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Abstract: IoT-enabled healthcare apps are providing significant value to society by offering cost-
effective patient monitoring solutions in IoT-enabled buildings. However, with a large number of
users and sensitive personal information readily available in today’s fast-paced, internet, and cloud-
based environment, the security of these healthcare systems must be a top priority. The idea of safely
storing a patient’s health data in an electronic format raises issues regarding patient data privacy
and security. Furthermore, with traditional classifiers, processing large amounts of data is a difficult
challenge. Several computational intelligence approaches are useful for effectively categorizing
massive quantities of data for this goal. For many of these reasons, a novel healthcare monitoring
system that tracks disease processes and forecasts diseases based on the available data obtained from
patients in distant communities is proposed in this study. The proposed framework consists of three
major stages, namely data collection, secured storage, and disease detection. The data are collected
using IoT sensor devices. After that, the homomorphic encryption (HE) model is used for secured data
storage. Finally, the disease detection framework is designed with the help of Centered Convolutional
Restricted Boltzmann Machines-based whale optimization (CCRBM-WO) algorithm. The experiment
is conducted on a Python-based cloud tool. The proposed system outperforms current e-healthcare
solutions, according to the findings of the experiments. The accuracy, precision, F1-measure, and
recall of our suggested technique are 96.87%, 97.45%, 97.78%, and 98.57%, respectively, according to
the proposed method.

Keywords: smart healthcare; homomorphic encryption; Centered Convolutional Restricted Boltzmann
Machines; whale optimization algorithm

1. Introduction

In a growing network, the Internet of Things (IoT) [1] connects the system with the
internet to exchange data with sensors, devices, and technology. It can connect lights,
cars, and home appliances. These appliances [2] are programmed to do some processes
and also transmit information. There are more than 10 billion active devices, and these
devices are connected over the internet. It is connected to systems and consumer networks.
When an attack on devices takes place the consumer system will get affected. Two or more
computers are connected by a communication device with a set of rules. Some of the IoT
protocols [3] are Bluetooth, WiFi, Web socket, Data Distribution Service (DDS), HyperText
Transfer Protocol (HTTP), Transmission Control Protocol (TCP), and so on.

These protocols are familiar in the network that divides data into packets. Specifically,
Bluetooth technology [4] is used to connect various devices. Different types of connections,
such as memory, range, and power, are utilized. Data are transmitted from the device to
connect sensors and the network. This increases security, capacity, and network agility;
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reduces operational costs; optimizes logistics networks; and manages records. In hospitals,
it plays an important role in predicting patient diseases. Sensors [5] are used in wheelchairs,
oxygen pumps, monitoring equipment, and tracking.

The health condition is monitored to achieve desired outcomes. In IoT security, the
system is designed to be secure and identify risks in order to protect itself from hackers
and violations. Healthcare organizations [6] that control the devices can decrease attacks,
identify security issues, and respond to real-time security threats. It allows for safe con-
nections to both private and public devices. Privacy is of utmost importance in protecting
the user’s data. Health conditions can be quickly identified, and issues can be monitored
in real time. The system can communicate with devices to identify objects in the IoT
environment [7]. Security is protected by encrypting connections, monitoring the system,
and securing system connections. Insecure connections can lead to data breaches in the
end-to-end process. Limitations of existing methods include issues with accuracy, cost, and
handling large datasets. A novel healthcare monitoring system is proposed in this study
that will track disease processes and predict diseases based on data obtained from patients
in distant communities.

Data gathering, secure storage, and disease detection are the three primary stages of
the suggested system. IoT sensor devices are used to acquire the data. For safe data storage,
the homomorphic encryption (HE) model is applied. Using the Centered Convolutional
Restricted Boltzmann Machines-based Whale optimization (CCRBM-WO) algorithm, the
illness identification framework is created. Finally, we test the validity of the suggested
healthcare monitoring study.

The rest of the article is delineated as follows: Section 2 explains the related works,
and the proposed model is designed in Section 3. Section 4 discusses the experimental
study, and the paper ends in Section 5.

