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Abstract  Multiphase flows with oil/ gas/ water are common 
in oil and gas industries. Accurately identifying flow types and 
estimating flow velocities of the individual phases are crucial for 
different purposes, such as observing the process status and 
providing inputs to control systems. This paper presents a 
solution for identifying flow contents and estimating flow rates 
in single-phase or each phase in multiphase flows by using 
pressure measurements and pipe vibrations caused by the flows. 
The necessary experiments were performed using the 
multiphase flow rig with three-inch diameter pipelines 
transporting natural gas, water, and crude oil in a closed loop 
with a separator tank as source and sink. A series of tree-based 
ensemble machine learning models have been developed and 
tested with the data collected from accelerometers, differential 
pressure transmitters, and upstream- and downstream pressure 
transmitters. With these inputs, the developed models can 
identify volume ratios of individual phases (such as water cut) 
and can estimate the flow velocity of each phase in the flow loop, 
including the open/close status of the choke valve. After 
describing briefly, the P&ID diagram of the multiphase flow rig, 
the paper focuses on exploratory data analysis of the data from 
three accelerometers and three pressure sensors using three 
submodels cascaded to perform ensemble learning. 

Keywords multiphase flow measurement, phase volumes, 
classification, flow velocity, accelerometer, pipe vibration, 
pressure, data fusion, machine learning, ensemble learning 

I. INTRODUCTION 

University of South-Eastern Norway (USN) has 
developed and tested different data fusion methods based on 
data from many different multiphase flow studies based on 
experimental campaigns at USN and Equinor. The work at 
USN using AI/ML work has been going on for more than a 
decade. The results here are presented as part of the 
contribution from the team at USN for the Self Adapting 
Model-based system for Process Autonomy (SAM) project.  

Usage of non-invasive and non-intrusive sensors in 
process measurements have been discussed in pneumatic 
transport of particles, detection, and quantification of sand in 

oil and gas flow, [1-6] and even in water flow measurements 
in flexible fire hose used by fire fighters, as reported by 
experts from Engineering Laboratory of National Institute of 
Standards and Technology (NIST) in the USA, [7].  

Since the development of sand detectors in the 1990s [1], 
clamp-on acoustic emission-based sensors have been used by 
many industrial actors for monitoring flow of different phases 
in different processes. Due to a plethora of clamp-on acoustic 
emission sensors in the oil and gas industries for detecting and 
quantifying formation sand in flow of oil and gas, there is an 
increasing focus on exploiting this technique for use in 
estimating the flow of different phases present in multiphase 
flow encountered in the production and transport of oil and 
gas. Based on this trend, Equinor has different activities 
exploring the possibilities of using acoustic emission and 
accelerometers in the estimation of flow of gas, oil, water, and 
their mixed/multiphase flow. 

The models presented in this paper are based on flow 
induced vibration monitored by accelerometers and pressure 
data from Equinor's multiphase flow rig in Porsgrunn, 
Norway, and have the following as the main objectives:  
identifying flow types; estimating flow rates of individual 
phases and volume ratios.  

Generally, the piezoelectric accelerometer is a non-
invasive transducer widely used in various industrial fields. 
Usage of accelerometer data to study the velocity of single-
phase flow is described in Medeiros et al. [8] and Penttine et 
al. [9] employing models with deep neural networks.   

The data used for analysis and results presented in this 
paper are from extensive tests carried out using the multiphase 
flow rig at Equinor (Porsgrunn, Norway). The multiphase rig 
is built to generate and emulate single-phase and multiphase 
flows encountered during oil and the production and transport 
of oil and gas to facilitate new solutions relevant to the 
production and transport of oil and gas. Equinor's multiphase 
flow rig is run by one of the world's leading research centres 
in the field [10]. The rig includes modules that can be 



combined to enable the possibility to conduct tests and collect 
data according to specific requirements emulating real-world 
conditions.

II. METHODOLOGY

A. Experiments setup and data logging

The datasets used for developing models were logged from 
the tests conducted at the Equinor's multiphase flow rig. The 
inner diameter of the flow loop is three-inch. Natural gas, 
crude oil and water were the materials used. Among all the 
tests, the temperatures on upstream and downstream sides
varied from about 65°C to 94°C. Total mass flow changed 
from approximately 1 ton per hour to 64 ton per hour. 

