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Abstract: In complex sociotechnical research, companies aim to utilize data and digitalization to 

increase a system’s reliability and to minimize a system’s failures. This study exemplifies the use of 

conceptual modeling and data analysis to increase a system’s reliability by studying a case study 

for a medium-sized company. The company delivers an Automated Parking System (APS). We 

identified, collected, and analyzed internal and external data within this context. Internal data con-

sist of failure data from maintenance, whereas external data include environmental data, mainly 

weather data. Data analyses transformed the collected data into information, where conceptual 

modeling facilitates the understanding of information by transforming it further into knowledge. 

We find that the combination of conceptual modeling and data analysis aids in exploring and un-

derstanding a system’s reliability. This understanding enables a company to enhance its product-

development process. Conceptual modeling and data analyses guide and support each other in an 

iterative and recursive manner, and they both complement each other. Conceptual modeling also 

facilitates communication and understanding. 
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1. Introduction 

Automated Parking Systems (APSs) are parking structures that stack cars vertically 

to save space. The designs of these one-of-a-kind systems allow vehicles to be transported 

from the entry to their parking area without a driver being present. These vertical parking 

structures are also known by various other titles in addition to APS, such as robotic park-

ing garage, car parking system, Automated Parking Facility (APF), and Automated Vehi-

cle Storage and Retrieval System (AVSRS) [1]. APSs operate mainly in urban centers. Due 

to land scarcity, increasing numbers of vehicles, and urban mobility, there is a need for 

APSs, especially in metropolitan areas [2]. Studies have shown that finding a parking lot 

in a metropolitan city consumed around 6 min [3]. 

Furthermore, the research indicated that 9–56% of traffic in urban areas was due to 

finding parking for the car [3]. Thus, APSs are needed to ease urban mobility. Internation-

ally, there is a significantly increasing demand for APSs. The value of APSs globally was 

USD 1.23 billion in 2019, and the value is expected to grow at a compound annual growth 

rate of almost 11% from 2020 to 2027 [4]. 

However, the APSs, in general, suffer from a variety of problems. These problems 

include end-user (car owner) mistakes, such as pushing or forgetting to push a button, 

which causes the freezing of the APS. In other words, end-users who are unfamiliar with 

the APS (SOI) can cause SOI failures. These failures are also called use failures or Human–

Machine Interface (HMI) issues. Furthermore, the SOI sometimes retrieves the incorrect 

car, takes a long time to retrieve a vehicle, or does not retrieve the car, especially during 
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high-volume usage. In addition, there are mechanical failures related to the design of the 

SOI. These failures decrease the SOI’s availability and increase downtime. Downtime in-

creases costs. These costs include, among others, costs for repairing parts and fees for al-

ternative conventional parking [5,6]. Thus, a company needs to increase the system’s reli-

ability by integrating data with reliability engineering activities such as a formal reliability 

engineering program. In particular, when studies show that the cost of undiscovered fail-

ure in the early design phase will give a ten-time cost increase in the operation use phase, 

which is a later phase of the product’s lifecycle [7]. 

1.1. Reliability Engineering 

Reliability engineering is essential in systems engineering and quality management 

[8]. The main objective of reliability engineering is to prevent system failure. Reliability 

engineering includes different data sources generated by the two phases of reliability en-

gineering: proactive and reactive phase [9]. These sources include the following: 

1. Data from the design synthesis; 

2. Testing and analysis from the verification process; 

3. Published information (literature); 

4. Expert opinion; 

5. System operation data; 

6. Failure data. 

In this study, we aim to use, among others, data generated from the reactive reliabil-

ity phase to close the feedback loop in the proactive reliability engineering phase. In other 

words, we use feedback data in the matter of failure data from the operation into the early 

phase of the Product Development (PD) process. This PD process can be an existing or 

future development process for the SOI. The future PD for the same SOI, e.g., a new ver-

sion of the SOI, is also called New Product Development (NPD) process. In the context of 

this paper, we refer to the system’s reliability as system’s downtime, which increases the 

cost of the system’s operation and customer dissatisfaction. This dissatisfaction is one of 

the main pain points for a company. 

1.2. Failure Data 

Failure data may mainly come from maintenance record data or service-log data. 

Failure data analyses play a vital role in increasing a system’s reliability due to the follow-

ing reasons [9]: 

1. Increases knowledge regarding a system’s design and manufacturing deficiencies; 

2. Supports the estimation of the reliability, availability, system failure rate, and Mean 

Time between Failures (MTBF); 

3. Improves reliability by implementing design change recommendations; 

4. Aids data-driven decision making using design reviews; 

5. Supports determining systems’ maintenance needs and their parts; 

6. Assist in conducting reliability and life cycle cost trade-off studies. 

In addition to the failure data, we collected and analyzed weather data to investigate 

environmental factors that affect failure events. 

1.3. Environmental Data 

Several studies used environmental data in different domains, such as biology and 

ecology [10,11]. We collected historical weather data for six years as environmental data. 

Based on the parking systems’ locations, we collect weather for the cities where these sys-

tems are allocated. The weather data include the following parameters: location, date-

time, temperature, precipitation, snow, wind speed, visibility, sunrise, sunset, humidity, 

condition, and condition’s description. 
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To make sense of the data, we collected and analyzed the two sources of data, i.e., 

internal in terms of failure data and external in terms of weather data. In addition, the two 

sources of data verify each other. 

1.4. Data Sensemaking Using Data Analysis 

The main goal of data analysis is understanding the data and the results of the anal-

ysis, which is also called data sensemaking. Data sensemaking is a conscious effort to un-

derstand data and the event(s) within its context [12]. Wieck defines data sensemaking as 

a two-way process that aims to fit data into a frame (mental model), such as a template 

and a frame around the data. This process is iterative until the data and frame unite to aid 

decision makers in making more data-driven decisions by increasing the understanding 

of both data and context. We need to conduct data sensemaking during several iterations 

to improve the understanding and avoid oversimplifications [13]. Sensemaking is a pro-

cess including different functions such as prediction (projecting the future), forming an 

explanation, seeing relationships or correlations (connecting the dots), anticipatory think-

ing, problem identification, and detection [12]. However, data analysis also includes a 

process of identifying, collecting, pre-processing, analyzing, and visualizing the results of 

the data analysis. We used conceptual modeling to achieve data sensemaking. We also 

used conceptual modeling to communicate, understand, and assist in implementing more 

data-driven decision making based on the results and visualization of the data analysis. 

This type of decision making includes decision making within the early design phase of 

the PD and maintenance processes. 

1.5. Conceptual Modeling 

We use conceptual modeling to deal with the complexity of analyzing the reliability 

of a company’s System-of-Interest (SOI). Conceptual models are simple enough to share 

and communicate the understanding of needs, concepts, technologies, etc. These models 

are sufficiently detailed and realistic for guiding system development. Conceptual mod-

eling is vital in various disciplines, such as simulations in the computer science domain, 

Soft Systems Methodology (SSM), and systems engineering. Various conceptual modeling 

types are used, such as visualization and graphing mathematical models (formulas), sim-

ulation models, and systems architecting models [14]. 

1.6. Introduction to the Company: Where Research Takes Place 

The examined company used as a case study in this paper is a medium-sized enter-

prise that delivers APSs and provides maintenance services for operations. The company 

offers fully and semi-automated parking systems. The difference between a fully auto-

mated and a semi-automated is whether a parking attendant must drive or direct cars into 

the system. Fully automated parking systems do not require an attendant, and the APS’s 

mechanical processes will transport vehicles from the garage’s entrance to an available 

parking space. 

On the other hand, a semi-automated parking system will require a parking at-

tendant to guide the car into the machine after it arrives at a parking place [1]. The com-

pany starts begins its involvement before construction. Currently, the company is transi-

tioning from only selling to developing, producing, and marketing APSs. The main cus-

tomers for the company are building owners and land developers. The main stakeholders 

of the case study include company management, maintenance personnel, and car owners. 

The company has around 36 parking installations in total; 35 parking installations are 

in Norway. In addition, the company has one parking system in Denmark. Figure 1 por-

trays the locations for the company’s parking systems installations. However, we identi-

fied the parking system allocated in Oslo within a 30 km radius around Oslo with a dif-

ferent color (orange color). The other parking systems allocated more than 30 km from 

Oslo have a different color (purple). The parking system with an orange color is 17, which 
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we refer to as private parking systems. Another parking system that we call a public park-

ing system is colored in red. The other 18 parking systems are private parking systems at 

different locations in Norway, where also one of them is in Denmark (Copenhagen). We 

exclude these 18 parking systems from our data analysis mainly to increase the validity 

and accuracy of weather data analyses. 

 

Figure 1. Map of overall company parking systems. Left: Macro-level for all parking systems 

locations. Right: Micro-level for all private parking systems in a radius of 30 km around Oslo. 

The main difference between the private and public parking systems is that the pub-

lic system does not have a permanent parking lot (platform) each time the end-users (car 

owners) use the system. On the other hand, private parking systems provide a permanent 

platform each time the car owners use the system to park their cars. 

The research questions of this study are as follows: 

• RQ1: How can conceptual modeling and data analysis enhance product developers’ 

understanding of the system? 

