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Target detection performance of mid-frequency active sonars depends heavily on both sonar and target 
depth. For a given target depth, a sonar performance model may help predict a sonar depth that maximizes 
the detection performance in the present environment. Similarly, for a given sonar depth, an optimal target 
depth to minimize the detection performance of the opposing sonar, may be predicted. Statistical 
representations of sonar and target behavior are required as prerequisites for Monte Carlo simulations, in 
which sonar and target depth are key parameters. In a real sonar operation, the choice of each depth 
parameter is subject to careful consideration of the current environment by qualified personnel. The a 
priori probability distributions from which the Monte Carlo method samples sonar and target depth 
therefore require sufficient realism to ensure the quality of the simulations. Here we propose an algorithm 
for generating distributions of sonar depth and the depth of an adversarial target in a realistic environment, 
based on calculating the Nash equilibrium strategies of the two parties, with the inputted probability of 
detection modelled by an acoustic ray tracer, Lybin. We demonstrate the proposed method in a sample 
environment and show the superior performance when compared to simpler distributions.
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1. INTRODUCTION

There is an increasing interest in both industry and academia to explore the advantages of introducing
unmanned vessels into underwater warfare.1 Sea trials for test and development of such concepts and the
necessary new tactics are expensive and time-consuming, something which seriously inhibits and slows
down the implementation. By using simulation tools, such concepts and tactics can be narrowed down to
some select few viable concepts that can be moved forward to physical experimentation. The sonar operation
simulation suite, Rattus,2, 3 simulates sonar operations taking into account the movements and decisions of
all parties in the operation, as well sonar performance predictions for the present environment. The tool
allows for inexpensive development and evaluation of both new concepts and tactics.

The performance of active sonars in a real ocean environment depends heavily on both the relative posi-
tions of the transmitter, target and receiver and the present environment.4 By employing acoustic wave prop-
agation models4, 5 and the sonar equation,6 the sonar conditions in a known environment may be estimated.
Sonar performance models, such as Lybin,7 includes both the sonar equation, acoustic wave propagation
models, and receiver operating characteristic curves in order to determine the probability that a given sonar
is able to detect a specific target in a known environment.

During sonar operations, the participants employ sonar performance models to either maximize their
own sonars ability to detect their adversary8 or to minimize their opponents ability to detect them (i.e.
maximizing avoidance). In the case of an uncertain environment, Monte Carlo approaches9, 10 or more
sophisticated approaches11, 12 may be employed to determine the resulting acoustic uncertainty, for more
robust estimates of the optimal depths.

For realistic sonar operation simulations, the participating parties decisions to ensure detection or avoid-
ance must be automated within the framework of the simulations. For Monte Carlo simulations this decision
should also take into account environmental uncertainty and variation.

Here we demonstrate a method using the Nash equilibrium13 strategies of the parties to determine a
probability density function (PDF) for best avoidance and detection depths using variable depth sonar (VDS)
in a sample environment. The PDFs are input into a simple Monte Carlo simulation, and the simulation
results are compared to results from simulations using single depths or uniform distributions.

2. METHOD

A. DEFINING THE STATE VECTORS

The low computation time of Lybin allows for Monte Carlo runs in order to map out the expected
uncertainty and variation in the input parameters. These parameters and their uncertainty depend on the
present environment, the target, and the sonar used. Following the steps described by by Bøhler et al10 we
represent both the sonar parameters and environmental parameters as stochastic state vectors, S and M,
respectively. We let the target state be described by the deterministic target state vector, T. All these state
vectors are assumed to be statistical independent.

The modelled sonar performance is defined as P (D|M,S,T), and represents the probability that the
target, whose state is described by T, is detected by the sonar (probability of detection), whose parameters
are described by S, in an environment described by M. Each of the states S and M have associated prob-
abilities given by P (S) and P (M). The probability that the target is detected in a given state is then given
by,

P (D|M,S,T)P (M)P (S)P (T). (1)

This expression may be marginalized to estimate the marginal probability, P (D|T), that the target is de-
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tected regardless of the environment and sonar for a given target state, T,

P (D|T) =

∫
M

∫
S
P (D|M,S,T)P (M)P (S)dMdS. (2)

If P (M) and P (S) are known, then P (D|T) may be determined, as P (D|M,S,T) for a single realisation
of each of the states may be estimated using the acoustic model Lybin.7

B. PREMISE OF THE METHOD

For our application, S will represent the active sonar parameters of an anti-submarine warfare (ASW)
vessel, and thus T the state of an adversarial submarine. We will assume that both parties know T in full,
except for submarine depth, z, which is only known by the submarine, and distance from the ASW vessel,
r, which neither parties alone can control. Likewise, both parties know S in full, except for the depth of
the VDS, d, which is only known by the ASW vessel. The environment, M, is assumed to be common
knowledge for both parties without exceptions. The minimum and maximum values z, r and d can obtain
are also assumed to be common knowledge. Therefore, since our acoustic model always gives estimates for
the probability of detection for a range of z and r values, for a given M, T \ z, r and S \ d we only need to
iterate over the possible d values when running the model.

