. Furthermore, physics-

based machine learning methods are to be explored, integrating sensor data to estimate flow 

velocities. 

The data used to develop models in this study was collected from tests conducted at Equinor's 

multiphase flow rig, using natural gas, crude oil, and water. The rig has a three-inch inner 

diameter flow loop, and the temperature and mass flow varied during the tests. Sensors, 

including accelerometers, differential pressure, and pressure sensors, were placed in specific 

locations within the rig (as shown in Figure 1). 

Figure 1 displays a simplified diagram of Equinor's test rig with the positions of the four 

accelerometers to capture vibration readings from the rig surface. 
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Figure 1: Simplified diagram of Equinor test rig showing only the accelerometers (Acoustic emission sensors),[3] 

This research has potential to advance the understanding and prediction of multiphase flow and 

improve the efficiency and effectiveness of oil and gas production using machine learning 

techniques. 

A signed copy of the task description of the thesis can be found in Appendix A. 

The report is structured in the following sequence: 

• Chapter 1 provides an introduction and objectives of the thesis, followed by a brief 

background review of the previous works relevant to multiphase flow velocity 

monitoring and machine learning techniques. 

• Chapter 2. This chapter contains some brief theoretical descriptions that are relevant to 

this thesis.  

• Chapter 3 describes the data denoising and preparation process. 

• Chapter 4 will describe the implementation of a data-driven flow velocity estimator 

model. 

• Chapter 5 covers the flow type identification model implementation with deep learning 

image recognition technique. 

• Chapter 6 illustrates the use of physics-based machine learning for estimation of flow 

velocity of multiphase flow. 

• Chapter 7 shows the results obtained from the data driven model, flow type 

identification model and physics-based model. It covers brief discussion on the 

performance of the models as well. 

• Chapter 8 covers discussion of the work and results. It also discusses the issues with 

the data that were faced during the thesis. 

• Chapter 9 concludes the thesis report and suggests some possible future work on the 

relevant subjects. 
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1.1 Background 

The realm of fluid mechanics has long been involved in the quest for measurement and 

prediction of multiphase flow, a critical research area across various industries, including 

chemical engineering, oil and gas, and power generation. The intricate nature of flow and the 

presence of diverse phases pose a challenge to researchers, who have utilized various 

methodologies such as computational fluid dynamics (CFD) simulations, experimental 

methods, and empirical modeling. 

Empirical approaches rely on multiphase flowmeters to evaluate multiphase flows, providing 

direct measurements of phase proportions and flow rates, [2], [4]–[6]. However, these 

techniques can be costly, complicated, and unsuitable for every multiphase flow scenario. 

Conversely, CFD prognoses have demonstrated potential in estimating multiphase flows but 

require high computational resources and may not capture the elaborate physics of flow.  

Recently, artificial intelligence (AI) methods have been suggested as a potential resolution for 

multiphase flow measurement and prediction. AI models were employed for multi-phase flow 

rate prediction and flow regime identification using data-driven methodologies, [2]–[4], [7]. In 

these investigations, models are trained on empirical data and have demonstrated to offer 

precise prediction of multiphase flow rate and flow categories. Additionally, image recognition 

techniques utilizing Convolutional Neural Networks (CNNs) were implemented to categorize 

the flow patterns of multiphase flows. These models have been trained with experimental 

images and have been confirmed effective in identifying distinct flow patterns in multiphase 

flows.  

Empirical models such as the drift flow model and the smooth flow model have been developed 

to predict multiphase flows, [8], [9]. These models are based on experimental data and are easy 

to implement, but they are often not accurate for all types of multiphase flows.  

In the paper “Ensemble learning in the estimation of flow types and velocities of individual 

phases in multiphase flow using non-intrusive accelerometers’ and process pressure data”[3], 

the test data from a previous experiment using Equinor’s test rig were analysed. This study 

presents a new method for accurately identifying different types of flow and estimating the 

velocity of each phase in a multiphase fluid system. The proposed method uses both pressure 

measurements from differential transmitters and pipe vibrations caused by the flow, making it 

more precise than traditional methods such as ultrasonic sensors or gamma ray densitometers. 

Machine learning models based on decision trees have been developed using data collected 

from accelerometers, differential pressure transmitters, and upstream/downstream pressure 

transmitters, to identify the ratio of different phases (such as water cut) and estimate the 

velocity of each phase, as well as the status of choke valves if present. To comprehensively 

evaluate the replicability and versatility of the model, further research must be conducted, 

encompassing a broader range of phase fractions and flow rates. Moreover, increasing the 

frequency of data logging for pressure measurements would allow for a deeper understanding 

of the effects of discrete process data on the results. To enhance the understanding of how 

discrete process data (i.e., pressure measurements) may influence the results, elevating the 
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frequency of data logging for pressure measurements would permit a more profound 

comprehension of the ramifications of discrete process data on the outcomes. 

Research conducted at The University of Edinburgh named “Comparison of machine learning 

methods for multiphase flowrate prediction” studied the estimation of instantaneous flowrate 

of gas/oil/water three-phase flows using Deep Neural Network (DNN), Support Vector 

Machine (SVM) and Gradient Boosting Decision Tree models (GBDT)[2] This research aimed 

to determine the instantaneous flow rate of a three-phase flow of gas, oil, and water by using a 

combination of a Venturi tube and various machine learning techniques. The results of the 

experiments showed that both DNNs and SVM were able to provide accurate estimates for 

multiphase flows, while the GBDT model was not successful in this task. It was discovered 

that the volumetric gas phase flow rate could be accurately predicted using a SVM model, and 

temperature was found to be an important factor when estimating multiphase flows. Further 

research should be conducted to assess performance of DNN, SVM and GBDT models’ 

effectiveness in real world applications with different types of data sets. Additionally, more 

data pre-processing operations are needed to be explored to improve the accuracy and 

reliability when estimating multiphase flows using these machine learning methods. 

In recent times, physics-based machine learning methods have been proposed to create 

multiphase models. These models incorporate the governing equations of fluid dynamics. 

Physics aided machine learning was utilized to estimate flow rate of a multiphase flow system 

in research named “Machine Learning and First Principles Modeling Applied to Multiphase 

Flow Estimation” by Timur Bikmukhametov in 2020, [10]. This study presents a robust and 

accurate method for estimating multiphase flow by combining machine learning models with 

fundamental principles of physics. The authors were able to tune the model accurately to match 

specific field conditions and estimate the uncertainty of their predictions based on the process 

conditions. Additionally, this work demonstrates how using features based on physical laws 

can lead to improved prediction performance compared to using raw data alone. The proposed 

method is both accurate and interpretable, providing useful insights for practitioners. However, 

the paper assumes that measurements are free from noise and errors, which is not always the 

case, as random and possibly drift errors may always present, making implementation more 

challenging. 

In multiphase flow research, the Darcy-Weisbach equation is widely used to model the pressure 

drop in pipe flow systems. The equation is often used in combination with other models and 

methods to provide more accurate predictions of multiphase flow[11], [12]. Research named 

“Two-phase flow pressure drop in PEM fuel cell flow channel bends” by Mehdi Mortazavi, in 

which the two-phase flow pressure drop across a PEM fuel cell flow channel bend is 

investigated. In this study, the Darcy-Weisbach equation is used to calculate the pressure drop 

across pipes and other flow channels, [13]. 

In recent years, researchers have also been using machine learning techniques to model 

multiphase flow and the Darcy-Weisbach equation is used to create physics-based machine 

learning models. In a paper named “Machine Learning for Closure Models in Multiphase-Flow 



1 Introduction 

 

 

12 

 

Applications”, Darcy-Weisbach equation has been utilized to model the closure terms in two-

fluid models, [14]. 

This thesis focuses on developing a data-driven deep learning model to estimate flow rate of 

multiphase flow. Furthermore, an image recognition CNN model is to be developed to identify 

flow types in the multiphase flow system and explore a physics-based machine learning model 

to predict single phase flow rate with utilizing the Darcy-Weisbach equation. 

The measurement and prediction of multiphase flow rate have been the subject of intensive 

research for several years. Despite the availability of experimental methods, CFD simulations, 

and empirical models, the accuracy and effectiveness of these techniques are limited. As such, 

the academic community has shifted its focus towards machine learning frameworks as a 

plausible remedy for gauging and prophesying multiphase current. By utilizing the capabilities 

of synthetic cognition, these frameworks have the possibility of transforming the domain of 

multiphase current quantification and prophecy. These models use data-driven approaches and 

have been shown to provide accurate predictions of multiphase flow rate. Image recognition 

using CNNs have been applied for classifying the flow patterns of multiphase flows, and 

physics-based machine learning models have been proposed for modelling multiphase flow 

systems. 
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2 Theory 
In this chapter, the theoretical concepts are briefly discussed to provide context for research 

presented in this thesis.   

2.1 Multiphase flow 

Multiphase flow is an intricate phenomenon that involves the simultaneous flow of different 

materials like gas, liquid, and solid through a pipe or conduit. The complexity arises due to the 

intricate interplay between these different phases, which makes predicting and controlling their 

behavior a challenging task, [1]. The flow of these different phases is influenced by numerous 

factors, including flow rates, pressure, phase distribution, and flow regime. The flow regime 

describes how these different phases are arranged and interact with each other. For instance, 

stratified flow refers to the formation of layers, while dispersed flow describes when the 

different phases are mixed up. Factors such as the pipe or conduit geometry, density, and 

viscosity of the phases, and their flow rates influence the flow regime and phase distribution. 

Studying multiphase flow is indeed a challenging and intricate field, but the use of sophisticated 

models and techniques makes it possible to predict and control the flow. 

2.2 Accelerometer 

In the field of multiphase flow research, accelerometers are a crucial tool for understanding 

and analyzing the complex behavior of the flow. They allow researchers to non-intrusively 

measure the flow conditions in pipelines [15]. These devices are used to measure the vibrations 

caused by the flow of different phases through a pipeline, allowing researchers to gather 

valuable information about the flow rate and flow type. In essence, accelerometers detect 

changes in velocity over time and convert them into electrical signals. This is achieved using a 

proof mass, which is a small mass that is suspended within the accelerometer. When a device 

is subjected to acceleration, the proof mass moves in response, resulting in the compression or 

stretching of a spring. 

Accelerometers can be classified into several types, such as piezoelectric, capacitive, and 

piezoresistive accelerometers, [16]. Piezoelectric accelerometers are most used in multiphase 

flow research, as they are rugged and can operate in harsh environments. They also have a high 

sensitivity and can measure a wide range of frequencies, which makes them well suited for 

measuring vibrations caused by multiphase flows. Nevertheless, they are also vulnerable to 

noise generated by other sources, such as the Coriolis meter, which is frequently used in 

multiphase flow research. Consequently, it is vital to denoise the accelerometer data to obtain 

precise results.  
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2.3 Artificial neural networks (ANNs) 

The innovative artificial neural networks (ANNs) are machine learning models that get their 

inspiration from the biological neural networks' structure and function. They consist of 

interconnected "neurons" that proficiently process and transmit data. ANNs have widespread 

usage in various fields, such as image recognition, natural language processing, and prediction 

tasks. Specifically, in the multiphase flow context, ANNs have been employed to predict flow 

patterns, estimate discharge, and classify flow regimes [17], [18]. Their efficacy lies in their 

ability to handle nonlinear and complex relationships in multiphase flow data. ANNs have been 

hailed for their unmatched capacity to handle vast amounts of data and adapt to ever-changing 

conditions, making them an essential tool for the prediction of multiphase flows.  

2.4 Convolutional Neural Networks (CNNs) 

Convolutional Neural Networks (CNNs) are a formidable type of deep learning architecture, 

expertly crafted to excel in tasks such as image recognition and classification with exceptional 

precision. Comprising a sophisticated network of interconnected "neurons," CNNs 

collaboratively process and manipulate input data to ultimately generate a set of output 

predictions. To unravel the complexities of patterns and features embedded within input data, 

CNNs utilize a technique called convolution, [19], [20]. This process involves deploying a set 

of small filters to scrutinize different segments of the input image. These filters glide over the 

image, seamlessly extracting information at various scales.  

