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1 Introduction

Increasing urbanization and climate changes increase the amount of storm water, enhan-
cing the danger of flooding, as vast volumes of water can accumulate over a short amount
of time and flow uncontrollably [1]. Such a situation can cause significant damage to soci-
ety and infrastructure, making it essential to handle storm water properly. One of the best
ways to manage storm water is with natural waterways or, in many cases, man-made ar-
tificial channels that lead the water away. This is often handled in the pre-building phase
or during spatial planning, and is one of NVE’s plans to handle storm water [1]. However,
sometimes this is not possible due to geological difficulties, environmental changes, or
prohibitive costs. In such cases, it becomes necessary to use mechanical means to remove
storm water with the help of storm water pump facilities.

Storm water pump facilities consist of a sump tank, often made of concrete or plastic,
to accumulate storm water. They also include adequate pumps that meet the necessary
drainage rate to drain the sump tank to a desired level. There are mainly two types of
pumps used: submerged pumps or water-less aerial pumps. Both have their advantages
and disadvantages. The most significant advantage of the submerged pumps is that they
are more resistant to corrosion as they are isolated underwater, and they have natural
cooling by the flow of water surrounding them. If the inflow of water inside the water
sump is too demanding for one pump, or to reduce wear on the pumps by spreading the
work between them, more pumps are often used in one facility. Finally, a control system
is needed to control the pumps and the desired water level in the sump tank. Such a
control system could be a frequency converter with level sensors that activate the pumps
based on pre-fixed heights in the sump tank, in the form of LOW, and HIGH trigger
boundaries, or more advanced control systems like PLC’s [2].

However, as technology advances, it might be possible to increase the effectiveness of storm
water drainage facilities. A country that has made significant improvements to its storm
water drainage pump systems is Japan. As Japan is susceptible to more violent typhoons
and increasing urbanization in big cities like Tokyo, they are becoming more prone to
storm water flooding. Therefore, since the 1950s, Tokyo has worked on technological
improvements to its storm water pump system. These improvements not only contain
better technologies to increase the effectiveness of the pumps themselves but also the use
of weather data to understand the incoming weather. This system is called Tokyo Amesh
[3].
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Tokyo Amesh is a weather observation system that aims to observe the incoming weather
and try to give an insight into the current weather situation. It accomplishes this by the
use of a meteorological radar that sends radio waves that bounce off individual raindrops
and can notify the density of the rainfall, and what direction it is heading. This informa-
tion is combined with 84 local rain gauges to create a color-coded heat map that indicates
rain intensity. This heat map is then updated in real time to constantly inform about the
changing weather situation. The map is then used by the operators at the storm water
pump facilities to initiate the pump system based on the incoming weather. This can then
reduce the ”flash” flood peaks, as the pumps have the possibility to already be running as
the storm water enters the pump facility, thus reducing the risk of storm water flooding
[3].

Precipitation models are often used to calculate the possibilities for flood by combining
precipitation with snow melting and other weather parameters. However, these models are
often affected by wide-ranging uncertainty [4]. Machine learning is becoming increasingly
popular within the meteorology field, as there is a lot of freely available weather data to
train and build prediction models. It is thus possible to build machine learning prediction
models to forecast weather [5].

This thesis aims to explore the possibility of using local weather data, combined with
process data from a storm water facility at the factory Bergene Holm AS, Avd. Kvelde.
This data will be used to build a machine learning algorithm that could serve as an
observer for the storm water drainage system at Kvelde. Taking inspiration from the
Tokyo Amesh system, the machine learning algorithm is used to increase or decrease the
activation level for the water level inside the sump tank. The idea is that the model
would predict the volume of water that will flow into the system ahead of time, and based
on that prediction, ”start” the pumps earlier to drain away the inflow faster than it can
accumulate.
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2 Situation At Kvelde

Bergene Holm AS, Avd. Kvelde is a planer factory located in Kvelde village, which is
a part of Larvik municipality. This factory lies close to the river Numedalslågen and is
surrounded by vast fields.

These fields slightly concave inwards towards the factory building, creating a low point
next to the road that runs alongside the factory. The height differences can be seen in
Figure 2.1, taken from Kartverket [6]. By inspecting the graph, it is possible to see that
points A, C, and E all slope inwards towards points D and B, where point B is the absolute
lowest point.

Figure 2.1: The topographic nature of the fields.

In wintertime, the cold seeps into the ground and freezes, creating ground frost on the
fields. Then, rainfall, snowmelt, and other occurrences create a potential flood problem,
as the storm water does not drain away into the ground, which is saturated with frost.
This leads to accumulated water around the building at point B. If the water level gets
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too high, the production must halt, as the main power intake could be submerged, causing
problems.

Today, this problem is fended off by a storm water facility installed at point B. This storm
water facility consists of two water pumps of the type NP 3153 LT410. More information
about these pumps can be found in Appendix C.

These pumps are assembled at the bottom of the sump tank at point B. The entire system
is controlled by two PS220 frequency converters, each controlling one of the pumps. The
working principle of this system is that the PS220 frequency converters monitor the level
of the sump tank using a level sensor, and based on a fixed activation parameter, they
start the pumps to drain the water down to a fixed deactivation level.

This system has a limited Human Machine Interface (HMI) on the unit itself for monitor-
ing the situation and performance of the pumps. However, it lacks any logging capabilities
to hold and display historical process data. The frequency converters do have internal
registers that hold process parameters in real time, but do not store them. More on this
will be discussed later

12



3 IoT System Design and Data Acquisition

for Machine Learning

As mentioned in Chapter 2, the frequency converters did not provide any logging capab-
ilities and had a limited HMI only. It was therefore decided that an Internet of Things
(IoT) logging and HMI solution should be built to log the desired registers from the PS220
converters, and to inspect the current operations of the pumps along with any alarms in
the HMI. A system sketch of the IoT system can be seen in Figure 3.1.

Figure 3.1: An overview of the system sketch.
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The system sketch shows the main structure of the IoT system. Here, the pumps commu-
nicate with the PS220 frequency converters and send that information via Modbus to the
Raspberry Pi. The Raspberry Pi also retrieves weather data via an API communication
to feed updated weather predictions into the database for use in a ”rolling” prediction of
the inflow. This will be described in more detail later. The Raspberry Pi then sends all
this data into the database, where it is stored and displayed to the end user via the Flask
web framework.

The IoT system consists of mainly three parts: the Logger, the HMI, and the Machine
Learning model. The logger’s main objective is to retrieve the data from the desired
registers from the PS220 frequency converter. The data from these registers is then stored
in a database to display on the HMI and for data analysis. The HMI is responsible for
monitoring the current state of the pumps in real time. It retrieves the latest value from
the register in real-time, to monitor the pumps, and historical data from the database
to display long-term trends and performance. Lastly, the machine learning model will
attempt to predict the inflow into the well, and then ”regulate” the level of the sump
tank.

3.1 The Hardware

3.1.1 PS220 Frequency converter

The PS220 Frequency converter that drives the pumps are, so-called PumpSmart fre-
quency converters. These frequency converters are capable of creating intelligent pump-
ing systems that have embedded algorithms designed for pump-specific problems. More
information about them can be found in Appendix B.

These PS220 Frequency converters have internal registers that contain information about
the pump in real time, and some of these registers are interesting to log over time. A list
of these registers can be seen in Figure 3.2.
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Figure 3.2: A list of available registers from the PS200 frequency generator.

The specific registers to log are: Alarm word 1 and 2 to create an alarm list, Pump
speed, Motor current, and Smartflow for pump run-time surveillance, Start level and
Sump level for well integrity purposes, and finally Energy consumption and Motor run
time for maintenance reasons.

3.1.2 Logger

To build such an IoT system, a Raspberry Pi 3B+ was used as the main computer. The
reason for choosing a Raspberry Pi 3B+ was mainly that it was easily available. The
main requirements for such a system are the capabilities to execute Python scripts, access
to an RJ45 Ethernet port, and a relatively small size so it could fit inside an IT server
cabinet, all of which the Raspberry Pi 3B+ has. The Raspberry Pi also has the advantage
of having a good performance to cost ratio, as the Raspberry Pi 3B+ is quite affordable
and still powerful enough to fulfill these types of tasks. More information about the
specification can be found at RPI.com. An image of the specific Raspberry Pi board can
be seen in Figure 3.3.
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Figure 3.3: An image of the Raspberry Pi 3B+ taken from Raspberry Pi official website: RPI.com.

Since Kvelde Factory often experiences very short electrical blackouts, an Uninterrupt-
ible Power Supply (UPS) unit was installed as a Raspberry Pi HAT. This was done to
circumvent the problem where the Raspberry Pi rebooted into a ”broken” state where
the software did not redeploy correctly. An image of this UPS can be seen in Figure 3.4.
More information about this UPS can be found at sixfab.com.
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Figure 3.4: The UPS HAT connected to the Raspberry Pi unit.

3.2 The Software

The Python programming language was chosen for the task of building the IoT device.
It was chosen as Python has a vast array of libraries, and it is well supported on the
Raspberry Pi, making it the ideal language for such a task. To build the IoT device, a
collection of applications were used together to make the system work. This is referred
to as the software stack.

3.2.1 The Software Stack

The software stack shows the structure of the different applications running on the Rasp-
berry Pi for the IoT system to work. An overview of the software stack of this particular
system is shown in Figure 3.5.
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Figure 3.5: The Stack of the software architecture of the IoT system.

At the bottom of the stack lies Docker. Docker is a platform for building, shipping,
and running applications in containers. Containers are a lightweight and portable way
to package and isolate applications with their dependencies, so that they can run con-
sistently across different environments. More about Docker can be found at Docker.com
[7]. Docker was chosen to run the applications as it provided containerization, making
the system flexible, and robust. Containerization also made it possible to go to Docker
Hub, a platform for downloading pre-built containers, and download container images for
both Grafana and InfluxDB. The advantage of using pre-built containers is that they are
fully functional programs, and only need a few adjustments to run on this IoT system.
Then by containerizing the Flask application, the IoT system would have three separate
independent containers.

These containers could then be connected together and deployed at the same time on
the Raspberry Pi with the help of Docker Compose. Docker Compose helps to configure
and run all the containers based on a YAML requirement file [7], making it very easy
to maintain and configure all the containers. Another benefit with Docker Compose is
that if the Raspberry Pi were to reboot, it would handle the operations of automatically
redeploying the containers, and ”boot” up the programs again, and thus make the software
stack more robust

Next in the stack is InfluxDB, a time-series database that allows for flexible and efficient
storage of data without the need for predefined table structures or relationships. This
makes it well-suited for time-series data, as it also provides tools to work with the real-
time data inside the database. Tools such as the ability to down-sample data for long-term
storage, continuous queries for real-time data analysis, and retention policies for managing
data life-cycle. It also integrates with a variety of tools and services commonly used in the
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monitoring and analytic ecosystem, such as Grafana. More information about InfluxDB
can be found at influxdata.com [8]. Thus making InfluxDB a good choice for the IoT
system, as the type of data are all time-series. As it was also decided to use Grafana to
visualize the database, it was a good fit.

