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We describe, in an algebraic way, the κ-deformed extended Snyder models, that depend on three 
parameters β, κ and λ, which in a suitable algebra basis are described by the de Sitter algebras o(1, N). 
The commutation relations of the algebra contain a parameter λ, which is used for the calculations 
of perturbative expansions. For such κ-deformed extended Snyder models we consider the Heisenberg 
double with dual generalized momenta sector, and provide the respective generalized quantum phase 
space depending on three parameters mentioned above. Further, we study for these models an alternative 
Heisenberg double, with the algebra of functions on de Sitter group. In both cases we calculate the 
formulae for the cross commutation relations between generalized coordinate and momenta sectors, 
at linear order in λ. We demonstrate that in the commutators of quantum space-time coordinates 
and momenta of the quantum-deformed Heisenberg algebra the terms generated by κ-deformation are 
dominating over β-dependent ones for small values of λ.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/). Funded by SCOAP3.

1. Introduction

The non-commutative (NC) quantum space-times, where the coordinates are elements of NC quantum space-time algebra, have been 
considered as a tool for the description of quantum gravity (QG) (see, e.g. [1], [2]), which unifies two basic theories in physics: general 
relativity and quantum mechanics. One of the first examples of quantum space-time was proposed by Snyder already in 1947 [3]. Other 
quantum space-time models were studied in the 1990’s (e.g. κ-deformed relativistic theories [4–7]). Due to the increasing interest in QG, 
the framework of quantum symmetries described by the theory of quantum groups was developed. The NC structure of space-time at the 
Planck scale appeared as a way to describe QG at very short distances and led to the description of quantum-mechanical and quantum-
deformed relativistic phase spaces. It appeared that these NC structures of quantum space-times and quantum relativistic symmetries 
are associated with the formalism of Hopf algebras and the case of quantum phase spaces has been generalized to the Hopf algebroids 
framework (see, e.g. [8], [9]).

In this paper we find the quantum-deformed relativistic phase space for the κ-deformed extended Snyder model [10]1 which will 
be obtained by the Heisenberg double construction. The Heisenberg double, which constitutes a Hopf algebroid, is defined within the 
Hopf algebraic framework and can be considered as providing the way to define quantum-deformed phase spaces in the presence of QG 
effects.

The κ-deformed Snyder model, proposed firstly in [11], [12], unifies the two perhaps best known models which describe the NC 
relativistic space-time coordinates x̂i

2:
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1 We use “κ-extended Snyder model” as a short notation for the λ-dependent κ-deformed extended Snyder model.
2 N-dimensional Latin indices include zero, which describes time-like dimension, i.e. i, j = 0, . . . , N − 1.
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i) the Snyder model:

[x̂i, x̂ j] = iβMij (1)

where β is a parameter with dimension of length square and Mij are the generators of Lorentz transformations;
ii) κ-Minkowski quantum space-time:

[x̂i, x̂ j] = i(ai x̂ j − a j x̂i) (2)

where ai is a constant vector multiplied by the parameter κ−1 with dimension of length. Both Snyder and κ-deformed Snyder models 
lead to non-associativity and non-coassociativity [13], [14]. In order to avoid problems with non-associativity, an alternative Snyder model, 
in which Snyder space is a subspace of a larger non-commutative space was proposed in [14] for the 3 dimensional Euclidean Snyder 
space, and its generalization to the extended Snyder model was proposed in [16].3 If one uses Latin indices the algebra describing the 
λ-dependent extended Snyder model looks as follows [16]

[x̂i, x̂ j] = iλβ x̂i j, [x̂i j, x̂kl] = iλ(ηik x̂ jl − ηil x̂ jk − η jk x̂il + η jl x̂ik), (4)

[x̂i j, x̂k] = iλ(ηik x̂ j − η jk x̂i), (5)

where x̂i = √
β x̂iN .

Unification of κ-Minkowski and extended Snyder space-times was proposed in [10] generalizing the extended Snyder model [16] by 
including the κ-Minkowski algebra terms (2) using orthogonal algebra with metric tensor g [17], [18]. The main step for achieving this 
unification was introducing particular modification of constant metric tensor instead of Minkowski metric.