In the realm of multiphase flow type detection, CNNs have shown remarkable efficacy in image 

recognition tasks and have demonstrated great potential for analyzing time series data. The 

primary concept behind utilizing CNNs for this purpose is to convert raw accelerometer data 

into images, which can then be analyzed by the CNN to identify patterns and features 

corresponding to various flow types [20]–[22]. One of the most significant benefits of using 

CNNs for multiphase flow type detection is that they can automatically extract features from 

raw data, eliminating the requirement for manual feature engineering. This attribute is 

particularly advantageous when dealing with complicated and intricate multiphase flow data 

that may be difficult to interpret. Additionally, CNNs can process high-dimensional data, which 

is frequently encountered in multiphase flow measurements.  

2.5 Coriolis meter 

A Coriolis meter is a type of flow meter that is commonly used in the oil and gas industry to 

measure the mass flow rate of liquids and gases. The Coriolis meter works by measuring the 

Coriolis effect, which is a phenomenon that occurs when a fluid flows through a tube that is 

vibrating at a specific frequency. The Coriolis effect causes a slight bending of the tube, which 

can be measured and used to calculate the flow rate of the fluid [23], [24]. This measurement 

procedure of Coriolis meter creates vibration in the flowing fluid. As accelerometers capture 
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vibrations, the vibration created by Coriolis meter adds noise to accelerometers’ measurements. 

Thus, filtering the accelerometer data becomes necessary. 

2.6 Short-time Fourier Transform (STFT) 

STFT is an essential and mighty tool utilized in the domain of signal processing and analysis, 

particularly in the field of audio and vibration analysis [25]. Its operating mechanism involves 

breaking down a signal into overlapping segments and executing a Fourier Transform on each 

chunk, resulting in a comprehensive analysis of the signal in the time-frequency domain. 

When compared to other common time-frequency analysis methods such as the Fourier 

Transform and Wavelet Transform, STFT possesses several benefits. Specifically, it can 

provide an exceptional temporal resolution for high-frequency signal components while 

concurrently providing a high-frequency resolution for low-frequency components [25]. 

Therefore, STFT can offer a precise and accurate depiction of the frequency content of a signal 

at any moment in time.  

The remarkable capabilities of STFT in terms of its temporal and frequency resolution make it 

an exceptionally valuable tool for vibration analysis and many other fields [25], [26]. It can 

quickly and accurately detect and isolate unwanted noise and extract critical information about 

the signal of interest, thereby enabling researchers and engineers to make more informed and 

reliable decisions.  

2.7 Physics-based machine learning 

The rapidly growing discipline of physics-based machine learning (PBML) endeavors to 

combine the fundamental physical principles of a given system with machine learning models 

to enhance their precision and comprehensibility. This strategy focuses on the integration of 

domain-specific knowledge regarding physical processes into the models, ultimately yielding 

more nuanced and insightful predictions [27], [28]. Diverging from traditional machine 

learning techniques that exclusively rely on data for model training, PBML employs physical 

principles such as equations that describe the physical behavior of the system under 

examination. By doing so, PBML produces more robust and accurate predictions and provides 

valuable insights into the underlying physical processes driving the data. Physics-based 

machine learning has proved to be highly useful in various fields, including fluid dynamics, 

materials science, and climate modeling.  
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3 Data Preprocessing and Feature 
Extraction 

Only the accelerometer data has been utilized in this thesis from the data provided by Equinor. 

The source and preparation of the data is briefly discussed in this chapter below: 

3.1 Accelerometer data source 

The description of data source below is taken from previously conducted research on the same 

data named “Ensemble learning in the estimation of flow types and velocities of individual 

phases in multiphase flow using non-intrusive accelerometers and process pressure data”.[3] 

The data was collected from Equinor's multiphase flow test rig in Porsgrunn, Norway. It was 

gathered using accelerometers (piezoelectric transducers that measure acceleration), 

differential pressure transmitters and upstream-and downstream pressure transmitters. The 

diameter of the test rig in the tests is 3 inches, and the materials that have been used were 

natural gas, crude oil and water. The temperatures readings on the upstream and downstream 

sides of the flow varied between 65°C and 94°C and the total mass flow rate varied from 

approximately 1 ton per hour to 64 tons per hour. The test setup at the rig has been shown in a 

simplified diagram in Figure 1, which shows the flow direction, locations of choke valves, and 

the sensors and instruments used to collect data. The four explosion-proof piezoelectric 

accelerometers were placed along the flow direction, with two at the second and fourth bends, 

and one close to the choke valve at the outlet side. Differential pressure measurements were 

obtained from two Venturi meters located in the second riser section and the last flow loop 

section. The accelerometer sampling frequency was set at 50 kHz, and acceleration data were 

logged continuously for 5 minutes before the next series started. Thus, there are about 15 

million data points in one acceleration measurement from each test. Other measurements, such 

as differential pressure and upstream and downstream pressure data, were logged as discrete 

process data, and only their average values were saved. Therefore, except for the data from the 

four accelerometers, all the other measurements have only a single value per test in the datasets. 

3.2 Denoising data 

The accelerometers attached to the rig record vibrations from the rig walls. The thesis works 

on the data that is acquired from four accelerometers installed on the test rig. However, A 

Coriolis meter is already installed at the very beginning of the rig as well to measure flow rates. 

Coriolis flowmeter can add noise to the accelerometer data due to its measuring mechanism. 

Noise is added to accelerometer data from Coriolis meter because by design, the accelerometers 

measure vibrations caused by the flow in the rig, whereas the Coriolis meter is designed to 

measure vibrations created by the flow in the meter itself. The vibrations caused by the Coriolis 

meter can interfere with the accelerometer data and make it difficult to precisely record the 
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flow in the rig. To overcome this problem, it is important to denoise the accelerometer data 

from the Coriolis meter. This can be done by using different signal processing techniques such 

as filtering and signal separation algorithms. Denoising the accelerometer data may improve 

the accuracy of the flow rate measurements and provide more reliable results. 

Short-time Fourier Transform (STFT) has been used to analyze accelerometer data to remove 

supposed unwanted noise and extract useful information about the frequency content of the 

signal. The overlapping segments of the signal were analyzed using a Fourier Transform. The 

supposed unwanted noise in the frequency range of 190-210 Hz and its harmonics, first 

harmonics 380-420 Hz and second harmonics 760-840 Hz were identified and removed from 

the signal using a masking technique. 

In Figure 2, frequency component plot has been shown to analyse the difference of a sample 

before and after filtering. Some clear distinction can be observed at around 200 Hz, 400 Hz 

and 800 Hz as these are the regions where masking has been applied. Observing the colour 

bars; it can be noticed that some low amplitude data has been removed from the original data. 

 

 

Figure 2: An example of Frequency component plot using STFT – before and after applying masking for 

supposed denoising. 

Figure 3 has original and filtered data plotted on top of each other. Very little difference can 

be observed in this plot at the edges. Original data seems to be a little bit higher in magnitude 

or it contains more data. 
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Figure 3: An example of original data and filtered data. 

In Figure 4a comparison between original accelerometer data and the supposed noise due to 

Coriolis meter has been shown. It should be noted that it is not certain that this noise the true 

noise due to Coriolis meter. The data analysts at Equinor informed that Coriolis meters attached 

into the rig add low amplitude noise of around 200 Hz. 

 

Figure 4: An example of comparison between original data and noise. 
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From Figure 5, difference between original data and filtered data can be observed due to 

filtering process within the range of 0 Hz to 1000 Hz. 

 

Figure 5: An example of FFT plot – raw/original data and filtered data. 

Figure 6 shows the difference between the original data and filtered data. The difference is 

considered as the Coriolis noise that has been filtered out by STFT and masking. 

 

Figure 6: An example of Extracted supposed noise. 

Observing Figure 2 and Figure 4 it is understood that the data removed from original data 

seems to somewhat match the expected characteristic of Coriolis noise as the removed data is 

of low amplitude and exists within the defined frequency range including its first and second 

harmonics. 
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3.3 Peaks extraction from accelerometer data  

In the available dataset, there are 217 usable samples recorded by the four accelerometers. Per 

sample, the measurement from each accelerometer contains 15411200 datapoints, with a 

sampling duration of 301 seconds and a sampling interval of 0.000019531 second. To utilize 

this large amount of data in a machine learning model to predict flow rates of gas, oil, and 

water; impactful and important information has been planned to be extracted from raw data 

instead of using all the data. 

One of the crucial information that is being extracted from the raw data is peak amplitudes and 

frequencies. Peaks represent the specific frequencies at which certain components of the signal 

have the highest energy. Extraction of peaks is a common technique used in signal processing 

to identify specific events or features within a signal, [29]. The peaks in the frequency domain 

have been identified using the ‘signal.find_peaks’ function from ‘SciPy’ library. The function 

has been set to detect peaks with given minimum height and distance between the peaks. 

Figure 7 illustrates the detected peaks in the FFT of a sample, marked with a cross (x). 

 

Figure 7: An example of Peak detection and top 17 peaks selection. 

After identifying the peaks, the amplitudes and frequencies of the peaks have been obtained 

and sorted in descending order based on the amplitudes. The top 17 amplitudes and their 

corresponding frequencies have been selected as the features to be used in the machine learning 

model. These top 17 selected peaks are clearly marked by green stars (⋆) in the Figure 7, as an 

example. The top 17 features have been chosen based on the observation that they contain the 

most significant information that is relevant to the prediction of flow rates of gas, oil and water, 

as the selected peaks are denoted by green stars (⋆). 
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3.4 Automated script for peaks/feature extraction from 
accelerometer data 

To optimize the process of extracting valuable information from raw data, an automated Python 

script has been devised. The script carries out the complete procedure by accepting the raw 

data as an input and then undertakes several crucial stages to extract the requisite information. 

These steps include filtering the data, conducting the Fourier transform, identifying, and 

extracting peaks, and applying a binary mask to get rid of noise and harmonics. Upon the 

completion of these steps, the script then extracts the peak values and deposits them into a csv 

file along with their corresponding test ID. The modular and adaptable design of the script 

ensures that it can be customized and modified to suit any specific requirements. 

The automated extraction of significant information from raw data streamlines the analysis 

process and saves a considerable amount of time. Moreover, the script ensures that the data is 

processed with utmost consistency and accuracy, effectively minimizing the chances of human 

error. The script’s implementation involves running a loop that accepts all 217 samples as 

inputs and generates 17 peak values for each sample.  

3.4.1 Explanation of code for extracting features 

Figure 8 illustrates a flow diagram of the feature extraction script that is used to preprocess and 

extract features from the dataset that will be used to train a machine learning model to predict 

flow rates of multiphase flow. 
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Figure 8: Flow diagram of feature extraction code from accelerometer data. 

The script loads csv a file in specific directory, test_id from the file name of the data is saved 

separately. The script performs STFT on the data, then applies masking within the defined 

ranges, then performs inverse STFT to gain the denoised data. Then FFT is performed on the 

denoised data and peak amplitudes are detected. The corresponding frequencies of the top 17 

peak amplitudes are taken and kept as feature data. The 17 frequencies with the test ID are 

saved in a csv file. Then the script moves on the next file in the directory. The feature extraction 

code is available in Appendix B for further reference. The code in Appendix B contains only 

the main process of feature extraction. 



4 Model Development for Prediction of Rates 

 

 

23 

 

4 Model Development for Prediction of 
Rates 

In this study, machine learning models have been developed to predict the flow rates of gas, 

oil, and water in a three-phase flow system. The models have been trained and tested on datasets 

of historical flow rate measurements from accelerometer readings. 

Figure 9 illustrates the schematic diagram of the entire flow rate prediction process. At first as 

discussed previously in detail, 17 peak values are extracted from each accelerometer data of all 

the samples. These peak values are used as feature values to predict flow rate. Then an ANN 

model is trained with the prepared data to predict flow rates. 