Further up the stack is Grafana. Grafana is a platform for data visualization, monitoring,
and analysis. It allows users to create, explore, and create dashboards based on data from
various sources such as databases, cloud platforms, and monitoring systems. More about
Grafana can be found at Grafana.com [9]. In the IoT system it retrieves the data from
InfluxDB to be displayed in Grafana dashboards. This made it easy to display the data,
as it had good integration with InfluxDB. The dashboards could then be used inside the
HMI as HTML widgets, and thus eliminating the need for creating own graphs in the
HMI which saved time. The Grafana graphs also had high functionality such as zooming
and embedded time shifting included in these HTML widgets, making them ideal.

Lastly, on top of the stack lies the Flask application. Flask is an open-source web frame-
work for building web applications in Python. It is a lightweight and flexible framework
that provides a simple yet powerful set of tools and features for web development, and
was therefore a good choice for this IoT system. More information about Flask can be
found at flask.palletsprojects.com. As Flask is a web framework, it uses HTML and CSS
to build and style web pages. This made it easy to build and design user specific HMI
due to the flexibility of HTML and CSS, for then to be deployed it on the local network.
The reason for choosing a HMI that was web-based, is that it did not require a specific
operating system to access. As it can be accessed by all types of devices that support a
web browser, therefore making it truly cross-platform. It also made the HMI accessible
on multiple devices as long as they were connected to the same network as the Raspberry
Pi, and therefore making every computer screen a HMI.

As Flask was the back-end of the HMI, it also handled the alarm system that was re-
sponsible for reading the alarm registers from the PS220 frequency converters. It did this
by multi-threading a Modbus communicator program to read the internal registers of the
PS220. A list of these alarm words can be seen in the Quick guide in Appendix D.

3.3 The Human Machine Interface (HMI)

The HMI was built with user specifications in mind, the user wanted a ”clean” and
easy-to-understand User Interface (UI). It was therefore decided to keep the information
minimalist. This meant no use of any graphical animation in the design itself, and to hide
unwanted information deeper in the HMI. In Figure 3.6 is the home page or the first page
that meets the user. The main page holds two widgets, containing information about
both PS220 frequency converters. To the left of the home page is the navigation bar for
traversal within the HMI.
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Figure 3.6: The front page of the HMI.

It is in these two widgets where the high-level overview of the pumps is displayed. Here
is the status of the pump which shows what type of mode the pump is currently in. The
pump can have 4 states that are; resting, running, warning, and error mode. These modes
give the user an indication about the state of the pumps. An image of the pump running
is shown in Figure 3.7
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Figure 3.7: The HMI showing the Left Pumo running.

Onward are the run parameters such as Pumpe RPM, Motor strøm, and Smart Flow.
These parameters show the user information about the performance of the pumps when
it is running. Where Smart Flow shows an estimate of how much water the pump drains
away in liters per second, Pumpe RPM shows the Revolution of the pump motor per
minute, and lastly, the Motor Strøm shows the motor current usage. Combined, these
parameters can give the user some information about the overall pump performance when
running.

Further down is the information about the current level in the tank, visible by the para-
meter Nåværende nivå i tanken. Followed by the activation level, given by Aktiveringsnivå,
together these show an expected range of the level within the tank for the user. For ex-
ample, if the current level is above 150 cm, there is something wrong with the control
system. Lastly is the total power consumption of the pumps in both kilowatt per hour
(kWh) and in Megawatt per hour (MWh) that the pumps have used over time, displayed
by the parameters Strømforbruk i kWh, and Strømforbruk i MWh respectively. This gives
the user an overall information about run time and power consumption.

At the bottom of the sections is where the alarm list is contained. The HMI is designed
in such a way that the alarm list is collapsed if there are no alarms to display. This was
done to reduce distraction for the operator, as there was no point in showing an empty
alarm list. All of the text elements of the parameters are clickable and will take the user
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to the inspect section of the HMI showing historical data about that specific element as
shown in Figure 3.9.

If the user, however, wanted to see an overview of all the historical data of the HMI,
they could navigate to the Historikk tab in the navigation bar, this leads to the Historic
page. Here all the historical data from the parameters are shown in 6-hour resolution
in the form of Grafana widgets. Here it is possible for the user to see comparing trends
across the data elements, this might give an insight into the long-term performance of the
pumps. Figure 3.8 shows the Historikk page open, and displays side by side information
between the left and right PS220 frequency converters.

Figure 3.8: The history page of the HMI showing all the data elements.

If the user were to use the built-in zoom function from Grafana in these widgets, the reset
button could be pressed to undo the zoom and reset the widget to a 6-hour resolution.
If the user, however, wanted to see more than a 6-hour resolution, the inspiser button
redirects the user to the inspect page of that particular parameter, as seen in Figure 3.9.

The inspect page of the HMI offers the possibilities to scale the time window of the data
stored in Influxdb and displayed by Grafana. When on the inspect page for a specific
parameter, the user can use the time bar to scale the data to 1 day, 1 week, 1 month, or 1
year. This gives the user the ability to see how the data stored has changed over a longer
period of time. There is, however, some caution needed when using the 1-year time scale
of the Grafana widget. Since querying one year of data is extremely computer demanding,
it might crash the Influxdb instance if there are too many data points to retrieve. Figure
3.9 shows the inspect page of the logged parameter Nåværnede nivå i tank.
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Figure 3.9: The inspect page of the HMI showing the historical data in detail.

Lastly on the navigation bar is the prognose page which is the page where all the weather
prediction should be. Here the user would have the opportunity to view the prediction
that the machine learning algorithm would produce. This, however, was cut due to time
constraints.

3.4 Data gathering

To be able to perform machine learning, relevant data is required for the algorithm to
learn. It was therefore decided to collect data from local weather stations near Kvelde
factory, combined with the historical data of the level of the sump tank collected from the
IoT system. These local weather stations were Hedrum and Holmfoss weather stations,
both stations had available data for download as comma-separated values (CSV) format
via SeNorge.no [10]. Hedrum weather station provided historical data of precipitation
and snowmelt each day whilst Holmfoss provided historical data of temperature and the
height of Numedalslågen. An example showing the temperature CSV file can be seen in
Figure 3.10.
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Figure 3.10: The CSV file containing temperature data from SeNorge.no.

These data were chosen based on the idea that they might have the most impact on the
water level in the sump tank. Temperature affects the ground, as mentioned, with ground
frost and will have an effect on how much water that goes into the sump tank, rather than
in the ground. The amount of rain that has fallen will have an effect on how much storm
water is accumulated on the ground, and therefore affect the level in the sump tank, the
same goes for snow melting as melting snow accumulates water. Lastly, the height of
Numedalslågen might have some correlation with the level of the sump tank as they are
both susceptible to the same natural impacts.

3.4.1 Data pre-processing

The CSV files were loaded into Python via the Pandas library. As Pandas is an open-
source data analysis and manipulation library for Python. It provides powerful tools and
data structures for working with time-series data. Such tools including data cleaning,
data scaling, transformation, and visualization to name a few.
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Pandas revolves around two main data structures: Series and DataFrame. A Series is
a one-dimensional labeled array that can hold any data type, while a DataFrame is a
two-dimensional labeled data structure with columns of potentially different data types.
DataFrames are similar to tables in a relational database or an Excel spreadsheet, and
provide a powerful way to manipulate and analyze data. More about Pandas can be found
at pandas.pydata.org [11].

To use the data to train a machine learning algorithm, it was important that all the data
had the same time resolution. A problem, however, occurred when inspecting the different
data as they indeed had different time resolution. The level of the sump tank was logged
every other second, whilst the temperature and the level of Numedalslågen were logged
every 15 minutes, and lastly both snow melt and precipitation only had one reading each
24 hours.

This problem was solved by choosing a common time resolution for all the data sets, and
then ”scale” the data accordingly, it was therefore decided to select 1 hour as a common
range. The level of the sump tank, temperature, and the level of Numedalslågen were all
averaged out with the intervals of 1 hour, whilst both snow and precipitation were linearly
interpolated with a 1 hour interval. Thus creating a common time range of 1 hour for all
the data-sets.

For a flood to occur, the inflow would need to be larger than the outflow of the system.
Therefore, currentLvl was inadequate to use for prediction as it does not say much about
inflow by itself. An image of the level of the sump tank can be seen in Figure 3.11. It
was therefore decided to look at the gradient of currentLvl as this would represent the
inflow per hour into the sump tank. The transformation was done by finding the slope
of the currentLvl, and removing the large spikes generated by the pump drainage. It was
important to distinguish between natural drainage into the ground, and large drainage
spikes from the pumps. This was important since the model would need to learn the
natural drainage into the ground. Then the gradient of currentLvl was multiplied by the
volume of the sump tank to get the inflow in Liter Per Second (L/h), this new dataset
was named in f low. The transformation from currentLvl to in f low can be seen in Figure
3.12.
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Figure 3.11: The level of the sump tank.
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Figure 3.12: The transformation from level to inflow into the sump tank each hour.

After all the data were properly constructed and finalized for machine learning training,
the data were split into test and training sets. However, unlike some machine learning
methods, this splitting was not randomized, meaning that the ”cut” for the test and
training set was a fixed date that separated the test from the training set, Figure 3.13
shows the ”cut” between train and test set. It was important that the test set consisted
of newer samples than the training set, as that would represent the future prediction of a
rolling prediction system.
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Figure 3.13: The split between training data and test data.

Then to frame the data into a supervised learning set, the sliding window method was
used. The sliding window method is a technique to restructure the time-series data into
a supervised learning set for the machine learning algorithm [12]. This was done by
segmenting both the training and test data into two sets, the X and Y datasets. Where
X holds the n_past values, or the number of samples to use to predict the next Y value,
including the previous Y value, while Y holds all the values to predict. This gave the X
dataset the shape of (a,b,c), and Y the shape (a,1). Where a is the number of matrices
for X and the number of Y values in the Y dataset, and they need to be the same length
as each matrix is used to predict the next Y value. b is the number of past samples to use,
and c is the number of variables to use to predict the next Y value. An example of a slice
from the sliding window method can be seen in Table 3.1. This slice gives an insight into
how the method works, as it needs, in this case, seven data points from all six datasets
to predict one value of the next in f low.
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temp rain currentLvl snow_melt river_level inflow (x)
14.5775 2.6786 77.3166 0.0 1.7085 0.006357
14.6500 2.8328 77.2814 0.0 1.7120 0.006368
14.715 2.9869 77.2462 0.0 1.7122 0.006380 inflow (y)
14.7600 3.1411 77.2111 0.0 1.7127 0.006391 0.006438
14.8325 3.2953 77.1759 0.0 1.7097 0.006403
14.9575 3.4494 77.1407 0.0 1.7125 0.006415
14.9775 3.6036 77.1055 0.0 1.7090 0.006426

Table 3.1: An example of one slice of the sliding window.

