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Abstract—Distributed graph filters have recently found appli-
cations in wireless sensor networks (WSNs) to solve distributed
tasks such as reaching consensus, signal denoising, and recon-
struction. However, when implemented over WSNs, the graph
filters should deal with network limited energy constraints as
well as processing and communication capabilities. Quantization
plays a fundamental role to improve the latter but its effects on
distributed graph filtering are little understood. WSNs are also
prone to random link losses due to noise and interference. In this
instance, the filter output is affected by both the quantization
error and the topological randomness error, which, if it is
not properly accounted in the filter design phase, may lead
to an accumulated error through the filtering iterations and
significantly degrade the performance. In this paper, we analyze
how quantization affects distributed graph filtering over both
time-invariant and time-varying graphs. We bring insights on the
quantization effects for the two most common graph filters: the
finite impulse response (FIR) and autoregressive moving average
(ARMA) graph filter. Besides providing a comprehensive anal-
ysis, we devise theoretical performance guarantees on the filter
performance when the quantization stepsize is fixed or changes
dynamically over the filtering iterations. For FIR filters, we show
that a dynamic quantization stepsize leads to more reduction of
the quantization noise than in the fixed-stepsize quantization. For
ARMA graph filters, we show that decreasing the quantization
stepsize over the iterations reduces the quantization noise to zero
at the steady-state. In addition, we propose robust filter design
strategies that minimize the quantization noise for both time-
invariant and time-varying networks. Numerical experiments on
synthetic and two real data sets corroborate our findings and
show the different trade-offs between quantization bits, filter
order, and robustness to topological randomness.

Index Terms—Distributed graph filtering, graph signal pro-
cessing; graph filters; quantization; time-varying graphs.

I. INTRODUCTION

GRAPH filters are enjoying an increasing popularity in
graph signal processing (GSP) and graph convolutional

neural networks [2], [3]. Their ability to be convolved with
a graph signal renders graph filters versatile in a variety of
applications ranging from recommender systems to spectral
clustering [4-9]. Graph filters find also applications in wireless
sensor networks (WSNs) [10-14]. Here, the signal represents
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the sensor measurements and the WSN serves as a platform to
perform distributed operations as well as a proxy to represent
signal similarities in adjacent sensor nodes. Graph filters are
useful for distributed signal representation [15], reconstruction
[16], [17], denoising [18], [19], consensus [20], [21] and
network coding [22]. Motivated by these applications, this
paper focuses on distributed graph filtering, considering also
practical constraints within the context of WSNs.

Distributed graph filtering can be implemented with two
types of recursions over the nodes: finite impulse response
(FIR) and autoregressive moving average (ARMA) recursions.
In FIR graph filters, neighboring nodes communicate the input
signal for a finite number of iterations [18], [22-24]. In ARMA
graph filters, neighboring nodes communicate both the input
and former iterative output signal. Both implementations can
be used interchangeably as basic filtering blocks and often
lead to a different tradeoff between accuracy and robustness
to topological perturbations. The works in [11], [25] show that
ARMA filters can provide closed-form solutions to different
inverse problems on graphs and are more robust than FIRs
to deterministic topological changes (e.g. sensor movements),
while [26] shows that higher order FIR graph filters suffer less
from random topological changes (e.g. link losses).

For either implementation, in distributed filtering over
WSNs, we should account for the understringent energy, pro-
cessing and communication limitations of individual sensors.
This motivates strongly the need of quantization to save energy
and bandwidth of the sensor nodes performing cooperative
actions in control, surveillance and weather monitoring tasks
[10]. Thus, the quantization plays an important role prior
to data communication in distributed graph filtering, where
local node-to-node communication is required to reach a
common objective in the network. Since traditional temporal
filters and graph filters operate in different domains and are
radically different [2], the quantization analysis in distributed
graph filters is fundamentally different of that in the case
of temporal filters and is more related to distributed sig-
nal processing. Quantization has been extensively studied in
distributed systems in the context of communications and
signal processing through consensus algorithms [27-34], which
present many similarities with graph filtering from a dis-
tributed problem point-of-view. However, in consensus, the
goal is to exchange quantized data to reach a consensus with
respect to some global quantity, while with graph filters the
goal is to exchange quantized data to perform any graph
filtering task. The importance of quantization from the graph
signal processing perspective has been recently recognized in
[35-37]. In particular, [35] –the most related to our work–
discusses the impact of fixed-stepsize quantization on FIR
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graph filters. The work in [37] approximates the graph spectral
dictionaries as polynomials of the graph Laplacian operator
and learns polynomial dictionaries that are robust to signal
quantization. Finally, [36] develops an adaptive quantization
scheme for FIR graph filters that minimizes the quantization
errors by bounding the exchanged messages and optimizing
the bit allocation. While being relevant contributions on the
quantization aspects of graph filtering, the limitation of these
works is that they focus solely on FIR graph filters and fixed-
stepsize quantization. Furthermore, they consider only time-
invariant WSN topologies. This is a limitation in WSNs since
sensor nodes are prone to local malfunctions or failure of
communication links with a certain probability.

In this work, we analyze quantization effects of distributed
graph filters (FIR and ARMA) on both time-invariant and
time-varying topologies. Besides providing a broader analysis
with an additional focus on time-varying graphs, we devise
theoretical performance guarantees on the filter performance
when the quantization stepsize is fixed or changes dynamically
over the filtering iterations. We highlight also the benefits
of such dynamic stepsize to reduce the quantization errors.
Further, we consider dithered quantization [38], [39] to make
the assumption of quantization noise uncorrelated with input
signals over the different graph filter iterations hold; an as-
sumption commonly made in other current works but unjusti-
fied. To reduce the communication cost, this work focuses on
the quantization of the signals. To decrease further the energy
consumption, the computational complexity of implementing
the filter may be considered but this is beyond the current
scope of the paper.

Our quantization effect analysis sheds light on different
tradeoffs in distributed graph filtering over WSN: FIR versus
ARMA graph filter; fixed-stepsize quantization versus dynam-
ically decreasing quantization stepsizes; and quantization rate
versus link loss probability. The overall research question we
are interested in is how quantization affects distributed graph
filtering over both time-invariant and time-varying graphs. The
specific contributions of this paper in relation to this question
are fourfold:

1) We investigate the quantization effects on distributed FIR
graph filters. We analyze the impact of fixed and dynamic
quantization stepsize on the filtering performance and
analyze their tradeoffs. We show that a dynamic quantiza-
tion stepsize allows to reduce more the quantization mean
squared error (MSE) than in fixed-stepsize quantization.
We devise also a robust filter design that minimizes the
quantization noise.

2) We investigate the quantization effects on distributed
ARMA graph filters. We analyze the impact of fixed
and dynamic quantization stepsize on the filtering perfor-
mance and analyze their tradeoffs. We develop an ad-hoc
dynamic quantization stepsize strategy that reduces the
quantization MSE to zero at the steady-state.

3) We perform a statistical analysis to quantify the quantiza-
tion effects on FIR and ARMA graph filters over random
time-varying networks, which has not been considered in
previous work. We propose a novel filter design strategy
that is robust to quantization and topological changes.

4) We characterize the different tradeoffs between the FIR
and ARMA graph filters in terms of fixed-stepsize versus
dynamically decreasing quantization stepsize and be-
tween the quantization rate and the link loss probability.

The rest of this paper is organized as follows. Section II
provides the background material. Sections III and IV analyze
the quantization effects on FIR and ARMA graph filters,
respectively. Section V contains the quantization analysis for
random time-varying graphs. Section VI presents the numeri-
cal results. The paper conclusions are provided in Section VII.

II. BACKGROUND

Consider a graph G = (V, E) with node set V = {1, . . . , N}
and E ⊆ V × V the set of M edges, where E is composed
of the tuples (j, i) if there is a link from node j to i.
The set of all nodes connected to node i is denoted by
Ni = {j ∈ V|(j, i) ∈ E}. The graph can be represented by
its adjacency matrix A whose (j, i)th entry is nonzero only if
nodes j and i are connected. If the graph is undirected, it can
also be represented by the graph Laplacian matrix L, such as
the discrete Laplacian Ld = D−A or normalized Laplacian
Ln = D−1/2LD−1/2, with D is the diagonal degree matrix.

On the vertices of G, a graph signal can be defined as a
map from the vertex set (node set) to the set of real numbers,
i.e., x : V → R. We can denote the graph signal by a vector
x = [x1, . . . , xN ]T, whose ith entry xi denotes the signal
at node i. WSNs match the above terminology: the nodes
represent the sensors; the edges the communication links; and
the signal the sensor data. On the graph G, we can also define
the graph shift operator [2], [7], which is a local operation that
replaces the signal value xi at node i with a linear combination
of values at the neighbors of node i. To keep the discussion
general for both directed and undirected graphs, we will use
as graph shift operator the matrix S, which has plausible
candidates A, L or any of their normalized and translated
forms [2]. We consider graphs for which S is real-valued and
diagonalizable, and thus admits an eigenvalue decomposition
S = UΛU−1 with eigenvector matrix U = [u1, . . . ,uN ] and
diagonal eigenvalue matrix Λ = diag(λ1, . . . , λN ) [2], [23],
where λ1 up to λN denote the graph frequencies. In this work,
we assume that the eigenvalues are real-valued and can be
readily ordered from small to large. Complex eigenvalues can
have ordering using the total variation measure, as proposed in
[7]. This eigendecomposition holds for all undirected graphs
based on the graph Laplacian and some directed graphs
based on the adjacency matrix [7], [40], [41]. By considering
the eigendecomposition of the graph shift operator, we can
alternatively analyze the graph signal x by projecting it onto
the shift operator eigenspace as x̂ = U−1x. This projection is
referred to as the graph Fourier transform (GFT) because the
ith element x̂i denotes how much eigenvector ui represents
the variation of x over G and because the variation of the
different eigenvectors can be ordered. The inverse GFT is
x = Ux̂. We shall assume that the shift operator has an upper
bounded spectral norm, i.e., ‖S‖2 ≤ ρ <∞ where ρ denotes
the spectral radius of S. Since any matrix S with entries Sij
has bounded spectral norm ‖S‖2 < ∞, in practice, this also
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means the graphs of interest have finite dimension and edge
weights, as shown in [42], [43]. An upper bounded spectral
norm of the shift operator S implies also that the maximum
eigenvalue of S is upper bounded. For example, for Laplacian
matrices L belonging to a set L, the minimum eigenvalue
is bounded below by λmin and the maximum eigenvalue is
bounded above by λmax i.e., ||L||2 ≤ ρ = max{|λmin|,
|λmax|}. More specifically, for discrete Laplacian L = Ld,
we can take λmin = 0 and λmax related to the maximum
eigenvalue of any of the graphs, while for the normalized
Laplacian L = Ln, we can take λmin = 0 and λmax = 2.