While the ASW vessel is hunting the submarine, we will assume that the submarine is attempting to
use passive sonar to detect a third vessel, a high value unit (HVU), while trying to avoid detection by the
ASW vessel which is protecting the HVU. Here again we do not know the distance from the submarine to
the HVU, rp (subscript p for passive), but the target depth, zp, is known as the HVU will need to be on
the surface. Because the submarine’s sonar is at the same depth as the submarine itself, we have dp = z,
thus forcing the submarine to strike a balance between active detection avoidance and passive detection
performance. In our acoustic model we will not iterate over different dp like in the active case, as the fixed
zp value allows us to exploit the reciprocity of the propagation loss when swapping transmitter/receiver and
target, thus only requiring a single model calculation for a given M, T \ rp and S \ dp

C. THE NASH EQUILIBRIUM

The Nash equilibrium of a two player game denotes a set of strategies where neither player stand to
gain by deviating alone.14 To apply this to our sonar we need to define a measure of success, also known
as payoff or utility, for each player. As the submarine is looking to both avoid active detection by the ASW
vessel and at the same time detect the HVU passively, we will consider its payoff to be the product of the
expected values of the probability of passive detection and the probability of no active detection. With U
denoting utility, this is simply

U(z, d) = (1− UA(z, d)) · UP (z), (3)

where UA and UP are the active and passive expected values. For a discrete distribution of d and z values,
U(zi, dj) then produces the payoff matrix Uij , see fig. 1 for an example. Setting the payoff for the ASW
vessel to be −U(d, z) makes the situation into a two player zero-sum game. This ensures that neither party
can alter their strategy in a way that benefits both parties, thus leaving no room for cooperation.

This zero-sum game is completely defined by the payoff matrix Uij , which can be passed to a solver
like Nashpy14 to determine the equilibrium strategies. If the players are limited to pure strategies, meaning
that there is a single choice of z or d which they will use every time, an equilibrium point is not guaranteed
to exist, as z1 might counter d2, but d1 might counter z1, and so on with no self-countering tuple (zi, dj)
existing. However, if one allows mixed strategies, which are probability distributions over pure strategies,13

equilibrium points are guaranteed to exist.16 This is our basis for constructing the PDFs for sonar and target
depth.
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Figure 1: The payoff matrix, with submarine depths
zi and VDS depths dj . Submarine win probability is
U from eq. (3). Figure 2: Sound speed profile used. Climatological

profile sampled from the World Ocean Atlas.15

D. CALCULATING THE PAYOFF MATRIX

The elements UP and UA of eq. (3) are obtained from the Lybin calculations as outlined in section
2.B. As the target ranges r and rp are not present in this equation, they need to be marginalized out of the
state vector T. We will assume that the possible ASW vessel and HVU positions are both uniformly and
independently distributed in an annulus centered around the submarine, with inner and outer radius r1 and
r2. The expected value of the passive probability of detection is thus

UP (z) =
1

|A|

∫∫
A
P (DP |rp, z)dA, (4)

with |A| being the total area of the annulus A and DP denoting a passive detection. In practice this is done
by taking the weighted mean over the range axis of the probability of detection matrix output by Lybin,
where the weight is the matrix element’s corresponding range or 0 if r < r1 or r > r2.

Obtaining UA is done similarly, but including a small weight α which awards choices of d which give
good detection probabilities when taking the mean over all z in the known target depth range Z. The formula
is therefore

UA(z, d) =
1

|A|

∫∫
A

[
(1− α)P (DA|r, d, z) +

α

|Z|

∫
Z
P (DA|r, d, z′)dz′

]
dA, (5)

with, similarly as above, |Z| being the range of z values and DA denoting an active detection.
Note that determining the mixed equilibrium strategies of a finite game is a calculation that typically

scales as O(2N ), where N is the number of elements in the payoff matrix. This is due to support enumera-
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(a) Active, dj = 55m (b) Active, dj = 75m

(c) Active, dj = 195m (d) Passive calculation used in eq. (4).

Figure 3: Results of Lybin calculations, showing outputted probability of detection. Black lines in active
sonar plots are ray trace lines.

tion, which requires iterating through every combination of which zi and dj to include in a candidate mixed
strategy. Therefore, reducing Uij by taking a block-wise mean can greatly speed up the Nash equilibrium
calculation.

3. DATA

In order to demonstrate the proposed method, we will use a single realization of the environment state,
M, and fixed sonar parameters, S, except for VDS depth. The sound speed profile is sampled from the
World Ocean Atlas,15 see fig. 2. The wind speed is fixed and the ocean floor is set to be flat at 500m. The
target strength of the submarine and source level of the HVU is also kept fixed.

