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Abstract
In the work, averaging level control using model-based

control and estimation algorithm on a buffer tank system

is studied. Implementation of Model Predictive Control

(MPC) and Proportional-Integral (PI) control together

with Kalman filter for state and disturbance estimation

show decent benefits and potentials. Results show that

acceptable setpoint tracking of water level in the basin

under varying inflow can be achieved. MPC precedes PI

for smoother pump actions. Python as a popular

programming language is adopted and showed potential

for real-time control (RTC).

Keywords:     Averaging level control, MPC, PI,

Extended Kalman filter, Urban Drainage System

1 Introduction

Real-time control (RTC) of Urban Drainage System

(UDS) is an important part for different goals in the

drainage network.

Literature review (Lund et al., 2018) shows that 

MPC is an efficient tool for UDS control, and there 

have been a few projects provided promising results, 

even though the total number of operational 

implementations is limited. MPC has been used for 

controlling different components in UDS, including 

basin, pipe, junction, reservoir, etc. with linear 

and/or nonlinear models available internally or 

externally. More than 60 percent of 113 references 

addressed using MPC for UDS control from 1983 to 

2018 in a few cities globally. Reported applications 

are mostly found in North America and central 

European countries. In particular, more active

research projects can be found in Span, Canada and

Denmark.

Kalman filter is an important data assimilation

algorithm in weather forecast to combine numerical

methods and observations (Sun et al., 2016).

We present results from a research project, which is

about potential use of automatic control on an existing

UDS in Norway. Figure 1 illustrates a 42 km long

tunnel, which is a main component of the drainage

system, transports total volume up to 110 million

m3/year combined sewage overflow (CSO) to one of the

largest Water Resource Recovery Facility (WRRF) in
Norway named VEAS. An equalization magazine

downstream the tunnel works as a buffer tank of the

wastewater before it enters the VEAS plant, being 

processed and discharged into the Oslo Fjord.  

Due to the process requirement at VEAS and flow 

control along the tunnel, the combined drainage must be 

controlled for different purposes: 

 Smoothed inflow to the plant. 

 Relatively short retaining time of water inside the 

tunnel. 

 The water flow has certain constraints/ limits, i.e., 

the tunnel should not be total empty, meanwhile, as 

less overflows into the Oslo Fjord as possible.  

 Dealing with precipitation according to weather 

data/ forecast. 

A laboratory buffer tank in Figure 2 is to be used to 

emulate the actual basin part in the end of the tunnel. 

Details of the system is to be presented in Section 2.1. 

This work aims at:  

1. Mathematical modelling of the buffer tank. 

2. Averaging level control using model-based control.  

3. Inflow estimation using Extended Kalman filter 

(EKF). 

 

Figure 1. VEAS tunnel for transporting wastewater from 

urban areas to the treatment plant. (VEAS, 2018) 

 

Figure 2. Buffer tank system for averaging level control. 
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2 Materials and methods 

The simulated buffer tank as the testing bench and 

algorithms for control and estimation are introduced.  

2.1 Buffer tank system 

Main components of the laboratory buffer tank in Figure 

2 consist of:  

 Left-hand side: A buffer tank equipped with an 

ultrasonic level transmitter (Level sensor); a pump 

(Pump 1) followed by a flowmeter measuring the 

flowrate of outflow from the buffer tank;  

 Right-hand side: A tank as a reservoir of outflow; a 

pump (Pump 2) to transport simulated varying 

“precipitation and wastewater” into the buffer tank.  

 Bottom center: I/O devices for communication 

between computer and the buffer tank system. 

Power supply unit for powering the electronic 

devices and electrical components. Table 1 lists the 

main components used in the system.  

 Local PI controllers: The flow from each pump is 

controlled based on readings of inline flow meters. 

Table 1. Main components in the buffer tank system for 

averaging level control. 

