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Abstract: Researchers have long been interested in developing new economic assessment methods 

to provide credible information and facilitate the sustainable development of new technologies and 

products. The techno-economic analysis (TEA) and the life cycle cost analysis (LCCA) are the most 

widely used approaches for modeling and calculating processes’ economic impacts. A simulation-

based TEA is a cost-benefit analysis that simultaneously considers technical and economic factors. 

In addition, the method facilitates the development of the entire project and provides a systematic 

approach for examining the interrelationships between economic and technological aspects. When 

it comes to economic studies, it is intimately bonded with uncertainty. There are numerous uncer-

tainty sources, classified in various ways. The uncertainty reflects “an inability to determine the 

precise value of one or more parameters affecting a system.” The variability refers to the different 

values a given parameter may take. This implies that a probability density function (PDF), for in-

stance, can be employed to estimate and quantify the variability of a given parameter. The bias 

refers to “assumptions that skew an analysis in a certain direction while ignoring other legitimate 

alternatives, factors, or data.” The present study identifies the frequency with which TEA/LCCA 

studies address uncertainty and gaps within the selected papers through a scoping review. The 

results indicate that the uncertainty associated with economic factors and model uncertainties were 

the main sources of uncertainty in TEA and LCCA. Moreover, possibilistic approaches such as the 

Monte Carlo methodology were the most frequently used tool to cope with the uncertainties asso-

ciated with LCCA and TEA. 
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1. Introduction 

For many years, designers and contractors have been concerned with minimizing the 

costs of their projects. Researchers have always sought to develop new economic evalua-

tion methods to give dependable observations and assist in the creation of new products. 

In this regard, clear and standardized frameworks are required to maximize the effective-

ness of these methods [1]. Regarding technological innovation, the techno-economic anal-

ysis (TEA) and the life cycle cost analysis (LCCA) are two widespread methodologies. 

Despite their broad use and acceptance, these instruments lack clear guidelines and com-

prehensive documentation regarding their features. Both methods suffer from huge am-

biguity, and uncertainty analysis is a key element of their process [2,3]. Uncertainty anal-

ysis provides valuable and meaningful insights into the consequences of assumptions and 

the model’s underlying structure. As a measure of model quality and robustness, the un-

certainty analysis can provide insight into the reliability of the outcome [3]. 

In contrast to determinism, uncertainty may indicate probability, likelihood, or fre-

quency of occurrence [4]. In one classification, uncertainty can be considered aleatory and 

epistemic [5]. Aleatory uncertainty is caused by intrinsic variability, whereas epistemic 
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uncertainty results from a lack of knowledge [6]. However, many articles have been pub-

lished over the years on methods and approaches for evaluating uncertainty (e.g., [7–9]), 

but there are few literature reviews on this topic. In addition, new and advanced uncer-

tainty techniques are not yet utilized by techno-economics and life cycle cost analysts. It 

may partly be due to unawareness of the different uncertainty analysis alternatives and 

their pros and cons. Therefore, a review on this topic might increase awareness of this 

subject. 

PRISMA, which stands for the “preferred reporting items for systematic reviews and 

meta-analyses” [10–13], is a well-established method for reporting scoping reviews [14]. 

This process involves illustrating the screening results at each stage in order to report ex-

isting studies. In addition to systematic reviews and meta-analyses, PRISMA can also be 

used to report reviews of other types of research [15]. Following PRISMA guidelines, the 

scoping review methodology comprehensively reviews TEA and LCCA in an uncertain 

environment. Three research questions are addressed in the present study: 

1. What are the main sources of uncertainty in TEA and LCCA? 

2. Which methods/tools were used to cope with these uncertainties? 

3. Which probability distribution functions were used to define the uncertainties? 

The remainder of the article is outlined as follows: Section 2 describes the background 

of TEA and LCCA and the potential sources of uncertainty. The study’s methodology is 

described in Section 3, a discussion of the research results is presented in Section 4, and 

the review is concluded in Section 5. 

2. Background 

In recent years, both the TEA and LCCA have gained increasing acceptance as ap-

praisal methods for technological projects. This perspective indicates that both TEA and 

LCCA can serve as practical tools to ensure that resources are allocated appropriately and 

efficiently based on the technological assessment scopes. The US Department of Defense 

developed a primary framework of LCCA in the 1960s to systematically assess projects 

characterized by significant operative expenditures other than capital investments [16]. 

The following will introduce and discuss the basics of both concepts. Although there have 

been some techno-economic analyses over the past few decades, a systematic discussion 

of its methodological approach was only initiated recently [1]. Inevitably, the results of 

any evaluation based on assumptions and estimates will be uncertain. For decision-mak-

ers to make informed decisions, it is necessary to conduct an uncertainty analysis to de-

termine both the reliability of positive results and which technical and economic parame-

ters will most influence the profitability of a project [17]. Therefore, the present section 

provides the basics and definitions of TEA, LCCA, and their uncertainties. 

2.1. Techno-Economic Analysis 

Generally, a TEA compares costs and benefits by examining technological and eco-

nomic aspects [1]. TEA combines engineering design and process modeling with eco-

nomic evaluation, providing a means of assessing the economic viability of a process. 

From another perspective, TEA is a method of estimating a plant’s performance, emis-

sions, and cost in advance of its construction. A variety of definitions of evaluation meth-

ods are presented in the literature, most of which differ in terms of the evaluation scope 

and level of detail. TEA was offered not only as a tool in which investment and perfor-

mance analysis converge but also as an appropriate approach for integrating engineering 

design and process modeling with the economic aspects [1,18]. 