In this paper we introduce the generalization of quantum-mechanical phase space corresponding to the κ-extended Snyder model. 
The phase spaces with NC space-time coordinates, have been already considered for Snyder model and for models covariant under the 
κ-deformed Poincaré algebra: the generalized phase spaces containing the κ-Minkowski NC space-time were considered in [19–24] and 
the phase space for the Snyder model in, e.g. [3], [25], [26] as well as for the extended Snyder model in [27]. Quantum space-times and 
deformed phase spaces for Snyder and Yang models were discussed in [28], [29] together with their extensions to supersymmetric models, 
see also [30].

Here we propose the description of the corresponding deformed phase spaces for the κ-extended Snyder model. The unification of 
the extended Snyder and κ-Minkowski models proposed in [10], [31] is realized in the framework of associative and coassociative Hopf 
algebra, what permits to apply the Heisenberg double construction that is considered in the present paper. The resulting generalized phase 
spaces offer interesting insights into the κ-extended Snyder model, which is described by the superposition of two quantum deformations 
with a further parameter λ.

2. κ-deformed extended Snyder model

Let us recall the algebra corresponding to the κ-extended Snyder model, which was introduced in [10] as the extended unified κ-
Minkowski Snyder model. We shall denote it as o(1, N; g). It is defined by the following Lie-algebraic set of commutation relations:

[ X̂μν, X̂ρσ ] = iλ(gμρ X̂νσ − gνρ X̂μσ + gνσ X̂μρ − gμσ X̂νρ). (6)

The metric g ≡ (gμν) has the form:

g =

⎛
⎜⎜⎜⎝

−1 0 ... 0 g0
0 1 ... 0 g1
.. .. .. .. ...

0 0 .. 1 gN−1
g0 g1 ... gN−1 gN

⎞
⎟⎟⎟⎠

with det g = −g2
0 + ∑N−1

i=1 g2
i − gN . If we rewrite the generators X̂μν as X̂i j and X̂kN = κ X̂k where κ is a new mass-like parameter, and 

rewrite the metric as follows

gij = ηi j, giN = κai, gN N = gN = κ2β

the algebra (6) splits to the following set of relations

[ X̂i, X̂ j] = iλ(ai X̂ j − a j X̂i + β X̂i j), (7)

[ X̂i j, X̂k] = iλ(ηik X̂ j − η jk X̂i + a j X̂ik − ai X̂ jk), (8)

[ X̂i j, X̂kl] = iλ(ηik X̂ jl − η jk X̂il + η jl X̂ik − ηil X̂ jk). (9)

3 The N-dimensional extended Snyder algebra [14], after introducing the λ-dependence [16], takes the form of an N-dimensional de Sitter algebra given by (μ = 0, 1 . . . N)

[x̂μν, x̂ρσ ] = iλ(ημρ x̂νσ − ηνρ x̂μσ + ηνσ x̂μρ − ημσ x̂νρ) (3)

where x̂μν are the standard o(1,N) generators. A specific new feature of such formulation of extended Snyder algebra introduced in [16], is the appearance of a dimensionless 
parameter λ such that for λ → 0 the extended Snyder algebra reduces to the Abelian algebra and generators x̂μν become commutative. The extended Snyder algebra (3)
contains the generators defining Snyder quantum space-time coordinates x̂i (for which the classical limit is obtained when β → 0) as well as tensorial coordinates x̂i j (see 
(4), (5)). For the interpretation of x̂i j we refer the reader to [15].
2
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From the first commutator we see how the Snyder and κ-Minkowski space-time relations are unified. The X̂i are the NC space-time 
coordinates, and X̂i j can be interpreted as non-commutative tensorial coordinates.

Moreover, when gN = 0, the relations (6) describe the κ-Minkowski space-time with Lorentz covariance algebra. Alternatively, when 
g0 = ... = gN−1 = 0 and gN = 1, then the relations (6) reduce to the algebra describing the extended Snyder model. Also note that if 
gμν → ημν then the algebra (6) becomes a standard orthogonal algebra, which describes the N-dimensional suitably rescaled de Sitter 
algebra.

