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A B S T R A C T

Fourier ptychographic microscopy (FPM) is a computational imaging method that gives a significantly
increased space-bandwidth product, in practice high resolution combined with a wide field of view. In this
article, we propose an improved Fourier Ptychography algorithm based on Fresnel wave propagation integral
for wide field-of-view coherent imaging while correcting for the misalignment of the illuminating LED board
and calibration of system parameters. In addition, the wave emanating from the LEDs is taken to be parabolic
instead of plane wave as done by others. The advantage of this scheme is that it enables to simulate the
transition regions between bright and dark field in wide image patches, and hence this feature can be used to
estimate the LED misalignment as well as the distortion of the imaging lens. Experimental results are presented
for a USAF resolution target and a biological sample for on-axis and off-axis image patches over a wide
sample area showing excellent performance of this scheme when compared to the traditional Fraunhofer-model
based Fourier Ptychography algorithm. The article summarizes with high technical detail our experiences with
developing and implementing improved FPM methods and will hopefully assist other scientists entering this
scientific field.
1. Introduction

Fourier Ptychography microscopy (FPM) is becoming a well-known
coherent imaging technique for increasing the overall system spatial-
bandwidth product and simultaneously retrieving the unknown phase
of a complex object (Zheng, 2016, 2014; Guo et al., 2016; Konda
et al., 2020; Manuel Guizar-Sicairos and Fienup, 2008). It has poten-
tial applications such as digital pathology, in-vitro studies, automatic
diagnosis, 3D imaging of thick samples and surface inspection (Konda
et al., 2020). In this imaging modality, an object is illuminated by a
coherent or partially coherent light source and a series of low-resolution
intensity images are acquired by a digital camera equipped with low
numerical aperture (NA) front optics. The highest spatial frequency
that reaches the detector plane is defined by the cut-off frequency of
the Coherent Transfer Function (CTF) of optical components. The dig-
ital sensor spatially samples the intensity information and its Nyquist
sampling frequency defines the maximum un-aliased spatial frequency
that can be faithfully represented in the captured image (Zheng, 2016;
Goodman, 2017). By illuminating the object from different angles, the
corresponding spatial frequency is shifted in the Fourier plane and
thus, different sub-parts of this spectrum get passed through the CTF
of the objective lens and reach the detector plane, where only the
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light intensity is recorded while the electric field phase information is
lost. Mathematically, recreating this process in the software and using
these different sub-spectra together along with iteratively propagating
the electric field back and forth between the sensor plane and the
Fourier plane while using the recorded information of the absolute
electric field, the complex extended Fourier spectrum is restored, which
is equivalent to recovering the complex object transfer function with
higher final spatial resolution. Over the years, many improvements
have been proposed to the basic FPM algorithm, such as adaptive
system correction (Bian et al., 2013), high numerical aperture imple-
mentation (Ou et al., 2015), complex pupil recovery (Ou et al., 2014;
Manuel Guizar-Sicairos and Fienup, 2008), multilayer recovery (Tian
and Waller, 2015), denoising methods (Zhang et al., 2017), Fresnel
integral based wave propagation (Konda, 2017; Pan et al., 2019), to
name a few.

In this work, we show how to use the Fresnel wave propagation
integral to propagate the wave field from the object plane to the
lens plane and the sensor plane while calculating the necessary wave
field shift for off-axis LED illumination. In addition, the quadratic
phase of the wave emanating from the LEDs is taken into account
while previous works assume a plane wave illumination. Due to an
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Fig. 1. Geometry for propagation of complex field between two planes by the Fresnel
ropagation.

ccurate wave field propagation, this scheme can simulate the mixed
right/dark field images for a wide image patch where some parts of
he object produce bright field image while other parts produce dark
ield image. It has been shown that such mixed bright/dark field images
re important for low frequency phase information (Sun et al., 2018).
y matching the boundary of the mixed bright/dark field captured

mage with the simulated image, we show how the LED misalignment
ith respect to their ideal position, such as lateral displacement and

otation can be estimated and corrected for. In addition, we show
ow to correctly recover off-center patches for wide field-of-view FP
maging by correcting for the objective lens distortion. The paper is
rganized as follows: Fresnel wave propagation integral using single
ourier Transform method is explained, FP recovery scheme is derived,
nd field calculation for off-axis illumination and off-axis image patch
s explained. Recoveries from experimental images for USAF resolution
arget and a complex cartilage bone sample are shown for on-axis and
ff-axis image patches for a wide imaging area. Finally, the key points
f the work are discussed and summarized.