Component Brand/ Model 
Measurement 

range 

Pump (x2) Johnson Pump/  

SPXFlow CM30P7-1 

<26 L/min 

Level 

sensor 

Pepperl Fuchs/ 

UB300-18GM40-I-

V1 

35~300 mm 

Flow meter 

(x2) 

Sea/ YF-S201 1~30 L/min 

I/O device National Instruments/ 

USB-6008 

AO: 0~5V 

AI: 0~5V 

2.2 Simulation and testing environment  

Python (Python.org, 2021) with open libraries for 

computation and interfaces is used as the simulation and 

testing environment in this project. The open-access 

libraries are listed in Table 2.  

Table 2. Open-access libraries for averaging level 

control.  

Module Function Reference 

Numpy Matrix and 

random noise 

related 

calculation 

(numpy.org, 2021) 

Scipy Optimization (SciPy.org, 2021b) 

nidaqmx  Interface for NI-

DAQmx driver 

(National 

Instruments, 2017) 

Matplotlib Data 

visualization 

(Matplotlib.org, 

2021) 

2.3 Mathematical modelling 

The mathematical model of the system can be derived 

from mass balance of the water tank, given in 

continuous state-space form by (1):  

{
ℎ̇ =

1

𝑎
(𝐹𝑖𝑛 − 𝐹𝑜𝑢𝑡) + 𝑤

𝑦 = ℎ + 𝑣
 (1) 

where, 

 ℎ [cm], the process state variable, the water level 

inside the tank. 

 𝑦  [cm], the process output, the water level 

measurement.  

 𝐹𝑜𝑢𝑡  [cm3/s], the control variable of the pump to 

manipulate the outflow from the buffer tank.  

 𝑎 [cm2], the tank cross-sectional area. In this 

system, a cylindrical tank is installed vertically so 

𝑎 = 𝜋𝐷2/4 is a constant, with tank inner diameter 

𝐷 = 8.5 cm. In reality, the basin cross-sectional area 

varies with the water level, i.e., 𝑎 = 𝐻(ℎ), where 𝐻 

is a nonlinear function.  

 𝐹𝑖𝑛 [cm3/s], inflow into the tank, which in the real 

VEAS case is unknown.  

 𝑤 and 𝑣 are process noise and measurement noise 

with covariances 𝑄 = 𝐸[𝑤2]  and 𝑅 = 𝐸[𝑣2] , 

respectively.   

2.4 Control and estimation algorithms  

MPC and PI as the control algorithms and EKF as the 

estimation method are introduced in this section.  

2.4.1 Averaging level control 

The overall purpose of averaging level control is to 

smooth the inflow in real-time through the buffer tank 

so that the variation of outflow from the buffer tank is 

smoothed (Haugen, 2010). Block diagram of such 

principle is presented in Figure 3.  

The level of water inside the buffer tank is to be 

maintained close to a user-specified value by 

manipulating Pump 1 based on the level measurement 

from Level sensor. Situations like full tank and empty 

tank are restricted.  

The pump control signals are limited to be:  

𝑢 ∈ [𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥]  (2) 

where, 𝑢𝑚𝑖𝑛  and 𝑢𝑚𝑎𝑥  are the allowed minimum and 

maximum flow, respectively. In addition, to have 

smooth pump actions as the process required, constraint 

for Δ𝑢 is introduced as: 

|
Δ𝑢𝑘

𝑇𝑠

| = |
𝑢𝑘 − 𝑢𝑘−1

𝑇𝑠

| ≤ 𝐿 

⇒ 𝑢𝑘 ∈ [𝑢𝑘−1 − 𝐿 × 𝑇𝑠, 𝑢𝑘−1 + 𝐿 × 𝑇𝑠]  
(3) 

where, 𝐿=10 cm3/s2 is the user-specified limit, 𝑇𝑠=0.2 s 

is the time step, the pump action 𝑢𝑘 is limited to be: 

𝑢𝑘 ∈ [𝑢𝑘−1 − 2 cm3/s , 𝑢𝑘−1 + 2 cm3/s] 
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2.4.2 State and inflow estimation 

The water level measurement is the only measurement 

for feedback control in the buffer tank.  