2. Related Works

Elhoseny et al. [8] propose a hybrid security model (HSM) from medical images to
secure diagnostic text data. This model performs two types of levels, which are 2D Discrete
Wavelet Transform 1 Level (2D-DWT-1L) and 2D Discrete Wavelet Transform 2 Level (2D-
DWT-2L), to hide the secret image. The text size is different to cover the encrypted images.
This method secures the information safely and gradually increases encrypted data. Thus,
it increases the capacity for communication protocols.

Mutlag et al. [9] have described a fog computing framework in IoT healthcare systems.
It consists of three processes: plan, conduct, and document. It identifies and evaluates the
process. Selecting the data and extracting documents is observed to give the desired result.
Many fog nodes are added to fog computing. It is scalable and reliable for computing.
Hence, the methods and frameworks can be improved.

Luo et al. [10] have stated Slepian–Wolf coding-based secret sharing (SW-SSS) to share
the secret data. For privacy purposes, the information is defended by using a distributed
database for various servers. It also provides the information of the user, but the personal
data are not accessed by the user. The security is protected by the privacy protector
framework. Thus, the collision should be avoided.

Haghi et al. [11] developed a prototype for monitoring innovative wrist-worn and
flexible IoT healthcare. The parameters are measured by the end-to-end communication
for different products. The sensor nodes are implemented by the end-user application to
monitor the parameter. It is flexible to monitor the diseases from different vendors. The
parameters are processed and transmitted efficiently in large observations, although it is
extended in clinical analysis.

Subramaniyaswamy et al. [12] demonstrated ProTrip, which handles health and nutri-
tion for an ontology framework. Nutritive food is considered by the recommender system,
and climate change is considered to determine the availability of products. The information,
actions, and opinions are formulated from the data of the user. It is user-friendly, and the
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accuracy and efficiency are estimated by this method. In addition, for mobile users, the
interface will be upgraded.

For optimization, Shankar et al. [13] shared a hybrid encryption algorithm to secure
medical images in IoT. The cloud server stores the information of the user in the database.
The optimal key is used to store information in the form of hybrid swarm optimization.
Both the encryption and decryption process take place to evaluate the image quality. The
information and images are secured in this algorithm. Thus, the tamper localization scheme
is executed.

For telehealth applications, Thakur, et al. [14] implemented a transform domain
technique (TDT) for the watermark encryption algorithm. The problems of health data are
determined by the watermarking and cryptography in the telehealth field. The techniques
are divided into two; they are the transform and spatial domains. It is robust in the
transform technique. The data of the user are safe in the telehealth method. Hence, the
technique is determined for videos and various watermarkings.

Gupta et al. [15] proposed the traditional Optimized Cuttlefish Algorithm (OCFA)
for the optimal subset of features. There are two classifiers for selecting the features; they
are a k-nearest neighbor and decision tree classifiers. It evaluates Parkinson’s speech,
which monitors the nervous disorder. The dataset is identified by Parkinson’s handwriting
samples and determines the disease at the starting stage. It is easy to identify and implement
the data. However, it is applied to the Image dataset.

Diaz-Cortes et al. [16] described a Dragon Algorithm (DA) for optimization technique.
The images are divided into the same units for the histogram to threshold the valleys and
peaks. The number of classes of each value is determined for the threshold data. The
selected images are segmented images to generate sharp borders. Moreover, skin cells are
evaluated for a large dataset.

Pavitra et al. [17] suggested a concept of IoT-based environments to determine the
performance and accessibility of smart healthcare systems. On the other side, traditional
healthcare systems no longer fulfill the demands of a frequently expanding and developing
community. Further, the research works figure out how to provide a specially designed for
an IoT-based e-healthcare system, especially to engage with interoperability problems. Sub-
sequently, considering diverse technological standards and communication protocols, the
specific necessity of the IoT system was identified and offered as a base for the development
of the system.

Based on the IoT-based healthcare system, Rajan Jeyaraj et al. [18] introduced deep
learning model for patient monitoring system. Four-signal prediction accuracy for multiple
individuals was calculated to validate the proposed Smart Monitor system. An accuracy
rate of 97.2% was achieved in the technology demonstrator experimental set-up. This
demonstrates that the proposed automated system is trustworthy and effective. The
researchers verified the system’s ability to provide reliable assistance and accurate signal
prediction based on the experimental findings.

