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ABSTRACT

Pancreatic cancer remains a disease with unmet clinical needs and in-
adequate diagnostic, prognostic, and predictive biomarkers. In-depth
characterization of the disease proteome is limited. This study thus
aims to define and describe protein networks underlying pancreatic can-
cer and identify protein centric subtypes with clinical relevance. Mass
spectrometry–based proteomics was used to identify and quantify the
proteome in tumor tissue, tumor-adjacent tissue, and patient-derived
xenografts (PDX)-derived cell lines from patients with pancreatic cancer,
and tissues from patients with chronic pancreatitis. We identified, quanti-
fied, and characterized 11,634 proteins from 72 pancreatic tissue samples.
Network focused analysis of the proteomics data led to identification of
a tumor epithelium–specific module and an extracellular matrix (ECM)-
associated module that discriminated pancreatic tumor tissue from both
tumor adjacent tissue and pancreatitis tissue. On the basis of the ECM

module, we defined an ECM-high and an ECM-low subgroup, where the
ECM-high subgroup was associated with poor prognosis (median survival
months: 15.3 vs. 22.9 months; log-rank test, P = 0.02). The ECM-high
tumors were characterized by elevated epithelial–mesenchymal transition
and glycolytic activities, and low oxidative phosphorylation, E2F, and DNA
repair pathway activities. This study offers novel insights into the protein
network underlying pancreatic cancer opening up for proteome precision
medicine development.

Significance: Pancreatic cancer lacks reliable biomarkers for prognostica-
tion and treatment of patients. We analyzed the proteome of pancreatic
tumors, nonmalignant tissues of the pancreas and PDX-derived cell lines,
and identified proteins that discriminate between patients with good and
poor survival. The proteomics data also unraveled potential novel drug
targets.

Introduction
Pancreatic cancer is one of the most lethal malignancies worldwide with
a 5-year survival rate of approximately 8% (1). Broad disparity in patient
survival and response to therapy are evident but due to a lack of reliable
biomarkers of diagnosis, prognosis, and response to therapy, the patients re-
ceive a “one size fits all” standard of care. Comprehensive characterization of
the pancreatic cancer genome has revealed extensive molecular heterogeneity
demanding biomarker-driven individualized therapy for patients with pancre-
atic cancer (2–4). Unfortunately, alterations in KRAS, CDKNA, TP, and
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SMAD dominating the mutational landscape of the pancreatic tumors are
currently undruggable (4). At the transcriptomic level, multiple studies have
been conducted defining similar yet discrepant subgroups of disease with dis-
tinct biology and patient outcome (3, 5–7). The studies converge to two broad
classes of tumor-specific subtypes; the well differentiated Classical subtype and
the poorly differentiated Basal-like subtype. In addition, based on stromal fea-
tures, the tumors are divided into at least two subtypes; Activated and Normal
stromal subtypes (6–8). However, a complete consensus is yet to be reached,
and the clinical utility of the transcriptomic subtypes remains undetermined.
Also, targeted therapies and immunotherapy effective in other cancer types
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have failed to show an effect in patients with pancreatic cancer (9–11). It is thus
apparent that pancreatic cancer biology is inadequately understood on the ba-
sis of only genomics and transcriptomics studies warranting characterization
of the disease at a more functional level such as proteomics. Because of the
technical difficulty associated with quantification of the full proteome, com-
prehensive characterization of the pancreatic cancer proteome is limited.Hence
most questions regarding active protein networks and their clinical implications
in pancreatic cancer remain unanswered. Because most studies show a weak
correlation between the mRNA molecule and its respective protein product,
proteomic analyses have the potential to reveal actionable targets not detectable
at the RNA level.

In this study, we describe in-depth quantitative mass spectrometry–based
proteomics data and investigate proteomic changes associated with pancre-
atic cancer. By employing Weighted Gene Co-expression Network Analysis
(WGCNA) (12, 13), we have organized the pancreatic cancer proteome into bio-
logically and clinically meaningful protein modules. Altogether, we provide an
improved contextual understanding of the molecular basis of pancreatic cancer
that can be therapeutically exploited.

Materials and Methods
Patients and Samples
In total, 42 patients with pancreatic ductal adenocarcinoma (PDAC) and five
patients with chronic pancreatitis consecutively selected from the “Thematic
Research Area Pancreatic Cancer” biobank at Oslo University Hospital were
included. This study, linked to the specific biobank, was approved by the Re-
gional Ethics Committee (REK2015/738) and an institutional review board, and
conducted in accordance with WMA Declaration of Helsinki. The patients in-
cluded in this study were admitted to Oslo University Hospital between 2008
and 2011 for pancreatectomydue to suspicion of pancreaticmalignancy.Written
informed consent was obtained from all patients prior to collection of biospec-
imens and associated clinical information. One patient identified with metas-
tasis at the time of surgery, one patient who received a nonstandard treatment
line and one patient from which we had access to a patient-derived xenograft
(PDX)-derived cell line only (and not tumor sample) were excluded from the
survival analyses. The last follow-up date for these patients was July 2, 2019.

We quantified the proteome in a total of 72 samples (Fig. 1A; Supplementary
Table S1). The samples from the 42 patients with pancreatic cancer included
tumor tissue (n= 49; one sample each from 37 patients and three samples each
from different tumor regions from four patients), tumor-adjacent tissue taken
within a distance of 0.5–1.0 cm from the tumor (n = 10) and PDX-derived cell
lines (n = 3). For the five patients with pancreatitis, two fresh frozen tissue
samples from each (n = 10) were analyzed.

Histopathologic Evaluation of Samples
Histopathologic evaluation of hematoxylin and eosin (H&E)-stained tissue
sections was performed by an expert pathologist. All the samples were eval-
uated for the presence and proportions of malignant cells, fibrous tissue, and
normal/other pancreatic tissue (Supplementary Table S2). Tissue areas with
malignant cells formed the basis for tumor cellularity assessment. Areas with
dense fibrosis including inflammatory regions were considered as fibrous tis-
sue. Tissue areas with intact lobuli, normal-appearing acini and ducts, as well as
small intestinalmucosa, smoothmusclewall, adipose tissues, peripheral nerves,
blood and lymph vessels were considered as normal/other pancreatic tissue.