. Fresnel propagation integral: Single Fourier Transform method

The scalar wave propagation between two planes is described by
he Fresnel propagation integral (Goodman, 2017):

2(𝑥, 𝑦) = 𝑒𝑖𝑘𝑧
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
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𝑈1(𝜁, 𝜂) exp
(
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(𝜁2 + 𝜂2)
)

}

, at 𝑓𝑥 = 𝑥∕(𝜆𝑧), 𝑓𝑦 = 𝑦∕(𝜆𝑧) (2)

where 𝑈1(𝜁, 𝜂), 𝑈2(𝑥, 𝑦) are the electric fields at the first and the second
planes respectively, 𝑧 is the separation distance between the planes,
𝑘 = 2𝜋∕𝜆, {⋅} is the Fourier Transform operator. This scheme is called
the Single Fourier Transform approach. This equation can be digitally
calculated by discretizing the input and the output fields as shown in
Fig. 1: 𝛿𝜁, 𝛿𝜂 are sampling distances on the input plane, 𝛿𝑥, 𝛿𝑦 are the
sampling distances on the second plane, 𝑥𝑚 = 𝑚𝛿𝑥, 𝑦𝑛 = 𝑛𝛿𝑦, 𝜁𝑝 =
𝑝𝛿𝜁, 𝜂𝑞 = 𝑞𝛿𝜂, 𝑈1(𝑝, 𝑞) ≡ 𝑈1(𝑝𝛿𝜁, 𝑞𝛿𝜂), 𝑈2(𝑚, 𝑛) ≡ 𝑈2(𝑚𝛿𝑥, 𝑛𝛿𝑦), where
𝑚, 𝑛, 𝑝, 𝑞 are matrix indices with the bounds: −𝑀∕2 ≤ 𝑚 ≤ 𝑀∕2 − 1,
2

−𝑁∕2 ≤ 𝑛 ≤ 𝑁∕2 − 1, −𝑃∕2 ≤ 𝑝 ≤ 𝑃∕2 − 1, −𝑄∕2 ≤ 𝑞 ≤ 𝑄∕2 − 1.
𝑀 × 𝑁 . 𝑃 × 𝑄 are the two-dimensional matrix sizes. The discretized
version of Eq. (1) reads
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)

}

𝛿𝜁𝛿𝜂 (3)

or the case of same sized matrices on the input and the output planes,
= 𝑃 , 𝑁 = 𝑄, the above equation can be calculated as:

2(𝑚, 𝑛) = 𝑒𝑖𝑘𝑧

𝑖𝜆𝑧
exp
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)

⋅

FFT
{
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(

𝜁2𝑝 + 𝜂2𝑞
))

}

(4)

where FFT{⋅} is the digital Fast Fourier Transform operation. In this
mplementation, there is a fixed relationship between the sampling
istances on the two planes. Given by:

𝑥 = 𝜆𝑧∕(𝑀𝛿𝜁 ), 𝛿𝑦 = 𝜆𝑧∕(𝑁𝛿𝜂) (5)

In the single FT Fresnel propagation, the physical size of the output
plane can be either bigger, smaller or of equal size as the physical size
of the input plane, and this is dictated by the relationship in Eq. (5).

3. FPM recovery based on Fresnel propagation

In a single thin-lens imaging model of the whole setup as shown
in Fig. 2, the scalar electric field at the detector plane can be written
as (Goodman, 2017):

𝑈4(𝑢, 𝑣) = exp
(

𝑖 𝑘
2𝑧2

(𝑢2 + 𝑣2)
)



{

𝑃 (𝑥, 𝑦) exp(𝑖𝑘𝑊 (𝑥, 𝑦)) ⋅


(

𝑈1(𝜁, 𝜂) exp
(

𝑖 𝑘
2𝑧1

(𝜁2 + 𝜂2)
))

}

(6)

here 𝑃 (𝑥, 𝑦) is the pupil amplitude function and 𝑊 (𝑥, 𝑦) is the wave-
ront error. This is the linear–shift-variant model of imaging, which is
ble to better represent the wave propagation from the object plane to
he detector plane over a wider patch (Pan et al., 2019; Konda, 2017).
ften the exponential phase factor on the object plane coordinates
, 𝜂 in the expression is ignored and one gets a linear–shift-invariant
raunhofer imaging model (Goodman, 2017).

4(𝑢, 𝑣) = ℎ(𝑢, 𝑣)⊗ 𝑢𝑔(𝑢, 𝑣) = −1
{


{

(ℎ(𝑢, 𝑣))
}

⋅ 
{

(𝑢𝑔(𝑢, 𝑣))
}

}

= −1
{

𝐶𝑇𝐹 (𝑓𝑢, 𝑓𝑣) ⋅ 𝑈𝑔(𝑓𝑢, 𝑓𝑣)
}

(7)

here ℎ(𝑢, 𝑣) is the coherent point-spread-function, 𝐶𝑇𝐹 (𝑓𝑥, 𝑓𝑦) is the
oherent transfer function, 𝑢𝑔(𝑥, 𝑦) = 𝑈1(𝑥∕𝐾, 𝑦∕𝐾) is the magnified
eometrical image of the 𝑈1(𝜁, 𝜂) and the magnification is 𝐾 = −𝑧2∕𝑧1.
ost of the published work on FP is based on the Fraunhofer imaging
odel (Zheng, 2016) and it will not be further discussed here. Instead,
e will focus on the derivation of the FP recovery (forward and
ackward model) for the Fresnel propagation, first published by Konda
t al. see Konda (2017). The discretized field at the left side of the
ens is (ignoring the constant factors such as 𝑒𝑖𝑘𝑧∕(𝑖𝜆𝑧) in all subsequent
alculations):