Fig.1 is a simplified piping & instrumentation diagram 
(P&ID) of the test setup at the rig indicating flow direction, 
locations of choke valves and the sensors and instruments, 
from which measurements are selected as inputs to the data 
fusion models used in this study. As illustrated in Fig.1, the 
three explosion-proof piezoelectric accelerometers("ACC"), 
with a measuring range ± 2 000 m/s2, are installed along with 
the flow direction: accelerometers #1 and #2 are placed at the 
second and fourth bends; #3 is placed close to the choke valve 
at the outlet side. Differential pressure ("DP") measurements 
come from two Venturi meters installed in the second riser 
section and the last flow loop section (horizontal pipe). "PT1"
and "PT2" are the upstream and downstream pressures. 

The accelerometer sampling frequency is set at ~50 kHz. 
The acceleration data were logged continuously for about 5 
minutes before the next series started during each run. Thus, 
there are about 15M data points in one acceleration 
measurement (raw data) from each test.

Other measurements, such as differential pressure and 
upstream and downstream pressure data, were logged as 
discrete process data. Thus, for all measurands excluding the 
accelerometers, only their average values were saved. 
Therefore, except for the data from the three accelerometers, 
each other measurements has only a single value per test in the 
datasets.

Fig. 1. Simplified P&ID of test setup at the multiphase flow rig, 
indicating the location of sensors used, choke valve and flow 
direction. "ACC": accelerometer, "PT": pressure, "DP": differential 
pressure, "HIC": choke valve position. Two pairs of DP cells are 
placed at the ends of venturi meters. Note the location of 
accelerometers at bends.

The whole datasets are logged from 117 test runs from 10 
different types of choked or unchoked single-phase and 
multiphase flows: single-phase: Gas ( G ), Oil ( O ), Water 
( W ); multiphase: Gas/ Oil ("GO"), Oil/ Water ("OW"), 
Gas/ Water ("GW"), Gas/ Oil/ Water ("GOW"); choked: Oil/ 

Water choked ("OWC"), Gas/ Oil choked ("GOC"), .Oil 
choked ("OC").

B. Exploratory data analysis 

While analysing the vibration data from the 
accelerometers, it is natural to study the distribution of their
major frequency components. Fig.2 (a) presents the frequency 
distributions from the accelerometer #1 measurements among 
all the tests excluding the oil test ("O"). Due to the 
significantly shorter measurement duration, and fewer data 
points in the oil test, the results from "O" are presented
separately. 

The spectrums indicate that, in all types of choked flows, 
the primary vibration energy is located below ~1kHz. In oil 
choked "OC" flow, a part of high energy vibration is also 
situated between 2kHz - and 4kHz. For the unchoked flows, 
the main frequency components are below 100Hz, and a few 
others are located at around 500Hz, as shown in the "zoomed
in" plot of Fig. 2(a) shown in Fig.2 (b).

In Fig. 3, the upper plots (a) present the difference between 
saved averaged differential pressure data "DP 2-1" and "DP 2-
2" through the test. The lower plot (b) is the total volume flow 
rates at the liquid phase: oil (yellow) and water (blue). 
Comparison of these two plots indicates that liquid rates are 
highly correlated with the pressure differences between "DP 
2-1" and "DP 2-2". 

(a)

(b)

Fig. 2. (a) Full (0-20 kHz) and (b) zoom-in (0-1kHz) normalized 
frequency spectrums from the accelerometer #1 measurements. 
The x-axis presents frequency (Hz), and the y-axis presents the 
tests that were named, such as "Gxx", "Wxx", "GOWxx", etc., 
where "xx" represents test numbers. The white-coloured texts on 
the left side indicate the spectrum corresponding flow types with 
the different combinations of phases: gas ("G"), oil ("O") and water
("W") with or without choked ("C"). The colour represents the 
amplitude of a particular frequency

Besides the test from Gas flow ("G"), the two plots have 
very similar variation patterns during the tests. As a result, the 
pressure difference between "DP 2-1" and "DP 2-2" is selected 
as one of the inputs in the data fusion algorithms used to 
estimate liquid flow rates.

C. Extraction of main features

Referring to the frequency distribution shown in Figs 2(a) 
and 2(b), low frequency data from the accelerometers will be 
analysed as the starting point in our analysis.



