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Summary:  

In this Master Thesis, data-driven multiphase flow metering models are developed to 
classify flow regimes and to estimate phase fractions and velocities of two-phase air/water 
flow after collecting data from the horizontal flow rig situated at University of South-
Eastern Norway (USN).  

Two types of multimodal sensors are used in this thesis namely Electrical Capacitance 
Tomography (ECT) and Ultrasonic Sensors (US). Experiments are performed on the flow 
rig at USN with ECT to collect capacitance data of the flow. Conventional measurements 
of pressure and flow rate are also collected during the experiments. Ultrasonic transit time 
data was already available through historical experiments.  

Exploratory data analysis is performed on ECT and US data for feature engineering. ECT 
and US features are used to train and test flow regime classification models. Machine 
learning algorithms including Decision Tree, K-Nearest Neighbors, Artificial Neural 
Networks and Support Vector Machines are mainly employed to train flow classification 
and phase fractions estimation models. For flow velocity estimation, cross correlation 
technique is employed on 2-planes ECT data. Lastly, comparison of flow visualization 
with ECT and US data is performed. The images produced from ECT and US data are 
also compared for interface detection in multiphase air/water flow.  

The flow regime classification models using ECT achieved an accuracy of more than 96%. 
Sensor fusion models of flow regime classification achieved accuracy of more than 97%. 
Flow velocity was accurately estimated using cross-correlation for slug regime. The phase 
fraction estimation Neural Network model achieved an R value of more than 0.95.  
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Nomenclature 
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P&ID  Piping & Instrumentation Diagram 

PCA  Principal Component Analysis 

PDT  Pressure Differential Transmitter 

PFM  Physical Flow Metering 

PID  Proportional-Integral-Differential Controller 

PSD  Power Spectral Density 

PT  Pressure Transmitter 
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TT  Temperature Transmitter 

US  Ultrasonic  

USN  University of South-Eastern Norway 

VFM  Virtual Flow Metering 

VR  Volume Ratio 

VT  Velocity Transmitter 

 

List of Symbols 

𝐴   Cross-sectional area of a pipe occupied by liquid phase 

𝐴   Cross-sectional area of a pipe 

bn  Neural Network bias for neuron n 

𝐶   Inter-electrode raw capacitance 

𝐶   Capacitance when the pipe is full with lower permittivity material 

𝐶   Capacitance when the pipe is full with higher permittivity material  

𝐶   Normalized capacitance 

CXY   Normalized capacitance between ECT electrode X and Y 

Dg   Distance from the top of B-scan image to the interface line 

Dw   Distance from the bottom of B-scan image to the interface line 

e   Total number of ECT measurement electrodes  

f(.)   Neural Network activation function 

Nn  Neural Network neuron n 

VR  Volume Ratio 

wn,m  Neural Network weight between neuron n and input m 

xm  Neural Network input m 

yn  Neural Network output n 
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1 Introduction 
Multiphase flow in a pipe is a complex phenomenon which is common in petrochemical 
industry. Fluids flowing at high speeds in a pipe produce a variety of flow patterns some of 
which can be detrimental to the overall system in which the pipe is installed. A lot of research 
has been performed on the real-time monitoring of this phenomenon due to its implication on 
the performance, reliability and availability of a flow system. Detection of flow regime 
instantaneously in a multiphase flow pipe is a challenge in petrochemical industry because 
some of the flow regimes such as slugs cause harmful vibration in the piping system and 
sometimes cause offshore production plant shutdowns and platform trips [1]. If flow regimes 
can be detected in real-time through indirect non-intrusive methods, the flow can be actively 
controlled to prevent damage to the piping system increasing reliability of offshore production 
facilities. Machine learning / artificial intelligence techniques can remove the requirement of a 
human supervisor for flow regime identification in flow pipelines.  

In this thesis, detailed investigation and research are performed on the application of non-
intrusive Electrical Capacitance Tomography (ECT) and Ultrasonic (US) sensors for data-
driven multiphase flow metering with main focus on classification of two-phase air/water flow 
regimes and estimation of two-phase air/water flow parameters in a horizontal flow rig. The 
multiphase flow rig installed at the Process Hall of University of South-Eastern Norway (USN), 
Porsgrunn, Norway is employed to collect experimental flow data. Various algorithms are 
developed to classify flow regime and estimate flow-based parameters by using features 
extracted from the collected experimental data.   

1.1 Background 
Multiphase flow rig in USN, Campus Porsgrunn, has been used in a multitude of experiments 
involving Bachelor, Master, and PhD candidates and researchers (for both Norwegian and 
International), resulting in many student projects and research publications. Measurements 
using acoustic emission (AE) sensors, tomographic measurements using electrical impedance 
tomography (EIT) equipment, along with conventional measurements, such as acceleration, 
temperature, and pressure, have been used in these multiphase flow measurements. (Appendix 
– A) 

This thesis deals with the usage of Ultrasonic and ECT sensors together with conventional 
measurements for measuring flow types, flow velocities and void fractions. This work is 
closely coupled to an ongoing project SAM (SAM: Self Adapting Model-based system for 
Process Autonomy - SINTEF), where Equinor and SINTEF are central partners. (Appendix – 
A) 

1.2 Objective 
The objective of this thesis is to develop data-driven multiphase flow metering models using 
multimodal sensor suite as depicted in Figure 1.1. Here multiphase flow metering refers to 
classification of flow regimes and estimation of flow velocities and phase fractions. The 
multimodal sensor suite includes ECT and US sensors. The suitability and performance of ECT 
and US sensors in combination with machine learning / artificial intelligence algorithms in the 
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field of multiphase flow metering is explored. A comparison between ECT and US images is 
presented to detect two-phase air/water interface from these images. 

 
Figure 1.1: Main objective of this thesis showing main sensing technologies of ECT and US to classify flow 

regimes and estimate flow parameters 

1.3 Methods 
In this thesis, novel data-driven multiphase flow metering methods are developed by using 
ECT and US data to classify flow regimes and estimate flow parameters. Fresh experiments 
are conducted to collect new ECT data while US data was already available through past 
experiments. 

Exploratory data analysis (EDA) is implemented on these data to extract features and labels for 
various classification and regression algorithms. In EDA, the methods implemented are 
spectrograms, correlation and box plots.   

For classification of flow regimes, supervised classification algorithms of K-Nearest 
Neighbors, Decision Tree, Logistic Regression, Linear Discriminant and Support Vector 
Machine are mainly implemented in Classification Learner App in MATLAB. Both ECT and 
US data is tested for flow regime classification problem. A supervised artificial neural network 
is also developed in the Neural Net Pattern Recognition App of MATLAB for flow regime 
classification.  

For estimation of flow velocity, cross-correlation algorithm is developed in MATLAB. Data 
from the two planes of ECT is cross-correlated for velocity estimation.   

For estimation of phase fractions, supervised regression algorithm is implemented by creating 
an Artificial Neural Network in the Neural Net Fitting App of MATLAB.  

MATLAB, Python, Microsoft Notepad and Microsoft Excel are the applications used in this 
thesis for data processing, modeling and analysis.  
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1.4 Scope of Thesis 
The scope of this thesis covers literature survey, experimental work, exploratory data analysis 
and, classification and regression modelling.  

A brief survey of multiphase flow, multiphase flow metering as well as usage of ECT and US 
modalities for multiphase flow metering is covered in this thesis. An overview of the flow rig 
at USN, its specification, the instruments installed on it and data acquisition methods from the 
rig are concisely described in this thesis.  

Experiments on the flow rig to gather data from sensors by creating a new test matrix are in the 
scope of this thesis.  

Exploratory data analysis for feature engineering and developing classification and regression 
models including machine learning models based on the collected data from the flow rig is 
included in this thesis. Classification of flow regimes and estimation of flow parameters are in 
the scope of this thesis. Lastly, a comparison of ECT and US data for flow visualization is 
briefly touched upon in this thesis.  

The scope of work is shown as Figure 1.2. 

 
Figure 1.2: Flow chart of Data-driven virtual MPFM used in this thesis work 
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1.5 Report Structure 
This report is divided into eight major sections.  

Section 1 covers the introduction, background, objective, methods and scope of this thesis.  

In Section 2, a brief survey of multiphase flow and multiphase flow metering is reported. 

Section 3 includes literature survey of ECT and US sensor technologies. It also includes virtual 
flow metering techniques.  

In Section 4, the multiphase flow rig in USN is described in detail along with its sensors, 
instrumentation and DAQ modules.  

In Section 5, the experiments conducted on the flow rig at USN are discussed in detail including 
creation of test matrix, experimental setup and details about collected data. 

In Section 6, the methods and results are presented. It includes exploratory data analysis, 
feature engineering, development of flow classification and regression models, and the results 
obtained from implementing these models. Moreover, a comparison of ECT and US sensors 
for flow visualization is also included in this section.  

Sections 7 and 8 form discussion and conclusion sections respectively. 
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2 Brief Survey of Multiphase Flow and 
Multiphase Flow Metering 

This section covers a brief description of the multiphase flow and multiphase flow metering 
methods.  

2.1 Multiphase Flow 
Fluid mechanics involves the study of multiphase flow, which refers to the movement of two 
or more phases of matter through a pipe [2]. Common multiphase flow combinations are 
provided in Figure 2.1. Gas/Solid is prevalent in pneumatic conveyors, dust collectors, 
fluidized beds, heterogeneous reactors and metallized propellant rockets. Gas/liquid flow can 
be seen in atomizers, scrubbers, dryers and combustors. Liquid/liquid droplet flow is observed 
in extraction, homogenizing and emulsifying. Liquid/solid is present in flotation and 
sedimentation [3].   

 
Figure 2.1: Some types of multiphase flows, including two-phase and three-phase flows [4] 

 

2.1.1 Flow Regime / Pattern 
Multiphase flow is a complex phenomenon. The geometric distribution of constituent phases 
within a multiphase flow is known as the flow regime or pattern [5]. There are various types 
of flow regimes observed in multiphase flow including slug, plug, stratified, annular, wavy, 
and bubble, among others [6]. The specific flow regime that develops is highly dependent on 
factors such as the orientation of the pipe, the direction of flow, the density and viscosity of the 
phases, and the mass flow rates of each phase [7]. The operating conditions of the system can 
also have a significant impact on the creation and stability of different flow regimes. Factors 
such as operating pressure, temperature, valves and bends have a direct effect on the flow 
regimes [8]. 

The petrochemical industry involves the flow of both gases and liquids within pipelines, 
leading to a variety of flow regimes. Two-phase system refers to the simultaneous flow of gas 
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and liquid in a pipeline. Identifying and classifying  the different flow regimes in a two-phase 
flow pipeline is a significant challenge in the field of flow analysis [9]. Flow regimes can be 
classified subjectively through graphics or by employing the probability density function of 
pressure or void fractions signals from sensors [10], [11]. Accurate classification of flow 
regimes is critical for measuring parameters such as flow velocities and phase fractions [11].   

Flow regime is difficult to predict accurately. To generate specific flow regimes in a pipe in a 
research laboratory, flow regime maps are used such as the one given in Figure 2.2 [12]. This 
flow regime map is based on an air-water system with superficial velocities given in ft/s. 

 
Figure 2.2: A two-phase flow regime map [12] 

 

Figure 2.3 displays various flow regimes that are commonly observed in horizontal gas/liquid 
multiphase flows [6]. These flow regimes are described below:  
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Figure 2.3: Gas/liquid Flow Regimes in horizontal pipe [6] 

2.1.1.1 Stratified 

When gas and liquid flow rates are low, stratified flow is observed. It is applicable in horizontal 
flow direction. There is no mixing of the two phases and the liquid phase remains as a film at 
the lower portion of the pipe [13].  

2.1.1.2 Wavy 

At higher gas flow rates, the stratified flow converts to wavy flow in which ripples or waves 
are observed on the top of the liquid layer. It appears like waves in a sea. [14] 

2.1.1.3 Annular 

At higher gas velocity, wavy flow converts to annular flow in which liquid flows at the 
periphery of the pipe while gas flows at the center of the pipe. [15] 
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2.1.1.4 Plug / Elongated Bubble 

Plug is a kind of flow pattern in which large bubbles of gas float on the top surface of the liquid 
phase spanning a large area in the pipe. The gas phase is dispersed in the liquid phase. [16] 

2.1.1.5 Slug 

Slug flow is intermittent flow in which slugs of liquid with dispersed bubbles flow along with 
large gas pockets. The flow is always unsteady. The bubble is in the shape of a bullet. This 
flow alternates between high liquid fraction and high gas fraction. [17] 

2.1.1.6 Bubble 

Bubble flow is similar to plug flow and is characterized by small gas bubbles dispersed in the 
liquid phase. [18] 

2.1.1.7 Spray / Annular Mist 

In spray flow, droplets of gas are dispersed in the liquid phase. [19] 

2.1.2 Phase Velocity 
Phase velocity, as defined in [20], refers to the velocity of a specific phase (such as oil, water, 
or gas) within a pipe. It is measured in m/s. 

2.1.3 Phase Fraction 
For multiphase flow in a pipe, phase fraction is the fraction of one phase with respect to the 
whole fluid in a cross-section of pipe [5]. Mathematically, it is calculated as the ratio of the 
cross-sectional area of the phase of interest to the entire cross-sectional area of the pipe, as 
shown in Equation (2.1) below. Phase fraction is typically expressed as a percentage. In 
Equation (2.1), 𝐴  is the cross-sectional area occupied by liquid phase and 𝐴  is the cross-
sectional area of a pipe. 

 

Phase Fraction of liquid =  (2.1)  

Phase fraction can be defined in terms of Volume Ratio in gas/liquid flow which is the 
percentage of oil or water in the cross-section of a pipe [21]. 

2.2 Multiphase Flow Metering 
Multiphase flow (MPF) is a highly complex phenomenon. Measurement of multiphase flow 
patterns and parameters is challenging, requiring specialized meters and sensors. Knowledge 
of multiphase flow dynamics is required to build physics-based multiphase flow meters [22]. 
Some measuring techniques used in multiphase flow metering (MPFM) are process 
tomography and imaging, ultrasound, X-ray, Magnetic Resonance Imaging (MRI), differential 
pressure and turbine meters [22]. The applied technique is highly dependent on the application 
[22]. 
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Measuring multiphase flow in the oil and gas industry can be challenging, particularly for 
subsurface and offshore installations where pipelines may contain oil, water, and gas [8]. 
Subsurface meters and instrumentation are often expensive [8]. However, multiphase flow 
metering (MPFM) can help control slug patterns in the pipeline by providing more accurate 
measurements [8]. MPF measurements are better than pressure measurements for flow regime 
control [8]. 

MPFM is the measurement of constituent phase parameters of a MPF pipeline without 
separating the phases [8].  

2.2.1 MPFM Technologies 
The MPFM technologies can be grouped under the following major headings [8]: 

 Tomography 
 Gamma Densitometry 
 Differential Pressure Meters 
 Wet Gas 
 Ultrasonic Sensing 
 Coriolis 

2.2.1.1 Tomography 

Tomography is a non-intrusive image processing technology for measuring MPF. It is non-
radioactive. The tomography sensors are located around the periphery of pipe without touching 
the flow [8]. 

2.2.1.2 Gamma Densitometry 

Gamma densitometry employs a radioactive source to measure MPF. The concept of its 
operation is that the radiated gamma rays from the radioactive source are attenuated based on 
the flow pattern to detect phase fractions [8]. 

2.2.1.3 Differential Pressure Meters (DPM) 

DPM is also known as virtual flow meter (VFM). Difference in pressure at two points in the 
pipeline can be measured by DPM to calculate the flow rate based on Bernoulli’s principle [8]. 

2.2.1.4 Wet Gas 

Wet gas method is applicable when water and oil fractions are less than 5% in the pipe and gas 
fraction is more than 95%. Wet gas flow then can be obtained by Lockhart-Martinelli parameter 
and, gas and liquid densimetric Froude number [8]. 