 

Figure 9: Schematic diagram workflow of flow rate prediction 

4.1 Multiphase Flow Rate Prediction 

The dataset was preprocessed by normalizing the features and splitting it into training and 

testing sets. The model was trained using a neural network architecture with multiple hidden 

layers and optimized using Adam optimization algorithm. The model trains on accelerometer 

data and predicts flow rates of gas, oil and water simultaneously. 

Figure 10 illustrates the architecture of the model used to predict flow rates of multiphase flow. 

The model utilizes different combinations of dense layer separately for gas, oil and water 

respectively. 
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Figure 10: ANN model architecture of multiphase flow prediction model. 

The model has in input layer with (68,) shape as there are 68 features in the dataset. First dense 

layer has 128 neurons with ‘ReLU’ activation function. From the First dense layer, 3 branches 

are created for gas, oil and water flow rate prediction. The number of dense layers has been 

tuned by training and validated numerous times. All the dense layers in the model have the 

same number of neurons and ‘ReLU’ activation function except for output layers. 1st branch 

from the left, which is the gas flow rate prediction branch has dense 4 layers. 2nd branch which 

is oil branch has 5 dense layers and 3rd branch which is water branch has 3 dense layers before 

their respective output layers. The output layer for gas is y1, oil is y2 and water is y3. The 

model has been trained for 8 epochs with a batch size of 2. The code of the multiphase flow 

prediction neural network model can be found in Appendix H. 

4.1.1 Performance evaluation of multiphase prediction model 

The performance of the model was evaluated using coefficient of determination (𝑅2) on the 

testing set. The results showed that the model was able to predict the flow rates of gas, oil, and 

water to a satisfactory level by considering the number of available samples, when two or more 

of the flow rates were non-zero. The accuracy of the predictions decreased significantly when 

two of the flow rates were zero and only one was non-zero. 
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Figure 11 displays the training and validation RMSE curves gas, oil and water. The training 

and validation RMSE curves of all three phases were merged with many attempts by changing 

the number of layers, neurons, activation function for each phase. 

Table 1 represents RMSE values of multiphase flow model predictions on validation dataset. 

The RMSE values of all three phases are quite satisfactory considering the number of samples 

used to train the model. 

 

 

Figure 11: RMSE curves - gas, oil & water – training and validation curves merging at 8th epoch. 
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Table 1: RMSE values from validation data – Multiphase flow model. 

Gas RMSE [𝑚3/ℎ]  5.48 

Oil RMSE [𝑚3/ℎ]  8.48 

Water RMSE [𝑚3/ℎ]  9.60 

It has been observed that the number of single-phase flow samples are far less than the number 

of three-phase flow and two-phase flow samples. The predictions for three-phase flow appear 

to be the most accurate, which may be attributed to the fact that the original dataset contains 

more three-phase flow samples compared to two-phase flow samples and single-phase flow 

samples. 

In this report, oil flow has been indicated as “O”, gas flow as “G”, water flow as “W”, oil and 

gas flow as “GO”, gas and water flow as “GW”, water and oil flow as “OW”. And three phase 

flow – gas, oil and water flow has been indicated as “GOW”. 

Below are given the number of samples from each accelerometer for the seven classes: 

• GOW: 131  

• GO: 20  

• GW: 9  

• OW: 37  

• O: 8 

• W: 16  

• G: 7  

It can be observed above that a clear disproportion exists among the classes. Especially the 

single-phase samples “O”, “W” and “G” have very few samples compared to the rest. As a 

result, the ANN model is unbale to learn patterns and predict the flow rate for single phase 

samples. The developed model shows promise for predicting flow rates in three-phase flow 

systems, but further research is needed to improve its performance in scenarios where two of 

the flow rates are zero. 

4.2 Single-phase flow prediction 

To investigate and confirm the reasons of the multiphase flow prediction models’ inability to 

predict single phase flows, a similar but separate model has been trained exclusively on the 

single-phase samples. Single-phase sample of gas, oil and water have been separated from the 

main dataset that contained all the samples. 

Figure 12 illustrates the model architecture of the ANN model built to predict flow rates of 

single-phase flow. The model utilizes different combinations of dense layer separately for gas, 

oil and water flows respectively. 
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Figure 12: Model architecture of single-phase flow prediction model trained only with single-phase samples. 

The model has in input layer with (68,) shape as there are 68 features in the dataset. First dense 

layer has 128 neurons with ‘ReLU’ activation function. From the First dense layer, 3 branches 

are created for gas, oil and water flow rate prediction. The number of dense layers has been 

tuned by the training and testing numerous times. All the dense layers in the model have the 

same number of neurons and ‘ReLU’ activation function except for output layers. 1st branch, 

which is the gas branch, has 8 dense layers, 2nd branch which is oil branch has 4 dense layers 

and 3rd branch which is water branch has 2 dense layers before their respective output layers. 

The output layer for gas is y1, oil is y1 and water is y3. The model has been trained for 5 epochs 

with a batch size of 2. The code for single-phase flow rate prediction neural network model 

can be found in Appendix I. 

4.2.1 Performance evaluation of single-phase prediction model 

In this section, it has been investigated whether the data contains the information required to 

predict single-phase flow by analyzing single phase prediction model’s performance on 

validation dataset. 

Figure 13 illustrates the RMSE plots of only single-phase flow model. After several attempts 

with different configurations, the training and validation plots could be merged to below extent 

due lack of enough samples. 

Table 2 presents RMSE values of single-phase model predictions on validation data.  
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Figure 13: Single phase prediction RMSE - training and validation plots. 

 

Table 2: RMSE values from validation data – Single-phase flow model.  

Gas RMSE [𝑚3/ℎ]  51.61 

Oil RMSE [𝑚3/ℎ]  5.96 

Water RMSE [𝑚3/ℎ]  27.84 
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4.3 Multiphase flow rate prediction using data from reduced 
amount (three) of accelerometers  

Additional tests have been conducted to examine whether flow rate predictions can be achieved 

using three accelerometer data instead of four. Similar to previous approaches, the dataset has 

been preprocessed by normalizing the features and splitting it into training and testing sets. The 

model has been trained using a neural network architecture with multiple hidden layers and 

optimized using Adam optimization algorithm. The model trains on accelerometer data and 

predicts flow rates of gas, oil and water simultaneously. In Figure 14, the model architecture 

of multiphase flow rate prediction ANN model trained with only three accelerometer data can 

be observed. 

 

Figure 14: Model architecture of multiphase flow rate prediction model trained with three accelerometer data 

The model has in input layer with (68,) shape as there are 68 features in the dataset. First dense 

layer has 128 neurons with ‘ReLU’ activation function. From the First dense layer, 3 branches 

are created for gas, oil and water flow rate prediction. The number of dense layers has been 

tuned by the training and testing numerous times. All the dense layers in the model have the 

same number of neurons and ‘ReLU’ activation function except for output layers. 1st branch, 

which is the gas branch has 5 dense layers, 2nd branch which is oil branch has 5 dense layers 

and 3rd branch which is water branch has 3 dense layers before their respective output layers. 

The output layer for gas is y1, oil is y1 and water is y3. The model has been trained for 7 epochs 
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with a batch size of 2. Code of multiphase flow prediction neural network model trained with 

only 3 accelerometer data can be found in Appendix J. 

4.3.1 Performance evaluation of multiphase flow rate prediction model 
trained with three accelerometer data 

Figure 15, illustrates the training and validation RMSE curves of multiphase flow prediction 

model trained on three accelerometer data. 

Table 3 represents RMSE values on validation dataset of multiphase flow model trained with 

three accelerometer data. The RMSE value are higher than they were in case of the model 

trained with four accelerometer data. 

 

 

Figure 15: RMSE plots of multiphase flow prediction model trained on 3 accelerometer data. 
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Table 3: RMSE values from validation data – Multiphase flow model (three accelerometer). 

Gas RMSE [𝑚3/ℎ]  7.26 

Oil RMSE [𝑚3/ℎ]  8.62 

Water RMSE [𝑚3/ℎ]  9.22 

4.4 Single-phase flow rate prediction using data from reduced 
amount (three) of accelerometers 

As the model trained with three accelerometer sensor data could not predict single phase 

samples; the single-phase model approach has been taken again. Figure 16 illustrates the ANN 

model architecture of single-phase flow rate prediction model trained on three accelerometer 

data. The model performed best with the same architecture as the single-phase flow rate 

prediction model trained on four accelerometer data in Figure 16. 

The model has in input layer with (68,) shape as there are 68 features in the dataset. First dense 

layer has 128 neurons with ‘ReLU’ activation function. From the First dense layer, 3 branches 

are created for gas, oil and water flow rate prediction. The number of dense layers has been 

tuned by the training and testing numerous times. All the dense layers in the model have the 

same number of neurons and ‘ReLU’ activation function except for output layers. 1st branch, 

which is the gas branch has 8 dense layers, 2nd branch which is oil branch has 4 dense layers 

and 3rd branch which is water branch has 2 dense layers before their respective output layers. 

The output layer for gas is y1, oil is y1 and water is y3. The model has been trained for 5 epochs 

with a batch size of 2. In Appendix K, the code of single-phase flow prediction neural network 

model trained with three accelerometer data can be found. 
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Figure 16: Model architecture of single-phase prediction model trained on three accelerometer data. 

4.4.1 Performance evaluation of single-phase flow rate prediction model with 
three accelerometer data 

Figure 17 displays the training and validation RMSE curves of single-phase prediction model 

trained on three accelerometer data. It appeared to be quite difficult to merge the training and 

validation curves in this case. 

Table 4 shows that RMSE values on validation data of single-phase flow rate prediction model 

trained on three accelerometer sensor data are worse than the model trained on four 

accelerometer sensor data.  
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Figure 17: Training and validation RMSE curves – single-phase prediction model trained on three accelerometer 

data. 

Table 4: RMSE values from validation data – Single-phase flow model (three accelerometer). 

Gas RMSE [𝑚3/ℎ]  37.93 

Oil RMSE [𝑚3/ℎ]  6.32 

Water RMSE [𝑚3/ℎ]  24.05 
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5 Identification of flow types using CNN 
The dataset that is being used comprises three distinct phases: gas, oil and water. Each sample 

represents a unique combination of these phases. The primary objective of this section is to 

identify the flow type of each individual sample. The fundamental approach involves 

generating spectrogram images for each sample. And then, a Convolutional Neural Network 

(CNN) model will be trained and tested using these spectrogram images for the purpose of flow 

type identification. Figure 18 illustrates the schematic diagram of the proposed flow type 

classification process. 

 

Figure 18: Schematic diagram of flow type classification 

5.1 Selection of Significant data points 

The dataset used in this thesis comprises seven different flow types, thus creating seven classes 

for the image recognition model to identify. However, it becomes problematic to utilize all the 

data available as the imbalanced number of samples in seven classes, potentially leading to 

bias. For instance, “GOW” has the highest number of sample count at 131, while the “G” has 

the lowest number of sample count with only 7. To mitigate this issue, the number of samples 

must be reduced from the classes that have high numbers of samples. To do so, significant 

samples have been selected from the classes with comparatively higher number of samples.  

These significant samples are expected to effectively represent their respective classes. 



5 Identification of flow types using CNN 

 

 

35 

 

Figure 19, Figure 20 and Figure 21 illustrate the significant samples selection for the GOW, 

OW, and GO classes respectively. 

The selected significant samples have been kept for the task of flow type identification in 

GOW, OW and GO classes. The other classes already have low number of samples. So, they 

are kept as they were. 

 

Figure 19: GOW significant samples selection in red. 

 

 

Figure 20: OW significant samples selection in red. 
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Figure 21

 

Figure 21: GO significant samples selection in red. 

5.2 Spectrogram generation 

A python script has been written using ‘signal.spectrogram’ function importing from python 

‘Scipy’ library to generate spectrogram images from accelerometer readings. An automated 

script has been created with the spectrogram generator code inside a loop that goes through 

each file a specific directory and created spectrogram and then saves the spectrogram in another 

specified directory. 