2(𝑚, 𝑛) = exp
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)

FFT
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)

}

= exp
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)

⋅ 𝐹𝑎𝑐𝑡1 (8)

here the factor 𝐹𝑎𝑐𝑡1 is implicitly defined. 𝑈1(𝑝, 𝑞) is the discretized
ield after the object, which can be written for a uniform spherical wave
llumination as

(𝑝, 𝑞) = 𝑂(𝑝, 𝑞) ⋅ exp
(

𝑖(𝑘 𝜁 + 𝑘 𝜂 )
)

⋅ exp
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𝑖 𝑘 (𝜁2 + 𝜂2)
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(9)
1 𝜁 𝑝 𝜂 𝑞 2𝐿 𝑝 𝑞
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Fig. 2. Fresnel propagation imaging model, object plane, lens plane and image plane.
𝑂(𝑝, 𝑞) is the complex object transmittance function, 𝐿 is the LED
plane to sample plane distance, and 𝑘𝜁 , 𝑘𝜂 are the illuminating wave
component vectors. The second exponential factor takes into account
the spherical wavefront (approximated as parabolic) from the LED
falling on the sample plane. For perpendicular illumination, 𝑘𝜁 = 𝑘𝜂 = 0
and the diffracted field 𝑈2 will have zero-frequency at the center of the
lens (at the 𝑀∕2+1, 𝑁∕2+1 location in the 𝑈2(𝑚, 𝑛) matrix). For oblique
illumination, the diffracted field 𝑈2 will have its zero-frequency shifted
laterally in the lens plane. It will be shown later how to calculate this
shifted center. The lens transfer function LTF is:

LTF(𝑚, 𝑛) = 𝑃 (𝑚, 𝑛) exp (−𝑖𝑘𝑊 (𝑚, 𝑛)) exp
(

− 𝑖𝑘
2𝑓

(𝑥2𝑚 + 𝑦2𝑛)
)

= (𝑚, 𝑛) exp
(

− 𝑖𝑘
2𝑓

(𝑥2𝑚 + 𝑦2𝑛)
)

(10)

where (𝑚, 𝑛) is the complex pupil function. The field immediately
after the lens, with 𝑊 (𝑚, 𝑛) modeling the discretized lens wavefront
aberrations, is given by :

𝑈3(𝑚, 𝑛) = 𝑃 (𝑚, 𝑛) exp (−𝑖𝑘𝑊 (𝑚, 𝑛)) exp
(

− 𝑖𝑘
2𝑓

(𝑥2𝑚 + 𝑦2𝑛)
)

⋅

exp
(

𝑖 𝑘
2𝑧1

(𝑥2𝑚 + 𝑦2𝑛)
)

⋅ 𝐹𝑎𝑐𝑡1 (11)

The field at the image plane is:

𝑈4(𝑐, 𝑑) = exp
(

𝑖 𝑘
2𝑧2

(𝑢2𝑐 + 𝑣2𝑑 )
)

FFT
{

𝑈3(𝑚, 𝑛) exp
(

𝑖 𝑘
2𝑧2

(𝑥2𝑚 + 𝑦2𝑛)
)

}

= exp
(

𝑖 𝑘
2𝑧2

(𝑢2𝑐 + 𝑣2𝑑 )
)

FFT
{

𝑃 (𝑚, 𝑛) exp (−𝑖𝑘𝑊 (𝑚, 𝑛)) ⋅

[

exp
(

−𝑖𝑘
2𝑓

(𝑥2𝑚 + 𝑦2𝑛)
)

exp
(

𝑖 𝑘
2𝑧2

(𝑥2𝑚 + 𝑦2𝑛)
)

⋅

exp
(

𝑖 𝑘
2𝑧1

(𝑥2𝑚 + 𝑦2𝑛)
)

]

⋅ 𝐹𝑎𝑐𝑡1

}

(12)

The factor in the square brackets [⋅] is ‘1’ based on the thin lens
equation of geometrical optics. Thus we get:

𝑈4(𝑐, 𝑑) = exp
(

𝑖 𝑘
2𝑧2

(𝑢2𝑐 + 𝑣2𝑑 )
)

⋅

FFT
{

𝑃 (𝑚, 𝑛) exp (−𝑖𝑘𝑊 (𝑚, 𝑛)) ⋅ 𝐹𝑎𝑐𝑡1

}

(13)

This is the forward imaging model (Konda, 2017). The update step
is performed on the propagated field 𝑈 , that is, the amplitude of 𝑈 is
3