As mentioned, the inflow 𝐹𝑖𝑛  in (1) is a random 

variable representing the unknown precipitation and 

wastewater flowing into the buffer tank/ basin. 

Extended Kalman filter (EKF) is used for the inflow 

estimation in this work (Simon, 2006). To estimate the 

inflow, the state vector is augmented with inflow 

disturbance as is given by (4): 

�̇� = [
ℎ̇

𝐹𝑖�̇�
] = [

1

𝑎
(𝐹𝑖𝑛 − 𝐹𝑜𝑢𝑡)

0
] + 𝒘 (4) 

where, �̇�𝑖𝑛 [cm3/(s2)] is the first order derivative of the 

inflow, �̇�𝑖𝑛 =
𝑑𝐹𝑖𝑛

𝑑𝑡
. The only measurement 𝑦 = ℎ  is 

used to update the EKF in this work. 𝒘 =

[
𝑤1

𝑤2
] ~𝒩(0, 𝛿𝒘

2 ) is assumed Gaussian noise vector for 

the augmented state vector with zero-means and 

variance matrix 𝛿𝒘
2 = [

𝛿𝑤1

2

𝛿𝑤2

2 ]  to be determined by 

experiments.   

Process distribution covariance: 

𝑄 = [
𝑄ℎ 0
0 𝑄𝐹𝑖𝑛

] = [
𝛿𝑤1

2 0

0 𝛿𝑤2

2 ] 

Tuning of the EKF with covariance matrices is done 

by using: 

𝑄𝐾𝐹 = 𝑄, 𝑅𝐾𝐹 = 10 × 𝑅 

2.4.3 Discretized state-space model  

Based on the model (1), discretization of (4) gives the 

process model in discretized state-space form as in (5): 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑤𝑘 

𝑦𝑘 = 𝐶𝑥𝑘 + 𝑣𝑘 
(5) 

where, the system matrices are 

𝐴 = [1
𝑇𝑠

𝑎
0 1

] , 𝐵 = [−
𝑇𝑠

𝑎
0

] , 𝐶 = [1 0] 

with state vector 𝑥𝑘 = [
ℎ𝑘

𝐹𝑖𝑛,𝑘
] , control variable 𝑢𝑘 =

𝐹𝑜𝑢𝑡,𝑘 , time step 𝑇𝑠 = 0.2s , process noise vector 

𝑤𝑘~𝒩(0, 𝑄𝑘), measurement noise 𝑣𝑘~𝒩(0, 𝑅𝑘).  

The controllability matrix 𝒞 and observability matrix 

𝒪 can be calculated as: 

𝒞 = [𝐵 𝐴𝐵] =  [−
𝑇𝑠

𝑎
−

𝑇𝑠

𝑎
0 0

] 

𝒪 = [
𝐶

𝐶𝐴
] =  [

1 0

1
𝑇𝑠

𝑎
] 

Checking the rank of these matrices, giving: 

𝑅𝑎𝑛𝑘(𝒞) = 1, ℎ is controllable.   

𝑅𝑎𝑛𝑘(𝒪) = 2, the system is observable. 

 

Figure 3. Block diagram of averaging level control. 

 

Figure 4. Block diagram of output feedback MPC. 

2.4.4 Output feedback MPC 

The main idea of implementing MPC is to solve an 

open-loop optimal control problem over a moving 

horizon with finite length at each sampling time, starting 

at the current state. At the next time step, the 

computation is repeated starting from the new state and 

over a shifted horizon. 

In an output feedback MPC, feedback of states is 

obtained through an estimator, i.e., EKF, to recursively 

estimate the states based on the measurement at every 

time step. The estimated states �̂�𝑘 = [
ℎ̂𝑘

�̂�𝑖𝑛,𝑘

] is sent to 

MPC, instead of the states measured directly from the 

process 𝑥𝑘. 

Figure 4 shows the block diagram of the principle of 

output feedback MPC. 