2.2.1.5 Ultrasonic Sensing 

Ultrasonic methods of MPFM are non-intrusive and radiation-free. They do not affect the flow 
[23]. They employ time-of-flight, cross-correlation and Doppler techniques to measure flow 
parameters [23]. 
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2.2.1.6 Coriolis Flow Meters 

Coriolis flow meters are widely used in MPFM. They can measure mass flow rates accurately. 
They work on the principle of the Coriolis effect. [24] 

2.2.2 Methods of Multiphase Flow Metering 

2.2.2.1 Physical Flow Metering (PFM) 

In physical flow metering, flow parameters are directly measured by MPFM mounted on the 
pipeline. The examples of these meters are Coriolis mass flow meters and Gamma 
densitometry. [25] 

2.2.2.2 Virtual Flow Metering (VFM) 

VFM use available field data to generate estimations of flow parameters [25]. There are two 
types of VFM, namely first principles VFM and data-driven VFM.  

In first principles VFM, mechanistic model of process is used to estimate flow parameters from 
the available pressure and temperature field data [25]. 

In data-driven MPFM data is collected from the flow and employed in mathematical or 
machine learning models to generate estimations about the flow [25]. This type of MPFM 
requires no detailed knowledge of the physical model of the process [25].  

2.2.2.3 Comparison of VFM and PFM 

Table 2.1 describes comparison between VFM and PFM. Both methods are suitable for real-
time monitoring of flow. The cost of physical flow metering is higher than virtual flow 
metering. PFM requires periodic calibration as compared to VFM. Experienced personnel are 
required to operate PFM in contrast with VFM. Exploratory data analysis and feature 
engineering is an essential requirement in VFM but not in PFM. PFM requires high 
maintenance cost as compared to VFM. The computational power requirement for VFM is very 
high with respect to PFM since VFM are data-driven.  

Table 2.1: Comparison of PFM and VFM  [25] 

 PFM VFM 

Real-time monitoring Yes Yes 

Cost High Low 

Periodic Calibration Yes No 

Operational Experience High Limited 

Feature Engineering No Yes 

Maintenance High Low 
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Computational Power Low High 
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3 Brief Survey on Sensing and Data-Driven 
Metering Techniques 

As discussed in Section 2, there are a number of MPFM technologies to measure MPF 
parameters. In this section, a literature survey of contemporary publications in MPFM is 
presented with emphasis on ECT and US modalities. 

In [11], a technique to classify 2-phase gas/liquid flow regime in an S-shaped pipeline using 
Doppler ultrasonic sensors is presented. Deep Neural Networks (DNNs), AdaBoost, Bagging, 
Extra trees and Decision tree machine learning methods were employed in this paper along 
with Fast Fourier Transform (FFT) of the ultrasonic signals. Twin-window features were input 
to the DNN while flow regimes were the output of the classification DNN. Four hidden layers 
were used in the DNN with rectified linear unit (ReLU) as an activation function in all of them. 

The work presented in [26] focused on measuring the flow velocity and phase concentrations 
of horizontal two-phase flow using a dual-plane ECT with gamma-ray tomography (GRT). It 
achieved an estimation accuracy of ±10% for the volumetric flow rates of the phases. 

In [27], flow regime identification using ECT time-series statistical data analysis is discussed.   

In [28], two-phase flow regime identification using ECT is presented. In this paper, Support 
Vector Machine (SVM) is used to classify flow regimes with good accuracy. Principal 
Component Analysis (PCA) was used to reduce the number of inputs to the SVM. 

[29] discusses velocity measurement of two-phase flow through ECT using cross-correlation 
techniques. 

In [30], two-phase flow regime identification is presented using the ultrasonic power spectral 
density (PSD) technique. 

3.1 Brief Survey on Electrical Capacitance Tomography (ECT) 
ECT is a flow sensing technique in which the spatial distribution of the mixture of dielectric 
materials in a flow inside a pipe is measured from electrical capacitance measurement between 
electrodes placed on the periphery of the pipe [21], [31]. The capacitances can also be 
converted into images for visual depiction of the flow. It is a non-invasive technique and non-
radioactive. Figure 3.1 provides the cross-sectional illustration of an ECT system mounted on 
a pipeline [31]. It has 12 electrodes to measure capacitances. With 12 electrodes, 66 pair of 
capacitances can be measured.  
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Figure 3.1: Cross-sectional view of a pipeline mounted with a 12-electrode ECT system [31] 

ECT is generally used in two-phase liquid/gas flow to measure permittivity distribution inside 
a pipe [21]. ECT measurements at two cross-sections of a pipe can measure the velocity profile 
of flow [21]. Volume ratio or phase fraction can be obtained by ECT. ECT works best when 
the fluid has low electric conductivity and a variable permittivity [21]. The working principle 
of ECT is shown in Figure 3.2. An alternating voltage is applied between the source and the 
ground. The currents at the detector electrodes are measured with respect to the source 
electrode which are directly proportional to the capacitance between the source and detectors 
[21]. The source is changed to the next electrode and the currents are measured at all the other 
electrodes during one frame of measurement [21]. When only one electrode is excited then for 
N electrodes, there are M = N(N-1)/2 unique capacitances making up one frame of 
measurement [21]. The output of ECT is a capacitance file with M capacitances data per frame 
of measurement [21]. 

 
Figure 3.2: Principle of ECT with 8 electrodes [21] 

The measured capacitances can be normalized by using Equation (3.1) as given in [21] 

 

𝐶 =
𝐶 − 𝐶

𝐶 − 𝐶
 (3.1)  

In Equation (3.1), 𝐶  is the inter-electrode raw capacitance. 𝐶  is the capacitance when the 
pipe is full with lower permittivity material such as air. 𝐶  is the capacitance when the pipe is 
full with higher permittivity material such as water. 𝐶  is the normalized capacitance. 𝐶  is 
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dimensionless and normalized, making it suitable as input for mathematical operations and 
algorithms. [21] 

3.2 Brief Survey on Ultrasonic Sensing (US) 
The range of audio spectrum is from 20Hz to 20kHz. Humans can perceive audio frequencies 
in this range. The audio frequency band above 20kHz is known as ultrasonic band. Ultrasonic 
(US) band continues up to 1GHz. Most of the industrial applications of ultrasonic ranges from 
1MHz to 100MHz. [32] 

The speed of sound varies according to the medium through which it travels. In dry air the 
speed of sound is 300m/s whereas in water, the speed of sound is about 1500m/s. [32] 

There are advantages to use US technology for industrial applications. The speed of US waves 
is lower than electromagnetic waves. They can be easily visualized on a screen due to their low 
velocity. They can travel through solid and opaque matter. Light cannot travel through opaque 
matter [32]. They are least affected by color type of target surfaces and materials. They can 
detect small anomalies over long distances. [33]  

There are two types of ultrasonic experimental techniques that can be used in flow pipelines to 
detect flow characteristics: Pulse-Echo and Pitch-Catch techniques. 

3.2.1 Pulse Echo Technique 
The basic principle of pulse-echo technique is shown in Figure 3.3. The transmitter converts 
electrical signal to an ultrasonic wave. The wave travels through the material and is reflected 
by an anomaly or the back wall. The reflected wave is converted to an electrical signal by the 
receiver. Generally, the transmitter and receiver are placed in a common housing. [34]  

Pulse-echo technique can be used for detection of flaws and defects in metals. [35] 

 
Figure 3.3: Basic Principle of Pulse-Echo Technique [34] 

3.2.2 Pitch Catch Technique 
The basic principle of pitch-catch technique is shown in Figure 3.4. The transmitter converts 
electrical signal to an ultrasonic wave. The wave travels through the material and is reflected 
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by an anomaly or the boundary. The reflected wave is converted to an electrical signal by the 
receiver. The transmitter and receiver are placed at a distance apart. [34] 

Pitch-Catch technique can be used to determine the location of defect in metals along with the 
depth of the defect. [35] 

 

 
Figure 3.4: Basic Principle of Pitch-Catch Technique [34] 

 

3.2.3 Generated Output from Ultrasonic Techniques 
Figure 3.5 shows a typical ultrasonic A-scan (Amplitude Scan) from pulse-echo and pitch-
catch techniques. A-scan is the amplitude trace of ultrasound echoes with respect to time in 
one-dimension [32]. The first peak is due to the material boundary at the transmitter end. The 
second peak represents the reflected echo at the anomaly inside the test material. The third peak 
is the reflected echo from the back wall of the test material. [34] 

Based on this scan, the location and presence of anomaly can be detected. A large number of 
similar A-scans can be stacked together to generate a two-dimensional image of the test 
material which is known as B-scan. 
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Figure 3.5: A typical ultrasonic A-scan [34] 

3.3 Data-Driven Virtual Flow Metering Techniques 
This section provides a brief overview of various methods used for VFM, with a focus on the 
specific techniques applied in this thesis for flow regime identification and flow parameters 
estimation. 

3.3.1 Machine Learning Algorithms  
In this thesis, only supervised machine learning algorithms are used for classification and 
regression problems. In supervised machine learning, the data available for analysis always 
includes features that are associated with a corresponding label or output. [36] 

3.3.1.1 Decision Tree 

The decision tree algorithm is used for classification and regression tasks. It is a non-parametric 
algorithm. In this algorithm, classification and regression decisions are made based on a 
sequence of decisions resembling a tree-like structure. The input dataset is divided into small 
subsets that act as tree nodes. [37] 

Consider an ECT dataset comprising of four samples, each consisting of three features and a 
label as shown in Table 3.1. The dataset has 4 samples. The three features, namely C12, C13, 
and C14, represent the normalized capacitance values between electrodes 1 and 2, 1 and 3, and 
1 and 4, respectively. The label, referred to as the Regime, is the flow pattern observed 
corresponding to the measured capacitances.  

Table 3.1: An example dataset of ECT 

C12 C13 C14 Regime 

0.1 0.2 0.3 Wavy 
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0.2 0.4 0.6 Annular 

0.15 0.21 0.33 Wavy 

0.23 0.43 0.66 Annular 

A classifier decision tree model developed using the dataset given in Table 3.1 is illustrated in 
Figure 3.6. Decision tree is constructed by starting with C12 as the root node. In this node, a 
decision is taken based on the value of C12. Depending on the decision on C12, the tree is 
traversed to the next node where the value of C13 is compared to a decision point. After C13, 
C14 is finally checked to find a final decision on regime classification. 

 
 

Figure 3.6: An example of decision tree algorithm 
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3.3.1.2 K-Nearest Neighbors 

K-Nearest Neighbors (KNN) is a non-parametric and supervised learning algorithm. It is a 
grouping algorithm. It divides the data into groups and then new data is classified into one of 
the groups based on its proximity to the individual groups. It is used for classification and 
regression tasks. [38] 

Decision boundaries are formed by using Voronoi diagrams. To calculate proximity between 
points, distance measurements such as Euclidean distance can be used. [38] 

In Figure 3.7, assume input-1 as C12, the normalized capacitance between electrode 1 and 2 of 
ECT, input-2 as C13, the normalized capacitance between electrode 1 and 3 of ECT, output-1 
as Wavy, output-2 as Annular and output-3 as Stratified. There are clearly demarcated areas of 
flow regimes in the diagram based on the grouping of data points. The Euclidean distance of a 
new data point will be calculated from each of the existing data points. The new data point will 
be classified based on its closeness from the other already classified points. 

 
Figure 3.7: An example of Voronoi diagram taken from [39] 

3.3.1.3 Linear Discriminant Analysis 

Linear Discriminant Analysis (LDA) is a supervised classification algorithm which reduces 
dimensions of the datasets. It is used to find linear combination of features separating classes. 
It creates a lower-dimensional discriminant plane maximizing the ratio of the parameters 
‘between-class variances' to ‘within-class variances’. [40] 
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3.3.1.4 Logistic Regression 

Logistic Regression (LR) is a supervised classification model mainly used to classify two 
classes. It estimates the probability on the classes based on training dataset, a value between 0 
and 1. Based on the probability, the data can be classified into two classes. For a binary 
classification problem, if the probability is more than 50% then the data is classified in class 2 
and if the probability is less than 50% then the data is classified in class 1. [41] 

3.3.1.5 Support Vector Machines 

Support Vector Machines (SVM) are mainly supervised machine learning algorithms. They 
can be used for classification as well as regression tasks. In a classification problem, a new data 
point is to be classified in a particular class. SVM creates hyperplanes in a higher dimension. 
The hyperplane with the highest distance from the nearest training datasets on each side is 
selected as the classifying hyperplane as shown in Figure 3.8. [42] 

 
Figure 3.8: A 2-dimensional plot showing SVM selecting a hyperplane in a classification problem [42]. H3 plane 

will be selected in this case because of its distance from datasets is the largest [42] 

3.3.1.6 Artificial Neural Network 

Artificial Neural Networks (ANN) are machine learning algorithms developed on the concept 
of neural networks in animal brains. These algorithms can be applied for supervised as well as 
unsupervised classification and regression tasks. Figure 3.9 shows an example of feedforward 
neural network with m inputs (x1 to xm) and n outputs (y1 to yn). There is one hidden layer of n 
neurons, N1 to Nn. wn,m is the weight between neuron n and input m. bn is the bias for neuron 
n. f(.) is the activation function. The output Y is given by Equation (3.2) where W, x and b are 
matrices. [43] 
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Figure 3.9: A feedforward neural network with one hidden layer [43] 

Y = f (W.x+b) (3.2) 

3.3.1.7 Ensemble Learning 

Ensemble methods combine a lot of learners and provide a solution to the same problem as 
shown in Figure 3.10. The base learners can be any of the machine learning algorithms such as 
Decision Tree, KNN or ANN. When the learning power of algorithms is weak, ensemble 
learning is used to boost the learning algorithms by combining learners. There are two types of 
Ensemble Learning methods, boosting and bagging. Boosting involves training the learners 
sequentially and then combining the result. Bagging involves training the learners parallelly 
and then using a voting system for classification problem and averaging for regression problem. 
[44] 

 

 
Figure 3.10: Concept of Ensemble Learning Algorithm [44] 

3.3.2 Cross-Correlation Technique 
Cross-correlation is a technique in which correlation is computed between two signals with 
sampling times as lags. It computes the similarity between two signals when one signal moves 
with respect to the other. [45] 
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4 Overview of USN Multiphase Rig 
This section provides an overview of USN multiphase flow rig present in the Process Hall of 
Campus Porsgrunn with its accompanying sensors and instrumentation. 

4.1 USN Multiphase Rig 
The USN multiphase flow rig is located in the Process Hall at USN, Porsgrunn campus. The 
rig has the capability to generate different types of flows by passing water, air and mineral oil 
through a horizontal pipe. The pipe can be tilted by ±10⁰ with respect to the horizontal surface 
[27]. Mass flow rates in kg/min of air, water and oil are monitored and controlled by Coriolis 
flow meters and control valves [27]. The operational limit of mass flow rate for air is 5 kg/min 
whereas for liquid is 150 kg/min [27]. The rig can simulate different flow regimes in the pipe 
by injecting combinations of air, water, and oil mass flow rates. These regimes, including 
stratified, slug, plug, annular, and wavy, can be visually observed through a transparent 
Plexiglass section, as shown in Figure 4.1. [27].  

 
Figure 4.1: USN multiphase setup showing plexiglass window, ECT and Gamma ray densitometer 

There is a TOMOFLOW TFLR5000 ECT system manufactured by Process Tomography 
Limited mounted on the rig as shown in Figure 4.1. There is also a gamma ray densitometer 
DT9300 manufactured by S-TEC [46] using Cs-137 isotope as seen in Figure 4.1.  

Figure 4.2 depicts the operating control panel of the rig which is developed in LabVIEW 
through which the flow rig is operated. It also shows various transmitters installed on the rig to 
control and monitor the flow conditions during its operation. PID control is used to control the 
flow rates of gas and liquids. The mass flow rates of oil, water and air are controlled through 
this panel. TT is temperature transmitter in ⁰C. VT is velocity (volume) transmitter in l/min. 
FC is flow controller. DT is density transmitter in kg/m3. FT is flow transmitter in kg/min. 
PDT121 is short distance differential pressure transmitter in mbar. PDT120 is long distance 
differential pressure transmitter in mbar. PT131 is air inlet pressure transmitter in mbar. P101 
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is a large water pump used for flow rates more than 12 kg/min. P102 is a small water pump 
used for flow rates up to 12 kg/min. When the big pump is running liquid flow rate is measured 
by FT114A whereas when using the small pump, the flow rate is measured by FT114B. FT131 
measures the air flow rate. P100 is an oil pump. R100 is a separator tank to separate oil and 
water at the pipe outlet. T100 is oil tank. T101 is water tank. Six Coriolis meters are shown in 
the P&ID that measure mass flow rate, temperature, density, and velocity (volume). A 
simplified P&ID is shown in Figure 4.3. Important parameters of the multiphase flow rig are 
given in Table 4.1. 