4 4
Fig. 3. Shift of the diffracted field on the lens plane for off-axis LED illumination
(Konda, 2017).

replaced by the amplitude of the image captured by the camera while
the phase of 𝑈4 is kept as is,

𝑈4,𝑢𝑝𝑑 =
√

𝐼 arg(𝑈4) (14)

The updated field 𝑈4,𝑢𝑝𝑑 is propagated back to the left side of the
lens plane (Fig. 2) and we get:

𝑈3,𝑢𝑝𝑑 (𝑚, 𝑛) = exp
(

−𝑖 𝑘
2𝑧2

(𝑢2𝑐 + 𝑣2𝑑 )
)

IFFT
{

𝑈4,𝑢𝑝𝑑 (𝑐, 𝑑)

}

(15)

Note that the exponential phase factors before the FFT in Eqs. (13)
and (15) cancel each other, so they do not have to be calculated in
the first place. The sub-part of the field matrix at the left of the lens
plane which belongs to the oblique illuminated plane wave, and the
complex pupil function can be updated based on the Newton gradient
descent like algorithms (Zheng, 2016; Tian and Waller, 2015; Manuel
Guizar-Sicairos and Fienup, 2008). That is:

𝑈2,𝑢𝑝𝑑 = 𝑈2 +
||∗(𝑈3,𝑢𝑝𝑑 − 𝑈2)

||𝑚𝑎𝑥 (||

2 + 𝛿1)
(16)

𝑢𝑝𝑑 =  +
|

|

𝑈2
|

|

𝑈∗
2 (𝑈3,𝑢𝑝𝑑 − 𝑈2)

2
(17)
|

|

𝑈2
|

|𝑚𝑎𝑥 (||𝑈2
|

|

+ 𝛿2)
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Fig. 4. Calibration of parameters, central image patch, matching forward propagated images bright/dark field boundary (a1, a2) with the captured images (b1, b2). Note a good
match of the bright/dark field boundary between the captured and numerically propagated forward images.
where 𝛿1, 𝛿2 are small numbers to avoid division by zero. When the
field matrix at the lens plane has been updated for all the captured
images and the required convergence has been achieved after a number
of iterations between the lens plane and the detector plane, the high
resolution object can be reconstructed by finally propagating 𝑈2,𝑢𝑝𝑑
back to the object plane as follows:

𝑂(𝑝, 𝑞) = exp
(

−𝑖 𝑘
2𝐿

(𝜁2𝑝 + 𝜂2𝑞 )
)

exp
(

−𝑖 𝑘
2𝑧1

(𝜁2𝑝 + 𝜂2𝑞 )
)

⋅

IFFT
{

𝑈2,𝑢𝑝𝑑 (𝑚, 𝑛)

}

(18)

The Fresnel based FP algorithm is given in the Appendix as a
pseudo-MATLAB code.

3.1. Field calculation for oblique illumination and for off-center image
patch

As shown in Fig. 3, the shift of the center of the diffracted field
at the lens plane for off-axis illumination can be calculated as (Konda,
2017)

𝑠𝑥 =
𝑧1(𝑥𝐿𝐸𝐷 − 𝑜𝑥)∕𝐿 − 𝑜𝑥

𝛿𝑥
(19)

𝑠𝑦 =
𝑧1(𝑦𝐿𝐸𝐷 − 𝑜𝑦)∕𝐿 − 𝑜𝑦

𝛿𝑦
(20)

where 𝑜𝑥, 𝑜𝑦 are the center of the object patch chosen for recovery.
The shifts 𝑠 , 𝑠 are in terms of number of pixels in the matrix 𝑈
4

𝑥 𝑦 2,𝑢𝑝𝑑
from their zero-frequency location (𝑀∕2+1, 𝑁∕2+1) for perpendicular
illumination. For ease of programming, the 𝑈2,𝑢𝑝𝑑 matrix is not shifted
as such, rather the complex pupil function matrix  is multiplied by the
sub-part of 𝑈2,𝑢𝑝𝑑 matrix at the appropriately shifted center to select the
part of the spectrum that gets passed on to the detector plane.