Despite the significant increase in the use of TEA, in the absence of an agreed upon 

definition, it is difficult to determine what constitutes a TEA [19]. However, researchers 

have attempted to define the methodology of TEA. Kuppens et al. [17] discussed that three 

key questions need to be answered by a TEA: What is the mechanism of the technology? 

Does the technology have profit potential? How desirable is the technology? Nevertheless, 
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they defined TEA as a combination of economic and technical evaluations. There are still 

some methodological guidelines that need to be clarified despite the effectiveness of the 

provided definition. In addition, the NABC (National Advanced Biofuels Consortium) 

provided a detailed description of the purpose of TEA in order to determine the financial 

viability of a conversion strategy. As part of TEA, engineering design, process modeling, 

and economic evaluation are integrated. Appendix A provides some definitions and state-

ments of TEA. 

Before delving into existing uncertainty analysis methodologies, offering a general 

overview of techno-economic models is useful since different investigations may necessi-

tate different uncertainty analysis techniques. Van der Spek et al. [3] summarized the 

types of uncertain parameters based on the model complexity (simple, moderate, and 

complex). For simple models, uncertain parameters include financial parameters such as 

lifetime, discount rate, fuel and consumables costs, and scaling exponents. In moderate 

systems, uncertain parameters include simple model parameters, equipment sizes, equip-

ment costs, and escalation factors. In addition, uncertain parameters include scaling fac-

tors, detailed capital costs, operational costs, and simple and moderate parameters in com-

plex models. Giacomella [1] reported that the TEA’s methodological steps could be cate-

gorized into the following six steps: (1) defining technology readiness levels (TRL), (2) 

system elements and boundaries identification, (3) Analyzing market conditions, costs, 

and feasibility, (4) profitability analysis, (5) analysis of risk and uncertainty using sensi-

tivity and scenario forecasting, and (6) recommendations. 

2.2. Life Cycle Cost Analysis 

Life cycle cost analysis (LCCA) is a technique used to evaluate all relevant expenses 

of a project, product, or measure over its time. LCCA takes into account all costs, including 

initial costs (such as capital investment, purchase, and installation), future costs (such as 

energy, operating, maintenance, capital replacement, and financing costs), and any resale, 

salvage, or disposal costs, over the lifetime of the project or product [20–23]. Compared to 

TEA, LCCA relies on a broader regulatory foundation. The LCCA may depend on a 

broader set of legal regulations, standards, and guidelines than the TEA, whose primary 

sources are individual guidelines and intellectual debate [1]. The European Union recog-

nizes LCCA through its directives (2014/24/EU [24], 2014/25/EU [25]), and several prod-

uct-specific standards have been developed for the oil and gas and construction indus-

tries. (ISO 15663:2000 and 15686:2017, respectively). 

In the literature, LCCA is also described in several different ways, but it appears to 

have a higher degree of coherence than TEA. As obtained from definitions in Appendix 

A, LCCA facilitates the proper decision-making process by aggregating and estimating 

costs into easy-to-read figures, as well as revealing and counting the influence of different 

factors, such as the time value of money and other uncertain economic factors, on deci-

sions. The cost generally includes all costs related to production, operation, maintenance, 

and retiring/disposing of a product from the cradle to the grave. 

Uncertainty in parameters, such as cash flows and their timing, interest rates, and 

duration analysis, are the most commonly reported uncertainty sources in LCCA. The un-

certainty of cash flow is called cash flow unpredictability [26]. The uncertainty of interest 

rates results from fluctuating economic conditions and markets, and the change of interest 

rates over time puts uncertainty into any study [27,28]. The literature addresses uncer-

tainty in describing the cash flows’ timing using the same reasoning that applies to interest 

rates and cash flows. 

According to the literature [1,29,30], the TEA’s methodological steps can be catego-

rized into the following five steps: (1) problem definition and objectives, (2) cost analysis, 

(3) discounting future cash flows and economic evaluation, (4) considering risks and un-

certainties, and (5) comparing the alternatives and possibilities. 

2.3. Uncertainty 
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According to Finnveden et al. [31], uncertainty is defined as the deviation between a 

quantity measured or calculated and its true value and discussed many reasons to make 

the uncertainty happen. Different variables influence how decision-makers interpret un-

certain outcomes, including their preferences, timing, and scenario framing [32]. In the 

literature, sources of uncertainty, such as data, choices, and relations, are distinguished 

from types of uncertainty. As examples of uncertainty types, data variability, incon-

sistency between alternative products, and an incorrect relationship between pollutant 

emissions and their environmental impact can be cited. [33]. From the literature, an over-

view of different types of uncertainty and their definitions is given in Table 1. As seen, 26 

different types of uncertainty were listed and defined. The most significant types of un-

certainty in TEA and LCCA are model, parameter, and scenario uncertainties, as well as 

variability (see Section 4). Over time, different methods have been developed to deal with 

different types of uncertainty. Uncertainty modeling can be used to reduce, evaluate, and 

demonstrate uncertainty. These methods can be classified into four groups: deterministic, 

probabilistic, possibilistic, and other methods [34]. In another classification, these methods 

were categorized into quantitative and qualitative techniques [35]. Barahmand et al. [36] 

reported another classification which consists of possibilistic, probabilistic, hybrid possi-

bilistic-probabilistic, interval-based analysis, robust optimization, and information gap 

decision theory. A diagram illustrating well-known methods of dealing with various 

types of uncertainty is shown in Figure 1 (based on [34,37]). 

Table 1. Overview of different types and sources of uncertainty. 

Type Source Ref. 