None of the ten tumor-adjacent tissues contained malignant cells. Of these ten
samples, six had normal pancreatic tissuemorphology (intact lobuli, acinis, and
ducts) while the other four had dense fibrotic tissue. The pancreatitis samples
were found to be composed of varying proportions of normal pancreatic tissue,
fibrotic stroma, and inflammatory tissue. The variation was also observed in
the samples from the same patients.

HiRIEF-nanoLC-MS/MS–based Proteomics
The tissue samples were lysed in 4% SDS and prepared for MS analysis using a
modified version of the spin filter-aided sample preparation protocol. Tryptic
peptides were Tandem Mass Tag (TMT) 10plex labeled and fractionated us-
ing immobilized pH gradient-isoelectric focusing (IPG-IEF) on a pH 3–10 strip
(14). IPG-IEF Peptide fractions were separated using a 3000 RSLC-nano system
and analyzed using a Thermo Scientific Q Exactive. MSGF+Percolator in the
Galaxy platform was used to match MS spectra to the Ensembl 90 human pro-
tein database (15, 16). A detailed description can be found in the Supplementary
Methods file.

Protein identifications were limited to 1% protein FDR (17). Protein quan-
tification was performed using the TMT tag with a pool of all samples as
denominator, and each tumor was normalized to its median ratio. The median
Peptide spectrum matches (PSM) TMT reporter ratio from peptides unique to
a gene symbol was used for quantification. The protein ratios were log2 trans-
formed and each protein was further normalized to mean ratio within each
TMT set. The normalized protein ratios are denoted as protein abundance or
protein expression levels in figures and text.

WGCNA
We usedWGCNA to construct the coexpression network (12, 13). Briefly, a cor-
relation matrix of all pair-wise correlations of proteins across the samples was
generated and subsequently transformed into a weighted adjacency matrix by
raising the correlation coefficients up to a soft threshold power β, to achieve a
degree distribution that fits the hypothesis of scale-free network (12). The ad-
jacency matrix was then used to build the Topological Overlap Matrix (TOM)
that takes into account the topological similarity, that is, the similarity between
two proteins, based on their coexpression relationships with all other proteins
in the network. The proteins were then hierarchically clustered on the basis
of the topological overlap dissimilarity measure (1 – TOM) using a dynamic
tree-cutting algorithm (18) to generate coexpression modules.

Coexpression networks were constructed on the proteomics data from PDAC,
pancreatitis and tumor-adjacent tissue samples (n= 61), and on data represent-
ing the PDAC only (n = 41). The top 25% most variable proteins (n = 1925)
across each dataset were used in the analyses in both cases (Supplementary
Table S3). The resulting weighted adjacency matrix achieved a degree distribu-
tion consistent with the topological structure of scale-free networks at β value
of 10 and 12 for the datasets, respectively (Supplementary Fig. S1). The analy-
sis was performed in R using the “blockwiseModules” function in R package
WGCNA (13, 19). For both the “networkType” and “TOMtype” arguments in
the function, the value “signed” was chosen. For the argument “corType”, the
value “bicor” was chosen and the “minModuleSize” was set to 50. For all other
arguments, default settings were used.

Module Membership and Hub Genes
For each module, the Module Eigenproteins (ME), defined as the first prin-
cipal component of the expression matrix of the corresponding module was
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FIGURE 1 The pancreas proteome. A, The pancreas proteome analyses workflow. B, Hierarchical clustering of the proteins mapping to 7,699 gene
symbols quantified in all 72 samples. C, Principal component analysis plot of the proteome data. Each dot represents a sample and each color
represents the type of sample.

calculated. ThisME value per definition explains themaximal possible variabil-
ity for all proteins within the module and is equivalent to the weighted average
expression profile, and hence, is used as the module representative. Module
membership (kME) indicating the proximity of a protein to amodulewas deter-

mined by calculating the Pearson correlation between each individual protein
and the ME. The proteins with the highest kME are those with high network
connectivity in a particular module, and are referred to as “intramodular hub
proteins”.
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PPI Network Construction
Known protein–protein interaction networks for the proteins of the iden-
tified modules were constructed using the STRING database v.11 (20). The
active interaction sources used were Experiments, Databases, Coexpression,
and Cooccurrence. The minimum required interaction score was set to a high
confidence (0.700) as specified by the string database.

Transcriptomic Subtyping
Matched transcriptomic data were available for 38 of the 41 PDAC samples
from our previous study (21). The tumors were assigned a tumor and a stro-
mal transcriptomic subtype (Supplementary Table S2) as defined byMoffitt and
colleagues (6). Subtype assignment was performed by consensus clustering of
the samples (all 49 samples with transcriptomics data) on 50 tumor genes and
48 stromal genes as defined by Moffitt and colleagues (6). Consensus cluster-
ing consisted of 1,000 iterations of k-means clustering, with 80% of features and
items subsampled and 20% hold-out at each iteration, followed by hierarchical
clustering of the consensus matrix with complete linkage.

Survival Analyses
The prognostic value of each of the modules was assessed in two steps. First,
consensus clustering as described in section “Transcriptomic subtyping” was
performed on the top 50 proteins with the highest correlation to the Module
Eigenproteins. Second, a log-rank test was used to test for survival differences
between the obtained consensus clusters. The Kaplan–Meier estimator was
used to estimate overall survival (OS) curves, defined as the time from surgery
to the time of death from any cause.

Other Statistical Analyses
All statistical analyses were performed in R version 4.0.3 (22). Associations
between variables were assessed with Fisher exact tests, t tests and Kruskal–
Wallis tests as appropriate. Differential protein expression analysis between two
groups were performed using the R package DEqMS (23). Enrichr webtool was
used for pathway enrichment analysis on the protein members of the identified
module (24) and the pathway activity in the protein subgroups was assessed
using the R package Qusage (25).

Data Availability Statement
The MS data have been deposited in the ProteomeXchange database under
the accession code PXD025120. The transcriptomic dataset referenced in the
study is available in the Gene Expression Omnibus repository with accession
ID-GSE60979.