4. Recovery from experimental images

The following hardware was used for acquiring experimental im-
ages. A Basler camera (Model acA5472-17um, pixel size 2.4 μm ×
2.4 μm, 12 bit resolution, full-frame pixels 5496 × 3672, sensor size
13.19 mm × 8.81 mm). A 15 × 15 LED board with LED spacing
4.0 mm, central wavelength 0.52 μm. A finite-conjugate objective with
𝑁𝐴 = 0.08, magnification was either 2X or 4X as mentioned later (by
employing different extension tube lengths). Note that this setup gives
a rather wide field of view, measuring 3297 μm × 2203 μm for the
4X magnification and 6595 μm × 4405 μm for the 2X magnification.
It should be noted that the objective is not designed for such a big
sensor and hence, there will be severe vignetting for off-axis viewing
patches outside the designed FoV of these objectives, especially for the
2X magnification setup. For the mathematical modeling, we exploit the
well-known fact that any optical train of multiple co-axial lenses can
be modeled as a generalized system featuring an effective focal length,
an entrance pupil and an exit pupil, a distance 𝑧𝑜 from the object to
the entrance pupil, and a distance 𝑧𝑖 from the exit pupil to the image
plane (Goodman, 2017). While derived for a single thin lens in chaps.
2 and 3, the 𝑧 and 𝑧 distances and the aperture stop diameter D used
𝑜 𝑖
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Fig. 5. Calibration of LED board decenter and rotation, central wide patch 3072 × 3072 pixels, 2X magnification, Captured images(a1, a2, a3, a4), Forward images with no LED
displacement having poor match of bright/dark field boundary with the captured images (b1, b2, b3, b4), Forward images with estimated LED displacement and rotation with
good match of bright/dark field boundary with the captured images (c1, c2, c3, c4). Note a good match of the bright/dark field boundary between the captured and numerically
propagated forward images after calibration (for example, images a3 and c3, a4 and c4).
in the remainder of this article refer to such a generalized model for
the objective lens setup.

4.1. Calibration of distance 𝑧1 and pupil diameter 𝐷

The distance between the object plane and the entrance pupil
of lens 𝑧1 and the lens entrance pupil diameter 𝐷 are only known
approximately based on the given objective focal length, magnification
and numerical aperture. Since the Fresnel model calculates the field
at the lens plane, it can simulate the clipping of the field by the
objective lens finite aperture stop diameter 𝐷. It can correctly simulate
5

mixed bright/dark field images for very wide patches, which cannot be
correctly simulated by the Fraunhofer imaging model (Pan et al., 2019;
Konda, 2017). We calculate the parameters 𝑧1 from the lens equation
and the known magnification. Then we adjust 𝐷 until the forward
propagated images match with the recorded mixed bright/dark field
images for on-axis and off-axis LEDs. One such simulation is shown in
Fig. 4, where the clipping of the forward propagated bright image is
matched to the captured image. We show here just two sets of images
but all of them match after calibration. Note that this procedure can
be automated using optimization algorithms by matching the forward
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Fig. 6. USAF resolution target, low resolution incoherently combined image, 5496 × 3672 pixels full sensor, 4X magnification, physical image size on the sample plane was
3297 μm × 2203 μm. This image was obtained by incoherently adding individual intensity images from all the LEDs.
Fig. 7. USAF resolution target recovery, patch size 512 × 512 pixels, 4X magnification, (a1–a4), patches from Fig. 6, patch 1, (b1–b4), patch 2, (c1–c4), patch 3. The quality of
the phase reconstruction should be judged by the uniformity of the gray-tone background, as the phase is allowed to assume any value in the opaque regions.
image Bright/dark ring with the captured image and using image pro-
cessing schemes, such as the structural similarity metric (SSIM) (Wang
et al., 2004) to get the best calibrated values for 𝑠𝑥, 𝑠𝑦 which give
the highest similarity between the experimental and modeled images.
6

However, for simplicity, we opted for manual adjustment by overlaying
the two images on top of each other to estimate the best match visually.
In this example, the calculated distance 𝑧1 was 12.5 mm and the
aperture stop diameter 𝐷 2.4 mm.
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Fig. 8. USAF resolution target, wide field recovery using the traditional Fraunhofer model, 4X magnification, 512 × 512 pixels (307 μm × 307 μm) area each sub-patch, total
3584 × 3584 pixels. Note severe artifacts and wrinkles for off-axis patches.
4.2. Calibration of LED-board position misalignment and rotation

A rigid body model for misalignment of the LED board is used (Sun
et al., 2016) here. The LED position is given by:

𝑥𝐿𝐸𝐷(𝑚, 𝑛) = 𝐿𝐸𝐷𝑔𝑎𝑝 ⋅ (cos(𝜃)𝑚 + sin(𝜃)𝑛) + 𝑑𝑥 (21)

𝑦𝐿𝐸𝐷(𝑚, 𝑛) = 𝐿𝐸𝐷𝑔𝑎𝑝 ⋅ (− sin(𝜃)𝑚 + cos(𝜃)𝑛) + 𝑑𝑦 (22)

where 𝑚, 𝑛 is the LED index, 𝑑𝑥, 𝑑𝑦 is the unwanted displacement of
the central LED from the optical axis, 𝜃 is the unwanted rotation of
the LED matrix with respect to the x-axis and 𝐿𝐸𝐷𝑔𝑎𝑝 is the spacing
between adjacent LEDs (Sun et al., 2016). By matching the bright/dark
field boundary of captured image of a wide patch corresponding to
the central LED with the simulated forward image, one can extract
the displacement parameters 𝑑𝑥 and 𝑑𝑦. An example is given in Fig. 5
where the extracted LED displacement was 𝑑𝑥 = −0.1 mm and 𝑑𝑦 =
−0.4 mm. Similarly, by matching the bright/dark field boundary of
captured images with the simulated images for off-axis LEDs, one
can extract the LED matrix rotation error. In this test example, we
extracted the 𝜃 parameter to be 2.650 degree. Note that this is a direct
procedure which is implemented before the FPM recovery, while in
other works (Zhou et al., 2018; Sun et al., 2016; Pan et al., 2017;
Liu et al., 2017; Eckert et al., 2018), the LED position correction is
7

usually done within the FPM recovery algorithm using an additional
optimization loop.