Spectrograms have been created with several settings before coming to a final format of the 

spectrogram generation code. Different dynamic ranges have been applied to find one fixed 

dynamic range that creates clear patterns in all images to be utilized by image recognition 

model. Figure 22 shows an example spectrogram that has been generated from accelerometer 

channel 3 data. A CNN model is to be trained with the generated spectrogram images to identify 

flow types. Spectrograms were generated from all four accelerometer data separately. Among 

the accelerometer data from four sensors shown in Figure 1 (page 9), accelerometer channel 3 

spectrograms have shown the most visible patterns. Thus, spectrograms generated from 

accelerometer channel 3 data have been used for image recognition purposes. 
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Figure 22: Example of spectrogram generated from accelerometer channel 3 data 

5.3 Automated spectrograms generation script 

To streamline the image generation process, a python script has been written that takes csv files 

as input from a specific directory one after another in a loop and generates spectrogram images. 

The python code for spectrogram generation can be found in Appendix L. 

5.4 Data splitting 

The spectrogram images of seven classes have been split into a train and test split using python 

built-in library – ‘splitfolders’. Due to having very few samples after creating balance among 

all classes, after keeping 85% of the samples for training in each class, in some cases 1 or 2 

samples are left. For example, class ‘G’ has only 7 samples. After keeping 5 samples for 

training, only two samples are left for validation and testing. They need to be kept for testing. 

But validation data is required as well with which the model will not have been familiar with 

during training. Considering all these perspectives, the test data set has been used for validation 

and testing as it will not hamper the training process nor the model performance analysis. The 

code for splitting the spectrogram dataset is given in Appendix M. 
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5.5 Image recognition 

A CNN image classification technique has been employed to classify the flow types of 

multiphase flow using the available accelerometer data. 

5.5.1 Transfer learning 

Due to being low in number of samples, transfer learning is the best solution to construct the 

Image Recognition model as any transfer learning comes with pre-trained weights on millions 

of samples, [30]. 

5.5.2 Tensorflow 

While MATLAB provides several in-built transfer learning models, TensorFlow offers an even 

broader selection.  The use of TensorFlow grants access to a multitude of transfer learning 

models, providing ample opportunities for experimental execution and performance 

observation on the project's dataset, [31], [32]. 

5.5.3 Choosing a backbone model 

Several backbone models have been tested with the image datasets to select the best one for 

the image recognition model in the project. A list of performance of the image recognition 

models with different backbone models with their validation accuracies on the prepared data is 

given below in Table 5. 

Table 5: List of backbone models tried, and accuracies achieved. 

Backbone model Validation accuracy (%) 

EfficientNetB0 36.50 

ResNet101 33.33 

EfficientNetB1 43.33 

ResNet101V2 33.33 

EfficientNetB2 68.75 

EfficientNetB3 50.00 

EfficientNetB4 50.50 

EfficientNetB5 33.33 

EfficientNetB6 36.67 
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EfficientNetB7 30.45 

ResNet152 40.67 

ResNet152V2 20.67 

EfficentNetB7 36.67 

EfficientNetV2B0 50.00 

InceptionResNetV2 33.33 

EfficientNetV2B2 50.33 

EfficientNetV2S 40.35 

MobileNet 50.55 

EfficientNetV2M 36.67 

Keeping the same setup, a backbone model has been replaced to observe the accuracies of the 

models. EfficientNetB2 has stood out to perform the best with the dataset. 

5.5.4 EfficientNetB2 

Utilizing Transfer Learning, a pre-trained model – EfficientNetB2 has been used as the 

backbone of the image recognition model. 

EfficientNet is a CNN design and scaling technique that uses a compound coefficient to 

consistently scale all depth, breadth, and resolution dimensions. In contrast to customary 

practice, which scales various factors arbitrarily. 

In comparison to current CNNs, the EfficientNet models typically attain both higher accuracy 

and better efficiency. EfficientNetB2 is trained on 14 million ImageNet datasets and predicting 

1000 classes. ImageNet dataset constraints 1000 classes. It has been proven to perform more 

efficiently than many CNNs, [30], [33], [34].  

Figure 23, illustrates the model architecture of the image recognition model. The pre-trained 

weights of the backbone model have been kept and the trainable parameter has been turned off.  
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Figure 23: Model architecture of flow type recognition CNN model 

Default top layer (1000 neurons for 1000 classes has been turned as ‘False’ and a custom top 

layer has been created with 5 neurons for 5 classes. The pre-training of EfficientNetB2 was 

performed on images with an input shape of (260, 260, 3), [35], [36]. However, for the purpose 

of this project, modifying the input shape to (224, 224, 3) resulted in improved performance, 

likely due to the resolution of the input images. An augmentation layer or pre-processing layer 

has been included in the model to compensate for the low number of samples. Several 

augmentation techniques have been applied. In the augmentation layer, randomly flipping the 

images horizontally to artificially increase the number of samples during training has improved 

the model performance. Global Average Pooling Layer has proven to work best in extracting 

the most important features from the images. Figure 23 graphically shows brief details of each 

layer of the image recognition model. The image recognition CNN code for flow type detection 

of multiphase flow can be found in Appendix N. 
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6 Physics-based flow rate prediction 
To understand the effects of introducing physics into multiphase flow rate prediction models, 

a customized loss function has been created for an ANN model that is to be trained with 

accelerometer data that has been prepared in chapter 3 and used in chapter 4 for flow rate 

prediction. 

6.1 Darcy-Weisbach equation 

Darcy-Weisbach equation has been used to create the custom loss function. Darcy-Weisbach 

equation relates head loss due to friction in a pipe to the flow rate and physical properties of 

the flowing fluid and the pipe. The Darcy-Weisbach equation for head loss can be written as, 

[37]–[39]: 

ℎ𝑒𝑎𝑑 𝑙𝑜𝑠𝑠, 𝑆 = 𝑓𝑑 ×
𝐿

𝐷
×

𝑣2

2𝑔
 

(i) 

where, 

fd is the Darcy friction factor, which depends on the roughness of the pipe and the 

Reynolds number. 

L is the length of the pipe or duct. 

D is the diameter of the pipe or duct. 

v is the velocity of the fluid. 

g is the acceleration due to gravity. 

6.2 Loss function design 

In equation (i), Darcy friction factor (𝑓𝑑) is a complicated parameter, but it is unitless. To avoid 

introducing complications into the model, friction factor (𝑓𝑑) is ignored in the loss function in 

equation (ii). To modify this equation for use as a loss function, velocity (v) of fluid has been 

designated to present the difference between true flow rate value (y_true) and predicted flow 

rate value (y_pred). The length (L) has been designated as the distance between accelerometers 

which is 4 meters. D is the diameter of the rig which is 3 inches or 0.0762 meters. g is the 

gravitational acceleration, 9.8 𝑚/𝑠2 . Thus the final loss function is: 

ℎ𝑒𝑎𝑑 𝑙𝑜𝑠𝑠, 𝑆 =
𝐿

𝐷
×

𝑣2

2𝑔
 

(ii) 
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where, 

L = 4 m 

D = 0.0762 m 

v = (y_true – y_pred) 𝑚/𝑠 

g = 9.8 𝑚/𝑠2 

6.3 Physics-based Multiphase flow prediction 

Figure 24 illustrates the model architecture of physics introduced multiphase flow prediction 

ANN model. The model has been tuned after introducing a custom loss function utilizing 

Darcy-Weisbach equation. 

 

Figure 24: Model architecture of physics-based multiphase flow rate prediction ANN model. 

The model has been trained for 18 epochs with batch size of 2. The code for the custom loss 

with function with ANN model for physics-based multiphase flow rate prediction is given in 

Appendix O. 

6.3.1 Performance evaluation of physics-based flow prediction 

Figure 25 displays the RMSE curves of physics-based multiphase flow model. The training 

and validation curves have merged smoothly in this case. 

Table 6 shows the RMSE values of physics-based multiphase flow model predictions. The 

RMSE values that have been achieved due to the custom loss function are quite similar to 

usual ANN multiphase flow rate prediction model RMSE values in chapter 4.1. 
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Figure 25: RSME curves of physics-based multiphase flow model. 

 

Table 6: RMSE values from validation data – Physics-based multiphase flow model 

Gas RMSE [𝑚3/ℎ]  16.87 

Oil RMSE [𝑚3/ℎ]  13.76 

Water RMSE [𝑚3/ℎ]  13.85 
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7 Results 
This chapter presents the prediction and classification outcomes of the models discussed so far. 

Prediction values with true values are analyzed in regression models and probable reasons for 

obtaining the results are discussed. Similarly true labels with predicted labels are analyzed for 

classification model and the obtained results are discussed. 

7.1 Results of multiphase flow prediction model 

Table 7 represents RMSE values of multiphase flow model predictions on test dataset. The 

RMSE values of all three phases are quite satisfactory considering the number of samples used 

to train the model. 

Table 7: RMSE values from test data predictions – Multiphase flow model. 

Gas RMSE [𝑚3/ℎ]  16.00 

Oil RMSE [𝑚3/ℎ]  12.22 

Water RMSE [𝑚3/ℎ]  13.95 

In Figure 26, the regression plots for gas, oil and water are presented. The limitations of the 

model's predictions can be observed directly in these plots. In the oil and water regression plots, 

some true values are 0, but the model is unable to predict them with satisfactory accuracy. 

These points have created sort of horizontal lines in the oil and water regression plots. Other 

predictions seem to exist around the regression line. 
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Figure 26: Regression plots of gas, oil and water predictions. 

Figure 27, Figure 28 and Figure 29 illustrate the predictions of gas, oil and water flow rate 

respectively on test dataset from multiphase flow rate prediction ANN model. The model 

predicts three-phase, two-phase and single-phase flows. 
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Figure 27: Gas true values and predicted values comparison – Multiphase flow test data. 

 

 

Figure 28: Oil true value and predicted values comparison - Multiphase flow test data. 
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Figure 29: Water true values and predicted values comparison - Multiphase flow test data. 

Looking at the predictions in Figure 27, Figure 28 and Figure 29, it is observed that among gas, 

oil and water, if three or two of the flows are non-zero, the predictions are quite acceptable as 

experimental values, but when two of the flows are zero and one is phase non-zero in a sample 

then the predictions deviate far from true values e.g. sample 52. Several three phase models 

have been created and trained but none of them have been able to predict the single-phase flows 

with satisfactory performance. Sample 47 has very high flow rate but there were not many 

samples with high flow rates as such for the model to train on; thus, the model fails to predict 

flow rates for such samples. In Appendix B, a table has been attached that contains the gas, oil 

and water true values and predicted values with errors from multiphase flow model. 

7.2 Results single phase flow prediction model 

Table 2 presents RMSE values of single-phase model predictions on test data.  

The regression plots of gas, oil and water predictions in Figure 30, shows that model trained 

with only single-phase flow samples can find patterns in the data and make some predictions 

that are better than the ones observed in three-phase flow model for single-phase flow samples. 

Due to very few numbers of single-phase flow samples, further improvement could not be 

achieved. 

Figure 31, Figure 32 and Figure 33 illustrate the predictions of gas, oil and water respectively 

from single-phase flow rate prediction ANN model on test dataset. The model makes prediction 

on only single-phase flows. The single-phase predictions values are far better than the last 

model that had more than one non-zero phase. Though the predictions are not very accurate 
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but still this proves that the accelerometer data does contain the information that can help ML 

models learn patterns to predict single phase flows as well. 

Table 8: RMSE values from test data predictions – Single-phase flow model. 

Gas RMSE [𝑚3/ℎ]  33.08 

Oil RMSE [𝑚3/ℎ]  6.59 

Water RMSE [𝑚3/ℎ]  16.17 

 

 

Figure 30: Regression plots of single-phase flow rate predictions. 
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Figure 31: Gas true values and predicted values comparison – Single-phase flow test data. 

 

 

Figure 32: Oil true value and predicted values comparison - Single-phase flow test data. 
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Figure 33: Water true value and predicted values comparison - Single-phase flow test data. 