• RQ2: How conceptual modeling facilitate data identification to increase a system’s 

reliability? 

• RQ3: What are effective conceptual models for facilitating product developers’ un-

derstanding of an APS? 

One of the motivations is using data analysis and conceptual models to increase the 

system’s reliability understanding. In this context, data analysis mainly utilizes feedback 

data from the operation phase and connects it to the PD process’s early design phase. One 

primary source of such feedback data is failure data, also called maintenance record data. 

We also need other data sources to make sense of the failure data and its analysis. Other 

sources include, among others, in-system data and environmental data such as weather 

data. In this study, we collect and analyze maintenance record data and weather data. In 

parallel, we develop conceptual models using different abstraction levels and multi-views 

or perspectives. The data analysis supports conceptual modeling, and conceptual model-

ing guides the data analysis into an iterative and recursive process. The iterative process 

ends when conceptual modeling and data analysis harmonize (make sense) regarding the 

study’s research questions. 

The contribution of this study is exemplifying the use of conceptual modeling and 

data analysis in an iterative and recursive manner. This study concluded that conceptual 

modeling and data analysis complement each other. In this context, we generated several 

conceptual models that guide the identification, collection, and analysis of data. We col-

lected and analyzed internal and external data sources. Furthermore, we analyzed these 

data sources by investigating frequencies, distributions, and correlation based on different 

time scopes. We investigated the anomalies among the results of the data analysis. We 

used conceptual modeling to understand these anomalies and enhance these models dur-

ing several iterations. In this research, we used workshops, interviews, and observations 



Technologies 2023, 11, 7 5 of 37 
 

 

to investigate the product developer’s understating of the system’s reliability using the 

study’s approach. Practitioners from the industry and academia report that this approach 

is valuable in this context. 

This paper is an extended version of the article presented at the Modern Systems 

Conference 2022, and it aims to apply conceptual modeling and failure data analysis to 

explore a company’s actual needs [15]. For the conference paper, we applied conceptual 

modeling and data analyses in order to conduct a brief feasibility study by investigating 

the value proposition of implementing Condition-Based Maintenance (CBM). We also ex-

plored actual needs behind this plan, which involve increasing a system’s reliability. In 

this paper, we investigate a system’s reliability in detail by exemplifying a more compre-

hensive use of conceptual modeling and data analyses. We analyze failure data in more 

details. Furthermore, we generate additional conceptual models to understand the sys-

tem’s reliability. Moreover, we analyze environmental data, mainly weather data at this 

extended version to investigate the environmental factors and to form an explanation and 

correlation between failure events and other environmental factors. The SOI for the con-

ference and this paper is an Automated Parking System (APS). 

The paper is structured as follows: Section 2 lists related studies in the form of an 

informal literature review. Section 3 illustrates the study’s research method. Section 4 

shows results from data analysis and conceptual modeling. The results of the data analysis 

include failure and weather data analyses. Section 5 provides a thorough discussion, and 

ultimately, Section 6 wraps up the study with conclusions. 

2. Literature Review 

2.1. Reliability Engineering 

Reliability engineering is vital in systems engineering and quality management as it 

minimizes a system’s failures [8]. O’Connor and Kleyner [16] define reliability as “The 

probability that an item will perform a required function without failure under stated 

conditions for a stated period of time.” This conventional definition of reliability empha-

sizes two aspects (scientific topics): statistics and engineering. The word “probability” em-

phasizes the mathematics and statistics aspects, whereas the phrase “required function, 

stated conditions, and period of time” emphasizes the engineering aspect. 

Developing a reliability program plan is crucial within the engineering aspect. This 

plan includes activities for reliability engineering and aids in determining which activities 

to perform. These activities depend on system complexity, life cycle stage, failure impact, 

and so forth. The systems engineering handbook includes guidelines for developing a re-

liability program plan [17]. There are also reliability program standards, such as 

ANSI/GEIA-STD-0009. This latter standard supports the system lifecycle for reliability en-

gineering. It includes three crucial elements: (1) understanding system-level operations 

and environmental and resulting loads and understanding the stresses occurring through-

out the structure of the system; (2) the identification of the failure modes and mechanisms; 

and (3) the mitigation of surfaced failure modes [18]. 

There are also two types of reliability engineering: proactive and reactive. Proactive 

reliability engineering occurs during design and development, emphasizing failure pre-

vention. In contrast, reactive reliability engineering occurs during production, especially 

during maintenance and operations, emphasizing failure management [7,19]. Figure 2 vis-

ualizes these two types of reliability engineering: proactive and reactive reliability engi-

neering. 
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Figure 2. Proactive and reactive reliability engineering within the product lifecycle, including the 

Product Development (PD) process, redrawn from [7]. 

Figure 2 also depicts the development process. This process is an iterative one. It in-

dicates that reliability engineering is also iterative in its nature. Systems engineering inte-

grates reliability within the processes. Verification occurs before production proceeds and 

consists mainly of analysis, testing, inspection, and demonstration [7]. 

Shortly after reliability engineering was founded in 1957, Hollis stated a need for 

conventional statistical reliability. However, Hollis also emphasized that the statistical as-

pect is insufficient. There is also a need for other reliability activities or techniques to im-

prove the feasibility and robustness of the designed system(s). In other words, statistical 

and engineering aspects complement each other [20,21]. Reliability influences other de-

pendability attributes of the system, such as maintainability and availability. Thus, relia-

bility affects return on investment, market share, and competitiveness. Therefore, a relia-

ble system provides a competitive advantage and increases market shares by having a 

proven field design (good system reputation). 

One of the statistical methods within reliability engineering involves determining the 

MTBF. The MTBF is the reciprocal of the failure rate: MTBF = (total system(s) operation 

time)/(total number of failures). The MTBF is widely used to measure a system’s reliability 

by showing how long it operates before it requires maintenance [22,23]. 

2.2. The Knowledge Framework: Data, Information, Knowledge, and Wisdom 

The main reason for data analyses is to make sense of the data using a two-way learn-

ing process. We use conceptual modeling mainly for this learning and understanding. The 

data analysis includes pre-processing, analyzing, and visualizing the results of the data 

analysis. One of the primary works of the literature regarding analyzing data involves the 

DIKW hierarchy—the data, information, knowledge, and wisdom. This hierarchy is a 

widely recognized concept that constructs our knowledge management model. Figure 3 

illustrates four layers in the DIKW hierarchy and conceptualizes the knowledge manage-

ment model. Unhelkar [24] states that this model is decisive in efficiently managing (big) 

data to make it exploitable in decision making, including the PD and maintenance process. 
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Figure 3. The DIKW hierarchy, from observation to wisdom, is based on [24–26]. 

The DIKW hierarchy or framework starts with the (big) data layer. These data vary 

from structured data (data organized in rows and columns) to unstructured data (such as 

images and text). Information usually answers the “who”, “what”, “where”, and “when” 

questions. Information adds context to the raw data by understanding the relations. We 

obtain this context by analyzing the data. This analysis includes the visualization of the 

analysis’s results using figures. 

Knowledge answers the “how” question by understanding the information and its 

application. This understanding is also called data sensemaking. Knowledge goes beyond 

information by understanding the (hidden) patters. In other words, knowledge is infor-

mation combined with judgment and experience. In this context, we use conceptual mod-

eling to transform information into knowledge by investigating the “how” question for 

the anomalies, and this is visualized by information. Wisdom is the tip of the hierarchy 

and is about implementing knowledge within the system of interest and its context. In 

other words, wisdom tells us “when” to use the data and “why” the specific data are used, 

and it builds on the former layers, i.e., information and knowledge, by understanding 

principles [25,26]. We also use conceptual modeling to obtain wisdom by understanding 

the data’s context (information) and how to use the data (knowledge). Moreover, concep-

tual modeling covers the gap between knowledge and wisdom, which is understanding. 

We obtain this understanding using conceptual modeling, which aids in appreciating the 

“why” and “when” in using the data by evaluating this understanding. 

We also added stipple arrows going the other way, from wisdom to data. We trans-

form wisdom into knowledge by identifying which implementation we want to increase 

our knowledge. Ali et al. [15] illustrate an example of transforming wisdom into 

knowledge by evaluating the value proposition of implementing a CBM system. Further-

more, we can transform knowledge into information by presenting knowledge in certain 

forms. This presentation is information, and this information can be further transformed 

into data. These data are also derived from the information or can be influenced by the 

knowledge process. This influence can include identifying and collecting available data. 

Ali et al. [27] show how we can transfer tacit knowledge into explicit knowledge in terms 

of data and visualization (information) using systems engineering and systems thinking. 

Figure 4 shows that knowledge affects the ways we collect or create data. Data also 

affect knowledge. We transform data into information when we analyze and visualize the 

data analysis results. Furthermore, we transform information into knowledge. The latter 

transformation occurs by a two-way learning process. This learning process takes place 

by using conceptual modeling. This process triggers more issues that we aim to know 

more about or explore. To explore the needed issues, we collect or create the appropriate 
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data that aid in such explorations. The entire process complies with establishing an “in-

formation lifecycle” [28,29]. 

 

Figure 4. The process-based perspective of data, information, knowledge, and learning based on 

[28,29]. 

