
Efficient Parameterization of Modelica Models

Thomas Beutlich1 Dietmar Winkler2

1Germany, modelica@tbeu.de
2University of South-Eastern Norway, dietmar.winkler@usn.no

Abstract
This article presents the different approaches and use
cases for efficient parameterization of Modelica models
by means of external data resources. The main motivation
is to improve the overall quality, testability and reusability
of Modelica application models (both on component and
system level) by a separation of the behavioral implemen-
tation from its actual design parameters. The Modelica
libraries ExternData and ModelicaTableAdditions
are freely available to support library developers and ven-
dors in their ambitions to offer clean and dedicated inter-
faces for the parameterization of the application models
and to benefit from a large variability of commonly used
file types, such as CSV, Excel, HDF, JSON, MATLAB
MAT, XML or even domain-specific file types such as for
tire properties or weather data.
Keywords: parameterization, external data resources,
Modelica external function interface, SSP

1 Introduction
The separation of the design parameters from Modelica
application models was already discussed within the MA
(Modelica Association)1 about 15 years ago. Tiller (2005)
developed an in-house library DataRetrieval, that fea-
tured a generic approach applicable for different file for-
mats or data bases. Supported file formats included for
example XML (eXtensible Markup Language), HDF (Hi-
erarchical Data Format) and MATLAB MAT. There even
have been early ideas for the standardization of the appro-
priate interfaces and XPath query expressions. Similarly,
Köhler and Banerjee (2005) presented an in-house library
ZFlib based on simple ASCII text files for a generic pa-
rameterization of transmission models. This library was
later extended by Kellner et al. (2006) to also support tar-
get platforms without a file system. Reisenbichler et al.
(2006) bewailed that the XML technology had not yet es-
tablished as a standardized concept for the parameteriza-
tion of Modelica application models. They again proposed
to use XML as file format for external data resources – be-
ing a standardized and widely accepted language with sig-
nificant tool support for data processing. Their Dymola2

library also featured the full power of the XPath query ex-
pressions and data processing capabilities.

1Modelica Association, https://modelica.org
2Dassault Systèmes, https://www.3ds.com

The topic was raised again for the MSL (Modelica Stan-
dard Library)3 without greater reception in 20084. Therein
it was mentioned, that with the current concept of imple-
menting the data access by the Modelica external func-
tion interface, the library vendors and users are responsi-
ble to instrument the Modelica code to consider parame-
terization (described as pull-principle). However, with a
push-principle this responsibility could be moved to the
tool vendors, and as such library users could benefit from
a greater reusability and flexibility of the layered parame-
terization.

When the MA project SSP (System Structure and Pa-
rameterization of Components for Virtual System De-
sign)5 was initiated in 2014, only the parameterization of
networks of FMUs (Functional Mock-up Units)6 was con-
sidered. Even though the SSP standard 1.0 misses support
for array parameters, it was not yet contemplated to apply
it as layered standard for the parameterization of Modelica
models.

With no standardized interface available, Modelica
users depending on external data resources either still need
to write their own utility libraries or have to depend on
proprietary, tool-specific features (e.g., the data base inter-
face of SimulationX7) or commercially available libraries
such as Modelon.DataAccess from Modelon8.

The parameterization of Modelica models can be dif-
ferentiated by the following usage scenarios.

• Property parameters are constant during a transient
simulation. They are non-structural parameters, i.e.,
a translated simulation model can be reused with
changed parameters. Examples are geometry dimen-
sions (e.g., tire diameter), material constants (e.g.,
electrical resistance) or ambient conditions (e.g., am-
bient pressure or gravitational acceleration). They
can be of Real, Integer, Boolean or String type
and either be scalar or of one/two-dimensional array
kind (e.g., consumption map or road excitation map).

3MA project “Libraries”, https://doc.modelica.org
4MSL issue #115, https://github.com/modelica/

ModelicaStandardLibrary/issues/115
5MA project “System Structure and Parameterization”, https://

ssp-standard.org
6MA project “Functional Mock-up Interface”, https:

//fmi-standard.org
7SimulationX by ESI, https://www.simulationx.com
8Modelon, https://www.modelon.com

DOI
10.3384/ecp21181141

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

141

• Stimulation parameters can be considered as time-
driven inputs for a transient simulation and can be
modeled by one-dimensional look-up tables. Ex-
amples are the environmental conditions such as
weather.

