
 SDPS-2021

 Printed in US, December 2021

 ©2021 Society for Design and Process Science

TEACHING SOFTWARE DEVELOPMENT FOR PERVASIVE
COMPUTING ENVIRONMENT

Joakim Bjørk and Radmila Juric
University of South Eastern Norway

Department of Science and Industry systems
Faculty of Technology, Natural Sciences, and Maritime

Sciences{Joakim.Bjork@usn.no; Radmila.Juric@usn.no}

ABSTRACT

There are many attempts in academic curriculum which

address rapid and constant changes in computer science, but

they are mostly based on prescriptive advice and processes

known in the management of regulated education. This

paper looks at the problem of introducing novel subjects in

the existing curriculum of computer engineering, with one

important goal in mind: could we deliver the latest practices

in software development, based on the advanced software

technologies and applications, within relatively rigid and

static academic program which dictates the structure and

content of the curriculum. The paper also asks questions on

teaching and-learning practices in such situations and

questions our redlines to break with traditional tuition in

conventional classroom, and, at the same rise awareness that

teachers may become redundant in the process of learning.

Finally, while sitting comfortable in our student-centered

learning environment of the 21st century, we ask which exact

tuition would modern students need to use their

computational literacy in resolving problems in computer

science and engineering and when does the learning happen?

The example described in this paper if taken from the USN

Department of Science and Industry Systems.

INTRODUCTION

Computer science education is at its crossroads. In the

last couple of decades, the rapid advances in software and

communication technologies, and the adoption of mobile and

wireless computing, as the backbone of modern

computational power, changed our lives beyond recognition.

However, it has also put pressure on educators, responsible

for creating curricula. The urgent integration of computer

science at any level of education is a sine qua non and

computational thinking (Saidin et al., 2021), (Lockwood and

Mooney, 2017) has been considered as the most basic skill in

this century.

The motivation for writing this paper is threefold.

• Sharing experiences and visions on incorporating some

aspects of pervasive computing into our curriculum

which has traditional academic approach in delivering

software engineering program.

• Examining the (Tissenbaum and Ottenbreit Leftwhich,

2020) publication in which the vision of computer

science education for 2030 is outlined and would like to

see if we can take the first steps in regulated education

systems of Western Europe.

• Addressing messages from the industry where voices on

“Becoming and Adaptive Experts” (Burke and Balley,

2020) are very loud and would like to see how we can

address the same views in education. We would like to

see if we can address the issue that industry needs in

terms of “creating graduates which can combine diverse

specialization rather than having a routine knowledge in

a special academic domain”.

These three bullets above put enormous pressure on any

regulated education and might trigger rethinking on how to

create academic programs, manage constant changes in

technologies and take into account demands from industry.

The paper is organized as follows. In the next section

we outline our undergraduate BSc Program in Software

Engineering, give the program aims/goals and subjects we

deliver. In the section which follows we talk about one

subject on Software Modelling and Architectures which

addresses the issues of developing Pervasive Computing

Environment within the Curriculum in the light of the bullets

above. The results are discussed, and we finish with

conclusions.

OULTINE OF OUR SOFTWARE ENGENEERING

PROGRAM

The program is a 180 ECTS Bachelor program regulated

by the Norwegian National Curriculum Regulations for

Engineering Education. The focus of the program is on

computer engineering and includes (amongst others) subjects

on software development for cyber physical systems, and as

such includes subjects on programming, software

architecture, networks, operating systems and FPGA-

programming in addition to mathematics and physics.

Compulsory inclusions of mathematics and physics in the

curriculum is dictated by the engineering profile of the

program and is non-negotiable. Most of the subjects are

delivered though lectures, laboratory work/exercises and

workshops, and most of them include a formal / written

exam. There are just a few subjects which include project-

based assessment and their presentation, instead of the

formal written exam.

A complete overview of the compulsory courses is given

in Table 1. The 5th semester consists of elective subjects and

students are encouraged to spend this semester abroad.

Table 1 also shows a few interesting concepts of this

program:

a) There are 10 subjects valued as 5 credits, which is

50% of all compulsory subjects;

mailto:Joakim.Bjork@usn.no;%20Radmila.Juric@usn.no

b) There are not more than 3 subjects which are related

to traditional computer science;

c) There are specialists’ subjects which touch

operating systems and networking (with a glimpse

of “security) and could be seen as important in

software engineering and

d) There is only subject which touches software

development.