Moreover, to let the model achieve a high tolerance, the 
overall values (root mean square (RMS) values) of the filtered 
data are used instead of finding the spectrum peaks that could 
be too sensitive to the conditions prevailing in the test 
environment. 

(a)

(b)

Fig. 3. (a) Difference between the differential pressure "DP 2-1" and "DP 
2-2" vs (b) liquid phase (oil and water) volume flow rate. Oil yellow 
and water blue. The y-axis presents the tests that were named, such as 
"Gxx", "Wxx", "GOWxx", etc. (note, due to the  limited space, not all 
the test names are visible in the figure)

The results shown in Fig. 4 are the overall values from 
1kHz filtered data from all three accelerometers, indicating the 
high possibility of using the overall value to identify flow 
types. While, at some clusters, the data from different flow 
types overlapped. Therefore, to avoid overlapping flow types 
in the plots generated, other process data, such as upstream
and downstream pressure, are needed and will be used in our 
analysis.

Fig. 4. Overall values (RMS values) of filtered acceleration data (unit in 
G) from the three accelerometers. The dot colours vary according 
to their flow types. Each dot presented in the plot represents the 
RMS value from a 1-second acceleration measurement.  

The raw data from three accelerometers are filtered six times 
separately using suitable cut-off frequencies to extract more 
independent features in the model presented here. By doing 
this, the raw accelerometer data can be divided into different 
sets corresponding to different frequency zones. And then, the 
overall values are calculated for each set.

D. Model Development

The model to be developed is expected to identify ten 
different flow types (with or without choked) and estimate the 
flow rates of gas, oil, and water separately using the 
accelerometer data and other possible measurements taken 
from the 117 tests. Comparing the number of expected model 
outputs with the possible number of inputs and total available 
training & test data samples gives one of the biggest 

challenges in this work, which is: too small data (Volume in 
ML/AI jargon)

The data resolution between the acceleration data and the 
other discrete process measurements is uneven. Therefore, a 
solution has been figured out to mitigate the challenge: Divide 
one acceleration measurement into several segments, i.e., one
second per segment. Then, use one segment and other process 
measurements from the same test as one data sample. Thus, 
the saved available data volume for the training and testing of 
models will increase significantly. In addition, if more 
independent features can be extracted from acceleration data 
and used as inputs for our models, it could also help to 
improve the accuracy of our model even when operating with 
a smaller size of data samples.

However, two issues must be addressed: One is the 
similarity between each acceleration segment data. In the 
same test, the vibration/acceleration will have repetitions 
(similarities) during the whole measurement period due to its 
physical property. The idea is to increase the number of 
training data samples and improve the model accuracy. The 
remaining data samples from the same tests should not be used 
for model test purposes. (section II-D-(2) below explains how 
the data were prepared for training, validation, and testing).
Another is the influence of the applied discrete process 
measurements. In many of these 'new' data samples, discrete 
process data remain the same. 

1) Overview of model structure 
From the data-exploratory observations, a model design 

strategy is proposed, as illustrated in Fig.5, showing the 
ensemble learning modules. In the complete model, there are
three submodels: 

Submodel 1 (S1) is to identify flow types. Its output 
will be one of the inputs to submodel 2 (S2) and 
submodel 3 (S3).
Submodel 2 (S2) is to estimate the gas and liquid 
rates. Its output will be one of the inputs to submodel 
3 (S3).
Submodel 3 (S3) to estimate the oil and water rates.

Fig. 5. Ensemble learning model design strategy as a cascade of three 
submodels, S1, S2, and S3. These submodels will be trained 
separately. Outputs from the total model flow type, flow rates,
individual phases, i.e., gas, oil and water.

With all three submodels in cascade as shown in Fig. 5, the 
total model's outputs will be the identified flow types and flow 
rate of each phase. In this work, submodels will be trained 
separately. 

2) Setting up development and test sets
The whole dataset is split into three parts: Training set, 

Dev (development) set, and Test set. In the Dev set, there are 
two parts also:



Part 1 (p1) is the remaining acceleration segments 
from the same test as in the Training set. This part of 
the data is used to find an optimised amount of 
training samples to ensure the model will have the 
same performance during the whole test period. In 
addition, this optimised number also will indicate that 
an idea training data set should contain the data from 
how many seconds or minutes measurements. 