Variability  
An unpredictable result of changes in systems (involving time, space, or other 

variables) 
[38] 

Systematic errors  Bias in sampling procedures or measuring equipment [38] 

Measurement error 
Errors that appear random due to imperfections in the measurement equipment 

and observational methods 
[38] 

Random errors A measurement error caused by varying factors between measurements 
Oxford 

definition 

Parameter uncertainty  
Measurement errors, sampling errors, variability, and surrogate data contribute 

to incomplete knowledge of parameters 
[39] 

Model uncertainty  
Our limitations in representing physical systems may result in uncertainty 

when we approximate a model in order to solve a problem. 
[38] 

Scenario uncertainty 
A level of uncertainty associated with specifying an exposure scenario that is 

consistent with the purpose and scope of the exposure assessment 
[40] 

Exposure factor Uncer-

tainty 
Contributes to the specification of numerical values for human exposure [40] 

Uncertainty due to 

choices  
Different choices of partitioning methods, etc. [41] 

Spatial variability  

The phenomenon occurs when the value of a quantity is different at different 

spatial locations. A descriptive spatial statistic such as the range can be used to 

assess spatial variability. 

[42] 

Temporal variability  
A measure of the frequency and magnitude of fluctuations in ecosystem 

structure such as standing stocks of resources and species abundance 
[43] 

Data uncertainty  
This type of data contains noise that causes it to deviate from the correct or 

original values. 
[44] 

Completeness uncer-

tainty 

Like modeling uncertainties, completeness uncertainties occur at the beginning 

of the probabilistic risk analysis process. In probabilistic risk analysis, there is 

uncertainty as to whether all significant phenomena and significant 

relationships have been considered.  

[45] 
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Aleatory uncertainty  Samples and parameters are intrinsically random [38] 

Epistemic uncertainty  An insufficient understanding of fundamental phenomena [38] 

Ambiguity  Being open to multiple interpretations 
Oxford 

definition 

Volitional uncertainty 
Whether or not an individual will follow through on an individual’s 

commitment 
[46] 

Statistical variation  A measure of how widely distributed a group of data is  [47,48] 

Subjective judgment  A lack of certainty in the interpretation of data or the estimations of experts [38] 

Linguistic imprecision  Depends on the utterance alternatives available to the speaker in the context [49] 

Inherent randomness  Resulting from the irreducibility of a system to a deterministic system [38] 

Disagreement  Lack of consensus or approval, inconsistency or correspondence 
Oxford 

definition 

Approximation Nearly accurate but not exactly correct value or quantity 
Oxford 

definition 

Semantic uncertainty 
Occurs when humans give names to things, especially when those things are 

mapped as geographic data 
[50] 

Interpretational 

uncertainty 

Occurs when interpreters use inconsistent decoding methodologies to extract 

information from data or models. 

Helmholtz  

dictionary 
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Figure 1. Classification of different methods to cope with system uncertainties. 

3. Methodology 

The present study uses a scoping review methodology to summarize and analyze the 

history and status of uncertainty considerations in techno-economic and life cycle cost 

assessments, as well as indicate related challenges and limitations. The choice of this type 

of review was based on the fact that it involves multiple structured searches and a rigor-

ous search methodology [51]. As part of the process, PRISMA flow diagrams are used to 

report on the papers found at each stage [10]. Flow diagrams based on the PRISMA meth-

odology have been well established as a methodology for scoping reviews [52]. The ob-

jective of this method is not to conduct a mapping or a systematic review since the iden-

tified literature will not be critically evaluated. Instead, thematic data analysis is presented 

descriptively and qualitatively [53]. 
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Furthermore, promising areas for improvement and knowledge gaps were identi-

fied. The purpose of a scoping review is to describe the key concepts underpinning a re-

search area, as well as the available sources and types of evidence. It may be performed 

as a standalone project, particularly when the subject matter is complex or has not been 

thoroughly investigated [54]. Scoping studies are conducted for at least four reasons [55]: 

1. Analyzing the scope, range, and nature of the study, 

2. An assessment of the feasibility of conducting a comprehensive systematic review, 

3. Sharing and summarizing findings, and 

4. Knowledge gaps identification 

3.1. Searching Procedure 

As seen in Figure 2, scoping review protocol consists of five main stages: identifying 

research questions and relevant studies, selecting studies, charting the data, and summa-

rizing and reporting the results [53]. To conduct this study, the following steps were per-

formed. 

1. Three main research questions were defined (stage 1). 

2. A preliminary search was conducted in two scientific databases, Scopus and Sci-

enceDirect (stage 2), using the following search strings. These search strings are: 

For Scopus: 
TITLE-ABS-KEY ((techno-economic OR (life AND cycle AND cost*)) AND(uncertainty)) 

For ScienceDirect: 
(techno-economic OR life cycle cost) AND uncertainty 

The initial search was not limited at this level. Titles, abstracts, and keywords were 

searched across the selected databases. Thus, 3635 and 680 documents (in all catego-

ries) were indexed in Scopus and ScienceDirect, respectively. 

3. The main interest was to study the most recent studies. Therefore, the studies con-

ducted in the last 5 years were chosen (2017–April 2022). As a result of applying this 

limit, the number of documents decreased to 1777 for Scopus and 470 for ScienceDi-

rect, respectively (stage 2). 

 

Figure 2. Overall research process scheme based on PRISMA adapted from [14]. 
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4. In the next step, the language of the studies was also limited to English. Conse-

quently, only a few documents were removed from Scopus. The remaining studies 

were indexed in Scopus and ScienceDirect as 1741 and 470, respectively (stage 2 con-

tinued). 