THE PROBLEM

The subject on “Software Architectures and Modelling”

has a self-explanatory title because the students are supposed

to learn basic principles of software modeling and creating

software architectures. However, whichever indicative

syllabus and appropriate assessment we anticipate would

work for the subject, there are numerous issues which

surround them.

Table 1 Compulsory Subjects

Name Semester ECTS Assessment

The Engineering Role 1 5 Presentation

Computational programming 1 5 Written

Introduction to Linux 1 5 Written

Programming and Microcontrollers 1 10 Written

Digital Fundamentals 1 5 Written

Mathematics 1 2 10 Written

Physics 1 – Mechanics 2 5 Written

Databases 2 5 Written

Object Oriented Programming 2 10 Written

Mathematics 2 3 10 Written

Physics 2 – Electricity 3 5 Written

Algorithms and Data Structures 3 5 Written

Software Architectures and Modelling 3 10 Written

Statistics 4 5 Written

Operating Systems 4 5 Written

Systems Design and Engineering 4 10 Written & Presentation

Networks and Security 4 10 Written

Digital Circuits Synthesis 6 10 Written

Bachelor Thesis 6 20 Report and Presentations

First, software modelling is impacted by numerous

factors which range from

• the lack of standardized methodologies for software

development,

• the abundance of software technologies which allow

software deployment using a range of computational

frameworks sitting on clouds, fogs, cloudlets, edges, and

dust, and

• an unprecedent amount of data generated as we live and

our expectations that we will always have computing

programs which can process the data in any situation and

at any time, to

• the dominance of pervasiveness in computing where

boundaries between cyber artefacts and physical items

are blurred and computationally powered devices are

interwoven in our everyday lives.

The bullets above are our reality and they affect software

modelling. Considering that we have only a software

modelling language which was standardized in 2004 (OMG,

2004) and considering that software technologies drastically

changed since 2004, then it is reasonable to expect that we

must experience problems when teaching software

modelling, if we wish to teach principles and practices of

software development in 2021.

Second, creating Software Architectures (SA) (Bass et

al., 2021) is another issue, but it does not bring forward the

same problems as we outlined in the bullets above. The

problem with SA is that it is an established discipline in

computer science, defined in the late 90s and developed into

a complex way of looking at constituent parts of software

solutions across many problem domains. Apart from specific

software architectural styles defined in the literature on SA,

there are numerous issues which require examination of its

efficiency, effectiveness, transparency, and various methods

of its deployability using available technologies. In summary

learning SA usually takes over any academic curriculum and

requires to be delivered as a specialist program, possibly at

the master’s level.

In the light of the above, it is difficult to make a sound

decision on (i) how exactly approach the delivery of these

types of subjects and (ii) what we can expect students to

learn. Without teaching software modelling principles and

highlighting the role SA have in them, we could not claim

that we are delivering an academic curriculum which covers

all the aspects of computer engineering. Also, by avoiding

the issue of pervasiveness and not talking about the modern

aspects of computations we face in everyday life, we will

deprive student from understanding the new role the data and

computing algorithms have in pervasive spaces. Students

will not be ready for facing problems of “everyday

computational principles” when they leave the University

and start building their professional careers. If we add to this

our infatuation with predictive and learning technologies and

algorithms which shape the current definition of Artificial

Intelligence (AI), then we can clearly see the scale of the

current teaching problems.

Finally, it has been known for a decade that we can not

teach modern software development principles by having a

handy published book as either a textbook or a book which

can be used as a support in teaching and learning. Books

published since mid-90s and through 2000, when the

modeling language UML was standardized, are dangerous to

use in 2021. It is not that they have incorrect presentation of

UML syntax and semantics. It is the examples which books

offer for the purpose of teaching software abstractions using

UML modeling concepts. They are dangerously out of date.

Some examples in these books are non-existent in real life.

If we add to this the problem that we have no standardized

methodology for software development which deserves a

place in academic curriculum, then we should rely on new

relevant publications from academic libraries and anticipate

that we will be no texts books in future.

 POTENTIAL SOLUTION TO THE PROBLEM

There are known recommendation in learning theories

which could be used here to address the problem defined in

the previous section and they are easy to see. We must avoid

information overload in the learning process, eliminate any

possibility of over-assessing students, and create the

environment in which students could be comfortable to learn

without a prescribed textbook.

The following was used:

The first step was to make a synergy between software

development and SA by scaling down both disciplines into

“basic principles” in order to allow students to learn and

apply results of learning. Therefore, only component based

and layered architectural style was used and UML modeling

concepts of use cases with sequence diagrams were explored.