A. Graph filter

A one-hop filtering operation on a graph combines locally
the signal from node i and the signals {xj} from all neighbors
j ∈ Ni of node i to generate the output:

yi =
∑

j∈Ni∪i
φijxj (1)

for some scalar coefficients φij . By stacking all nodes’ outputs
in one vector y = [y1, . . . , yN ]T, and performing several con-
secutive one-hop filtering operations as in (1) with exchanges
of information among neighbors, we obtain y = H(S)x,
where the matrix H(S) : RN → RN denotes the graph filter.
The graph filter can be expressed as a function of the shift
operator S in different ways. Two widely used approaches1

are the FIR graph filter [22], [23] and the ARMA graph filter
[11], [41].

FIR. An FIR graph filter is a polynomial of order K in the
shift operator S with output:

y = H(S)x =

K∑
k=0

φkS
kx (2)

and scalar coefficients φ0, . . . , φK . The filtering behavior of
H(S) can be viewed by means of the GFT:

h(λ) =

K∑
k=0

φkλ
k for λ ∈ [λmin, λmax] (3)

which is a polynomial in the generic graph frequency λ. This
spectral representation allows to define a filtering operator by
specifying the analytic function h(λ) : [λmin, λmax] → R;
hence, by approximating the latter with the polynomial in (3),
we can implement it distributively over the nodes through
the recursion (2) [18]. The distributed implementation is
feasible because the shifted signal x(1) = Sx can be obtained
through local exchanges between neighboring nodes in one
communication iterate [cf. (1)]. The kth shifted signal can
be obtained recursively as x(k) = Sx(k−1), where nodes
communicate to their neighbors the shifted signal x(k−1)

obtained in the (k − 1)th communication iterate. The output
y of the FIR graph filter is obtained after K iterations of
exchanges between neighbors, implying that in total, each
node i exchanges Kdeg(i) messages with its neighbors. This
yields a communication complexity of order O(MK) [11].

1Recent works consider also more general approaches such as the node-
variant [22] and the edge-variant graph filter [24]. To keep the exposition
simple, we will discuss quantization of the two baseline approaches and leave
the extension to the other methods for future research.

ARMA. The ARMA graph filter extends (3) to a rational
spectral response [11]:

h(λ) =

∑Q
q=0 bqλ

q

1 +
∑P
p=1 apλ

p
=

K∑
k=1

(
ϕk

1− λψk

)
+

L∑
l=1

φlλ
l

for λ ∈ [λmin, λmax]

(4)

which allows for more flexibility when designing the filter
coefficients a1, . . . , aP and b0, . . . , bQ (or the respective roots
ϕ1, . . . , ϕK , poles ψ1, . . . , ψK , and direct term φ1, . . . , φL
coefficients) [41]. Without loss of generality, we consider
L = 0 and refer to the filter in right-side of (4) as an ARMAK
graph filter [11].

We can implement the ARMAK graph filter through the
iterative recursion:

w
(k)
t = ψkSw

(k)
t−1 + ϕkx

yt =

K∑
k=1

w
(k)
t

for t ≥ 1 (5)

where yt is the ARMAK output at iteration t and w
(k)
t is

the output of the kth branch at iteration t with arbitrary
initialization w(0). Recursion (5) builds the overall output yt
at iteration t as the sum of all K parallel branches outputs
w

(k)
t and converges (t → ∞) to a steady-state only if the

roots satisfy |ψk| ≤ ρ for all k = 1, . . . ,K, where ρ is the
spectral radius of S [11].

The output of each branch w
(k)
t can be implemented dis-

tributively in a similar way as the FIR filters. The difference is
that neighboring nodes exchange now the former output w

(k)
t−1.

Node i combines the shifted outputs w(k)
jt from all neighbors

j ∈ Ni with its input signal xi with coefficients (as given in
(5)) to obtain the output w(k)

it . Finally, node i combines locally
all branches’ outputs w

(1)
ti , . . . , w

(K)
ti to obtain the overall

ARMAK output yit at iteration t. This procedure accounts
for K communications between neighbors at each iteration t;
hence, the overall communication cost of the ARMAK filter
for t = tmax iterations is of order O(MKtmax) [11].

Expressions (2) and (5) represent two fundamental algo-
rithms to implement distributed GSP operations over WSNs.
Our goal is to analyze the effects of dithered quantization
to the filter outputs and account for it in the filter design
phase. We shall analyze first quantization effects for static
topologies in Sections III and IV and later for random time-
varying topologies in Section V. Before proceeding with this
analysis for the FIR graph filters, let us briefly introduce the
conceptual terminology of dithered quantization.

B. Dithered quantization

Quantization consists of encoding the data prior to its trans-
mission with a certain number of bits, reducing the amount of
information to be transmitted as compared to the initial data
[44]. During the quantization, the information is compressed
in a lossy manner due to a round-off error generated in a
finite-precision machine.

Uniform quantizers map each input signal value to the
nearest value of a finite set of quantization levels, where the
quantization stepsize between two adjacent levels is constant



IEEE TRANSACTIONS ON SIGNAL PROCESSING (Accepted)

[45]. The mapping of a uniform quantizer Q : R→ [−r, r] is
expressed as Q(x) , ∆([ x∆ ] + 1

2 ) for |x| < r, where B is the
number of levels, b = log2(B) is the number of bits, r is the
dynamic range, and ∆ = 2 r

B is the stepsize. We denote the
quantized version of signal x as x̃ = Q(x), and it is given by:

x̃ = x + nq (6)
where nq is the quantization noise. Although the quantization
noise is deterministic, for a sufficiently small quantization
stepsize ∆ (high rate conditions), it can be well modeled
as a uniformly random variable with zero-mean and variance
∆2/12, that is independent from the input [39], [46].

In order to give the quantization noise certain desirable
properties that ensure the zero-mean uniform random variable
assumption with variance ∆2/12 and independence from the
input, we consider in this work dithering quantization [38],
[39], [46]. Dithering consists of adding a random additive sig-
nal nd, called dither, to the input signal x prior to quantization.
Dithering is widely used in distributed signal processing [28],
[31], [34], [47], which consists of iterative algorithms akin to
distributed graph filtering. In subtractive dithered quantization,
the dither signal is generated by a pseudo-random generator at
the transmitter node and it is subtracted at the receiving node
after transmission. The receiver node uses the same pseudo-
random generator, which needs to be agreed prior to starting
the communication. Let us denote xd = x + nd the dithered
signal of x. By applying quantization to the dithered signal
xd, the transmitted signal becomes:

x̃d = Q(xd) = Q(x + nd) = x + nd + nq = x̃ + nd (7)
where signal x̃ can be recovered by the receiver node by
subtracting the dither nd from the received signal x̃d.

The dither signal nd follows an i.i.d. uniform distribution
with first and second order moments:

E[nd] = 0 and Σd = σ2
d I =

∆2

12
I. (8)

The quantization noise nq also follows a uniform distribution
with statistical properties:

E[nq] = 0 and Σq = σ2
q I =

∆2

12
I (9)

and with realisations independent of the input.

Note that for this model to hold, we are considering that the
entries of x+nd should be scaled to reside with high probabil-
ity in the dynamic quantization range (not overfloading) and
the probability of overfloading of the quantizer is sufficiently
small i.e., Pr(|(x + nd)i)| > ri) ≈ 0 for each i ∈ 1 · · ·N , by
fixing r2i = ϑ2E{(x + nd)

2
i }, with ϑ is some multiple number,

as adopted in [48], [49].

Two possible cases can be adopted when performing quan-
tization with substractive dithering, namely, a constant quan-
tization stepsize for all iterations or a dynamically decreasing
quantization stepsize over the iterations, which offers a benefit
as compared to a fixed quantization stepsize. Decreasing the
quantization stepsize implies transmitting more bits over the
iterations, but it can reduce the quantization noise or even
make it converge to zero. In the sequel, we will analyze both
cases.

III. FIR QUANTIZATION ANALYSIS

This section analyzes the quantization effects in FIR graph
filters. We first discuss the fixed quantization stepsize and
then the dynamically decreasing stepsize. Next, we formulate
a filter design problem that is robust to quantization noise.

A. Fixed quantization stepsize

Consider the kth shifted signal x(k) = Skx exchanged with
the neighbors. The quantized form of the latter is x̃(k) =

Q(x(k)) = x(k) + n
(k)
q . At the filter initialization, we have

x(0) = x, which quantized form is x̃(0) = x(0) + n
(0)
q . This

quantized signal is exchanged with neighbors leading to the
quantized shifted signal x(1) = Sx̃(0) = S(x(0)+n

(0)
q ). Signal

x(1) is further quantized into x̃(1) and subsequently transmitted
to the neighboring nodes. The process is repeated K times.
Based on the derivation in Appendix VIII-A, the FIR filter
output [cf. (2)] with quantization becomes:

yq =

K∑
k=0

φkS
kx +

K∑
k=1

φk

k−1∑
κ=0

Sk−κn(κ)
q (10)

where the second term on the right-hand side of (10) accounts
for the accumulated quantization error on the output:

ε = yq − y =

K∑
k=1

φk

k−1∑
κ=0

Sk−κn(κ)
q . (11)

We analyze next this quantization error in the spectral
domain to ease the filter design. The following proposition
provides a closed-form expression of the quantization MSE.