In the IoMT-enabled smart healthcare system, Kumar et al. [19–22] suggested a novel
architectural framework. To preserve privacy, an exponential K-anonymity algorithm was
used, and the sensitivity data level was analyzed with the improved Elman neural network
(IENN). Then, the IENN weights were updated via Gaussian-mutated chimp optimization.
Furthermore, in this system, data are stored in a cloud domain controller via blockchain
technology. In this research work, the suggested methods outperformed conventional
systems. Table 1 summarizes the related work.

Table 1. Literature analysis based on healthcare system.

Authors Methods Advantages Disadvantages

Elhoseny et al. [8] Hybrid security model (HSM)
Secures the information safely

and gradual increase in
encrypted data

Capacity is increased for
communication protocols
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Table 1. Cont.

Authors Methods Advantages Disadvantages

Mutlag et al. [9] Fog computing framework Scalable and reliable
for computing Higher complexities

Luo et al. [10] SW-SSS Higher security Collision should be avoided

Haghi et al. [11]
Prototype for monitoring

innovative wrist-worn and
flexible IoT healthcare

Transmitted efficiently
in large observations

Less clinical
analysis outcomes

Subramaniyaswamy et al. [12] ProTrip Accuracy and efficiency Interface will be upgraded

Shankar et al. [13] Hybrid encryption algorithm Information and images
are secured Tamper localization

Thakur, et al. [14] TDT Robust in the
transform technique Watermarking

Gupta et al. [15] Traditional Optimized
Cuttlefish Algorithm (OCFA)

Easily identify and
implement the data Complexity

Diaz-Cortes et al. [16] Dragon Algorithm (DA) Generate sharp borders Not suitable for large dataset

Pavitra et al. [17] IoT-based environments Offered as a base for the
development of the system An interoperability problems

Rajan Jeyaraj et al. [18] Deep learning model An accuracy rate of 97.2% Huge data dimensionality

Kumar et al. [19] Novel architectural
framework Good data storage Higher computational time

3. Proposed Methodology

Three major points namely data collection, storage security, and disease detection
model occupy the proposed smart healthcare monitoring organization. First, the infor-
mation is compiled through individuals who are directly accessible remotely. Second,
using the suggested lockable storage paradigm, the acquired data are safely known as a
cloud database. Third, the collected data can be accessed from one cloud server, which
predicts each patient’s condition level throughout this experiment. Figure 1 illustrates the
proposed framework.
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3.1. Data Collection

For numerous ailments including heart disease, cancer, and diabetes, patient data
can be gathered from distantly accessible individuals utilizing suitable IoT devices [6].
Many types of IoT systems have the appropriate sensors to gather cancer, diabetes, and
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cardiovascular disease indicators, such as ECG values, heart rate, and glucose level. For
each patient with a patient identification number, the key characteristics were collected and
saved as a distinct database [23].

With the assistance of the lockable storage module, the gathered information would be
safely transmitted to the cloud server via the information gathering module, user interface
module, and decision administrator. The data-gathering agents collect the information
and send it to the interface component [24]. The user interface module selects the essential
functionality and sends them to the decision manager for storage. The pre-processed data
are sent to the protected storage component for encryption/decryption before being placed
in the cloud database by the choice manager.

3.2. Secured Storage

The homomorphic encryption (HE) model for secured data storage is delineated in
this section. Traditional encryption systems are not truly secure from an intermediary, such
as another server, due to sensitive data privacy breaches. HE is a type of encryption that
can be used to address privacy and security challenges [25].