Part 2 (p2) is for the data from the test that is 'unseen'
during the model training process. This part of the dev 
data will be used to optimise the model 
hyperparameters. 

All data in the Test-set are never "seen" by the trained 
model or involved in the model development process.

Fig. 6 gives an example of how the data from the oil/water 
choked ("OWC") flow is split into different data sets. As a 
result, 10 - 20 % of total tests per flow type will be selected 
for the Dev set (p2). Furthermore, it will ensure at least one 
test sample from each flow type will be picked for the Dev set 
(p2) since there are only i.e. five tests available for gas/water 
flow. For the flow type with more than ten tests, one test will 
be picked for the test set. 

Fig. 6. Example of splitting "OWC" flow data into Training, Dev, and 
Test sets. The x-axis represents time. The y-axis shows all the tests 
from the same type of flow, here "OWC" Test 1 (t1) to Test 19 (t19). 

As a result, the datasets from 99 off tests are for training, 
the data sets from13 off tests are for Dev set (P2), and the 
remaining datasets from 5 off tests are for Test-set.

The acceleration data are not used for the two submodels, 
S2 and S3, that estimate flow rates. Instead, a numeric number 
representing the flow types will be used as input. One reason 
for doing this is because S2 and S3 are the regression models. 
Therefore, only one reference flow rate data was saved for 
each phase in each test. Therefore, applying the same idea for 
flow type identification will not benefit the model. 

3) Development environment 
The programming language used is Python 3.8. The main 

applied software tool packages are scikit-learn for model 
development, matplotlib and pyecharts for plotting. 

4) Development of submodel 1 (S1) to identify flow types

a) Model structure 
The block diagram in Fig. 7 illustrates the structure of the 

submodel (S1). A random forest classifier (RFC) algorithm is 
applied to identify ten different flow types. Besides, S1 also
has a "Feature extractor" to extract features explained in 
sections II-B and C.   

a) Optimising the length of the training set and the 
number of estimators in the Random Forest Classifier

For the flow type identifier, a set of continuous 
acceleration measurements are used for training. For instance, 
the first 30 seconds are used to train the remaining data to 
validate the model accuracy from the same test, which is the 
first part of the Dev set (p1). In submodel S1, the length of the 
data set used in training is set to 75 data samples (Equivalent 
to 75 seconds of continuous measurements), and the number 
of estimators in the RFC is set to120. 

Fig. 7. Structure of submodel (S1) - identify flow types, 10 types shown in 
the last block in the diagram. Inputs are the time-series data from the 
three accelerometers ("ACC #1", "ACC #2" and "ACC #3"), upstream 
pressure ("Pupstream") and differential between upstream- and 
downstream pressure ("Pupstream - Pdownstream"). Refer to Fig. 1 for the 
details. "GOW", "OWC", etc., are flow types presented in Section II-
A.

5) Development of submodel 2 (S2) to estimate the gas 
rate and the liquid rate

The block diagram in Fig. 8 illustrates the structure of the 
submodel (S2). A random forest regressor (RFR) algorithm is 
applied to estimate the flow rates. Similar to S1, S2 has its own 
"Feature extractor" to extract features from differential 
pressures. In addition, the output from S1- identified flow type 
will be input to S2. In the S2, the number of estimators in the 
RFR is set to140.

Fig. 8. Structure of submodel (S2) Estimating flow rates of gas and 
liquid. Inputs are the flow type (the output from the submodel S1) 
and data from the differential pressure readings ("DP1-1", " DP1-
2", " DP2-1" and " DP2-2"). 

6) Development of submodel 3 (S3) to estimate the flow 
rates of oil and water 

Fig. 9 shows the inputs and the output for the submodel
(S3). Gas flow rate, liquid flow rate, differential pressure 
measurements, and upstream and downstream pressure will be 
used as inputs. Since the liquid rate is a known value, the 
model output is set to the ratio of water rate to liquid rate to 
reduce the complexity of model computation. 

In all flow types, there are mainly two (or three, if choked 
flow counted) flow types we need to take into consideration: 
"GOW" and "OW" (including "OWC"). Therefore, the S3 
submodel has two base models: a Bagging regressor for 
"GOW" flow; a Voting regressor for "OW" flow.



The selected base regressor is the Decision tree regressor 
in the bagging regressor. In addition, the Voting regressor 
contains a random forest regressor and a gradient boosting 
regressor as the base estimator. In S3, the number of 
estimators in the Bagging regressor is set to 300.