5. Limiting the search strings only to the title (stage 2 continued), the number of articles 

dropped significantly (63 and 35 for Scopus and ScienceDirect). 

6. All the documents obtained from ScienceDirect were repeated in the Scopus list. 

Therefore, in this step, by trimming the list and removing duplicates, 63 documents 

remained (stage 3). The remaining articles were listed in Excel to perform the neces-

sary investigation. 

7. A full-text screening was conducted to determine the eligibility of the studies. Ac-

cordingly, three studies were deemed non-relevant and were eliminated from the list 

(stage 3 continued). The list contained 60 publications at this stage. 

8. To obtain more credible results, the results were limited to only journal papers, and 

book chapters and conference papers were eliminated. All in all, the final list in-

cluded 47 studies. 

9. The Bolographic information was extracted and reported (stages 4 and 5), including 

the title, country of origin, year of publication, the study’s aim and scope, methodol-

ogy, barriers and challenges, and other observations. 

The PRISMA flow diagram of the study is illustrated in Figure 3. PRISMA method-

ology, a well-established reporting template, illustrates the screening process results to 

report the remaining studies at each stage of the screening process. 

Identification

S
c
re

e
n

in
g

Eligibility

Including

Process Description Scopus ScienceDirect

Searching

Preliminary 

Screening 1

Preliminary 

Screening 2

Eliminating 

duplicates
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Records 
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Initial search results on title, abstract and 

keywords

Refining articles between 2017-2022

Refining articles in English language

Eliminating common articles in all databases

Adding other studies in the processs

n = 3635

n = 1777

n = 1741

n = 63

n = 47

n = 47

n = 680

n = 470

n = 470

n = 35
Detailed 

Screening
Limiting the search to title

n = 63

Secondary 

Screening
Eliminating conference papers n = 50

 

Figure 3. PRISMA flow diagram. 

3.2. Limitation 

The present study was limited to English language studies published after 2017. Fur-

thermore, conference papers, proceedings, and grey literature, such as publicly accessible 

records and technical reports, have not been studied. 
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4. Results and Discussion 

An overview of the latest studies on applying uncertainty analysis to TEA and LCCA 

(47 selected studies from the scoping review) is provided in this section. 

4.1. Descriptive Analysis 

4.1.1. Number of Publications 

The year-wise analysis provides an overall perspective of the research progress over 

the study period. Based on data from 2017 to April 2022, Figure 4 shows how many studies 

were published. The early studies from the Scopus database were also presented to pro-

vide a better understanding of the trend over time. As a whole, TEA and LCCA are be-

coming increasingly popular for investigating uncertainty. With 15 publications, 2021 has 

made the greatest contribution. So far, there has been only one publication in the first 

quarter of 2022; however, it is expected to have fewer publications than in 2021. Since 

2017, interests in the topic have increased significantly. 

 

Figure 4. Number of selected studies over the years and overall trend. 

4.1.2. The Origin of Studies 

Based on country-wise analysis of the selected publications, 27 countries contributed 

to 47 publications. Figure 5 illustrates that the United States has contributed the most pub-

lications, with 14 studies, followed by the United Kingdom with 7 publications. China and 

the Netherlands have five publications each. 
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Figure 5. Country’s contribution to publications. 

4.1.3. Publications by Document Type 

Although conference papers have been eliminated from this review, to have a mean-

ingful comparison of types of published studies on the topic, conference papers were 

added to 47 selected studies. Most selected documents were articles, followed by confer-

ence papers, which accounted for 20 percent of the selected documents. Figure 6 illustrates 

the significance of the study based on only three review articles. Van der Spek et al. [3] 

critically reviewed the uncertain aspects of TEA in CO2 capture and storage technologies. 

On the other hand, Sun and Carmichael [27] reviewed the uncertainties related to eco-

nomic and financial variables within infrastructure LCCA. Ilg et al. [34] defined 33 differ-

ent uncertainty sources and 24 methods to handle the uncertainties associated with LCCA 

decisions for infrastructure projects. 

 

Figure 6. Categorization based on document types before eliminating conference papers. 

4.1.4. Publications by Subject Area 

As shown in Table 2, the selected studies can be classified into 17 areas based on the 

extracted information from the Scopus database. Engineering, energy, and environmental 
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Table 2. Subject areas in the selected publications. 

Engineering 27% 

Energy 22% 

Environmental Science 19% 

Chemical Engineering 7% 

Chemistry 5% 

Earth and Planetary Sciences 4% 

Agricultural and Biological Sciences 3% 

Materials Science 2% 

Physics and Astronomy 2% 

Biochemistry, Genetics, and Molecular Biology 2% 

Business, Management, and Accounting 2% 

Computer Science 2% 

Social Sciences 1% 

Decision Sciences, Economics and Finance, Mathematics 1% 

4.2. Content-Based Analysis 

To answer the research questions, this section provides a comprehensive content-

based analysis. The purpose of this section is to provide an overview of recent research 

conducted in the last 5 years. Except for review articles by der Spek et al. [3] and Sun and 

Carmichael [27], other studies focused on TEA and LCCA of the specific case study. As 

seen in Table 3, these studies were categorized into three different classes. 

Table 3. Categorization of the studies. 

Techno-economic analysis (TEA) 33 

Life cycle cost analysis (LCCA) 13 

Techno-economic-environmental analysis (TEEA) 1 

The interest in studying TEA under uncertainty was the highest at almost 70 percent. 