The coalgebra sector is a classical one (primitive), i.e.

	
(

X̂μν

)
= 	0

(
X̂μν

)
, (10)

ε
(

X̂μν

)
= 0 and S

(
X̂μν

)
= − X̂μν (11)

and reduces accordingly to coproducts, counits and antipodes for X̂k and X̂ik .
If one defines the following change of coordinates:

X̂μν =
(

O x̂O T
)
μν

, gμν =
(

OηO T
)
μν

, (12)

with the choice of the matrix

O =

⎛
⎜⎜⎜⎝

1 0 ... 0 0
0 1 ... 0 0
.. .. .. .. ...

0 0 .. 1 0
−g0 g1 ... gN−1 ρ

⎞
⎟⎟⎟⎠ (13)

where ρ = √
gN − gk gk = √−det g , one can show that the algebra (6) reduces to (see also footnote 3)

[x̂μν, x̂ρσ ] = iλ(ημρ x̂νσ − ηνρ x̂μσ + ηνσ x̂μρ − ημσ x̂νρ), (14)

where ημν = (−1,1, ...,1) and gN = 1. This algebra has been discussed in [14], [16], as the extended Snyder algebra. We recall (see 
footnote 3 and (4), (5)) that the algebra (14) reduces to the N-dimensional Snyder space extended by the Lorentz algebra. We add that 
Heisenberg double for the extended Snyder model (14) was studied in [27].

Due to the form of the matrix O we have the following relations between two sets of coordinates:

X̂i = ρ x̂i + a j x̂i j, X̂i j = x̂i j. (15)

Both sets of the coordinates X̂μν and x̂μν describe NC extended space-time and are related via relations (15).
In the classical limit (λ → 0) the generators of the algebras (6) and (14) reduce to the commutative (Abelian) ones [31] X̂μν → Xμν

with [Xμν, Xρσ ] = 0; (x̂μν → xμν with [xμν, xρσ ] = 0). These Abelian coordinates are related with each other via the matrix O given by 
(13)

Xμν =
(

O xO T
)
μν

,

i.e. explicitly:

Xi = ρxi + a jxi j, Xij = xij,

where Xi = 1
κ XiN and xi = 1

κ xiN . One can say that the algebra (6), with the generators X̂μν can be seen as the deformation of the 
underlying commutative space described by Xμν , with λ as the deformation parameter.

For the commutative extended spacetime coordinates Xμν and xμν we can introduce the extended momenta (Pμν, pμν ) which can be 
realized in a standard way as Pμν = −i ∂

∂ Xμν
and pμν = −i ∂

∂xμν
. In this way one can introduce two copies of the generalized Heisenberg 

algebra as unital, associative algebras generated by the extended coordinates and momenta, with the tensorial coordinates antisymmetric 
under the exchange μ ↔ ν . The following commutation relations are valid (we put h̄ = 1)

[
Xμν, Xαβ

] = 0 = [Pμν, Pαβ ], [
Xμν, Pρσ

] = i
(
δ
ρ
μδσ

ν − δσ
μδ

ρ
ν

)
, (16)

and similarly
[
xμν, xαβ

] = 0 = [pμν, pαβ ], [
xμν, pρσ

] = i
(
δ
ρ
μδσ

ν − δσ
μδ

ρ
ν

)
, (17)

where Greek indices are raised and lowered by the metric gμν .
One can introduce, as well, the formulae for the momenta with a single index (i.e. P i = κ P iN , pi = κ piN ) as dual to space-time 

coordinates Xi and xi ; Latin indices are raised and lowered by the flat metric ηi j . We also have analogous relations between the two types 
of momenta (16) and (17)

pi = ρ Pi, pij = Pij − ai P j + a j P i, (18)

with the relation Pμν =
((

O −1
)T

p
(

O −1
))μν

. For more details about these coordinates and momenta we refer the reader to [10], [31]

where this model was introduced and studied.
3
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In order to discuss the phase spaces associated with the κ-deformed extended Snyder model (6) one can use the Heisenberg double 
construction method.