Results
The Pancreatic Cancer Proteome
The study cohort included tumor tissues, tumor adjacent tissues and PDX-
derived cell lines from patients with pancreatic cancer. In addition, we also
included and analyzed samples frompatients with chronic pancreatitis (Supple-
mentary Table S1). This allowed us to investigate proteome differences between
pancreatic tumors, normal and stromal compartments, as well as pancreatitis
tissues. The proteome profiles of the 72 samples were obtained by quanti-
tative MS-based proteomics. The method identified 164,658 unique peptides
corresponding to 11,634 genes with a 1% protein FDR providing a comprehen-
sive coverage of a cell proteome. The proteome was quantified using a gene
symbol centric approach (denoted protein henceforth), and all downstream

analyses were performed on 7,699 proteins quantified across all the 72 sam-
ples. The quantified proteins had a median of eight unique peptides/protein
and 12 peptides spectrum matches that were used for quantification (Fig. 1A;
Supplementary Fig. S2). To obtain an unbiased view of the quantified pro-
teome, we performed hierarchical clustering of the 72 samples on the 7,699
proteins. The analysis grouped the samples into four distinct proteome-based
clusters (Fig. 1B). Cluster one (red) consisted mainly of pancreatic ductal ade-
nocarcinomas (PDAC; n = 37) and two pancreatitis samples; the cluster is
henceforth referred to as the tumor cluster. The second cluster (light blue) con-
sisted of four PDAC, five tumor-adjacent tissues, and three pancreatitis tissue
samples. All but one sample in this cluster was histopathologically character-
ized to have an abundance of fibrous tissue; hence the cluster is referred to as
the fibrous cluster. The third cluster (green) consisted of five adjacent normal
tissues and four pancreatitis samples, all with predominant normal pancreatic
tissue, and it is henceforth referred to as the normal-like cluster. The fourth
cluster (black) consisted of the three PDX-derived cell lines, which showed a
clearly altered proteome compared with tumor samples as also demonstrated
by principal component analysis (PCA; Fig. 1C).We further annotated the PCA
plot by the sample batches to rule out TMT sets (sample batches) as a con-
founding variable (Supplementary Fig. S3). The biological replicates of PDAC
samples showed significant correlation at the global protein levels, hence one
representative sample per patient was used in further analyses (Supplementary
Fig. S4).

Network Analysis Identified Five Biologically
Meaningful Modules
To unfold the protein phenotypic differences between the protein-based clus-
ters representing different morphologic and biological states of the pancreatic
tissue, we analyzed the proteomics data by WGCNA. The PDX-derived cell
lines were excluded from the analysis as they exhibited a distinctly different
protein phenotype. We also performed WGCNA on the proteomic data from
the PDAC only (n = 41) to specifically capture the variation in protein biology
underlying pancreatic cancer. We found a significant overlap between the most
variable proteins (n = 1515) between the datasets, and consequently identified
similar modules (Supplementary Fig. S5). Therefore, only the protein mod-
ules obtained from the WGCNA performed by using all the pancreatic tissue
samples (n = 61) is described.

Five protein modules, M1–M5, comprising of 635, 293, 279, 274, and 188 pro-
teins, respectively, were identified (Fig. 2A; Supplementary Table S4). Of the
1,925 proteins used in the analysis, 256 remained unassigned to anymodule and
were therefore excluded from further analyses (M0). We investigated the inter-
modular relationship by hierarchical clustering of the correlations between the
Module Eigenproteins (MEs; defined in Materials and Methods). M1 was least
similar to any of the other identified modules (Fig. 2B). A positive association
was observed between modules M2–M5, with M2 showing the highest positive
correlation to M4, and M3 to M5.

The proteins within a givenmodule showed high topological overlap indicating
high intra-connectedness as illustrated in Fig. 2C. A PCA on the quantitative
proteomics data used in theWGCNAanalysis (n= 1925) further confirmed that
the proteins sharing amodule have similar quantitative protein profile (Supple-
mentary Fig. S6). We then examined the modules for known protein–protein
interaction using the String database (20). For each identified module, signif-
icantly more interactions were evident for the proteins within a module than
what would have been expected for a random set of proteins of similar size
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FIGURE 2 Coexpressed protein modules identified by WGCNA. A, Cluster dendrogram showing the corresponding protein dendrograms and
module assignment of the proteins. Representative enrichments in each module are presented below (see Supplementary Tables S5–S9 for all
enrichments). B, Heatmap of correlation between Module Eigenproteins illustrating (dis)similarities between modules. C, Heatmap of Topological
Overlap Matrix illustrating higher intra-connectedness between proteins of the same modules. Rows and columns correspond to proteins, dark colors
represent low topological overlap (low intra-connectedness), and progressively lighter orange and yellow colors represent higher topological overlap
(high intra-connectedness).
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(Supplementary Figs. S7–S11). We further characterized the modules by func-
tional enrichment analysis where each module was found to be associated
with specific biological functions. In summary, M1 was enriched with proteins
related to normal exocrine functions of the pancreas, M2 represented extracel-
lular matrix organization, maintenance, and degradation, M3 was associated
with the complement and coagulation cascade, M4 was associated with tu-
mor cell signature, and M5 was found to be enriched with immune system
components (Fig. 2A; Supplementary Tables S5–S9).

Next, we performed multidimensional scaling (MDS) of the topology over-
lap matrix (TOM) representing the coexpression network; the MDS plot is
portrayed in Fig. 3A.

By overlaying the coexpression network by average protein levels in the normal-
like, fibrous, and tumor clusters, we observed distinct module wise difference
in protein abundances between the proteome-based clusters (Fig. 3B). Consis-
tently, the MEs were found to be significantly differentially expressed between
the three proteome-based clusters, illustrating the connection between the clus-
tering and module analyses (Fig. 3C; Kruskal–Wallis test; P< 0.001). TheMEs,
with the exception ofME4, showed a larger variation in the sample groupswhen
using the pathology-based tissue labels, implying that the redefined proteome-
based sample groups are biologically more similar (Supplementary Fig. S12A).
Taken together, theM1module showed high specificity to the normal-like clus-
ter. The M2 and M4 module proteins were specifically abundant in the tumor
cluster, while theM3 andM5moduleswere equally abundant in both the fibrous
and the tumor clusters.

We further examined the expression of the MEs in the cell lines with respect to
the proteome-based clusters. We found absence/low levels of the M1, M2, M3,
and M5 proteins in the cell lines implying that these are not expressed in the
tumor epithelium. Levels of the M4 proteins were notably high in the cell lines
confirming specificity of the module to tumor cells (Supplementary Fig. S12B).