Proposition 1. Consider the FIR graph filter of order K in
(2) with coefficients φ0, . . . , φK and quantization error ε in
(11) under fixed quantization stepsize. Consider also the graph
Fourier transform ε̂ = U−1ε of the error with respect to the
shift operator S = UΛU−1. The average quantization MSE
per node ζ̂q = E

[
1
N tr(ε̂ε̂H)

]
is:

ζ̂q =
σ2

q

N

K∑
k=1

φ2k

k−1∑
κ=0

‖Λk−κ‖2F . (12)

where ‖·‖F denotes the Frobenius norm and σq is the uniform
quantizer standard deviation.

Proof : See Appendix VIII-B.
Proposition 1 characterizes the impact of the graph frequen-

cies Λ on the quantization in FIR graph filters. A shift operator
with large eigenvalues amplifies the quantization MSE. This
is because the high frequency terms contribute more to the
quantization noise. In other words, shift operators with small
spectral radius bounds are preferred (e.g., normalized Lapla-
cian or adjacency matrix). The filter coefficients φ1, . . . , φK
play also a role in the quantization error. As such, we can
leverage expression (12) to reduce the quantization MSE in
the design phase, as suggested by [35]. While expression (12)
is useful if the eigendecomposition of the shift operator is
computationally feasible, we can easily bound it by using
the maximum eigenvalue. The latter can be estimated with
a lighter computational cost via power methods [50].

Corollary 1.1. Given the hypothesis of Proposition 1, the
quantization MSE on the filter output ζ̂q is always lower
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and upper-bounded. If the shift operator S has a maximum
eigenvalue λmax 6= 1, we can find closed form for these lower
and upper bounds2:

σ2
q

N

K∑
k=1

φ2k ηk ≤ ζ̂q ≤ σ2
q

K∑
k=1

φ2k ηk (13)

where ηk = (1− λ2max)
−1(λ2max − (λ2max)k+1).

Proof : See Appendix VIII-C.
The bounds in (13) suggest that by working with a fixed

quantization stepsize, the MSE has always a Cramer-Rao
lower-bound equivalence [51], which cannot be overcome
even by tuning the FIR coefficients in the design phase. In
other words, even with a robust design strategy as the one in
[35], we have an unavoidable error due to quantization that will
affect the filter frequency response. To tackle this issue, next,
we propose an approach based on dynamically decreasing the
quantization stepsize, which has the benefit to reduce the MSE.

B. Dynamically decreasing quantization stepsize

Consider the quantization stepsize ∆k, which is defined as
the ratio of the quantization range rk at iterate k over the
number of quantization intervals, is given by ∆k = rk/2

bk ,
where bk is the number of bits transmitted at iterate k. Let
us assume that with high probability, the entries of the input
signal are such that xlow ≤ (x + nd)i ≤ xupp for i ∈ 1 · · ·N .
The quantization stepsize can then be expressed as ∆k =
(xupp− xlow)/2bk . We assume here a fixed quantization range
over the iterations and a fix length codeword. By decreasing
∆k at each iterate k, more bits bk = log2((xupp − xlow)/∆k)
will be transmitted for the higher filter iterates (k → K). The
main result is given by the following proposition.

Proposition 2. Consider the FIR graph filter with shift op-
erator S such that 0 ≤ λmax ≤ 1. Consider also that the
input signal is quantized with a uniform quantizer, where the
quantization stepsize ∆k = (λmax)

k∆0 is decreasing over the
iterates k. Then, the quantization MSE ζ̂q of the FIR graph
filter is upper bounded by3:

ζ̂q ≤
∆2

0

12
r>φ1 (14)

where r = [1, 2, · · · ,K]> and φ1 = [φ21, φ
2
2, · · · , φ2K ]> is the

vector containing squared FIR coefficients for k = 1, · · · ,K.
Proof : See Appendix VIII-D.
As opposed to Proposition 1, expression (14) shows that

we can clearly minimize the quantization MSE through φ1.
Indeed, during the filter design phase, if we impose for the
filter coefficients the condition that r>φ1 ≈ 0, we can reduce
significantly the quantization MSE.
There exists clearly a trade-off between the quantization MSE
and the number of transmitted bits. For a small filter order
K, a decreasing stepsize can be adopted, providing lower
quantization MSE at the cost of more bits transmitted, as
compared to the use of a fixed quantization stepsize, while for
large filter orders K, a fixed stepsize can be adopted at the

2If the maximum eigenvalue λmax is exactly 1, we can still add a small
perturbation to it to make our assumption hold.

3The condition 0 ≤ λmax ≤ 1 can be easily met in practice by appropriately
selecting the shift operator (e.g, translated forms of Laplacian).

cost of higher quantization MSE. To reduce the quantization
MSE at the beginning and limit the communication cost in
the end, an alternative could be using decreasing stepsizes
at the beginning and then switching to start using the initial
given stepsize ∆0 if the number of bits transmitted after some
iterates exceeds a certain threshold.

C. Filter design

Given a desired frequency response h∗(λ), we propose to
design an FIR graph filter by solving the following convex
optimization problem:

minimize
φ0,...,φK

∫
λ

∣∣∣∣∣
K∑
k=0

φkλ
k − h∗(λ)

∣∣∣∣∣
2

dλ

subject to
1

12

K∑
k=1

φ2
k

k−1∑
κ=0

∆2
κ(λ

2
max)

k−κ ≤ ε

r>φ1 ≤ γ
δmin ≤ ∆k ≤ δmax, k ∈ [0, 1, 2, . . . ,K]

(15)

For a finite small constant ε, the first constraint upper bound
the quantization MSE in the cases of both fixed and decreasing
quantization stepsizes [cf. (52)]. The second constraint aims
to further reduce the quantization MSE where decreasing
quantization stepsize is used through φ1. For an infinite value
of γ, (15) leads to a similar optimization problem in [35] for
the case of fixed quantization stepsize, while for the case of
decreasing quantization stepsize, a finite small γ can be used.
In the last constraint, δmin and δmax represents, respectively,
the minimum and maximum quantization stepsize at each
iterate. The minimum quantization stepsize δmin implies also
a restriction on the maximum number of bits χ that can be
used at each iterate.

Let b be the average number of bits transmitted over the
iterates. By quantizing the initial data of b0 bits with b (i.e.,
b < b0), the communication cost of FIR graph filter in term of
number of bits exchanged reduces to O(MKb). The latter can
be obtained similarily to Section II-A or in [11], [24], [26].

IV. ARMA QUANTIZATION ANALYSIS

This section analyzes the quantization effects on distributed
ARMA graph filters. Since ARMA filters reach the designed
frequency response at steady-state, the signal quantization will
have also an effect on the filter convergence. We show in this
section that the overall quantized MSE converges to zero if
a dynamically decreasing quantization stepsize is considered,
while this is not the case for the fixed stepsize-size quantizer.

A. Fixed quantization stepsize

Consider the parallel ARMAK graph filter in (5) and
let us indicate by w

q(k)
t = Q(w

(k)
t ) = w

(k)
t + n

q(k)
t

the quantized signal of branch k at iteration t, i.e., w
(k)
t .

Here, n
q(k)
t denotes the respective quantization noise. Let

also wt = [w
(1)
t

>
,w

(2)
t

>
, · · · ,w(K)

t

>
]> be the NK × 1

stacked vector containing all branches outputs and nq
t =

[n
q(1)
t

>
,n

q(2)
t

>
, · · · ,nq(K)

t

>
]> the NK × 1 stacked vector of

quantization noise. Then, we can write the ARMA output yt
due to quantization with the following compact notation:
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wq
t = (Ψ ⊗ S)(wq

t−1 + nq
t−1) +ϕ⊗ x

yq
t = (1> ⊗ IN )wq

t

for t ≥ 1 (16)

where ⊗ indicates the Kronecker product, Ψ =
diag(ψ1, ψ2, · · · , ψK) is the K × K diagonal matrix
containing the former-output coefficients in the main diagonal
and ϕ = [ϕ1, ϕ2, · · · , ϕk]> is the K × 1 coeffcient vector
associated to the input. By unfolding wq

t in (16) to all its
terms, we have:

wq
t =(Ψ ⊗ S)tw0 +

t−1∑
τ=0

(Ψ ⊗ S)τ (ϕ⊗ x)+

t−1∑
τ=0

(Ψ ⊗ S)t−τnq
τ

(17)

where the first two terms on the right-hand side account for
the ARMA output up to iteration t, while the third term εq

t =∑t−1
τ=0(Ψ⊗S)t−τnq

τ accounts for the accumulated quantization
noise.

To analyze the MSE for the ARMA filter, let us first denote
by w∗ = limt→∞wq

t and by y∗ = limt→∞ yq
t the steady-

state values of wq
t and yq

t in (16), respectively. Let us also
define the error:

ε∗t = (Ψ ⊗ S)tw0 +

t−1∑
τ=0

(Ψ ⊗ S)τ (ϕ⊗ x)−w∗ (18)

which indicates how close the output of all branches wt

(without quantization) at iteration t are w.r.t. the steady-state
value w∗. We consider also the error εyt = yq

t − y∗ between
the quantized ARMA output yq

t in (16) and the steady-state
output y∗, which can be written as follows:

εyt = (1> ⊗ IN )ε∗t + (1> ⊗ IN )εq
t = ε∗yt + εq

yt (19)

where ε∗yt = (1>⊗IN )ε∗t indicates how close the unquantized
ARMA filter output yt at iteration t is w.r.t. its steady-state
y∗ and εq

yt = (1>⊗IN )εq
t accounts for the propagation of the

quantization noise over the iterations. Then by simple algebra,
the average MSE deviation per node of the error εyt in (19)
can be similarly split as:

ζyt =
1

N
E[tr(εytεH

yt)] = ζ∗yt + ζq
yt (20a)

with:

ζ∗yt =
1

N
E[tr((1> ⊗ IN )ε∗t ε

∗
t

H(1> ⊗ IN )H)] (20b)

ζq
yt =

1

N
E[tr((1> ⊗ IN )εq

tε
q
t

H
(1> ⊗ IN )H)] (20c)

where we have used the linearity of the expectation w.r.t the
trace and the independence of x, w0 and nq

τ . ζ∗yt is the MSE
for the case of unquantized filter output from the steady-
state output and ζq

yt is the quantization MSE at iteration t.
The following proposition provides an upper bound on the
quantization MSE.