2.1. Commutative momenta for the κ-extended Snyder model and their coproducts

One can introduce the Abelian momenta, dual to the coordinates X̂μν which describe the algebra o(1, N; g) (see (6)), by deforming 
the canonically conjugate Abelian momenta Pμν . The technique to calculate the coproducts 	Pi and 	Pij was proposed in [12], [13]. The 
commutation relations for P i = κ P iN , P ij remain unchanged:

[
Pi, P j

] = 0,
[

Pik, P jl
] = 0,

[
Pi, P jl

] = 0, (19)

while the coalgebraic sector of the momentum generators [31] looks as follows4:

	Pi = Pi ⊗ 1 + 1 ⊗ Pi + λ[−c1(P j ⊗ Pij + P j ⊗ Pia j)

+(1 − c1)(Pij ⊗ P j + Pi ⊗ P ja j) + (2c1 − 1)P j ⊗ P jai] + O (λ2) (20)

	Pij = Pij ⊗ 1 + 1 ⊗ Pij + λ

2
[−β Pi ⊗ P j − (Pik ⊗ P jk + ak

(
Pi ⊗ P jk − P jk ⊗ Pi

)
)

−(2c1 − 1)(Pk ⊗ P jk + Pk ⊗ P jak + P jk ⊗ Pk + P j ⊗ Pkak)ai − (i ↔ j)] + O
(
λ2

)
, (21)

S (Pi) = −Pi + λ (1 − 2c1)
(

P j P i j + ak Pk Pi − Pk Pkai
)
, (22)

S
(

Pij
) = −Pij − λ (2c1 − 1)

(
ai P jk Pk + ai P jak Pk − (i ↔ j)

)
, (23)

ε (Pi) = ε
(

Pij
) = 0, (24)

where a new parameter c1 depends on the realization (see Sec. 3 in [31]), and coproducts are presented up to the first order in the 
deformation parameter λ. The coproducts (20), (21) correspond to the so-called generic realization [31], and define the momentum sector 
of the κ-extended Snyder model as parametrized by λ, β, ai and c1. Such parametrization occurs when the coproducts are written up 
to the first order in λ; in higher orders of λ additional parameters appear (see Sec. 3 in [31] for more details). For the concrete Weyl 
realization [10], one should set c1 = 1

2 and for the natural realization (i.e. with classical algebra basis) c1 = 0.
We postulate the standard duality relation:

< P j, X̂i >= −iηi j, (25)

< Pk, X̂i j >= 0, (26)

< Pkl, X̂i >= 0, (27)

< Pkl, X̂i j >= −i
(
ηikη jl − η jkηil

)
. (28)

One can check that from the duality relation between the products in the algebra generated by X̂ and the coproducts in the coalgebra 
generated by P , the following compatibility conditions hold

< b(1),a >< b(2),a′ >=< b,a · a′ >, (29)

< b,a(1) >< b′,a(2) >=< b · b′,a > . (30)

3. Generalized quantum phase space from the Heisenberg double

We introduce the left Hopf action 	 of momenta on coordinates defined by the formula P 	 X̂ =< P , X̂(2) > X̂(1) , and recall that 
we use the Sweedler notation for the coproduct. From (25)-(28) it follows immediately that P j 	 X̂i = −iηi j , Pk 	 X̂i j = 0, Pkl 	 X̂i = 0, 
Pkl 	 X̂i j = −i 

(
ηikη jl − η jkηil

)
. The corresponding Heisenberg double commutators follow from the cross product construction:

[
P , X̂

]
= X̂(1) < P (1), X̂(2) > P (2) − X̂ P , (31)

written shortly without the indices. Doing the calculation explicitly and using the coproducts for momenta (20)-(21), case by case, we 
obtain:

[
P j, X̂i

]
= −iη j i + iλ[c1

(
P ji + P jai

) − (1 − c1)ηi j Prar − (2c1 − 1) Pia j] + O
(
λ2

)
, (32)

[
P j, X̂is

]
= −iλ (1 − c1)

(
ηi j P s − ηsj P i

) + O
(
λ2

)
, (33)

4 Note that there was a typo in sign in term P jk ⊗ Piak in the coproduct of 	Pij in [31].
4
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[
Pij, X̂k