 
Figure 4.2: P&ID of USN flow rig in LabVIEW (Developed by USN) 

 
Figure 4.3: P&ID of USN flow rig [47] 
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Table 4.1: Rig parameters for multiphase flow [47] 

Parameters Value 

Inside pipe diameter 56 mm  

Outside pipe diameter 60 mm 

Length of pipe 15 m 

Water density 996 kg/m3 at 27⁰C and 1bar 

Air density 1 kg/ m3 

Oil density 790 kg/m3 

Water viscosity 0.00102 Pa-s (20⁰C) 

Oil viscosity 0.00164 Pa-s (25⁰C) 

4.2 Sensors, Instrumentation and DAQ Modules 
This section describes major instruments and sensors installed with the USN multiphase rig. 

4.2.1 ECT System: TOMOFLOW TFLR5000 
As seen from Figure 4.1, there is an ECT system present on the USN multiphase rig pipe. It is 
developed by Process Tomography Limited [21]. Its model is TOMOFLOW TFLR5000 
(Figure 4.4) multiphase flow measurement system and is suitable for research laboratories [21]. 
It can measure flow parameters of an uneven two-phase flow when the constituents have 
dielectric properties [21]. In the USN rig, the permittivity of air is 1, oil is 2.7 and of water is 
80 [27]. Therefore, ECT is suitable to detect permittivity distribution in the USN flow pipe 
with a mixture of two-phase flow. Currently, the application of this device is research in 
laboratories for two-phase flow measurements and analysis. [21] 

 
Figure 4.4: TFLR5000 ECT system control unit showing the communication and power ports 
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4.2.2 Pressure Meters Including Differential Pressure Meters 
PDT120 and PDT121 are the differential pressure meters (DPM) mounted on the rig whereas 
PT131 is the air inlet pressure transmitter as seen from Figure 4.2. Their details are provided 
in Table 4.2. PDT120 and PDT121 are shown in Figure 4.5. From Figure 4.6, it can be seen 
that PDT120 is measuring differential pressure between two points 10.22m apart in the pipe 
and PDT121 is measuring differential pressure between two points 5.38m apart in the pipe.  

Table 4.2: Differential pressure meters installed on the rig [47] 

Transducer Model Range(mbar) 

PDT120 Rosemount 3051CD 0-100 

PDT121 Rosemount 3051CD 0-50 

PT131 Vika S-10 0-100 

 

      
Figure 4.5: Differential Pressure Meters at USN Rig, PDT120 and PDT121 
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Figure 4.6: DPM measurement regions: PDT120-10.22m & PDT121-5.38m [47] 

4.2.3 Ultrasonic Device: US-Key from Lecoeur Electronique 
Figure 4.7 displays ultrasonic transmitter and receiver Pitch-Catch setup mounted on the USN 
flow pipeline. A device named US-Key manufactured by Lecoeur Electronique is used to 
transmit and receive US waves. It is shown in Figure 4.8. This device is used in industrial 
applications such as non-destructive testing. [48] 

 

 
Figure 4.7: Ultrasonic transducers in pitch-catch configuration on the USN pipeline 
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Figure 4.8: US-Key device from Lecoeur Electronique 

4.2.4 Coriolis Flow Meters from Emerson 
FT109B, FT110, FT114B, FT115, FT132, FT131 are Coriolis flow meters that measure the 
mass flow rate in kg/min accurately with an uncertainty of ± 0.01kg/min [47]. They are 
Emerson's Micro Motion make [49]. They can also measure temperature, density, and velocity 
(volume). A Coriolis flow meter FT115 installed on the flow rig for water phase is shown in 
Figure 4.9. 

 
Figure 4.9: Coriolis meter FT115 for water installed at USN Rig 
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5 Experiments 
To implement data-driven multiphase metering models, the first requirement is the availability 
of data to use as inputs to the models. If data is available from previous experiments then it can 
be used for development of models. Collection of new data by conducting fresh sets of 
experiments is always encouraged. The purpose of experiments in this thesis is to collect sensor 
data corresponding to five flow regimes of slug, plug, stratified, annular and wavy generated 
in the flow rig by using different combinations of air and water mass flow rates. For the case 
of this thesis, the aim is to collect data mainly from ECT, US and pressure sensors. In this 
thesis, new fresh sets of experiments are conducted to collect data from ECT and pressure 
sensors while already available data from US sensors is considered for development of 
classification and regression models.  

It was decided that two-phase experiments using air and water would be conducted for this 
thesis. After this decision, the first step was to develop a test matrix for air/water experiments 
so that it remains clear that the experiments are focused on a specific pre-decided plan. Planning 
experiments beforehand by creating a test matrix saves a lot of time during actual experiments.  

The creation of test matrix was the first challenge in this thesis. To create a test plan, the flow 
regime map of USN flow rig is used as a reference which has been adapted from the version 
of Figure 2.2. The map is shown in Figure 5.1. It has mass flow rate in kg/min as axes rather 
than flow velocities of air and water. There are five types of flow regimes that can be generated 
in the USN multiphase flow rig namely plug, slug, annular, stratified, and wavy.  

 
Figure 5.1: USN's rig flow regime map based on [12] using mass flow rate developed by USN 

A new test matrix developed for use in this thesis based on the flow regime map is provided in 
Figure 5.2. The matrix has 120 experiments divided into five regimes, 30 for stratified, 30 for 
plug, 20 for wavy, 20 for slug and 20 for annular. By using this matrix, the flow rates of air 
and water can be set in various combinations to create a two-phase flow in the pipeline 
generating specific flow regimes. For instance, a combination of flow rate of 5 kg/min for air 
and 5 kg/min for water is supposed to generate a two-phase flow depicting Annular regime as 
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seen from Figure 5.2. Based on the mass flow rates of air and water, flow regimes can be 
observed through visual inspection by looking at the Plexiglas transparent section on the pipe 
to confirm the accuracy of the test matrix [12].  

 
Figure 5.2: Initial test matrix for 2-phase flow of Air & Water developed for this thesis 

The test matrix of Figure 5.2 is completely based on theoretical knowledge of the flow regime 
map of the USN flow rig. At the time of actual experiments, some of the experiments were 
impossible to conduct on the current configuration of the USN flow rig. When the flow rate of 
air was tried to be set above 5 kg/min, dangerous vibrations were observed in the flow rig. 
These vibrations can disintegrate the entire flow rig setup. Also, similar vibrations can be 
observed when the flow rate of water is tried beyond 80 kg/min. Due to these operational 
constraints the test matrix of Figure 5.2 was modified to a matrix shown in Figure 5.3 and 
Figure 5.4. The air flow rate was limited to 5 kg/min and the water flow rate was limited to 80 
kg/min due to unstable vibrations in the rig at higher flow rates of air and water. In this test 
matrix, the minimum flow rate of air is 0.07 kg/min and the maximum is 5 kg/min. The 
minimum flow rate of water is 2 kg/min and maximum flow rate is 77 kg/min. This is the final 
test matrix which was used to collect new data from ECT sensor. It has 45 experiments for 
various flow regime, 9 for stratified, 6 for wavy, 6 for annular, 15 for plug and 9 for slug. 

 
Figure 5.3: Final test matrix based on operational constraints for this thesis 

There are two electric pumps that inject water into the pipe. There is a small water pump that 
operates for water flow rate less than 12kg/min and there is a large water pump that operates 
for water flow rates equal to and above 12kg/min. Only one pump can be functioning at a time. 
So, first all the experiments for large pump were conducted. After that the pump was changed 
to the smaller one to conduct remaining experiments. The flow rates of air and water are 
controlled by the control program of LabVIEW from Figure 4.2. Lets see an example of 
generating a flow regime in the pipe with flow rate of 0.13kg/min for air and flow rate of 
77kg/min for water. First the large pump is brought into operation. Then the water flow rate is 
taken to 77kg/min by increasing the flow rate of water in increments of 0.5kg/min. When the 



 Experiments 

36 

water flow rate is fixed at 77kg/min, the flow rate of air is increased carefully and slowly in 
incremements of 0.01kg/min to avoid vibrations in the pipe to 0.13kg/min. When both the flow 
rates are reached, the flow regime is observed throught the transparent section of the pipe and 
noted down whether the observed flow regime conforms to the flow regime depicted in the test 
matrix. Vibrations were observed in the flow rig for flow rate of air above 0.5kg/min when the 
flow rate of water was 75 to 77 kg/min. So, for plug and slug regimes, the flow rate of air was 
limited to 0.5kg/min. 

In all the 45 experiments, the flow regime was validated by observing them in the transparent 
section. All the generated flow regimes in the experiments conformed to the estimated flow 
regimes in the test matrix.     

 
Figure 5.4: Region of experiments on USN flow rig for this thesis 

The 45 experiments of Figure 5.3 are plotted on a flow regime map as shown in Figure 5.5. 
This plot matches the regions of flow regimes given in Figure 5.4. 

 
Figure 5.5: Flow Regime Map based on final test matrix 
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5.1 Data Collection 

5.1.1 ECT Data Collection 
For this study, 45 air/water 2-phase experiments based on the test matrix of Figure 5.3 were 
conducted in the Process Hall using the TOMOFLOW TFLR5000 ECT system in 8-electrode 
2-planes configuration. The two planes are separated by a distance of 18.7cm. To begin with 
the ECT system was calibrated first by filling the pipe completely with air first and then water. 
After calibration, the ECT system was ready for experiments. 

Figure 5.6 shows the 8-electrode configuration of the ECT system during the experiments.  The 
ECT electrodes mounted on the flow rig has 12-electrodes but TFLR5000 is an 8-electrode 
system in dual plane configuration. To mitigate this challenge, only 8 electrodes from the 12 
available electrodes were connected to the TFLR5000 by using the configuration of Figure 5.6. 
The same configuration implemented on TFLR5000 is depicted in Figure 5.7. From the 12 
electrodes, electrodes 3,6,9 and 12 are left disconnected. This same configuration is repeated 
in both the ECT planes. The entire periphery of the pipe is not covered by operational electrodes 
as seen from Figure 5.6. The electrodes are numbered as per Figure 5.6 for the experiments. 
The flow direction is from left to right.  

 

 
Figure 5.6: Setup of Experiment showing 2 planes of ECT and distribution of 8 electrodes around the pipe 
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Figure 5.7: Connection of electrodes on 3 Feb 2023 with ECT 2-planes sensor 

 

Table 5.1 provides the parameters set during the experiments. Based on these parameters, 100 
frames of permittivity distribution in the pipe are captured by the system every second 
providing a sampling time of 10ms. Since the interval of logging for each flow regime 
experiment is 30 seconds, a total of 3000 permittivity frames are collected for each flow regime 
experiment. The capacitance model used in these experiments is parallel capacitance model. 
Each frame is composed of 28 capacitances from 8-electrode configuration. 

Table 5.1: Parameters set during the experiments in TFLR5000 for this thesis 

Parameter Value 

Frames per second per plane 100 

Sampling interval per plane (ms) 10 

Logging duration per experiment (s) 30 

Data points (frames) captured per experiment per 

plane 

3000 

Number of electrodes per plane 8 

Number of planes  2 

Number of capacitances per measured frame 28 

Capacitance Model Parallel [21] 
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Figure 5.8 shows ongoing experiments using ECT system with stratified flow regime. Through 
the laptop, parameters of ECT system can be modified and flow regimes can be monitored in 
real-time through cross-sectional images of the pipe in terms of permittivity distribution.  

 

 
Figure 5.8: Ongoing ECT experiments on 3 Feb 2023 with 2-planes ECT sensor 

Figure 5.9 provides the distribution of experimental data in terms of flow regimes. 45 
experiments are divided into plug, slug, stratified, annular and wavy with percentages of 34%, 
20%, 20%, 13% and 13% respectively. A total of 135000 frames of ECT capacitances were 
collected during the experiments. The distribution in terms of number of frames is shown in 
Table 5.2. 
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Figure 5.9: Distribution of collected data on 3 Feb 2023 with ECT 2-planes sensor 

 

Table 5.2: Distribution of collected data in terms of frames collected per plane of ECT on 3 Feb 2023 with ECT 
2-planes sensor  

Regime Number of frames 

Annular 18000 

Plug 45000 

Slug 27000 

Wavy 18000 

Stratified 27000 

Total 135000 
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5.1.1.1 Additional Data Collection 

On 27 February 2023, 18 additional experiments were carried out to collect more data from the 
ECT as outlined in Table 5.3. The basis for these additional experiments was to match the flow 
rates of already available Ultrasonic sensor data for air/water two-phase flow so that ECT and 
Ultrasonic data can be compared at similar test conditions for flow visualization. The 
Ultrasonic data included flow rates of water at 80, 40, 25, 15, 10 and 5 kg/min with their 
combination with flow rates of air at 0.1, 0.3, 0.4, 0.5, 0.6, 1, 2, 3, 4 kg/min. The test matrix 
available from already conducted Ultrasonic experiments generating two-phase air/water flow 
is shown in Table 5.3. The same test matrix was used to collect additional ECT data. The 
parameters during these 18 experiments were kept same as provided in Table 5.1. Data from 2 
planes of ECT was collected in this case. 

During these 18 experiments, slow-motion videos were captured at 240fps through Mi A4 
smartphone to observe and verify the flow regimes. The images captured from these videos of 
various regimes are provided in the next subsections. 

Table 5.3: Test matrix of additional tests on ECT on 27 Feb 2023 to match Ultrasonic data in terms of air and 
water flow rates 

 
5.1.1.1.1 Visuals of Slug Flow 

Slug regime is displayed in Figure 5.10. Six frames are provided showing the entire slug flow 
regime sequence. Water flows at the bottom and air at the top of the pipe volume intermittently 
with a bullet of water with dispersed air bubbles passing at very high speed in the pipe filling 
it completely. This kind of flow regime creates vibrations in the pipe that can hamper the 
functioning of the system in which the pipe is installed. As seen personally during experiments, 
the bullet of water, frame 3 and 4 of Figure 5.10, travels very fast through the pipe creating 
vibrations in the pipe and sound of high speed water flowing in the pipe. The bullet has a lot 
of bubbles and it appears intermittently with a quiet phase as seen in frames 1 and 2. This flow 
regime is dangerous to mechanical pipes due to the force with which the water flows in the 
pipe and it needs to be detected quickly for mitigation of the risk of breakdowns in pipelines. 

Water (kg/min) Air (kg/min) Observed Regime
80 0.1 Plug
80 0.3 Slug
40 0.1 Plug
40 0.6 Slug
25 0.1 Wavy
25 0.5 Slug
25 2 Annular
15 0.1 Stratified
15 0.4 Wavy
15 1 Wavy
15 3 Annular
10 0.1 Stratified
10 0.4 Stratified
10 1 Wavy
10 4 Annular
5 0.1 Stratified
5 1 Wavy
5 4 Annular
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Figure 5.10: Sequence of frames (top to bottom) showing slug regime captured during experiments  

5.1.1.1.2 Visuals of Plug Flow 

Plug regime is displayed in Figure 5.11. Five frames are provided showing the entire plug flow 
regime sequence. Comparing it with Figure 2.3, large bubbles of air on top of the water phase 
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are observed intermittently with the pipe filled completely with water. Plug flows at a slower 
speed than slug as seen from visual inspections during experiments.  

 

 

 

 

 

Figure 5.11: Sequence of frames (top to bottom) showing plug regime captured during experiments 

5.1.1.1.3 Visual of Annular Flow 
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Annular regime is displayed in Figure 5.12. Comparing it with Figure 2.3, a film of water is 
formed at the periphery of the pipe while air flows at the center of the pipe. 

Figure 5.12: Annular regime as seen in experiments 

5.1.1.1.4 Visual of Wavy Flow 

Wavy regime is displayed in Figure 5.13. Comparing it with Figure 2.3, waves on water are 
formed at the bottom of the pipe while air flows at the top of the pipe. 