The reason why the predictions are not accurate when two of the flows are zero and one is non-

zero could be due to several factors. One possibility is that the model was not trained on enough 

data points where two of the flows are zero, which can result in inaccurate predictions when 

these conditions occur in the test data. Another possibility is that the model architecture may 

not be able to capture the complex relationships between the variables when two of the flows 

are zero. But the above single phase flow rate experiment provides enough evidence that if 

there are enough samples to learn from; the models can predict single phase flow rates as well. 

Sample 4 in Figure 31 and sample 2 in Figure 32 have very high true value. Due to having low 

number of samples with such high flow, models are predicting poorly in such cases. Appendix 

C contains the true values and predictions from single-phase model. 

7.3 Results of predicting multiphase flow rate using three 
accelerometers 

Table 9, represents RMSE values of multiphase flow model predictions. On test dataset. The 

RMSE values are higher than they were in case of the model trained with four accelerometer 

data. 

In Figure 34, the regression plots of gas, oil and water flow rate predictions from multiphase 

flow model trained by using three accelerometer data can be observed. The same fault as the 

model trained on four accelerometer data can be observed right in the regression plots. In oil 

and water regression plot, some true values are 0, but the model is unable to predict them with 

acceptable numbers. These points have created sort of horizontal lines in the oil and water 

regression plots. Other predictions seem to exist around the regression line. 
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Figure 35, Figure 36 and Figure 37 shows that the three phase and two-phase sample 

predictions seem to have improved compared to the model trained with four accelerometer 

data. But the single-phase sample predictions have worsened. 

Appendix D contains the true values, predictions and errors from multiphase flow model 

trained with three accelerometer data. 

Table 9: RMSE values from test data – Multiphase flow model (three accelerometers). 

Gas RMSE [𝑚3/ℎ]  18.18 

Oil RMSE [𝑚3/ℎ]  13.56 

Water RMSE [𝑚3/ℎ]  13.48 
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Figure 34: Regression plots - multiphase flow prediction model trained on three accelerometer data. 
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Figure 35: Gas true values and predicted values comparison – Multiphase flow (three accelerometer) test data. 

 

 

Figure 36: Oil true values and predicted values comparison – Multiphase flow (three accelerometer) test data. 
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Figure 37: Water true values and predicted values comparison – Multiphase flow (three accelerometer) test data. 

 

7.3 Results of predicting single-phase flow rate using three 
accelerometers 

Table 10 shows RMSE values on test data of single-phase flow rate prediction model trained 

on three accelerometer data are worse than the model trained on 4 accelerometer data. 

In Figure 38, it can be observed from gas, oil and water flow rate prediction regression plots, 

that the single-phase model has improved performance in single-phase flow samples than in 

multiphase flow rate prediction model trained on three accelerometer data. 

Observing Figure 39, Figure 40 and Figure 41, It is clear that single-phase flow prediction 

model trained with three accelerometer data is not as good as the one trained with four 

accelerometer data; while both having the same dataset to train with. But still model trained 

with three accelerometer data has been able to find patterns in the data and make good 

predictions. 

Appendix E contains the true values and predictions with prediction errors from single-phase 

flow rate prediction model trained with three accelerometer data. 
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Table 10: RMSE values from test data – Single-phase flow model (three accelerometers). 

Gas RMSE [𝑚3/ℎ]  33.39 

Oil RMSE [𝑚3/ℎ]  7.67 

Water RMSE [𝑚3/ℎ]  17.98 

 

 

Figure 38:  Regression plots - single-phase flow rate prediction model trained on 3 accelerometer data. 
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Figure 39: Gas true values and predicted values comparison – Single-phase flow (three accelerometer) test data. 

 

 

Figure 40: Oil true values and predicted values comparison – Single-phase flow (three accelerometer) test data. 
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Figure 41: Water true values and predicted values comparison – Single-phase flow (three accelerometer) test 

data. 

It can be concluded that training models with three accelerometer data or less could be 

sufficient considering the availability of more samples as models trained with four 

accelerometer data are making better predictions.  

7.4 Results of flow type identification 

The CNN model that has been trained on the generated spectrogram data in has made 

classification of flow types with 68.75% accuracy. 

Figure 42 is the confusion matrix of the CNN image recognition flow type detection model. 

The confusion is created based on the prediction of the model on test data. Among the 7 classes, 

in test dataset – ‘G’ has 2 samples, 1 of which is correctly classified correctly and 1 is 

misclassified as ‘O’. Of the 2 samples of ‘GO’, 1 is correctly classified as ‘GO’, and 1 

misclassified as ‘GOW’. Of the 3 samples of ‘GOW’ 2 is correctly classified and 1 is 

misclassified as ‘O’. 1 of the 2 ‘GW’ samples is correctly classified as “GW” and 1 is 

misclassified as ‘GO’. 1 ‘O’ is classified correctly and 1 is misclassified as ‘OW’. All 3 samples 

of ‘OW’ class have been classified correctly and all 2 samples of ‘W’ class have been classified 

correctly. 
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Figure 42: Confusion matrix from CNN flow type detection model. The vertical axis represents the true labels, 

and the horizontal axis represents the predicted labels of flow type classification. Cells with a higher colour 

intensity indicate a larger number of samples, while cells with a lower intensity represent a smaller number of 

samples. 

Table 11 shows the analysis of image recognition model’s performance by comparing true 

labels and classified label by the model. It the confidence of every prediction as well. 
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Table 11: True labels and predicted labels analysis. 

Prediction confidence True label Predicted label Prediction correct? 

0.48 G O FALSE 

0.69 G G TRUE 

0.63 GO GOW FALSE 

0.41 GO GO TRUE 

0.61 GOW GOW TRUE 

0.54 GOW O FALSE 

0.88 GOW GOW TRUE 

0.41 GW GO FALSE 

0.43 GW GW TRUE 

0.42 O O TRUE 

0.37 O OW FALSE 

0.33 OW OW TRUE 

0.44 OW OW TRUE 

0.68 OW OW TRUE 

0.38 W W TRUE 

0.23 W W TRUE 

The accuracy of the model is quite good considering that the model has been trained on very 

low number of samples. 
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7.5 Results of physics-based multiphase flow rate prediction 

Table 6 shows the RMSE values of physics-based multiphase flow model predictions. The 

RMSE values that have been achieved due to the custom loss function are almost as good as 

the general ANN multiphase flow rate prediction model RMSE values in chapter 7.1. 

Figure 43 displays regression plots of physics-based multiphase flow model predictions. It can 

be observed that the regression plots of physics-based ANN model is quite similar to usual 

ANN models trained previously. This model is unable to predict instances where the true value 

is zero as well. 

In Figure 44, Figure 45, Figure 46 true flow rates and predicted flow rates of gas, oil and water 

from physics-based multiphase flow model can be observed. The predictions are almost as 

good as the general ANN multiphase flow prediction model’s predictions.  

Appendix F contains the true values and predictions with prediction errors from physics-based 

multiphase flow rate prediction model. 

Table 12: RMSE values from test data – Physics-based multiphase flow model 

Gas RMSE [𝑚3/ℎ]  16.87 

Oil RMSE [𝑚3/ℎ]  13.76 

Water RMSE [𝑚3/ℎ]  13.85 
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Figure 43: Regression plots physics-based multiphase flow predictions. 
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Figure 44: Gas true values and predicted values comparison – Physics-based Multiphase flow - test dataset. 

 

 

Figure 45: Oil true values and predicted values comparison – Physics-based Multiphase flow - test dataset 
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Figure 46: Water true values and predicted values comparison – Physics-based Multiphase flow - test dataset. 
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8 Discussion 
In this chapter, the outcomes of the thesis, and possible ways of improving the outcomes are 

discussed. 

8.1 Denoising of data from Coriolis meter noise  

The denoising process that has been applied in this research may not be an infallible solution. 

The applied STFT denoising process is usually applied in audio data background noise 

reduction process. In the case of audio data, it is possible to listen to the audio and check the 

quality of the denoising result. This method is known as subjective evaluation of audio data, 

[40]. Human listeners can perform subjective evaluation after denoising audio data by rating 

the speech clarity, musicality and presence artifacts or distortion; thus, modifications can be 

made if required in the denoising process accordingly. But in this research, it was not known 

how the Coriolis meter noise signal looks like or what are the properties of the noise. The only 

information that was available is that the Coriolis meter creates a vibration of around 200 Hz, 

and it is of low amplitude. These two characteristics have been kept in mind during the work 

on denoising process. Thus, it can be said that the denoising process applied in this project is a 

tentative denoising process. It is necessary that a reliable and accurate denoising process is 

developed for such cases in future. 

The ideal scenario for this research would be to generate the same kind of data after excluding 

the Coriolis meter from the Equinor test rig or collecting data from a rig that does not create 

such noise issues. It is hoped that it would significantly improve the results of flow rate 

prediction with accelerometer data only and flow type classification as well. 

8.2 Flow rate prediction 

Observing the results of flow rate prediction models, the accelerometer data contains the 

necessary information to predict flow rate of oil, gas and water. The research also proves that 

the models can predict flow rate even with fewer than all of four accelerometers. However, it 

is necessary that the model has more samples to train on, especially for single-phase samples. 

The neural network structures underwent extensive tuning via numerous configurations. There 

could be other configurations with a different number of neurons and different activation 

functions in different layers that could improve the result. If more samples are added to the 

data set, then the neural network model, training duration and batch size should require changes 

accordingly. 

In practical applications, if adding more features such pressure data, temperature data etc. is 

feasible, then they could be added besides accelerometer data which could make it possible to 

predict flow rate with low RMSE in case of having low number of samples. If it is a requirement 
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to use only accelerometer data, then abundant samples should be recorded for model training 

purposes. 

8.3 Flow type classification 

Due to unbalanced classes, many samples had to be discarded. The image recognition model 

has been trained on 5 to 12 samples from each class. 68.75% accuracy is still quite satisfactory 

considering the low number of samples used for training. Having few samples for validation 

also affects the training process of a model negatively. But the accuracy achieved proves clearly 

that if more samples are included in the training process, the model will perform better with 

flying colors. 

The backbone model has been kept frozen, meaning the layers inside the backbone model have 

not been trained. They performed in this experiment with their default trained weights. Usually, 

when there are more than 1000 samples available for each class, some layers of the backbone 

model are unfrozen and keeping the training rate very low, the unfrozen layers are trained. This 

process is called fine-tuning, [41], [42]. Fine-tuning could be applied in the flow type 

classification process if there are at least 1000 samples available in each class. 

The spectrograms could turn out to be better if Coriolis meter noise was not present in the data. 

It can be assumed that the Coriolis meter noise has somewhat affected the flow type 

identification process negatively. 

8.4 Physics-based or informed flow rate prediction 

The aim of creating physics-based flow rate prediction model in this research has only been to 

explore the possibilities and understand the behavior of neural networks attempting to predict 

flow rate while physics is involved within the codes. What has been observed is that it became 

quite easier to create a similar result as before while a non-physics informed model was being 

tuned. During the training of the non-physics informed models, it took many more attempts to 

merge the training and validation curves. And the model was quite unstable concerning slight 

changes to the configurations. Small change would have had a huge impact on the results. 

Which made it difficult to attain the result that has been achieved at the end. On the contrary, 

while working with the physics-informed model, it was quite stable, and it was easier to assume 

how a change affected the model’s results. Thus, tuning it to the result that has been achieved 

became quite easier. But observing the predictions made by both non-physics based or 

informed model and physics-based model, it can be said that it was not possible to make the 

results of physics-based model exactly as good as the non-physics model. 
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9 Conclusion 
This thesis contributes to developing machine learning techniques for flow rate prediction and 

flow type classification. 

Based on the results and discussion presented in this thesis, it can be concluded that the use of 

accelerometer data in combination with machine learning techniques shows promise in 

predicting flow rate and classifying flow types. The denoising process applied in this research 

was tentative, and there is a need for a reliable and accurate denoising process for Coriolis 

meter noise in future studies. Adding more features such as pressure and temperature data could 

improve the accuracy of flow rate prediction models, especially with low numbers of samples. 