Learning as a concept is vital, especially for the decision-making process. Birkland 

[30] defines the learning process as “participants using information and knowledge to de-

velop, test, and refine their beliefs.” Leaning is essential for low probability and high con-

sequence events, especially for shorter and rapid decision-making processes, i.e., deciding 

something as quickly as possible [30,31]. 

2.3. Conceptual Modelling 

Ramos et al. [32] mention modeling as proceeding “from brain representations to 

computer simulations, the models, are pervasive in the modern world, being the founda-

tion of systems’ development and operation” [33]. However, conceptual models have sev-

eral definitions and origins. These origins include physics, simulations, tools for co-crea-

tion or collaborative sessions, and tools that aid conceptual design in systems engineering. 

The common aspect among these origins is that conceptual models aid in sharing and 

communicating common understanding and ways of thinking. 

Co-creation sessions use conceptual models in several areas, such as design thinking, 

by focusing on human interactions [34]. Gigamapping, from system-oriented design, en-

hances communication and relates strongly to design thinking in its style [35]. Neely et al. 

[36] suggest a workshop for co-creation sessions for interdisciplinary teams. 

The scientific simulation field includes several definitions of conceptual models. Sar-

gent [37] defines conceptual models as follows: “the mathematical/logical/graphical rep-

resentation (mimic) of the problem entity developed for a particular study.” Many other 

authors link the use of conceptual models to simulation, such as [38–40]. Robinson states 

that conceptual models are an essential aspect of simulation projects and mentions that 

conceptual models are more art than science [40,41]. 

Gorod et al. [42] emphasize the importance of the link between high-level conceptual 

representation and low-level analytics using visualization and human ability. Further-

more, Gorod et al. [42] state that conceptual models aid in capturing higher-level descrip-

tive or textual models of the problem domain. This problem can be decomposed into 

lower sets of measures. These measures can be evaluated analytically [33]. On the other 

hand, Lavi et al. [43] mention that the conceptual model is a result of a system’s 
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presentation. The conceptual model helps design the system by providing a shared rep-

resentation of the system’s architecture, helping to deal with complex knowledge and re-

solving any ambiguities or conflicts. 

Systems engineering uses various types of conceptual models. This variety results 

from interdisciplinary engineering, wherein each engineering field uses its domain-spe-

cific conceptual models [44]. For instance, Blanchard [45] uses several variations of con-

ceptual models. Tomita et al. [46] consider conceptual system designs and suggest using 

systems thinking applications to raise the consideration from the data and information 

level to the knowledge and wisdom level. Montevechi and Friend [39] proposed using a 

Soft Systems Methodology (SSM) to develop conceptual models. Using the SSM in this 

case study, part of a complex sociotechnical research project makes sense; this research 

project aims to bridge soft aspects (including knowledge and wisdom) with hard aspects 

(data and information). Systems thinking plays a vital role in the development of concep-

tual models. For instance, Jackson [47] connects systems thinking to label complex prob-

lems. In another example, Sauser et al. [48] apply systems thinking to define a complex 

problem within a case study. 

Muller’s work illustrates bridging conceptual models with the first principle and em-

pirical models [49]. Empirical models aid in expressing what we measure and observe 

without the necessity of understanding what we observe. First-principle models use the-

oretical science principles. These models often involve mathematical formulas and equa-

tions. Conceptual models use a selection of first principles that explain measurements and 

observations. Conceptual models are a combination of empirical and first-principle mod-

els. This paper emphasizes that conceptual models need to be simple enough to reason 

and understand the case study. Simultaneously, conceptual models need to be realistic 

enough to make sense. This latter description of conceptual models emphasizes the need 

to balance between the simple, making sense, and practical aspects when developing con-

ceptual models. 

Muller [50] mentioned some core principles, objectives, and recommendations in ap-

plying conceptual modeling. Despite the slight modifications we made, Figure 5 visual-

izes these principles, objectives, correlations, and their relation between each other. In the 

Results section (ref. Section 4.1.6), we describe how we used these principles, objectives, 

and recommendations in detail. 

 

Figure 5. Recommendations, accompanied with its principles and objectives, modified from [50]. 
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3. Methods 

Figure 6 shows this study’s research methodology [51]. Figure 6 illustrates the case 

study in the middle. The case study has its context and embedded unit of analysis [52]. 

We applied several iterations from the problem domain to the solution domain, applying 

the adapted action research cycle: Design/Plan, Test/Act, Observe, and Analyze/Reflect 

[53]. These iterations are from the problem domain to the solution domain. On the left of 

the case study, the literature review and matter-of-experts’ input are the inputs for the 

case study. These inputs supported the study’s research questions. On the right of the case 

study, we obtain the output, which is a new process or methodology for using conceptual 

modeling and data analysis to enhance product developers’ understanding. These data 

consist of internal and external data. The internal is unstructured stored failure data 

within the company, while external data investigate environmental factors, mainly 

weather data, to explore patterns and trends with the failure events. 

We iterated this study’s research methodology process at least three times, inspired 

by action research [54]. We conducted these iterations after accepting the risk of concerns 

and limitations of the output in the form of a methodology we explain in Figure 7. These 

concerns and limitations include limited access to the all-embedded units of the analysis 

of the case study, the lack of in-depth knowledge of the context or company or both, and 

the lack of in-system data for the same period of failure data as it was not technically 

possible to collect them. The majority of these concerns and limitations may refer to one 

main reason: We are not employees in the company. However, we had an office in the 

company of research. 

 

Figure 6. Case study’s research methodology. 

Since we investigate sociotechnical systems within this research, we needed to ex-

plore the research’s technical and social aspects. We covered the technical aspects by ex-

amining the study within the Design, Test, Observe, and Analyze dimensions; in contrast, 

we covered the social aspects by Act and Reflect. Furthermore, we developed a process, 

or a methodology (output), based on these iterations. Figure 7 visualizes this process or 

methodology by using a workflow. This workflow illustrates the research approach by 

explaining the steps conducted in this study. Figure 7 portrays these steps as red circles 

containing their numbers. These steps are: 

1. Understand the context. We started by understanding the context. This understand-

ing includes an understanding of the SOI and its life cycle, including the PD process, 

focusing on the early phase. This step includes the following sub-step: 
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a. Develop conceptual models. In this step (1a), we developed conceptual models 

to communicate the context understanding and validate it at the first iteration 

using interviews and workshops. We developed other conceptual models in 

successive iterations based on the results of the data analysis. These conceptual 

models also guided the data analysis in an iterative and recursive manner. In 

other words, we used conceptual modeling as an input for the data analysis and 

vice versa. We conducted all processes in several iterations until conceptual 

modeling and data analysis were harmonized. For instance, we developed con-

ceptual modeling such as end-user’s workflow and maintenance process func-

tional analyses to achieve a shared understanding of the context, including a 

system’s reliability and its consequences in terms of time and cost. The focus on 

systems’ reliability is a result of the data analysis, which explored inferior sys-

tem reliability. 

2. Overview of internal data. In this step, we aimed to have an overview of the stored 

internal data (physical artifacts) within the company. We identified all possible data 

sources within the PD process. This identification results from developing conceptual 

models alongside the research data collection. The data sources we identified include 

failure data, design data, and in-system data. This step includes the following sub-

steps: 

a. Collect. In this step (2a), we collected the available stored internal data. In this 

context, we collected the failure data as feedback data. 

b. Analyze. In this step (2b), we analyzed the collected internal data, mainly fail-

ure. The data analysis’s results are inputs for the gap analysis. 

3. Perform gap analysis. In this step, we performed a gap analysis. The gap we identi-

fied is the need for feedback data in the early phase of the PD process, such as failure 

data. This step includes the following sup-step: 

a. Literature review and expert input. The failure data analysis results, alongside 

the input from the literature review and subject-matter expert are the inputs for 

the gap analysis. The experts include practitioners from the industry and domain 

scholars from academia. 

4. Decision gate: External data needed? After analyzing failure data (internal data), we 

have a decision gate to decide if we need external data to investigate patterns and 

trends or form an explanation with failure events. The decision was yes at this step. 

Thus, we performed the following sup-steps: 

a. Identify. In this step (4a), we identified a need for weather data based on internal 

data analysis’s results and subject-matter experts from the company and domain 

scholars. 

b. Collect. In this step (4b), we collected weather data for the same period for the 

failure data analysis and for the cities where the parking systems installations 

exist. 

c. Analyze. In this step (4c), we analyzed weather data and observed possible 

trends and patterns or any explanation. In this context, conceptual modelling 

aided in understanding possible explanations with the failure events. 

5. Verify and validate. The other direction for the decision gate is to proceed with veri-

fication and validation of the internal data analysis in case the need for external data 

is not identified. We verify internal data analysis using the literature and participant 

observations. Otherwise, external data as another data source were used to verify the 

internal data analysis’s results. We conducted the validation using, as mentioned, 

workshops and interviews within the company. We conducted these workshops 

physically and digitally. The participants of these workshops included company 

management, the maintenance head of the department, maintenance personnel, pro-

ject leader, and engineers involved in the early phase of the PD process. 