The second step was to expose students to academic

source of materials which can be used in learning and

promote research and exploration. This would address the

lack of textbooks and teach students that their learning in the

world of software development will continue even after they

get their first jobs. Examples of software architectures in

conjunction to UML modeling were sourced from the IEEE

publications created form USN research and students MSc

and BSc projects.

The third step was to scale down the classroom in small

groups of students within which the learning could happen.

This was the only way of measuring students learning curve

from week to week. It was also an opportunity to address

differences in learning and answer questions individuals may

have. Consequently, formal lectures were used as

“guidelines” and not as a source of knowledge which could

be assessed in any type of assessment.

The fourth step was to make sure that the practical

workshops focus on explorative learning and debates at the

group level. However, the complexity of the material did not

allow for “walking through many examples”. Overloading

student sin mere 12 weeks with a full scale of real life

examples would be counter-productive and the learning

would not happen. Instead of this, 12 different examples

were created to play the role of home assignments, in which

each group could exercises (A) real life preparation for

software modelling, and (B) definition of component based

and layered architectural style for the chosen problem. The

examples ranged from automation in traffics and in modern

cars, managing traffic congestions and autonomous busses,

to flagging fake content of webpages, systemizing conflicting

information during covid pandemic, and creating software

solutions for forestation using drones. Both assignments were

used as a check point for students’ learning and confirmation

that students will be able to cope with the formal

examination.

Finally, there was no formal submission of the home

assignments. The requirement was that each group debates

with the tutor the problems they experience when working on

the home assignments and possibly answer questions the

tutor may have had. These debates did not have time limit.

It was important that each group takes as much time as

needed to master home assignments and feel confident that

they can take the exam.

Unfortunately, we did not have time to have public

presentation of all home assignment and facilitate knowledge

sharing. The difference between software models and

architectures, produced by different groups, were striking

and thus the sharing of these models publicly, through

presentations and debate, is very important for a healthy

learning curve for each individual student.

RESULTS

If we ignore problems created by the lack of students’

attendance on occasions and the impact of the pandemic on

the academic year, the students proved to be extremely

successful in gaining essential knowledge on how to

approach modeling with abstractions and how to

conceptualize these models in SA. There were at least 6

groups (out of 9) which created a perfect full scale and

commercially available models of their software solution.

Some of them had models which exceeded the level of

expertise we expect from BSc students. From this

perspective, the subject proved to be deliverable within the

curriculum.

However, there were a couple of problems which were

not expected, and which triggered questions, already

formulated in the abstract: “how should we really address

pervasive computing in modern curriculum”.

The first problem was related to students’ difficulties to

think independently. They still favored situations in which

they repeat “knowledge” delivered by the tutor, try to

memorize as much as possible and depend on written

materials which solely support “tutor’s words”.

Secondly, their learning was constantly interrupted with

their worries on “what will be in the exam” and asking for

past exam papers, almost from the beginning of the semester.

Considering that the subject ran for the first time in our new

program, it was impossible to reassure students at the

beginning of teaching, that the role of the tutor is to make

sure that they are ready for the formal exam.

Thirdly, students were not keen on answering questions

such as “what do you think” or “what would you like to do”.

Insecurities in saying “this is my opinion … because…” was

striking in spite of clear evidence that most of the students

mastered complex and real-life problems of software

development in their home assignments.

Forth, the attempt to create exclusively student-centered

learning, in which students “solutions to the problem” is

NOT juxtaposed to any other solution, even to the tutor’s

solution, did not help students to understand that they are

creators of software solutions, and in this process no-one

anyone outside the group, including the tutor, have no say.

Students were still very much relaying on the judgmental

approach in learning and expected “black and white answers

on what is right and wrong” in software modelling. When

we deal with abstractions and human perception in software

modelling, there are no wrong and right answers.

Where do we go from here?

CONCLUSIONS

The example described in this paper shows that it is

feasible to create one subject “out of line” with the rest of the

program which

a) addresses the latest changes in computing, software

and communication technologies

b) introduces the characteristics of pervasive computing

into the mainstream program and

c) adheres to the regulated education requirements in

terms of having learning outcomes mapped to the

assessment.

However, despite the proof that we can go ahead with

having a “flexible and changeable subject(s)” to address the

demand imposed by changes in technologies, this is just a

modest attempt to address bullet points from the

Introduction. It is almost impossible to address them

completely, without looking at the goals of our modern

programs in computer science and software / computer

engineering, changes in teaching and learning practices and

debating on exactly how we will measure student learning

curves in future.