The intriguing findings of the analysis on flow rate prediction reveal that accelerometer data 

houses the indispensable information to predict the flow rate of oil, gas, and water, and the 

models can accomplish such prognostications with fewer than four accelerometers. 

Nevertheless, it is crucial to keep in mind that the models' proficiency is inextricably linked to 

the quantity of samples utilized for training, and to guarantee optimal performance, a larger 

corpus of samples is needed, particularly for single-phase samples. Furthermore, for the 

classification of flow type, it might be worthwhile to explore the possibility of fine-tuning the 

models if an abundant quantity of samples is obtainable in each category. 

Physics-based models in flow rate prediction has shown potential in creating more stable 

models that are easier to tune compared to non-physics informed models. Unfortunately, while 

the potential benefits are undeniable, the actual results of the physics-based model have been 

somewhat underwhelming, failing to match the performance of the non-physics model. 

9.1 Suggested future work 

The findings suggest that future studies should focus on developing a reliable and accurate 

denoising process for Coriolis meter noise. Collecting more samples for training is necessary 

in achieving great results using only accelerometer data for flow rate prediction and flow type 

identification. The number of recorded samples should be kept in balance regarding all types 

of flow. Further exploration in the use of physics-based models in combination with machine 

learning techniques is highly recommended as the use of physics has shown some positive 

effects during tuning of the physics-based model using custom loss created based on Darcy-

Weisbach head loss equation. 
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Appendix B:  Gas, Oil and Water true value and predicted values comparison - Multiphase flow test data 
 

Gas true Gas preds Gas 

error 

Oil true Oil preds Oil 

error 

Water true Water  

preds 

Water 

error 

0 5.45 4.01 1.44 7.8 10.42 -2.62 17.81 9.11 8.7 

1 18.49 27.94 -9.45 52.93 23.27 29.66 35.32 26.9 8.42 

2 26.62 27.6 -0.98 52.8 27.94 24.86 35.2 22.47 12.73 

3 3.68 10.96 -7.28 13.63 16 -2.37 14.16 11.74 2.42 

4 6.71 8.14 -1.43 12.16 11.12 1.04 12.53 15.93 -3.4 

5 11.13 11.88 -0.75 19.92 18.98 0.94 20.09 9.08 11.01 

6 14.09 26.51 -12.42 15.58 32.03 -16.45 10.89 16.53 -5.64 

7 0.16 0.3 -0.14 10.57 13.3 -2.73 1.5 5.47 -3.97 

8 4.07 3.45 0.62 34.8 15.61 19.19 14.95 19.11 -4.16 

9 3.29 12 -8.71 14.25 21.94 -7.69 33.35 20.8 12.55 

10 5.64 10.79 -5.15 13.61 19.65 -6.04 31.56 18.01 13.55 

11 0 1.03 -1.03 25.91 16.41 9.5 14.1 13.67 0.43 

12 0 20.19 -20.19 0 23.47 -23.47 50 32.42 17.58 

13 0 13.45 -13.45 32.91 24.7 8.21 27.33 30.41 -3.08 

14 13.4 7.62 5.78 23.8 19.27 4.53 24.18 17.84 6.34 

15 20.27 32.31 -12.04 34.7 23.79 10.91 23.31 36.55 -13.24 

16 10.34 8.29 2.05 6 14.53 -8.53 13.71 10.54 3.17 

17 14.58 5.2 9.38 10.37 16.63 -6.26 24.93 20.17 4.76 

18 32.37 29.67 2.7 15.57 25.79 -10.22 42.52 27.28 15.24 

19 7.41 6.62 0.79 0 16.79 -16.79 40 12.13 27.87 

20 9.93 16.92 -6.99 0 23.17 -23.17 43.34 21.63 21.71 

21 14.24 16.74 -2.5 16.92 27.83 -10.91 40.19 23.16 17.03 

22 0 10.75 -10.75 25.92 10.97 14.95 14.06 15.71 -1.65 

23 0.18 1.57 -1.39 15.05 10.31 4.74 6.42 20.67 -14.25 

24 0 4.26 -4.26 0 13.79 -13.79 20 21.24 -1.24 

25 4.92 7.09 -2.17 2.6 6.38 -3.78 6.37 3.41 2.96 

26 10.22 6.46 3.76 11.83 17.89 -6.06 8.18 10.25 -2.07 

27 26.34 19.83 6.51 28.8 27.59 1.21 31.19 22.85 8.34 

28 11.6 2.89 8.71 28.07 22.35 5.72 20.77 24.41 -3.64 

29 19.75 45.29 -25.54 0 10.41 -10.41 0 31.38 -31.38 

30 9.43 6.62 2.81 4.9 5.13 -0.23 12.01 7.69 4.32 

31 0 6.97 -6.97 11.91 22.39 -10.48 28.09 9.96 18.13 
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32 9.9 18.77 -8.87 16.84 28.08 -11.24 40.27 21.08 19.19 

33 0.05 4.05 -4 16.98 23.47 -6.49 40.12 25.33 14.79 

34 0.06 0.12 -0.06 0 8.39 -8.39 0 8.31 -8.31 

35 10.7 15.06 -4.36 19.14 17.47 1.67 13.31 14.76 -1.45 

36 0.06 -0.12 0.18 0.55 13.44 -12.89 0.03 9.46 -9.43 

37 6.86 25.76 -18.9 20.25 19.58 0.67 14.39 16.59 -2.2 

38 0 0.39 -0.39 7.06 13.06 -6 0.21 10.28 -10.07 

39 0 3.21 -3.21 15.95 11.58 4.37 24.05 26.53 -2.48 

40 7.14 13.84 -6.7 14.4 16.73 -2.33 10.04 13.88 -3.84 

41 2.94 6.98 -4.04 1.6 14.75 -13.15 3.97 9.18 -5.21 

42 8.44 10.76 -2.32 13.65 24.7 -11.05 9.47 16.48 -7.01 

43 14.16 8.07 6.09 14.55 21.32 -6.77 33.66 14.76 18.9 

44 5.66 10.34 -4.68 8.73 9.36 -0.63 20.04 15.24 4.8 

45 2.44 4.52 -2.08 23.69 19.93 3.76 23.93 19.53 4.4 

46 163.53 67.26 96.27 0 8.01 -8.01 0 18.47 -18.47 

47 0 2.22 -2.22 21.85 18.36 3.49 18.16 17.08 1.08 

48 0 13 -13 0 20.27 -20.27 50 28.23 21.77 

49 22.91 20.9 2.01 60 30.54 29.46 0 26.95 -26.95 

50 0 21.23 -21.23 39.88 29.84 10.04 0.12 24.17 -24.05 

51 3.73 0.58 3.15 0 14.17 -14.17 40 13.8 26.2 

52 0 8.68 -8.68 0 24.28 -24.28 50 21.31 28.69 

53 0 1.82 -1.82 29.93 22.64 7.29 0.07 14.42 -14.35 

54 80.95 46.66 34.29 0 10.36 -10.36 0 26.38 -26.38 
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Appendix C: True values and predicted values comparison - test dataset – single-phase 
 

Gas_true Gas_preds Gas 

error 

Oil 

true 

Oil_preds Oil 

error 

Water_true Water_preds Water error 

0 0 0.76 -0.76 0 3.2 -3.2 20 13.84 6.16 

1 0 2.98 -2.98 0 13.86 -13.86 9.91 9.33 0.57 

2 0 0.74 -0.74 0 2.43 -2.43 39.99 24.34 15.65 

3 80.95 0.8 80.15 0 5.76 -5.76 0 31.17 -31.17 

4 0 11.39 -11.39 7.06 8.18 -1.12 0.21 12.92 -12.71 

5 0 0.79 -0.79 0 4.33 -4.33 30 17.66 12.34 
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Appendix D: True values and predicted values comparison - test dataset – Multiphase model (three 

accelerometer) 
 

Gas_true Gas_preds Gas 

Error 

Oil_true Oil_preds Oil 

Error 

Water_true Water_preds Water 

Error 

0 5.45 7.73 -2.28 7.8 7.54 0.26 17.81 16.4 1.41 

1 18.49 19.41 -0.92 52.93 19.23 33.7 35.32 30.8 4.52 

2 26.62 18.54 8.08 52.8 26.52 26.28 35.2 18.16 17.04 

3 3.68 3.69 -0.01 13.63 8.82 4.81 14.16 9.91 4.25 

4 6.71 14.86 -8.15 12.16 10.48 1.68 12.53 17.26 -4.73 

5 11.13 9.62 1.51 19.92 17.86 2.06 20.09 10.97 9.12 

6 14.09 15.84 -1.75 15.58 18.92 -3.34 10.89 9.58 1.31 

7 0.16 -2.36 2.52 10.57 7.99 2.58 1.5 4.9 -3.4 

8 4.07 -1.59 5.66 34.8 11.86 22.94 14.95 16.29 -1.34 

9 3.29 7.55 -4.26 14.25 28.21 -13.96 33.35 27.51 5.84 

10 5.64 0.74 4.9 13.61 9.72 3.89 31.56 16.29 15.27 

11 0 -0.5 0.5 25.91 16.56 9.35 14.1 14.5 -0.4 

12 0 9.68 -9.68 0 15.88 -15.88 50 35.49 14.51 

13 0 11.38 -11.38 32.91 30.2 2.71 27.33 37.97 -10.64 

14 13.4 10.72 2.68 23.8 16.46 7.34 24.18 15.89 8.29 

15 20.27 12.58 7.69 34.7 16.75 17.95 23.31 39.84 -16.53 

16 10.34 14.25 -3.91 6 17.2 -11.2 13.71 6.72 6.99 

17 14.58 13.47 1.11 10.37 16.81 -6.44 24.93 15.39 9.54 

18 32.37 23.47 8.9 15.57 17.15 -1.58 42.52 25.61 16.91 

19 7.41 14.95 -7.54 0 13.99 -13.99 40 14.42 25.58 

20 9.93 12.58 -2.65 0 20.81 -20.81 43.34 20.17 23.17 

21 14.24 12.89 1.35 16.92 42.38 -25.46 40.19 24.24 15.95 

22 0 6.1 -6.1 25.92 5.73 20.19 14.06 16.55 -2.49 

23 0.18 0.64 -0.46 15.05 12.82 2.23 6.42 19.5 -13.08 

24 0 3.97 -3.97 0 10.7 -10.7 20 11.8 8.2 

25 4.92 12.21 -7.29 2.6 11.24 -8.64 6.37 0.83 5.54 

26 10.22 1.57 8.65 11.83 17.47 -5.64 8.18 11.14 -2.96 

27 26.34 24.89 1.45 28.8 27.08 1.72 31.19 18.43 12.76 

28 11.6 9.04 2.56 28.07 12.86 15.21 20.77 18.42 2.35 

29 19.75 6.49 13.26 0 16.52 -16.52 0 20.29 -20.29 

30 9.43 12.16 -2.73 4.9 7.81 -2.91 12.01 5.4 6.61 

31 0 -1.58 1.58 11.91 22.35 -10.44 28.09 13 15.09 

32 9.9 10.28 -0.38 16.84 22.85 -6.01 40.27 20.13 20.14 

33 0.05 1.64 -1.59 16.98 26.11 -9.13 40.12 21.58 18.54 

34 0.06 2.54 -2.48 0 8.21 -8.21 0 4.55 -4.55 

35 10.7 17.66 -6.96 19.14 28.86 -9.72 13.31 16.97 -3.66 

36 0.06 -2.61 2.67 0.55 14.88 -14.33 0.03 5.63 -5.6 

37 6.86 12.87 -6.01 20.25 12.44 7.81 14.39 10.78 3.61 
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38 0 -0.04 0.04 7.06 12.71 -5.65 0.21 11.02 -10.81 