Then these values were scaled. This was done to ensure that all the features were on
a comparable scale. If the features are on different scales, some features may have a
larger impact on the model than others, even if they are less important. This can lead
to inaccurate or biased predictions. By scaling the data, it is possible to ensure that
all features contribute equally to the model and that the model is not influenced by the
arbitrary scaling of the data [13].

3.5 Time-series predicting using RNN

Recurrent Neural Networks are a category of Neural Networks that are known for their
ability to have ”memory”, meaning that they use prior information when evaluating the
next output [14]. This makes them quite useful in sequential time-series prediction as all
data points in a sequential dataset are dependent on the prior data in the series [15].

RNNs, however, have two major flaws when using back-propagation through time: they
are vanishing and exploding gradients. These are phenomena that occur when RNNs
deal with long-range dependencies. The gradient either becomes too small, thus updating
the weight of the network until the weights are so small that the network does not learn
anything, or, in the case of exploding gradients, the weights get so large that they represent
NaNs [14]. To combat this problem, Long Short-Term Memory (LSTM) was proposed.
LSTM was designed to combat the problems back-propagation through time caused by
implementing a gradient-based learning algorithm [16].

3.5.1 Long Short-Term Memory (LSTM)

The LSTM network consists of LSTM cells, each containing three main components: the
input gate, the forget gate, and the output gate. The input gate ”protects” the content
inside the memory cell by determining whether the memory cell should be updated with
the current data. The output gate ”protects” other LSTM cells from being affected by
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the output of the last LSTM cell by deciding if the current output should be visible to
the next cell or not [16].

The forget gate is a key component of the LSTM architecture, providing the ability to reset
the memory cell. Interestingly, the forget gate was not explicitly mentioned in the original
paper ”Long Short-Term Memory” [16]. Instead, the paper describes a mechanism called
”constant error carousel” that serves a similar purpose to the forget gate. The forget gate
was introduced in the paper ”Learning to Forget: Continual Prediction with LSTM” [17].
An image of the LSTM cell, taken from thorirmar.com [18], can be seen in Figure 3.14.

Figure 3.14: An example of the LSTM cell taken from thorirmar.com [18].

The LSTM network in this project consisted of LSTM layers with N number of cells in
each layer, with the Rectified Linear Unit (ReLU) activation function followed by dropout
layers. The dropout layers help prevent overfitting the model by randomly dropping
neurons throughout the layer [19]. The ReLU function was chosen as the activation
function as it has some properties that work quite well for LSTM networks. ReLU is
computationally cheaper, making training the model faster, and most importantly, due
to the activation function’s sparsity-inducing properties, there are no gradient vanishing
effects [20].

Finally, the last layer was a Dense layer with 1 neuron to match the shape of the train_y
dataset, ensuring that the output of the model would be of the shape (a,1). Then the
LSTM network was compiled using the ”adam” optimizer with the Mean Square Error
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(MSE) as the loss function, before being fitted with the training set and tested with the
test set.

3.6 Time-series predicting using Transformers

Transformers is a machine learning model that was originally built to translate languages.
This model, unlike LSTM, does not use recurrence in its architecture and relies solely on
the attention mechanism [21]. The attention mechanism allows the algorithm to focus
on specific parts of the data [22]. An image taken from the paper ”Attention Is All You
Need” [21] can be seen in Figure 3.15, showcasing the structure of the Transformers model
architecture.
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Figure 3.15: The model architecture of the transformer model.

Figure 3.15 shows the Transformers model structure, which consists of two parts: the
encoder and the decoder. The encoder is visible on the left and the decoder on the right.
The decoder of the Transformers is usually used for sequence-to-sequence tasks such as
machine translation or text summarizing [21].

However, when it comes to time-series prediction, the goal is to predict the next value
in the sequence based on a fixed number of previous values. In this case, the output
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sequence has a fixed length of one, and there is no need for a decoder to generate the
output sequence. Instead, the encoder is used to extract relevant features from the input
sequence, which can then be used to make the prediction. Then the output of the encoder
is passed through one or more fully connected layers to generate the final prediction. The
Encoder itself consists of the Multi-Head attention layer followed by the Feed Forward
layer. More information about Transformers can be found in the paper ”Attention Is All
You Need” [21].

The structure of the encoder in this project started with normalization and attention
layers. This layer consisted of a normalization layer to normalize the input data, followed
by a Multi-Head attention layer with n numbers of attention heads, and an m size for the
query and keys for the attention heads. Then a dropout layer was introduced for the same
reasons as in the LSTM network. The next part of the encoder was the feed-forward layer,
which also consists of a normalization layer, followed by a 1-dimensional convolution layer.
The use of a 1-dimensional convolution layer in the feed-forward network provides para-
meter efficiency and computational speed, as well as better generalization performance
compared to fully-connected layers [21].

3.7 Tuning and validating the machine learning

Tuning a Machine Learning model is no trivial task as there are a lot of parameters that
directly affect the performance of the model, therefore a systematic approach was used to
train the hyperparameters of the model.

The epoch parameter of a Machine Learning model tells the model how many iterations
through the datasets it takes in one learning phase [23]. The task of tuning the epoch
for a Machine Learning model can be both tedious and challenging, therefore an early
stopping mechanism was introduced in the training phase for the models. This was done
since, if the model is under-trained it has a tendency to underfit, while the opposite is
true for an over-trained model [24]. The early stopping mechanism would therefore stop
the training at a certain point when the performance of the validation starts to decline
[24]. This is a good compromise to solve the challenging problem of how long a model
should train.

The rest of the model parameters were tuned systematically by tuning one of the para-
meters at a time, and inspecting the Mean square error (MSE) for both the loss and the
validation loss functions for each training epoch, to then change parameters accordingly.
Where the goal is to get as low MSE score as possible. For example, increasing dropout
layers or increase complexity by adding layers if the MSE of the loss function is too high
and see if it reduces. Thus indicating that the model shows tendencies to underfit.
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Then the Root Mean Square Error (RMSE), and the Mean Absolute Error (MAE) were
inspected to give an indication of how well the prediction of the test set with the tuned
model performed. The difference between RMSE and MAE is how they penalize error.
RMSE penalizes large errors, and is therefore useful when it is important to emphasize
that large errors are unwanted [25]. MAE, on the other hand, looks at the magnitude of
the error, and does not consider the direction of the error [25].

Lastly, due to the stochastic nature of machine learning models [26], both the LSTM and
transformer models were tested 30 times, and the results were plotted in box plots. This
was done to show the uncertainty or spread of the performance for both models.
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4 Data Exploration

A concern surrounding the data analysis was that the data would be quite poor. As the
IoT Logger had only logged data from the level of the sump tank in the time range from
28.04.2022 to 08.02.2023, making the time range short. The problem with this is that
weather-based data is heavily affected by seasonality, since weather changes based on the
season. Due to the short logging time, it meant that the data would not represent a full
year, and would therefore not contain these trends that seasons create. This will be a
problem for the machine learning algorithm, as it won’t be able to learn these trends.

4.1 Results of the Data Analysis

Figure 4.1 shows the scatter matrix between all the datasets. Here it is possible to view
the trends and correlations between two datasets. The diagonal line shows the histogram
for each dataset, and by looking at the different histograms, it can reveal something about
the spread of the data. The histograms for rain, snow_melt, and in f low are all quite tail-
heavy, while the others have a more bell-shaped histogram. The tail-heavy histograms
might pose a problem for the machine learning algorithm, as it might be harder for it to
find the underlying patterns.
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Figure 4.1: The Scatter matrix of the data showcasing the interaction between datasets.

By looking at the scatter matrix, it was not easy to discern any clear linear relationships,
nor any non-linear relationships. This, however, was expected, as the scatter matrix
only shows relationships between two datasets. The inflow into the sump tank is likely
a combination of non-linear relationships between multiple datasets. For example, the
inflow would be affected by both temperature and rainfall at the same time. This property
would not be visible in such a scatter matrix.

As it was not easy to identify any linear correlation from the scatter matrix, a heat map
was generated. The heat map in Figure 4.2, shows the linear correlation between the
different datasets. On the left side is a heat rod with a scale that indicates how strongly
the data is positively or negatively correlated. The reason for the diagonal being all
1 is because there will always be a perfect positive linear correlation between the data
and itself. By looking at the column at the far left, it is possible to see all the linear
correlations between other datasets and the in f low. Here it is clear to see that currentLvl
has vastly less correlation with the other datasets compared to the in f low dataset, thus
indicating that it was necessary and advantageous to do the transformation mentioned in
chapter 3.4.1
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Figure 4.2: The correlation heat-map.

The correlation between temp and in f low is weakly negatively correlated with a value of
−0.38. This correlation can be explained by the nature of ground frost that was discussed
earlier. The lower the temperature, the more likely there is ground frost. That will impede
the flow of water from draining into the ground, and thus more water will flow into the
sump tank, increasing the L/h. However, it might also be due to a lack of representative
data, as discussed, leading to an overrepresentation of negative temperature throughout
the dataset. With more representative data, there might be less overall correlation.

Both the snow_melt and rain correlations with in f low are weakly positively correlated
with values of 0.3 and 0.43, respectively. This might be due to the fact that in the
summertime, the fields drain the water into the ground. The fields would therefore work
as vast water magazines that prevent water from flowing into the sump tank. In the
winter, the rain is ”stored” as snow on top of the fields, and therefore there is less ”rain”
that flows into the well. The snow_melt would only affect the in f low in the latter part of
winter and early spring, when snow turns into storm water. Since the data were retrieved
at the end of April, there is a vast underrepresentation of snow_melt in the dataset since
the captured data ”misses” the snow melting season at Kvelde.

When it comes to the correlation between river_level and in f low, it has a moderate
positive correlation with a value of 0.58. This makes intuitive sense, as the water level
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of Numedalslågen is also susceptible to all the same weather impacts as the storm water
facility at Kvelde. However, Numedalslågen is a power regulated river, and is therefore
susceptible to stagnation or increased flow rate based on human interaction. This might
lead to changes in the water level of the river, regardless of snow or rainfall. This is
likely the reason for the rather poor correlation between both rain and snow_melt with
river_level.