Proposition 3. Consider the ARMAK graph filter of order K
in (16) with coefficients Ψ and ϕ, and quantization error εq

yt.
Let ψmax = max(|ψ1|, |ψ2|, · · · , |ψK |) be the ARMAK coeffi-
cient with largest magnitude and let all ARMAK branches be
stable i.e., ψmaxλmax < 1 for all k = 1 · · ·K. Consider also
that the signal is quantized with a uniform quantizer with a
fixed quantization stepsize ∆. The quantization MSE ζq

yt of the
filter at iteration t is upper bounded by:

ζq
yt ≤ Kσ2

q
(ψmaxλmax)

2 −
(
(ψmaxλmax)

2
)t+1

1− (ψmaxλmax)2
. (21)

Further, the steady-state (t→∞) quantization MSE is:

ζq
yt→∞ ≤ Kσ2

q
(ψmaxλmax)

2

1− (ψmaxλmax)2
. (22)

Proof : See Appendix VIII-E.
Proposition 3 shows that the quantization MSE ζq

yt of
ARMA graph filters is upper bounded by a term that depends
on the shift operator maximum eigenvalue. At steady-state
t → ∞, the overall ARMA MSE in (20a) is governed by
the quantization MSE ζq

yt since the deviation ζyt from the
steady-state vanishes ζ∗yt→∞ → 0 for convergent stable filters.
Therefore, we conclude that a fixed quantization stepsize heav-
ily affects the ARMA filter behavior, which even at the steady-
state, although not divergent, might lead to a completely
different filtering behavior.

The filtering behavior of the ARMA recursion will not be
considerably affected by the quantization noise in the early
regime (i.e., small value of t) as long as:

ζ∗yt � ζq
yt. (23)

However, for larger t, this inequality will be violated and the
overall ARMA MSE will by dominated by the quantization
MSE ζq

yt. While we might control (3) in the design phase of
FIR graph filters, we should consider the challenges encoun-
tered when designing convergent distributed ARMA filters
[11], i.e., the difficulty to guarantee an accuracy-quantization
robustness tradeoff. Rephrasing a non-convex design problem
akin to (15) is possible, but because of non-convexity that
may lead to suboptimal design solutions, in this work, we
tackle this challenge by considering a decreasing quantization
stepsize with t.

B. Dynamically decreasing quantization stepsize

Consider now a dynamic quantization stepsize ∆t that
decreases with t in a form that the quantization MSE ζq

yt

decreases with t at least with the rate of the unquantized
ARMA error ζ∗yt in (20a). The following proposition shows
this can be achieved.
Theorem 1. Consider the ARMAK graph filter of order K in
(16) with coefficients Ψ and ϕ, and quantization error εq

yt. Let
ψmax = max(|ψ1|, |ψ2|, · · · , |ψK |) be the ARMAK coefficient
with largest magnitude and let all ARMAK branches be stable
i.e., ψmaxλmax < 1 for all k = 1 · · ·K. Consider also that the
signal is quantized with a uniform quantizer with a decreasing
stepsize over the iterations t as ∆t = (ψmaxλmax)

t∆0. The
quantization MSE ζq

yt of the filter output at iteration t is upper
bounded by:

ζq
yt ≤

K∆0

12
t(ψmaxλmax)

2t (24)

which at the steady-state converges to zero (ζq
yt→∞ → 0) at

a rate of t(ψmaxλmax)
2t.

Proof : See Appendix VIII-F.
Theorem 1 shows the advantage of adopting a decreasing

quantization stepsize, which leads to vanishing the quanti-
zation MSE for the ARMA filters at the steady-state. This
behavior is similar to the convergence error of the unquantized
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ARMA ζ∗yt and suggests that at the steady-state, we can reach
the designed filter response. However, the quantization MSE
converges with a rate t(ψmaxλmax)2t instead of (ψmaxλmax)2t.
Faster convergence rates can be achieved by decreasing the
quantization stepsize at a faster rate over time but this requires
transmitting more bits for larger values of t.

Despite vanishing the quantization MSE at the steady-
state, the dynamic quantization stepsize comes together with
a cost. In particular, for large values of t, this implies that
the quantization stepsize becomes infinitesimal; hence, the
number of bits transmitted per iteration becomes that of the
conventional ARMA graph filter [cf. (5)] after some iteration
numbers t ≥ t∗. Nevertheless, this strategy reduces the
communication efforts in the first iterations, i.e., we can start
with a coarser ∆0. For bt being the number of bits transmitted
at iteration t, the communication cost of the ARMAK graph
filter per iteration is of order O(MKbt). If b is the average
number of bits transmitted over tmax iterations, the ARMAK
communication complexity is of order O(MKtmaxb). The
benefits of following this approach is that the ARMA design
is readily available from the unquantized setting [11].

A related problem that can be of interest is to find the best
sequence of quantization stepsizes ∆0, ∆1, · · · , ∆t by taking
into account the constraints of a given total bit budget B
available and a maximum number of iterations tmax, where
∆t = (ψmaxλmax)t∆0. Note that the quantization stepsize
∆t is defined as the ratio of the quantization range rt at
iteration t over the number of quantization intervals, which
is given by ∆t = rt/2

bt = (xupp − xlow)/2bt . Thus, the
best sequence of quantization stepsizes can be obtained for
ψmaxλmax 6= 0 and ψmaxλmax < 1 by solving the problem∑tmax
t=0 log2

(
(xupp−xlow)

(ψmaxλmax)t∆0

)
= B, which implies:

∆0 = 2(− B
1+tmax ) (xupp − xlow) (ψmaxλmax)−

tmax
2 (25)

V. QUANTIZATION ANALYSIS OVER TIME-VARYING
GRAPHS

We now extend the quantization analysis to cases where
the graph connectivity changes randomly over the filtering
iterations. This scenario is expected to occur in applications
of graph filtering over WSNs. For our analysis, we consider
directly the more general dynamically decreasing quantization
stepsize and the random edge sampling model from [26].

Definition 1 (Random edge sampling model [26]). Consider
an underlying graph G = (V, E). A random edge sampling
(RES) graph realization Gt = (V, Et) of G is composed of the
same set of nodes V and a random set of links Et ⊆ E that are
activated (i.e., (i, j) ∈ Et) with a probability pij (0 < pij ≤ 1).
The links are activated independently over the graph and time
and are mutually independent from the graph signal.

We consider the RES graph realization to model the link
losses that occur at each filter iteration. As such, the RES
model states that the realization Gt = (V, Et) at iteration t
is drawn from the underlying connectivity graph G = (V, E),
where the links Et ⊆ E are generated via an i.i.d. Bernoulli
process with probability pij . Let then P ∈ RN×N denote the
matrix that collects the link activation probabilities pij . Let

also S, St, and S̄ denote, respectively, the shift operator of
the underlying graph G, the graph realization Gt at iteration t,
and the expected graph Ḡ. Since graph G has an upper bounded
shift operator ‖S‖2 ≤ ρ, all its realizations Gt have also an
upper bounded shift operator ‖St‖2 ≤ ‖S‖2 ≤ ρ [52], [53].

Before, we proceed with the filter analysis, the following
remark is in order. Under the RES model, if S = A then
the expected shift operator is S̄ = E[At] = P ◦A. If S = L,
then the expected shift operator4 is S̄ = E[Lt] = D̄−(P◦A),
where D̄ = E[Dt] is a diagonal matrix whose non zero entries
are given by [D̄]ii =

∑N
j=1 aijpij .

A. FIR graph filters

When the FIR filter is run over RES graph realizations,
the instantaneous shift operator St is present in the filtering
expression (2) and affects the output. To characterize this
output, let us define the transition matrix of the RES graph
realisations Gt, . . . ,Gt′ , Θ(t′, t) =

∏t′

τ=t Sτ if t′ ≥ t and
I if t′ < t. The FIR filter output over a sequence of K time-
varying graphs is:

yt =

K∑
k=0

φk Θ(t− 1, t− k) x (26)

where the filter output is computed by considering all graph
realizations from the iteration t−K to t. From the indepen-
dence of RES graph realizations, the expected FIR output is:

ȳt = E
[
yt
]

=

K∑
k=0

φkS̄
kx. (27)

As shown in Appendix VIII-G, the quantized FIR filter out-
put over RES graph realizations can be written as yq

t = yt+εt
where the quantization error εt has the expression:

εt =

K∑
k=1

k−1∑
κ=0

φkΘ(t−κ− 1, t−k) n(κ)
q . (28)

The latter accounts for the percolation of the quantization
noise n

(κ)
q over different random graph realizations. Since

the quantization noise has a zero mean, the expected FIR
output with quantization is E

[
yq
t

]
= ȳt [cf. (27)]. That is,

in expectation, the FIR graph filter behaves as the filter in
(26) operating on the expected graph with unquantized data.

To quantify the statistical impact of the quantization noise,
we analyze the second order moment of the quantized output
yq
t in the following proposition.

Proposition 4. Consider the FIR graph filter operating over
the RES graph realizations Gt [cf. Def. 1] with shift operators
St upper bounded as ‖St‖2 ≤ ρ. Let also the filter input
signal be quantized with a dynamic quantization stepsize ∆t

at iteration t. The MSE of the filter output due to quantization
and graph randomness ζq

t = E[ 1
N tr(εtεtH)] is upper bounded

by:

ζq
t ≤

1

12

K∑
κ=1

∆2
κ−1

( K∑
k=κ

ρk−κ+1|φk|
)2

. (29)

Proof : See Appendix VIII-H.