• Structural parameters have influence on the overall
system topology and thus on the dimension of the
system of equations. They need to be constant dur-
ing a transient simulation, but any change requires a
new translation of the Modelica model. Special care
needs to be taken if structural parameters are read
from external data resources.

The Modelica libraries ExternData9 and
ModelicaTableAdditions10 are available as open-
source Modelica packages under the permissive BSD-2-
Clause License. Both libraries can be directly obtained
from GitHub or via the Modelica impact package
manager (Tiller and Winkler 2014; Tiller and Winkler
2015).

• ExternData supports the user in reading proper-
ties or structural parameters from various file types
of external data resources. Data access from CSV
(Comma Separated Values), INI, JSON (JavaScript
Object Notation), MATLAB MAT (including HDF),
SSV (System Structure Parameter Values), TIR (Tire
Properties), Excel XLS/XLSX and XML files is im-
plemented.

• ModelicaTableAdditions is an extension of the
Modelica Standard Tables (Beutlich, Kurzbach, and
Schnabel 2014) with support for more file types be-
side Dymola MOS11 and MATLAB MAT. Its blocks
can be utilized to also model stimulation parameter-
ization or look-up tables from CSV, EPW (Energy-
Plus Weather)12 or JSON files and work as a drop-in
replacement for the Modelica Standard Tables of the
MSL.

There exists the use case to reuse the time series stored
in the result data of one simulation as stimulation parame-
terization for subsequent simulations. Whereas Pfeiffer,
Bausch-Gall, and Otter (2012) designed an HDF based
file format, Tiller and Harman (2014) invented two new
file formats for efficient read and write operations while
particularly avoiding the HDF dependency. Both pro-
posals only gained experimental acceptance within the
MA. As there also was no adoption in the Modelica
tool environment, the workaround is to store the simu-
lation result data as CSV file, which then can be read

9ExternData Git repository, https://github.com/
modelica-3rdparty/ExternData

10ModelicaTableAdditions Git repository, https://github.
com/modelica-3rdparty/ModelicaTableAdditions

11There is no specific name or file extension for the Dymola-specific
text/script files starting with “#1” as first line.

12EnergyPlus Weather Data, https://energyplus.net/
weather

again by the one-dimensional look-up table blocks of
ModelicaTableAdditions.

2 ExternData
The Modelica library ExternData developed out of the
need to offer an open-source utility package for efficient
parameterization of property parameters from external
data resources. It has been successfully tested in Dymola,
OpenModelica13 and SimulationX.

2.1 Library Design
The library (as shown in Figure 1) consists of top-level
data source records for each supported file type, the pro-
vided accessor functions in ExternData.Functions
and the external objects in ExternData.Types.

Figure 1. Library structure of ExternData

2.1.1 Data Source Records

The data source records are convenience types to encapsu-
late the external object component with its accessor func-
tions.

A naïve record type definition together with an exem-
plary user call (application model) is given in Listing 1.
(For the sake of clarity, the declaration of the external type
Types.ExtObj and the external function annotation for
ExtFun are skipped.)

13Open Source Modelica Consortium (OSMC), https:
//openmodelica.org/

Efficient Parameterization of Modelica Models

142 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181141

Listing 1. Naïve record type definition

// L i b r a r y
record DataSource "Data source record"

parameter String fileName = ""
"External data resource";

final parameter Types.ExtObj obj =
Types.ExtObj(fileName) "Ext. object";

pure function get "Accessor function"
input Types.ExtObj obj "Ext. object";
input String s "Accessor id";
output Real out "Data value";
external "C" out = ExtFun(obj, s);

end get;
end DataSource;

// App l i c a t i o n model
parameter DataSource dataSource(

fileName="dataSource.ext");
parameter Real p = dataSource.get(

dataSource.obj, "id");

The disadvantage of such a naïve approach is that the
handle of the external object, i.e. dataSource.obj, has
to be passed by every call of the accessor functions despite
it actually is an implementation detail of the record and
could be a protected component14.