Figure 5.13: Wavy regime as seen in experiments 

5.1.1.1.5 Visual of Stratified Flow 

Stratified regime is displayed in Figure 5.14. Comparing it with Figure 2.3, a smooth film of 
water is formed at the bottom of the pipe while air flows at the top of the pipe. 

 

Figure 5.14: Stratified regime as seen in experiments 

 

5.1.1.2 Format of Collected data 

The collected data from each experiment using the TFLR5000 ECT system is in the form of 
binary capacitance files with the extension ‘BCP’. This file can be converted to a normalized 
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capacitance file (‘ANC’), an image file (‘AIM’) or a volume ratio file (‘AVR’) depending on 
usage through the software named ‘ECT32’ provided by Process Tomography Limited.  

5.1.2 Ultrasonic Data Collection 
Experiments using ultrasonic pitch-catch technique were previously conducted at USN. These 
experiments included the air/water two flow experiments according to the test matrix of Table 
5.3. The data collected from these air/water flow experiments are used in this thesis for further 
analysis and comparison with new data from ECT.  

5.1.2.1 Format of Collected data 

The collected data from the experiments using ultrasonic sensor is in the form of a binary file 
for each set of experiment. To convert these binary files into B-scan images, a MATLAB script 
developed by Tonni F. Johansen was utilized which is attached as Appendix-J. Features from 
this file can be extracted through an extended MATLAB script of Appendix-J provided in 
Appendix-K. 
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6 Methods & Results 
In this section, methods used for data-driven multiphase flow metering are described in detail 
starting from exploratory data analysis to modelling metering algorithms in MATLAB. The 
results from the various metering algorithms are also presented here. 

6.1 Exploratory Data Analysis (EDA) 

6.1.1 ECT Data Analysis 
The format of normalized capacitances files is given in Figure 6.1. This type of file is obtained 
from binary capacitance file by using the ECT32 software in Windows. The extension of the 
file is ‘ANC’. Here each frame in the ANC file is the capacitance matrix consisting of 28 inter-
electrode normalized capacitances from 8 electrodes. There are 3000 frames in each of these 
files. These files are flattened to 28 capacitances feature file using a Python script given in 
Appendix-B. Flattening of the frames means that the 28 values of capacitances in one frame 
which were in a non-linear form as shown in Figure 6.1 are processed in Python to get a linear 
form of 28 capacitances in one row of a comma-separated values (CSV) file. This step is very 
important since classification and regression algorithm mainly require inputs in the form of 
tables with all the samples in one row of a table. A snippet of the flattened form of capacitances 
is shown in Figure 6.2. This form is saved as a CSV file. The first 28 columns in the format 
corresponds to 28 normalized capacitances. The type of observed flow regime is included in 
the column after column 28.  

The algorithm used in the Python script is straightforward. Since the 28 capacitances are in 7 
rows, these 7 rows of capacitances are first stored in a pandas dataframe and then concatenated 
as 1 row in another dataframe. This algorithm is repeated 3000 times for one ANC file of each 
experiment. The last column of the flattened file has the flow regime name corresponding to 
the experiment which is directly inserted in the Python script from the file name of the ANC 
file. This script operates when all ANC files are stored in one folder. It will convert all the 
ANC files to a flattened version while Appendix-C saves a combined flattened file in CSV 
format. 

In this thesis, C12 is referred to as the normalized capacitance between electrode 1 and 2, C13 
is referred to as the normalized capacitance between electrode 1 and 3, and so on. To generalize, 
the normalized capacitance between electrode X and Y is denoted by CXY. 
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Figure 6.1: Normalized capacitance ANC file contents in general in comparison with the format of measurement 

representation where e is the total number of measurement electrodes [21] 

 
Figure 6.2: Flattened normalized capacitance form with flow regimes 

6.1.1.1 Distribution of Normalized Capacitances 

After converting the binary capacitances files to normalized capacitances files through ECT32 
software and flattening the ANC files, the normalized capacitances corresponding to the 8 
electrodes can be analyzed to explore their distribution for the five flow regimes considered in 
this thesis. There are many methods to analyze the distribution of capacitances. In this thesis, 
box plots, correlation and spectrograms are the primary methods used to explore the 
distribution of capacitances, examine their relationships, and to find outliers in the data. The 
nature of information that can be extracted from raw normalized capacitance data from ECT 
will be investigated in this section. Based on this analysis, features can be selected for further 
use as inputs to classification and regression algorithms.  

Box plots are old ways to investigate distribution of data and to find outliers in the data. They 
give a lot of information such as median, range, minimum, maximum, first quartile and third 
quartile in a dataset. By looking at a box plot, the distribution of data can be easily seen and 
compared with other box plots on the same axes. [50] 

In this section, the distribution of normalized capacitances for various regimes is compared and 
explored by using box plots. From 135000 frames collected through experiments, box plots are 
created in MATLAB by using the script provided in Appendix-F. The horizontal axis has flow 
regimes while the vertical axis has normalized capacitances. So, the box plots are created 
comparing the normalized capacitances with respect to the five flow regimes of stratified, 
wavy, annular, plug and slug. Each box plot belongs to the normalized capacitances of a 
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particular pair of electrodes such as C12, C13, etc. The box plots for the 28 inter-electrode 
capacitances from C12 to C78 are given in Appendix-M.  

The box plot of C12 is shown as Figure 6.3. The range of distribution of C12 is low for stratified 
and wavy regimes as compared to annular, plug and slug regimes. From this box plot, plug, 
slug, annular can be distinguished easily from stratified and wavy. An overlapping distribution 
is observed for stratified and wavy.   

 
Figure 6.3: Box Plot of C12 

Similarly other box plots can be investigated from Appendix-M. None of them gives a clear 
demarcation or clusters of regimes. Therefore, regime classification through box plots is 
difficult to observe. But similarities between inter-electrode capacitances can be observed 
easily for such a large amount of data.  

By observing the box plots of Figure 6.4 carefully, it can be inferred that C16, C17 and C18 
are having the same distribution profile. 

 
Figure 6.4: Box Plots of C16, C17 and C18 

By observing the box plots of Figure 6.5 carefully, it can be inferred that C25, C26, C27 and 
C28 are having the same distribution profile. 
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Figure 6.5: Box Plots of C25, C26, C27 and C28 

 

By observing the box plots of Figure 6.6 carefully, it can be inferred that C35, C36, C37 and 
C38 are having the same distribution profile. 

 
Figure 6.6: Box Plots of C35, C36, C37 and C38 

 

By observing the box plots of Figure 6.7 carefully, it can be inferred that C45, C46, C47 and 
C48 are having the same distribution profile. 

 
Figure 6.7: Box Plots of C45, C46, C47 and C48 

 

By observing the box plots of Figure 6.8 carefully, it can be inferred that C57 and C58 are 
having the same distribution profile. 
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Figure 6.8: Box Plots of C57 and C58 

By observing the box plots of Figure 6.9 carefully, it can be inferred that C67 and C68 are 
having the same distribution profile. 

 
Figure 6.9: Box Plots of C67 and C68 

The last sets of capacitances corresponding to each electrode are found to have a similar 
distribution. This similarity in the distribution of capacitances can be used to decrease the 
number of features when dealing with classification and regression algorithms saving a lot of 
computation power and storage.

6.1.1.2 Correlation Analysis of ECT Inter-Electrode Capacitances 

After performing a distribution analysis of the inter-electrode capacitances through box plots 
and finding similar patterns of distribution, another method of similarity analysis is used to 
confirm these observations. The method is called correlation analysis. Microsoft Excel, Python 
and MATLAB are used to implement this correlation analysis.  

After performing correlation analysis of all the 28 normalized capacitances, the correlation 
coefficients are generated in Python and Excel as shown in Figure 6.10 and Figure 6.11 
respectively. The coefficients greater than 0.99 are highlighted in red in Figure 6.11. These 
coefficients show a high correlation and similarity between normalized capacitances. This 
analysis confirms the observations from box plots that there is a similarity in their distribution.  
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Figure 6.10: Correlation coefficients heatmap of normalized capacitances created in Python (Appendix-N) 

 
Figure 6.11: Correlation coefficients of normalized capacitances. Red color indicates correlation coefficients 

with values more than 0.99 

C12 C13 C14 C15 C16 C17 C18 C23 C24 C25 C26 C27 C28 C34 C35 C36 C37 C38 C45 C46 C47 C48 C56 C57 C58 C67 C68 C78
C12 1.00 0.30 0.34 0.58 0.69 0.72 0.74 0.31 0.32 0.47 0.49 0.50 0.51 0.86 0.29 0.31 0.31 0.31 0.35 0.36 0.35 0.34 0.71 0.71 0.69 0.20 0.24 -0.62
C13 0.30 1.00 0.98 0.56 0.36 0.31 0.29 0.98 0.98 0.77 0.76 0.75 0.75 0.13 1.00 1.00 1.00 1.00 0.96 0.97 0.97 0.97 0.10 0.39 0.41 -0.21 -0.15 -0.51
C14 0.34 0.98 1.00 0.62 0.41 0.36 0.33 0.95 1.00 0.85 0.83 0.83 0.82 0.13 0.97 0.98 0.98 0.98 0.99 1.00 1.00 1.00 0.12 0.44 0.46 -0.21 -0.14 -0.56
C15 0.58 0.56 0.62 1.00 0.90 0.86 0.83 0.54 0.60 0.80 0.82 0.83 0.84 0.49 0.55 0.57 0.57 0.57 0.62 0.64 0.63 0.63 0.58 0.92 0.94 -0.02 0.08 -0.76
C16 0.69 0.36 0.41 0.90 1.00 0.99 0.99 0.34 0.39 0.55 0.59 0.60 0.61 0.67 0.35 0.38 0.39 0.38 0.39 0.42 0.42 0.42 0.63 0.97 0.97 0.27 0.35 -0.82
C17 0.72 0.31 0.36 0.86 0.99 1.00 1.00 0.30 0.34 0.49 0.53 0.54 0.55 0.71 0.31 0.34 0.34 0.34 0.34 0.37 0.37 0.37 0.64 0.96 0.95 0.33 0.41 -0.82
C18 0.74 0.29 0.33 0.83 0.99 1.00 1.00 0.28 0.31 0.46 0.50 0.51 0.52 0.74 0.28 0.31 0.32 0.31 0.31 0.34 0.34 0.34 0.67 0.95 0.94 0.34 0.41 -0.80
C23 0.31 0.98 0.95 0.54 0.34 0.30 0.28 1.00 0.95 0.74 0.74 0.73 0.73 0.19 0.98 0.98 0.98 0.98 0.95 0.95 0.95 0.95 0.10 0.38 0.40 -0.21 -0.15 -0.49
C24 0.32 0.98 1.00 0.60 0.39 0.34 0.31 0.95 1.00 0.84 0.82 0.81 0.81 0.12 0.98 0.98 0.98 0.98 0.99 1.00 1.00 1.00 0.10 0.41 0.44 -0.21 -0.14 -0.54
C25 0.47 0.77 0.85 0.80 0.55 0.49 0.46 0.74 0.84 1.00 1.00 1.00 0.99 0.19 0.76 0.77 0.77 0.77 0.86 0.86 0.86 0.85 0.24 0.59 0.61 -0.20 -0.12 -0.64
C26 0.49 0.76 0.83 0.82 0.59 0.53 0.50 0.74 0.82 1.00 1.00 1.00 1.00 0.23 0.75 0.76 0.76 0.76 0.85 0.85 0.84 0.84 0.26 0.62 0.65 -0.17 -0.08 -0.67
C27 0.50 0.75 0.83 0.83 0.60 0.54 0.51 0.73 0.81 1.00 1.00 1.00 1.00 0.24 0.74 0.75 0.75 0.75 0.84 0.84 0.84 0.83 0.27 0.63 0.66 -0.17 -0.08 -0.67
C28 0.51 0.75 0.82 0.84 0.61 0.55 0.52 0.73 0.81 0.99 1.00 1.00 1.00 0.26 0.74 0.75 0.75 0.75 0.84 0.84 0.83 0.83 0.28 0.64 0.67 -0.16 -0.08 -0.67
C34 0.86 0.13 0.13 0.49 0.67 0.71 0.74 0.19 0.12 0.19 0.23 0.24 0.26 1.00 0.13 0.15 0.15 0.14 0.16 0.15 0.15 0.14 0.69 0.67 0.65 0.29 0.33 -0.53
C35 0.29 1.00 0.97 0.55 0.35 0.31 0.28 0.98 0.98 0.76 0.75 0.74 0.74 0.13 1.00 1.00 1.00 1.00 0.96 0.96 0.97 0.97 0.09 0.38 0.40 -0.20 -0.14 -0.50
C36 0.31 1.00 0.98 0.57 0.38 0.34 0.31 0.98 0.98 0.77 0.76 0.75 0.75 0.15 1.00 1.00 1.00 1.00 0.96 0.97 0.97 0.97 0.11 0.41 0.43 -0.19 -0.12 -0.53
C37 0.31 1.00 0.98 0.57 0.39 0.34 0.32 0.98 0.98 0.77 0.76 0.75 0.75 0.15 1.00 1.00 1.00 1.00 0.95 0.97 0.97 0.97 0.11 0.41 0.43 -0.18 -0.11 -0.54
C38 0.31 1.00 0.98 0.57 0.38 0.34 0.31 0.98 0.98 0.77 0.76 0.75 0.75 0.14 1.00 1.00 1.00 1.00 0.95 0.97 0.97 0.97 0.11 0.41 0.43 -0.18 -0.11 -0.53
C45 0.35 0.96 0.99 0.62 0.39 0.34 0.31 0.95 0.99 0.86 0.85 0.84 0.84 0.16 0.96 0.96 0.95 0.95 1.00 0.99 0.99 0.99 0.11 0.43 0.45 -0.23 -0.16 -0.54
C46 0.36 0.97 1.00 0.64 0.42 0.37 0.34 0.95 1.00 0.86 0.85 0.84 0.84 0.15 0.96 0.97 0.97 0.97 0.99 1.00 1.00 1.00 0.13 0.45 0.47 -0.21 -0.14 -0.57
C47 0.35 0.97 1.00 0.63 0.42 0.37 0.34 0.95 1.00 0.86 0.84 0.84 0.83 0.15 0.97 0.97 0.97 0.97 0.99 1.00 1.00 1.00 0.12 0.45 0.47 -0.20 -0.13 -0.57
C48 0.34 0.97 1.00 0.63 0.42 0.37 0.34 0.95 1.00 0.85 0.84 0.83 0.83 0.14 0.97 0.97 0.97 0.97 0.99 1.00 1.00 1.00 0.12 0.45 0.47 -0.19 -0.12 -0.57
C56 0.71 0.10 0.12 0.58 0.63 0.64 0.67 0.10 0.10 0.24 0.26 0.27 0.28 0.69 0.09 0.11 0.11 0.11 0.11 0.13 0.12 0.12 1.00 0.67 0.66 -0.08 -0.06 -0.33
C57 0.71 0.39 0.44 0.92 0.97 0.96 0.95 0.38 0.41 0.59 0.62 0.63 0.64 0.67 0.38 0.41 0.41 0.41 0.43 0.45 0.45 0.45 0.67 1.00 1.00 0.20 0.28 -0.79
C58 0.69 0.41 0.46 0.94 0.97 0.95 0.94 0.40 0.44 0.61 0.65 0.66 0.67 0.65 0.40 0.43 0.43 0.43 0.45 0.47 0.47 0.47 0.66 1.00 1.00 0.18 0.27 -0.80
C67 0.20 -0.21 -0.21 -0.02 0.27 0.33 0.34 -0.21 -0.21 -0.20 -0.17 -0.17 -0.16 0.29 -0.20 -0.19 -0.18 -0.18 -0.23 -0.21 -0.20 -0.19 -0.08 0.20 0.18 1.00 0.99 -0.53
C68 0.24 -0.15 -0.14 0.08 0.35 0.41 0.41 -0.15 -0.14 -0.12 -0.08 -0.08 -0.08 0.33 -0.14 -0.12 -0.11 -0.11 -0.16 -0.14 -0.13 -0.12 -0.06 0.28 0.27 0.99 1.00 -0.60
C78 -0.62 -0.51 -0.56 -0.76 -0.82 -0.82 -0.80 -0.49 -0.54 -0.64 -0.67 -0.67 -0.67 -0.53 -0.50 -0.53 -0.54 -0.53 -0.54 -0.57 -0.57 -0.57 -0.33 -0.79 -0.80 -0.53 -0.60 1.00
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From Figure 6.12 to Figure 6.17, correlation matrices are provided to observe a visual display 
of correlations between the normalized capacitances. These matrices are developed in 
MATLAB through the script provided in Appendix-G. 