Technologies 2023, 11, 7 12 of 37 
 

 

6. Decision gate: Add value. Based on the interviews and workshops, we could evaluate 

if the finding, including the data analysis’s results accompanied by conceptual mod-

els, added value to the company in terms of whether it makes sense or not. However, 

we have one more decision gate after verification and validation. In this decision gate, 

we need to decide if there is no value added, and then we need to return and collect 

more internal data stored in the company for further analysis. We conducted some 

iterations and collected some more internal data such as more failure data for an ex-

tended period and some maintenance cost data. We also discovered that pre-pro-

cessing the data and understanding it were also vital for achieving value. 

7. Integrate to the knowledge base. After obtaining feedback and verifying and validat-

ing the value, we aim to integrate this value into the knowledge base. This step is still 

a work in progress as this integration depends on the company’s working processes. 

One of the suggestions we plan to use is A3 Architecture Overviews (A3AO) for the 

findings. Another suggestion is to integrate the findings as a parameter within the 

engineering activities in the PD process’s early phase. These activities could, for ex-

ample, be the Failure Modes and Effects Analysis (FMEA). 

Even though we visualize the research method’s steps as a linear and rigid sequential 

step, we conducted these steps using several iterations and time boxing. Time boxing var-

ies in time from minutes to days to weeks. The iterations, alongside time boxing, aimed at 

enhancing the data analysis and conceptual modeling results by using different time 

boxes for each step. 

However, we also recommend iterating the entire process or methodology, including 

other available stored data other than the analyzed one, that is, failure data in this context. 

 

Figure 7. The performed steps visualize the research approach. 

4. Results 

The Results section starts with the case study’s subsection. This subsection includes 

a description of the SOI and failure data description. The Results section continues with 

failure data analysis and then with weather data descriptions followed by weather data 

analyses. The results section concludes with a conceptual modeling subsection. The con-

ceptual modeling subsection includes descriptions and visualizations of the most 
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significant conceptual models that we generated for this case study, alongside the princi-

ples, objectives, and recommendations we used for developing these models. 

4.1. Case Study 

In this case, study, we exemplify the use of conceptual modeling and data analysis in 

an iterative process. Data analyses guided conceptual modeling, while conceptual model-

ing generates more questions than answers. We used data analysis to answer these ques-

tions and increase the understanding of the system’s context. Conceptual modeling facil-

itated the product developer’s understanding and communication of the system and its 

reliability. 

4.1.1. Description of the System 

Figure 8 portrays the SOI: the semi-automated parking system and its configuration. 

Figure 8 visualizes a drive-in indication. The figure also visualizes a variety of SOI con-

figurations. These configurations vary from 4 × 2 × 2 to 9 × 1 × 3 and 11 × 2 × 3. The first 

number is the width, the second is the depth, and the third is the height. Depending on 

the building architecture, the car entrance can be a straightforward or an inclined plane, 

as with the SOI’s configurations. 

The SOI consists of numerous hardware parts. We mention here some of the main 

parts to better understand the SOI. We visualize these parts in Figure 9, which contains 

the following: 

• The gate: The gate is the entrance and exit before and after parking. A collection of 

two up to three gates is called a segment. Figure 8 shows a segment including two 

gates. 

• The control unit: The control unit is a touch screen with operating instructions, in-

cluding a key switch and emergency stop. The control is connected to the power unit 

through cables and fixed on a wall. 

• The platform: The platform carries the car to the correct position. 

• The wedge: The wedge helps the driver park the car in the correct position. 

 

Figure 8. The system-of-interest (SOI): semi-automated parking system (left) and its configurations 

(right). 
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Figure 9. The System-of-Interest (SOI): main parts. 

4.1.2. Failure Data Description 

This subsection illustrates the failure data analysis and its results. The failure data, in 

the form of maintenance record data, are unstructured. The maintenance personnel man-

ually log failure events using Excel. In the Excel file, there are several sheets. Each sheet 

belongs to a specific semi-automated car parking garage system. Each sheet’s content in-

cludes the following columns, which are also called parameters: 

• Date (for a maintenance event); 

• Time; 

• Telephone number (for the maintenance personnel who investigated the failure 

event); 

• Tag number (for the user (car owner)); 

• Place number (for which parking lot the failure event occurred); 

• Reason (possible reasons for the failure event); 

• Conducted by (includes initials of the maintenance person’s name that performed 

the failure or maintenance event); 

• Invoiced yes/no (if the failure event is invoiced as it is not included within the mainte-

nance agreement with the company or not). The company’s agreement includes only 

planned maintenance. In other words, most maintenance tasks should be invoiced. 

However, the company rarely invoices its customers. 

The main parameter within the failure data is the description of the failure event, 

which is the reason why the parameter is mentioned above. The description is a free-for-

mat text that can include, among other, data about what part of the SOI failed, possible 

reasons, and maintenance actions to fix the failure event. As it is a free format text, it can 

include one of the mentioned or more as it lacks a guideline to enters this description. This 

inclusion depends on the maintenance personnel and their time availability. We collected 

data for private and public parking systems for the period 2016–2021. The amount of fail-

ure data for these two types is around 2000 rows times 8 columns. 
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4.1.3. Failure Data Analysis 

Since the maintenance personnel manually log the failure data and include descrip-

tions, especially the failure events, we employed an introductory Natural Language Pro-

cessing (NLP) method to analyze them [55]. NLP is a well-known method for analyzing 

text entry fields, such as the description field within the company’s failure data. Manual 

pre-processing is necessary for data analyses and data quality. We divided this subsection 

into failure data collection, failure data pre-processing, failure data analysis, and failure 

data visualization. 

Failure Data Collection 

We collected the failure data from the company. The company’s employees down-

load this data in terms of an Excel file. The file is a living document. First, we obtained 

part of the data for a short period of time to conduct the first iteration of the data analysis. 

Furthermore, we collected all stored data for the period 2016–2021 and conducted addi-

tional data analysis iterations as the first one added value according to the matter-of-ex-

perts from the company and domain scholars. 

Failure Data Pre-Processing 

We conducted the pre-processing iteratively and recursively. For instance, we started 

by generating a template including the most significant parameters. We identified these 

significant parameters based on state-of-the-art input and matter-of-experts from the com-

pany and scholars. Furthermore, we collected the data from different sheets since each 

sheet belongs to a parking system. We conducted this process manually. 

Additionally, we used a code to generate this template using manual pre-processing 

as an input. We discovered several issues using the code or automation to pre-process the 

data since the maintenance personnel manually logs the data. These issues include but are 

not limited to empty data cells within the Excel rows, a different format for the parameters 

such as time and date, and a different arrangement for the parameters (columns) within 

the different sheets. We fixed these issues manually and automatically depending on the 

nature of the issue and possible capabilities for pre-processing it. In addition, we added 

two columns (parameters) to this template: parking system name and parking system 

type, i.e., private or public, based on the criteria we determined before in the Introduction 

section. We went back and forth during several iterations between the data points (pa-

rameters) to the template and vice versa until the data and its template came into unity. 

The pre-processing consumed approximately 80% of the data analysis time, i.e., about one 

year. 

Furthermore, we conducted a pre-processing of the text-free format that describes 

the failure event as part of the NLP method. This pre-processing step was conducted after 

we imported the data from the generated template as the data framework for a specific 

parking system type, i.e., private or public data. The pre-processing step involves the fol-

lowing sub-steps: 

• Tokenization: We divided the text (sentences) into words, commas, and so forth, 

called tokens. 

• Removing the numbers: We removed numbers that stick to the word without a full 

stop. 

• Removing stop words: We removed stop words. Stop words are words that do not 

add a significant meaning in the natural language, such as is, the, this, and so forth. 

We removed the stop words using the “corpus” module from the Natural Language 

Toolkit (NLTK) Python library [56]. 

• Stemming: Stemming means that we reduced the words to their root by removing 

the word’s prefixes and suffixes that affixes its root, also called a lemma. We used a 

stemming algorithm called Snowball Stemmer from Python’s NLTK library [57]. We 

also lower casing the letters for all text. 
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• Translation: We translated the results from Norwegian to English. We used Goog-

letrans Python library, which uses Google Translate API (Application Programming 

Interface) [58]. 

Failure Data Analysis 

We conducted the data analysis by using several sub-steps: 

• Tokens (words) frequency: We determined the most common words. We calculated 

the frequency of each word in the free text (reason column) in number and percent-

age. We chose to save the ten most repetitive (frequent) words. We also determined 

the frequency of the unique words. We calculated the frequency of the word per row 

in number and percentage. Each row represents a failure event. In addition, we con-

ducted an n-gram analysis showing the most frequent three words, four words, and 

five words. We noticed that the three-word phrase made the most sense in a way that 

provided an understandable phrase. We chose to show only the most repetitive word 

in the failure events as the point in this context is to investigate the most critical sub-

system. 

• Failure events frequency versus other columns (parameters): We calculated the fre-

quency of the failure events versus other parameters. These parameters include the 

year, month, day of the week, and time of day (hour). In this calculation, we saved 

the numbers and percentages. The calculation of percentages was performed due to 

the company’s confidentiality. 

• Failure rates: We calculated the failure rates by determining the number of failure 

events divided by the total system operation time. 

• Mean Time between Failures (MTBF): We determined the MTBF by taking the recip-

rocal of the failure rate values (total operation time/number of failures). 