This paper might open the debate on the future of our

BSc courses in the domain of computer science, computer

and software engineering and pervasive computing. It can

affect many other disciplines such as engineering,

automation, business/management, socio-technical systems

and similar. Are we ready for making changes?

It is very difficult to recommend future works. We

itemize choices the USN may have. They must be debated

across departments which deliver the current program, and

focus on:

• Creating a flexible and adaptable curriculum, where

major revision is incorporated in the goals of the

program. This will secure constant alignment with

advances in technologies and engineering,

• Creating specific pathways within the program, which

could have separate specialization and address

specificities of future changes in computer science and

technologies,

• Resourcing subjects adequately and revisit all 5 credit

subjects (does the learning really happen in these

subjects?),

• Revisiting the program and decide on what must be

sacrificed: this is a computer engineering course, and it

does not have to embark on computer science and

software engineering (pervasiveness can be addressed

through advances in engineering),

• Moving towards computer science academic programs,

because pervasiveness in our modern world (and in

engineering) is solely addressed though computer

science paradigms.

REFERENCES

L. Bass., P. Clements, R. Kazman, (2021) Software

Architecture In Practice (SEI Series In Software

Engineering), Addison-Wesley Professional; 4th

Edition (7 Oct. 2021)

Q. Burke, C. Sunrise Bailey (2020) Becoming an 'Adaptive'

Expert, Communications of the ACM, September

2020, Vol. 63 No. 9, Pages 56-64

J. Lockwood and A. Mooney (2017) Computational thinking

in education: Where does it fit?‖ International

Journal of Computer Science Education in Schools,

vol. 2, no. 1, pp. 1-20, 2017.

J. Lockwood and A. Mooney (2017) Computational thinking

in education: Where does it fit?‖ International

Journal of Computer Science Education in Schools,

vol. 2, no. 1, pp. 1-20, 2017.

OMG (2004) UML Specification, available at

https://www.omg.org/spec/UML/2.5.1/About-UML/

N. D. Saidin, F. Khalid, R. Martin, Y. Kuppusamy, and N. A.

Munusamy (2021) Benefits and Challenges of

Applying Computational Thinking in Education,

International Journal of Information and Education

Technology, vol. 11, no. 5, pp. 248-254, 2021.

M. Tissenbaum and A. Ottenbreit-Leftwich. 2020. A vision

of K-2 computer science education for 2030.

Commun. ACM 63, 5 (May 2020), 42–44.

https://www.amazon.co.uk/Software-Architecture-Practice-SEI-Engineering/dp/0136886094/ref=sr_1_1?adgrpid=51311707097&gclid=CjwKCAiA55mPBhBOEiwANmzoQi_6RBsjOFOZ5hUBJ_9gGkEJ36bf80K8s8fPSxsLbzlrEIMvM3x7FRoCSMEQAvD_BwE&hvadid=259087834239&hvdev=c&hvlocphy=9044959&hvnetw=g&hvqmt=e&hvrand=5217822187343991232&hvtargid=kwd-299647313439&hydadcr=17641_1817800&keywords=software+architecture+in+practice&qid=1642541517&sr=8-1
https://www.amazon.co.uk/Software-Architecture-Practice-SEI-Engineering/dp/0136886094/ref=sr_1_1?adgrpid=51311707097&gclid=CjwKCAiA55mPBhBOEiwANmzoQi_6RBsjOFOZ5hUBJ_9gGkEJ36bf80K8s8fPSxsLbzlrEIMvM3x7FRoCSMEQAvD_BwE&hvadid=259087834239&hvdev=c&hvlocphy=9044959&hvnetw=g&hvqmt=e&hvrand=5217822187343991232&hvtargid=kwd-299647313439&hydadcr=17641_1817800&keywords=software+architecture+in+practice&qid=1642541517&sr=8-1
https://www.amazon.co.uk/Software-Architecture-Practice-SEI-Engineering/dp/0136886094/ref=sr_1_1?adgrpid=51311707097&gclid=CjwKCAiA55mPBhBOEiwANmzoQi_6RBsjOFOZ5hUBJ_9gGkEJ36bf80K8s8fPSxsLbzlrEIMvM3x7FRoCSMEQAvD_BwE&hvadid=259087834239&hvdev=c&hvlocphy=9044959&hvnetw=g&hvqmt=e&hvrand=5217822187343991232&hvtargid=kwd-299647313439&hydadcr=17641_1817800&keywords=software+architecture+in+practice&qid=1642541517&sr=8-1
https://www.omg.org/spec/UML/2.5.1/About-UML/