From Figure 6.12 it is clearly evident that capacitances C16, C17 and C18 have a high 
correlation coefficient, which is more than 0.99. So out of these three only one can be used as 
a feature for machine learning model. This enables reduction of features by two. 

 
Figure 6.12: Correlation matrix C12 to C18 

As seen from Figure 6.13, capacitances C25, C26, C27 and C28 have a high correlation 
coefficient between them. The correlation coefficient is more than 0.99 between them. This 
enables the use of only one of these capacitances as feature of machine learning model. This 
makes it possible the reduction of feature by three. 

 
Figure 6.13: Correlation matrix C23 to C28 
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Figure 6.14 is a correlation matrix having C34, C35, C36, C37 and C38 capacitances. C35, 
C36, C37 and C38 have a correlation coefficient of 1 between them. Therefore, only one out 
of these four can be used as a feature for machine learning model. Four features have been 
reduced to one through this analysis. 

 
Figure 6.14: Correlation matrix C34 to C38 

As evident from Figure 6.15, C46, C47, C48 and C45 show a high level of correlation with that 
correlation coefficient more than 0.99. Out of these four capacitances only one can be used as 
a feature for machine learning model. This enabled the reduction of features by three. 

 
Figure 6.15: Correlation matrix C45 to C48 
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Looking at Figure 6.16, C57 and C58 are having a perfect correlation coefficient of 1. Only 
one of them can be used as a feature for machine learning model. This made it possible to 
reduce features by 1. 

 
Figure 6.16: Correlation matrix C56 to C58 

As seen in Figure 6.17, normalized capacitance C67 is showing high correlation with C68 with 
a correlation coefficient of 0.99. Only one of them can be used as a feature for machine learning 
models based on the correlation coefficient. This reduced features by one. 

 
Figure 6.17: Correlation matrix C67 to C68 
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Therefore, after correlation analysis of inter-electrode normalized capacitances, 28 normalized 
capacitances can be reduced to 15 normalized capacitances and used as features for flow regime 
classification models. 

6.1.1.3 Spectrograms of Flow Regimes from ECT Normalized Capacitances 

There is another way to see the overview of ECT data by using spectrograms. Appendix – H 
provides a Python script to generate spectrograms of normalized capacitances of specific flow 
regimes [51]. In this particular script, ‘signal’ library from ‘SciPy’ library is imported to use 
its signal processing functions. The main function, to generate spectrograms in this script, is 
‘signal.spectrogram’ that takes inputs of normalized capacitances for a particular flow regime. 

A comparison of spectrograms of capacitance C27 for five flow regimes is given in Table 6.1. 
The images are rotated in the table. The horizontal axis is the total number of experiments taken 
in a series of time for a regime. The vertical axis is the frequency in Hz. The density of color 
in the spectrogram determines the capacitances region of frequency. 

It is readily observed that for C27, the spectrograms provide clear distinction between the five 
flow regimes. Stratified regime lies mainly in the region of 0.01 to 0.05Hz. The frequency 
response varies with time. Wavy flow provides a wavy spectrogram with frequencies reaching 
up to 0.25Hz. Annular flow follows the same pattern of annular flow in the pipe with 
frequencies lying consistently from 0 to 0.25Hz.  Plug is denser than annular in the 
spectrograms and in the spectrogram of slug, there are absence of frequencies intermittently 
during the time-series. 

These images can be used as inputs to flow regimes classification neutral network to create 
classification models. Similar spectrograms can be developed for the other 27 capacitances. 
Spectrograms are a better option than box plots to observe normalized capacitance data in terms 
of distinction of flow regimes.  

Table 6.1: Comparison of spectrograms of normalized capacitance C27 of flow regimes 

Stratified 
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Wavy 

 

Annular 

 

Plug 
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Slug 

 

6.1.1.4 Feature Engineering 

6.1.1.4.1 Flow Regime Classification 

After EDA, the task is to decide on the features to be used for flow regime classification 
algorithms. Since there is availability of 28 capacitances per frame of ECT data and EDA was 
performed on these 28 capacitances, these can be used as features. So, after performing EDA 
on ECT data, it is decided to use 28 normalized capacitances as inputs to machine learning 
algorithms for flow regime classification. Also, based on box plots and correlation analysis, a 
case of using only 15 capacitances as features is also considered reducing the inputs by 53%. 
Both of these cases are considered in the flow classification models to compare their effect on 
model accuracy. The basic way of feature extraction from ECT data is shown in Figure 6.18. 
The Python script of Appendix-B is used to achieve this transformation.  

 

 
Figure 6.18: Feature Engineering for Flow Regime Classification by using normalized capacitances of ECT 

The method to develop the flow regime classification model is illustrated in Figure 6.19. In 
this model, 28 normalized capacitances from ECT are used as inputs to the machine learning 
algorithms while flow regimes are used as labels. 
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Figure 6.19: Model for flow regime classification using 28 normalized capacitances as features 

Another method to classify flow regime is by fusing different types of sensors. This method is 
generally known as Sensor Fusion. The model for Sensor Fusion concept is shown as Figure 
6.20. In this method, 28 normalized capacitances along with pressure sensor signals in mbar 
are used as inputs to the machine learning algorithms while flow regimes are used as labels. 
This transformation of features is achieved through a Python script provided in Appendix – D. 
The pressure and flow sensors data were sampled at 1s while ECT sampling was at 10ms. 
Therefore, every 100th frame from ECT normalized capacitance file was extracted and clubbed 
with the pressure and flow sensors data. 



 Methods & Results 

59 

 
Figure 6.20: Model for flow regime classification using 28 normalized capacitances and pressure signals as 

features 

6.1.1.4.2 Flow Velocity Estimation 

Flow Velocity is a dynamic parameter. Prediction of flow velocity is not a classification 
problem. The applicability of two planes of ECT comes into picture in this case of flow velocity 
estimation. Since flow velocity involves time, the normalized capacitances from the two planes 
of ECT can be cross-correlated to find similarities between them. So, if the highest correlation 
coefficient is found after 4 lags, then the time taken by the flow from one plane to another is 
corresponding to 4 lags. 1 lag is equal to 10ms, the frame sampling time. So the time taken in 
4 lags is 40ms. When the distance between the planes is divided by this time, the approximate 
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value of flow velocity can be calculated in m/s. The entire concept is shown in Figure 6.21. 28 
normalized capacitances are cross-correlated. For instance, C12 of Plane 1 is cross-correlated 
with C12 of Plane 2 to find the lag at the highest correlation coefficient. The same cross-
correlation is repeated with the other 27 capacitances. MATLAB script of Appendix – I is used 
to analyse cross-correlation of dual plane ECT data. 

 

 
Figure 6.21: Concept of Flow velocity estimation by using cross correlation of dual-plane ECT data 

 

6.1.1.4.3 Volume Ratio Estimation 

Volume ratio in this thesis refers to the ratio of cross-sectional area of liquid phase to the total 
cross-sectional inside area of the pipe. This volume ratio can be estimated by processing images 
generated from the normalized capacitances of ECT for every frame.  

Regression algorithms can be employed to estimate this volume ratio by selecting the features 
properly. In this thesis, 3 features namely differential pressure from differential pressure 
sensors PDT120 and PDT121, and input air flow rate from flow meter FT131 are used as inputs 
to the regression algorithms. The labels are the inverse of volume ratio in percentages extracted 
from the Volume Ratio ‘AVR’ files obtained from the normalized capacitances of ECT as 
shown in Figure 6.22. Python script of Appendix-E is created to bring about this feature 
transformation. The inverse of volume ratio is used as label of these algorithms as shown in 
Figure 6.22. 
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Figure 6.22: Model of volume ratio estimation by using differential pressure meters and a flow meter 

6.1.2 Ultrasonic Data Analysis 

6.1.2.1 Feature Engineering 

The ultrasonic data collected during experiments was in the form of binary files containing 863 
A-scans for each experiment of a specific flow regime. Each A-scan consisted of 9596 
ultrasonic signals received by the receiver in the pitch-catch technique. Since the quantity of 
data was huge to be used as input to machine learning algorithm, statistical features were 
extracted from each A-scan as shown in Figure 6.23. The features of mean, maximum, standard 
deviation, normalized standard deviation, sum of all the points in the envelope, square of sum 
of all the points in the envelope were extracted by using the MATLAB script of Appendix-K. 
By using this technique, the total number of input data points to the machine learning 
algorithms was reduced by 99.94% for each experiment.  
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Figure 6.23: Feature Engineering on ultrasonic data for regime classification 
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6.2 Data-Driven Multiphase Flow Metering Models 

6.2.1 ECT Classification and Estimation Models 
In this section, models to identify flow regimes and to estimate flow velocity and volume ratio 
are developed with collected data from ECT by using the features extracted from the data. 

6.2.1.1 Flow Regime Identification – Model 1 

Flow regime classification is a multi-class classification problem. In this problem, the 
classification model should be able to identify correct flow regime by looking at the input data 
provided to it. A flow regime classification model is shown in Figure 6.24 which is based on 
the feature engineering described in Figure 6.19 in the previous section. The architecture is 
shown in Table 6.2 which has 28 inputs and 1 output. The idea behind this model is that each 
frame of 28 normalized capacitances is used as inputs to the model and after training, the model 
is expected to classify these 28 inputs to a specific flow regime. To train the model 135000 
samples containing features and labels are used.  

 

 
Figure 6.24: Model 1 for flow regime classification using 28 normalized capacitances as inputs and flow regime 

as output 

 

Table 6.2: Architecture for flow regime identification with 28 normalized capacitances as inputs and flow 
regime as output 

Architecture No. 1  

Samples 135000 rows 29 columns 

Inputs / Features 28 
C12, C13, C14, C15, C16, C17, C18, C23, C24, C25, 
C26, C27, C28, C34, C35, C36, C37, C38, C45, C46, 
C47, C48, C56, C57, C58, C67, C68, C78 
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Outputs / Labels 1 
Flow Regime 
(1 - Stratified, 2 - Wavy, 3 - Annular, 4 - Slug, 5 - 
Plug) 

6.2.1.1.1 Neural Network  

The first model developed for this multi-class classification problem is an Artificial Neural 
Network in MATLAB. MATLAB’s Neural Net Pattern Recognition App is used to develop a 
feed forward neural network (NN) with one hidden layer containing 10 neurons. The details of 
the neural network are provided in Table 6.3. The architecture of the NN from MATLAB is 
shown in Figure 6.25.  

The type of Neural Network used is Feedforward Neural Network with 28 inputs and 5 outputs. 
There are five outputs because MATLAB’s Neural Net Pattern Recognition App takes nominal 
data type as inputs to the App. There is one hidden layer with 10 neurons and an output layer 
that provides a nominal output in the form of 1s and 0s. The 135000 samples are divided into 
training, validation and testing data in the ratio 70:15:15. The activation function used in the 
hidden layer is tansig. 

Table 6.3: Details of Neural Network for flow regime identification with 28 normalized capacitances as inputs 
and flow regime as output 

Type Feedforward 

Number of inputs 28 

Input data type Float 

Number of outputs 5 

Output data type Nominal 

Number of hidden layers 1 

Number of neurons in hidden layer 10 

Training: Validation: Testing Ratio 70:15:15 

Activation Functions in Hidden Layer tansig 
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Figure 6.25: Neural Network Architecture in MATLAB for flow regime identification with 28 normalized 

capacitances as inputs and flow regime as output 

After setting up the parameters of the neural network, the neural network is trained. The 
algorithms used in training and the training progress is shown in Figure 6.26. It was trained in 
336 iterations. 

 
Figure 6.26: Training of NN for flow regime identification with 28 normalized capacitances as inputs and flow 

regime as output 

The confusion matrices for training, validation and testing are shown in Figure 6.27. It can be 
observed that Stratified, Annular and Wavy regimes have a classification accuracy of more 
than 99.6% for test data set. The overall testing accuracy is 96.6%. The training performance 
is shown in Figure 6.28. The accuracies obtained from the NN are summarized in Table 6.4.  
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Figure 6.27: Confusion Matrices of NN for flow regime identification with 28 normalized capacitances as inputs 

and flow regime as output (1-Stratified, 2-Wavy, 3-Annular, 4-Plug, 5-Slug) 
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Figure 6.28: Training performance of the NN for flow regime identification with 28 normalized capacitances as 

inputs and flow regime as output 

 

Table 6.4: Results of the NN model for flow regime identification with 28 normalized capacitances as inputs 
and flow regime as output 

Results Accuracy 

Training Accuracy 96.5% 

Validation Accuracy 96.8% 

Testing Accuracy 96.6% 

Overall Accuracy 96.5% 

6.2.1.1.2 Results from Other Machine Learning Models 

In the previous section, a flow regime classification model using Neural Network was trained. 
Other than Neural Network, the Classification Learner App of MATLAB is employed to 
develop a plethora of machine learning models for flow regime classification. KNN, SVM, 
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Decision Tree (DT) and Linear Discriminant (LD) algorithms are used to train machine 
learning models for flow regime classification. 25% of the data was kept aside for validation 
and 75% was used for training. The overall validation accuracy from these algorithms to 
classify flow regime is given in Figure 6.29. KNN gives the highest accuracy while LD has the 
lowest accuracy. 

 
Figure 6.29: Comparison of accuracy from various algorithms for flow regime identification with 28 normalized 

capacitances as inputs and flow regime as output 

The validation confusion matrices of KNN model is provided in Figure 6.30. It is able to 
classify Annular, Stratified and Wavy regimes perfectly. Slug and Plug regimes have a low 
percentage of misclassification.  

