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This letter discusses an alternative Fourier ptychography algorithm
based on the scaled fast Fourier transform propagation. The advantage
of this scheme is that it enables a zoom-in capability of the object spec-
trum and complex pupil within the synthetic numerical aperture without
increasing the overall matrix size. Thus, the high-resolution complex
object and complex pupil are recovered utilising a larger fraction of the
elements in their respective representation matrices. Experimental re-
sults are presented showing the performance of this scheme against the
tradition fast-Fourier-transform-based approach.

Introduction: Fourier ptychography microscopy (FPM) is a well-known
coherent imaging technique for achieving resolution beyond the diffrac-
tion limit while simultaneously retrieving the unknown phase informa-
tion of a complex object [1–5]. In the FPM scheme, the object is illu-
minated by a coherent or partially coherent light source, and a number
of low-resolution intensity images are captured by a digital camera. The
highest spatial frequency in the captured images is limited by the coher-
ent transfer function (CTF) of the optics. The digital camera spatially
samples the image, and its Nyquist sampling frequency defines the max-
imum un-aliased spatial frequency that can be faithfully represented in
the captured image [1, 6]. By illuminating the object at different angles
from different LEDs, the extended object spectrum gets shifted in the
Fourier plane, and thus, different sub-parts of this spectrum get passed
through the CTF of the lens and ultimately reach the camera plane. The
camera records the squared absolute value of the electric field, while
the phase information of the electric field is lost. Eventually, this field
propagation process is simulated in the software, and by exploiting dif-
ferent sub-spectra together along with iteratively propagating the elec-
tric field back and forth between the camera plane and the Fourier plane
while using the recorded information of the absolute electric field, the
complex extended Fourier spectrum is recovered, which is equivalent to
recovering the complex object information with much higher final spa-
tial resolution. In the FPM scheme, the synthesised numerical aperture
(NA) is equal to the sum of optical NA and illumination NA. Many im-
provements have been made to the basic FPM algorithm, such as high
NA implementation [7], adaptive system correction [8], unknown com-
plex pupil function or aberration recovery [5, 9], thick sample recovery
[10], different denoising methods [11] and Fresnel-integral-based wave
propagation [12, 13], to name a few.

In all these schemes, the fast Fourier transform (FFT) algorithm for
discrete Fourier transform (DFT) calculation is used to calculate the
spectrum of the object. The FFT algorithm defines a fixed relation be-
tween the spatial sampling period δx and the spectral sampling period
δ f = 1/(Nδx), where N × N is the matrix size to represent the discre-
tised complex high-resolution object or its spectrum. With the FFT al-
gorithm, the spectrum matrix at the Fourier plane extends far beyond the
optical synthetic cut-off frequency. As a result, only a small portion of
the calculated spectrum matrix up to the synthetic cut-off frequency is
utilised in the FPM recovery process, wasting a big part of the spectrum
matrix. This letter proposes to use the scaled Fourier transform algorithm
(sometimes also called the fractional Fourier transform) [14–16] to com-
pute the spectrum of the object and implement the forward–backward
field propagation steps in the FPM scheme. The scaled FFT provides the
capability of zooming-in into the object spectrum. Thus, most of the cal-
culated spectrum matrix contains field information that is useful in the
FPM recovery, and the object spectrum is sampled with more elements
without increasing the overall matrix size. In addition, the optical CTF
is also sampled with more elements showing finer details.