4Note that if P has equal rows so that pij = pi for all j ∈ V or has
equal entries i.e. pij = p, we have E[Lt] = P ◦ L.
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Note that Proposition 4 represents the worst-case bound for
the graph randomness. This is similar to the unquantized graph
filters over RES graphs [26] because the spectral radius ρ
accounts for all potential link losses (it is independent on the
probabilities pij). On the other hand, this result serves as a
proxy for the MSE to design a graph filter that is robust to
both link losses and quantization error.
Filter design. Our goal is to design the filter coefficients
φ0, . . . , φK to reduce the quantization MSE in (29) while
keeping the quantized graph filter output yq

t close in expec-
tation to the unquantized output over the deterministic graph
G; we denote the latter as y� =

∑K
k=0 φ

�
kS

kx. Then, let us
consider the expected error due to quantization (bias):

ē = E
[
yq
t − y�

]
= E

[
yq
t

]
− y�. (30)

While we can design the coefficients to minimize this bias,
they will not account for the deviation around it. Therefore,
we consider the more involved problem of finding the filter
coefficients as a trade-off between the expected error of the
filter output and the quantization MSE. For this, let us define
the filtering matrix difference Ē:

Ē =

K∑
k=0

(
φk S̄k − φ�k Sk

)
(31)

that accounts for the response difference between the graph
filtering over the expected graph Ḡ and the graph filtering over
the deterministic graph G. Then, we find the filter coefficients
by solving the convex problem:

minimize
φk

∥∥Ē∥∥
F

+
γ

12

K∑
κ=1

∆2
κ−1

( K∑
k=κ

ρk−κ+1|φk|
)2

(32)
where ‖Ē‖F is the Frobenius norm of (31) and γ is a weight-
ing factor trading-off the expected error and quantization MSE.

B. ARMA graph filters

The parallel ARMA filter operating over random graphs has
the branches outputs:

wt = (Ψ ⊗ St−1)wt−1 +ϕ⊗ x (33)

which in the presence of quantization noise becomes:

wq
t = (Ψ ⊗ St−1)(wq

t−1 + nq
t−1) +ϕ⊗ x. (34)

By expanding (34) to all the terms, we can write the overall
ARMA filter output due to quantization as:

wq
t =
(t−1∏
τ=0

Ψ⊗Sτ
)
w0+ϕ⊗x+

t−1∑
τ=1

( t−1∏
τ ′=t−τ

Ψ⊗Sτ ′

)
(ϕ⊗x)+εq

t

yq
t = (1> ⊗ IN )wq

t

(35)

where in order to ease notation, we have denoted by εq
t =∑t−1

τ=0

(∏t−1
τ ′=τ Ψ⊗Sτ ′

)
nq
τ the percolation of the quantization

noise nq
τ over the parallel ARMA branches up to time t. Then,

let us consider the filter output error εyt = yq
t − y∗ from the

steady-state expected ARMA output y∗:
εyt = εq

yt + ε∗yt (36)

where εq
yt = (1> ⊗ IN )εq

t is the quantization error on the
output; ε∗yt = (1> ⊗ IN )ε∗t is the unquantized ARMA graph

filter error at iteration t w.r.t. to its steady-state y∗. Then, let
us denote by ε∗t the unquantized ARMA error w.r.t. to the
steady-state w∗, which is given by:

ε∗t =

(t−1∏
τ=0

Ψ⊗Sτ

)
w0+ϕ⊗x+

t−1∑
τ=1

( t−1∏
τ ′=t−τ

Ψ⊗Sτ ′

)
(ϕ⊗x)−w∗.

(37)
Under the RES graph model and given the zero-mean

quantization noise, it can be easily shown from (33) and (34)
that E[wq

t ] = E[wt]; i.e., in expectation both the quantized and
unquantized ARMA filters give the same output. However, the
quantization impacts on the second order moment of the filter
output error εyt in (36). We analyze next the MSE of the latter,
which by simple algebra, can be split as:

ξyt =
1

N
E[tr(εytεH

yt)] = ξ∗yt + ξq
yt. (38a)

where:

ξ∗yt =
1

N
E[tr((1> ⊗ IN )ε∗t (ε

∗
t )

H(1> ⊗ IN )H)] (38b)

ξq
yt =

1

N
E[tr((1> ⊗ IN )εq

t(ε
q
t)

H(1> ⊗ IN )H)] (38c)

and where we have used the linearity of the expectation
w.r.t the trace, the cyclic property of the trace, and the
independence of x, w0 and nq

τ . ξ∗yt is the MSE for the case
of unquantized filter w.r.t. to its steady-state output. The next
Theorem provides an upper bound on the MSE of the filter
output due to quantization and graph randomness ξq

yt, when
the quantization stepsize ∆t decreases at each iteration t.

Theorem 2. Consider the ARMAK graph filter operating
over RES graph realizations Gt [cf. Def. 1] with shift op-
erators St upper bounded as ‖St‖2 ≤ ρ. Let ψmax =
max(|ψ1|, |ψ2|, · · · , |ψK |) be the ARMAK coefficient with
largest magnitude and let all ARMAK branches be stable
i.e., ψmax ρ < 1 for all k = 1 · · ·K. Let also the filter
input signal be quantized with a uniform quantizer having a
stepsize decreasing over the iterations t as ∆t = (ψmax ρ)t∆0.
The MSE of the ARMA filter output at iteration t due to
quantization and graph randomness ξq

yt can be upper bounded
by:

ξq
yt ≤

K2 ∆0

12
t (ψmax ρ)2t (39)

making the quantization MSE converge to zero (ξq
yt→∞ → 0)

at a rate of t(ψmax ρ)2t.
Proof : See Appendix VIII-I.
Theorem 2 highlights that the quantization MSE converges

to zero when using a decreasing quantization stepsize, despite
the random topological changes and the presence of quan-
tization. This implies that there is no need to consider the
quantization MSE in the design phase. However, contrarily
to time-invariant graphs, the overall MSE of ARMA filters,
which is affected by both the quantization ξq

yt and the random
variation part ξ*

yt, can not reach the desired filter response at
steady-state (t → ∞), because even if the quantization MSE
ξq
yt can be made to converge to zero, the unquantized MSE ξ*

yt

does not converge to zero due to graph topological changes.
Similarly to time-invariant graphs in Section IV-B, where

we consider the constraints of a given total bit budget B
available and a maximum number of iterations tmax, the
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Fig. 1. (a) NSE of FIR graph filters over time-invariant graphs, when
approximating an ideal low-pass filter. The filter coefficients are optimized
by solving (15), where N = 200, as = 220 m, S = 0.5Ln, ∆0 = 0.044
and χ = 32 bits. FIR filters with fixed stepsize (FIR ∆ in green) and
decreasing stepsize (FIR ∆τ in pink) are compared to the Robust Filter
Design (RobFD) proposed in [35]. (b) Decreasing quantization stepsize
over iterations is given by ∆τ = (0.71)τ∆0 for bτ ≤ χ.

5 10 15
10

-15

10
-10

10
-4

N
S

E

(a)

5 10 15
10

-8

10
-6

10
-4

10
-2

(b)

Fig. 2. (a) NSE between the quantized output and the unquantized output
of FIR and ARMA filtering over time-invariant graphs for the Tikhonov
denoising problem, where N = 10000, as = 2200 m, S = λ−1

maxL and
w = 0.3, ψmaxλmax = 0.3. The FIR filter coefficients are optimized by
solving (15), with ∆0 = 0.15 and χ = 25 bits. The x-axis is the number
of iterations for the ARMA1 filter, while for the FIR filter “Iterations
= K”. (b) Decreasing quantization stepsize over iterations is given by
∆τ = (0.3)τ∆0 for bτ ≤ χ.

Fig. 3. Squared norm of unquantized and quantized filtered streaming
graph signals for the change point detection problem, when using the
ARMA4 filter of NOUGAT algorithm [54], where N = 200, as = 300
m, S = Ln − I, ∆0 = 1.19, χ = 5 bits. The change-point is set at
tc = 1400 and the NOUGAT detection is expected at t∗ = tc + 128
for the same NOUGAT parameter values of [54].

best sequence of quantization stepsizes is given by ∆0 =

2(− B
1+tmax ) (ψmaxρ)−

tmax
2 (xupp−xlow) and ∆t = (ψmax ρ)t∆0,

for ψmax ρ 6= 0 and ψmax ρ < 1.

Corollary 2.1. Consider same settings as Theorem 2 with the
input signal quantized with a uniform quantizer having a fixed
quantization stepsize ∆. The MSE of the filter output due to
quantization and graph randomness ξq

yt can be upper bounded
by:

ξq
yt ≤ K2σ2

q
(ψmax ρ)2 − [(ψmax ρ)2]t+1

1− (ψmax ρ)2
(40)

which in the steady-state (t→∞) becomes:

ξq
yt→∞ ≤ K2σ2

q
(ψmax ρ)2

1− (ψmax ρ)2
(41)

Proof. By considering a fixed quantization stepsize ∆, the
upper bound of the MSE of ARMA filter due to quantization
and graph randomness in (76) becomes:

ξq
yt ≤ K2σ2

q

t∑
τ=1

(
ψmax ρ

)2τ (42)

By considering the upper bound in (42) is finite geometric
series with argument smaller than 1, ξq

yt can be upper bounded
by (40).

VI. NUMERICAL EXPERIMENTS

This section corroborates our theoretical findings with nu-
merical experiments on both synthetic and real data from the
NOAA [55] and the Intel Berkely sensor network [56].