Listing 2. Sophisticated record type definition

// L i b r a r y
package Functions "Functions"

pure function get "Accessor function"
extends Interfaces.getBase;
external "C" out = ExtFun(obj, s);

end get;
end Functions;

package Interfaces "Interfaces"
partial record DataSourceBase
"Base data source record"
replaceable function get = getBase;

end DataSourceBase;
partial function getBase "Base function"
input Types.ExtObj obj "Ext. object";
input String s "Accessor id";
output Real out "Data value";

end getBase;
end Interfaces;

record DataSource "Data source record"
parameter String fileName = ""
"External data resource";

final parameter Types.ExtObj obj =
Types.ExtObj(fileName) "Ext. object";

extends Interfaces.DataSourceBase(
redeclare final function get =
Functions.get(obj=obj)
"Accessor function");

end DataSource;

// App l i c a t i o n model
parameter DataSource dataSource(

fileName="dataSource.ext");
parameter Real p = dataSource.get("id");

14Only public sections are allowed for records, though.

A more sophisticated library design is based on clean
interfaces for the records and accessor functions enabling
inheritance, and thus the possibility of function redecla-
ration (Beutlich 2018). The general concept is presented
in Listing 2.

With such a sophisticated library design the actual im-
plementation (as an external object) is disguised from the
caller as the handle of the external object no longer needs
to be passed by the member accessor functions.

As of MLS 3.5 (Modelica Language Specification)15, it
is not yet fully specified, if external objects may be used
in records16.

2.1.2 External Functions

The actual external functions and objects serving the Mod-
elica external function interface are implemented in C, i.e.
no C++ is utilized.

Independent of the actual file type, the acces-
sor functions for scalars of type Real, Integer,
Boolean or String are named getReal, getInteger,
getBoolean or getString, respectively. For one/two-
dimensional arrays, the accessor functions are ap-
pended by Array1D/Array2D, e.g., getRealArray1D
or getIntegerArray2D. There also are the corre-
sponding functions to retrieve the array dimensions
from the external data resource, i.e., getArraySize1D
and getArraySize2D (and also getArrayRows2D and
getArrayColumns2D).

2.1.3 Structural Parameters

Reading structural parameters from external data re-
sources (as shown for an XML file by Listing 3) by func-
tions getArraySize1D or getArraySize2D is not gen-
erally supported17. Of the tested Modelica tools, it only
works in SimulationX.

Listing 3. Accessing structural parameters in SimulationX

// Simulat ionX a p p l i c a t i o n model
parameter String s = "vector"

"XML element name";
parameter ExternData.XMLFile dataSource(

fileName="dataSource.xml")
"Data source record";

parameter Integer m =
dataSource.getArraySize1D(s)
"Structural parameter";

parameter Real p[:] =
dataSource.getRealArray1D(s, m)
"Array parameter";

To assist the Dymola users, alternative implementations
using readArraySize1D/readArraySize2D functions
are available. This comes with the disadvantage of redun-
dant file I/O and is demonstrated by Listing 4.

15MA project “Libraries”, https://specification.
modelica.org/

16MLS issue #2399, https://github.com/modelica/
ModelicaSpecification/issues/2399

17MLS issue #2425, https://github.com/modelica/
ModelicaSpecification/issues/2425

Session 2A: Initialization & parametrization

DOI
10.3384/ecp21181141

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

143

Listing 4. Accessing structural parameters in Dymola

// Dymola a p p l i c a t i o n model
parameter String s = "vector"

"XML element name";
parameter ExternData.XMLFile dataSource(

fileName="dataSource.xml")
"Data source record";

parameter Integer m =
ExternData.XMLFile.Functions.

readArraySize1D(
varName=s,
fileName="dataSource.xml")

"Structural parameter";
parameter Real p[:] =

dataSource.getRealArray1D(s, m)
"Array parameter";

2.1.4 Missing Data
In some cases it may happen, that data of the external re-
sources is missing, for example, an empty cell of an Excel
file. By parameter detectMissingData, ExternData
supports four options how to deal with missing data val-
ues.