For a Single-Input-Single-Output (SISO) MPC, the 

cost function in this case is defined by (6): 

min
𝑢𝑘

𝐽 =
1

2
{∑ 𝑀 × 𝑒𝑘

2 +
𝑁𝑝

𝑘=1
∑ 𝑁 × Δ𝑢𝑘

2𝑁𝑐
𝑘=1 }  (6) 

where, 

 𝑢𝑘  is the control signal to be optimized. Control 

error Δ𝑢𝑘 = 𝑢𝑘 − 𝑢𝑘−1.  

 Constraints on 𝑢𝑘 and Δ𝑢𝑘 are as in (2) and (3). 

 𝑒𝑘 = 𝑦𝑘
𝑟𝑒𝑓

− 𝑦𝑘 , is the prediction error defined as 

the difference between the setpoint 𝑦𝑘
𝑟𝑒𝑓

 and 

process output 𝑦𝑘. 

 𝑁𝑝  and 𝑁𝑐  are the length of prediction horizon 

( 𝑇𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = 𝑁𝑝 × 𝑇𝑠 ) and control horizon 

(𝑇𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 𝑁𝑐 × 𝑇𝑠), respectively.  

 𝑀 ∈ ℝ1×1  and 𝑁 ∈ ℝ1×1  are positive definite 

weighting matrices for prediction error and control 

error, respectively.  
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2.4.5 PI control  

PI is a control algorithm widely used in various 

industries. The PI controller in time domain to be used 

is of the discretized form (Haugen, 2010) in (7): 

𝑢𝑘 = 𝑢𝑘−1 + [𝑢0,𝑘 − 𝑢0,𝑘−1]  

               +𝐾𝑝[𝑒𝑘 − 𝑒𝑘−1] +
𝐾𝑝𝑇𝑠

𝑇𝑖
𝑒𝑘 

(7) 

where, 

 𝑢𝑘, controller output at time step 𝑡𝑘 with constraints 

introduced as in (2) and (3). 

 𝑢0, manual control input.  

 𝑒𝑘 = 𝑦𝑘
𝑟𝑒𝑓

− 𝑦𝑘 , where 𝑦𝑘  and 𝑦𝑘
𝑟𝑒𝑓

 are the 

measurement and the reference at 𝑡𝑘, respectively. 

 𝐾𝑝, 𝑇𝑖, proportional gain and integral time of the PI 

controller. Skogestad’s method as a model-based 

tuning method (Haugen, 2010) is used for tuning of 

these parameters. 

3 Results and discussion 

In this section, results of averaging level control are 

presented and discussed.  

3.1 Averaging level control using PI 

Experiment results are shown in Figure 5 with controller 

settings: 𝐾𝑝
ℎ= -5.67 (direct actions), 𝑇𝑖

ℎ=20 s. 

In general, the water level ℎ showed smooth changes 

in the meantime of tracking the setpoint ℎ𝑠𝑝, as can be 

seen from the top plot. The real-time measurement ℎ𝑚 

and the estimated signal ℎ̂ match each other well, except 

for slight deviation in the beginning phase (< 10 s) due 

to a guessed initial value used for the EKF estimator.  

PI controller calcucates 𝐹𝑜𝑢𝑡,𝑘 based on the estimated 

inflow �̂�𝑖𝑛,𝑘 for updating the pump actions at each time 

step. The estimated inflow �̂�𝑖𝑛,𝑘 started to reflect the real 

data after about 10 s as the middle plot shows. The large 

deviation of the estimated inflow from the real value in 

the beginning phase caused delayed controller actions, 

in addition to the 𝛥𝑢/𝛥𝑡 constraint for smooth pump 

actions shown in the bottom plot. Even though the 

estimation of inflow is noisy, the Pump 1 control actions 

𝑢 = 𝐹𝑜𝑢𝑡  slowly resembled the varying inflow, 

including conditions of two stepwise changes at 𝑡=0 s 

and 𝑡=50 s. The Pump 1 control actions fluctuated at 

low flow rate, i.e., from 𝑡=50 s to 𝑡=100 s when the 

inflow is ~20 cm3/s shown in the middle plot, caused by 

the nonlinear pump characteristics.  