Overall, there are only small to moderate linear relations between in f low and the other
datasets, and there aren’t any clear non-linear relationships seen in the Scatter matrix in
Figure 4.1. The Scatter matrix only looks at the relationship between two datasets, and
therefore it is harder to see the underlying non-linear relationships that appear between
combinations of multiple datasets. Since the inflow into the sump tank should be predicted
based on all the datasets at each time step, these underlying non-linear relationships are
the ones that affect the prediction. It is therefore advantageous to use deep learning
neural networks, as they are capable of learning the intricate patterns and capturing these
underlying non-linear relationships. As neural networks have multiple hidden layers, and
take data points from each of the datasets as the input layer, they have the opportunity to
”look” at the whole dataset, and capture the non-linear patterns that are not so apparent
at first glance.
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5 Predicting using Machine Learning

As mentioned in chapter 4, the lack of seasonality will affect the performance of the
machine learning algorithm. When inspecting Figure 3.12, in Chapter 4, there is a major
increase in inflow that happens around the month of September. As the seasons change
towards Autumn and Winter, there is a change in weather that further increases the
inflow.

This, however, is bad news for the machine learning algorithm, as there will be an overrep-
resentation in the data where ”almost” nothing happens to the inflow into the sump tank.
Due to the fields absorbing the storm water, less water drains into the sump tank between
the start of May and the end of September.

If the machine learning model were to train on this data, it could lead to a biased model
that is trained on too much data that has less influence on the inflow, and therefore create
a ”lazy” model. An example of the LSTM model being exposed to this biased data can
be seen in Figure 5.2. Here the prediction is ”cutting” off all the reduction in inflow
and has a stable low point that is unwanted. This stable low point is likely due to the
overrepresented data that fluctuates around 0 from May to September. It was therefore
decided to cut the dataset at 28.09.2022 and the new dataset interval can be seen in
Figure 5.1.
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Figure 5.1: The new shortened training and test set.
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Figure 5.2: LSTM model trained on all the data-sets and under-preforming.

The new dataset would therefore represent the Autumn and Winter season, where the
inflow into the sump tank would be most pressing. Thus, it would be more representative
of the problem of trying to predict floods. It is, however, important to note that this
machine learning algorithm will not be able to predict anything beyond the seasons that
are captured by the dataset. Since no year has equal weather behavior, this model will
most likely perform poorly on next year’s data of the same season, as the algorithm won’t
be able to capture the seasonality difference that occurs between different years of the
same season, due to the lack of data.

Note that at the start of the prediction results plot, represented by the yellow line, there
will always be a sharp spike up from zero before the prediction starts, visible in Figure
5.2. This is an artifact from the use of the sliding window method.

The artifact occurs as the sliding window offsets the dates, at the first prediction, by
the number of sequences used in predicting the next Y value. To prevent this offset, the
array holding the predicted values was shifted n− sequences forward in the array and the
beginning was filled with zeroes. This will only affect the plotting of the graph for visual
representation only, and not the RMSE nor the MAE of the models.
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5.1 LSTM tuning and results

5.1.1 Tuning the LSTM model

After tuning the hyperparameters of the LSTM model with the parameters shown in Table
5.1, the following result shown in Figure 5.3, were produced. Here the LSTM network
model had 3 hidden layers with 50, 70, and 10 neurons in each layer respectively, with
dropout layers of 0.2 between each of these layers, seen by the dropout parameter. The
model also used 7 past samples in the sliding window method to predict each inflow value,
seen by the n_past hyper-parameter. The model had a maximum of 100 epochs to train,
meaning if the early dropout function did not kick in, it could only train a total of 100
epochs. Lastly, the split ratio between the test and validation set from the training set
was split with a 25% ratio. The Figure 5.3 shows the model’s training performance,
by plotting the Mean Square Error (MSE) for the validation set and test set over the
training epoch. The y-axis represents the MSE and the x-axis is the amount of epochs.
By inspecting this plot, it is possible to see that the early stopping mechanism stopped the
training around 30 Epochs. The model is also underfitting since both the MSE value for
both validation loss and the loss function ”flattens” out around 0.3 and 0.2 respectively.

Number of neurons n_future n_past epochs n_batchh split_ratio droput
50, 70, 10 1 7 100 100 0.25 0.2, 0.2, 0.2

Table 5.1: The hyperparameters from tunig phase.

42



Figure 5.3: The LSTM model underfitting.

To mitigate the model from underfitting, the complexity of the model was increased to
attempt to make the model capture the underlying patterns. This was done by increasing
the number of hidden layers from 3 to 4, increasing the number of neurons in the hidden
layers, and reducing the number of batches that go through the model before updating
the weights. The updated parameters can be seen in Table 5.2, and the new result of this
tuning can be seen in Figure 5.4.

Number of neurons n_future n_past epochs n_batchh split_ratio droput
150, 170, 110, 130 1 7 100 50 0.25 0,.2 0.2, 0.2 ,0.2

Table 5.2: The updated parameters for the LSTM model.
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Figure 5.4: The LSTM model underfitting less.

Here, it is possible to see that increasing the complexity helped with the underfitting, as
the MSE of the loss function flattens out around 0.1. However, it introduced some noise
in the validation loss function. This is likely due to the dropout layers introducing noise
as they drop random neurons. The dropout layer was removed to attempt to reduce its
impact on the validation loss. This indeed led to a less noisy result as seen in Figure 5.5.
It was therefore decided to move forward with this model, as further testing resulted in
worse results.
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Figure 5.5: The LSTM model with ok fit.

5.1.2 LSTM model performance

Figure 5.6 shows the result of both the training and predicting performance of the tuned
LSTM network. The left plot is the same training result as seen in Figure 5.5, shown
above, and to the right is the result of the prediction of this particular model.

Besides the prediction result suffering from some ”bleeding artifacts”, seen by the yellow
prediction line having large spikes in the negative direction at some predictions, the overall
performance of the LSTM looks okay, as the prediction line does follow the actual inflow
value, represented by the blue line.

It is, however, important to note that the predictions never reached the top of the peaks,
and by zooming in on the end of the prediction, shown in Figure 5.7, there is an offset.
This offset likely comes from the model using the last inflow input as the best current
prediction, and therefore all the predictions are shifted to the right creating the offset.
There is also a lot of noise from the model trying to fit the rapid changes that the inflow
data generated.
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Figure 5.6: The full overview of training and testing the LSTM model.

Figure 5.7: The prediction vs actual curve zoomed in at the end.
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5.2 Transformers tuning and result

5.2.1 Tuning

The tuning of the transformer was performed in much the same way as the LSTM, the
only difference was that the Transformer network had different hyperparameters to tune.
The hyperparameters that were tuned for the first transformer can be seen in Table 5.3.

num_blocks num_head head_size batch_size epochs
4 4 156 100 200
n_future n_past split_ratio dropout mlp_dropout
1 7 0.2 0.1 0.2

Table 5.3: The hyper-parameter list for the first Transformer encoder performance.

Here the num_blocks represents the number of encoder blocks the transformer network
consisted of, in this case 4 identical encoder blocks stacked on top of each other. Each en-
coder block consisted of 4 parallel attention mechanism heads in the multi-head attention
layer, represented by the num_head. Each of the attention mechanisms had a dimension
of 156, given by the head_size parameter. The rest of the parameters were the same as
for the LSTM, with some other values, except the mlp_dropout which was the dropout
layer for the Multi-Layer Perception.

These parameters led to the first result seen in Figure 5.8. By looking at the MSE of
the loss vs validation loss functions, this model is also underfitting like the LSTM model.
However, to improve the model’s performance, more data were given in the training phase.
As mentioned at the start of Chapter 5, giving the LSTM model more training data hurts
the performance, this however, was not the case for the transformers. This is likely due to
the Transformers Attention mechanism being able to preform relatively well, regardless
of being exposed to bias data.
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Figure 5.8: The transformer underfitting.

By increasing the time window from 28.09.2022 to 01.08.2022 and retraining the Trans-
formers, the underfitting decreased. Then, by tuning the dropout layers along with the
number of heads, the following parameters were obtained, shown in Table 5.4. The result
of these tuning steps further increased the performance, as seen in Figure 5.9. Here, both
the validation loss and the loss functions flatten out at acceptable levels. The loss function
has reduced significantly compared to the underfitting seen in Figure 5.8 above. For more
results of the tuning phase, see Appendix E.

num_blocks num_head head_size batch_size epochs
4 6 156 100 200
n_future n_past split_ratio dropout mlp_dropout
1 7 0.21 0.2 0.1

Table 5.4: The hyper-parameter list for the second Transformer encoder performance.

48



Figure 5.9: The Transformer preforming well.

5.2.2 Transformers performance result

Figure 5.10 shows both the training and prediction performance from the last trained
model, same as for the LSTM. By looking at the prediction plot, the model does a good
job of following the blue inflow curves but has some overshooting on the highest peaks.
The overshoot can be seen by the yellow prediction line having a higher level around the
largest spikes. By zooming in on the latter section of the prediction result, as seen in
Figure 5.11, the prediction curve has the same type of offset as in the LSTM, but with
a smoother transition curve that does not attempt as hard to fit the rapid changes from
the inflow data.
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Figure 5.10: The overview performance of the training and testing of the Transformer.

Figure 5.11: The zoomed end of the prediction.
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5.3 Comparison between LSTM and Transformers

The LSTM and Transformer behaved differently on the prediction, where the LSTM had
problems reaching the tops of the peaks and therefore underestimated higher inflow peaks.
The Transformers did not attempt, as hard as the LSTM, to follow the rapid changes from
the inflow, and therefore underestimated smaller inflow changes. This is especially present
in the difference between RMSE and MAE of the two models, as seen in the box plot in
Figure 5.12. The box plot shows the uncertainty in the 30 iterations for both the LSTM
and the Transformers. The boxes represent the spread of the data with the black line
in the middle showing the median, and the whiskers the maximum and minimum value.
Lastly, the diamonds represent ”outliers”, performance of the models that are too poor,
and therefore categorized as outliers.

Figure 5.12: The uncertainty of 30 LSTM and Transformers iterations.

Here, the LSTM has an overall lower RMSE with 11.5 L/h median for training and 7.1
L/h median for testing. Where the the Transformer had RMSE value of 19.9 L/h, and
around 13 L/h respectively, but the Transformer has a much better MAE in the test
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prediction performance at around 5 L/h median. This is likely due to the fact that the
LSTM tries harder to follow the rapid changes than the Transformer. Therefore, the
LSTM is penalized less since the error between the actual value and predicted value is on
average smaller, thus receiving a smaller RMSE.