The active sonar detection modelling is run with 16 different VDS depths dj between 50m to 200m,
with resolution for 38 different submarine depths zi between 30m to 400m. See fig. 3 for examples from
different VDS depths and the passive calculation. After calculating the payoff matrix using eqs. (4) and (5),
it is then reduced with a 2×2 block filter using the mean, giving the final dimensions of 19×8. This matrix
is the one shown in fig. 1. The annulus dimensions used in the calculation were r1 = 2km and r2 = 50 km,
and with α = 0.1.
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(a) Submarine depth, z, PDF (b) VDS depth, d, PDF

Figure 4: Probability density functions, both piecewise uniform around the discrete depths (blue) and
smoothed with a Gaussian filter (orange).

4. RESULTS AND DISCUSSION

The resulting equilibrium strategy is a mixed strategy, with the submarine picking either 35m or 55m,
and the VDS set either at 75m or 195m, as shown by the piecewise uniform distributions with different
heights according to their equilibrium strategy weight in fig. 4. The equilibrium payoff is U = 0.0986,
or a 9.86% ”submarine win probability”. As examples of the inferiority of pure strategies: a submarine
using a pure strategy of z fixed at 55m will get optimally countered by d = 75m giving a 9.54% sub. win
probability, and a d fixed at 195m will get optimally countered by z = 55m giving a 10.40% sub. win
probability.

To turn these discontinuous and piecewise uniform distributions into continuous PDFs, a Gaussian filter
with σ = 5m is applied. Then, to check the validity of our method, we run a simple Monte Carlo simulation
with N = 1, 000, 000 static snapshots of randomly sampled ASW vessel and HVU positions and depths
according to these filtered PDFs. The other parameters are kept the same, so we reuse the original fine
grained Lybin calculations used to calculate the Nash equilibrium. See fig. 5 for visualisations of these
simulations. Table 1 shows the aggregated results, including an additional variant with the same depth
strategies but with r2 = 20 km when simulating afterwards. The original 50 km variant has a performance
very close to the expected Nash equilibrium value, with a small difference due to the usage of a non-zero α
(this weight is not used when calculating the submarine win % for the simulated runs). The 20 km variant
is much more favorable for the submarine, explained by the defined cutoff range around 15 km the passive
probability of detection displays in fig. 3d.

Variant Submarine win % Active det. % Passive det. %

Nash equilibrium 9.86% - -

Simulated, 50 km 10.3% 3.3% 10.6%

Simulated, 20 km 61.0% 8.6% 66.8%

Uniform sub. depth 6.3% 27.1% 8.5%

Uniform VDS depth 10.4% 1.8% 10.6%

Table 1: Results of different simulated variants.

K. E. Andreassen and K. T. Hjelmervik Modelled sonar and target depth distributions for active sonar operations

Proceedings of Meetings on Acoustics, Vol. 47, 070013 (2022) Page 6



(a) N = 1, 000 different snapshots, showing the
uniform distribution in the annulus A.

(b) A single snapshot, showing sampled positions, z,
d and probabilities of detection.

Figure 5: Illustrations of simple Monte Carlo simulations used to check the generated PDFs. ”FF” is
the ASW vessel and ”SSK” the submarine.

Rerunning the simulations, but substituting either the z or d PDF with a uniform distribution shows how
much the equilibrium strategies gain when going up against these typical ”zero-assumption” strategies. In
table 1 we see that the active detection % greatly increases when the submarine picks its depth uniformly,
showing how a non-zero α helps the ASW vessel exploit non-optimal behavior by the opponent. Using a
uniform distribution for the VDS depths however does not have such a big impact on the overall result, as the
active detection % was already low compared to the passive detection %. The passive detection performance
is of course not impacted by the VDS depth setting. This suggests that the submarine behavior is the most
sensitive strategy parameter for these types of simulations and underscores the importance of modelling it
accurately.

5. CONCLUSION

For this single environment and sonar parameter realization, we have demonstrated how this method
functions as a policy function, taking the environmentally dependent sonar performance calculations as in-
put and outputting optimized strategies. The natural next step, remembering eq. (2), is then to sample over
the distributions P (M) and P (S) to aggregate a large set of different strategies. Especially the sampled
sound speed profile (fig. 2) will have a large impact on the sonar performance of different depths, and
keeping this constant will not give strategies which are robust to variations which are expected in realistic
environments. A way to sample sound speed profiles is combining ocean model data with climatology fol-
lowing the steps of Østenstad.17 This also has the advantage of making the distribution more temporally
specific than the seasonal average one would get from using only climatological data. Wind speed distribu-
tions can be obtained similarly, and instead of using a flat ocean floor one can sample bathymetric data in
different directions in the relevant area.

Each environmental sample will require their own set of Lybin calculations, thus increasing the run time
linearly for each sample. However, using these strategies for tactical simulations in Rattus will act as a time
saver, as we will not be wasting time on simulation runs where the participating units display unreasonable
behavior. If the tactical parameters were sampled from a wide uniform distribution, which is shown in
table 1 to give the user significantly reduced performance, one would have to filter out the runs with poorly
performing input parameters to keep the results in line with real world expectations. Therefore this presents
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a trade-off between spending time refining the input to the simulations and wasting time on simulation
runs which will be filtered out. Our method provides a way to refine these inputs without complicating the
simulated behavior by introducing additional stochastic parameters.
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