A. Synthetic data

We consider up to N = 10000 sensor nodes, which are
randomly and uniformly distributed over a square area of side
as. Each node can communicate with the neighbors within the
transmission range R = 50 m. The latter forms a communi-
cation network that can be used to perform distributed graph
filtering operations. In the sequel, we evaluate our quantized
filtering designs in three different applications: baseline ideal-
low pass filter, signal denoising, and change-point detection.
To account for the graph randomness, we average the results
over 1000 different realizations. The FIR filter coefficients are
optimized by solving (15) or (32) for time-invariant and time-
varying graphs, respectively.

Ideal low-pass filter. We consider the FIR graph filter to
approximate an ideal low-pass filter with frequency response
h(λ) = 1 if λ ≤ λc and zero otherwise. The shift operator
is 0.5Ln. The cut off frequency λc is half the spectrum. The
input signal x is such that its GFT is all one.

Fig. 1 (a) shows the Normalized Squared Error NSE =
‖ŷq − ŷ‖22/‖ŷ‖22 between the quantized output ŷq and the
unquantized desired signal ŷ in the graph frequency domain,
when the FIR filters run over time-invariant graphs. The
quantization stepsize ∆k is limited through χ, which restricts
the maximum number of bits used at each iteration. The results
show that both our designed FIR graph filters and the Robust
Filter Design (RobFD) [35] achieve similar performance for
low filter orders (K < 8). However, the FIR graph filter
with decreasing quantization stepsize performs better than the
other two alternatives for higher filter orders. The theoretical
MSE upper-bounds of FIR filters, computed by using (13) for
fixed stepsize and using (14) for a decreasing stepsize, are
4.49 10−1 and 3.49 10−1, respectively. These upper-bounds
are in concordance with our simulated results obtained in
Fig. 1 (a).
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Fig. 4. (a)(c)(d) Average NSE between the quantized output over time-varying graph and the unquantized output over a deterministic graph for both FIR and
ARMA filters for the Tikhonov denoising problem, where N = 10000, as = 2200 m, S = λ−1

maxL, w = 0.25, ∆0 = 1.36 and ψmaxρ = 0.25. The FIR
filter coefficients are optimized by solving (32). (a) Average NSE vs. iterations, where p = 0.95 and χ = 15 bits. The x-axis is the number of iterations for
the ARMA1 filter, while for the FIR filter “Iterations = K”. (b) Decreasing quantization stepsize over iterations is given by ∆τ = (0.25)τ∆0 for bτ ≤ χ.
(c) Average NSE vs. the probability p of link activation, where χ = 15 bits. (d) Average NSE vs. the maximum number of bits χ at each iteration, where
K = 10 for FIR filter and t = 10 for ARMA1 filter.

Tikhonov denoising. We now evaluate the performance of
the proposed solutions in distributed denoising. We assume a
noisy graph signal x = z+n, where z is the signal of interest
and n is a zero mean additive noise. To recover signal z, we
solve the Tikhonov denoising problem:

z∗ = argmin
z∈RN

‖x− z‖22 + w z>Sz (43)

for S = L or S = Ln and where the regularizer z>Sz is
based on the prior assumption the graph signal varies smoothly
with respect to the underlying graph and w is the weighting
factor trading smoothness and noise removal [2]. The closed-
form solution of (43) is an ARMA1 filter z∗ = (I + wS)−1z
with coefficients ψ = −w and ϕ = 1 [11]. Hence, we can
employ the ARMA1 filter to solve distributively the Tikhonov
denoising problem.

In Fig. 2 (a), we compare the NSE= ‖yq
t − yt‖22/‖yt‖22

between the quantized and the unquantized outputs of FIR and
ARMA graph filters over time-invariant graphs. We use a nor-
malized shift operator5 S = λ−1maxL. The noise in this instance
is zero-mean Gaussian with variance σ2 = 0.2. The theoretical
MSE upper-bounds of ARMA, computed by using (21) for
fixed stepsize and using (24) for a stepsize decreasing over
twelve iterations, are respectively 2.33 10−3 and 4.23 10−14.
Once again, these upper-bounds are in concordance with our
simulated results obtained in Fig. 2 (a). We observe also
the ARMA graph filter with decreasing quantization stepsize
significantly outperforms both the ARMA with fixed quanti-
zation stepsize and the FIR graph filter with optimized filter
coefficients and decreasing quantization stepsize. The latter
corroborates our finding in Theorem 1: ARMA filters reach
machine precision with a decreasing quantization stepsize.

We now evaluate the filters over time-varying graphs, by
analyzing the average NSE between the quantized output over
the time-varying graph yq

t and the unquantized output yt
over the deterministic graph. As shown in Fig. 4 (a), the
ARMA graph filter presents significantly better performance
than the FIR graph filter, when the link activation probability
is p = 0.95 and the quantization stepsize is decreasing over
the iterations. This is because the quantization MSE with

5This improves the stability of the ARMA filter and ensures a small spectral
radius bound that can reduce the filtering and the quantization error.

ARMA converges to zero when using a decreasing quantiza-
tion stepsize, as stated in Theorem 2. This also explains why
we observe that the average NSE for ARMA filters reduces
considerably when the number of iterations increases. Notice
also that the NSE floor of the ARMA filter is the value
when the signal is quantized with all the available bits and
where ∆τ is very small. The latter corresponds to the machine
precision accuracy, corroborating our results in Theorem 2.
The theoretical MSE upper-bounds computed with (29) and
(39) respectively for FIR and ARMA, when the stepsize is
decreased over the five first iterations, are 1.17 10−3 and
5.41 10−7. These upper-bounds are in a total concordance
with the results obtained in Fig. 4 (a).

In Figs. 4 (c)-(d), we analyze the average NSE for dif-
ferent probabilities of link activation and different maximum
numbers of bits used for quantization. ARMA filters with
decreasing quantization stepsize achieves always the highest
filtering accuracy with a significant margin compared to other
filters due to the convergence of its quantization MSE to zero,
as shown in Theorem 2. Fig. 4 (c) shows that, as expected,
better link connectivities (higher p) lead to lower errors. It is
also worth noticing that the graph filtering accuracy is less
affected by topological changes (due to link losses) for lower
filter orders K\number of iterations t, as compared to higher
filter orders\iterations. This is because the exchanges between
nodes through problematic links reduce. This highlights the
trade-off between the filter order\iteration number and the
robustness to topological changes. In a highly stable topology,
a higher filter order\iteration number improves the graph filter-
ing accuracy. Fig. 4 (d) shows that the average NSE decreases
when the maximum number of bits used for quantization at
each iteration is higher. This is because increasing the quanti-
zation bits decreases the quantization stepsize at each iteration,
which reduces as well the quantization errors accumulated
among iterations. We can also observe that increasing the
quantization bits does not lead necessarily to a noticeable
improve of the filtering accuracy, especially for low probability
of link activation, as compared to higher probability of link
activation. We attribute this behavior to the large number of
links that fall, therefore, the error due to link losses dominates
that of quantization.
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Fig. 5. (a) NSE between the quantized output and the unquantized output of graph filters, when interpolating the missing temperature values in NOAA data
set and where ∆0 = 3.18 and S = Ln. The FIR filter coefficients are optimized by solving (15). (b) Average NSE between the quantized output and the
unquantized output of graph filters, when interpolating the missing light values in Intel Lab data set and where ∆0 = 0.7 and S = λ−1

maxL. The FIR filter
coefficients are optimized by solving (32). (a)-(b) The x-axis is the number of iterations for ARMA1 filter while for FIR filter “Iterations = K”. (c) NSE
between the quantized output and the graph signal to be reconstructed. Here, we plot NSE vs. probability of link activation p for Intel data, where ∆0 = 5.3
and 10 iterations (left), and NSE vs. % missing data for different data sets and 20 iterations (right). (a)(b)(c) Parameters are w = 0.3 and χ = 15 bits.

Change-point detection. We now evaluate the performance
of the proposed solutions in the application of change point
detection of streaming graph signals. The change-point detec-
tion aims to localize the switching time instant from which
the statistical properties of a signal change. This problem
can be solved distributively by using the NOUGAT algorithm
[54], which performs an ARMAK filter. Based on NOUGAT
algorithm steps, a point-change can be detected if the squared
norm of the filtered streaming graph signal is higher than a
certain threshold. Fig. 3 illustrates the detection performance
by comparing the squared norm of unquantized and quantized
graph filter outputs. The change-point is set at tc = 1400, and
given window lengths of 128 samples, the NOUGAT detection
is expected at t∗ = tc + 128. It can be clearly seen that by
using an ARMA4 with decreasing quantization stepsizes, the
detection performance is very close to the unquantized case.
Moreover, the change-point is better localized as compared to
the case of fixed quantization stepsize.

B. Real data

We now illustrate the performance of the proposed solutions
for the graph signal interpolation task over time-invariant and
time-varying topologies with two real data sets.

NOAA data set. This data set contains hourly observations of
temperature measurements of N=109 stations collected in the
United States in 2010 [55], for a total of 8759 hours. We use
the same graph structure as [13], which is built from the nodes
coordinates by using the default 7-NN nearest neighbor. The
graph signal at node i is the temperature value at i-th station.

Let x′ be the observed graph signal x with missing values.
We aim at reconstructing the overall graph signal x from the
observations x′ by exploiting the smoothness of x over the
graph. This problem can be formulated as [57], [58]:

x? = argmin
x∈RN

‖T(x− x′)‖22 + w x>Sx (44)

where T is a diagonal matrix with Tii = 1 if xi is known
and Tii = 0 otherwise and w is the weighting factor. The
optimal solution of the convex optimization problem (44) is
x? = (T + wS)−1x′ = (I − S̃)−1x′, which is an ARMA1

filter for the shift operator S̃ = T +wS− I [11]. To generate
missing values in the NOAA data set, we randomly remove

signal values with a certain percentage. Then, we analyze the
NSE between the quantized output and the unquantized output
of graph filters, for different percentages of missing values.