On the other hand, the Transformer has smoother transition lines and therefore gets a
higher RMSE. The smooth transition, however, gives better performance on the MAE,
indicating that the model is more tolerant of errors but is closer to the actual value. This
is quite visible when inspecting the tail of both Figure 5.7 and Figure 5.11.

This means that the LSTM model, in its current state, is less likely to underestimate the
inflow overall, due to the lower RMSE. But if used as a forecast system or controller, it
could generate more noisy signals. This could lead to a bouncy forecast or more stress
on the control system with a lot of unnecessary adjustments. While the transformer, in
its current state, would be more likely to underestimate the inflow, and therefore might
generate a less accurate forecast, but create a smoother signal. A smoother signal means
a more stable prediction system or a less rapidly changing control system. Both of these
qualities are important in such a forecast or control system, since both underestimating
inflow and stress on the system are unwanted. The performance of the models, however,
could likely be improved further with more tuning. However, more data would probably
make a bigger impact on the overall performance.

5.4 Black box control system

The chosen machine learning model could then be loaded onto the Raspberry Pi, and
with some implementation, work as either a forecast system or a control system. The
forecast system would work by predicting the inflow, comparing it with the outflow, and
displaying the risk of a flood forecast based on this to the end user. The control system
would work by controlling the activation level of the sump tank, and therefore dictate
how often the pumps would start, based on the inflow, and thus improving on the concept
of the Amesh Tokyo system.

However, this was not done as none of the models would be robust enough to work either
as a forecast system or a control system. More data and more tuning would be required for
it to work within acceptable requirements. Since these models were only tuned on limited
dates of one year, they would likely perform worse, when out of the specific seasons. It was
also therefore decided that any API communication with weather data was unnecessary,
as this API communication would be used as a rolling prediction system for the deployed
machine learning system on the Raspberry Pi.
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6 Conclusion

The system as a whole would not be able to work today; this is mainly due to the lack
of performance of the machine learning models. Because of the lack of seasonality in the
datasets, and the extremely small time window of training data, the machine learning
models would perform poorly as either a forecast system or a control system. That being
said, the models indeed show potential and might improve significantly in the future when
more data is available and after further hyper-parameter tuning.

The IoT device, however, worked as expected and served its purpose as an HMI for the
pumps, and as a logger. The IoT device managed to be a stable logger and gave the
operator sufficient information about the state of the pumps. The HMI, however, was
missing some features that should be addressed in future work.

Choosing the best machine learning model was not possible in the current state, as in
an inflow prediction system both RMSE and MAE are important. Since a small RMSE
indicates that the model is less likely to underestimate the inflow, it might create more
noisy output signals. A smaller MAE, on the other hand, gives a less noisy output but is
more likely to underestimate the inflow into the sump tank. Both of these problems are
undesirable as underestimating inflow renders the system useless, and a bouncy prediction
system is too unpredictable.

In conclusion, for the system to work as a prediction or control system, more time has
to pass for the logger to collect more data for training. The data gathered in the short
time the logger was operational was not sufficient to provide any acceptable results for
the machine learning models. However, the results from the machine learning perform-
ance were promising, and if given more data with seasonality, and more hyper-parameter
tuning, the models might be good enough to be used. In the future, they might be good
enough to work as either a flood prediction system or a control system for the activation
level of the sump tank.
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7 future work

An important area for future exploration would be to revisit the system in a year or two,
and conduct a fresh round of data analysis and training. This would allow us to see if the
models would be able to predict a whole year, and learn patterns that lie in the nature
of the seasonality in the data. Then, implementation of an API communication with the
local weather station to create a rolling prediction system should be attempted. Lastly,
the new machine learning model should be installed on the Raspberry Pi.

It would also be a good idea to restructure the IoT system, such that the logger and the
HMI are moved into a cloud solution. The Raspberry Pi should only retrieve and send data
from the frequency converters to the cloud. This would greatly increase the robustness
and the security of the system. Since the logger is implemented on the Raspberry Pi,
it is susceptible to SD-card corruption, leading to the loss of all the stored data. The
Raspberry Pi is also susceptible to physical ”hacking”, although this is unlikely. Lastly,
updating the HMI with the implemented machine learning model prediction should also
be prioritized, to give the operator insight into what the model is predicting.
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PumpSmart® PS220 

Smart Control and Protection



PumpSmart PS2202

PumpSmart® 
The industry award-winning and patented pump control logic 
delivers real-time control and protection of your pumps while 
also providing valuable process insight. By protecting against 
pump failure due to process upsets, PumpSmart keeps your 
operation running longer and reduces unplanned repair 
activities and expense. By right-sizing your pumps to your 
system, we can reduce not only your energy consumption, but 
also wear & tear on your process systems. 
 
ITT was an early adopter of variable speed pumping technology 
due to the inherent improvements that could be found in both 
efficiency and reliability of the pumping system. Leveraging 
electronic variable speed controllers allowed us to measure key 
parameters about the electric motor’s performance and apply 
our unique expertise to create the PumpSmart Drive System. 
Functions unique to PumpSmart include calculating the flow 
and head of the pump without sensors, sensorless pump 
protection from process upset conditions, intelligent sleep and 
balancing load between multiple pumps. 
 
Process Control  Pump Diagnostics 
• Sensorless Flow Control • Sensorless Pump Protection 
• Multipump Control  • Smart Flow 
• Smart Control   • % BEP Operation 
• Intelligent Sleep  • Smart Total Dynamic Head 
• Cavitation Control  • Flow Economy
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-PumpSmart is used across a wide-range of industries-

PumpSmart® PS220  
PumpSmart PS220 provides the next level 
in intelligent pumping by using a 
standard variable frequency drive and 
directly embedding pump specific 
algorithms onto the drive. The PS220 
drive is a microprocessor based Direct 
Torque Controlled (DTC) adjustable speed 
AC drive. Pump specific algorithms 
combined with the advantage of 
sophisticated high-performance control 
of AC motors make it the ultimate variable 
speed drive solution for any pumping 
application. 
 
3-Year Reliability Assurance Program 
Protect your Goulds pump with a PumpSmart product and 
we’ll GUARANTEE it against failure from pump process 
upsets for up to 3 Years¹...or the parts are on us. 
 
Goulds Pumps and PumpSmart Control Solutions are proud to 
offer this innovative new program that protects against pump 
failure that commonly results from inadvertent dry-running or 
operation against a closed discharge valve. If your Goulds 
pump fails while a PumpSmart Control product is on the job, 
we will provide the pump and seal repair parts free of charge.

See your Goulds Pumps representative to get started today. 
¹ Program starts 3 years from pump shipment.
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Sensorless Technology 
Smart Flow & Smart TDH 
Using speed and torque data from the motor and modelling 
the pump performance curve, PumpSmart is able to calculate 
the flow and the total dynamic head generated by the pump 
without instruments. 
 
Determining the flow of a centrifugal pump can be a 
challenging exercise without a flow meter. PumpSmart is able 
to capture real-time data such as speed, torque and power and 
use this information to calculate the flow of the pump. 
 
Smart Flow requires only four pieces of standard price book 
performance curve data. A self-calibration function takes into 
account changes in mechanical losses and volumetric efficiency, 
and separates the true hydraulic load to calculate the actual 
pump flow. 
 
 
 
 
 
 
 
 
 
 
 
 
 
SmartFlow PID Control - PumpSmart allows controlling 
system flow in single pump or multi-pump systems without the 
need of an external flowmeter. 
 
SmartFlow Flow Totalizer - Dial in a flow rate and let 
the PS220 do the rest. Run your batch operations to pump 
fixed volumes without using an external flowmeter. 
 
Flow Economy - Flow Economy is a simple metric that 
defines how much fluid is moved per unit of energy. Similar to 
fuel economy of your car, Flow Economy defines how much 
flow (gpm or m³/h) can be moved with 1 kilowatt (kW) of 
power. Combined with Smart Flow, PumpSmart is able to 
calculate the Flow Economy of your pump allowing you to 
know what the true pump system efficiency is.

Sensorless Pump Protection 
With patented sensorless pump protection algorithms, the 
PS220 determines the operating point of the pump at any 
speed and provides critical diagnostic information such as 
operation in relation to best efficiency point and protection 
against upset conditions such as dry-run, dead-head, shut-off, 
minimum flow and run-out. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Intelligent Sleep - A standard variable speed drive enables 
pump sleep mode based on the combination of system 
demand and a single preset minimum speed. Dynamic system 
conditions where static heads change make this method 
ineffective. The PS220’s intelligent sleep mode function 
provides true protection against no demand conditions 
regardless of the user defined minimum speed. 
 
Minimum Flow Bypass Control - By leveraging 
SmartFlow, the PS220 can trigger a relay output to energize a 
valve which will open and close a bypass line. A minimum flow 
setpoint triggers the bypass valve to open and when the pump 
reaches a user defined safe flow output which is corrected for 
speed by the PS220, the relay output triggers the bypass valve 
to close.

25%0
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Intelligent Single & Multi-pump Control
Smart Torque Control 
When changing the speed of a pump with a relatively flat 
head-capacity curve, a small speed change can result in a large 
swing in flow. This type of system can result in unstable flow, 
making control very difficult. (Fig.1) 
 
 
 
 
 
 
 
 
 
 
Smart Control is able to increase and decrease pump flow by 
changing the pump torque rather than the pump speed. 
Controlling to pump torque can change a relatively flat pump 
performance curve into a steep, easy-to-control pump 
performance curve. (Fig.2)
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Multi-Pump Control 
All too often, multi-pump systems end up running with all the 
pumps on, all the time. This situation leads to high vibrations, 
pressure buildup and excess energy consumption...to name a 
few. The PS220 runs only the pumps necessary to meet the 
system demand. 
 
• Control up to a six-pump multi-pump system. 
• Roaming master functionality allows for uninterrupted 
   operation should any pump or drive become unavailable 
   within the system. 
• Balanced flow output between the operating pumps using 
   Smart Torque Control functionality. 
• Industry’s first variable speed Sensorless Multi-pump Flow 
   control solution. 
• Selectable functions to limit the minimum or maximum 
   allowable pumps to operate in a process. 
• Switch leag lag status of pumps to maintain even wear  
   between them based on runtime hours or number of Starts. 
• Adjustable individual proof timers for staging and destaging 
   pumps to reduce process fluctuations while bringing pumps 
   online or taking them offline. 
 
In summary, energy consumption is greatly reduced, and mean 
time between failure of the pumps and the surrounding 
system is vastly improved.