4.3. Recovery: USAF 1951 resolution target, 4X magnification

4.3.1. Fresnel model FPM recovery
Full-frame images were captured using the 15 × 15 LED matrix.

The incoherently combined low resolution full-frame image of the
resolution target is shown in Fig. 6.

Patches of 512 × 512 pixels were recovered for different areas on the
full-frame images with an up-scaling factor of 6 (giving high resolution
matrix size of 3072 × 3072) and 𝑁𝐴𝑠𝑦𝑛𝑡ℎ = 0.44 was recovered. The
LED to sample distance was 113 mm. The objective magnification was
4X. The LED board was carefully placed so there was no misplacement
or rotation of the LED board. The results of the recovery are given
in Fig. 7, and it can be seen that the quality of the object recovery
(amplitude and phase) as well as the pupil are excellent up to the
corner of the FoV using the offset calibration procedure as explained.
The three-bar pattern of Group 9 Element 3 can be easily resolved in
the central patch. Note that far away from the central area of the USAF
target, there are no fine features in the resolution target and hence it
is difficult to quantify the recovered resolution for off-axis patches.
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Fig. 9. Bone cartilage sample, low resolution incoherently combined image, 5496 × 3672 pixels full sensor, 4X magnification, physical image size on the sample plane is 3297 μm
× 2203 μm.
Fig. 10. Cartilage Bone Sample recovery, patch size 512 × 512 pixels, 4X magnification, patches from Fig. 9, (a1–a4), patch 1, (b1–b4), patch 2, (c1–c4), patch 3.
4.3.2. Fraunhofer model FPM recovery
For the sake of comparison, 7 × 7 segments, each of size 512 × 512

pixel, were recovered using the traditional Fraunhofer model. In this
case, the k-vector x- and y- components of the incoming uniform
plane for off-axis LED and off-axis image patch are calculated as fol-
lows (Zheng, 2016; Konda, 2017) (see Fig. 3):

𝑘 = 𝑘(𝑜 − 𝑥 )∕
√

(𝑜 − 𝑥 )2 + (𝑜 − 𝑦 )2 + 𝐿2
8

𝑥 𝑥 𝐿𝐸𝐷 𝑥 𝐿𝐸𝐷 𝑦 𝐿𝐸𝐷
𝑘𝑦 = 𝑘(𝑜𝑦 − 𝑦𝐿𝐸𝐷)∕
√

(𝑜𝑥 − 𝑥𝐿𝐸𝐷)2 + (𝑜𝑦 − 𝑦𝐿𝐸𝐷)2 + 𝐿2 (23)

The calculated 𝑘𝑥 and 𝑘𝑦 values are used to select the sub-spectrum
of the object spectrum at the Fourier plane to be passed on to the
sensor plane (Zheng, 2016). The results of the FPM recovery are given
in Fig. 8 by combining all the segments in one picture. The central
patches are recovered successfully with good amplitude and phase. It
can be seen that for off-axis image patches, there are a lot of artifacts
in the recovered amplitude and phase, and these artifacts get worse
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Fig. 11. Bone cartilage incoherently combined low resolution image, 5496 × 3672 pixels full senor, 2X magnification, physical image size on the sample plane is 6595 μm ×
4405 μm.
towards the corner areas. This poor performance at high angles is
essentially caused by the limitations of the Fraunhofer model for image
formation as well as by uncorrected distortion of the objective lens. The
Fraunhofer model is valid for a small patch as it ignores the source-
plane complex exponential phase factor exp(𝑖𝑘∕(𝜁2+𝜂2)∕(2𝑧)) of Eq. (1).
In addition, the parabolic factor exp

(

−𝑖 𝑘
2𝐿 (𝜁

2
𝑝 + 𝜂2𝑞 )

)

of Eq. (9) is not
taken into account for wide FoV imaging, hence yielding ripples and
jumps in the recovered amplitude and phase.