For example, a techno-economic study was conducted by Coppitters et al. [56], taking 

technical, economic, and environmental uncertainties into account. In order to maximize 

the carbon intensity and Levelized cost of driving, they performed robust design optimi-

zation on a solar- and wind-powered hydrogen refueling system and hydrogen- and die-

sel-powered bus fleet. The carbon intensity is the carbon emissions per unit of energy 

consumed (CO2 emissions/energy) [57–59]. The Levelized cost of driving calculates how 

much it costs to drive a vehicle per kilometer over its life cycle [60]. For all uncertainties, 

uniform distribution can be expressed as lower and upper bounds because there were 

very few data points for these parameters. Thus, it is challenging to determine their dis-

tributions. Their uncertain parameters were divided into two categories: aleatory (grid 

electricity price and GHG emissions, energy consumption, annual solar irradiance, aver-

age ambient temperature, diesel price and the inflation rate) and epistemic (30 the eco-

nomic and environmental parameters) uncertainty. They employed a sparse polynomial 

chaos expansion (SPCE) approach in order to perform uncertainty quantification on a sys-

tem with a high degree of stochasticity [61], which is computationally efficient. Zhenzhen 

and Kai [9] developed a techno-economic analysis of producing cross-laminated timber 

(CLT) panels, an emerging and green alternative to steel and concrete, in the Southern 

United States. The authors considered the uncertainty and variations in feedstock, plant 

capacity, manufacturing parameters, as well as capital and operating costs in order to fill 

the knowledge gap. The Monte Carlo simulation was used to assess the effects of these 

variations on minimum selling prices (MSPs) for CLT panels. The MSP is a crucial indica-

tor for determining the economic viability of a product since it represents the minimal 

selling price required to reach the cash flow breakeven point [62]. Lo et al. [63] performed 
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a TEA and feasibility analysis on a biomass gasification process, considering five supply 

chain uncertainties: syngas and transportation fuel prices, biomass quality, supply, and 

pricing via Monte Carlo simulation (MCS). McNulty et al. [64] developed a techno-eco-

nomic analysis model including process variability and related uncertainties in field-

grown plant-based manufacturing. They employed the MCS to quantify the effect of var-

iation and uncertainties in profitability-related indicators such as internal rate of return, 

cost of goods, and process performance forecast variables such as product purity and an-

nual throughput [65]. The predictive modeling, uncertainty analysis, optimization, and 

TEA of bio-catalyzed biodiesel production from Azidirica Indica oil were accomplished 

by Oke et al. [66]. The predictive model and optimizations were developed in Design Ex-

pert® software. The model uncertainty analysis was performed using the Monte Carlo 

simulation in Oracle Crystal Ball® software on input variables of biodiesel production. The 

process simulation and economic analysis were conducted in ASPEN Batch Process De-

veloper® V10. Moreover, a sensitivity analysis was performed to assess the process’s prof-

itability, assessing the economic efficiency and feasibility of the proposed production pro-

cess. Net present value (NPV), payback Time (PBT), and return on investment (ROI) were 

used to investigate the profitability of this process. Amini and Noble [7] developed a 

techno-economic optimization method to identify the ideal size and quantity of flotation 

cells for a specific circuit configuration, taking into account the possibility of variability in 

various input parameters, including feed grade, kinetic coefficients, and metal price. In 

the first step, a sensitivity analysis was undertaken to identify the uncertain parameters. 

After simplifying the optimization issue, the sample average approximation (SAA) meth-

odology was used to identify the equipment configuration (i.e., cell size and number) that 

optimizes the plant’s net present value while accounting for the range of probable input 

values resulting from parameter uncertainty. SAA is a method for solving stochastic op-

timization problems based on the Monte Carlo simulation [67]. Alfonso-Cardero et al. [68] 

conducted a process simulation and a TEA for the anaerobic digestion of Cuban sugarcane 

vinasses under uncertainty. For the application of biogas, the following three scenarios 

were considered: electricity production, biomethane as vehicle fuel, and biomethane for 

gas grid injection. Accordingly, sensitivity analyses were conducted on each scenario to 

determine the parameters that have the greatest impact on the investment’s economic vi-

ability such as electricity selling price and cost of Ca(OH)2. Compared to the baseline, in-

put parameters were varied by 25%, 50%, and 75%. Moreover, a stochastic modeling using 

the MCS was performed to find the probability distribution of the NPV as the main out-

put. 

Only one article used techno-economic-environmental analysis (TEEA). Hosseini et 

al. [69] proposed a framework for evaluating the techno-economic-environmental effects 

of various levels of network integration and storage devices on the performance of inte-

grated gas and electricity networks. They employed MCS to sample their sources of un-

certainty, such as loads, renewable energy sources, and economic and environmental key 

factors. 

A full list of uncertainty sources associated with selected TEA studies is provided in 

Appendix B. Moreover, Table 4 summarizes different approaches and tools used to cope 

with the system uncertainties, PDFs of uncertain data, and the application of the studies 

associated with TEA. 
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Table 4. Uncertainty methods, probability distribution functions, and applications in TEA. 