Fig.1

Fig.2



PumpSmart PS220 5

Process Control & Protection 
Cavitation Control & Protection 
Low suction pressure can lead to the onset of cavitation, 
resulting in reduced flow and lower pump efficiencies. 
Prolonged exposure can even result in eventual pump failure. 
 
PumpSmart can monitor the suction conditions of your pump 
to protect against cavitation. Cavitation Control improves 
overall pump reliability in low Net Positive Suction Head (NPSH) 
services that routinely cause pump failure. 
 
Typical Services: 
• Evaporator 
• Condensate 
• Batch Transfer 
• Unloading 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Integrated Process Control 
The PS220 offers automatic pump control by integrating the 
pump controller in the drive. No external controller is required, 
making PumpSmart a simple and cost-effective solution for 
your pumping needs. 
 
Process Control Features 
• Single Pump • Cavitation Control 
• Multipump • PID Smart Flow 
 

As standard PumpSmart systems come equipped with 
advanced process control features that help optimize your 
pumping system for maximum uptime, reliability and energy 
savings. 
 
PumpSmart is pump-specific and was developed to protect the 
pump and optimize pump control. PumpSmart can be applied 
to any manufacturer’s centrifugal or positive displacement 
pump. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Waste Water Functions 
Pump Clean - The PS220 automatically detects and removes 
clogging substances from the pump impeller by monitoring the 
pump motor torque preventing damage from pump lockup. 
 
Pipe Clean - This function allows flushing of the pipe system 
that helps with reducing sedimentation in the pipes resulting in 
lower wear on piping. 
 
Pipe Fill - The PS220’s pipe fill function allows gradual filling 
of a pipeline before normal process control operation. 
 
Snore - The PS220 snore function overrides the stop level to 
empty a tank for the purpose of removing 
oil & grease and other floating debris 
from the water surface. This results in a 
cleaner sump with eliminating the need 
to pump down and clean the sump 
manually.

Horizontal Centrifugal 
Pump

Between Bearing 
Centrifugal Pump

Submersible 
Pump

Vertical Centrifugal 
Pump

Twin Screw/Gear 
Pump

Progressive Cavity 
Pump

As suction pressure drops to a critical 
level PumpSmart reacts by slowing 
down the pump.

Operating a pump with 
low suction pressure can 
result in the formation of 
cavitation. Reducing the 
pump speed can reduce 
the NPSH requirements 
of the pump which can 
help suppress the onset 
of cavitation.
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Ease of Configuration 
The PS220 Wizards guide you step by step to take a PS220 
from factory defaults to any application specific setup, making 
it one of the industry’s simplest variable speed drives to 
commission and configure. 
 
 
 
 
 
 
 
 
 
 
 
Bluetooth Connectivity 
Using Bluetooth, the PS220 offers easy access to drive 
parameters and control using a bluetooth enabled 
smartphone or tablet. 
 
 
 
 
 
 
 
 
 
 
 
 
Drive PC Tools 
Drive composer provides a built-in drive 
control panel allowing users to start, stop, 
and set the direction, speed, and torque 
reference values of the connected drive. 
 
• View and set drive parameters 
• Custom workspace 
• Custom windows 
• Save and download parameters 
• Control the drive using the built-in control panel 
• Connects via USB through ACP-AP panel network

Communications & Other Features
Flexible Connectivity to Plant Automation 
Systems 
Fieldbus adapter 
modules enable 
communication and 
software. The PS220 is 
compatible with a wide 
range of fieldbus 
protocols. The plug-in 
fieldbus adapter 
module can easily be 
mounted inside the drive. Other benefits include reduced 
wiring costs when compared with traditional input/output 
connections. Fieldbus systems are also less complex than 
conventional systems, resulting in less overall maintenance. 
Adapters can be added to the drive at anytime. 
 
Safe torque off as standard 
Safe torque off (STO) is 
used to prevent 
unexpected startup and 
in stopping-related 
functions, enabling safe 
machine maintenance 
and operation. With safe 
torque off activated, the 
drive will not provide a 
rotational field. This 
prevents the motor from 
generating torque on the 
shaft. This function corresponds to an uncontrolled stop in 
accordance with stop category 0 of EN 60204-1. 
 
The easy to connect and configure safety functions module 
(FSO-12 and -21) offers a wide range of safety functions and a 
self diagnostic function. 
 
Removable memory unit 
Stores all the software and parameter 
configurations in an easily replaceable and 
simple-to-install module. Situated on the 
control unit, the memory unit can easily be 
removed for maintenance, update or 
replacement purposes. This common type of 
memory unit is used throughout the PS220 series.
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Hardware Options 
Engineered Options 
Pre-engineered control panels for indoor, outdoor and water 
tight installations rated for NEMA 1 (IP21), NEMA 12 (IP54), 
NEMA 3R and NEMA 4/4X (IP66) environments. 
   • Simplex 
   • Duplex 
   • Triplex 
   • Quad 
 
 
 
 
Packaged systems which include pumps, controls and piping 
providing a complete skid mounted solution. 
 
 
 
 
 
 
 
 
 
 
 
Bucket Mounted options for easy installations into a motor 
control center. 
 
 
 
 
 
 
 
 
 
Electrical Houses with HVAC, lighting and complete “turn-key” 
integration including customer specific options such as 
redundant PLC’s, transformers & soft starts.

Hardware Configurations 
• Wall Mount Drives  • Cabinet Drives 
• Ultra Low Harmonic Drives • Regenerative Drives 
• Flange Mount Options  • Drive Modules 
 
Main Features on All Drives 
• Enclosure classes IP20, IP21, IP55 • EMC filter option 
• Safe torque off (STO) as standard • du/dt filter option 
• Coated boards as standard  • Built-in choke 
• Controllable cooling fan 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Additional Features for Cabinet Drives 
• Cabinet light and heater option 
• Marine construction option

Frame 
Size

Height 
IP21 

in/mm

Depth 
in/mm

Width 
in/mm

Weight 
lb/kg

R1 16 / 405 8.9 / 226 6.1 / 155 13.2 / 6

R2 16 / 405 9.8 / 249 6.1 / 155 17.6 / 8

R3 18.5 / 471 10.3 / 261 6.7 / 172 22 / 10

R4 22.6 / 573 10.8 / 274 8 / 203 40.8 / 18.5

R5 28.7 / 730 10.8 / 274 8 / 203 50.7 / 23

R6 28.6 / 726 14.1 / 357 9.8 / 251 99.2 / 45

R7 34.6 / 880 14.4 / 365 11.2 / 284 121.3 / 55

R8 37.9 / 963 15.2 / 386 11.8 / 300 154.3 / 70

R9 37.9 / 963 16.3 / 413 15 / 380 216 / 98
Frames R1-R0 

0.75Kw - 250Kw 
(1HP - 350HP)

Wall Mount Units

Frame 
Size

Height 
IP22/42 
in/mm

Height 
IP54 

in/mm

Depth 
in/mm

Width 
in/mm

Weight 
lb/kg

R6 84.4 / 2145 91.2 / 2315 16.9 / 430 26.5 / 673 528 / 240

R7 84.4 / 2145 91.2 / 2315 16.9 / 430 26.5 / 673 550 /250

R8 84.4 / 2145 91.2 / 2315 16.9 / 430 26.5 / 673 583 / 265

R9 84.4 / 2145 91.2 / 2315 32.7 / 830 27.5 / 698 825 /375

R10 84.4 / 2145 91.2 / 2315 32.7 / 830 27.5 / 698 1169 / 530

R11 84.4 / 2145 91.2 / 2315 32.7 / 830 27.5 / 698 1279 / 580

Product Compliance

CE, UL cUL 508A or cUL 508C 
CSA C22.2 NO. 14-10, C-Tick, RoHS 
ATEX-certified Safe Disconnection Function 
Low Voltage Directive 2006/95/EC 
Machinery Directive 2006/42/EC 
EMC Directive 2004/108/EC 
Quality assurance system ISO 9001 & 
Environmental system ISO 14001

EMC according to EN 61800-3:2004 + A1:2012

Categories C3 and C2 with internal option

Frames R6-R8 
55Kw - 200Kw 
(75HP - 200HP)

Frames R9-R11 
200Kw - 500Kw 
(250HP - 700HP)

Frames n x R8i 
500Kw - 2800Kw 
(500HP - 3000HP)

Cabinet Drives

Main Connection

Voltage Range 3-phase, UN2 = 208 to 240 V

3-phase, UN3 = 380 to 415 V

3-phase, UN5 = 380 to 500 V

3-phase, UN7 = 525 to 690 V

Frequency 50/60 Hz ± 5%

Motor Connection

Voltage 0 to UN2  UN3  UN5  UN7

Frequency 0 to +500 Hz

Motor Control Direct torque control
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HIGH EFFICIENCY WITH CLOG-FREE PERFORMANCE

The Flygt N-technology pump  
series for water and wastewater 



Our vast fluid handling knowledge 
and dedication to research and  
development leads to technological 
advances and continuous improve-
ment. That’s why Flygt N-pumps  
are currently at work in millions of  
installations worldwide. Quite simply, 
they have proven to be the best and 
most reliable choice for both dry and  
submersible installations.

Sustained high efficiency  
saves money
When solid objects, such as stringy  
fibers and modern waste, enter the  
inlet of a conventional pump, they 
tend to get caught on the leading 
edges of the impeller vanes. This 
build-up reduces the impeller’s  
efficiency, resulting in increased  
power consumption (Fig. A). 

Avoiding unplanned  
service calls
With conventional wastewater pumps, 
a continued build-up of solids inside 
the impeller can trip the panel over-
load or motor protection function, 
causing clogging and leading to cost-
ly unplanned service calls (Fig. A). 
Even if the pump is running intermit-
tently, hydraulic efficiency is reduced 
since the solids build-up needs to be   
removed by backflushing when the 
pump is shut off at the end of the  
operating cycle (Fig. B). Not until  
the next cycle begins is efficiency  
restored to its initial value when the  
impeller is free from solid objects.  
The Flygt N-technology has a me-
chanically self-cleaning design that 
handles the toughest modern waste-
water challenges. With sustained high 

Our Flygt N-pumps (1.3 kW – 680 kW) are designed to handle the world’s toughest water 
and wastewater applications. And now, with our Adaptive N™ technology in all smaller 
pumps, you get a superior way to avoid clogging, reduce unplanned maintenance and cut 
your energy bills. That adds up to total peace of mind – and big savings over the long term. 

No clogging. No wasted energy.  
Just trouble-free pumping

efficiency it minimizes running hours 
and energy cost over time (Fig. C). 