39 0 1.73 -1.73 15.95 11.51 4.44 24.05 25.71 -1.66 

40 7.14 11.56 -4.42 14.4 11.97 2.43 10.04 8.84 1.2 

41 2.94 3.54 -0.6 1.6 5.4 -3.8 3.97 3.84 0.13 

42 8.44 12.83 -4.39 13.65 18.44 -4.79 9.47 7.17 2.3 

43 14.16 14.24 -0.08 14.55 18.14 -3.59 33.66 12.37 21.29 

44 5.66 9.8 -4.14 8.73 12.41 -3.68 20.04 10.98 9.06 

45 2.44 1.19 1.25 23.69 25.07 -1.38 23.93 14.96 8.97 

46 163.53 45.91 117.62 0 5.41 -5.41 0 39.48 -39.48 

47 0 -1.58 1.58 21.85 14.15 7.7 18.16 17.16 1 

48 0 12.32 -12.32 0 15.87 -15.87 50 34.52 15.48 

49 22.91 22.64 0.27 60 14.18 45.82 0 23.83 -23.83 

50 0 17.91 -17.91 39.88 25.58 14.3 0.12 26.92 -26.8 

51 3.73 1.44 2.29 0 21.4 -21.4 40 19.24 20.76 

52 0 5.19 -5.19 0 14.56 -14.56 50 21.59 28.41 

53 0 -0.32 0.32 29.93 16.04 13.89 0.07 13.57 -13.5 

54 80.95 19.01 61.94 0 15.66 -15.66 0 18.89 -18.89 
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Appendix E: True values and predicted values comparison - test dataset – Single-phase model (three 

accelerometer) 
 

Gas_true Gas_preds Gas 

Error 

Oil_true Oil_preds Oil 

Error 

Water_true Water_preds Water 

Error 

0 0 0 0 0 5.65 -5.65 20 9.41 10.59 

1 0 6.67 -6.67 0 13.86 -13.86 9.91 4.55 5.36 

2 0 -0.02 0.02 0 5.74 -5.74 39.99 20.78 19.21 

3 80.95 -0.04 80.99 0 6.57 -6.57 0 25.17 -25.17 

4 0 9.45 -9.45 7.06 5.2 1.86 0.21 22.91 -22.7 

5 0 0.22 -0.22 0 7.09 -7.09 30 13.22 16.78 
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Appendix F: True values and predicted values comparison - test dataset – Physics-based multiphase model 
 

Gas 

true 

Gas 

preds 

Gas 

error 

Oil true Oil 

preds 

Oil 

error 

Water 

true 

Water 

preds 

Water 

error 

0 5.45 2.89 2.56 7.8 13.07 -5.27 17.81 12.36 5.45 

1 18.49 33.6 -15.11 52.93 17.49 35.44 35.32 34.98 0.34 

2 26.62 25.02 1.6 52.8 26.09 26.71 35.2 33.35 1.85 

3 3.68 7.46 -3.78 13.63 19.93 -6.3 14.16 5.97 8.19 

4 6.71 15.3 -8.59 12.16 13.46 -1.31 12.53 14.78 -2.25 

5 11.13 11.74 -0.6 19.92 17.2 2.72 20.09 5.81 14.28 

6 14.09 19.18 -5.09 15.58 29.32 -13.74 10.89 19.12 -8.22 

7 0.16 3.82 -3.66 10.57 9.44 1.14 1.5 9.62 -8.12 

8 4.07 2.17 1.9 34.8 12.98 21.82 14.95 15.74 -0.79 

9 3.29 11.61 -8.32 14.25 20.96 -6.71 33.35 24.7 8.64 

10 5.64 8.78 -3.14 13.61 20.17 -6.56 31.56 30.41 1.14 

11 0 6.87 -6.87 25.91 16.27 9.64 14.1 9.83 4.27 

12 0 8.65 -8.65 0 20.8 -20.8 50 44.17 5.84 

13 0 8.69 -8.69 32.91 10.55 22.36 27.33 26.34 0.98 

14 13.4 7.07 6.33 23.8 21.28 2.52 24.18 10.04 14.14 

15 20.27 22.76 -2.49 34.7 15.34 19.36 23.31 37.09 -13.78 

16 10.34 4.41 5.93 6 15.88 -9.88 13.71 15.24 -1.53 

17 14.58 11.29 3.29 10.37 14.4 -4.02 24.93 17.2 7.73 

18 32.37 21.61 10.76 15.57 27.16 -11.58 42.52 24.75 17.77 

19 7.41 8.86 -1.45 0 18.07 -18.07 40 10.86 29.14 

20 9.93 10.79 -0.86 0 20.68 -20.68 43.34 14.07 29.27 

21 14.24 15.63 -1.39 16.92 33.59 -16.68 40.19 24.37 15.82 

22 0 8.91 -8.91 25.92 15.06 10.86 14.06 12.84 1.22 

23 0.18 5.22 -5.05 15.05 14.62 0.43 6.42 16.77 -10.34 

24 0 6.71 -6.71 0 16.04 -16.04 20 19.34 0.66 

25 4.92 12.61 -7.69 2.6 14.66 -12.06 6.37 11.91 -5.54 

26 10.22 6.94 3.28 11.83 15.42 -3.58 8.18 16.56 -8.38 

27 26.34 9.11 17.22 28.8 27.8 1 31.19 9.96 21.24 

28 11.6 2.45 9.15 28.07 17.08 10.99 20.77 21.53 -0.76 

29 19.75 28.37 -8.63 0 15.95 -15.95 0 34.27 -34.27 

30 9.43 6.33 3.1 4.9 7.61 -2.71 12.01 6.57 5.44 

31 0 4.48 -4.48 11.91 16.66 -4.74 28.09 9.36 18.72 

32 9.9 9.62 0.28 16.84 25.81 -8.98 40.27 21.47 18.79 

33 0.05 4.35 -4.3 16.98 15.99 0.99 40.12 18.87 21.25 

34 0.06 5.9 -5.84 0 10.36 -10.36 0 7.83 -7.83 

35 10.7 19.04 -8.34 19.14 18.42 0.71 13.31 20.02 -6.71 

36 0.06 4.07 -4.01 0.55 6.73 -6.17 0.03 10.64 -10.62 

37 6.86 14.53 -7.67 20.25 12.89 7.36 14.39 16.49 -2.1 
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38 0 4.22 -4.22 7.06 16.25 -9.19 0.21 9.36 -9.15 

39 0 6.05 -6.05 15.95 8.83 7.12 24.05 21.5 2.54 

40 7.14 13.28 -6.13 14.4 19.21 -4.81 10.04 13.29 -3.25 

41 2.94 10.64 -7.7 1.6 13.73 -12.12 3.97 11.69 -7.72 

42 8.44 7.6 0.84 13.65 24.25 -10.6 9.47 14.93 -5.45 

43 14.16 19.46 -5.3 14.55 26.33 -11.78 33.66 20.25 13.4 

44 5.66 15.62 -9.96 8.73 9.96 -1.23 20.04 14.05 6 

45 2.44 7.9 -5.46 23.69 17.87 5.82 23.93 23.9 0.03 

46 163.53 59.16 104.36 0 15.99 -15.99 0 17.15 -17.15 

47 0 11.34 -11.34 21.85 9.26 12.59 18.16 16.98 1.18 

48 0 13.25 -13.25 0 21.75 -21.75 50 40.46 9.54 

49 22.91 15.37 7.54 60 28.39 31.61 0 21.5 -21.5 

50 0 21.36 -21.36 39.88 30.86 9.02 0.12 28.89 -28.77 

51 3.73 8.18 -4.44 0 14.36 -14.36 40 18.46 21.54 

52 0 12.55 -12.55 0 23.27 -23.27 50 27.71 22.29 

53 0 1.41 -1.41 29.93 24.44 5.48 0.07 12.69 -12.61 

54 80.95 39.74 41.21 0 19.28 -19.28 0 28.55 -28.55 
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Appendix G: Code for feature extraction 

    # Load the data 
    data = np.loadtxt(file_path) 
 
    # Use Short-Time Fourier Transform (STFT) to extract the frequency components 
    f, t, Zxx = signal.stft(data, fs=1/0.000019531, nperseg=50000*5) 
 
    # Identify the frequency bins that contain the noise and its harmonics 
    noise_bins = np.where((f > 190) & (f < 210))[0] 
    harmonics_bins = np.where((f > 380) & (f < 420))[0] 
    harmonics_bins_2 = np.where((f > 760) & (f < 840))[0] 
    combined_bins = np.concatenate((noise_bins, harmonics_bins, harmonics_bins_2)) 
 
    # Apply a binary mask to the STFT output to zero out the noise and its harmonics 
    mask = np.ones(Zxx.shape) 
    mask[combined_bins] = 0 
 
    # Inverse STFT to obtain the denoised signal 
    _, denoised_data = signal.istft(mask * Zxx) 
 
    # Convert the denoised data back to the original time domain 
    denoised_data = np.real(denoised_data) 
 
    # performing fft on filtered data/ denoised data 
    sr = 1/0.000019531 # sampling rate (Hz) 
    X = scipy.fft.fft(denoised_data) # fft performed 
    n = np.arange(len(X)) #length of fft 
    T = len(X)/sr # sampling period 
    x_freq = n/T 
 
    # find peaks 
    peaks, props = scipy.signal.find_peaks(np.abs(X[:int(len(X)*20000//sr)]), height=5, distance=100000) 
 
    # Get the frequencies of the peaks 
    peak_amplitudes = props['peak_heights'] 
    peak_frequencies = x_freq[peaks] 
    # Sort the peak amplitudes in descending order 
    sorted_indices = np.argsort(-peak_amplitudes) 
 
    # Get the top 17 frequencies 
    top_17_frequencies = peak_frequencies[sorted_indices[:17]] 
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Appendix H: Code for multiphase flow Neural Network 

def build_model(): 
    # Define model layers. 
    input_layer = Input(shape=(len(train.columns),)) 
    first_dense = Dense(units='128', activation='relu')(input_layer) 
 
    second_dense_1 = Dense(units='128', activation='relu')(first_dense) 
    third_dense_1 = Dense(units='128', activation='relu')(second_dense_1) 
    fourth_dense_1 = Dense(units='128', activation='relu')(third_dense_1) 
    fifth_dense_1 = Dense(units='128', activation='relu')(fourth_dense_1) 
    # Y1 output will be fed from the fifth dense 1 
    y1_output = Dense(units='1', name='gas_output')(fifth_dense_1) 
 
    second_dense_2 = Dense(units='128', activation='relu')(first_dense) 
    third_dense_2 = Dense(units='128', activation='relu')(second_dense_2) 
    fourth_dense_2 = Dense(units='128', activation='relu')(third_dense_2) 
    fifth_dense_2 = Dense(units='128', activation='relu')(fourth_dense_2) 
    sixth_dense_2 = Dense(units='128', activation='relu')(fifth_dense_2) 
    # Y2 output will be fed from the sixth dense 2 
    y2_output = Dense(units='1', name='oil_output')(sixth_dense_2) 
 
    second_dense_3 = Dense(units='128', activation='relu')(first_dense) 
    third_dense_3 = Dense(units='128', activation='relu')(second_dense_3) 
    fourth_dense_3 = Dense(units='128', activation='relu')(third_dense_3) 
    # Y3 output will be fed from the fourth dense 3 
    y3_output = Dense(units='1', name='water_output')(fourth_dense_3) 
 
    # Define the model with the input layer and a list of output layers 
    model = Model(inputs=input_layer, outputs=[y1_output, y2_output,   y3_output]) 
 
    return model 
 
model = build_model() 
# Specifying the optimizer, and compiling the model with loss functions for all 3 outputs 
optimizer = tf.keras.optimizers.Adam(learning_rate=0.00015) 
model.compile(optimizer=optimizer, 
              loss={'gas_output': 'mse', 'oil_output': 'mse', 'water_output': 'mse'}, 
              metrics={'gas_output': tf.keras.metrics.RootMeanSquaredError(), 
                       'oil_output': tf.keras.metrics.RootMeanSquaredError(), 
                       'water_output': tf.keras.metrics.RootMeanSquaredError()}) 
 