Normal Pancreatic Function is Highly Correlated with
Proteins of the Cellular Translational Machinery
The normal-like cluster featured higher abundance of M1 proteins and low lev-
els of M2–M5 proteins (Fig. 3B and C). Functional enrichment analysis of the
proteins in the M1 module showed overrepresentation of proteins governing
the exocrine function of the pancreas (e.g., AMY2A, AMY2B, PNLIP, CPA1/2,
CELA2A/2B, and CTRC). In addition, metabolism of branched chain amino
acids (e.g., BCAT1, BCAT2, BCKDHB) and the protein translational machin-
ery including structural subunits of ribosomes (RPSs and RPLs), several EIFs
and proteins involved in intracellular trafficking and protein processing in the
Endoplasmic Reticulum (SRPs and SSRs) were among the top hits in the en-
richment analysis (Supplementary Table S5). We further found that the levels
of cytosolic ribosomal proteins were lower in the tumor cluster and the PDX-
derived cell lines compared with the normal-like cluster. The mitochondrial
ribosomal protein levels were lower in the tumor cluster than in the normal-
like samples but notably higher in the PDX-derived cell lines (Supplementary
Fig. S13), presumably reflecting the different growth conditions in vitro and
in vivo.

Pancreatic Tumors are Characterized by High Abundance
of Tumor Epithelial Cell Proteins and Extracellular
Matrix Proteins
The levels of M2 and M4 proteins were significantly higher in the tumor
cluster compared with both the normal-like and fibrous clusters (Fig. 3C).

The M2 module was highly enriched for proteins involved in ECM organi-
zation, maintenance, and degradation (Supplementary Table S6). It included
several actin filament-associated regulatory proteins involved in remodel-
ing of the cytoskeleton such as the collagens (e.g., COL3A1, COL5A2, and
COL10A1), filamins (e.g., FLNA and FLNC), and microfibril-associated pro-
teins (e.g., MFAP4, MFAP5). The module also represented members of the
lysyl oxidase protein family (e.g., LOX, LOXL1 and LOXL2), matrix metallo-
proteases (MMP), and the metallopeptidase inhibitors (TIMP1, TIMP2, and
TIMP3) known to be associated with tumorigenesis as well as cadherins (e.g.,
CDH11, CDH12), carcinoembryonic antigen-related cell adhesion molecules
(CEACAMS) and FN1 that are important for cell–cell and cell–matrix
interaction.

TheM4module included established and candidate oncoproteins such asMET,
CHEK1, and BCAS1 and the cell proliferation marker MKI67. O-linked glyco-
sylated proteins such as the MUC gene family, GALNT5 and GALNT7, as well
as epithelial keratin markers (e.g., KRT6A, KRT7, and KRT10) were members
of this module. The module also contained proteins with pivotal roles in an-
tiviral activities includingMX1, ISG15, OAS1, OAS2, and IFIT1 (Supplementary
Table S8).

A majority of the M2 and M4 proteins showed a significant higher abundance
in PDAC compared with the tumor-adjacent tissues (Fig. 3D; Supplementary
Tables S10A and B) indicating specificity of these proteins to PDAC.We further
observed that 18 of 21 proteins listed to be upregulated in PDAC compared with
adjacent tumor tissue/normal ducts in a recent study (26) were members of M2
(n = 7) and M4 (n = 11; Supplementary Table S11). Of the overlapping set of
proteins, the levels of WFDC2, S100P, CD55, MDK, THBS2, and MFAP2 were
more than 2-fold higher in PDAC compared with tumor-adjacent tissue in our
data (Fig. 3D).

Protein-based Tumor and Fibrous Clusters have Similar
Immune Profiles
TheM3 andM5modules, asmentioned earlier, were equally abundant in the tu-
mor and fibrous clusters (Fig. 3C). Proteins in the M3 module (Supplementary
Table S7) mainly belonged to the complement system, and hence components
of the innate immune system, and the coagulation cascade including platelet
activation signaling and fibrin clotting components. It included platelet degran-
ulation proteins, represented by several members of the Serpin superfamily of
proteins (e.g., SERPINA1, SERPINB7, SERPIND1), complement factors (e.g.,
C1S, C4A, C6, and C9), and a large number of immunoglobulins (e.g., IGHG2,
IGHD and IGHA2). In addition, cholesterol homeostasis and lipid transporter
proteins (e.g., APOA1, APOE, APOC3, APOM and LCAT, CETP, PLTP) were
also represented. The M5 module contained proteins associated with immune
regulatory processes (Supplementary Table S9). Both modules consisted of a
wide range of proteins essential for T-cell development and T-cell receptor sig-
naling, members of MHC class I and II complexes as well as several B- and T
cell–specific marker molecules (e.g., CD3D, CD48, CD84 and CD247). More-
over, the intracellular lymphocyte-specific enzymes p56LCK and ZAP70, and
adapter proteins SKAP1 and SKAP2 important for immune cell functions were
also represented.

A Novel ECM Protein Signature Predicts Patient Survival
Consensus clustering of the tumor samples using the top 50 proteins with
the highest correlation to the ME of the M2 module stratified the patients
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FIGURE 3 MDS of the TOM dissimilarity matrix and association of the protein modules to different tissues of the pancreas. A, MDS plot where each
dot denotes a protein and the color represents the module the protein belongs to. B, MDS plot stratified by proteome-based clusters. Each protein is
colored by the average expression in the proteome-based clusters (red, high expression; purple, low expression). C, Association of the coexpression
protein modules (M1-M5) to the proteome-based clusters. Color of the dot indicate sample type. The P value denotes significance by Kruskal–Wallis
test. D, Volcano plot illustrating differential protein abundances in PDAC versus tumor adjacent tissue. The log2 fold change in protein abundance is
represented on the x-axis and Benjamini–Hochberg adjusted P values (on negative log scale) is shown on the y-axis. Each dot represents a protein and
is colored by the coexpression module that the protein belongs to. The 15 most significant proteins of M2 and M4 are labeled.