• Return data-type specific defaults

• Return data-type specific defaults and print a mes-
sage

• Return data-type specific defaults and raise a warn-
ing

• Stop the simulation with an error message

Similarly, the accessor functions (Section 2.1.2) also re-
turn a Boolean output exist to indicate if the retrieved
data is available or missing. This way, the reaction on
missing data can be modeled per function call.

2.2 Supported File Types
ExternData supports various file types for different kind
of requirements.

2.2.1 CSV
CSV files contain exactly one data set that can be consid-
ered as matrix. An example file with three columns and
a header line is given by Listing 5. Both the number of
header lines to be ignored and the column delimiter char-
acter can be specified.

Listing 5. Example CSV file

x,y,z
0,0,0
0.5,0.25,0.125
1,2,3

2.2.2 INI
INI files contain scalar properties as key-value-pairs
which are grouped by sections. The INI-keys can be fully
qualified Modelica names using the dot notation. An ex-
ample file with the default section and a named section is
given by Listing 6.

Listing 6. Example INI file

Default section
gain.k = 1
[Data set]
gain.k = 2

2.2.3 JSON

JSON files can be used to define scalars, vectors or ma-
trices which can be arbitrarily structured. The JSON-keys
must not contain the dot character to properly work with
the accessor functions of ExternData. An example file
with three different values is given by Listing 7.

Listing 7. Example JSON file

{
"Data set": {

"gain": {
"k": "2"

}
},
"vector": [1,2,3],
"matrix": [[0,0],[0.5,0.25],[1,2]]

}

2.2.4 MATLAB MAT (including HDF)

MATLAB MAT files are binary files that can be used
for scalars, vectors or matrices. Though it is a propri-
etary file format it is a common data exchange format for
various scientific applications. MATLAB MAT of ver-
sion 7.3 are HDF5 files and can be considered as a ded-
icated HDF5 data container. This format version is espe-
cially recommended for huge data volumes. However, it
is not advisable to read huge arrays as Modelica variables.
ExternData supports the access of nested structures us-
ing dot notation.

2.2.5 SSV

SSV files are standardized XML files that are used within
the context of SSP to connect and parameterize FMUs.
Certainly, they can not only be used to parameterize im-
ported FMUs in the Modelica simulation environment.
One SSV file describes exactly one parameter set where
(as of version 1.0) only scalar parameter values are sup-
ported. Listing 8 displays an example SSV file.

Listing 8. Example SSV file

<?xml version="1.0" encoding="UTF-8"?>
<ssv:ParameterSet version="1.0" name="Data

set" xmlns:ssv="http://ssp-standard.org/
SSP1/SystemStructureParameterValues">
<ssv:Parameters>

<ssv:Parameter name="gain.k">
<ssv:Real value="2"/>

</ssv:Parameter>
</ssv:Parameters>

</ssv:ParameterSet>

Technically, the external object
ExternData.Types.ExternXML2File is reused
while the SSV accessor functions call the appropriate

Efficient Parameterization of Modelica Models

144 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181141

XML2 functions (ExternData.Functions.XML2.*)
with dedicated XPath query expressions.

2.2.6 TIR

TIR files define domain-specific tire properties. They are
similar to INI files and are implemented to share the same
external object ExternData.Types.ExternINIFile
with respective format permissions.

2.2.7 Excel XLS/XLSX

Both legacy XLS and Office Open XML based XLSX Ex-
cel files are supported for parameterization of scalars or
matrices.

2.2.8 XML

There are two implementations available.

1. ExternData.XMLFile is a straightforward imple-
mentation to return values from XML element nodes

2. ExternData.XML2File enables full support of
XPath query expressions to also query XML at-
tributes or more complicated XML structures.

There is no restriction on the underlying XML schema,
i.e. it can be used for arbitrarily structured XML data,
being standardized (e.g., SSV or CPACS (Common Para-
metric Aircraft Configuration Schema)18) or customized.