# Train the model 
history = model.fit(norm_train_X, train_Y, 
                    epochs=8, 
                    batch_size=2, 
                    validation_data=(norm_val_X, val_Y)) 
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Appendix I: Code for single-phase flow prediction neural network 

def build_model(): 
    # Define model layers. 
    input_layer = Input(shape=(len(train.columns),)) 
    first_dense = Dense(units='128', activation='relu')(input_layer) 
 
    second_dense_1 = Dense(units='128', activation='relu')(first_dense) 
    third_dense_1 = Dense(units='128', activation='relu')(second_dense_1) 
    fourth_dense_1 = Dense(units='128', activation='relu')(third_dense_1) 
    fifth_dense_1 = Dense(units='128', activation='relu')(fourth_dense_1) 
    sixth_dense_1 = Dense(units='128', activation='relu')(fifth_dense_1) 
    seventh_dense_1 = Dense(units='128', activation='relu')(sixth_dense_1) 
    eight_dense_1 = Dense(units='128', activation='relu')(seventh_dense_1) 
    ninth_dense_1 = Dense(units='128', activation='relu')(eight_dense_1) 
    # Y1 output will be fed from the ninth dense 1 
    y1_output = Dense(units='1', name='gas_output')(ninth_dense_1) 
 
    second_dense_2 = Dense(units='128', activation='relu')(first_dense) 
    third_dense_2 = Dense(units='128', activation='relu')(second_dense_2) 
    fourth_dense_2 = Dense(units='128', activation='relu')(third_dense_2) 
    fifth_dense_2 = Dense(units='128', activation='relu')(fourth_dense_2)) 
    # Y2 output will be fed from the fifth dense 2 
    y2_output = Dense(units='1', name='oil_output')(fifth_dense_2) 
 
    second_dense_3 = Dense(units='128', activation='relu')(first_dense) 
    third_dense_3 = Dense(units='128', activation='relu')(second_dense_3) 
    # Y3 output will be fed from the fourth dense 3 
    y3_output = Dense(units='1', name='water_output')(third_dense_3) 
 
    # Define the model with the input layer and a list of output layers 
    model = Model(inputs=input_layer, outputs=[y1_output, y2_output, y3_output]) 
 
    return model 
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Appendix J: Code for multiphase flow prediction neural network (trained with three accelerometer data) 

def build_model(): 
    # Define model layers. 
    input_layer = Input(shape=(len(train.columns),)) 
    first_dense = Dense(units='128', activation='relu')(input_layer) 
 
    second_dense_1 = Dense(units='128', activation='relu')(first_dense) 
    third_dense_1 = Dense(units='128', activation='relu')(second_dense_1) 
    fourth_dense_1 = Dense(units='128', activation='relu')(third_dense_1) 
    fifth_dense_1 = Dense(units='128', activation='relu')(fourth_dense_1) 
    sixth_dense_1 = Dense(units='128', activation='relu')(fifth_dense_1) 
    # Y1 output will be fed from the sixth dense 1 
    y1_output = Dense(units='1', name='gas_output')(sixth_dense_1) 
 
    second_dense_2 = Dense(units='128', activation='relu')(first_dense) 
    third_dense_2 = Dense(units='128', activation='relu')(second_dense_2) 
    fourth_dense_2 = Dense(units='128', activation='relu')(third_dense_2) 
    fifth_dense_2 = Dense(units='128', activation='relu')(fourth_dense_2) 
    sixth_dense_2 = Dense(units='128', activation='relu')(fifth_dense_2) 
    # Y2 output will be fed from the sixth dense 2 
    y2_output = Dense(units='1', name='oil_output')(sixth_dense_2) 
 
    second_dense_3 = Dense(units='128', activation='relu')(first_dense) 
    third_dense_3 = Dense(units='128', activation='relu')(second_dense_3) 
    fourth_dense_3 = Dense(units='128', activation='relu')(third_dense_3) 
    # Y3 output will be fed from the fourth dense 3 
    y3_output = Dense(units='1', name='water_output')(fourth_dense_3) 
 
    # Define the model with the input layer and a list of output layers 
    model = Model(inputs=input_layer, outputs=[y1_output, y2_output, y3_output]) 
 
    return model 
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Appendix K: Code for single-phase flow rate prediction neural network (trained with three accelerometer data) 

def build_model(): 
    # Define model layers. 
    input_layer = Input(shape=(len(train.columns),)) 
    first_dense = Dense(units='128', activation='relu')(input_layer) 
 
    second_dense_1 = Dense(units='128', activation='relu')(first_dense) 
    third_dense_1 = Dense(units='128', activation='relu')(second_dense_1) 
    fourth_dense_1 = Dense(units='128', activation='relu')(third_dense_1) 
    fifth_dense_1 = Dense(units='128', activation='relu')(fourth_dense_1) 
    sixth_dense_1 = Dense(units='128', activation='relu')(fifth_dense_1) 
    seventh_dense_1 = Dense(units='128', activation='relu')(sixth_dense_1) 
    eight_dense_1 = Dense(units='128', activation='relu')(seventh_dense_1) 
    ninth_dense_1 = Dense(units='128', activation='relu')(eight_dense_1) 
    # Y1 output will be fed from the ninth dense 1 
    y1_output = Dense(units='1', name='gas_output')(ninth_dense_1) 
 
    second_dense_2 = Dense(units='128', activation='relu')(first_dense) 
    third_dense_2 = Dense(units='128', activation='relu')(second_dense_2) 
    fourth_dense_2 = Dense(units='128', activation='relu')(third_dense_2) 
    fifth_dense_2 = Dense(units='128', activation='relu')(fourth_dense_2) 
    # Y2 output will be fed from the fifth dense 2 
    y2_output = Dense(units='1', name='oil_output')(fifth_dense_2) 
 
    second_dense_3 = Dense(units='128', activation='relu')(first_dense) 
    third_dense_3 = Dense(units='128', activation='relu')(second_dense_3) 
    # Y3 output will be fed from the third dense 3 
    y3_output = Dense(units='1', name='water_output')(third_dense_3) 
 
    # Define the model with the input layer and a list of output layers 
    model = Model(inputs=input_layer, outputs=[y1_output, y2_output, y3_output]) 
 
    return model 
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Appendix L: Code for spectrogram generation automated script 

import os 
import pandas as pd 
from scipy.signal import spectrogram 
import matplotlib.pyplot as plt 
import numpy as np 
import time 
# Set the directory containing the data files 
data_dir = 'RAW_DATA/GO' 
 
# Set the directory to save spectrograms 
spec_dir = 'SPECTROGRAMS_15/GO' 
 
# Set the sampling rate 
fs = 1/0.000019531 # sampling rate (Hz) 
 
# Loop through each file in the data directoryW 
for file in os.listdir(data_dir): 
    plt.clf() 
    # Check if file is a CSV file 
    if file.endswith('.csv'): 
        # Read the CSV file 
        df = pd.read_csv(os.path.join(data_dir, file), header=None) 
 
      
        # Convert the data to a NumPy array, use only 10 second data 
        data = df.values[:int(10 * fs)].flatten() 
 
 
        # Compute the spectrogram 
        f, t, Sxx = spectrogram(data, fs) 
         
  
        # Plot and save the spectrogram 
        plt.pcolormesh(t, f, np.log10(Sxx), vmin=-9.9, vmax=-5, shading='gouraud') 
        plt.ylim(0, 20000)  # set the y-axis limit 
        # Remove tick labels and ticks 
        plt.xticks([]) 
        plt.yticks([]) 
        plt.tick_params(axis='both', which='both', length=0) 
        # Save image without paddings 
        plt.savefig(os.path.join(spec_dir, os.path.splitext(file)[0] + '.png'), bbox_inches='tight', pad_inches=0) 
        plt.close() 
        # Delete variables to free up memory 
        del df, data, f, t, Sxx 
        time.sleep(0.5) 
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Appendix M: Code for splitting spectrogram dataset into train and test set 

import splitfolders 
 
input_folder = "SPECTROGRAMS_15" #Enter Input Folder 
output = "images_recognition/train_test_17" #Enter Output Folder 
 
splitfolders.ratio(input_folder, output=output, seed=42, ratio=(0.85, 0.15))  
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Appendix N: Code for CNN image recognition model 

from tensorflow.keras import layers 
from tensorflow.keras.layers.experimental import preprocessing 
from tensorflow.keras.models import Sequential 
 
# Setup data augmentation 
data_augmentation = Sequential([ 
    preprocessing.RandomFlip("horizontal") 
], name ="data_augmentation") 
 
# Setup the base model 
base_model = tf.keras.applications.EfficientNetB2(include_top=False) 
base_model.trainable = False 
 
# Setup model architecture with trainable top layers 
inputs = layers.Input(shape=(224, 224, 3), name="input_layer") 
x = data_augmentation(inputs)  
x = base_model(x, training=False)  
x = layers.GlobalAveragePooling2D(name="global_avg_pool_layer")(x) 
outputs = layers.Dense(7, activation="softmax", name="output_layer")(x) 
model = tf.keras.Model(inputs, outputs) 
 
# Compile 
model.compile(loss="categorical_crossentropy", 
              optimizer=tf.optimizers.Adam(), 
              metrics=["accuracy"]) 
 
# Fit 
history_model = model.fit(train_data, 
                               epochs=14, 
                               validation_data=test_data, 
                               validation_steps=len(test_data)) 
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Appendix O: Code for physics-based multiphase flow rate prediction model with customized loss function 

L = 4 # distance between accelerometers in the rig in meters 
d = 0.0762 # inner diameter of rig in meters 
g = 9.8 # gravitional acceleration in m^-2 
# Define loss function using the Darcy-Weisbach equation 
def custom_loss(y_true, y_pred): 
    # Calculate the head loss using the Darcy-Weisbach equation 
    v = tf.abs(y_true - y_pred) 
    head_loss = ((L/d) * (v**2 / (2*g))) 
    # Check for NaN values and set them to 0 
    head_loss = tf.where(tf.math.is_nan(head_loss), tf.zeros_like(head_loss), head_loss) 
    # Return the mean squared error of the head loss 
    return tf.keras.backend.mean(tf.keras.backend.square(head_loss)) 
 
def build_model(): 
    # Define model layers. 
    input_layer = Input(shape=(len(train.columns),)) 
    first_dense = Dense(units='128', activation='relu')(input_layer) 
 
    second_dense_1 = Dense(units='128', activation='relu')(first_dense) 
    third_dense_1 = Dense(units='128', activation='relu')(second_dense_1) 
    fourth_dense_1 = Dense(units='128', activation='relu')(third_dense_1) 
    fifth_dense_1 = Dense(units='128', activation='relu')(fourth_dense_1) 
    # Y1 output will be fed from the fifth dense 1 
    y1_output = Dense(units='1', name='gas_output')(fifth_dense_1) 
 
    second_dense_2 = Dense(units='128', activation='relu')(first_dense) 
    third_dense_2 = Dense(units='128', activation='relu')(second_dense_2) 
    fourth_dense_2 = Dense(units='128', activation='relu')(third_dense_2) 
    # Y2 output will be fed from the fourth dense 2 
    y2_output = Dense(units='1', name='oil_output')(fourth_dense_2) 
 
    second_dense_3 = Dense(units='128', activation='relu')(first_dense) 
    third_dense_3 = Dense(units='128', activation='relu')(second_dense_3) 
    fourth_dense_3 = Dense(units='128', activation='relu')(third_dense_3) 
    # Y3 output will be fed from the fourth dense 3 
    y3_output = Dense(units='1', name='water_output')(fourth_dense_3) 
 
    # Define the model with the input layer and a list of output layers 
    model = Model(inputs=input_layer, outputs=[y1_output, y2_output, y3_output]) 
    return model 
 
model = build_model() 
# Specifying the optimizer, and compiling the model with custom loss functions for all 3 outputs 
optimizer = tf.keras.optimizers.Adam(learning_rate=0.00015) 
model.compile(optimizer=optimizer, 
              loss={'gas_output': custom_loss, 'oil_output': custom_loss, 'water_output': custom_loss}, 
              metrics={'gas_output': tf.keras.metrics.RootMeanSquaredError(), 
                       'oil_output': tf.keras.metrics.RootMeanSquaredError(), 
                       'water_output': tf.keras.metrics.RootMeanSquaredError()})  