3.2 Averaging level control using MPC 

Results of MPC control algorithm are presented in 

Figure 6, with the following controller settings: 

 Optimization method: SLSQP (SciPy.org, 2021a), 

tolerance = 0.001.  

 Constraint/ boundaries: as in (2) and (3).  

 
Level:  ℎ𝑠𝑝   ℎ  ℎ̂  

Flow:  𝐹𝑜𝑢𝑡  𝐹𝑖𝑛   �̂�𝑖𝑛  

Figure 5. Results of implementing PI for buffer tank 

averaging level control. 

 
Level:  ℎ𝑠𝑝   ℎ  ℎ̂  

Flow:  𝐹𝑜𝑢𝑡  𝐹𝑖𝑛   �̂�𝑖𝑛  

Figure 6. Results of implementing MPC for buffer tank 

averaging level control.  

 𝑇𝑝𝑟𝑒𝑑𝑖𝑐𝑡 = 𝑇𝑝𝑟𝑒𝑑𝑖𝑐𝑡 =10 s, and 𝑁𝑐 = 𝑁𝑝=20. 

 Weighting matrices: 𝑀 = 5, 𝑁 = 1. 

 𝐹𝑖𝑛: Estimated inflow at each time step 𝐹𝑖𝑛,𝑘 is used 

for prediction and cost function calculation, 

meaning that the inflow is a “fixed” value for the 

entire prediction horizon 𝑁𝑝. 

Comparing the results from MPC to from PI control, 

one can firstly notice that the MPC outperforms PI with 

“smoother” 𝐹𝑜𝑢𝑡  (middle plot) and much less varied 

outflow Δ𝑢/Δ𝑡  (bottom plot). This is because of the 

moving horizon and optimization algorithm used for 

optimal control in the prediction horizon, given the same 

constraints of on 𝐹𝑜𝑢𝑡 and 𝛥𝑢/𝛥𝑡 as for PI controller.  

It is worth noting that, with smoother outflow, more 

overall setpoint deviation of the water level should have 
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been observed since the volume would have varied more 

to buffer against inflow. However, from the results, the 

differences are noticeable but not obvious, comparing 

the two “level” plots in Figure 5 and Figure 6.  

Estimation of both water level ℎ̂ and the inflow �̂�𝑖𝑛 

are about the same overall performance as in PI 

controlled case. However, the less noisy control actions 

led to less noisy �̂�𝑖𝑛.  

Both PI controller and MPC can be tuned for less 

tracking error suffering more abrupt control action 

changes or more varied water level with less fluctuated 

pump actions.  

3.3 “Time” issue in real-time control 

One problem of using Python for real-time control 

(RTC) is how to ensure the time step 𝑇𝑠  during the 

computation, since Python is not designed for real-time 

purpose and the computation speed is dependent on 

many factors.  

Figure 7 presents the differences between 

computational load for the averaging level control using 

MPC and PI, given computer configurations in Table 3. 

The two upper plots are the cycle time for each cycle 

(totally 200 s / 0.2 s = 1000  cycles). The lower 

histogram plots show the distribution of the cycle time 

for both control algorithms, in which the 1000 cycles are 

binned into 40 groups with the largest group marked red.   

 

Figure 7. Comparison of computation load of PI and 

MPC for averaging level control. 

Table 3. Computer configurations. 