3 ModelicaTableAdditions
The Modelica library ModelicaTableAdditions de-
veloped out of the need to offer reading of external data
sources for stimulation parameters (e.g., look-up tables)
from commonly used text file formats. Therefore, the
blocks of ModelicaTableAdditions extend the Mod-
elica Standard Tables of the MSL by support for addi-
tional file formats. It does not add other features like N-
dimensional arrays, scattered data or spline approximation
(as for example by Ungethüm and Hülsebusch (2009)).
The Dymola MOS file format, which is the only text file
format supported by the Modelica Standard Tables is not
suitable for exchange between different applications. This
is where CSV and JSON have their advantages, which can
easily be processed by different applications. As with the
Modelica Standard Tables, the external functions are im-
plemented in pure C (i.e., no C++). For JSON, the same
library dependencies are utilized as with ExternData. It
is possible to use components of packages ExternData,
ModelicaTableAdditions and MSL in the same appli-
cation model. The library has been successfully tested in
Dymola and OpenModelica (Linux only).

3.1 Library Design
The library (as shown in Figure 2) consists of the five look-
up table blocks known from the MSL, but this time within
the ModelicaTableAdditions name-space.

18CPACS, https://cpacs.de

Figure 2. Library structure of ModelicaTableAdditions

3.2 Supported File Types

3.2.1 CSV

The table of a CSV file (as shown by Listing 5) can be used
for time-driven simulation or one/two-dimensional look-
up tables. Both the number of header lines to be ignored
and the column delimiter character can be specified. Ad-
dressing certain columns by their names in the (optional)
CSV header line is not supported.

Support for CSV files was also ported to the Modelica
Standard Tables and merged to the MSL master branch in
early 202119.

3.2.2 EPW

The weather conditions of one year are the typical stim-
ulation parameters for building energy simulations, such
as the Modelica Buildings Library (Wetter et al. 2014).
EnergyPlus provides weather data for simulation in vari-
ous formats, especially their EPW format. Since this file
format is not natively supported by the Modelica Standard
Tables it manually needed to be pre-processed and con-
verted to either Dymola MOS or MATLAB MAT format.

This pre-processing no longer is necessary as the EPW
format is directly supported by all one-dimensional look-
up table blocks of the ModelicaTableAdditions li-
brary.

3.2.3 JSON

Similar as with CSV, tables can be read from JSON files
and be utilized as stimulation parameters, e.g. parameter
“matrix” of Listing 7.

19MSL issue #3691, https://github.com/modelica/
ModelicaStandardLibrary/pull/3691

Session 2A: Initialization & parametrization

DOI
10.3384/ecp21181141

Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

145

4 Conclusions and Outlook
The open-source libraries ExternData and
ModelicaTableAdditions are an offer to Modelica
library developers and users to efficiently parameterize
Modelica application models. Its right to exist is due to a
missing layered (MA) standard for the parameterization
of Modelica models. As already mentioned by Tiller
(2005), the benefits of such a standardization are the
cutback of library code towards the Modelica tools to
even further increase the efficiency, convenience and
usability of the parameterization of application models.

There is no support for units so far, i.e., unit conversion
is left to the application. This could be also addressed by
a standardized parameterization.

Library-wise, one future idea is the support of (sym-
metrical or asymmetrical) encrypted external resources,
which is not yet covered by the MLS. In such cases the
external functions require the appropriate (private) key to
decrypt the external resources at simulation run-time in
memory. Again, encryption as an isolated application can
only be considered a short-term solution towards a future
standard.

Furthermore, it might be desirable if the mentioned
open issues on the MLS regarding external objects could
be clarified finally.

Acknowledgements
The authors would like to thank everybody who
has contributed to the libraries ExternData and
ModelicaTableAdditions, particularly, Adrian Pop,
Hang Yu, Martin Sjölund, Mike Dempsey and Peter Har-
man.