4.4. Recovery: Cartilage bone sample, 4X magnification

4.4.1. Fresnel model FPM recovery
An unstained histological section of thickness approximately 4.0 μm

was obtained near the ossification front of the femoral epiphysis of a
Landrace piglet, [Mürer et al. ] for further details. This is a complex
target with both amplitude and phase variations across the sample. The
same 4X setup was used as in the previous example. The low-resolution
incoherently combined full-frame image is shown in Fig. 9. The results
of the recovery of different patches are given in Fig. 10, and it can be
seen that the quality of object recovery (amplitude and phase) as well as
the pupil are excellent up to the corner of the FoV. We also performed
Fraunhofer model based recovery and the results were similar to those
in Fig. 8 with increasing artifacts and ripples in the recovered amplitude
and phase towards the edge of the FoV.

4.5. Extreme wide FoV recovery: Cartilage bone sample, 2X magnification

We used 2X magnification configuration with the same Basler cam-
era and LED board to capture images and recover the cartilage bone
sample. This was done to explore the case of an extremely wide
FoV of size 6595 μm × 4405 μm on the sample plane. The full-frame
incoherently combined image from all the LED images is shown in
Fig. 11 and it can be seen that the edges of the image are very dark.

This is due to excessive pupil vignetting for the extreme FoV areas.
The LED plane to the sample plane distance was 160.0 mm. The results
of the recovery (low resolution 256 × 256 matrix size) are given in
Figs. 12 and 13, and it can be seen that the quality of the object
recovery (amplitude and phase) as well as the pupil are excellent up
to a center offset of 𝑜 = 𝑜 = 1.8 mm (patch 4), but not beyond.
9

𝑥 𝑦
Since this is a 2X magnification, the FoV is twice as large compared
to the 4X magnification. The lens objective is not designed for such
a wide sensor and there is excessive pupil vignetting for far off-axis
patches. The pupil vignetting effect is clearly visible in the recovered
pupil amplitude in Fig. 13 and with increased FoV, it gets worst. The
recovery is poor for patch center offset greater than patch 4 since
many of the recorded images suffer from excessive pupil vignetting.
An additional feature to be noted is that for the on-axis patch, the
recovered spectrum is symmetrical about the zero spatial frequency,
but for off-axis patches, the recovered spectrum is not symmetrical. One
side of the spectrum is recovered up to a higher spatial frequency as
compared to the other side, since the LEDs angles are not symmetrical
about the zero-th diffraction order for an off-axis patch. This could also
be another reason that the image recovery is not successful for extreme
off-axis patches as shown in Fig. 13. These results show that there is
a certain maximum limit of the FoV that can be successfully recovered
with a given objective lens. Note that for the 4X configuration as shown
in Fig. 10, we were able to successfully recover up to the corner of the
FoV since the pupil vignetting was negligible.

5. Discussions

Many interesting features of the Fresnel based propagation and
FPM recovery can be highlighted. The main feature is the inclusion of
the source complex exponential phase factor: exp(𝑖𝑘∕(𝜁2 + 𝜂2)∕(2𝑧)) in
the calculation (Eq. (1) and subsequent equations) which makes the
propagation linear–shift-variant and hence it can better represent the
propagated field over a wider patch. In the traditional Fraunhofer FP
imaging model, this phase factor is ignored and hence the imaging
model becomes inaccurate for wide imaging patches. We have also
included the complex exponential factor exp

(

−𝑖 𝑘
2𝐿 (𝜁

2
𝑝 + 𝜂2𝑞 )

)

that rep-
resents the spherical wave from the LED. Usually, this factor is ignored,
but this factor could become important if the LED to sample plane
distance is small. Another feature of the Fresnel scheme is that the
exponential phase factors inside the square brackets in Eq. (12) cancel
each other, thus making the sampling requirements more relaxed as
these factors do not need to be calculated in the first place. Further-
more, the preceding exponential phase factors in Eqs. (13) and (15) also
get canceled. Another feature is that the field is propagated to the lens
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Fig. 12. Cartilage Bone Sample recovery, patch size 256 × 256 pixels, 2X magnification, off-axis patches, patch 1 and 2 in Fig. 11.
plane instead to the Fourier plane and hence, the clipping of the field by
the lens finite aperture is correctly calculated. This is why the mixed
bright/dark field images can be simulated by the Fresnel propagator
while they cannot be calculated by the Fraunhofer imaging model.
Note that there are many ways to implement the Fresnel propagation
integral numerically (Goodman, 2017), for example by a triple Fourier
transform approach or by a single Fourier transform. The single Fourier
Transform approach makes it possible to have either expanding or
10
contracting size of the second plane while keeping the same overall
matrix size. The size of the expanded or contracted second plane is
determined by the fundamental relation given in Eq. (5). In the present
work, we had to use the single Fourier transform approach since the
object size is usually much smaller that the size of the field on the
lens plane, and again, the detector plane size is smaller than the lens
plane size. We have shown how the diffracted field at the lens plane
shifts for off-axis LEDs and for off-center patch. However, this basic
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Fig. 13. Cartilage Bone Sample recovery, patch size 256 × 256 pixels, 2X magnification, off-axis patches, patch 3, 4 and 5 in Fig. 11. Patch 5 is not successfully recovered due
to severe vignetting.
relation is not valid if there are LED misalignments or if the imaging
lens has distortion which shifts the apparent center of the diffracted
field. We have shown how to correct for the LED misalignment and
lens distortion for the off-axis patch center and successfully recovered
off-axis image patches up to the corner of the sensor for 4X magnifica-
tion. For the extreme wide FoV case with 2X magnification objective, it
11
has been shown that due to excessive pupil vignetting, it is not possible
to recover the patches beyond a certain offset from the optical axis.
It can be recommended that for low magnification objectives to be
used with a wide area sensor, an objective should be chosen which
is designed to operate without pupil vignetting for such extreme FoV.
The size of the image patch chosen for recovery should be smaller than
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the coherence area of the LED propagated field falling on the sample
plane as dictated by the Van-Cittert Zernike theorem for the coherent
imaging model to be valid (Zheng, 2016). In the present work, we have
not used any image pre-processing for simplicity, such as noise removal
or LED intensity correction. If these pre-processing steps are included,
the quality of the recovered images will be slightly better.