 

 
Figure 6.30: Confusion Matrices of KNN (Validation) for flow regime identification with 28 normalized 

capacitances as inputs and flow regime as output 

Table 6.5 provides details of parameters of the machine learning algorithms to classify flow 
regimes. LD and DT are the fastest algorithms with good accuracy for flow regime 
classification.  
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Table 6.5: Comparison of parameters of machine learning models for flow regime identification with 28 
normalized capacitances as inputs and flow regime as output 

Algorithm Accuracy 

(%) 

Total 

Misclassification 

cost 

Prediction 

speed 

(observations/s) 

Training 

time (s) 

Other 

details 

KNN 98.8% 1084 1400 131.38 Fine KNN, 1 

neighbor 

DT 96.6% 2322 1500000 1.66 Fine Tree, 

Maximum 

number of 

splits: 100 

LD 92.7% 4812 570000 1.3 Full 

covariance 

SVM 94.8% 3523 180000 119.4 Linear 

Kernel, one-

vs-one 

multiclass 

method 

6.2.1.2 Flow Regime Identification – Model 2 

After using only ECT data to classify flow regimes, another model is created based on Sensor 
Fusion concept in this section. The data from pressure sensors including differential pressure 
sensors are clubbed with the normalized capacitances from ECT to develop a flow regime 
classification model. This model is tested to observe any performance improvements in flow 
regime model of the previous section. The model's framework is shown in Figure 6.31. The 
detailed architecture is provided in Table 6.6. The architecture has 31 inputs and 1 output. 
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Figure 6.31: Sensor Fusion Model for flow regime identification for flow regime identification with 28 

normalized capacitances and pressure sensors as inputs and flow regime as output 

 

Table 6.6: Architecture for flow regime identification for flow regime identification with 28 normalized 
capacitances, PDT120, PDT121 and PT131 as inputs and flow regime as output 

Architecture No. 2  

Samples 1350 rows 32 columns 

Inputs 31 
C12,C13,C14,C15,C16,C17,C18,C23,C24,C25,C26,C
27,C28,C34,C35,C36,C37,C38,C45,C46,C47,C48,C5
6,C57,C58,C67,C68,C78,PDT120,PDT121,PT131 

Outputs 1 
Flow Regime 
(1 - Stratified, 2 - Wavy, 3 - Annular, 4 - Slug, 5 - 
Plug) 

MATLAB’s Classification Learner App is used to train this model.  There are 1350 samples 
for inputs. The performance of the all the algorithms improves drastically when all 31 features 
are considered as shown in Figure 6.32. In this case, SVM performs better than other algorithms 
with a 5-fold cross-validation accuracy of 99.1%. The confusion matrix for SVM is given in 
Figure 6.33.  
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Figure 6.32: Performance of algorithms for flow regime identification with 28 normalized capacitances, 

PDT120, PDT121 and PT131 as inputs and flow regime as output 

 
Figure 6.33: Confusion matrices of SVM for flow regime identification with 28 normalized capacitances, 

PDT120, PDT121 and PT131 as inputs and flow regime as output 

 

To test the impact of only pressure sensors on the flow regime classification, a model with only 
3 inputs from pressure sensors is developed. By using PT131, PDT121 and PDT120 as inputs, 
96.2% accuracy was observed in KNN algorithm as shown in Figure 6.34 and its confusion 
matrices are shown in Figure 6.35. It is observed here that the accuracy is less than the previous 
models with ECT and with sensor fusion. Therefore, it can be said that sensor fusion improves 
flow regime classification accuracy.   
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Figure 6.34: Performance of algorithms for flow regime identification with 3 pressure sensors as inputs and flow 

regime as output 

 

 
Figure 6.35: Confusion Matrices for KNN for flow regime identification with pressure sensors as inputs and 

flow regime as output 

6.2.1.3 Flow Regime Identification – Model 3 

In the previous section, samples as huge as 135000x29 in number were used to train machine 
learning models. This huge number of samples is not suitable for all the computing machines 
such as microcontrollers and wherever possible a lesser number of samples is preferred. During 
EDA, reduction of samples was discussed based on box plots and correlation analysis. Based 
on the reduction strategy, a model is proposed as shown in Figure 6.36 where input features 
are reduced to 15 normalized capacitances based on the similarity of distribution observed in 
normalized capacitances.  The architecture is given in Table 6.7. The architecture has 15 inputs 
and 1 output.  
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Figure 6.36: Model with reduced features through exploratory data analysis 

 

Table 6.7: Architecture for for flow regime identification with 15 normalized capacitances as inputs and flow 
regime as output 

Architecture No. 3  

Samples 135000 rows 16 columns 

Inputs 15 
C12,C13,C14,C15,C16,C23,C24,C25,C34,C35,C45,C
56,C57,C67,C78 

Outputs 1 
Flow Regime 
(1 - Stratified, 2 - Wavy, 3 - Annular, 4 - Slug, 5 - 
Plug) 

In this model, the performance of machine learning algorithms is compared by considering 
only 15 inputs based on the similarity of normalized capacitances seen in box plots and 
correlation analysis. In this case, KNN performs better than other algorithms with a 25% 
validation accuracy of 98.5% as seen in Figure 6.37. The confusion matrices for KNN are given 
in Figure 6.38. Good accuracy is still achieved after reduction of features. 

 

 
Figure 6.37: Performance of machine learning algorithms for flow regime identification with 15 normalized 

capacitances as inputs and flow regime as output 
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Figure 6.38: Confusion matrices of KNN algorithm for flow regime identification with 15 normalized 

capacitances as inputs and flow regime as output 

6.2.1.4 Flow Velocity Estimation 

In this section, a model based on Figure 6.21 to estimate flow velocity through cross correlation 
techniques is presented. The normalized capacitances at the two planes of ECT are cross-
correlated to find the peak correlation between them. For instance, the series of capacitances 
between electrode 1 and 2 at plane 1 is correlated with the series of capacitances between 
electrode 1 and 2 at plane 2 of ECT. The peak corresponds to the degree of similarity between 
the two capacitances. Only Annular, Plug and Slug flow regimes are considered for this model 
because of their dynamic nature of flow. The distance between the two planes is 0.187 m. The 
flow velocity is calculated by dividing the distance between the planes by the lag time. The 
time per lag is 10ms.  

6.2.1.4.1 Annular 

6.2.1.4.1.1 Case 1: Water - 2 kg/min, Air – 4 kg/min 

From Table 6.8, it is observed that the cross correlation lag for 8 capacitances is approximately 
120 to 130ms. Therefore, the flow velocity is estimated to be 0.187/0.13 = 1.43 m/s for this 
experiment. Higher lags are disregarded as they likely arise from random fluctuations. 

Table 6.8: Cross correlation for Water - 2 kg/min, Air – 4 kg/min 

Capacitance 
Peak Correlation 

Lag 
Capacitance 

Peak Correlation 

Lag 

C12 0 C35 0 

C13 0 C36 -12 

C14 0 C37 -1664 

C15 0 C38 -2992 
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C16 -13 C45 0 

C17 -13 C46 -13 

C18 -13 C47 -2992 

C23 -175 C48 -2992 

C24 0 C56 -35 

C25 0 C57 -2787 

C26 -12 C58 2997 

C27 -2993 C67 -13 

C28 -2963 C68 -13 

C34 0 C78 0 

 

6.2.1.4.1.2 Case 2: Water - 2 kg/min, Air – 5 kg/min 

From Table 6.9, it is observed that the cross correlation lag for 10 capacitances is approximately 
90 to 110ms. Therefore, the flow velocity is estimated to be 0.187/0.10 = 1.87 m/s for this 
experiment. Higher lags are disregarded as they likely arise from random fluctuations. 

Table 6.9: Cross correlation for Water - 2 kg/min, Air – 5 kg/min 

Capacitance 
Peak Correlation 

Lag 
Capacitance 

Peak Correlation 

Lag 

C12 0 C35 0 

C13 0 C36 -9 

C14 0 C37 -2994 

C15 -6 C38 -2997 

C16 -10 C45 -1 

C17 -10 C46 2997 

C18 -10 C47 -2997 

C23 -2997 C48 -2996 

C24 0 C56 -9 

C25 0 C57 -10 

C26 2860 C58 -9 

C27 -2994 C67 -10 

C28 2997 C68 -10 

C34 0 C78 -11 
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6.2.1.4.2 Plug 

6.2.1.4.2.1 Case 1: Water - 76 kg/min, Air – 0.11 kg/min 

From Table 6.10, it is observed that the cross correlation lag for 28 capacitances is 
approximately 100 to 130ms. Therefore, the flow velocity is estimated to be 0.187/0.13 = 1.43 
m/s for this experiment. 

Table 6.10: Cross correlation for Water - 76 kg/min, Air – 0.11 kg/min 

Capacitance 
Peak Correlation 

Lag 
Capacitance 

Peak Correlation 

Lag 

C12 -13 C35 -12 

C13 -12 C36 -12 

C14 -10 C37 -12 

C15 -12 C38 -12 

C16 -11 C45 -10 

C17 -11 C46 -10 

C18 -11 C47 -10 

C23 -11 C48 -10 

C24 -10 C56 -12 

C25 -12 C57 -12 

C26 -12 C58 -12 

C27 -12 C67 -10 

C28 -12 C68 -10 

C34 -11 C78 -11 

  

6.2.1.4.2.2 Case 2: Water - 77 kg/min, Air – 0.07 kg/min 

From Table 6.11, it is observed that the cross correlation lag for 23 capacitances is 
approximately 100 to 150ms. Therefore, the flow velocity is estimated to be 0.187/0.15 = 1.24 
m/s for this experiment. Lower lags are disregarded as they likely arise from random 
fluctuations. 

Table 6.11: Cross correlation for Water - 77 kg/min, Air – 0.07 kg/min 

Capacitance 
Peak Correlation 

Lag 
Capacitance 

Peak Correlation 

Lag 

C12 -15 C35 -15 
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C13 -15 C36 -15 

C14 -12 C37 -15 

C15 -15 C38 -15 

C16 -1 C45 -13 

C17 -2 C46 -13 

C18 -3 C47 -12 

C23 -14 C48 -12 

C24 -12 C56 -14 

C25 -14 C57 -2 

C26 -14 C58 0 

C27 -14 C67 -10 

C28 -14 C68 -10 

C34 -13 C78 -11 

 

6.2.1.4.3 Slug 

6.2.1.4.3.1 Case 1: Water - 75 kg/min, Air – 0.3 kg/min 

From Table 6.12, it is observed that the cross correlation lag for 28 capacitances is 
approximately 50 to 70ms. Therefore, the flow velocity is estimated to be 0.187/0.07 = 2.67 
m/s for this experiment. 

Table 6.12: Cross correlation for Water - 75 kg/min, Air – 0.3 kg/min 

Capacitance 
Peak Correlation 

Lag 
Capacitance 

Peak Correlation 

Lag 

C12 -6 C35 -6 

C13 -6 C36 -6 

C14 -6 C37 -6 

C15 -6 C38 -6 

C16 -6 C45 -6 

C17 -6 C46 -6 

C18 -6 C47 -6 

C23 -5 C48 -6 

C24 -6 C56 -7 

C25 -6 C57 -7 

C26 -6 C58 -7 
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C27 -6 C67 -5 

C28 -6 C68 -5 

C34 -6 C78 -6 

  

6.2.1.4.3.2 Case 2: Water - 77 kg/min, Air – 0.5 kg/min 

From Table 6.13, it is observed that the cross correlation lag for 28 capacitances is 
approximately 30 to 50ms. Therefore, the flow velocity is estimated to be 0.187/0.05 = 3.74 
m/s for this experiment. 

Table 6.13: Cross correlation for Water - 77 kg/min, Air – 0.5 kg/min 

Capacitance 
Peak Correlation 

Lag 
Capacitance 

Peak Correlation 

Lag 

C12 -5 C35 -4 

C13 -4 C36 -4 

C14 -4 C37 -4 

C15 -4 C38 -4 

C16 -4 C45 -4 

C17 -4 C46 -5 

C18 -4 C47 -4 

C23 -3 C48 -4 

C24 -4 C56 -4 

C25 -4 C57 -4 

C26 -5 C58 -4 

C27 -5 C67 -4 

C28 -5 C68 -4 

C34 -5 C78 -4 

  

6.2.1.5 Volume Ratio Estimation 

To estimate volume ratio (VR), differential pressure meters and a flow meter are considered as 
inputs. The volume ratio data obtained from ECT are considered as target variables. The 
architecture is shown in Table 6.14. PDT120, PDT121 and FT131 are taken as inputs to the 
NN. The visual display of the architecture is shown in Figure 6.39. The details of the NN are 
given in Table 6.15. 
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Table 6.14: NN architecture for Volume Ratio Estimation with PDT120, PDT121 and FT131 as inputs and 
1/Volume Ratio as output 

Architecture No. 4  

Samples 1350 rows 4 columns 

Inputs 3 PDT120, PDT121, FT131 

Outputs 1 Total Volume/Volume of liquid 

 
Figure 6.39: Architecture of NN for for Volume Ratio Estimation with PDT120, PDT121 and FT131 as inputs 

and 1/Volume Ratio as output 

 

Table 6.15: Details of NN for Volume Ratio Estimation with PDT120, PDT121 and FT131 as inputs and 
1/Volume Ratio as output 

Type Feedforward 

Number of inputs 3 

Input data type Float 

Number of outputs 1 

Output data type Float 

Number of hidden layers 1 

Number of neurons in hidden layer 10 

Training: Validation: Testing Ratio 70:15:15 

Activation Functions tansig 

 

The results of the regression NN is shown in Figure 6.40. The model obtained an R value of 
0.95 during testing and an overall R value of 0.95 depicting a good fit. The performance curve 
is given in Figure 6.41. 
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Figure 6.40: Performance of NN for Volume Ratio Estimation with PDT120, PDT121 and FT131 as inputs and 

1/Volume Ratio as output 
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Figure 6.41: Performance of NN for Volume Ratio Estimation with PDT120, PDT121 and FT131 as inputs and 

1/Volume Ratio as output 

6.2.2 Ultrasonic Classification Models 
In this section, models to identify flow regimes are developed with available data of the US 
sensor. Figure 6.23 provides the sequence to extract features from the available US data. The 
six extracted features are used to build flow regime classification models in this section.  

6.2.2.1 Flow Regime Identification – Model 1 

A binary flow regime classification model to classify flow regimes into stratified or annular 
regime is trained in this section. Its architecture is provided in Table 6.16. The architecture 
has 6 inputs and 1 output. 

Table 6.16: Machine Learning architecture for flow regime classification with US features as inputs and binary 
flow regime as output 

Architecture No. 1  

Samples 6904 rows 7 columns 

Inputs 6 Mean of envelope, Maximum of envelope, Standard 
Deviation of envelope, Normalized Standard 
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Deviation of envelope, Sum of all the points in the 
envelope, Square of sum of all the points in the 
envelope 

Outputs 1 Flow Regime – Stratified or Annular 

The model is developed in MATLAB Classification Learner App. The total number of samples 
used in the model is 6904. 15% of the samples were held out for validation. These samples are 
divided equally into stratified and annular flow regime. The model is trained using DT, LD, 
LR, SVM and KNN.  

For this binary classification problem, the performance of the models is provided in Figure 
6.42. Logistic Regression provides the best classification accuracy of 98.6% (validation). 

 
Figure 6.42: Performance of Machine Learning algorithms for flow regime classification with US features as 

inputs and binary flow regime as output 

The confusion matrices for Logistic Regression algorithm are shown in Figure 6.43. This 
model is accurately able to distinguish between stratified and annular regimes.  

 
Figure 6.43: Confusion matrices of Logistic Regression algorithm for flow regime classification with US 

features as inputs and binary flow regime as output 
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6.2.2.2 Flow Regime Identification – Model 2 

A multi-class classification model to classify five flow regimes is developed in this section. 
Its architecture is shown in Table 6.17. The architecture has 6 inputs and 1 output. 

 

Table 6.17: Machine Learning architecture for flow regime classification with US features as inputs and 1 of 5 
flow regimes as output 

Architecture No. 2  

Samples 4315 rows 7 columns 

Inputs 6 

Mean of envelope, Maximum of envelope, Standard 
Deviation of envelope, Normalized Standard 
Deviation of envelope, Sum of all the points in the 
envelope, Square of sum of all the points in the 
envelope 

Outputs 1 

Flow Regime 

(1 - Stratified, 2 - Wavy, 3 - Annular, 4 - Slug, 5 - 
Plug) 

MATLAB’s Classification Learner App is again used here to develop the multi-class 
classification problem. The model has 4315 samples. 15% of the samples are held out for 
validation.  The algorithms of DT, SVM and Ensemble Learning are used to develop this 
model. The performance of the models is shown in Figure 6.44. The accuracy for this model 
was found to be lesser than the binary classification model of the previous section. Ensemble 
Bagged Trees provided the best performance with 70.6% accuracy (validation).  

 
Figure 6.44: Performance of Machine Learning models for flow regime classification with US features as inputs 

and flow regimes as output 

The confusion matrices of Ensemble Bagged Trees are given in Figure 6.45. The accuracy for 
stratified, annular, wavy, plug and slug are 93%, 89.1%, 71.5%, 51.5% and 48.1% respectively. 
As in binary classification model, this model is able to identify stratified and annular fairly 
well. When the interface is moving as in wavy, plug and slug regimes, the model is not able to 
classify the regimes accurately.  
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Figure 6.45: Confusion matrices of Ensemble learning algorithm for flow regime classification with US features 

as inputs and flow regimes as output 

6.3 Flow Visualization with Ultrasonic Sensing and ECT 

6.3.1 Image Processing from Ultrasonic Data 
Ultrasonic data was collected as A-scan amplitude data with 9596 echoes. This collection of 
A-scan was repeated 863 times to generate a B-scan image of a particular flow regime. The 
interface between air and water can be investigated in the B-scan image.  

For ultrasonic imaging, ultrasound transmitter moves around a specimen to generate a B-scan 
of that specimen. Since flow is moving in nature, the ultrasonic sensor can be placed at one 
point on a pipe to get a B-scan image of the flow dynamics as shown in Figure 6.46.  