Failure Data Visualization 

We visualized the data analysis’s results by using several methods for visualization. 

These methods include, among others, bar charts and dot charts. We show the most sig-

nificant visualizations results based on the data analysis’s results. 

Figure 10 visualizes the data analysis results for the public and private parking sys-

tems. The figure shows the most repeated words in percentage. We observe that the “gate” 

is the most repeated word in the public parking systems, with approximately 80% of 

roughly 2000 failure events. The “gate” is also the most repeated word, with around 50% 

of the failure data for the private parking systems. However, when we manually exam-

ined those failures, we observed that the maintenance personnel used different terms, 

such as “system” or “segment” for the gate. Part of these terms, especially “system,” is 

used by the maintenance personnel for many things other than the gate. These things in-

clude the entire parking system, the control unit, etc. This usage of different terms mean-

ing one thing is a natural result of manually logging the description of the failure data as 

humans are complex and messy, and we use additional terms all the time for the same 

thing. 

Figure 11 depicts the MTBF for the public (left) and private (right) parking systems, 

which is the inverse of the failure rate. We calculated the MTBF per year for six years. The 

MTBF average is approximately 66 h for the public and 37 h for the private parking sys-

tems. We noticed that the MTBF for the public parking system is almost double that of the 

private parking systems. One of the reasons could be that the public does not have a per-

meant platform, whereas the private has a permeant platform for each end-user. How-

ever, we also observed that parts of the private parking systems lack proper documenta-

tion of failure data. This lack of documentation can be another reason for the different 

MTBF values. The MTBF values (66 h and 37 h) indicate that the SOI has an inferior sys-

tem’s reliability as it means that approximately every day and a half up to three days, 

there is an issue or failure within the semi-automated parking systems. 
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Figure 10. The most repetitive words in percentage in the entire description field entry (reason col-

umn) in failure data for public (left) and private (right) parking systems. 

 

Figure 11. Mean Time between Failures (MTBF) in hours for all failures for public (left) and private 

(right) parking systems. 

Figure 12 shows the month of the year for all failure events in public (left) and private 

(right) parking systems. Figure 13 portrays the time of day (hour) for all failure events in 

public (left) and private (right) parking systems. We note from Figure 12 that failure 

events decrease dramatically in July, which is a summer vacation month. In other words, 

in July, parking systems are not used as much as in other months of the year. We notice 

from Figure 13 that most failure events occur at 07:00 and 15 to 18:00 h, which are rush 

hours for both public and private parking systems. We conclude that the parking systems 

fail most when it is used more, which makes sense. This latter conclusion concurs with 

the state-of-the-art observations [5,6]. 

 

Figure 12. The month of the year for all failure events in public (left) and private (right) parking 

systems. 
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Figure 13. Time of day (hour) for all failure events in public (left) and private (right) parking 

systems. 

Gate as a Use Case 

We dug deeper into the most frequently mentioned part: the gate. Figure 14 depicts 

the average MTBF in hours for all failures gates for public (left) and private (right) parking 

systems. We observe that the MTBF for the gate for the private parking systems is more 

than double (153 h) that of the public parking systems (66 h). This over-double value may 

refer to the number of private parking systems included in the data analysis, which is 17 

private parking systems versus one public parking system. Another reason could be the 

lack of documenting all failure events in private parking systems, as mentioned before. 

 

Figure 14. Mean time between failures (MTBF) in hours for all gate failures for public (left) and 

private (right) parking systems. 

Moreover, we performed and determined the same analysis for the gate as the park-

ing systems as a whole. Figure 15 visualizes the month of the year for all gate failure events 

in public (left) and private (right) parking systems. Figure 16 shows the time of day (hour) 

for all gate failure events in public (left) and private (right) parking systems. We have the 

same conclusions for the gate failure data analysis as for the parking systems failure. 

These conclusions also include that the gate failures occur mostly at 07:00 and 15 to 18:00 

h, which are the rush hours. In addition, the gate failures decrease in July when it is vaca-

tion time. In other words, the gate fails the most at when there is high usage for the park-

ing system. 



Technologies 2023, 11, 7 19 of 37 
 

 

 

Figure 15. The month of the year for all gate failure events in public (left) and private (right) parking 

systems. 

 

Figure 16. Time of day (hour) for all gate failure events in public (left) and private 

(right) parking systems. 

We used Python to analyze the failure data. We started by finding the most repetitive 

word in the description’s text entry field. We calculated the MTBF for public and private 

parking systems to compare the results. Moreover, we analyzed the failure events that 

occurred relative to the month and the time of the day to explore patterns and trends 

among the failure events. Furthermore, we compared and linked the “most failed” part of 

the SOI with the other parameters (columns) and conducted the same analysis and calcu-

lations, such as failure rate and MTBF. Then, we discussed the results with the company 

to determine whether the data analysis and results made sense. 

Failure Data Classification 

We classified the public parking systems data using semi-supervised machine learn-

ing (since some of the data are labeled and some are not labeled data). We used the Mar-

kov model for this machine learning process [59]. We manually labeled (classified) a por-

tion of the dataset. This classification includes User Failure, Software Product Failure, and 

Mechanical Product Failure. The dataset has 3910 samples in total, and 223 are labeled 

manually; the rest of the samples, i.e., 3687, are unlabeled and labeled by trained models. 

Throughout the classification, 80% of the labeled data are used for training the machine 

learning model, and 20% of the labeled data are used to test the trained models. Moreover, 

the dataset is utilized as one feature (a sentence: Sentence Model) and many features 

(word array for every sample: Word Model). Thus, two separate models are developed. 

Dividing samples into words reduces the performance. Thus, the Sentence Model pro-

vided better accuracy (0.666) than the Word Model (0.644). Figure 17 visualizes the failure 

data classification’s results using supervised machine learning. We refer to Mechanical 

Product Failure as hardware, Software Product Failure as software, and User Failure as 

Human–Machine Interface issues (HMI). We notice that the hardware constitutes approx-

imately 41% of the failures, software at 29%, and HMI at 30%. 
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Figure 17. Failure data classification using machine learning. 

4.1.4. Weather Data Description 

We collected the weather data for the public and private parking systems. We deter-

mined the private parking systems allocated within 30 km of Oslo to increase the 

weather’s data analysis accuracy and validity. We collected the weather data for the same 

failure data period from 2016 to 2021. The weather data included many parameters: loca-

tion, date, time, temperature, precipitation, snow, windspeed, visibility, sunrise, sunset, 

humidity, condition, and description. After pre-processing the failure data, we also con-

ducted the same process for the weather data. We added the weather data’s parameters 

to the same template that included failure data. The weather data pre-processing con-

sumes less effort since it is more structured than failure data. However, this pre-pro-

cessing does not cover the fact that the pre-processing still consumes approximately 80% 

of the data analysis period. 

4.1.5. Weather Data Analysis 

The private parking systems that are allocated within the 30 km radius of Oslo city 

have the same weather parameters as Oslo city, while the one public parking system is 

allocated in another city. Thus, we collected the weather data for this city. We refer to 

these two cities as city for private and city for public parking systems further in the data 

analysis. 

Figure 18 shows the temperature on the y-axis and the date for the two cities where 

the private (left) and public (right) parking system is allocated. At the same time, the fig-

ure visualizes when it is snowing at which temperature in these two cities. We observe 

that there is mostly snow when the temperature is within −10 to 5 Celsius. We also noticed 

that it is snowing more in the city for private parking systems (ref. more blue dots left 

than right in Figure 18). 

The local government salts the roads when it is snowing and when the temperature 

is within 0 to 5 Celsius or when the temperature is between 5 and 10 Celsius. In addition 

to the snow and temperature, the local government salts the roads more when the humid-

ity values are high in addition to the snow and temperature requirements [60]. An up-

dated salt table can be found in [61]. The local government updated the requirements to 

salt the roads. This update mainly includes updating the temperature range to include 

minus degree ranges. The updated temperature ranges are above −3 Celsius, −3 to −6 Cel-

sius, −6 to −12 Celsius, and under −12 Celsius 

Figure 19 depicts the weather conditions for the two cities, i.e., city for private and 

city for public parking systems. The y-axis represents the number of days, while the x-axis 

shows the weather condition. We notice that the number of days it rains in the city for the 

public parking systems (above 1000 days) is higher than the days it rains for the city for 

the private parking systems (around 900). These days are determined from the weather 

data for the two cities from 2016 to 2021. 
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Figure 18. Weather data visualization (temperature and snow) for city private parking systems (left) 

and public parking systems (right). 

 

Figure 19. Weather data conditions for city for private parking systems (left) and for city for public 

parking systems (right). 

Figure 20 portrays the temperature (x-axis) for the count of failure events (y-axis). 

We note that the failure event’s peak is at around 0 Celsius for the city for the private (left), 

whereas the peak is at 5 Celsius for the city for the public (right). 

Figure 21 shows the humidity values (x-axis) versus the number of failure events (y-

axis) for the city for the private parking systems (left) and public parking systems (right). 

We note that most failure events for private and public parking systems occurred when 

the humidity values were between 70 and 90. 
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Figure 20. Temperature for failure events for private (left) and public (right) parking systems. 