Fig. 5 (a) shows the NSE decreases considerably at each
iteration, particularly for ARMA filters. It is also worth
noticing this decrease enhances when less data are missing.
Intel Lab data set. The Intel Berkeley Research Lab data
set contains light data of N = 54 Mica2Dot sensor nodes
distributed in an indoor environment over an area of 1200 m2

[56]. The communication between the sensor nodes is wireless
and prone to channel noise and interference, leading to time-
varying graph topological changes due to link losses [59]. The
probability of link activation of the nodes is about 0.13 with a
standard deviation of 0.18. The underlying graph topology has
high connectivity with an average node degree of 47, implying
multiple communication paths exist between nodes, helping to
make signal exchanged between nodes robust to link losses.
The graph signal at node i is the light value at i-th sensor. We
perform graph signal interpolation to reconstruct the missing
light values.

In Fig. 5 (b), we analyze the average quantized NSE as a
function of the missing values for the FIR and ARMA graph
filters. Even though the graph filtering accuracy is affected
by the accumulated quantization errors over iterations and the
graph topological changes, ARMA filters provide a significant
decrease in terms of NSE, when the number of iterations
grows and the percentage of missing data is low. Notice that in
practical settings with decreasing quantization stepsizes over
time-varying graphs, it is preferable to use FIR graph filters
for low filter orders. However, for large filter orders\iterations,
ARMA graph filters are the best choice since they provide
better performance than FIR filters, and the quantization MSE
can be significantly decreased.

Fig. 5 (c) (left) represents the NSE between the quantized
graph signal output and the true signal for the Intel lab data as
a function of the probability of link activation p. As expected,
better link connectivities lead to lower graph filtering errors
and better signal reconstruction, especially with ARMA filters.
Fig. 5 (c) (right) depicts the NSE between the quantized graph
signal output and the true signal for the two data sets as a
function of the missing values. The results show that for both
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data sets a good performance in terms of signal reconstruction
is achieved, especially with ARMA graph filters. This confirms
our findings in Theorem 2, which means that with a decreasing
quantization stepsize, there is no need to perform a robust
ARMA filter design since the proposed strategy achieves the
optimal steady-state solution.

VII. CONCLUSION

In this work, we provided a broader analysis of the
quantization effects of both FIR and ARMA graph filters
over time-invariant and time-varying graphs. We analyzed the
impact of fixed and dynamic quantization stepsize on the
filtering performance. For FIR filters, we first showed that a
dynamic quantization stepsize leads to a more reduction of
the quantization MSE than in fixed-stepsize quantization and
then we proposed a robust filter design that minimizes the
quantization noise. For ARMA graph filters, we showed that
decreasing the quantization stepsize over iterations reduces
the quantization MSE to zero at steady-state. We extended
our quantization effects analysis of FIR and ARMA graph
filters to networks affected by random topological changes due
to link losses and propose a novel filter design strategy that
is robust to quantization and topological changes. Extensive
numerical experiments with synthetic and real data show the
different trade-offs between quantization bits, filter order, and
robustness to topological randomness, ultimately, highlighting
the efficiency of the proposed solutions.

As our work puts a new practical paradigm for distributed
aspects of graph filters, we identify as relevant future research
direction the application of these filters for digital and dis-
tributable graph neural networks, network coding, and finite-
time consensus.

VIII. APPENDIX

A. Quantized FIR graph filter output
Considering x(0) = x and the quantized message at iterate

k, x̃(k) = x(k) + n
(k)
q , the output of the shifted graph signal

with quantization is:
x(1) = Sx̃(0) = S(x(0)+n(0)

q ) = Sx(0)+Sn(0)
q

x(2) = Sx̃(1) = S2x(0)+S2n(0)
q +Sn(1)

q

...

x(k) = Sk x(0) +

k−1∑
κ=0

Sk−κ n(κ)
q , k ≥ 1. (45)

From (45), the FIR graph filter output with quantization is:

yq = φ0x + φ1(Sx + Sn(0)
q ) + φ2(S

2x + S2n(0)
q + Sn(1)

q ) + · · ·
+ φk(S

Kx + SKn(0)
q + SK−1n(1)

q + · · ·+ S2n(K−2)
q + Sn(K−1)

q )

=

K∑
k=0

φkS
kx +

K∑
k=1

φk

k−1∑
κ=0

Sk−κn(κ)
q . (46)

B. Proof of Proposition 1

By applying the GFT on both sides of (11), the quantization
error has the spectral response:

ε̂ =
K∑
k=1

φk

k−1∑
κ=0

Λk−κn̂(κ)
q (47)

where n̂
(κ)
q is still i.i.d. with same statistics as n

(κ)
q iff

Σqκ = σ2
qκ I. From the linearity of the expectation and from

the matrix property (AB)H = BHAH, the quantization noise
covariance matrix becomes:

E[ε̂ε̂H] =

K∑
k1,k2=1

φk1φk2

k1−1∑
κ1=0

k2−1∑
κ2=0

Λk1−κ1E
[
n̂(κ1)

q (n̂(κ2)
q )H

]
(Λk2−κ2)H.

(48)

Given the quantization noise has independent realizations and
a constant quantization stepsize ∆ for all iterations, we can
rewrite (48) as:

E[ε̂ε̂H]=

K∑
k=1

φ2
k

k−1∑
κ=0

Λk−κΣqκ(Λ
k−κ)H =σ2

q

K∑
k=1

φ2
k

k−1∑
κ=0

Λk−κ(Λk−κ)H.

(49)
Then, by substituting (49) into the MSE expression ζ̂q =
1
N tr(E[ε̂ε̂H ]) and using the relation between the Frobenius
norm and the trace ‖A‖F =

√
tr(AAH), result (12) yields.

C. Proof of Corollary 1.1

From (12) and the relation between the l2-norm and the
Frobenius norm ‖A‖F ≤

√
r‖A‖2 with r the rank of A (at

most N ), ζ̂q can be upper bounded as:

ζ̂q ≤ N
σ2

q

N

K∑
k=1

φ2k

k−1∑
κ=0

‖Λk−κ‖22 ≤ σ2
q

K∑
k=1

φ2k

k−1∑
κ=0

(λ2max)k−κ.

(50)
Similarly, by exploiting again the relationship between the l2-
norm and Frobenius norm of matrices (‖A‖2 ≤ ‖A‖F ) in
(12), ζ̂q can be likewise lower bounded as:

ζ̂q ≥
σ2

q

N

K∑
k=1

φ2k

k−1∑
κ=0

(λ2max)k−κ (51)

where (50) and (51) bound the quantization MSE. If λmax 6= 1
and making the index change

∑k−1
τ=0 a

k−τ =
∑k
τ=1 a

τ , we
obtain the finite geometric series whose argument is different
from one; thus, ζ̂q can be lower and upper bound as in (13).

D. Proof of Proposition 2

By equivalence to (12), the MSE on the filter output due to
the quantization noise has the form:

ζ̂q =
1

N

K∑
k=1

φ2k

k−1∑
κ=0

σ2
qκ‖Λ

k−κ‖2F ≤
K∑
k=1

φ2k

k−1∑
κ=0

σ2
qκ(λ2max)k−κ.

(52)
To decrease the MSE, we choose, for the convenience of the
proof, the stepsize ∆κ = (λmax)κ∆0, which implies:

ζ̂q ≤
∆2

0

12

K∑
k=1

φ2k k λ
2k
max. (53)

Under the assumption 0 ≤ λmax ≤ 1 in (53), we can write:

ζ̂q ≤
∆2

0

12

K∑
k=1

φ2k k (54)

where the final bound can be written as (14).

E. Proof of Proposition 3

By using (20c), the trace cyclic property tr(ABC) =
tr(CAB), the inequality tr(AB) ≤ ‖A‖2tr(B) –which holds
for any positive semi-definite matrix B � 0 and square matrix
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A of appropriate dimensions [60]–, and the linearity of the
expectation w.r.t the trace, we can write:

ζq
yt =

1

N
E[tr((1> ⊗ IN )H)(1> ⊗ IN )εq

t(ε
q
t)

H]

≤ 1

N
‖(1> ⊗ IN )H(1> ⊗ IN )‖2 tr(E[εq

t(ε
q
t)

H]).
(55)

Then, by substituting εq
t =

∑t−1
τ=0(Ψ ⊗ S)t−τnq

τ in (55),
E[nq

τ (nq
τ )H] = σ2

q I which holds for fixed quantization stepsize
in each iteration, and since ‖(1> ⊗ IN )H(1> ⊗ IN )‖2 = K,
we can write:

ζq
yt ≤

Kσ2
q

N

t−1∑
τ=0

tr
(
(Ψ ⊗ S)t−τ ((Ψ ⊗ S)t−τ )H) . (56)

By using in (56) the index change
∑t−1
τ=0 At−τ (At−τ )H =∑t

τ=1 Aτ (Aτ )H, the Frobenius norm ‖A‖F =
√

tr(AAH),
the inequality ‖A‖F ≤

√
r‖A‖2, with r the rank of A (at

most N ), and the triangle inequality of the norms ‖A2‖2 ≤
‖A‖22, we have:

ζq
yt ≤

Kσ2
q

N

t∑
τ=1

‖(Ψ ⊗ S)τ‖2F ≤ Kσ2
q

t∑
τ=1

‖(Ψ ⊗ S)‖2τ2 .

(57)
Then, from the Kronecker product identity ‖A ⊗ B‖2 =
‖A‖2‖B‖2 and the l2-norm matrix norm expression ‖A‖2 =√

max eig(AHA), we can further rewrite (57) as:

ζq
yt ≤ Kσ2

q

t∑
τ=1

‖Ψ‖2τ2 ‖S‖2τ2 ≤ Kσ2
q

t∑
τ=1

(ψmaxλmax)2τ .

(58)
Finally, since (58) is a finite geometric series with an argument
smaller than one, the quantization MSE ζq

yt can be upper
bounded by (21).