 Model/Tool Trials PDF Application 

1 UQ by SPCE N/A Uniform  Heavy-duty transport (Bus) 

2 SA By MCS 1000 
Mostly Uniform and a 

Triangular 
Economic feasibility of cross-laminated timber 

3 MCS  Probability distributions Biomass gasification 

4 MCS 
20,000 and 

60,000 

Normal, Triangular, 

Logistic, Scaled beta 
Field-grown bioproducts manufacturing 

5 MCS, SA 100,000 Normal Bio-catalyzed biodiesel production 

6 
SAA by MCS 

SA 
 

uniform, normal, and 

lognormal 
Cell-Based Flotation Circuits 

7 SA, UA by MCS 10,000 Normal Anaerobic digestion of Cuban sugarcane vinasses 

8 MCS, SA 10,000 Triangular Cooking oil to jet fuel production 

9 ScA N/A Weibull distribution Wind energy potential in selected sites 

10 MCS 10,000 
Normal, Triangular, 

Logistic, Lognormal,  
Wet waste hydrothermal liquefaction (HTL) 

11 MCS, SA 30,000 Normal Biodiesel production from palm kernel oil 

12 MCS 100,000 Normal 
Technologies for the extraction of crude anthocyanin 

powder 

13 GABCAO N/A N/A Distribution network 

14 MCS 50,000 Two-half-Lognormal 
An off-grid stand-alone photovoltaic system for 

hydrogen electrolysis 

15 Review N/A   CO2 Capture and Storage (CCS) technologies 

16 MCS, SA   Biorefineries 

17 
GSA, MCS, 

RO by (MCS + GA) 
 Uniform, Weibull, Beta Design of remote micro-grid 

18 MCS, SIM 10,000 Normal,  Performances of a CO2 Absorber 

19 MMO N/A  Enhanced Geothermal System (EGS) 

20 MOM N/A  Hybrid harmonic filter planning 

21 SUA N/A  Ship power and propulsion concepts 

22 ScA, SA N/A  Fuel cell vehicles 

23 GSA by MCS + SIM 100,000 Normal Directly coupled photovoltaic-electrolyzer system 

24 MCS 10,000 

Normal, Pareto, 

Lognormal, Triangular, 

Maximum extreme 

Algal-derived bio-crude via hydrothermal liquefaction 

25 ANN + MCS  Uniform, Normal Power to gaseoxy-fuel boiler hybrid system 

26 MCS 10,000 

Triangular, Boot-

strapped, Uniform, 

Linear 

Incorporating microbial oil production into the concept 

of a biorefinery 

27 MCS, SA, PA  Triangular 
A distributed hydrogen refueling station using glycerol 

steam reforming 

28 NIPCE N/A  Directly coupled photovoltaic-electrolyzer system 

29 
GBM, ARIMA, and 

MRJD 
N/A Normal,  Profitability assessment of offshore wind energy 

30 MCS, SA 1,000,000 Normal 
Biomass-to-liquid systems for the production of 

transportation fuels 

31 NLOA, SA N/A Interval Uncertainties Biodiesel Production 

32 NIPCE, MCS  Normal CO2 capture from enclosed environments 
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33 SA N/A 
Normal, Uniform, 

Lognormal, Triangular 
Butanol production from corn stover  

34 SA N/A N/A Very early stage CO2 capture technologies 

35 SA, PM, MCS 3000 Normal, Lognormal 
Producing high-value propylene glycol from low-value 

biodiesel glycerol 

36 MCS, SA  Uniform biodiesel production 

37 PM, SA N/A  Very early stage CO2 capture technologies 

38 MCS 1000 Normal Gas and electricity network integration and storage 

On the other hand, 27 percent of the studies addressed LCCA. For example, to main-

tain the safety and welfare of communities, asset management systems (AMSs) [70] 

should keep infrastructure assists in acceptable condition. By including probabilistic and 

complex uncertain models in AMSs, it has been argued that project-level AMSs can max-

imize maintenance activities over the assets’ life cycle [71]. Asghari et al. [71] developed a 

deep neural network (DNN) model for replacing the time-consuming simulation modules 

of optimization algorithms. In order to make complex AMSs computationally applicable 

to all network assets, they estimated the LCCA results using a trained machine-learning 

model. Machine learning algorithms such as DNN mimic the brain’s information pro-

cessing [72]. In this model, deterioration (modeled by first-order Markov chain), hazards 

and the hazard responses of assets (modeled by the Poisson process), and costs volatility 

(modeled by the Wiener process) were the main sources of uncertainty. Despite this 

method’s relatively high computing costs, trained DNN models may provide comparable 

outcomes hundreds of times faster than Monte Carlo simulations. Table 5 lists the sources 

of uncertainty in the studies related to LCCA. Moreover, Table 6 summarizes different 

approaches and tools used to cope with the system uncertainties, PDFs of uncertain data, 

and the application of the studies associated with LCCA. In Tables 4 and 6, “N/A” in the 

“Trials” column indicates the uncertainty method does not belong to the probabilistic ap-

proach and does not utilize trials. In addition, the empty “Trials” section indicates that 

although the method requires trials, the authors did not provide any additional infor-

mation. 

Table 5. Sources of uncertainty in life cycle cost studies. 

 Reference Sources of Uncertainty 

1 [71] Deterioration, hazards and the hazard responses of assets, costs volatility 

4 [73] Electricity prices, renewable energy sources, and load uncertainties 

5 [74] Model parameter and scenario uncertainties 

6 [75] 

Measurement sensors which provide the state information; activated dampers, which produce 

reactive forces and provide additional damping; and controllers, which control actuator outputs 

based on state measurements. 

9 [76] Energy price and electrical demand, wind speed 

12 [77] Capital and operating costs 

13 [2]  

14 [78] Uncertainties in the cost calculation 

17 [79] Energy price and electrical demand 

19 [34] Review 

22 [80] Uncertainty in the input data 
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Table 6. Uncertainty methods, probability distribution functions, and applications in LCCA. 