6. Summary and conclusions

We have derived an FPM recovery scheme based on the Fres-
nel propagation integral and developed a simple scheme to estimate
and correct for the LED misalignment correction for off-center image
patches. In addition, the quadratic phase of the wave emanating from
the LEDs is taken into account. The advantage of using the Fresnel
integral is that it calculates the wave propagation accurately for a wider
image patch and that it can simulate mixed bright/dark field images in
the same image patch. These features have been used for matching the
numerically propagated forward images with the captured images and
to implement system parameter calibration. The phase recovery and
improved resolution of experimental images show that the new algo-
rithm produces good recovery for object amplitude and phase as well
as the pupil aberrations for wide field imaging. The pupil vignetting
of the optics limits the maximum FoV that can be successively imaged
and recovered in the FPM scheme.
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Appendix. Pseudo-MATLAB code

The Fresnel propagation based FP algorithm is given here as a
pseudo-MATLAB code, which is based on the FP algorithm with
complex-pupil recovery (Zheng, 2016; Tian and Waller, 2015; Manuel
Guizar-Sicairos and Fienup, 2008).

Define x, y coordinates for LEDs,
sensor pixel size spsize,
High-resolution pixel size psize,
image patch center ox, oy
Define z1, z2, zled, Lens_diameter
Define axis array on object OX,OY
and Lens plane LX, LY
Discretization distance on Lens plane Ldx,Ldy
Low resolution matrix size m1 x n1
High resolution matrix size m x n
Define Pupil_Amplitude, matrix size m1 x m1
Read images, do noise removal
and background removal,
Calibrate LED misplacement and rotation
Calibrate z1, ox, oy and Pupil diameter
objectRec=upscaled bright-field image size mxm;
ELens_FT=FFT(objectRec.*exp(j*k/2/z1*(OX.^2+OY.^2).
*exp(j*k/2/zled*(OX.^2+OY.^2)));
Pupil_Rec = Pupil_Amplitude; % Unknown complex pupil guess

for loop=1:1:max_itertions
for LED_no=1:1:end
% amount of shift for off-axis LED
s_x=((x_LED(LED_no)-ox)/L*z1-ox)/Ldx;
s_y=((y_LED(LED_no)-oy)/L*z1-oy)/Ldx;
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% shift center, in pixels
kxc=round((n/2+1)+s_x);
kyc=round((m/2+1)+s_y);
% lower and upper limit of shifted pupil
kxl=round(kxc-n1/2);
kxh=round(kxc+n1/2-1);
kyl=round(kyc-m1/2);
kyh=round(kyc+m1/2-1);
% selected field at the Lens plane,
LowResFT1=Pupil_Rec .* ELens_FT(kyl:kyh,kxl:kxh);
% Forward image model
ImLowRes=IFT(LowResFT1);
% Replace with recorded amplitude
ImLowRes=sqrt(Image(LED_no)).*exp(j*angle(ImLowRes));
% Back to lens plane
LowResFT2=(m/m1)^2*FFT(ImLowRes);
% Update the sub-spectrum at Lens plane
ELens_FT(kyl:kyh,kxl:kxh)=LowResFT1+abs(Pupil_Rec).*
conj(Pupil_Rec)./max(max(abs(Pupil_Rec)))
./(abs(Pupil_Rec).^2+1.0).*(LowResFT2-LowResFT1);
% Update the complex pupil
Pupil_Rec=Pupil_Rec+abs(lowResFT1).*conj(LowResFT1.*Pupil_Ampl)./
max(max(abs(LowResFT1)))
./(abs(LowResFT1).^2+1000.0).*(LowResFT2-LowResFT1);
end
end
% Propagate full field matrix back to lens plane
% Final high resolution complex recovered object
objectRecover=exp(-j*k/2/zled*(OX.^2+OY.^2).*
exp(-j*k/2/z1*(OX.^2+OY.^2)).
*IFT(ELens_FT);
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