Experience the power of N
Whether you are working with waste-
water, stormwater or another applica-
tion, you will find a broad range of 
N-pumps designed to take on the 
toughest challenges and get the job 
done. Robust, reliable and self-clean-
ing, they cut your energy bills and vir-
tually eliminate unplanned mainte-
nance.

A.  Conventional 
wastewater pump

B.  Conventional pump   
running intermittently

C. Flygt N-pump

  Energy consumption

  Hydraulic efficiency

Sustained high efficiency with Flygt N-pumps



Key benefits 

•  State-of-the art pumping with  
Adaptive N™ technology

•  Sustained high-efficiency operation 
•  Modular design with high  

adaptation grade
•  Lowers energy and unplanned  

maintenance costs
•  Reduces  total lifecycle cost of  

the installation

Broad capacity

•  Ratings from 1.3 kW to 680 kW
•  Discharge up to 800 mm
•  Flow up to 1,000 l/s
•  Heads up to 100 m
•  Submersible and dry installations
•  Every Flygt pump is performance 

tested in the factory
•  Can handle dry solids up to 8%

N-pump application areas 

•  Wastewater
•  Stormwater
•  Desalination
•  Reuse
•  Sewage
• Treatment Plant



The fundamental N-technology, 
which was pioneered by Flygt, has 
been incorporated into our pumps 
for years. A more recent innovation 
is our Adaptive N impeller and 
Adaptive N hydraulic technologies 
(see below) which combine a unique 
geometry, dual-blade impeller and 
other patented features to give you 
sustained high efficiency and smooth 

operations. When larger objects  
enter the pump, the impeller lifts 
up due to the forces from these 
solid obects passing through. This 
self-cleaning design results in up 
to 25% lower energy consumption, 
regardless of impeller speed or duty 
point. It also minimizes vibrations, 
resulting in a longer life span for  
the mechanical components.

Advanced technology guides 
the design of every component 
From the motor and seals to the shaft and impellers, every component in a  Flygt N-pump 
is designed, engineered and manufactured to optimize operation and prolong service life. 
Advanced technology guides the design of  all aspects of the pump. One example is the 
Adaptive N hydraulic system, which is available only with lower-capacity pumps.

1.  Backswept leading edges –  
ensures no sticking

When solids enter the pump, they are 
met by the N impeller. The optimized 
blade geometry, with its backswept 
leading edges, ensures that no 
material sticks to the impeller.

2.  Integrated guide pin –  
clears the center

A guide pin inserted into the insert 
ring clears the center of the impeller 
by pushing solids along the leading 
edges towards the periphery of the 
impeller for removal.

3.  Relief groove –  
facilitates transport

When solids reach the perimeter of  
the inlet, they are transported inside 
the relief groove, guided along the 
edge of the impeller vane, through  
the volute and out of the pump.



Choice of impeller materials  
With our Adaptive N impeller, you 
can also choose the optimal material 
type for your needs: Hard-Iron™, 
grey iron or stainless steel. Flygt’s 
patented Hard-Iron alloy is devel-
oped specifically for tough waste- 
water applications. Accelerated wear 
tests prove that Hard-Iron (60 HRC) 
hydraulic components prolong the 
lifetime by a factor of five, compared 
to standard grey iron material.

Advanced technology guides 
the design of every component 
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Grey iron

Duplex stainless steel
Hard-Iron™
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Grey iron

Stainless steel
Hard-Iron™

Adaptive N™ hydraulic materials - accelerated wear test

After 200 hours, the Hard-
Iron impeller proved to 
be five times more wear 
resistant than the grey iron 
version. The stainless steel 
impeller showed wear 
comparable to the standard 
grey iron material.

Extra-durable 
option for 
abrasive 
and erosion 
corrosion 
applications.

Chopper ring 
for cutting 
long fibers or 
solids.

Adaptive N –  lifts up for large objects
When larger objects enter the pump, 
the impeller lifts up due to the forces 
from these solid objects passing 
through. This avoids clogging and 
assures continuous, energy-efficient 
pumping. 
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Low-capacity pumps
This series of Flygt N-pumps includes models capable of handling capacities up to 100 l/s.  
Like all Flygt N-pumps, they help reduce the total life-cycle costs of your installation.

POWER RATINGS AND SIZE

Model 3069 3085 3102 3127

Power rating - kW 1.5–2.4 1.3–2.4 3.1–4.5 4.7–8.5

Discharge size - mm 50 80 80 80

 65  100 100

 80  150 150

1. Better heat transfer 
Our specially designed and manu-
factured motor provides enhanced 
cooling because heat losses are  
concentrated around the stator.  
Trickle impregnated (not applicable 
for 3069) in resin (Class H insulation), 
the stator windings are rated at 
180°C (355°F) and enable up to 30 
starts per hour.

2. Cable entry 
Water-resistant cable entry provides 
both sealing and strain relief functions 
to ensure a safe installation.

3. Sensors 
Thermal sensors embedded in the 
stator windings prevent overheating. 
Optional leakage sensors in the stator 
and oil housings are also available.

4. Long-life bearings 
Durable bearings provide a minimum 
service life of 50,000 hours.

5. Enduring seals 
The Griploc™ system consists of two 
sets of mechanical shaft seals that  
operate independently to provide 
double security against leakage.

Compliance 
Each pump is tested and approved  
in accordance with national and 
international standards, including 
60034-1 and CSA. Pumps are avail-
able in explosion-proof versions for 
use in hazardous environments, and 
are approved by the Factory Mutual,  
European Standard and IEC.

Performance, 50 Hz
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Medium-capacity pumps
For demanding pumping duties, medium-capacity models handle fluid transport 
for capacities up to 500 l/s. Robust and highly efficient, they provide clog-free 
performance to achieve the lowest overall life-cycle costs.

1. Better heat transfer 
Our specially designed and manu-
factured motor provides enhanced  
cooling because heat losses are  
concentrated around the stator.  
Trickle impregnated in resin (Class H 
insulation), the stator windings are 
rated at 180°C (355°F) and enable  
up to 30 starts per hour.

2. Efficient cooling 
These pumps are cooled either by  
the surrounding liquid or liquid/air,  
in more demanding applications, 
with an internal closed-loop cooling 
system.

3. Inspection chamber 
To increase operational reliability, an 
inspection chamber between the seal 

unit and the bearings enables rapid 
spot checks and maintenance. In the 
case of a seal failure, a built-in sensor 
provides an early warning of any fluid 
build-up, thus reducing the risk of  
expensive repair work.

4. Cable entry 
Water-resistant cable entry provides 
both sealing and strain relief func-
tions to ensure a safe installation.

5. Sensors 
Thermal sensors embedded in the 
stator windings prevent overheating, 
and a leakage sensor in the inspec-
tion chamber minimizes the risk for 
bearing and stator failure.

POWER RATINGS AND SIZE

Model 3153 3171 3202 3301 3315

Power rating - kW 7.5–15 15–22 22–47 37–70 48–105

Discharge size - mm 80 100 100 150 150

 100 150 150 250 250

 150 250 200 300 300

 200  300 350 350

 250

6. Long-life bearings 
Durable bearings provide a minimum 
service life of 50,000 hours.

7. Enduring seals 
The Flygt Plug-in™ seal with the  
Active Seal™ system offers increased 
sealing reliability and zero leakage 
into the motor, thereby reducing the 
risk of bearing and stator failure.

Compliance 
Each pump is tested and approved  
in accordance with national and 
international standards, including 
60034-1 and CSA. Pumps are avail-
able in explosion-proof versions for 
use in hazardous environments, and 
are approved by the Factory Mutual,  
European Standard and IEC.
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High-capacity pumps
When higher capacity is required, the Flygt N-pump series has pumps to do the job.  
These models deliver unprecedented pumping power – reliably and efficiently.

1. Better heat transfer 
Our specially designed and manu-
factured motor provides enhanced 
cooling because heat losses are  
concentrated around the stator.  
Trickle impregnated in resin (Class H 
insulation), the stator windings are  
rated at 180°C (355°F) and enable  
up to 15 starts per hour.

2. Efficient cooling 
These pumps are cooled either by  
the pumped liquid or liquid/air with 
an internal closed-loop cooling 
system.

3. Cable entry 
Water-resistant cable entry provides 
both sealing and strain relief  
functions for a safe installation.

4. Sensors 
Thermal sensors in the stator wind-
ings prevent overheating, and an 
analog temperature sensor monitors 
the lower bearing. The stator housing/ 
leakage chamber and the junction 
box are equipped with leakage 
sensors. The sensors decrease the 
risk of bearing and stator failure.

5. Long-life bearings 
Durable bearings provide a minimum 
service life of 100,000 hours.

POWER RATINGS AND SIZE

Model 3231 3306 3312 3356 3400 3531 3800

Power rating - kW 70–215 58–100 55–250 45–140 40–310 40–680 225–550

Discharge size - mm 200 300 300 350 400 500 800

6. Enduring seals 
Two sets of mechanical shaft seals 
work independently for double  
security. The Active Seal™ system  
offers increased sealing reliability  
and zero leakage into the motor, 
thereby reducing the risk of bearing 
or stator failure.

Compliance 
Each pump is tested and approved  
in accordance with national and 
international standards, including  
IEC 60034-1 and CSA. Pumps are 
available in explosion-proof versions 
for use in hazardous environments, 
and are approved by the Factory 
Mutual, European Standard and IEC.

Performance, 50 Hz
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MAS 801 – the smart way to  
monitor performance 
This new pump moni toring system 
offers powerful data management 
capabilities to ensure you are con-
stantly updated on each pump’s 
conditions and operational status. 
We’ve removed the traditional sensor 
cable, which means simplified han-
dling, improved measurement quality 
and fewer callouts. Digital communi-
cation now takes place in the power 
cable, made possible by the new 
Flygt SUBCAB range with integrated 
signal leads.  

Install it and control it 
just the way you want it

Flygt SmartRun® –  
optimal reliability 
For pump stations with  
up to three alternating pumps, the 
Flygt SmartRun pump controller 
handles pump cleaning, pipe clean-
ing, sump cleaning, soft starts and 
stops.  

The integrated intelligence and 
variable speed control make it the 
perfect match for Flygt N-pumps – a 
combination that potentially realizes 
energy savings of up to 50%.  

Flexible Installations

Regardless of the size or type of N-pump you require, we offer a 
wide range of modular installation concepts as well as purpose-built 
monitoring and control systems. Our modular installation concepts 
let you customize inlets and outlets to fit your needs exactly. 

MAS 801

Flygt SmartRun

P-installation
For semi-permanent wet 
well installations. The 
pump is installed with 
twin guide bars on a 
discharge connection.

S-installation 
A semi-permanent free 
standing installation. 
Transportable version 
with pipe or hose 
connection.