440 Cancer Res Commun; 2(6) June 2022 https://doi.org/10.1158/2767-9764.CRC-21-0100 | CANCER RESEARCH COMMUNICATIONS

D
ow

nloaded from
 http://aacrjournals.org/cancerrescom

m
un/article-pdf/2/6/434/3161498/crc-21-0100.pdf by U

niversity of O
slo user on 13 Septem

ber 2022



Pancreatic Cancer Proteome

FIGURE 4 M2 module with enriched pathways, relation to Moffitt transcriptomic subtypes and patient outcome. A, Consensus clustered heatmap
of top 50 proteins (based on correlation to Module Eigenprotein) of module M2 enriched for ECM proteins; patients get stratified into two clusters.
B, Kaplan–Meier curve showing overall survival trends in the protein-based ECM subgroups C. Enriched pathways in the ECM-high versus ECM-low
subtypes.

into two distinct subgroups which were labeled as ECM-high and ECM-low
(Fig. 4A, Supplementary Fig. S14; Supplementary Table S2). The ECM-high
and ECM-low subgroups showed significantly different overall survival, where
the patient group with the lower levels of the ECM proteins survived longer
(Fig. 4B, median survival months: 15.3 vs. 22.9 months; log-rank test, P= 0.02).
A similar exercise performed on the other identifiedmodules did not reveal any
association to patient prognosis.

The ECM-based subgroups were further analyzed for differences in path-
way activity (Fig. 4C). Epithelial–mesenchymal transition (EMT) pathway was

found to be highly upregulated in the ECM-high group. Several EMT markers
and key EMT players such as FN1, VIM, MMP2, ZEB1, LMCD1 were repre-
sented. Furthermore, the ECM-high tumors were featured by high glycolytic
activity and TGFβ signaling, and low DNA repair, E2F targets and oxidative
phosphorylation.

We further investigated the association of the novel protein subtypes to both tu-
mor and stromal transcriptomic subtypes as defined by Moffitt and colleagues
(6). We found that most of the samples classified as the Normal stroma sub-
type (12/14) and the Classical tumor subtype (16/19) belonged to the ECM-low
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subgroup (Fig 4A). A larger ambiguity was observed for the Activated stroma
and the Basal-like tumor subtypes, with an almost equal distribution between
the ECM-high and ECM-low subgroups. The proteome phenotype is hence dis-
tinctly different from the transcriptome phenotype. The transcriptome-based
subtypes did not show any significant association with patient prognosis in our
cohort (Supplementary Figs. S15A and B). Apart from the ECM-based sub-
groups, none of the standard clinical parameters were found to be associated
with patient outcome in univariate cox regression analysis in this cohort. The
ECM-based subgroups also showed a strong trend toward an independent asso-
ciation to patient outcome (P = 0.067) in a multivariate Cox regression model
analysis including pathologic differentiation grade and the tumor-specific tran-
scriptomic subtypes (variables showing most significant trend of association
with patient survival in univariate analysis; Supplementary Table S12).

Pancreatic Tumors and Pancreatitis
Proteome—Differences and Similarities
Biomarkers that can discriminate between patients with PDAC and chronic
pancreatitis are of great clinical interest. Hence, we evaluated whether the iden-
tified protein modules could differentiate the two diseases. The M1 and M4
modules associatedwith normal pancreatic function and the tumor epithelium,
respectively, showed a significant differential expression between the two dis-
eases (Fig. 5A; P < 0.003). This difference may be explained by the difference
in cell composition.

Interestingly, among the modules representing stroma, the ECMmodule (M2)
was significantly elevated in the PDAC compared with the pancreatitis samples.
We did not observe any significant differences in expression levels of the M3
module proteins associated with the complement and coagulation cascade or
the M5module proteins associated with immune regulatory processes. We fur-
ther analyzed differential protein expression between PDAC and pancreatitis
samples using the DeqMS tool (23). The analysis further confirmed that pro-
teins belonging to modules M1, M2, and M4 were significantly differentially
expressed between PDAC and pancreatitis (Fig. 5B).

Intramodular Hub Proteins as Potential Drug
Repurposing Targets
Protein levels in modules M2–M5 were significantly higher in the pancreatic
tumors compared with adjacent normal pancreatic tissues implying possible
important roles in the tumors and a less critical role in the normal functions of
the pancreas. This propertymakes the proteins inmodulesM2–M5, specifically
the hub proteins potential drug target candidates. To identify potential drug
targets in the modules, we cross-referenced the lists of M2–M5 proteins with
(i) targets of FDA-approved drugs and (ii) potential targets. Several proteins
with known roles in tumorigenesis such as FN1, TSPO, CD3E, and ZAP70 were
present in the modules (Fig. 6), which may be explored further as novel drug
targets in pancreatic cancer.

Discussion
In this study, we have characterized the global proteome of PDAC and various
nonmalignant tissues of the pancreas with high analytic depth. Prior to protein
quantification by the LC/MS-MS technique, the complexity of the sample pro-
teome was reduced using the peptide level HiRIEF separation technique (14),
yielding high-quality quantitative proteome data. In an unsupervised hierar-
chical clustering, the PDAC, adjacent pancreatic tissue, pancreatitis samples,
and PDX-derived cell lines clustered into four distinct groups. The cluster-

ing seemed to be driven largely by the proportions of normal tissue, fibrotic
tissue, and tumor cells in the samples. This was particularly distinct for the
adjacent pancreatic tissues, where half of the samples showing normal pan-
creasmorphology had a protein profile very different from the other half, which
contained abundant tissue fibrosis. These observations, while biologically im-
portant, also advocate for the robustness of the data as well as the key results
presented herein.

The network based WGCNA organized the global proteome into several mod-
ules that were associated with specific biological processes. In accordance with
pancreatic exocrine function, proteins for digestive enzymes encompassing
amylases, lipases, and proteases were all grouped into one module (M1) and
were significantly overexpressed in the normal pancreatic tissue compared with
the other tissues. It should be noted that the transcripts encoded by pancreatic
tissue-specific genes comprise up to 68% of the total mRNA pool. This is in
contrast to almost all other tissue types examined, where genes with “house-
keeping functions” dominate the mRNA pool (27). Consequently, even small
proportions of normal tissue residuals may contribute to molecular signals that
can be incorrectly interpreted as disease heterogeneity. This directly impedes
studies directed at defining disease subtypes, as has been implied earlier, in that
the exocrine-like subtype of PDAC is attributed to normal tissue contribution
and not tumor biology (6).