 Model/Tool Trials  Probability Distribution Function Application 

1 DNN N/A Different PDFs Infrastructure asset management 

2 SPA by MCS 100,000 Uniform  The service life of a viaduct (a bridge) 

3 MCS   
Slab track mono-block sleeper system for 

Indonesian urban metro railway 

4 MSO N/A Normal, Weibull, Beta 
Optimal reinforcement framework for 

distribution system 

5 MCS, NPB 1000 Uniform HDPE pipe alternatives 

6 MCS  binomial, Uniform High-performance control systems 

7 
SFA, HOM by 

MCS 
  

Four-story modern ductile reinforced concrete 

building in Los Angeles 

8 ScA N/A  Railway turnouts 

9 MSO N/A Normal, Beta, Weibull Distribution system planning 

10 MCS  
Normal, Uniform, Lognormal, 

Triangular, Weibull 
Uncertainty in LCCA 

11 FOTSE N/A Normal, Uniform, Lognormal Highway bridge structures 

12 ScA N/A  
Lignocellulose biomass solvent liquefaction and 

sugar fermentation to ethanol 

13 Review  N/A   Financial variables within the infrastructure 

14 LIDRA by MCS  Triangular Green infrastructure 

15 ScA N/A  Deep extra heavy oil green field 

16 MOO with RA N/A Normal Maintenance for bridges 

17 MOO N/A Normal Distribution systems reinforcement 

18 MCS  Normal, Triangular Buildings’ energy efficiency measures 

19 Review  N/A   Long-range infrastructure 

20 MCS 1000 Uniform, Lognormal Pavement industry 

21 
SA by MLFD + n-

way ANOVA 
N/A  Bridge 

22 PN + MCS  
Weibull, Exponential, Lognormal, 

Normal 
Real-time condition monitoring in railways 

In general, Monte Carlo simulation methodology and probabilistic approaches are 

the most frequently used tools and approaches in TEA and LCCA studies. Different PDFs 

were defined for the uncertain parameters such as normal, Uniform, lognormal, triangu-

lar, Weibull, beta, etc. Furthermore, key economic factors and model parameters were the 

main sources of uncertainty in LCCA and TEA. 

5. Conclusions 

Two commonly used methods of evaluating a project’s economic feasibility are TEA 

and LCCA. Both methods are subject to great ambiguity, and uncertainty analysis forms 

a key component of their methodologies. The current study fills a gap left by the absence 

of comprehensive reviews on LCCA and TEA in an uncertain environment. The results 

indicate that there has been a greater interest in studying uncertain aspects of TEA than 

LCCA, possibly because TEA considers both economic and technical aspects of the prob-

lem. In both LCCA and TEA, key economic factors and model parameters were the main 

sources of uncertainty. Moreover, recent studies have also demonstrated an interest in 

adopting the probabilistic approach, particularly the Monte Carlo simulation. To address 

the uncertainty associated with parameter values, probabilistic methods must utilize 

probability distribution functions. The normal distribution functions, followed by lognor-

mal and uniform PFDs, were the most frequently used PDF associated with the uncertain 
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parameters in LCCA and TEA. This implies that choosing an appropriate PDF plays a 

crucial role in probabilistic approaches. According to the results, sensitivity analysis and 

Monte Carlo simulation were used in more than half of the studies to analyze uncertainty, 

confirming their complementary nature. Whereas LCCA and TEA studies suffer from sig-

nificant uncertainties, it is suggested that uncertainty analysis should be considered in all 

future studies. The authors also suggest that possibilistic approaches such as fuzzy set 

theory be tested and compared to possibilistic approaches. 
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Nomenclature 

ANN Artificial Neural Network NPB Non-Parametric Bootstrapping 

ANOVA Analysis of Variance PM Pedigree Matrix 

ARIMA Auto-Regressive Integrated Moving Average PN Petri Net 

DNN Deep Neural Networks PDF Probability Distribution Function 

FOATSE First Order Analysis Taylor Series Expansion PA Profitability Analysis 

GA Genetic Algorithm RO Robust Optimization 

GBM Geometric Brownian Motion SAA Sample Average Approximation 

GABCAO 
Global Artificial Bee Colony Algorithm 

Optimization 
ScA Scenario Analysis 

GSA Global Sensitivity Analysis SFA Seismic Fragility Assessment 

LIDRA Low Impact Development Rapid Assessment  SPA Semi-Probabilistic Approach 

MRJD Mean -Reversion and Jump-Diffusion SA Sensitivity Analysis 

MCS Monte Carlo Simulation SIM Sobol’s Indices Methodology 

MLFD Multi-Level Factorial Design SPCE 
Sparse Polynomial Chaos 

Expansion 

MOO Multi-Objective Optimization SRA System Reliability Analysis 

MMO Multiple Model Optimization SUA System Uncertainty Analysis 

MSO Multi-Scenario Optimization UA Uncertainty Analysis 

N/A Not applicable HOM Hazard Occurrence Model 

NIPCE Non-Intrusive Polynomial Chaos Expansion   
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Appendix A 

Table A1. Definitions of techno-economic analysis (TEA) in the literature based on Giacomella [1] 

and Smur et al. [81]. 

Definition Reference 

“The evaluation of the technic performance or potential and the economic feasibility of a new technol-

ogy that aims to improve the social or environmental impact of a technology currently in practice, and 

which helps decision-makers in directing research and development or investments.“ 

[17] 

“The techno-economic evaluation incorporates results from both investment and performance analysis 

to select the most cost-efficient solution for a certain scenario and performance requirements.”  
[18]  

“Iterative process illustrating the valorization of potential technologies. It adopts design techniques to 

estimate costs and revenues aimed at identifying profitability. Next, risk analysis is performed in sup-

port of risk reduction strategies.”  