Homomorphic encryption allows for third-party telecommunications companies to
execute specific activities on patients’ encrypted files while decoding them, but while
respecting the confidentiality of encrypted data’s confidentiality [26]. When a user wants
to access certain data on a public cloud using encryption algorithms, he firstly encodes
the information and then puts the encoded information in the cloud. The user then
transmits information about the study to the cloud server after some time has passed.
Without knowing the contents of the encrypted data, the cloud server uses HE to perform a
prediction algorithm on it. The homomorphic encryption framework for data storage is
delineated in Figure 2.
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Homomorphic addition is given as follows:

F(N1) + F(N2) = Ne
1 + Ne

2 = (N1 + N2)
e = F(N1 + N2) (1)

Homomorphic multiplication is given as follows:

F(N1)× F(N2) = Ne
1 × Ne

2 = (N1 × N2)
e = F(N1 × N2) (2)

The number of numerical operations on encrypted message depends upon three
classes of HE, namely Fully Homomorphic Encryption (FHE), Somewhat Homomorphic
Encryption (SHE), and Partially Homomorphic Encryption (PHE) [27].
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FHE permits an endless number of various sorts of assessment procedures to be
performed on the encrypted message.

Only one form of arithmetic operation, whether adding or multiplying, is allowed on
the encrypted message in the PHE system, and it can be done endless times repeatedly.

All multiplication operations are permitted in SHE for a limited number of repetitions.
For its capacity to calculate encrypted files while guaranteeing security and privacy to

users, the HE was used in a variety of fields.

3.3. Disease Detection Framework

In this section, we employed Centered Convolutional Restricted Boltzmann Machines-
based whale optimization (CCRBM-WO) algorithm for disease prediction. Disease-level
prediction is based on acquired patient information and best classification samples, such as
the UCI Repository Machine Learning Dataset, which are common in research. Two key
elements make up the suggested forecasting models. To determine the severity, conduct a
symptom-based severity analysis utilizing the CCRBM model based on the patient’s data
in the form of texts and calculate the confidence score. The system then compares the
consequences’ ratings and displays the cancer symptoms of cancer for the specific data by
combining the severity rating features with the respective user ratings. The subsequent
sections explain these two parts in the proposed disease forecasting model in further detail.

3.3.1. Centered Convolutional Restricted Boltzmann Machines

By including the centered elements in the learning process, the CCRBM model mini-
mizes the inabilities that occur from approximation and structure. The CRBM can handle
the high computational complexity involved with the traditional RBM. The CRBM, like the
RBM, has two layers: the visible (v) and hidden layers (h) [28]. A Convolutional Deep Belief
Network is added to the CCRBM to improve its operation. A probabilistic max-pooling
procedure is added to process the text’s higher-level information.

The detection layer and the pooling layer are the two layers that make up the concealed
layer. The detector layer uses a constant factor to convolve the findings computed either
by the preceding feature descriptor. The pooling layer reduces the input of the detection
layer by using the same constant factor. Each unit in the pooling layer has the objective
of increasing the probability of the units in a limited area of the detection layer [29]. To
capture higher layer representations and reduce computational complexity, max pooling is
used to reduce activation. The following is a simple probabilistic max pooling CCRBM:

Subject to ∑
(j,k)∈Cγ

hl
j,k ≤ 1, ∀L, γ (3)

F(v, h) = −∑
l

∑
j,k

(hl
j,k(ω

l ∗ v)j,k + βlhl
j,k)− o∑

j,k
vj,k (4)

In the preceding equation, the convolutional operation is represented by h *, and the
Lth class gets the bottom-up signal from layer b as indicated elsewhere here:
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S(al
j,k)∆βl + (ωl ∗ a)jk

Assume that the block’s hidden unit (S(hl
j,k) ) is j, k ∈ Cγ . When, − S(hl

j,k) is an

increase in energy due to the hidden unit, the conditional probability is determined (hl
j,k).

P(hl
j,k = 1/v) =

exp(S(hl
j,k))

1 + ∑
(j,k)∈Cγ

exp(S(hl
j,k))

(5)
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P(Zl
δ = 0/I) =

1
1 + ∑

(j,k)∈Cγ

exp(S(hl
j,k))

(6)

The pooled layer is represented in Equation (5). Approximation and structural insta-
bility are two types of instability [30]. A noisy gradient is returned during approximation,
causing deviation from the true value. Instead of dependencies, the weight vector in
Equation (24) is a global bias applied in each unit. This is a significant problem for RBM,
which has numerous layers, including DBN and Convolutional Deep Belief Networks. The
hidden units’ bias values can increase speed, but they are unable to handle the learning
process that occurs between the hidden units [31]. To address these concerns, this model
employs centered factors to relieve the causes of instability by resolving the gradient and
centering the unit activations. To address these challenges, this model employs centered fac-
tors to lessen the sources of volatility by solving the gradient calculation and centering the
unit activations. By avoiding the use of a global bias, the noise in this process is decreased.