Fig. 9. Structure of submodel (S3) - Estimating the oil rate and the water 
rate. Inputs are the flow rates of gas and liquid (the outputs from 
the submodel S2), data from the differential pressure readings 
("DP1-1", " DP1-2", " DP2-1" and " DP2-2") and upstream- and 
downstream pressure ("Pupstream", "Pdownstream",)

III. RESULTS

A. Results of flow type identification (from model S1)

The results of flow type identification from development 
data (p1 and p2) and test data are given in the confusion 
matrixes shown in Fig.10 (a), (b), and (c) separately. In these 
confusion matrixes, the targets (ground truth) flow types are 
given in the direction of the y- axis; the submodel, S1, outputs 
(identification results) are given the direction of the x-axis. 
The numbers shown in each grid at the confusion matrixes are 
the corresponding number of classified samples.

From the results, the identification of most types of flow 
is 100% correct. Only 2 out of 299 samples (less than 0.7%) 
from gas/water flow were misclassified as gas flow. 

B. Results of estimate the gas flow rate and the liquid phase 
flow rate (from model S2)

The correlation between estimated and actual rates for gas 
and liquid (water and oil) is given in Fig. 11 and Fig. 12. The 
correlation coefficient, r, for gas rate estimating is 0.98 with 
95% confidence intervals (CI95%) between 0.98 and 0.99. 
Correspondingly, for estimating the liquid flow rate, r is 0.99, 
and CI95% is between 0.99 and 1.

The root mean square error (RMSE) values between actual 
and estimated gas flow rates are: 7.51 on training data, 14.84 
on development data and 1.63 on test data (with unit ). 
For liquid estimating: 1.69 on training data, 3.75 on 
development data and 1.58 on test data (with unit ).

C. Results of estimate the water-cut in oil/water and 
gas/oil/water flow (from model S3)

The correlation between estimated and actual water-cuts 
in oil/water and gas/oil/water flow are shown separately in 
Fig. 13 and Fig. 14. The correlation coefficient, r, for water-
cut at oil/ water flow is 0.98 with 95% confidence intervals 
(CI95%) between 0.91 and 0.98. For the water-cut in gas/ oil/ 
water flow, r is 0.95, and CI95% is 0.89 and 0.98.

The root mean square error (RMSE) values between actual 
and estimated water-cut in oil/ water flow are: 4.15 on training 
data, 1.8 on development data and 8.89 on test data (with unit 

). For gas/ oil/ water, the RMSE values are 3.83 on training 
data, 14.59 on development data and 4.33 on test data (with 
unit ).

(a)

(b)

(c)
Fig. 10. Results of identification of flow types based on phases present 

(Submodel S1)



 
Fig. 11. Regression plot of estimating flow rate using submodel S2 for 

gas (single phase). The correlation coefficient, r, is 0.98  
 

 
Fig. 12. Regression plot of estimating flow rate using submodel S2 for 

liquid phase (oil and water, two phases). The correlation coefficient, 
r, is 0.99 

 

 
Fig. 13. Regression plot of estimating water-cut in oil/ water (two phase) 

flow using submodel, S3. The correlation coefficient, r, is 0.96 
 

 
Fig. 14. Regression plot of estimating water-cut in gas/ oil/ water (all three 

phases) flow using submodel S3. The correlation coefficient, r, is 
0.95 

 

IV. CONCLUSION 

A cascaded (serial) tree-based model is developed and 
tested using the saved pipe vibration data (acceleration data), 
differential pressures, and upstream and downstream pressure 
for the ensemble learning techniques used in the exploratory 
data analysis presented in this paper. The complete model 
consists of three submodels connected sequentially that the 
output(s) from the previous submodel is used as input to 
current submodels. From the above-presented results, it has 
been shown that the model has an excellent possibility to 
identify flow types (flow contents and if choked or not) and 
estimate volume flow rates of gas, oil and water using only 
one-second acceleration data together with discredited 
pressure data, as mentioned above. However, the 
reproducibility and generalisation ability of the model needs 
to be further studied by performing new tests with more 
variations in phase fractions and their flow rates. Further to 
study the influence of the discrete process data (pressure 
measurements), a higher data logging frequency for these data 
is expected while performing new tests.  
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