[19]  

“Techno-economic modelling methods are typically used to evaluate the economic feasibility of new 

technologies and services. Techno-economic modelling combines forecasting network design and in-

vestment analysis methods, typically utilizing the spreadsheet-based tool.”  

[81] 

“TEA is a methodology framework to analyse the technical and economic performance of a process, 

product or service and includes studies on the economic impact of research, development, demonstra-

tion, and deployment of technologies, quantifying the cost of manufacturing and market opportuni-

ties.” 

[82] 

“The TEA model is an integrated model, with direct linkages between the economic and technological 

parts. The dynamic character of TEA, where a change in one parameter directly affects all output indi-

cators, is key to identifying the most influencing parameters for a feasible technology.” 

[83] 

“The techno-economic analysis (TEA) involves evaluating a process/technology through a process 

simulation approach.”  
[84] 

Table A2. Definitions of LCCA in the literature. 

Definition Reference 

In an LCCA, all the significant net expenditures arising during the ownership of an asset are identified 

and quantified in order to optimize the total cost of asset ownership. 
[85] 

The life cycle cost of a product (LCCA) involves the total cost throughout its entire lifespan. [86] 

As a result of LCCA analysis, an estimate of the total incremental costs associated with developing, pro-

ducing, using, and retiring a particular product can be determined 
[87] 

A conventional life cycle cost analysis assesses all costs associated with the life cycle of a product that 

are directly borne by the main producer or user 
[88] 

The LCCA is a type of investment calculus that incorporates a life-cycle perspective beyond that offered 

by traditional investment calculus. As well as considering investment costs, it also considers operating 

costs over the product’s expected lifetime. 

[89] 

The LCCA methodology enables comparisons of costs over a given period, taking into account relevant 

integral economic factors 
[90] 

In LCCA, all present and future costs essential to a system are summed together in present value during 

a given life cycle. 
[91] 

A life cycle cost assessment is a method of evaluating life-cycle costs in a systematic manner. It can ex-

amine a project’s entire life cycle, a selected period of time, or a selected stage in its life cycle 
[92] 
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Appendix B 

Table A3. Sources of uncertainty in techno-economic studies. 

 Reference Sources of Uncertainty 

1 [56] 

The grid electricity and diesel price, grid electricity’s greenhouse gas emissions, energy consumption, 

annual solar irradiance, average ambient temperature, inflation rate, economic and environmental 

parameters 

2 [9] 
Variations in the feedstock, plant capacities, manufacturing parameters, and capital and operating 

costs 

3 [63] Syngas and transportation fuel prices, biomass quality, supply and pricing 

4 [64] 
Main indicators of profitability such as internal rate of return, cost of goods, and performance 

forecast variables, such as product purity and annual throughput) 

5 [66] Input variables of biodiesel production, profitability indicators 

6 [7] Different input parameters, including feed grade, kinetic coefficients, and metal price 

7 [68] Input parameters such as electricity selling price and cost of Ca(OH)2 

8 [93] Economic parameters 

9 [94] 

A historical time series of wind directions and speeds in the years between 2000–2019, mean wind 

speeds, power density, most probable wind speeds, maximum energy carrying speeds, and 

predominant wind directions in wind passes are presented in this section 

10 [95] 
Feedstock composition, HTL yield model, aqueous-phase product treatment, utility consumption, 

and equipment sizing and costing 

11 [96] Biodiesel production input variables and profitability indicators 

12 [97] 
Process parameters such as materials and energy demands, production costs, and unit production 

costs 

13 [98] Various distributed energy resources (DERs) data, wind, solar and electric vehicles (EVs) 

14 [99] Wide range of system parameters (Electrolyzer, PV, and economic parameters) 

15 [3] Review 

16 [100] Coefficients of cost correlation and parameters of scenarios 

17 [101] 
System parameters including electrolyzer, PV, H2 tank, battery bank, fuel cell) and economic 

parameters 

18 [102] 

Solvent property uncertainties on a rate-based absorb model (density, viscosity, solubility, surface 

tension, equilibrium between vapor and liquid, chemical reaction kinetics, heat of reaction, specific 

heat capacity) 

19 [103] 

Several geological and structural parameters are uncertain, including the stress field, the location and 

orientation of natural fractures and faults, the temperature distribution, and the pressure distribution 

within the reservoir 

20 [104] Model parameters 

21 [105] Technical and financial parameters 

22 [106] 
The price of energy, technological uncertainty regarding internal combustion, hybrid, plug-in hybrid, 

battery, and fuel cell electric under various progress scenarios for 2035 and 2050 

23 [107] Parameters of the PV-electrolyzer system from a technical and economic perspective 

24 [108] 
The uncertainty of bio-crude yields, quality, utility consumption, and efficiency, as well as key 

economic indicators 

25 [109] Process and economic variables 

26 [110] Process and economic variables 

27 [111] Economic key factors 

30 [112] Economic key factors 

31 [113] Economic key factors 

32 [114] Number of people inside the room 
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33 [115] 

Estimate feedstock requirements, costs, life-cycle energy usage, greenhouse gas emissions for grower 

payments and field operations, and major parameters associated with the transportation of corn 

stover feedstock 

34 [116] Technical and economic parameters 

35 [117] Technical parameters and environmental uncertainties 

36 [118] Price of biodiesel and feedstock, the efficiency of biodiesel conversion, and operating costs 

37 [119] Post-combustion CO2 capture techno-economic parameters 

38 [69] 
Technical, economic, and environmental parameters (electricity and heat loads, wind and PV 

generation, EE unit factors for EE evaluation) 
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