References
Beutlich, Thomas (2018-08). Modeling Hints for Modelica Ex-

ternal Interfaces. Presentation given at the 19th Modelisax
Meeting, Dresden, Germany. URL: https : / / tinyurl . com /
Modelisax2018Hints.

Beutlich, Thomas, Gerd Kurzbach, and Uwe Schnabel (2014-
03). “Remarks on the Implementation of the Modelica Stan-
dard Tables”. In: Proceedings of the 10th International Mod-
elica Conference. Ed. by Hubertus Tummescheit and Karl-
Erik Årzén. Lund, Sweden, pp. 893–897. DOI: 10 . 3384 /
ecp14096893.

Kellner, Matthias et al. (2006-09). “Parametrization of Model-
ica Models on PC and Real time platforms”. In: Proceed-
ings of the 5th International Modelica Conference. Ed. by
Christian Kral and Anton Haumer. Vienna, Austria, pp. 267–
273. URL: https://www.modelica.org/events/modelica2006/
Proceedings/sessions/Session3b2.pdf.

Köhler, Jochen and Alexander Banerjee (2005-03). “Usage of
Modelica for transmission simulation in ZF”. In: Proceedings
of the 4th International Modelica Conference. Ed. by Ger-
hard Schmitz. Hamburg, Germany, pp. 587–592. URL: https:
//modelica.org/events/Conference2005/online_proceedings/
Session7/Session7c1.pdf.

Pfeiffer, Andreas, Ingrid Bausch-Gall, and Martin Otter (2012-
09). “Proposal for a Standard Time Series File Format in
HDF5”. In: Proceedings of the 9th International Modelica
Conference. Ed. by Martin Otter and Dirk Zimmer. Munich,
Germany, pp. 495–506. DOI: 10.3384/ecp12076495.

Reisenbichler, Ulf et al. (2006-09). “If we only had used
XML. . . ” In: Proceedings of the 5th International Modelica
Conference. Ed. by Christian Kral and Anton Haumer. Vi-
enna, Austria, pp. 707–716. URL: https://www.modelica.org/
events/modelica2006/Proceedings/sessions/Session6d1.pdf.

Tiller, Michael (2005-03). “Implementation of a Generic Data
Retrieval API for Modelica”. In: Proceedings of the 4th In-
ternational Modelica Conference. Ed. by Gerhard Schmitz.
Hamburg, Germany, pp. 593–602. URL: https : / / modelica .
org/events /Conference2005/online_proceedings/Session7/
Session7c2.pdf.

Tiller, Michael and Peter Harman (2014-03). “recon – Web and
network friendly simulation data formats”. In: Proceedings of
the 10th International Modelica Conference. Ed. by Hubertus
Tummescheit and Karl-Erik Årzén. Lund, Sweden, pp. 1081–
1093. DOI: 10.3384/ecp140961081.

Tiller, Michael and Dietmar Winkler (2014-03). “impact -
A Modelica Package Manager”. In: Proceedings of the
10th International Modelica Conference. Ed. by Hubertus
Tummescheit and Karl-Erik Årzén. Lund, Sweden, pp. 543–
548. DOI: 10.3384/ecp14096543.

Tiller, Michael and Dietmar Winkler (2015-09). “Where impact
got going”. In: Proceedings of the 11th International Model-
ica Conference. Ed. by Peter Fritzson and Hilding Elmqvist.
Versailles, France, pp. 725–736. DOI: 10.3384/ecp15118725.

Ungethüm, Jörg and Dirk Hülsebusch (2009-09). “Implemen-
tation of a Modelica Library for Smooth Spline Approxima-
tion”. In: Proceedings of the 7th International Modelica Con-
ference. Ed. by Francesco Casella. Como, Italy, pp. 669–675.
DOI: 10.3384/ecp09430013.

Wetter, Michael et al. (2014-07). “Modelica Buildings library”.
In: Journal of Building Performance Simulation 7.4, pp. 253–
270. DOI: 10.1080/19401493.2013.765506.

Efficient Parameterization of Modelica Models

146 Proceedings of the 14th International Modelica Conference
September 20-24, 2021, Linköping, Sweden

DOI
10.3384/ecp21181141