]
= iλ

2
{β(ηik P j − η jk P i) + (ηik P jl − η jk P il)al

+ (2c1 − 1) [ai(P jk + P jak + η jk Plal) − a j(Pik + Piak + ηik Plal)]} + O
(
λ2

)
, (34)

[
Pij, X̂st

]
= −i

(
ηsiηt j − ηtiηsj

) + iλ

2
[ηsi(P jt + P jat − (2c1 − 1)Pta j) − ηti(P js + P jas − (2c1 − 1) P sa j)

−ηsj(Pit + Piat − (2c1 − 1) Ptai) + ηt j(Pis + Pias − (2c1 − 1) P sai)] + O
(
λ2

)
. (35)

We add that all of the generalized phase space relations, including the tensorial coordinates and momenta, depend on the c1 parameter. 
In particular for c1 = 0, we obtain in place of (32)

[
Pk, X̂i

]
= −iηki(1 + λa j P j) + iλPiak + O (λ2). (36)

Such commutator would correspond to the so-called classical basis of κ-Poincaré (named also the natural realization) [32], [33], [34]. For 
c1 = 1

2 we get:

[
Pk, X̂i

]
= −iηki(1 + 1

2
λa j P j) − i

2
λ(Pik − Pkai) + O (λ2) (37)

which is the result corresponding to the so-called Weyl realization of κ-Poincaré algebra [32].

i) Reduction to the κ-Minkowski and relation with the κ-de-Sitter case
When gN = 0 the relations (6) describe the κ-Minkowski space-time with Lorentz covariance algebra as symmetry and the cross 

commutators obtained above (32)-(35) are reduced to the particular case of κ-Minkowski phase space relations. Since the expressions 
provided in (32), (33) and (35) are β-independent they will remain the same in the reduction to κ-Minkowski case (gN = 0) up to the 
linear order in λ. The relation (34) reduces to:

[
Pij, X̂k

]
= iλ

2
[ηik P jlal + (2c1 − 1)

(
P jkai + P jakai + η jk Plalai

) − (i ↔ j)] + O (λ2). (38)

Basic quantum-deformed Heisenberg algebra relation is described by the cross commutation relation (32), which in linear order of λ does 
not depend on the β parameter and contains only the terms generated by κ-deformation. We know however from the standard Snyder 
model (see [3]) that the term linear in β is bilinear in the momenta. Because terms bilinear in Pi are as well bilinear in λ, the parameter β
can contribute only at the second perturbative order in λ. One can state that for small λ the terms generated by κ-deformation dominate 
over the β-dependent terms, but for more precise statement the perturbative λ2 order terms should also be calculated for the relation 
(32).
Further one can compare these particular relations with the results obtained in the literature (see, e.g. in [22], [23]) where the Heisenberg 
double construction was investigated for the κ-Minkowski space-time and quantum symmetry described by the κ-Poincaré algebra (in 
Snyder model the quantum symmetry is linked with the de Sitter algebra).

ii) Reduction to the extended Snyder model
We can reduce the κ-dependent terms in commutation relations (32)-(35) and compare such results with the results obtained from 

the Heisenberg double of the extended Snyder model [27]. When g0 = . . . = gN−1 = 0 and gN = 1, the algebra (6), after the change of 
variables (15), (18), provides the extended Snyder algebra. The phase space relations calculated in (32)-(35) are reduced to the following 
ones

[
pk, x̂i

] = −iηki + iλc1 pki + O
(
λ2

)
, (39)

[
pk, x̂i j

] = −iλ (1 − c1)
(
ηik p j − η jk pi

) + O
(
λ2

)
, (40)

[
pij, x̂k

] = i
λ

2
β

(
ηik p j − η jk pi

) + O
(
λ2

)
, (41)

[
pij, x̂st

] = −i
(
ηsiηt j − ηtiηsj

) + i
λ

2
[(ηsi p jt − ηsj pit

) − (
ηti p js − ηt j pis

)] + O
(
λ2

)
. (42)

The cross commutation relations in the generalized phase space obtained by the Heisenberg double method for the extended Snyder 
model were calculated in [27] and resulted in the following:

[
pk, x̂i

] = −iηki + i
λ

2
pki + O

(
λ2

)
, (43)

[
pk, x̂i j

] = −i
λ

2

(
ηik p j − η jk pi

) + O
(
λ2

)
, (44)

[
pij, x̂k

] = i
λ

2
β

(
ηik p j − η jk pi

) + O
(
λ2

)
, (45)

[
pij, x̂st

] = −i
(
ηsiηt j − ηtiηsj

) + i
λ

2
[(ηsi p jt − ηsj pit

) − (
ηti p js − ηt j pis

)] + O
(
λ2

)
. (46)

They do agree with the above results (39)-(42) for c1 = 1/2.
5
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4. Another Heisenberg double for the κ-extended Snyder model

Using the algebra (6) describing κ-extended Snyder model, also other Heisenberg double construction can be considered. If we intro-
duce the algebra of functions generated by dual de Sitter group matrices �αβ : {�αβ : [�αβ,�μν

] = 0 : �T g� = g} we should postulate

	
(
�ρσ

) = �ρα ⊗ �ασ ; ε
(
�ρσ

) = gρσ ; S
(
�ρσ

) = (�−1)ρσ = �σρ. (47)

One can also introduce the matrices �̃αβ which are related with the above group elements via the map �ρσ =
(

O �̃O T
)
ρσ

,5 (α, β =
0, 1, . . . , N). The basic duality relation is given by:

< �ρσ , X̂μν >= −iλ(gρμgσν − gρν gσμ). (48)

We consider the following left Hopf action 	:

�ρσ 	 X̂μν =< �ρσ , X̂μν(2)
> X̂μν(1)

= gρσ X̂μν − iλ(gρμgσν − gρν gσμ) (49)

and we obtain the cross commutation relations which are defined by the Heisenberg double method
[
�ρσ , X̂μν

]
= X̂μν(1) < �ρσ(1), X̂μν(2) > �ρσ(2) − X̂μν�ρσ (50)

= −iλ(gρμ�νσ − gρν�μσ ).

If we recall the relations X̂kN = κ X̂k and gij = ηi j , giN = κai , gN N = gN = κ2β , we get from (50) the cross commutation relations between 
the dual group elements and quantum algebra generators

[
� jk, X̂i

]
= − iλ

κ
(g ji�Nk − g jN�ik) = − iλ

κ
(η ji�Nk − κa j�ik), (51)

[
� jN , X̂i

]
= − iλ

κ
(g ji�N N − g jN�iN) = − iλ

κ
(η ji�N N − κa j�iN), (52)

[
�Nk, X̂i

]
= −iλ(ai�Nk − κβ�ik), (53)

[
�N N , X̂i

]
= −iλ(ai�N N − κβ�iN). (54)

For the tensorial coordinates X̂i j we obtain the cross relations:
[
�lk, X̂i j

]
= −iλ(ηli� jk − ηl j�ik), (55)

[
�lN , X̂i j

]
= −iλ(ηli� jN − ηl j�iN), (56)

[
�Nk, X̂i j

]
= −iλκ(ai� jk − a j�ik), (57)

[
�N N , X̂i j

]
= −iλκ(ai� jN − a j�iN). (58)

Note that �i j = �̃i j .6 One can check explicitly that the duality < �ρσ , X̂μν > given above reduces to

< �̃ρσ , x̂μν >= −iλ(ηρμησν − ηρνησμ) (61)

for the extended Snyder model (i.e. when gNi = g0 = ... = gN−1 = 0, gij = ηi j, gN N = gN = κ2β). Therefore, all the cross commutation 
relations (51)-(58) are the same as the ones obtained in [27] where the extended Snyder model was investigated.

In the reduction of the above results to the κ-Minkowski case (gN = 0) only two relations (53), (54) depend on β and we easily see 
the result of reduction. Further, focusing on the relation (51), after putting a j = 1

κ δ0
j (i.e. assuming a time-like κ-deformation) we obtain 

the following covariance relations

[
� jk, X̂i

]
= − i

κ
λ

(
η ji�Nk − δ0

j �ik

)
. (62)

5 In this case we have: {�̃αβ :
[
�̃αβ , �̃μν

]
= 0 : �̃T η�̃ = η},

	
(
�̃ρσ

)
= �̃ρα ⊗ �̃ασ ; ε

(
�̃ρσ

)
= ηρσ ; S

(
�̃ρσ

)
= (�̃−1)ρσ = �̃σρ .