F(b/a) = −∑
l

∑
j,k
((ak

j,k − (αa)
l
j,k)(ω

1 ∗ (b− αb))j,k + al(al
j,k − (αa)

l
j,k))

−c∑
j,k
(bj,k − (αH)j,k)

(7)

P(Zl
δ = 0/b) =

1
1 + ∑

(j,k)∈Cγ

exp(∆S(al
j,k))

(8)

The distances for both hidden and transparent units are represented by parameters
αh and αv, respectively. To ensure that the units are centered, the hidden and visible layer
biases are set to αh0 = σ(β0) and αv0 = σ(o0), respectively. When the hidden units are
given, the CRBM conditional probability is recast as stated in Equation (29) and the sample
likelihood function of visible units is proved as shown in:

P(Zl
δ = 0/v) =

exp(∆S(hl
j,k)

1 + ∑
(j,k)∈Cγ

exp(∆S(hl
j,k))

(9)
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are set to αh0 = σ(β0) and αv0 = σ(o0), respectively. When the hidden units are given, the
CRBM conditional probability is recast as stated in Equation (29) and the sample likelihood
function of visible units is proved as shown in:

P(Zl
δ = 0/v) =

exp(∆S(hl
j,k)

1 + ∑
(j,k)∈Cγ

exp(∆S(hl
j,k))

(9)

∆S(hl
j,k)∆βl + (ωl ∗ (h− αa))j,k (10)

P(vj,k = 1/h) = ε



(

∑
l

ωl ∗ (hl − (αH)
l

)

j,k

+ o


 (11)

The update equations are adjusted as follows using the new centered factors:

β = β + ω ∗ (〈v− αv〉) (12)

o = o + ω ∗ (〈h− αa〉) (13)

δa = 〈h〉, δb = 〈v〉 (14)

3.3.2. Whale Optimization Algorithm

The convergence speed of the intelligence technique can be reduced when there
exist numerous variables. Moreover, the selection of parameters manually also mitigates
the optimization. To surmount these issues, we use WOA algorithm, which effectively
estimates the random interval and direction.

A. Hunting strategy of whales
The WOA hunting strategy is based on the bubble net foraging technique. The steps

involved in the hunting process are shown below.
Stage-1: Surrounding the victim

__ (10)

P(vj,k = 1/h) = ε



(

∑
l

ωl ∗ (hl − (αH)
l

)

j,k

+ o


 (11)

The update equations are adjusted as follows using the new centered factors:

β′ = β + ω ∗ (〈v− αv〉) (12)

o′ = o + ω ∗ (〈h− αa〉) (13)

δa
′ = 〈h〉, δb

′ = 〈v〉 (14)

3.3.2. Whale Optimization Algorithm

The convergence speed of the intelligence technique can be reduced when there
exist numerous variables. Moreover, the selection of parameters manually also mitigates
the optimization. To surmount these issues, we use WOA algorithm, which effectively
estimates the random interval and direction.

A. Hunting strategy of whales
The WOA hunting strategy is based on the bubble net foraging technique. The steps

involved in the hunting process are shown below.
Stage-1: Surrounding the victim
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The objective can be chosen by the acquired optimal solution [32]. The location of
other whales is also updated accordingly, which can be statistically formulated as follows:

→
M =

∣∣∣∣
→
R ·

→
G∗ (i)−

→
G(i)

∣∣∣∣ (15)

→
G(k + 1) =

→
G
∗
(k)−

→
F ·
→
S (16)

→
F = 2

→
f ·→y −

→
f (17)

→
R = 2 ·→y (18)

The value of
→
f lies between 0 and 2 and decreases linearly, and

→
y lies in the range of

0 to 1 and is a random vector [33]. The coefficient vectors are denoted as
→
F and

→
R, and

the current iteration is represented as i.
→
G∗ is the location vector with the optimal solution.