 

Figure 21. Humidity values for failure events for city for private parking systems (left) and city for 

public parking systems (right). 

From Figure 21, we assumed a correlation between failure events and humidity. 

Thus, we calculated Pearson’s correlation to figure out the correlation by assuming a nor-

mal data distribution. We found a positive correlation between humidity and failure 

events. This correlation is higher for private parking systems (80%) than the public ones 

(71%). Furthermore, we also ran a Pearson’s correlation test for the precipitation weather 

data parameter inspired by Figure 19. We found a negative correlation between the pre-

cipitation and the failure events for private and public parking systems. The value for the 

negative correlation is −66% for the private and −62% for the public. This negative corre-

lation is higher with its value for the public than the private one. This latter result makes 

sense as it rains more in the city for public parking systems. This rain washed the salt in 

the car’s wheels and exposed less salt to the metal parts in the parking system. This salt 

causes the metal parts to rust. This rust increases failure events. 

The weather data and failure data analyses form the following explanation for the 

failure events: (1) Humidity affects the failure events positively. In other words, increased 

humidity leads to increased failure events, and (2) rain negatively affects the failure 

events: more rain, fewer failures. We also know that the local government salted roads. 

The cars’ wheels take this salt to the SOI. This salt also falls into the tracks for the gates. 

These tracks and their relays are made (manufactured) of metal. The salt leads to rust in 

these parts. This rust increases the failure events as it affects the gate’s functionality when 

opening or closing as it should. However, rain washes the salt away from the car and its 

wheels. Thus, we noticed that failure events have a higher value for the negative 
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correlation for the public one than the private one. In addition, there is less cold and less 

snow in the city for the public parking system and, therefore, less salt on its roads. 

However, we also noticed less values for the MTBF for the gate’s failures for the pub-

lic than the MTBF for the private. On the other contrary, we observe a higher MTBF for all 

failure events for the public than for the private ones. This contradiction may point to the 

lack of proper documentation of the failure events for the private parking systems versus 

the public ones. This lack of proper documentation may refer to the fact that the public 

has a local contractor that conducts maintenance and not the company itself. This contrac-

tor must document the failure events that are fixed in order be paid. Another reason to 

have less MTBF for gate failure for the public could be that the users are obtaining differ-

ent platforms each time, rendering them less familiar with the parking systems. In con-

trast, the private ones always have a fast platform and a fast-trained user. Furthermore, 

the positive and negative correlation values for humidity and precipitation (rain), respec-

tively, are around each other for public and private parking systems. This conclusion in-

dicates that the results make sense mostly for all failure events for the two types of parking 

systems. 

4.1.6. Conceptual Modeling 

Principles, Objectives, and Recommendations in Applying Conceptual Modeling 

We used core principles, objectives, and recommendations in applying conceptual 

modeling. The main principles applied here include using feedback and being explicit. 

Using feedback indicated whether we moved in the correct direction by moving back and 

forth from the problem domain and solution domain and indicated whether our solution 

solved the problem. These principles facilitated reaching our objectives. In turn, the ob-

jectives were to establish understanding, insight, and overview, support communication 

and decision making, and facilitate reasoning. The main principles and objectives trans-

lated into ten main recommendations [50]. We applied the following ten recommenda-

tions as follows: 

1. Timeboxing: We used timeboxing for developing several models. The timeboxing 

varies from minutes to days to weeks. 

2. Iteration: We iterated using feedback from subject-matter experts’ input. The experts 

included domain scholars and industry practitioners, focusing on the company’s key 

persons. 

3. Early quantification: We translated the principle of being explicit in quantifications 

early. We used failure data analyses for this early quantification. Early quantification 

aids in being explicit and sharpening discussions by using numbers. However, these 

numbers can evolve as we conduct quantifications at an early phase, and more con-

fidence using validations may be needed. 

4. Measurement and validation: We calculated and measured numbers to have an indi-

cation for some essential measurements. For instance, we calculated the failure rates 

and MTBF to indicate the SOI’s reliability. We validated these numbers by using ev-

idence and arguments from the literature and the company. 

5. Applying multiple levels of abstraction: We considered the size and complexity of 

these levels of abstraction. We aimed at connecting high-level abstractions to a lower 

level to achieve concrete guidance. For instance, we considered conceptually model-

ing all APS as an SOI. Furthermore, we also generated conceptual models by consid-

ering the gate as an SOI and its relation to the APS as a whole. 

6. Using simple mathematical models: We used simple models to be explicit and to un-

derstand the problem and solution domain. These models aimed at capturing the 

relation between the parts and components of the company’s SOI to be able to reason 

these relations. 
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7. Analysis of credibility and accuracy: We made ourselves and the company aware of 

the numbers. These numbers comprised an early quantification that needed further 

verification and validation within more extended iterations. 

8. Conducting multi-view: We applied six main (different) views. These views are cus-

tomer objectives (“what” for the customer), application (“how” for the customer), 

functional view (“what” of the company’s case study request), conceptual view, and 

realization view. The conceptual and realization views describe the “how” of the 

company’s case study request. These six views include more relevant views. Muller 

[49] describes these views accompanied by a collection of sub-methods. We iterated 

over these views by using different abstraction levels. 

9. Understanding the system’s context: We conducted several research data collection 

methods, including workshops, participant observation, and interviews to under-

stand the SOI’s context. The workshops and interviews were conducted mainly with 

the company’s key persons. However, using participant observations, we also con-

ducted informal interviews with the end-users. We also conducted a literature review 

to understand the company’s case study context. We needed to understand the SOI 

and case study’s context for reasoning. 

10. Visualizing: We used visualization to develop all figures (models) conducting the 

multi-view. The visualization facilitated communication, common understanding, 

reasoning, and decision making, stimulating discussions among the domain experts: 

scholars and the company [62–65]. 

We applied conceptual modeling using these recommendations to understand, rea-

son, make decisions, and communicate the system’s specification and design [66]. This 

application ensures the company’s need fulfillment by eliciting customer value and busi-

ness value propositions. These propositions drive the system’s requirements, further driv-

ing the system’s design. On the other hand, design and system requirements enable cus-

tomer and business value propositions [67]. However, we observe that the most signifi-

cant three recommendations to apply conceptual modeling are as follows: early quantifi-

cation using data analysis, time boxing, and iterations. The other recommendations are 

mentioned for the sake for a comprehensive implementation of the ten recommendations. 

We started conceptual modeling by developing a value network. Furthermore, we 

developed a workflow to understand how the SOI is working, focusing on the gate. We 

continued conceptual modeling by creating a functional flow for the maintenance process. 

The maintenance functional flow was an input to estimate the maintenance task’s cost. 

The functional and workflow analyses enhanced a shared understanding among various 

stakeholders from industries and academia. 

Value Network 

A value network is a model showing interactions between stakeholders in the prod-

uct’s life cycle. Figure 22 shows the value network for understanding the customer objec-

tives: what of the customer. The figure categorized the product life cycle into two phases: 

the creation phase, also called product development, and the use phase, also called the 

operation phase. The value network explains the critical stakeholder within the develop-

ment (creation) and operation (use) phases. This understanding facilitates identifying 

available data sources. These data sources include feedback data from the operation (use) 

phase that aid decision making during the product development (creation) phase. For in-

stance, we can use failure data that are manually logged from maintenance personal in 

the operation phase to support decision making for the development team in the creation 

phase. In other words, we believe the value network identifies the most appropriate data 

based on understanding the SOI’s most critical or active stakeholders. 

The figure visualizes the stakeholders with two colors. Blue colors indicate stake-

holders that are involved in the creation phase. On the other hand, light blue shows that 

the stakeholders are engaged in the use phase. However, the figure also portrays three 
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other stakeholders that have a mix of blue and light blue: insurance, environment (envi-

ronmental factors), and government. These stakeholders are involved in two phases: the 

creation and use phase. 

 

Figure 22. Value network. 

Workflow 

We developed a workflow to understand how the system is operating. This workflow 

focuses on the gate. This focus is a result of the data analysis’s results. The data analysis 

showed that the most repetitive word is the gate. Thus, we developed a workflow show-

ing how the gate operates as a part of the SOI and its relation to the end-users and SOI. In 

addition, from the failure data classification, we observed that the failures are mainly di-

vided into two main categories, use failures (HMI issues) and product failures, where 

product failures include mechanical and software product failures. Therefore, we indi-

cated the performance of the SOI in the workflow and the performance of the user using 

two different colors and using the legend. Figures 23 and 24 visualize the workflow for 

car entry and retrieval for the SOI, respectively. We visualized a red circle for the gate in 

both workflows as we focused on the gate as a use case. 

 

Figure 23. Workflow for car entry to the SOI. 
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Figure 24. Workflow for car retrieval from the SOI. 

Functional Flow for the Maintenance Process 

Functional time flow for the maintenance process illustrates the steps that the mainte-

nance personnel conducted for a typical maintenance task accompanied by its time dura-

tion. This model focuses on the gate as a use case. However, the model applies also to any 

failure events. In this model, we assumed that the parking system allocation is 50 km away 

from the company’s headquarters, where it is allocated around the location of Oslo city. 