Scaled fourier transform algorithm: Based on [14–16], the one-
dimensional scaled Fourier transform of h( j) can be written as

H (k) =
∑

j

h( j) exp(−i2πs jk)

=
∑

j

h( j) exp(−iπs[ j2 + k2 − (k − j)2])

= exp(−iπsk2)
∑

j

h( j) exp(−iπs j2) exp(iπs(k − j)2)

= exp(−iπsk2)
∑

j

χ ( j)ζ (k − j)

= exp(−iπsk2)[χ ( j) ⊗ ζ (k)]

= exp(−iπsk2)FFT−1[FFT{χ ( j)}FFT{ζ (k)}] (1)

where k = 0, 1, . . . , N − 1 is the frequency index, j = 0, 1, . . . , N − 1
is the spatial index, N is the array size, s is the Fourier transform scal-
ing parameter, χ ( j) = h( j) exp(−iπs j2), ζ (k − j) = exp(iπs(k − j)2)
and ⊗ is the convolution operator. The convolution can be imple-
mented in the frequency domain by first zero padding the input array
to make it of size 2N , taking its Fourier transform, multiplying it with
the Fourier transform of ζ (k) (which is also padded to the size 2N),
then taking the inverse Fourier transform of the product and select-
ing only the valid part of size N from the output array of total size
2N [14, 16]. To save one FFT operation, the analytical Fourier trans-
form of ζ (k) can also be sampled and used in the calculations. Choos-
ing the scaling parameter s = 1/N results in the traditional DFT with
spatial sampling period δx, spectral sampling period δ f = 1/(Nδx) and
maximum frequency in the calculated spectrum fmax = 1/(2δx). Alter-
natively, by choosing s = s1/N , where s1 < 1.0, the spectral sampling
period becomes δ f = s1/(Nδx) and the maximum frequency in the cal-
culated spectrum becomes fmax = s1/(2δx). We explain here with an
example in the FPM context. For a reconstructed high-resolution sam-
ple with spatial resolution δx = 148.8 nm and matrix size 2048 × 2048,
circular synthetic numerical aperture NAsynth = 0.34, the maximum
spatial frequency in the usual DFT will be fmax = 3.3583 × 106 m−1

and the maximum spatial frequency reached by the synthetic NA is
fmax,synth = NAsynth × k0/(2π ) = 6.548 × 105 m−1. Thus, all the calcu-
lated frequencies in the object spectrum matrix outside the circle with
radius fmax,synth are not utilised in the FPM reconstruction, wasting ap-
proximately 97% portion of the object spectrum matrix. If we choose
the scaling parameter s1 = 0.25 in the scaled FFT, the maximum spatial
frequency in the calculated spectrum will be fmax = 8.395 × 105 m−1,
which results in 47.8% portion of the calculated spectrum matrix actu-
ally being utilised in the FPM reconstruction, and thus, the object spec-
trum (and the unknown complex pupil, which is a scaled version of the
lens CTF [6]) will be sampled with more elements.

Pseudo-MATLAB code: Based on (1), we have programmed a function
ScaledFFT in MATLAB. The scaling parameter s is positive for forward
and negative for the inverse scaled FFT. The scaled-Fourier-transform-
based ptychography algorithm is implemented, which is a modification
of the traditional FPM algorithm with complex pupil recovery [1, 5, 10].
A pseudo-MATLAB code is provided here

H (k) = ScaledFFT(h( j), s) (2)

Define kx, ky vectors for LEDs,

CCD pixel size spsize,

high-resolution pixel size psize,

low-resolution matrix size m1 x m1,

high-resolution matrix size m x m,

read images, do background removal,

Define scaled FFT fraction s1=0.25,

dk=s1*2*pi/(psize*m);

kmax=s1*pi/spsize;% max rad/m freq,

kaxis=-kmax:dk:kmax-dk; % rad/m

CTF=(kaxis.∧2+kaxis.∧2)<=cutoffFrequency∧2;
scaled FFT factor s=s1/m;% s=1/m for usual DFT
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Fig. 1 Schematic diagram of the experimental setup

objectRec=upscaled bright-field image size mxm;

objectRecFT=ScaledFFT(objectRecover,s);

Pupil_Rec = CTF; % Unknown complex pupil

for loop=1:1:max_itertions

for LED_no=1:1:end

% center of the shifted pupil

kxc=round(n/2+1-kx(LED_no)/dk);

kyc=round(m/2+1-ky(LED_no)/dk);