Finally, the interval between the prey and the whale is indicated as S.
Stage-2: Attacking the prey using the bubble net strategy
The bubble net strategy involves two procedures: shrink encircling (A1) and spiral

updating mechanisms (A2).

A1: The new location of the
→
F can be updated by the value of

→
F , which lies between

the range of [−f, f ] with the utilization of
→
f and

→
y .

A2: This can be evaluated by using the equation given below,

→
R =

∣∣∣∣∣
−−−−→
G∗(i) −

→
G(i)

∣∣∣∣∣ (19)

→
G(k + 1) =

→
R · yds · cos(2πs) +

→
G∗(k) (20)

The values of d and s are constant and lie in the interval of −1 and 1 [34]. The location
of the whale can be upgraded with a certain probability of value p. This can be numerically
expressed as,

→
G(k + 1) =





→
G∗(k)−

→
F ·
→
S i f p < 0.5

→
R · eds · cos(2πs) +

→
G∗(k) i f p > 0.5

(21)

Stage-3: Exploring the prey
The exploration ability of the whale can be enhanced with the upgrading of the search

agent and its respective location according to the criteria
→
|F| > 1, which is expressed below,

→
S =

∣∣∣∣
→
R.
−−−→
Grand −

→
G
∣∣∣∣ (22)

→
G(k + 1) =

→
G ∗(k)−

→
F ·
→
S (23)

Thus, the arbitrary optimal solution can be picked, and the stages of exploration and

exploitation can be selected with the involvement of
→
F . The procedure of A1 or A2 can be

followed by the p value. These steps will be repeated until you reach the required condition.

3.3.3. CCRBM-Based WO Algorithm

Figure 3 depicts the overall framework of the proposed methodology. The input and
output vectors for the sentiment analysis problem are determined in the first stage. The
CCRBM model is created based on the problem. The hidden layer, the visible layer, and
the number of neurons in each layer are the essential components of the structure [35].
Apart from the network structure, the link weights and the threshold value of the hidden
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nodes are also important elements. These are the parameters that the WO method for
optimization [36] takes as the input. Each atom in the population is a starting point for the
sentimental analysis problem in the CCRBM models.
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To analyze complicated data in a non-linear fashion, the CCRBM relies heavily on the
initial parameter setting. The WO algorithm is used to select the starting parameters of the
CCRBM model in this paper. The whales in the population are unfurled into a parameter
configuration of the CCRBM network during optimization [37]. The network is trained
using the training data when the parameter initialization phase is completed. Each whale is
used to establish the local best value, and the global best solution’s position is upgraded as a
result. The major novelty of this study is to improve the detection performance of Centered
Convolutional Restricted Boltzmann Machines with the usage of the whale optimization
algorithm, thereby providing good detection accuracy. When the end condition is met,
the global best solution found during the exploration stage is used to predict the diseases.
Finally, we predict various kinds of disease using CCRBM-based WO algorithm employed
via the IoT healthcare organization framework.

4. Experimental Analysis

This section explains the experimental analysis and their respective outcomes in
a detailed form. The experiment is conducted with Python software. For the analysis
purpose, we use the dataset known as the University of California, Irvine (UCI), which
includes different types of diseases. In a healthcare monitoring organization, the security
level is increased by the HE algorithm and enhances the safety of the patients with early
detection. This section also encloses the performance metrics along with the comparative
study. Table 2 describes the simulation of the parameters.
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Table 2. Simulation parameters.

Parameters Ranges

Number of input layers 5

Number of output layer 1

Learning rate 0.1

Size of the whale population 20

Iterations 100

4.1. Dataset Description

The taken UCI dataset includes various benchmark disease datasets. The various
diseases, such as diabetes, heart, and cancer diseases, are included in this standard dataset.
The various types of diseases are predicted using the proposed model. From this, 80% of
the data are used for training, and the remaining 20% for testing purposes.