Such algebra was also used in [27] in our studies of the Heisenberg double for the extended Snyder model.
6 Footnote 5 can be supplemented by the following relations obtained from (46), (50):

[
�̃ jk, X̂i

]
= − iλ

κ
(η ji�̃Nk − κa j�̃ik), (59)

[
�̃lk, X̂i j

]
= −iλ(ηli�̃ jk − ηl j�̃ik). (60)
6
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5. Discussion and outlook

For the κ-extended Snyder model introduced in [10] we constructed the generalized quantum phase space, which depends on three 
parameters, β , κ and λ. The Hopf algebra describing the quantum symmetries of the model is coassociative, hence one can use the 
Heisenberg double construction for the correct description of the respective generalized quantum phase space. Since this model contains 
Snyder (β 
= 0) and κ-Minkowski sectors (κ 
= 0), one can discuss how the generalized quantum phase space can be reduced to these 
special cases. The algebraic relations determining the generalized phase space for the κ-extended Snyder model have been calculated to 
the first order in the λ parameter, and for most commutation relations to such order we get only the formulae modified by κ-deformation. 
Our algebra also includes the orthogonal (de Sitter) algebra generators, which are described by tensorial coordinates.

The quantum group describing quantum symmetries of the κ-extended Snyder model is built up from deformed coproducts of mo-
menta [31] and undeformed Lorentz algebra relations. When κ → ∞ the κ-extended Snyder model reduces to the extended Snyder model 
which describes the noncommutative de-Sitter space-time, with β as the inverse square of constant curvature parameter R characterizing 
dual de-Sitter pseudosphere in momentum space. Considering the case, when β → 0 but keeping parameter κ we obtain the known 
κ-deformed Minkowski spacetime. Keeping both parameters, one gets an analogue of κ-deformation of noncommutative de-Sitter space 
related with the classical r-matrices of de-Sitter algebra [35,36]. Such classical r-matrices, which introduce two de-Sitter parameters, 
namely one related with de-Sitter curvature R and other related with κ deformation, can be considered and it would be interesting to 
investigate the connection between κ-deformed extended Snyder model and the deformations introducing the κ-deformations of de-Sitter 
geometry. Also, it would be of interest to see what realizations of κ-Poincaré, after the interpretation of β as the inverse square of de 
Sitter radius (β ∼ R−2), could be obtained by the quantum Inonu-Wigner contraction procedure.
The Heisenberg double for the κ-Poincaré quantum group leads to the κ-deformed phase space that was investigated in different bases 
for the κ-Poincaré Hopf algebra [19–23,31]. In κ-extended Snyder model with different quantum symmetry group and different coalgebra 
sector, the comparison between these two cases and the present model involving tensorial coordinates should still be discussed.

Further, one of the tasks which would be interesting to investigate is the Hopf algebroid providing the generalized quantum phase 
spaces of the κ-extended Snyder model. Hopf algebroids describing the quantum phase spaces with NC space-time coordinates have been 
studied in the literature recently [20,37–41], and it should be recalled that Heisenberg double construction provides a natural example of 
the Hopf bialgebroid structure [8].

It can finally be added that the parameters β , κ and λ are not treated here as genuine quantum deformations parameters introducing 
quantum deformation determined by classical r-matrices, which satisfy classical or modified Yang Baxter equations. These parameters 
appear in the procedure of changing the o(1, N) basis, which effectively leads to the modified de Sitter relations and noncanonical modified 
de Sitter metric gμν . The parameters β, κ and λ appear as determining the algebra basis and in this way we introduce physical parameters 
(β is related with de Sitter radius, κ usually is linked with Planck mass, and the parameter λ is related with the Planck constant). Thus, 
in order to describe the κ-extended Snyder model we only redefine the standard basis of classical de Sitter algebra, this mathematically 
rather trivial operation leads to results which might be significant in physical applications.
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