% lower and upper limits of shifted pupil

kxl=round(kxc-n1/2);

kxh=round(kxc+n1/2)-1;

kyl=round(kyc-m1/2);

kyh=round(kyc+m1/2)-1;

O_j = objectRecFT(kyl:kyh,kxl:kxh);

lowResFT1 = O_j.*pupil_Rec;

% forward image

imLowRes=(s∧2)*ScaledFFT(lowResFT1, -s*m/m1));

imLowRes=(m/m1)∧2*sqrt(Image(LED_no))
.*exp(j*angle(imLowRes));

lowResFT2=ScaledFFT(imLowRes,s*m/m1);

% update the object sub-spectrum

objectRecFT(kyl:kyh,kxl:kxh)=O_j+abs(pupil.*CTF).*

conj(Pupil_Rec)./max(max(abs(Pupil_Rec)))

./(abs(Pupil_Rec).∧2+1.0).*(lowResFT2-lowResFT1);

% update the complex pupil

Pupil_Rec=Pupil_Rec+abs(O_j).*conj(O_j.*CTF)./

max(max(abs(O_j)))

./(abs(O_j).∧2+1000.0).*(lowResFT2-lowResFT1);

end

end

objectRechi=(s)∧2*ScaledFFT(objectRecFT,-s);

Recovery from experimental images: A schematic of the setup is shown
in Figure 1. The following hardware was used for taking experimen-
tal images: Basler camera (Model acA5472-17um, pixel size 2.4 μm ×
2.4 μm, 12-bit resolution), 15 × 15 LED board with LED spacing
4 mm, wavelength 0.52 μm, LED to sample plane distance =113 mm
for USAF target, =103 mm for bone sample, optics NA = 0.08, magni-
fication 4x. The central 256 × 256 pixels of the captured low-resolution
images were used to reconstruct the high-resolution image with an
up-scaling ratio of 4 giving high-resolution matrix size 1024 × 1024,
NAsynthetic = 0.47 for the corner LEDs was recovered and 10 iterations
of the recovery loop were run.

The FPM recovery results are given in Figures 2 and 3 for the USAF
resolution target (which is an amplitude target) and for the cartilage bone
sample (which is a complex target), respectively. In Figure 2, group 9 el-
ement 3 is clearly resolved by both algorithms. It can be seen in these
figures that the quality of recovery of the high-resolution object (both
amplitude and phase) is similar in both algorithms with some artefacts
due to the presence of noise in the captured images, as no noise re-
moval was performed on the captured images. The main advantage of
the scaled FFT scheme is that the recovered spectrum of the object cov-
ers a bigger area of the 1024× 1024 matrix, thus showing finer details of
the spectrum. In addition, the recovered pupil amplitude and phase also

Fig. 2 Traditional FFT versus scaled FFT (s1 = 0.25) FPM recovery, USAF
amplitude target

show finer details as compared to the traditional FFT algorithm while
having the same matrix size. Note that the maximum resolvable spatial
frequency is still the same for both algorithms since that is dictated by
the synthetic NA, which remains the same for both cases.
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Fig. 3 Traditional FFT versus scaled FFT (s1 = 0.25) FPM recovery, carti-
lage/bone sample

Conclusion: We have derived an FPM recovery scheme based on the
scaled FFT. The advantage of the scaled FFT is that the recovered spec-
trum and the complex pupil function can be zoomed-in to see finer de-
tails while keeping the same matrix size as in the traditional FFT-based
FPM schemes. Thus, a bigger portion of the chosen matrices is utilised
during the FPM recovery process. The results of recovery of experimen-
tal images of different samples show that the new algorithm produces
good recovery for both amplitude and phase of the object as well as
the pupil aberrations. Future work will focus on exploring convergence
properties of the FPM algorithm with the scaled FFT.
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