This assumption increases the maintenance task’s duration where the parking system is 

closer than 50 km from the company’s headquarter. Another assumption we made is that 

the maintenance personnel have some experience. Thus, the model’s time duration accu-

racy is within ± 30%. In other words, the maintenance task duration can increase to 6.5 h 

or decrease to 3.5 h. This duration assumes that the failures cannot be fixed remotely. If 

the failure can be fixed remotely, the duration decreases to 15–20 min. Figure 25 visualizes 

the functional flow of the maintenance process. 

 

Figure 25. Functional flow for the maintenance process in the company, focusing on the gate as a 

use case. 
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Cost Estimation Model 

Figure 26 visualizes a cost estimation model per maintenance task. This model in-

cludes direct and indirect costs. These costs include several factors that we visualized in 

the model. We made several assumptions in this model, which includes maintenance per-

sonnel traveling to the facility (parking system), and the indirect cost is only one hour as 

it includes factors outside the actual maintenance task. These factors include spare ship-

ping, storage, invoicing, and accounting costs. We estimated the indirect costs to be not 

more than one hour, even though it can be more than that. However, these assumptions 

affect the cost model’s accuracy. Thus, we assume that the model’s accuracy is located 

within a range of ± 30%. In other words, the estimated cost is approximately 3.7 kNOk 

± 30%. Thus, the estimated cost per maintenance task can be increased to approximately 

4.81 kNOK and decreased to approximately 2.59 kNOk. 

 

Figure 26. The estimated cost model for each maintenance task. 

We used the cost estimation model to estimate the cost of the maintenance task per 

year based on the MTBF calculation for all failure events and the gate’s failure events. We 

have several MTBFs as we calculated them for all failures and gate failures for public and 

private systems. The average MTBF values for all failures are 66 h for the public and 37 h 

for the private (ref. Figure 11). On the other hand, the MTBF for the gate’s failures is 66 h 

for the public and 153 h for the private (ref. Figure 14). We use the following mathematical 

model to estimate the cost based on the MTBF values. 

The number of maintenance tasks per year ≈ 24 h/day ÷ MTBF value in hours = num-

ber of tasks/days × 365 days/year ≅ amount of tasks/year. 

Furthermore, we multiplied the number of tasks with the estimated cost per mainte-

nance task (2.59 kNOk, 4.18 kNOK). Using the average MTBF for the public parking sys-

tem, i.e., 66 h, as an example, we obtained the following: the number of maintenance tasks 

per year ≅ 24 h/day ÷ 66 h = 0.36/day × 365 days/year ≅ 133 tasks/year. Using the estimated 

cost model that is mentioned above (2.59 kNOk, 4.18 kNOK), the estimated cost for all 

failures of the public parking system in a year ≅ 133 × (2.59 kNok, 4.18 kNOK) ≅ (344 

kNOK, 640 kNOK). In other words, the cost for all failures of the public parking systems 

per year lies between approximately 0.3 MNOk and 0.6 MNOK. Table 1 shows the esti-

mated cost per year for different MTBFs mentioned above: 

Table 1. Estimated cost per year for the maintenance based on average MTBF values. 

MTBF Values Estimated Cost Per Year in MNOK 

66 0.3–0.6 

37 0.6–0.9 

153 0.1–0.2 

It is significant for the company to be aware of such costs as they rarely invoice cus-

tomers with such maintenance tasks. However, the company started a new invoicing 

strategy by invoicing more as a result of this cost estimation model. 
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4.2. Case Study: Conclusion and Recommendation 

Based on the conceptual modeling and data analysis in the previous subsection, we 

created conceptual models to communicate the conclusion and recommendation for the 

case study. These recommendations and conclusions can assist the company and practi-

tioners in the same domain in terms of implementing the PD process. In this context, we 

developed a casual loop for the system’s reliability and created a generic representation 

of the cause and effect of the failure events using the Fishbone diagram in Appendix A. 

Ultimately, we evolved an elevator pitch model that includes the conclusion and recom-

mendation for the case study, i.e., increasing the system’s reliability based on data-driven 

methodology. 

4.2.1. Cause and Effect of the Failure Events 

We believe that the cause and effect of the failure events aid in facilitating the prob-

lem’s understanding based on conceptual modeling and data analysis results. Appendix 

A includes Figure A1, which portrays a generic representation of the cause and effect of 

the failure events using the Ishikawa diagram, which is also known as the Fishbone dia-

gram. The effect (problem) is an inferior system’s reliability. The cause is categorized into 

main and secondary causes. We categorized the secondary causes into eight main causes: 

(1) use failures (HMI issues), (2) product failures, (3) maintenance process (method), (4) 

maintenance personnel, (5) environmental impact, (6) measurement of system’s reliability 

through MTBF, (7) the lack of design improvement, and ultimately (8) a lack of systems 

engineering overview, including reliability engineering activities such as reliability pro-

grams. Each category has a primary and secondary cause(s). For instance, the use failures 

category has “User unfamiliar with the system” as the primary cause. At the same time, 

“push the wrong button,” “pass over gate closing,” and “forget close gate (door)” are sec-

ondary causes. The two main categories are use failures and product (mechanical and 

software) failures and they are obtained by classifying failure data using semi-supervised 

machine learning. However, the other six categories lead to product failures where meas-

urement of the system’s reliability is a measurement of the product failures rate, which 

leads to the MTBF measurements. We also included the environmental factors as a result 

of the weather data analysis in the figure (Figure A1), where we have humidity, salt to icy 

roads, and precipitation, as we observed a correlation between those parameters and the 

failure events. 

4.2.2. Casual Loop System’s Reliability 

Causal loops provide a visualization of our understanding of a particular problem, 

its variables, their dynamics, and their connections to one another. Causal loops aid in 

building a rational story by linking several loops together [68]. Figure 27 shows a casual 

loop for the system’s reliability. Figure 27 consists of three reinforcing loops (positive feed-

back loops) with three different colors, i.e., red, green, and blue. The blue loop illustrates 

that increasing the system’s reliability decreases failure events. On the other hand, more 

failure events (data) reduce the system’s reliability. The red loop shows that increasing 

the system’s reliability increases the profit in the long term. With respect to the short-term 

increase in a system’s reliability, including increasing the design’s robustness, it affects 

profits negatively as its costs include reliability engineering activities in the starting phase. 

The green loop illustrates the use of conceptual modeling and data analysis to enhance 

the design robustness and decrease the failure events. Increasing design robustness im-

proves the system’s reliability. This causal loop focuses on future solutions based on con-

ceptual modeling and data analysis results of this case study. 
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Figure 27. Casual loop: system’s reliability. 

4.2.3. Elevator Pitch: Conclusion and Recommendation 

Figure 28 visualizes the conclusion and recommendation in the form of elevator pitch 

for the company, focusing on the company’s management. Figure 28 comprises four 

boxes: 

• The left upper box lists the customer value proposition. This value includes increas-

ing the system’s reliability, which decreases the system’s downtime and increases its 

availability. 

• The upper right box lists the business propositions. These propositions are field-

proven designs that allow 24/7 operations in order to increase the market share and 

thus maximize profits. 

• The middle box lists the system’s requirements. The most vital system requirement 

is that the system shall operate with minimum failures under its European condition. 

These European conditions include mainly the western Europe market. This require-

ment is triggered by the customer and business value propositions. The system’s re-

quirement focuses on increasing the system’s reliability. 

• The lower box in the middle lists the system’s design and technology. The design and 

technology include several aspects, focusing on integrating data into the company’s 

development and maintenance processes by adopting more data-driven methodolo-

gies. This methodology can use feedback data such as failure data in the early phase 

of the PD process and the maintenance process. The data-driven methodology should 

include external data such as weather data to investigate the environmental factors 

and to form an explanation and correlation between failure events and other envi-

ronmental factors. These factors include humidity, snow, salt, temperature, etc. The 

design and technology suggest improving the HMI within the PD and, in addition, 

improving the software issues (bugs) and hardware issues. Improving these issues is 

more urgent than the plan for the company, which includes introducing a sensor 

strategy toward CBM to build further digital twins. We conducted a case study ex-

ploration of this actual need in [15]. However, these envisions regarding the CBM 

can start by adapting the failure data analysis. For instance, the sensors can be in-

stalled in the most critical subsystem for remote health monitoring, further building 

up the CBM by using sensor strategies and by installing sensors for the next critical 

subsystem, i.e., the platform (ref. Figure 10). 

There are enable and drive relationships between the boxes. Similarly to Figure 27, 

Figure 28 also simultaneously shows the result of conceptual modeling and the data anal-

ysis’s results. Conceptual modeling supported the data analysis. At the same time, the 

failure data analysis generally supported conceptual modeling and the elevator pitch, 

which includes the conclusion and recommendation model specifically. 
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Figure 28. Elevator pitch: conclusion and recommendation (fitness-for-purpose). 

5. Discussion 

We divided this section into four subsections. The first three subsections discuss each 

research question for this case study concerning the research’s results. This section ends 

by listing the study’s limitations. 