The M1 module with high protein levels in normal samples was also highly en-
riched for components of the protein translation machinery. Low abundance
of the digestive enzymes in the pancreatic cancer samples mainly comprising
epithelial cells and stromal tissue, which are not specialized in protein secretion
is as expected and reported earlier (6, 28). Reduced or altered expression of the
protein translationmachinery in pancreatic cancer comparedwith normal pan-
creatic tissue is, however, sparsely reported. Our finding of decreased protein
translation system in pancreatic cancer supports and substantiates the obser-
vation that several ribosomal subunits are significantly downregulated in the
PDAC in a small-scale protein-based study (29). This is in linewith protein syn-
thesis rate being more than 2.5-fold lower in pancreatic tumor compared with
healthy pancreatic tissue (30). Sparse reports on this molecular change, which
is highly evident at the protein level is likely due to large-scalemolecular studies
in pancreatic cancer being almost exclusively mRNA-based, in addition to the
low mRNA–protein correlation observed for the ribosomal proteins (31–33).
The high rate of protein synthesis in the pancreas has been linked to the pro-
nounced secretory protein production in the acinar cells (34), and ribosomal
protein expression is found to vary between tissues and even cell types (35). The
difference in expression levels of the protein translationmachinery between tu-
mor and normal pancreatic tissue may in part reflect the paucity of the acinar
cells in the bulk tumors. It may also be a consequence of the metabolic repro-
gramming that follows pancreatic cancer tumor development. Regardless of the
mechanism behind reduced protein synthesis, and the emerging moonlighting
roles of individual components of the protein translational machinery in onco-
genesis (35), our observations point to the fact that the intracellular demand for
protein synthesis in normal pancreatic tissue exceeds that of the proliferating
malignant cells of pancreas. This needs to be taken into account when consider-
ing the protein synthesis machinery and key regulators of translational control
as therapeutic targets in pancreatic cancer.

The ECM-associated M2 module and the tumor cell marker–associated M4
module, significantly distinguished PDAC from both tumor adjacent tissue
and pancreatitis tissue. Most of the proteins belonging to these modules were
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FIGURE 5 Differences between the PDAC and the pancreatitis proteome. A, Boxplots illustrating the expression of Module Eigenproteins in PDAC
versus pancreatitis samples. B, Volcano plot illustrating differential protein abundances in PDAC versus pancreatitis samples. The fold change (log2) in
protein abundance is represented on the x-axis and Benjamini–Hochberg adjusted P values (on negative log scale) is on the y-axis. Each dot denotes a
protein, colored by the coexpression module the protein belongs to. The top 10 significant proteins of M1, M2, and M4 are labeled.

significantly elevated in the PDAC compared with the nonmalignant tissues. It
therefore provides a very useful resource for biomarker validation and develop-
ment of novel diagnostic and potentially predictive analyses. Interestingly, the
ECMmodule-based proteins discriminated between patients with PDAC with
good and poor overall survival. The ECM-high tumors showed significantly el-
evated EMT pathway activity and poor patient prognosis. The two subgroups
of tumors had also marked difference in metabolic programs. Glycolytic path-
way activity was found to be high while oxidative phosphorylation was low
in the ECM-high subgroup which may indicate altered metabolic activity and

associated nutrient partitioning in these tumors. These observations are largely
in line with findings of Cao and colleagues where they show that the poor-
prognosis proteogenomic Basal-like subtype is enriched for EMTand glycolytic
pathway signature among others (26). Together, these results suggest that the
poor prognosis of the patients with ECM-high tumors may be attributed to
the metastasis promoting role (36) as well as chemoresistance associated with
EMT (37). Tumor targeting through abrogating metabolic programs/pathways,
an approach that relies on differential metabolic programs between the tumors
cells and its microenvironment (38) may benefit a selected patient population.
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FIGURE 6 Protein network of the protein modules including proteins with intercorrelations > 0.3 and correlation to Module Eigenprotein > 0.7. The
size of the nodes represents degrees, and thickness of the edges represents edge weight. Targets of FDA-approved drugs (all indications) within each
module are marked red and potential targets are marked orange. A, Module M2. B, Module M3. C, Module M4. D, Module M5. String protein networks
corresponding to M2–M5 are represented in Supplementary Figs. S8–S11, respectively. M1 is excluded from the analysis due its specific association to
the normal pancreas function and its low expression in the tumor tissue which makes it less relevant for drug targets.

Further experimental investigation is warranted to fully exploit the potential of
the differential signaling pathways and associated proteins between ECM-low
and ECM-high tumors as prognostic and predictive markers.

Extensive desmoplasia is a common hallmark feature of both PDAC and pan-
creatitis known to account for the markedly similarities in stromal features at
both the histologic and the molecular level (39, 40). However, the two diseases

are associated with differential prognosis and require suitable clinical manage-
ment; hencemarkers that discriminate between PDAC and chronic pancreatitis
are of great clinical importance. Interestingly, among the three proteinmodules
representing the stromal microenvironment (M2, M3 and M5), the M2 (ECM
module) was significantly downregulated in the pancreatitis samples compared
with the PDAC. Of note is that although the immune related modules were
not differentially expressed between PDAC and pancreatitis, the modules were
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significantly elevated in both of the diseases compared to tumor adjacent tis-
sue. This is in agreement with the established role of inflammation in initiating
and sustaining a stromal milieu favorable for the development of both diseases
(41). Reports on lower expression of the ECM related proteins in pancreatitis
compared with PDAC are sparse. Recently, in a comprehensive analysis of the
stroma from progressive stages of PDAC and pancreatitis, PDAC represented
the most fibrotic disease state, implying an increasing ECM complexity in the
PDAC over the course of disease progression (42). Although the presence of
neoplastic cells in the PDAC is a defining biological difference between the dis-
eases, these often constitute as little as 10%of the total tumor volume and are less
likely to be shed in the blood stream compared with the ECM-related proteins.
Hence, the highly abundant ECM related proteinmarkers, whichwe reveal here
to be significantly overexpressed in PDAC, bears higher potential as biomark-
ers for the diagnosis of PDAC as well as differential diagnostics of PDAC and
pancreatitis.