A sample of A-scan in the existing data contains 9596 received ultrasonic signals. For a B-
scan, 863 samples are collected for each experiment. The transmitter sends ultrasound waves 
into the pipe. The ultrasound waves are reflected at the interface of air and water, and at the 
top of the pipe. The reflected ultrasound waves are logged by the receiver in a binary file. The 
time of flight is the time taken by the ultrasound waves to travel Path A and B. The transmitter 
sends the ultrasound wave. The echoes are captured by the receiver. This one line of data of 
reflected echoes is known as A-scan. A collection of A-scan data is known as B-scan. [32] 
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Figure 6.46: Ultrasonic Pitch-Catch Technique to obtain B-scan of two-phase flow by collecting 863 A-scans 

for each experiment of air and water combination 

The A-scans are combined and processed as a B-scan image by using a MATLAB program 
given in Appendix-J written by Tonni F. Johansen. The images for stratified, wavy, annular, 
slug and plug flow regimes generated through this program are provided in Figure 6.47, Figure 
6.48, Figure 6.49, Figure 6.50 and Figure 6.51 respectively.  

The interface of air and water in a two-phase stratified flow is easily observed in the B-scan 
image since in stratified flow, the flow is not turbulent. When looking at the B-scan image, the 
strong reflections or echoes are observed at the interface of water and air in the pipe. For 
Stratified flow, this reflection is observed at t=60µs as a horizontal line as seen in Figure 6.47. 
It is the strongest, brightest and dominant reflection compared to all the other reflections. Other 
reflections are due to the higher order scattering between water and lower pipe wall. These 
reflections are called ghost reflections. [52] 

B-scan of Wavy flow (Figure 6.48) shows similar reflection at the air-water interface but with 
a wave shape formed by the movement of water phase in the shape of waves. Here strong 
reflections are seen at t=60µs and 100µs. Further investigation is required to find the interface. 
It is easy to distinguish stratified flow and wavy flow from the B-scan images. 

A B-scan of Annular flow is given in Figure 6.49. It consists of a lot of reflections because the 
air phase is at the center of the pipe while the water phase is at the periphery of the pipe. The 
reflections are also due to water falling at the bottom of the pipe due to gravity and scattering 
effects. Two strong reflections are observed in the B-scan at t=30µs and t=90µs. 

In the B-scans of slug and plug flows (Figure 6.50 and Figure 6.51), the interface is seen to be 
moving vertically with time with a small gap of no reflection where the pipe is completely full 
with water phase.  

Based on the visual inspection of the B-scan images, the five flow regimes can be distinguished. 
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Figure 6.47: B-scan image for stratified flow 

 
Figure 6.48: B-scan image for wavy flow 
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Figure 6.49: B-scan image for annular flow 

 
Figure 6.50: B-scan image for slug flow 
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Figure 6.51: B-scan image for plug flow 

Void fraction can also be calculated based on B-scan images of stratified flow regime. [52] 

The distance (Dw) from the bottom of the image to the interface can be measured from the 
image. The distance (Dg) from the top of the image to the interface can be measured from the 
image. An estimate of void fraction can be calculated from Equation (6.1) [52] as: 

Void Fraction =  (6.1)  

6.3.2 Image Processing from ECT Data 
To generate an image from ECT data, the raw binary capacitance files are converted to image 
files with the extension ‘AIM’ using the ECT32 application. The image files contain 3000 
frames of 32 by 32 pixels showing the cross-sectional image of the pipe. A Python program to 
generate an image from ECT image frame is given in Appendix-L. The generated image given 
in Figure 6.52 shows a cross-sectional image of the pipe with distinguishing colors for air and 
water in stratified flow depending on the pixel values in the 32 by 32 matrix of the ECT frame. 
When all the collected 3000 frames per experiment are converted to an image by the script of 
Appendix-L and joined in a video file where all 3000 frames are displayed successively using 
an appropriate frame rate, the dynamic flow in the pipe can be observed as a cross-sectional 
view. 
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Figure 6.52: Image of one ECT frame showing air and water phase in Stratified flow 

A rough estimate of void fraction from ECT image of a frame can be calculated by dividing 
the number of pixels with color depicting air and the number of pixels with color depicting 
water.  

6.3.3 Comparison of ECT and Ultrasonic Tomography 
As seen in the previous sections, ECT and ultrasonic can both be used for online real-time flow 
visualization. There are important differences between ECT and ultrasonic tomography which 
should be considered depending on the user requirements. The differences are provided in 
Table 6.18. 

Table 6.18: Differences between ECT and ultrasonic tomography for flow visualization in a pipe 

Sr. No. ECT Ultrasonic Tomography 

1 The image generated from ECT 

provides a cross-sectional view of flow 

in the pipe 

The image generated from ultrasonic 

provides a time-series side view of flow 

in the pipe  

Air 
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2 Only one cross-sectional frame can be 

seen at a time 

Historical flow interfaces can be seen 

depending on the sampling time 

3 Interfaces are hard to distinguish from 

the cross-sectional view of the flow 

A clear interface between water and air 

can be seen in the B-scan image 

4 A low resolution 32 by 32 image is 

generated with ECT 

A high-resolution side view of the flow 

inside the pipe is generated with 

ultrasonic technology 

5 Complex image processing technique 

is required to show side view from the 

cross-sectional ECT images 

It is easier to generate B-scan image 

from A-scans. 

6.3.4 Comparison of ECT Volume Ratio and US Images to Detect Interface 

 
Figure 6.53: The distances and angles at which ultrasonic waves travel in the pitch-catch technique during the 

experiments performed at USN [53] 

As seen from Figure 6.53, the ultrasonic waves cover 90 mm distance covering the wedge in 
which the ultrasonic transducer is placed and the pipe with outer diameter of 60 mm. The 
transmitter is at an angle of 30° from the horizontal. Based on this knowledge, the total path 
covered by the ultrasonic wave in one direction is calculated through Pythagoras theorem. The 
distance is found to be 105.5 mm. The distance travelled in the wedge is approximately 30 mm. 
Therefore, the distance covered by ultrasonic waves in the pipe is equal to 85.5 min in one 
direction. Based on this knowledge, the B-scan images from ultrasonic sensor can be 
interpreted. 
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The volume ratio from normalized capacitances of ECT can be used to verify the interface echo 
in the B-scan image. A time-series plot of volume ratio depicts the same information as the B-
scan image for air/water two-phase flow. A volume ratio plot for stratified flow regime is 
shown in Figure 6.54 with its corresponding B-scan image. This experiment is performed with 
the flow rate of water at 5 kg/min and the flow rate of air at 0.1 kg/min to generate stratified 
flow regime. As per ECT volume ratio data, the volume ratio remains close to 30%. In the B-
scan, there are 5 reflections that are observed with the brightest one at 60µs. From the volume 
ratio data, the interface should lie around 30% of the pipe diameter. The height of the B-scan 
is approximately 105.5 mm including 30 mm of wedge. If this 30 mm is deducted from the 
height of the B-scan, the interface should lie around 30% of 85.5 mm. This comes to 25.65 
mm. Looking at the B-scan, the second line of echo is the interface line which is near to the 
height of 25.65 mm based on the volume ratio data from ECT. 

 
Figure 6.54: Comparison of ECT volume ratio data and B-scan images to detect air/water interface in the 

stratified regime 

 

Similarly, Figure 6.55 to Figure 6.58 provides the comparison of ECT volume ratio and B-scan 
images of slug, wavy, plug and annular regimes respectively. The interfaces for these regimes 
can be verified to be at around 70, 100, 100 and 70 µs respectively from the discussion above.  
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Figure 6.55: Comparison of ECT volume ratio data and B-scan images to detect air/water interface in the slug 

regime 

 
Figure 6.56: Comparison of ECT volume ratio data and B-scan images to detect air/water interface in the wavy 

regime 

 
Figure 6.57: Comparison of ECT volume ratio data and B-scan images to detect air/water interface in the plug 

regime 
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Figure 6.58: Comparison of ECT volume ratio data and B-scan images to detect air/water interface in the 

annular regime 

 

Another method is explored to find the correct time-of-flight in µs from the B-scan image at 
which there is a presence of interface. Equation (6.2) provides the formula for this method 
where VR is the volume ratio from ECT data. Here it is assumed that the speed of sound in 
water is 1500 m/s. From transmitter to receiver, the ultrasound waves travel twice amount of 
the distance which is assumed to be equal in both directions. [54] 

 

Interface time in B-scan (µs) = 
[2 × (𝑉𝑅 × 56 + 30 + 2)]

1.5
 

 
(6.2)  

 

From Figure 6.54 of stratified regime, VR is equal to 30%. Putting this value in Equation (6.2), 
the interface time comes out to be 65.06µs.  

From Figure 6.56 of wavy regime, VR is equal to 80%. Putting this value in Equation (6.2), the 
interface time comes out to be 102.4µs.  

This confirms that fusing ECT volume ratio data and US B-scan images can improve the 
method for interface detection from B-scan images. 
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7 Discussion 
In this thesis, non-intrusive and non-radioactive ECT and US sensors have been investigated 
for flow regime classification and flow parameters estimation. Raw data from ECT and 
ultrasonic sensors are used to create flow regime classification and flow parameters estimation 
models. Sensor fusion concept is also studied in this thesis to investigate the effect of 
collaboration of different types of sensors on flow regime classification performance. While 
similar work has been done before in previous theses at USN, this is the first time ECT and 
ultrasonic sensors are compared together for their performance in MPFM. Also, none of the 
previous works have studied ECT normalized capacitances in the form of spectrograms and 
box plots. A set of 45 dedicated experiments were performed with the necessary multi-sensor 
data logging for analysis in this thesis. This set of 8-electrode ECT experiments is completely 
different from previous experimental campaigns in scope and structure. The combination of 
flow rates for these experiments are different from previous theses. Volume ratio Neural 
Network model and flow velocity cross-correlation model are developed for the first time in 
this thesis as compared to other theses at USN. In this thesis, very high accuracy is achieved 
for flow regime classification machine learning models by using normalized capacitances only 
as features of classification algorithms. This reduces complex feature engineering stages such 
as eigenvalue extraction from the machine learning pipeline making the classification problem 
simple and computationally light. While 135000 samples were used to develop the 
classification model, lesser number of samples can be used for the same problem without loss 
of much accuracy as seen in the classification model after sensor fusion with 1350 samples. 
Comparison between US and ECT data for visualization of MPF is done for the first time in 
this thesis. 

This thesis shows the importance of sensor fusion in the field of MPFM. In the flow regime 
classification models, sensor fusion has higher accuracy than using only one type of sensor. 
Additionally, combining ECT and US sensors revealed more information about the flow 
interface than by using only US sensor. These results reveal the benefits of sensor fusion in 
MPFM. 

While training machine learning models, Decision Tree algorithm is very fast during training 
while providing good accuracy. This removes the need of complex ANN for MPFM. Decision 
Tree algorithms are computationally light and can be implemented in most of the open-source 
programming languages. 

In flow velocity estimation, the flow velocity is calculated in m/s. Depending on the location 
of cross-correlation region and the type of flow regime, the phase velocity can be judged. For 
instance, the phase velocity of water present around C78 for plug flow from Table 6.10 is 
1.7m/s. 

This thesis shows the applicability of ECT and US sensors in the field of MPFM. They provide 
a great value to this field based on their performance in this thesis. In terms of accuracy of flow 
regime classification, ECT has the potential to replace visual inspection of flow regimes in 
industries. 

In [26], cross-correlation and cross-spectrum techniques were used on ECT and GRT sensors 
data to estimate flow velocities without considering complex flow regimes such as plug and 
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slug. This thesis uses cross-correlation technique on ECT data only to find flow velocities in 
complex flow regimes without using radioactive sensors such as GRT. 

In [27], ECT was used to develop flow regime classification models through statistical 
parameters and filters. In comparison, this thesis employs machine learning algorithms only 
for flow regime classification and flow parameters estimation. 

In [28], two-phase flow regime identification using ECT is presented using SVM only. In this 
thesis, machine learning algorithms of DT, KNN, LR, LD, NN and SVM are used to train two-
phase flow regime classification models. 

In [29] velocity estimation of two-phase flow through ECT using cross-correlation technique 
is studied. However, complex flow regimes are not considered in the study. In this thesis, cross-
correlation technique is used on ECT data to find flow velocities of complex flow regimes such 
as plug and slug. 

In [30], two-phase flow regime identification model is developed through ultrasonic power 
spectral density (PSD) technique. In this thesis, machine learning algorithms are used to 
develop flow regime classification models on ultrasonic A-scan data.  

In [11], a technique to classify 2-phase gas/liquid flow regime in an S-shaped pipeline using 
Doppler ultrasonic sensors is provided using machine learning techniques. In this thesis, 
machine learning models to classify 2-phase air/water flow regime in a horizontal pipeline 
using ultrasonic Pitch-Catch technique are presented.  

The following are some suggestions for future work based on this thesis:  

Doppler technique using ultrasonic sensor for multiphase flow metering [11] can be used to 
compare its results for flow classification with the transit time technique used in this thesis. For 
flow velocity estimation, cross-correlation technique on ultrasonic sensors, which is similar to 
dual plane ECT technique, can be implemented and its results compared with the flow velocity 
estimation technique with ECT. The accuracy of machine learning models may be further 
increased by tuning the hyperparameters of the models. The machine learning models can be 
implemented using Python, which gives a greater control and range over the hyperparameters 
to the user and is applicable for commercial applications. The US and ECT features can be 
combined to test the performance of flow regime classification models. US sensors can be set 
in another configuration such as pulse-echo to test improvements in the performance of flow 
regime classification models. PCA analysis can be performed to reduce features of ECT. 
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8 Conclusion 
In this thesis, data-driven multiphase flow metering with multimodal sensor suite for 
identification of flow regimes, and estimation of phase fractions and velocities in a two-phase 
flow with air and water has been achieved with astounding results. The multimodal sensor suite 
consisted of Electrical Capacitance Tomography and Ultrasonic sensors along with 
conventional sensors.  

A total of 63 ECT experiments were performed with a combination of air and water flow rates 
in the horizontal flow rig at USN. 

A total of 5 ECT and 2 US data-driven MPFM models are developed in this thesis that show 
promising results. 

Using ECT normalized capacitances measurements, machine learning flow classification 
models are created. In the first model, 28 normalized capacitances are used as inputs and flow 
regime is used as output of classification machine learning models. The results of this model 
are shown in Table 8.1 with various machine learning algorithms. With such a high overall 
accuracy, it can be concluded that normalized capacitances are good indicators of flow regimes 
in the horizontal flow pipe. 

Table 8.1: Overall accuracy of flow classification machine learning models with 28 normalized capacitances as 
inputs and flow regime as output 

Machine Learning Algorithm Accuracy 

Neural Network 96.8% 

KNN 98.8% 

Decision Tree 96.6% 

Support Vector Machine 94.8% 

Linear Discriminant 92.7% 

Through EDA, the inputs of machine learning models are reduced to 15 normalized 
capacitances. The results of this model are shown in Table 8.2 with various machine learning 
algorithms. A similar level of overall accuracy is achieved in this case compared with usage of 
28 normalized capacitances as inputs. This achieved a 53% reduction of inputs and saving of 
computational power without much loss of accuracy. 

Table 8.2: Overall accuracy of flow classification machine learning models with 15 normalized capacitances as 
inputs and flow regime as output 

Machine Learning Algorithm Accuracy 

KNN 98.5% 

Decision Tree 96.0% 
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Support Vector Machine 93.4% 

Linear Discriminant 85.6% 

To achieve the benefits of sensor fusion, the 28 normalized capacitances are combined with 3 
pressure signals to test the improvement of flow classification accuracy. The results of this 
model are shown in Table 8.3 with various machine learning algorithms. As compared with 
Table 8.1 there is an increase in overall accuracy by 4% for SVM and 2% for Decision Tree. It 
can be concluded that fusion of ECT normalized capacitances with conventional pressure 
measurements improves flow classification accuracy. 

Table 8.3: Overall accuracy of flow classification machine learning models with 28 normalized capacitances and 
3 pressure signals as inputs and flow regime as output 

Machine Learning Algorithm Accuracy 

KNN 98.4% 

Decision Tree 98.5% 

Support Vector Machine 99.1% 

Linear Discriminant 97.7% 

To estimate flow velocity with ECT technology, cross-correlation technique is used on the data 
from two planes of ECT. The average flow velocity for various regimes is shown in Table 8.4. 
The highest velocity is found for slug flow at 3.74m/s. 