4.2. Performance Evaluation

The performance metrics are divided into secured storage and performance metrics
for the prediction of diseases in the healthcare monitoring organization.

4.3. Performance Metrics for Secured Storage

The storage in the cloud system can be analyzed by the metrics such as encryption
time, decryption time, and key generation time. The definition for all those things is
explained below.

4.3.1. Encryption Time

It is defined as the total time required for the ending of encryption of data in the
healthcare monitoring organization to enhance the security level.

AT = AS − AB (24)

The encryption time required for the encryption of data is indicated as AT. The
beginning time is denoted as AB, and the end time is indicated as AS.

4.3.2. Key Generation Time

It is defined as the time taken by the system to generate the key while transmitting the
data in the healthcare monitoring organization. It can be expressed as follows:

BT = Bend − Bstart (25)

Here, the key generation time is represented as BT . The time at which the key genera-
tion started is represented as Bstart, and the ending time is denoted as Bend.

4.3.3. Decryption Time

It is defined as the time taken by the system in the healthcare monitoring organization
to complete the decryption process. It can be evaluated as shown below,

CT = Cend − Cstart (26)

The decryption time is denoted as CT . The starting time of the process is indicated as
Cstart, and the finishing time is indicated as Cend.
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4.4. Performance Metrics for the Prediction of Disease in the Healthcare Monitoring Organization

The proposed CCRBM-based WO approach for the prediction of disease in the health-
care monitoring organization can be analyzed by the metrics such as precision, security
analysis, accuracy, F1-measure, and recall. They are explained below.

4.4.1. Precision (Pr)

It is defined as exactly predicting dead disease from the datasets from the exact value.
It can be defined as follows,

P =
AP

AP + BP
(27)

4.4.2. Accuracy (Acc)

The accuracy can be defined as how accurately the prediction of dead diseases using
the proposed health care monitoring system is made. It can be evaluated as follows,

Acc =
AP + AN

AN + BN + AP + BP
(28)

Here, AP indicates the true positive rate, AN indicates the true negative rate, BN
indicates the false negative rate, and BP indicates the false positive rate of the proposed
healthcare monitoring organization.

4.4.3. Security Analysis (SA)

The effective protection of data from the healthcare monitoring organization is deter-
mined by the security analysis parameter. It can be evaluated as follows,

SA =
Hacked data
original data

(29)

4.4.4. F1-Measure

It is defined as the accurate prediction of deadly diseases by our proposed approach.
The following equation explains the F1-measure value.

F1−measure =
2 ∗ (Pr ∗ Rc)
(Pr + Rc)

(30)

4.4.5. Recall (Rc)

The prediction of deadly diseases and normal data from the taken datasets by our
proposed approach is defined as recall. It can be explained as follows,

Rc =
AP

AP + AN
(31)

4.5. Performance Evaluation Based on the Storage Security Metrics

As mentioned in the previous section, storage security can be measured by the param-
eters such as decryption time, key generation time, decryption time, and security analysis.
The key generation time of our proposed encryption approach and other approaches such
as Rivest–Shamir–Adleman (RSA) [38], Elliptic Curve Cryptography (ECC) [39], Modified
Elliptic Curve Cryptography [40], and Attribute-based encryption [41]. Figure 4 illustrates
the performance evaluation based on the key generation time. The performances are con-
ducted for a different number of cloud users such as 250, 500, 750, 1000, and 1250. From
the graphical representation, we found that, for a number of cloud clients, our proposed
approach utilizes less time for the key generation. This is due to the fact that the proposed
HE approach can effectively generate the key in very little time. The key generation times
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of our proposed approach for cloud clients 250, 500, 750, 1000, and 1250 are evaluated as
28 ms, 44 ms, 56 ms, 69 ms, and 72 ms, respectively.
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Figure 5 illustrates the storage security analysis based on the encryption time for
our proposed approach and the other encryption approaches such as Rivest–Shamir–
Adleman (RSA) [38], Elliptic Curve Cryptography (ECC) [39], Modified Elliptic Curve
Cryptography [40], and Attribute-based encryption [41]. The encryption time of our
proposed approach is the lowest for all five scenarios as mentioned above. Therefore, our
proposed approach reduces the computational complexity that usually occurs in the smart
healthcare monitoring organization.
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The storage security analysis based on the decryption time of proposed and other state-
of-the-art works is explained in Figure 6. The decryption time of our proposed approach is
low as shown in the figure. The security of the proposed approach is analyzed based on
how much the system is threat-proof, and it is illustrated in Figure 7. From the figure, we
observed that the proposed approach security is higher than all the other approaches, such
as Rivest–Shamir–Adleman (RSA) [38], Elliptic Curve Cryptography (ECC) [39], Modified
Elliptic Curve Cryptography [40], and Attribute-based encryption [41]. The security level
of the proposed approach is 98.2% and the RSA achieves 89%, ECC achieves 94.3%, the
MECC exhibits 96.45%, and the ABE shows 87.45%.
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4.6. Performance Analysis Based on the Prediction of Diseases