Hardware  Processor: Intel(R) Core(TM) 

i7-8750H @ 2.20GHz 

Installed RAM: 32.0 GB  

Operating system Windows 10 Enterprise 64-bit 

Version 20H2  

OS build 19042.985 

The computational load is relatively less heavy using 

PI control than using MPC. In the experiments based on 

PI control, more than 70% cycles have about 9~10 ms 

computation time (not the “average” computation time) 

and maximum cycle time is ~31 ms. For MPC case, 

more than 50% cycles have 29~31 ms running time and 

maximum is ~70 ms, both are much higher than using 

PI control. As can be seen from the histogram, the cycle 

time distribution for MPC is much “wider”, meaning the 

cycle time varies a lot from loop to loop. This is because 

MPC is an optimization-based algorithm. The 

computation depends highly on the problem 

construction, optimization method, and solver setup, 

etc. A few other factors can also influence the cycle time 

including file I/O, hardware communication and setup, 

computer configurations, etc.  

In this work, Python built-in “time” module is used 

with the following method to handle the issue: 

1. Define a time step/ cycle time, i.e., 𝑇𝑠 = 0.2 s. The 

value has to be far greater than the largest actual 

cycle time, which can be determined from 

experiments.  

2. For each loop: 

a. Count the actual cycle time 𝑇𝑐𝑦𝑐𝑙𝑒,𝑘 [s] of each 

loop 𝑘.  

b. “Wait” for 𝑇𝑤𝑎𝑖𝑡,𝑘 = 𝑇𝑠 − 𝑇𝑐𝑦𝑐𝑙𝑒,𝑘 [s] at the end 

of each loop. In Python, the built-in “time” 

module can be used as:  

time.sleep(T_wait_k)  

c. If for some reason 𝑇𝑤𝑎𝑖𝑡,𝑘 ≥ 𝑇𝑠, let 𝑇𝑤𝑎𝑖𝑡,𝑘 = 0. 

d. Pump control signal 𝑢𝑘 is maintained until next 

time step.   

To speed up the simulation/ shorten the cycle time, 

some options are recommended: Cython (Cython.org, 

2020), multi-threading and multi-processing 

(Python.org, 2021), use well-accepted open libraries and 

proper setup of modules, separate file I/O and 

computational tasks, etc.  

4 Conclusions and future 

development 

The work presents a demonstration of using model-

based control algorithms for averaging level control of 

urban drainage system, to be specific, a wastewater 

equalization magazine using a small-scale buffer tank. 

The conclusions are:  

 Averaging level control using model-based control 

algorithms is successful, with unknown inflow.  

 MPC is based on the system model and optimization 

solver. PI controller does not require the system 

model to compute the control action. With proper 

settings, MPC can achieve smoother control actions 

than PI control. 

 The process can benefit from both PI and MPC 
algorithms for averaging level control, given 

constrained control signal with upper/ lower limits 
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([𝑢𝑚𝑎𝑥, 𝑢𝑚𝑖𝑛]) and allowed maximum change of 

flow rate (|Δ𝑢 Δ𝑡⁄ |).  

 For the buffer tank system, the inflow is observable 

so that it can be estimated as an augmented state 

with water level as the only measurement. EKF is 

easy to implement for the estimation but some effort 

is required for tuning.   

 Python is a promising option for programming for 

real-time control. As one can see, a number of open 

libraries are available for the purpose. 

To improve the MPC performance in the future, 

instead of using a “fixed” 𝐹𝑖𝑛 for the entire prediction 

horizon, a “forecast horizon” 𝑁𝑓 can be used to obtain a 

sequence of “future inflow” for the MPC optimization, 

i.e., [𝐹𝑖𝑛,𝑡𝑘
, 𝐹𝑖𝑛,𝑡𝑘+1

, … , 𝐹𝑖𝑛,𝑡𝑘+𝑁𝑓
] . Choosing of 𝑁𝑓  is 

based on the information available and computation 

resource. 𝑁𝑓 ≥ 𝑁𝑝  is suggested so that the inflow 

information is available throughout the prediction 

horizon 𝑁𝑝 for the optimizer. Different algorithms for 

estimating/ forecasting inflow can be tested, i.e., Particle 

Filter (PF), Ensemble Kalman filter (EnKF), Moving 

Horizon Estimation (MHE), neural network, etc. Trade-

off between extra computational load and performance 

should be taken into consideration.    
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