By analyzing the PDAC tumors together with diverse yet related biological sam-
ples of the pancreas including tumor and normal tissue, PDX-derived cell lines
and pancreatitis tissue, we provide an enhanced contextual understanding of
the active protein network underlying pancreatic cancer. Overall, this study
provides a high-quality proteomic resource and lays the foundation for im-
proved molecular classification of patients, and contributes to identification of
novel drug targets for the successful treatment of patients with PDAC.

Authors’ Disclosures
J. Lehtio reports other from Fenomark Diagnostics outside the submitted work;
and J. Lehtio is involved in Cancer Core Europe BoB trial financed by Roche
(not related to this work). No other disclosures were reported.

Authors’ Contributions
L. Silwal-Pandit: Conceptualization, data curation, formal analysis, visual-
ization, methodology, writing-original draft, writing-review and editing, per-
formed data analyses, interpreted the results. S.M. Stålberg:Conceptualization,
writing-original draft, writing-review and editing, clinical data acquisition,
histopathological review, and interpreted the results.H.J. Johansson:Writing-
review and editing, contributed to proteome data acquisition, performed data
analyses, interpreted the results.G.Mermelekas:Contributed to proteome data
acquisition. I.M.B. Lothe: Sample resource and preparation, histopathologi-
cal review. M.L. Skrede: Sample resource and preparation. A.M. Dalsgaard:
Sample resource and preparation.D.J.H.Nebdal:Visualization, writing-review
and editing.A.Helland:Writing-review and editing.O.C. Lingjærde:Writing-
review and editing, interpreted the results. K.J. Labori: Sample resource and
preparation, clinical data acquisition. B.S. Skålhegg:Writing-review and edit-
ing, interpreted the results. J. Lehtiö: Conceptualization, supervision, project
administration, writing-review and editing, contributed to proteome data ac-
quisition, interpreted the results. E.H. Kure: Conceptualization, supervision,
funding acquisition, project administration, writing-review and editing, sample
resource and preparation, and result interpretation.

Acknowledgments
E.H. Kure is supported by grants from South-Eastern Norway Regional Health
Authorities (project no. 2017077), The Norwegian Cancer Society (KNEP,
project no. 711177–212734), and Ellen Sofie Brekke with family. This research
was supported by funding from the University of South-Eastern Norway.

Received October 23, 2021; revised February 23, 2022; accepted May 18, 2022;
published first June 14, 2022.

References
1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020;70:

7-30.

2. Waddell N, Pajic M, Patch A-M, Chang DK, Kassahn KS, Bailey P, et al. Whole
genomes redefine the mutational landscape of pancreatic cancer. Nature
2015;518: 495-501.

3. Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC, et al. Genomic
analyses identify molecular subtypes of pancreatic cancer. Nature 2016;531: 47-
52.

4. Raphael BJ, Hruban RH, Aguirre AJ, Moffitt RA, Yeh JJ, Stewart C, et al.
Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma.
Cancer Cell 2017;32: 185-203.

5. Collisson EA, Sadanandam A, Olson P, Gibb WJ, Truitt M, Gu S, et al. Subtypes
of pancreatic ductal adenocarcinoma and their differing responses to therapy.
Nat Med 2011;17: 500-3.

6. Moffitt RA, Marayati R, Flate EL, Volmar KE, Loeza SGH, Hoadley KA, et al. Vir-
tual microdissection identifies distinct tumor- and stroma-specific subtypes of
pancreatic ductal adenocarcinoma. Nat Genet 2015;47: 1168-78.

7. Puleo F, Nicolle R, Blum Y, Cros J, Marisa L, Demetter P, et al. Stratification
of pancreatic ductal adenocarcinomas based on tumor and microenvironment
features. Gastroenterology 2018;155: 1999-2013.

8. Birnbaum DJ, Finetti P, Birnbaum D, Mamessier E, Bertucci F. Validation and
comparison of the molecular classifications of pancreatic carcinomas. Mol
Cancer 2017;16: 1-7.

9. Annese T, Tamma R, Ruggieri S, Ribatti D. Angiogenesis in pancreatic cancer:
Pre-clinical and clinical studies. Cancers 2019;11: 381.

10. Conway JR, Herrmann D, Evans TJ, Morton JP, Timpson P. Combating pancre-
atic cancer with PI3K pathway inhibitors in the era of personalised medicine.
Gut 2019;68: 742-58.

11. Schizas D, Charalampakis N, Kole C, Economopoulou P, Koustas E, Gkotsis E,
et al. Immunotherapy for pancreatic cancer: a 2020 update. Cancer Treat Rev
2020;86.

12. Zhang B, Horvath S. A general framework for weighted gene co-expression
network analysis. Stat Appl Genet Mol Biol 2005;4.

13. Langfelder P, Horvath S. WGCNA: An R package for weighted correlation
network analysis. BMC Bioinf 2008;9: 559.

14. Branca RMM, Orre LM, Johansson HJ, Granholm V, Huss M, Pérez-Bercoff
Å, et al. HiRIEF LC-MS enables deep proteome coverage and unbiased
proteogenomics. Nat Methods 2014;11: 59-62.

15. Granholm V, Kim S, Navarro JCF, Sjölund E, Smith RD, Käll L. Fast and accurate
database searches with MS-GF+percolator. J Proteome Res 2014;13: 890-7.

16. Boekel J, Chilton JM, Cooke IR, Horvatovich PL, Jagtap PD, Käll L, et al. Multi-
omic data analysis using Galaxy. Nat Biotechnol 2015;33: 137-9.

17. Savitski MM, Wilhelm M, Hahne H, Kuster B, Bantscheff M. A scalable approach
for protein false discovery rate estimation in large proteomic data sets. Mol Cell
Proteomics 2015;14: 2394-404.

18. Langfelder P, Zhang B, Horvath S, Branchcutting C. Defining clusters from a
hierarchical cluster tree: the dynamic tree cut library for R. 2014. Available from:
http://www.genetics.ucla.edu/labs/horvath/.

19. Langfelder P, Horvath S. Fast R functions for robust correlations and hierarchical
clustering. J Stat Softw 2012;46: 1-17.

AACRJournals.org Cancer Res Commun; 2(6) June 2022 445

D
ow

nloaded from
 http://aacrjournals.org/cancerrescom

m
un/article-pdf/2/6/434/3161498/crc-21-0100.pdf by U

niversity of O
slo user on 13 Septem

ber 2022

http://www.genetics.ucla.edu/labs/horvath/


Silwal-Pandit et al.

20. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al.
STRING v11: Protein-protein association networks with increased coverage, sup-
porting functional discovery in genome-wide experimental datasets. Nucleic
Acids Res 2019;47: D607-13.

21. Sandhu V, Bowitz Lothe IM, Labori KJ, Lingjaerde OC, Buanes T, Dalsgaard AM,
et al. Molecular signatures of mRNAs and miRNAs as prognostic biomarkers
in pancreatobiliary and intestinal types of periampullary adenocarcinomas. Mol
Oncol 2015;9: 758-71.

22. R Core Team. R: A language and environment for statistical computing. R Foun-
dation for Statistical Computing. Vienna, Austria: R Core Team; 2020. Available
from: http://www.r-project.org/index.html.

23. Zhu Y, Orre LM, Zhou Tran Y, Mermelekas G, Johansson HJ, Malyutina A,
et al. DEqMS: A method for accurate variance estimation in differential protein
expression analysis. Mol Cell Proteomics 2020;19: 1047-57.

24. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al.
Enrichr: a comprehensive gene set enrichment analysis web server 2016 update.
Nucleic Acids Res 2016;44: W90-7.

25. Yaari G, Bolen CR, Thakar J, Kleinstein SH. Quantitative set analysis for gene
expression: a method to quantify gene set differential expression including
gene-gene correlations. Nucleic Acids Res 2013;41: e170.

26. Cao L, Huang C, Cui Zhou D, Hu Y, Lih TM, Savage SR, et al. Proteogenomic
characterization of pancreatic ductal adenocarcinoma. Cell 2021;184: 5031-
52.

27. Danielsson A, Pontén F, Fagerberg L, Hallström BM, Schwenk JM, Uhlén M, et al.
The human pancreas proteome defined by transcriptomics and antibody-based
profiling. PLoS One 2014;9: 1-21.

28. Iacobuzio-Donahue CA, Maitra A, Olsen M, Lowe AW, Van Heek NT,
Rosty C, et al. Exploration of global gene expression patterns in pancre-
atic adenocarcinoma using cDNA microarrays. Am J Pathol 2003;162: 1151-
62.

29. Chen R, Yi EC, Donohoe S, Pan S, Eng J, Cooke K, et al. Pancreatic cancer
proteome: The proteins that underlie invasion, metastasis, and immunologic
escape. Gastroenterology 2005;129: 1187-97.

30. Dijk DPJ, Horstman AMH, Smeets JSJ, Dulk M, Grabsch HI, Dejong CHC,
et al. Tumour-specific and organ-specific protein synthesis rates in pa-
tients with pancreatic cancer. J Cachexia Sarcopenia Muscle 2019;10: 549-
56.

31. Johansson HJ, Socciarelli F, Vacanti NM, Haugen MH, Zhu Y, Siavelis I,
et al. Breast cancer quantitative proteome and proteogenomic landscape. Nat
Commun 2019;10: 1600.

32. Gao Q, Zhu H, Dong L, Shi W, Chen R, Song Z, et al. Integrated proteogenomic
characterization of HBV-related hepatocellular carcinoma. Cell 2019; 179: 561-
77.

33. Mertins P, Mani DR, Ruggles KV, Gillette MA, Clauser KR, Wang P, et al. Pro-
teogenomics connects somatic mutations to signalling in breast cancer. Nature
2016;534: 55-62.

34. Case RM. Synthesis, intracellular transport and discharge of exportable proteins
in the pancreatic acinar cell and other cells. Biol Rev Camb Philos Soc 1978;53:
211-347.

35. Guimaraes JC, Zavolan M. Patterns of ribosomal protein expression specify
normal and malignant human cells. Genome Biol 2016;17: 236.

36. Krebs AM, Mitschke J, Lasierra Losada M, Schmalhofer O, Boerries M, Busch H,
et al. The EMT-activator Zeb1 is a key factor for cell plasticity and promotes
metastasis in pancreatic cancer. Nat Cell Biol 2017;19: 518-29.

37. Zheng X, Carstens JL, Kim J, Scheible M, Kaye J, Sugimoto H, et al. EMT program
is dispensable for metastasis but induces chemoresistance in pancreatic cancer.
Nature 2015;527: 525-30.

38. Reinfeld BI, Madden MZ, Wolf MM, Chytil A, Bader JE, Patterson AR, et al. Cell-
programmed nutrient partitioning in the tumour microenvironment. Nature
2021;593: 282-8.

39. Logsdon CD, Simeone DM, Binkley C, Arumugam T, Greenson JK, Giordano TJ,
et al. Molecular profiling of pancreatic adenocarcinoma and chronic pancreatitis
identifies multiple genes differentially regulated in pancreatic cancer. Cancer
Res 2003;63: 2649-57.

40. Chen R, Brentnall TA, Pan S, Cooke K, Moyes KW, Lane Z, et al. Quan-
titative proteomics analysis reveals that proteins differentially expressed in
chronic pancreatitis are also frequently involved in pancreatic cancer. Mol Cell
Proteomics 2007; 6: 1331-42.

41. Kong X, Sun T, Kong F, Du Y, Li Z. Chronic pancreatitis and pancreatic cancer.
Gastrointest Tumors 2014;1: 123-34.

42. Tian C, Clauser KR, Öhlund D, Rickelt S, Huang Y, Gupta M, et al. Proteomic
analyses of ECM during pancreatic ductal adenocarcinoma progression reveal
different contributions by tumor and stromal cells. Proc Natl Acad Sci U S A
2019;116.

446 Cancer Res Commun; 2(6) June 2022 https://doi.org/10.1158/2767-9764.CRC-21-0100 | CANCER RESEARCH COMMUNICATIONS

D
ow

nloaded from
 http://aacrjournals.org/cancerrescom

m
un/article-pdf/2/6/434/3161498/crc-21-0100.pdf by U

niversity of O
slo user on 13 Septem

ber 2022

http://www.r-project.org/index.html


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings true
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 0
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ([Based on '[High Quality Print]'] Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides true
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        18
        18
        18
        18
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 18
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [792.000 1224.000]
>> setpagedevice