F. Proof of Theorem 1

By equivalence to (56), but with a dynamic quantization
stepsize, the MSE on the filter output due to the quantization
noise is upper bounded by:

ζq
yt ≤

K

N

t−1∑
τ=0

σ2
qτ tr((Ψ ⊗ S)t−τ ((Ψ ⊗ S)t−τ )H)

≤ K

12N

t∑
τ=1

∆2
t−τ‖(Ψ ⊗ S)τ‖2F ≤

K

12

t∑
τ=1

∆2
t−τ (ψmaxλmax)2τ

(59)
where similarily to (57) and (58), we changed the summatiom
index, used the expression of the Frobenius norm ‖A‖F =√

tr(AAH), and leveraged the norm properties.
For the quantization stepsize ∆τ = (ψmaxλmax)τ∆0, (59)

can be further upper bounded as:

ζq
yt ≤

K

12

t∑
τ=1

(ψmaxλmax)2t∆0 (60)

which can be easily rephrased as in (24).

G. Quantized FIR graph filter over time-varying graphs

Considering x(0) = x and the quantized message at iterate
k, x̃(k) = x(k) + n

(k)
q , the output of the shifted graph signal

with quantization performed over Gt is:

x(1) = St−1x̃
(0) = St−1(x

(0)+n(0)
q ) = St−1x

(0)+St−1n
(0)
q

x(2) = St−2x̃
(1) = St−2St−1x

(0)+St−2St−1n
(0)
q +St−2n

(1)
q

...

x(k) =

( t−k∏
τ=t−1

Sτ

)
x(0) +

k−1∑
κ=0

( t−k∏
τ=t−1−κ

Sτ

)
n(κ)

q , k ≥ 1.

(61)
The quantized output of FIR graph filter at iteration t, per-
formed over Gt with quantization effects, is given by:

yq
t = φ0 x +

K∑
k=1

φk x(k)

= φ0 x +

K∑
k=1

φk

(
Θ(t−1, t−k) x(0) +

k−1∑
κ=0

Θ(t−1−κ, t−k) n(κ)
q

)

=

K∑
k=0

φkΘ(t−1, t−k)x +

K∑
k=1

k−1∑
κ=0

φk Θ(t−1−κ, t−k) n(κ)
q .

(62)H. Proof of Proposition 4
By using ‖x‖22 = tr(xxH) and rearranging the summation

indices, we can write the MSE of the filter output due
quantization and graph randomness as:

ζq
t = E[

1

N
tr(εtεtH)] =

1

N
E[‖εt‖22]

=
1

N
E
[∥∥∥∥ K∑

κ=1

K∑
k=κ

φk Θ(t−κ, t−k) n(κ−1)
q

∥∥∥∥2
2

]
.

(63)

Let then vector ω(κ, t) =
∑K
k=κ φkΘ(t−κ, t−k) n

(κ−1)
q

account for the accumulated quantization noise over time-
varying graphs. By using ‖x‖22 = xHx, we can write:

E
[∥∥∥∥ K∑

κ=1

ω(κ, t)

∥∥∥∥2
2

]
=

K∑
κ1=1

K∑
κ2=1

E
[
ω(κ1, t)

Hω(κ2, t)

]
. (64)

Since the quantization errors are zero mean and independent
from graph topology processes, we have:

E
[
ω(κ1, t)

Hω(κ2, t)

]
=

{
0 if κ1 6= κ2

E[‖ω(κ1, t)‖22] if κ1 = κ2.
(65)

Therefore, we can rewrite (65) as:

E
[∥∥∥∥ K∑

κ=1

ω(κ, t)

∥∥∥∥2
2

]
=

K∑
κ=1

E
[∥∥ω(κ, t)∥∥2

2

]
. (66)

Using once again the norm property ‖x‖22 = tr(xxH), the
cyclic property of the trace tr(ABC) = tr(CAB), and the
commutativity of the trace to respect to the expectation, we
can write:

E[‖εt‖22] =
K∑
κ=1

E
[

tr
(( K∑

k=κ

φkΘ(t−κ, t−k)
)

n(κ−1)
q (n(κ−1)

q )H

×
( K∑
k=κ

φkΘ(t−κ, t−k)
)H)]

=
K∑
κ=1

tr
(
E
[( K∑

k=κ

φkΘ(t−κ, t−k)H
)( K∑

k=κ

φkΘ(t−κ, t−k)
)]

× E
[
n(κ−1)

q (n(κ−1)
q )H]). (67)

By using the inequality tr(AB) ≤ ‖A‖2 tr(B), we obtain:

E[‖εt‖22] ≤
K∑
κ=1

tr
(
E
[
n(κ−1)

q (n(κ−1)
q )H])

×
∥∥∥∥E[( K∑

k=κ

φkΘ(t−κ, t−k)H
)( K∑

k=κ

φkΘ(t−κ, t−k)
)]∥∥∥∥

2

.

(68)
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Since tr
(
E
[
n
(κ)
q (n

(κ)
q )H

])
= tr

(
σ2

qκI
)

= Nσ2
qκ and using

the Jensen’s inequality of the spectral norm (‖E[A]‖2 ≤
E[‖A‖2]), we can further write:
E[‖εt‖22] ≤

N

K∑
κ=1

σ2
qκ−1E

[∥∥∥∥( K∑
k=κ

φkΘ(t−κ, t−k)H
)( K∑

k=κ

φkΘ(t−κ, t−k)
)∥∥∥∥

2

]

≤ N

12

K∑
κ=1

∆2
κ−1 E

[
Υ (t, κ)

]
(69)

where Υ (t, κ) is:

Υ (t, κ) =

∥∥∥∥( K∑
k=κ

φkΘ(t−κ, t−k)
H
)( K∑

k=κ

φkΘ(t−κ, t−k)

)∥∥∥∥
2

.

(70)
By using the spectral norm sub-multiplicativity ‖AB‖2 ≤
‖A‖2‖B‖2 and subadditivity ‖A+B‖2 ≤ ‖A‖2+‖B‖2 along
with the upper bound of the shift operator ‖St‖2≤‖S‖2≤ρ for
all t, we upper bound (70) as:

Υ (t, κ) ≤
∥∥∥∥ K∑
k=κ

φkΘ(t−κ, t−k)H
∥∥∥∥
2

∥∥∥∥ K∑
k=κ

φkΘ(t−κ, t−k)
∥∥∥∥
2

≤
( K∑
k=κ

ρk−κ+1 |φk|
)2

.

(71)

Finally, by substituting (71) into (69) and computing the
expectation, ζq

t can be upper bounded by (29).

I. Proof of Theorem 2

Similarly to (55), we can write the MSE of ARMA filter due
to quantization and graph randomness (38c) as:

ξq
yt ≤

1

N
‖(1>⊗ IN )H(1>⊗ IN )‖2tr(E[εq

t(ε
q
t)

H]) ≤K
N

tr(E[εq
t(ε

q
t)

H]).

(72)

Then, by substituting εq
t with its expression, using the linearity

of the expectation w.r.t the trace, the cyclic property of the
trace tr(ABC) = tr(CAB), we can write:

tr(E[εq
t(ε

q
t)

H]) =

t−1∑
τ1=0

t−1∑
τ2=0

E
[

tr
(( t−1∏

ς=τ2

Ψ ⊗ Sς
)H

×
( t−1∏
ς=τ1

Ψ ⊗ Sς
)

nq
τ1(n

q
τ2)

H
)]

=

t−1∑
τ1=0

t−1∑
τ2=0

tr
(
E
[( t−1∏

ς=τ2

Ψ ⊗ Sς
)H( t−1∏

ς=τ1

Ψ ⊗ Sς
)]

× E[nq
τ1(n

q
τ2)

H]

)
. (73)

By considering E[nq
τ1(nq

τ2)H] = 0 if τ1 6= τ2, using the in-
equality tr(AB) ≤ ‖A‖2 tr(B), assuming unified quantization
with dynamic stepsize i.e., tr(E[nq

τ (nq
τ )H]) = KNσ2

q,τ and
using the Jensen’s inequality of the spectral norm (‖E[A]‖2 ≤
E[‖A‖2]), we can write:

tr(E[εq
t(ε

q
t)

H]) ≤ KN
t−1∑
τ=0

σ2
q,τE

[∥∥∥∥(t−1∏
ς=τ

Ψ ⊗ Sς
)H(t−1∏

ς=τ

Ψ ⊗ Sς
)∥∥∥∥

2

]
.

(74)

By using the sub-multiplicativity property of the spectral
norm of a square matrix i.e., ‖AB‖2 ≤ ‖A‖2‖B‖2, the
property ‖A ⊗ B‖2 = ‖A‖2‖B‖2 and assuming that the
spectral norm of the shift operator used is upper bounded i.e.,
‖S‖2 ≤ ‖St‖2 ≤ ρ for all t, we have:∥∥∥∥(t−1∏
ς=τ

Ψ ⊗ Sς
)H(t−1∏

ς=τ

Ψ ⊗ Sς
)∥∥∥∥

2

≤
(t−1∏
ς=τ

‖Ψ‖2‖Sς‖2
)(t−1∏
ς=τ

‖Ψ‖2‖Sς‖2
)
.

≤ (ψmax ρ)
2t−2τ .

(75)

By applying the expectation to (75) and combining it with (74)
and (72), and making an index change using

∑t−1
τ=0 cτa

t−τ =∑t
τ=1 ct−τa

τ , we can write:

ξq
yt ≤ K2

t−1∑
τ=0

σ2
q,τ

(
(ψmax ρ)2

)t−τ ≤ K2
t∑

τ=1

σ2
q,t−τ

(
(ψmax ρ)2

)τ
≤ K2

12

t∑
τ=1

∆2
t−τ (ψmax ρ)2τ .

(76)
With the choice of the quantization stepsize ∆τ =
(ψmax ρ)τ∆0, the final bound in (76) becomes:

ξq
yt ≤

K2

12

t∑
τ=1

(ψmax ρ)2t∆0. (77)

Therefore, ξq
yt can be upper bounded by (39).
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