T-installation 
A vertically-mounted, 
permanent dry well or 
in-line installation with 
flange connections for 
suction and discharge 
pipework.

Z-installation 
A horizontally-mounted, 
permanent dry well or 
in-line installation with 
flange connections for 
suction and discharge 
pipework.



Are you getting the most out of your pump station designs? If you have questions 
regarding fluid dynamics, optimizing your sumps, water hammer calculations or 
even service, we can help. Flygt engineers have been researching and designing 
pump stations for over three decades to achieve the lowest life-cycle costs.  
And we have a strong service network to support you.

One of the biggest challenges in  
designing a pump station is to 
achieve a balance between efficiency 
and performance. Often times, pump 
stations are over-designed, resulting 
in higher costs. One key focus is to  
secure the best possible inlet  
conditions while minimizing sedi-
mentation and pump station size. 

Optimizing your flow rates  
Other critical factors include the  
number, type and arrangement of 
pumps, variable flow conditions in  
the approach area, the geometry  
of the structure itself and other 
site-specific factors. It’s also vital to 
consider and plan for operational 
concerns such as pump control 
schemes and access for equipment 
service. 

Finding the optimal solution 
Whether you’re looking for a pre- 
engineered and packaged pump sta-
tion, standardized design or a custom  
design, we can help you find the best 
solution for your project’s needs. 

Computational fluid dynamics  
To verify a proposed new sump  
design, we use computational fluid 
dynamics (CFD), a mathematical  
modeling technology. It allows us to 
analyze flow patterns under different 
operating conditions. Flygt pio-
neered the use of CFD to verify  
sump design, and we have been  
using it for more than 30 years.

Take advantage of our design 
and engineering expertise

Extensive engineering  
know-how
We provide a broad range of  
engineering services, including:
—  System analysis and calculations
—  Sump design
—  Water hammer calculations
—  Pump start analysis
—  Transient analysis
—    Computational Fluid Dynamics  

(CFD)
—  Scale model testing



Complete pre-engineered  
solutions for all your needs 
Even better together
Do you need a swift station rollout  
in a municipal or commercial area? 
You’ll be happy to know that we offer 
a wide range of pre-engineered pack-
aged pump stations that make the job 
easier and more cost-efficient. Ideally 
suited for our premium N-pumps,  
Flygt packaged pump stations  
come with piping and valve systems,  
all installation accessories and  
monitoring and control equipment. 

Trouble-free pumping in a package
Available in a range of designs, sizes 
and materials, our packaged pump 
stations feature a common self- 
cleaning design, optimized for  
trouble-free and efficient pumping. 
One of the more popular versions  
is the Flygt TOP design pictured here. 

Support for your Flygt pumps
Our global network of local service 
centers and service partners, 
provides integrated services to 
support safe, efficient and reliable 
operation. Count on us for a quick, 
professional response and quality 

maintenance services, using 
genuine Flygt spare parts.

Genuine Flygt  
spare parts and warranty
When downtime isn’t an option,  
rely on our global service network  

to deliver genuine Flygt spare parts – 
quickly and efficiently. All Flygt  
spare parts are backed by a 15-year  
availability guarantee. With our  
higher-capacity pumps, we provide  
a 20-year availability guarantee.



Options table
Customize your Flygt N-pump with optional equipment.

The power to adapt

Flygt N-pump model 3069 3085 3102 3127 3153 3171 3202 3301 3315 3231 3306 3312 3356 3400 3531 3800

Option/Product

Motor

 Premium efficiency (IE3)

Hydraulics

 Guide pin

 Hard-Iron™

 Chopper N

 Adaptive N™  

Seal system

 Griploc™ seal

 Plug-in™ seal

 Active Seal™

 Spin-out™

 Seal flush

Cooling systems

 1. w/o cooling jacket

 2. Closed-loop cooling

 3. Pump media

 4. External

Installation method

 P

 S  

 T

 Z

 L

Accessories

 Flush valve

Pump monitor
 Prepared for

 – Mini CAS

 – MAS

Pump control

 – SmartRun™

 – MultiSmart

 – MyConnect

 – FGC      

 = Standard
 = Optional
 = Standard but also optional, depending on model

  = Standard or not available, depending on model
  = Optional or not available, depending on model



1) The tissue in plants that brings water upward from the roots
2) A leading global water technology company

We’re 12,000 people unified in a common purpose: creating innovative solutions 
to meet our world’s water needs. Developing new technologies that will improve 
the way water is used, conserved, and re-used in the future is central to our work.  
We move, treat, analyze, and return water to the environment, and we help people 
use water efficiently, in their homes, buildings, factories and farms. In more than 
150 countries, we have strong, long-standing relationships with customers who 
know us for our powerful combination of leading product brands and applications 
expertise, backed by a legacy of innovation.  

For more information on how Xylem can help you, go to xyleminc.com

© 2018  Xylem, Inc.

Flygt is a brand of Xylem. For the latest 
version of this document and more in-
formation about Flygt products visit 
www.flygt.com
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 Konfigurasjon 1.
 

FSCA-modulen må installeres i “Slot 2” på PS220. 
Parameter Navn Krevd verdi Kommentar 

50.1 FBA A ENABLE [2] Option slot 2 Aktiverer/deaktiverer kommunikasjonen mellom drive 
og feltbussadapter A. 

74.01 START/STOP [6] Fieldbus Velger hvor en skal sende start/stopp-signal fra. 

74.05 SPEED OVERRIDE [6] Fieldbus Manuell fjernstyring. 

74.06 SPD OVERRIDE REF [3] Fieldbus Manuell fjernstyring. 

51.01 FBA A type [128] Ethernet Denne vil være valgt som standard for FENA-
modulen. 

51.02 Protocol/Profile [1] MB/TCP ABB E Velger ABB – Enhanced som profil for Modbus. 

51.03 Commrate [0] Auto  

51.04 IP configuration [0] Static IP  

51.05 IP address 1  Første del av valgt IP-adresse (123.456.789.0) 

51.06 IP address 2  Andre del av valgt IP-adresse (123.456.789.0) 

51.07 IP address 3  Tredje del av valgt IP-adresse (123.456.789.0) 

51.08 IP address 4  Fjerde del av valgt IP-adresse (123.456.789.0) 

51.09 Subnet CIDR 24 Velger subnet: 
24 = 255.255.255.0 (Standard) 
For andre valg, se FENA-manual side 55. 

51.22 Word order  Velger rekkefølge på ordet. Avhenger av systemet 
som skal lese fra drive.  

51.23 Address mode [1] Mode 1 Denne modusen muliggjør lesing/skriving av 16-bit. 
*Se forøvrig begrensningene knyttet til denne 
modusen. 

51.27 FBA A par refresh [1] Refresh Lagrer alle parameterendringer utført i gruppe 50. 
51. 52 og 53. Vil gå tilbake til [0] Done etter å ha blitt 
satt til [1] Refresh. 

 
*51.23 Address mode [1] Mode 1: Tillater kun 16-bits verdier. Om  det er behov for å lese/skrive med 32-
bit må velges et annet alternativ enn Mode 1. Se for øvrig FENA-manual side 58. 
 

 



PS220 Modbus TCP/IP Quick Start Guide  

13.02.19 Rev.: 1.4   M&C  

3 Xylem Water Solutions Norge AS 
  

Kontrollord 

Statusord 

 

 Kommunikasjon med ABB Enhanced Profile 2.
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For kontrollordet brukes hovedsakelig integer-verdiene 
STOPP/RDY     – 1150 
START    – 1151 
SPEED OVERRIDE  – 1295 
 
For vanlig oppsett brukes følgende: 
Kontrollord   – 40001 
Referanse 1     – 40002  
Data out   – Se tabell 
Statusord    – 40051 
Prosessverdi 1  – 40052 
Data in   – Se tabell 
 
Parameter 6.200 er Pump statusword og kan brukes for å 
hente ut tilbakemelding om blant annet drift og speed 
override, som vist i tabellen til venstre. I tillegg har man 
parameter 6.50, User Status Word, hvor man kan sette opp 
eget statusord. Alarmord 1, 6.203. Alarmord 2, 6.204. 
Alle parametre i PS220 kan leses med bruk av 
adresseringsmetoden på neste side. Det anbefales å bruke 
Data In/Out så lenge det lar seg gjøre.  
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 Parameteradressering 3.
Kan velge å lese/skrive direkte til parametere, eller mappe dem via. «Data In/Out» og adressere dem der 
fra. 
Data In brukes for parametere som skal leses og «Data Out» brukes for parametere som skal skrives til. 
Man må alltid oppdatere via. parameter «51.27 FBA A par refresh» om det er utført endringer i 
parametergruppene 50 t.o.m. 53. Både 5- og 6-bits adressering er støttet. Det er som regel fordelaktig å 
bruke «Data In/Out» ettersom dette er sammenhengende registre som gjør lesing og skriving med 
effektivt. Det anbefales derfor i første omgang å bruke disse, for så å legge til direkte 
parameteradressering om man skulle trenge flere parametere ut over de 24 som blir tilgjengelige på 
«Data In/Out».  
 
Data In/Out 
Når en parameter er knyttet til «Data Out» vil den alltid overskrive andre skrivekilder, som f.eks. fra 
keypad eller ved direkte parameteradressering. Det er derfor viktig å holde oversikt på hvilke 
parametere som ligger i «Data Out», og kun bruke «Data Out» om man først har knyttet opp en 
parameter her. Det samme gjelder «Data In». Om man har knyttet opp en parameter til en «Data In» må 
man lese av denne og ikke av direkte parameteradresse. 
 
Direkte parameteradressering 
For å adressere en parameter direkte må man bruke følgende formel: 
 

400000 + 256 x parametergruppe + indeks 
 

Eksempler 
Data Out: Man mapper parameter «12.18 AI1 max» gjennom Data Out 1 ved å gå inn på 
parametergruppe 53. Så velger man Data Out, og deretter «Other». Her kan man velge hvilken 
parameter man ønsker å hente ut for skriving. Man må da bruke registeradressen for Data Out 1 
(400004), og ikke 403090. 
 
Direkte: For å skrive til parameter «12.18 AI1 max» bruker man formelen (400000 + 256 x 12 + 18) og 
skriver da til registeradresse 403090. 
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LSTM Tuning 
Underfitting: 

 

 

Less underfitting: 

 
 

  



Reduced noise: 

 

 

Best fit: 

 
 

 

 

 

  



 

Uncertainty for 30 iterations of training and testing: 
 

 

 

  



Transformers tuning 
 

Underfitting: 

 

 

Reduced underfitting (more data): 
 

 



Best fit: 

 

 

 

Uncertainty for 30 iterations of training and testing: 
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