5.1. Conceptual Modeling and Data Analysis Improve System Developers’ Understanding 

The first research question, RQ1, is: “How can conceptual modeling and data analysis 

enhance product developers’ understanding of the system?”. This study exemplified con-

ceptual modeling and data analysis implementation for a small–medium-sized company 

that delivers APS, including maintenance and installation. The company is in the transi-

tion of developing its own systems. We applied conceptual models and data analysis iter-

atively and recursively in this study. We conducted several iterations by conducting the 

data analysis and developing conceptual models. These iterations were also used as in-

puts for one another. In addition, we used conceptual models as inputs to guide the data 

analysis, and we used the data analysis as an input to support conceptual models. The 

feedback from the company indicates that this combination of data analysis and concep-

tual models is valuable for increasing the understanding of the systems’ reliability. The 

same feedback was also obtained from other practitioners from the industry and academia 

when we presented the results to them. 

Conceptual models aid in explaining the business and customer value proposition. 

This value is summarized in the elevator pitch (Figure 28). Several conceptual models can 

be applied using multi-views and different levels of abstraction. We developed a func-

tional flow for conducting the maintenance tasks for all failure events, focusing on the 

gate (ref. Figure 25). This focus is a result of the data analysis, as we figured out that the 

gate is the most critical subsystem. Furthermore, we developed two workflows for car 

entry and retrieving (ref. Figures 23 and 24), focusing on the gate, i.e., to understand the 

user and the system part of opening and closing the gate. The functional and workflow 
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analyses aid in providing a shared understanding among various stakeholders within the 

company and researchers. 

The challenge is to develop the optimal number of conceptual models that provides 

a complete and sufficiently realistic picture to enhance the product developer’s under-

standing but that does not overwhelm the researchers or practitioners when implement-

ing the conceptual models. In this context, we found that the principles, objectives, and 

recommendations mentioned in Section 2.2 aid early validations with the needed number 

of conceptual models [50]. In addition, these recommendations assist in developing sev-

eral conceptual models at the first iteration, which enhances the product developer’s un-

derstanding via visualization and communicating shared understanding. The second it-

eration emphasizes the most significant conceptual models. The third iteration focuses on 

improving the understating and improving these effective models’ quality. In this study, 

we showed only the most significant conceptual models from the third iteration. 

Failure data analysis aided conceptual modeling in order to explore an inferior sys-

tem’s reliability by calculating the failure rates and MTBF. In addition, failure data classi-

fication assisted in classifying the failure events into product (mechanical or software) 

failures and HMI issues (user failures). We observed a need to fix failures that decreases 

the system’s reliability. These failures include, among others, software issues such as soft-

ware bugs and mechanical issues such as over friction. This need is more urgent in the 

short-term period than building up a sensor strategy toward CBM that can be developed 

into a digital twin. The CBM can be the long-term vision. 

On the other hand, weather data helped in discovering the impact of environmental 

factors on failure events. For instance, we discovered that salting roads in Norway nega-

tively affects failure events, especially in a colder city that rains less. These data analyses 

supported conceptual modeling developments and discoveries. However, we conducted 

and analyzed the data analysis in an iterative manner. This iterative process included pre-

processing the data in a template (or frame) in a manner that makes sense when analyzing 

it. We consumed 80% of the data analysis period (almost one year) in pre-processing, 

which concurred with the literature [69,70]. Pre-processing operations include under-

standing the data and its metadata. We conducted several interviews and observations to 

understand the data. In parallel, we iterated the conceptual modeling process and itera-

tively supported the data analysis until conceptual modeling and data analyses came into 

unity. We generated one template at the end for failure and weather data. 

The failure data and weather data analysis aided in forming an explanation by exam-

ining the relations and correlations among the failure’s events and the environmental fac-

tors. In addition, this data analysis permitted the identification of problems and anticipa-

tory thinking regarding the differentiations in failures between two types of parking sys-

tems, i.e., public, and private. Implementing conceptual modeling and data analysis iter-

atively and recursively aid in enhancing the understanding of the product’s developers 

as well as communication and decision making to increase the systems’ reliability. 

5.2. Conceptual Modeling Facilitates Data Identification to Increase A System’s Reliability 

The second research question, RQ2, is: “How conceptual modeling facilitate data 

identification to increase a system’s reliability?”. We identified, collected, and analyzed 

data in order to increase the system’s reliability. Identifying data that can increase a sys-

tem’s reliability is a result of mainly examining conceptual models together with research 

data collection. The study showed that the value network is one of the main conceptual 

models that aid in this identification by identifying, visualizing, and understanding the 

critical stakeholders (data sources) in the development and operation phases. We identi-

fied and collected two sources of data: internal and external data. Internal data in terms 

of failure data and external data consisted of weather data for investigating the environ-

mental factors that affect the failure events. 

In addition, research data supported the study’s data sources identification. The re-

search data include interviews, observation, and workshops. Furthermore, we had an 
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office in the company. This allocation also aided in enhancing the value network and fa-

cilitated the data identification for the case study. For instance, identifying the external 

data, i.e., weather data to investigate environmental factors that affect failure events, is 

supported by the research data collection alongside the subject-matter expert from the 

industry and academia, mainly the practitioners in those sectors. 

5.3. Eeffective Conceptual Models That Facilitate the Product Developers’ Understanding 

The third research question, RQ3, is:” What are effective conceptual models for facil-

itating product developers’ understanding of an APS?”. For this study, we developed ap-

proximately twenty models at the first iteration. In the second iteration, we proceeded 

with fifteen models. In the third iteration, we concluded with five models that are the most 

significant ones that provide the product developers with the overview and the needed 

understanding regarding the system’s reliability. These models that we found to be the 

most effective include, among others, the value network, workflow, functional flow, fish-

bone diagram, casual loop, and fitness-for-purpose (elevator pitch). 

5.4. Research Limitations 

Limitations are connected to including in-system (sensor) data as it was not techni-

cally possible to collect sensor data for the same period of failure data. In addition, there 

is a lack of longitudinal research over multiple case studies. Research in such environ-

ments is complex and has several context-dependent factors that can influence the out-

come. However, one of the industry partners conducted the first iterations using this 

study’s methodology, and the results are promising. 

The number of conceptual models that we need to enhance the product developer’s 

understanding of the systems’ reliability is highly context-dependent. The numbers are 

also dependent on the expertise and experience of the people involved in developing 

those models. Furthermore, we need to measure the effectiveness of the conceptual mod-

els we use in this study by using different means, such as interviews, workshops, obser-

vations, and surveys with other partners in the research project. 

On the other hand, sustainability as an aspect that had not been included in this case 

study. We could consider analytics related to the sustainability aspect. Sustainability an-

alytics and digitalization emphasize data identification, collection, and analysis to support 

early decision making in the early phase to ensure a sustainable product development 

process, focusing on humans in the center [71]. This aspect is not included due to the lim-

ited data available for the analysis in this context. The sustainability analytics covers goals 

8 and 9 of the United Nations 17 sustainability Development Goals [72]. These goals, i.e., 

goal 8, focus on mobilization, automation, and artificial intelligence areas. 

6. Conclusions 

This study exemplifies the use of conceptual modeling and data analysis to increase 

a system’s reliability by enhancing the system’s developer understanding. The case study 

was carried out for a medium-sized company. The company delivers APS. The combina-

tion of conceptual modeling and data analysis facilitates the developer’s understanding 

of the system’s reliability. We conducted this combination iteratively and recursively. 

Data analyses and conceptual modeling guide and support each other. Data analyses sup-

port conceptual modeling, where conceptual modeling facilitates understanding and 

communication regarding data and its analysis. This understanding includes identifying 

the needed data to analyze to explore a system’s reliability. In this context, we collected 

internal and external data. Failure and weather data represent internal and external data, 

respectively. We analyzed the collected data to explore patterns, correlations and form an 

explanation to support conceptual modeling. 

We found that conceptual modeling and data analysis complement each other. We 

also found that this combination increases the understanding of the SOI in general and its 
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most critical parts. This understanding aids in forming an explanation and observing a 

relation or correlation for failure events. Furthermore, this understanding enhances the 

early phase of the NPD process by closing the loop using feedback data. In this study, we 

use failure data as feedback data. We use weather data to understand the impact of envi-

ronmental factors on failure events. 

On the other hand, we complement the data analysis results using conceptual mod-

eling to facilitate communication and providing a shared understanding of the problem 

and solution domain regarding the system’s reliability among various stakeholders in the 

company and academia. Conceptual modeling connects the overall understanding with a 

more in-depth data analysis. Conceptual modeling supports the decision-making process 

via a data-driven methodology. This decision process includes the maintenance process 

and product developers’ decisions in the early design phase of the new product develop-

ment process. 

Further research can include a more comprehensive data analysis, including normal-

ization and regression analysis. In addition, further research can include the sustainability 

aspect, such as using AI to adapt the generative design and reduce and optimize materials. 

Furthermore, AI can be combined to develop a digital twin to secure optimal designs and 

to provide an overview of real-time emissions. In addition, further research can also in-

clude using blockchain to trace the supply chain’s materials and workforces. 
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Appendix A 

This appendix shows Figure A1, which was discussed earlier in the Results section 

(ref. Section 4.2.1). 
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Figure A1. A generic representation of the cause and effect of the failure events using an Ishikawa 

diagram, which is also known as a fishbone diagram. 
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