Table 8.4: Average flow velocity for various flow regimes by using cross-correlation on dual plane ECT  

Flow Regime Average Flow Velocity (m/s) 

Annular 1.43 to 1.87 

Plug 1.24 to 1.43 

Slug 2.67 to 3.74 

Estimation of volume ratio is performed by using differential pressure signals and air flow rate 
as inputs to a Neural Network algorithm. The output is the inverse of volume ratio obtained 
from ECT volume ratio files. This model achieved a very high R value of 0.95.  

Flow classification is also performed by using ultrasonic data. Six features are extracted from 
the A-scan of ultrasonic signals and used as inputs to the machine learning algorithms. The 
results of this model are shown in Table 8.5 for various machine learning algorithms. It is 
noteworthy that this model is found to be highly accurate for stratified and annular flow 
classification.  
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Table 8.5: Overall accuracy of flow classification machine learning models with 6 ultrasonic A-scan features as 
inputs and flow regime as output 

Machine Learning Algorithm Accuracy 

SVM 69.7% 

Decision Tree 68.3% 

Ensemble Bagged Trees 70.6% 

Ensemble Boosted Trees 69.7% 

Additionally, flow visualization with both ECT and US sensors is compared. Ultrasonic B-scan 
image is found to be a better option for flow visualization as compared to an ECT image in 
terms of the angle of view and monitoring of flow regimes. It has also been discovered that by 
analyzing ECT volume ratio data with US B-scan image, air/water interface can be detected in 
a B-scan image.  

To conclude, it has been shown in this thesis that multiphase flow metering is possible by using 
data from ECT and ultrasonic sensors. The data obtained from these sensors can be fed directly 
to machine learning pipelines to obtain knowledge of the flow in the pipe and, to monitor and 
control flow in the pipe. Use of machine learning algorithms on time-series data obtained from 
these sensors removes the need of complicated mathematical time-series and image processing 
methods. Finally, an overall comparison between ECT and US Pitch-Catch techniques for 
MPFM is provided in Table 8.6. Based on the comparison, ECT is a better option for MPFM 
in terms of its versatility of use.  

Table 8.6: Comparison of ECT with US Pitch-Catch techniques for multiphase flow metering 

Parameter ECT US Pitch-Catch 

Flow Regime 

Classification 

High Accuracy for plug and slug Low Accuracy for plug and slug 

Volume Ratio 

Estimation 

Possible with Sensor Fusion 

techniques 

Possible through analyzing B-

scan images 

Flow Velocity 

Estimation 

Possible by use of dual-plane 

ECT 

Not possible with the current 

Pitch-Catch setup 

Interface Detection 

Detected through volume ratio 

data 

Detected through B-scan image 

in combination with ECT 

volume ratio data 

Image Processing 
Cross-sectional image with low 

resolution 

High resolution side view of the 

multiphase flow  
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Appendix A – Task Description 
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Appendix B – Python script to extract normalized capacitances features from ECT 
.ANC files to .CSV files 

The following script works when all the files are stored in one folder and the names of the files 
are in the format: ‘w2a0_1_Stratified.anc’, ‘w2a1_0_Wavy.anc’, etc. These files can be 
accessed from USN cloud. 

import os 
import pandas as pd 
import numpy as np 
for k in range(len(os.listdir(r'C:\Users\Luna\Documents\USN\Thesis-ML\23-02-

03\ANC\ancFiles'))): 
    fileName = os.listdir(r'C:\Users\Luna\Documents\USN\Thesis-ML\23-02-

03\ANC\ancFiles')[k] 
    df = pd.read_csv(r'C:\Users\Luna\Documents\USN\Thesis-ML\23-02-

03\ANC\ancFiles\%s'%fileName, sep=" ", header=None) 
    df1 = pd.DataFrame 

    i = 0; 
    j=0; 
    k = np.arange(0,21000,7); 
     

    df1 = df.take(k) 

    df2 = df.take(k+1) 
    df3 = df.take(k+2) 
    df4 = df.take(k+3) 
    df5 = df.take(k+4) 
    df6 = df.take(k+5) 
    df7 = df.take(k+6) 
     

    df1 = df1.reset_index() 

    df2 = df2.reset_index() 

    df3 = df3.reset_index() 

    df4 = df4.reset_index() 

    df5 = df5.reset_index() 

    df6 = df6.reset_index() 

    df7 = df7.reset_index() 

     

    result = pd.concat([df1, df2, df3, df4, df5, df6, df7], axis=1) 
     

    result = result.dropna(axis='columns') 
    result = result.drop(['index'],axis=1) 
    result['Regime'] = fileName.split('.')[0].split('_')[2] 
    result.to_csv(r'C:\Users\Luna\Documents\USN\Thesis-ML\23-02-

03\ANC\csvFiles\%s.csv'%fileName.split('.')[0],header=False,  index=False)  
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Appendix C – Windows Shell code to combine CSV files 

The following command can be used in Windows Shell to combine the contents of CSV files 
in one TXT file. 
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Appendix D – Python script to combine ECT data with pressure sensor data 

The following script combines ECT and conventional sensors data in one CSV file. 

import os 

import pandas as pd 

import numpy as np 

import glob 

 

path = r"C:\Users\Luna\Documents\USN\Thesis-ML\23-02-03\23-02-03\LabVIEW\230202\slow" 

 

filenames = glob.glob(path + "\*.txt") 

df = pd.DataFrame() 

 

for file in filenames: 

   # reading csv files 

   print("\nReading file = ",file) 

   df = df.append(pd.read_csv(file,header=None,skiprows=10,sep='\t')) 

             

for k in range(31):   

   df=df.drop(index=[k+31]) 

 

df=df.drop(index=[30]) 

df=df.reset_index() 

df.to_csv(r'C:\Users\Luna\Documents\USN\Thesis-ML\23-02-03\MMSS\mmss2.csv',header=False, 

index=False)  

df = pd.read_csv(r"C:\Users\Luna\Documents\USN\Thesis-ML\23-02-

03\ANC\csvFiles\combined.txt",header=None) 

df = df.take(np.arange(0,134998,100)) 

df1 = pd.read_csv(r"C:\Users\Luna\Documents\USN\Thesis-ML\23-02-

03\MMSS\mmss2.csv",header=None) 

df=df.reset_index() 

result = pd.concat([df, df1], axis=1) 

result.to_csv(r'C:\Users\Luna\Documents\USN\Thesis-ML\23-02-

03\MMSS\Velocity.csv',header=False, index=False)  
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Appendix E – Python script to combine ECT Volume Ratio files with pressure and flow 
data 

The following script combines ECT Volume Ratio and conventional sensors data in one CSV 
file. 

import os 

import pandas as pd 

import numpy as np 

import glob 

 

df = pd.read_csv(r"C:\Users\Luna\Documents\USN\Thesis-ML\23-02-

03\ECTVR\VR.txt",header=None) 

 

 

df = df.take(np.arange(0,134998,100)) 

 

df1 = pd.read_csv(r"C:\Users\Luna\Documents\USN\Thesis-ML\23-02-

03\MMSS\mmss2.csv",header=None) 

 

df=df.reset_index() 

 

result = pd.concat([df, df1], axis=1) 

 

result.to_csv(r'C:\Users\Luna\Documents\USN\Thesis-ML\23-02-03\MMSS\VR-

PDT.csv',header=False, index=False)  
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Appendix F – MATLAB script to generate box plots  

The following script generates box plots for one inter-electrode capacitance at a time. 

 
load P1withRegime1 
boxplot(C78,Regime) 
title('Distribution of C78') 
xlabel('Regimes') 
ylabel('Normalized Capacitances') 
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Appendix G – MATLAB script to generate Correlation plots of ECT 

The following script generates correlation plots of inter-electrode capacitances. 

corrplot(P1withRegime2(1:135000,["C12","C13","C14","C15","C16","C17","C18"])) 

corrplot(P1withRegime2(1:135000,["C23","C24","C25","C26","C27","C28"])) 

corrplot(P1withRegime2(1:135000,["C34","C35","C36","C37","C38"])) 

corrplot(P1withRegime2(1:135000,["C45","C46","C47","C48"])) 

corrplot(P1withRegime2(1:135000,["C56","C57","C58"])) 

corrplot(P1withRegime2(1:135000,["C67","C68"])) 
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Appendix H – Python script to generate spectrograms 

The following script generates spectrograms from one inter-electrode normalized capacitances 
and one flow regime. 

import pandas as pd 

import scipy 

from scipy import signal 

import matplotlib.pyplot as plt 

from scipy.fft import fftshift 

df = pd.read_csv(r"C:\Users\Luna\Documents\USN\Thesis-ML\23-02-

03\ANC\csvFiles\combined.txt") 

#df = pd.read_csv('combined.txt') 

df.columns =['C12','C13','C14', 'C15','C16','C17', 'C18', 'C23', 'C24',

 'C25', 'C26', 'C27' ,'C28' ,'C34', 'C35' ,'C36', 'C37', 'C38', 'C45',

 'C46', 'C47', 'C48', 'C56' ,'C57' ,'C58' ,'C67' ,'C68', 'C78','Regime'] 

plt.figure(1,figsize=(4, 10),dpi=200) 

plt.title('Spectrogram of C27 of Slug') 

f, t, Sxx = signal.spectrogram(df['C27'][df['Regime']=='Slug'],10e3) 

plt.pcolormesh(t, fftshift(f), fftshift(Sxx, axes=0), cmap='viridis',vmax = 

0.00001) 

plt.ylabel('Frequency [Hz]') 

plt.xlabel('Time-series') 

plt.show() 
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Appendix I – MATLAB script to detect cross correlation of dual planes of ECT 
normalized capacitances 

The following script generates cross cross-correlation plots and tables of 28 dual planes inter-
electrode normalized capacitances for a specific flow regime. 

 
for v = 1:28 
   [c,lags] = xcorr(P1(1:2998,v),P2(1:2998,v)); 
   %[c,lags] = xcorr(P1(1:1000,v),P2(1:1000,v)); 
   %figure(v); 
   %stem(lags,c); 
   [M,I] = max(c); 
   C(v) = lags(I) 
end 
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Appendix J – MATLAB script to read ultrasonic binary files 

The following script can read Ultrasonic binary files to generate B-scan images. This is 
developed by Tonni F. Johansen. 

[file_pc,path_pc] = uigetfile('*.bin','Pitch catch file'); 

fid = fopen([path_pc,file_pc]); 

data_pc = fread(fid,2e7,'uint16','b'); 

fclose(fid); 

data_info = importdata([file_pc(1:end-3),'txt'],' ',0); 

dt = data_info(2)*1e-9; 

fs = 1/dt; 

N_samp = data_info(3); 

N_line = length(data_pc)/N_samp; 

rfpc = reshape(data_pc,N_samp,N_line); 

t = (1:N_samp)*dt; 

[bpc,apc]=butter(2,[1e5 1e7]*dt/2); 

rfpc_f = rfpc-mean(rfpc,2)*ones(1,N_line,1); 

rfpc_f = filtfilt(bpc,apc,rfpc_f.*tukeywin(N_samp,0.1)); 

rfpc_fh = hilbert(rfpc_f); 

figure 

imagesc(1:N_line,t*1e6,20*log10(abs(rfpc_fh))) 

colorbar 

ylabel('t   (\mus)') 

xlabel('Line no') 

title(['Pitch catch data ',strrep(file_pc,'_','\_')]) 

set(gca,'YDir',"normal") 

[cmi,cma]=caxis; 

caxis([round((cma-50)/5)*5, cma]) 

[maxval,indpc_max] = max(sum(abs(rfpc_fh))); 

[minval,indpc_min] = min(sum(abs(rfpc_fh))); 
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Appendix K – MATLAB script to extract features from ultrasonic data 

The following script can read Ultrasonic binary files to detect envelope and extract features. 

[file_pc,path_pc] = uigetfile('*.bin','Pitch catch file'); 

fid = fopen([path_pc,file_pc]); 

data_pc = fread(fid,2e7,'uint16','b'); 

fclose(fid); 

data_info = importdata([file_pc(1:end-3),'txt'],' ',0); 

 

dt = data_info(2)*1e-9; 

fs = 1/dt; 

N_samp = data_info(3); 

N_line = length(data_pc)/N_samp; 

rfpc = reshape(data_pc,N_samp,N_line); 

t = (1:N_samp)*dt; 

[bpc,apc]=butter(2,[1e5 1e7]*dt/2); 

 

rfpc_f = rfpc-mean(rfpc,2)*ones(1,N_line,1); 

rfpc_f = filtfilt(bpc,apc,rfpc_f.*tukeywin(N_samp,0.1)); 

 

rfpc_fh = hilbert(rfpc_f); 

 

for i = 1:863 

    [up,lo] = envelope(rfpc_f(1:9500,i)); 

    %[up,lo] = envelope(abs(rfpc_fh(1:9500,i))); 

    meanR(i) = mean(up); 

    maxU(i) = max(up); 

    stdU(i) = std(up); 

    normStd(i) = std(up)/max(up); 

    sumA(i) = sum(up,'all'); 

    sumAs(i) = (sum(up,'all'))^2; 

     

end 

exp06 = [meanR; maxU;  stdU; normStd;sumA;sumAs]; 

exp06 = exp06'; 
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Appendix L – Python script to display image from ECT pixels 

The following script can read ECT ‘AIM’ files and generates cross-sectional images of 
multiphase flow in the pipe. It uses Python Imaging Library library. 

import numpy as np 

import matplotlib.pyplot as plt 

import os 

import pandas as pd 

import glob 

from PIL import Image 

fr = [] 

for k in range(5): 

    data = np.loadtxt(r"C:\Users\Luna\Documents\USN\Thesis-ML\23-02-03\image\imageFiles\w2a0_15.aim",skiprows=2+34*k,max_rows=32) 

    im_mx = data.reshape((32, 32)) 

    plt.imshow(im_mx,cmap='plasma') 

    plt.savefig('%s'%k) 

    fr.append(im_mx) 
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Appendix M – Box Plots 

The following box plots from Figure M.1 to M.28 provide a visual display of the distribution 
of normalized capacitances for inter-electrode capacitances C12 to C78. These are divided into 
five classes of flow regimes – Annular, Plug, Slug, Stratified and Wavy. 

 

 
Figure M.1: Box Plot of C12 

 
Figure M.2: Box Plot of C13

  

 
Figure M.3: Box Plot of C14 

 
Figure M.4: Box Plot of C15 
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Figure M.5: Box Plot of C16 

 
Figure M.7: Box Plot of C17 

 
Figure M.9: Box Plot of C18 

 
Figure M.6: Box Plot of C23 

 
Figure M.8: Box Plot of C24 

 
Figure M.10: Box Plot of C25 
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Figure M.11: Box Plot of C26 

 
Figure M.13: Box Plot of C27 

 
Figure M.15: Box Plot of C28 

 
Figure M.12: Box Plot of C34 

 
Figure M.14: Box Plot of C35 

 
Figure M.16: Box Plot of C36 
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Figure M.17: Box Plot of C37 

 
Figure M.19: Box Plot of C38 

 
Figure M.21: Box Plot of C45 

 
Figure M.18: Box Plot of C46 

 
Figure M.20: Box Plot of C47 

 
Figure M.22: Box Plot of C48 
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Figure M.23: Box Plot of C56 

 
Figure M.25: Box Plot of C57 

 
Figure M.27: Box Plot of C58 

 
Figure M.24: Box Plot of C67 

 
Figure M.26: Box Plot of C68 

 
Figure M.28: Box Plot of C78 
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Appendix N – Python script to generate Correlation Coefficients 

The following Python script generates correlation coefficients of 28 ECT normalized 
capacitances with respect to one other. 

import seaborn as sns 

import matplotlib.pyplot as plt 

import pandas as pd 

df = pd.read_csv(r"C:\Users\Luna\Documents\USN\Thesis-ML\boxPlots\P1withRegimes.txt",sep="\t") 

df.corr() 

corrMatrix = df.corr(method='pearson') 

plt.figure(1,figsize=(10, 10),dpi=200) 

plt.title('Correlation Coefficients Heatmap') 

sns.heatmap(corrMatrix, annot=False) 

plt.show() 

 
 

 