The performance analysis based on the prediction of diseases is analyzed with the
metrics mentioned above. The proposed approach work is compared with state-of-art
works, such as HSM [8], SW-SSS [10], TDT [14], OCFA [15], and the Random Hashing
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Mechanism [21,42]. The comparative study is illustrated in Table 3. From the table, it is
noted that the accuracy, precision, F1-measure, and recall of our proposed approach are
96.87%, 97.45%, 97.78%, and 98.57%, respectively. These values are higher than those of the
other approaches. This is because our proposed approach effectively predicts the diseases
in order to maintain the healthcare monitoring organization effectively.

Table 3. Comparative study based on metrics for prediction diseases.

Methods Accuracy Precision F1-Measure Recall

HSM 67.22% 67.36% 67.87% 78.44%

SW-SSS 79.45% 76.6% 79.98% 80.89%

TDT 88.78% 86.56% 81.34% 81.37%

OCFA 86.56% 87.44% 83.95% 87.89%

Random Hashing Mechanism 87.56% 87.56% 87.64% 89.76%

Proposed 96.87% 97.45% 97.78% 98.57%

4.7. Performance Analysis Based on Execution Time

This section presents the comparative analysis based on the execution time for our
proposed and other approaches, such as HSM [8], SW-SSS [10], TDT [14], and OCFA [15].
The proposed approach utilizes less execution time due to the reduction of key generation
time, decryption time, and encryption time. The execution time of the proposed approach
is 79 ms, as shown in Figure 8.
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5. Conclusions

In this study, the intelligent security algorithm for smart healthcare organizations was
performed using Centered Convolutional Restricted Boltzmann Machines-based whale
optimization (CCRBM-WO) algorithm. Python software was used for the experiment.
We used the University of California, Irvine (UCI) dataset, which contains a variety of
disorders, for our investigation. The HE algorithm raises the security level of a healthcare
monitoring organization and improves patient safety through early detection. Metrics such
as encryption time, decryption time, and key generation time can be used to evaluate cloud
storage. We included various numbers of cloud users, including 250, 500, 750, 1000, and



Healthcare 2023, 11, 580 15 of 17

1250. For cloud customers 250, 500, 750, 1000, and 1250, the key generation time of our
suggested approach was 28 ms, 44 ms, 56 ms, 69 ms, and 72 ms, respectively. For all five
circumstances, the encryption time of our proposed method was faster than Rivest–Shamir–
Adleman (RSA), Elliptic Curve Cryptography (ECC), Modified Elliptic Curve Cryptography,
and Attribute-based encryption. As a result, the computational complexity that often arises
in a smart healthcare monitoring organization is reduced by our proposed approach. The
accuracy, precision, F1-measure, and recall of our suggested technique were 96.87%, 97.45%,
97.78%, and 98.57%, respectively, according to the proposed method. IoT devices tagged
with sensors are used for tracking real-time location of medical equipment like oxygen
pumps, nebulizers, defibrillators, wheelchairs, and other monitoring equipment. In the
future, we plan to introduce a hybrid optimization algorithm for parameter tuning in the
deep learning model.
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