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Abstract: The operational condition at the Dalsfoss power station is complicated due to many
requirements related to environmental regulations and safety constraints such as the seasonally
varying water level requirement at the reservoir. However, the operation becomes more difficult
due to uncertainties in the system. In this paper, at first a certainty equivalent MPC is applied
to the uncertain hydro power system and it has been shown that its robustness property is
poor. Secondly, to prevent the constraint violations due to the uncertainties in the system, two
measures are taken. One measure is to introduce a safety margin for the constraints and further
design a certainty equivalent MPC. The other measure is to implement a multi-stage MPC
for robust constraint satisfaction. Two types of multi-stage MPC are considered in this paper.
The first employs all of the possible 50 scenarios of the uncertainty of an input disturbance
variable, and the latter generates and uses three synthetic scenarios to approximate all of the
possible 50 scenarios. All of the simulation results are compared for their robust performances
and computational time.
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1. INTRODUCTION

The Kragerø watercourse is located in Telemark, Norway.
The catchment area of the watercourse is over 1200 square
kilometers. There are five hydropower plants along the
watercourse. The locations of the five plants are shown in
Figure 1. The uppermost hydro power plant is the Dalsfoss
power plant. The plant is operated by Skagerak Kraft.
The plant has two flood gates and one intake to a turbine
(SkagerakKraft, 2021a,b).

Fig. 1. Overview of the Kragerø watercourse. (Skager-
akKraft, 2021b).

For proper operation of the power plant concession re-
quirements are imposed by the Norwegian Water Resource
and Energy Administration (NVE). Some of the require-
ments are related to safety while others are related to the
ecosystem around the watercourse (NVE, 2021). However,
it is arduous to satisfy all of the requirements due to the
presence of uncertainty in the system. The prediction of
how much water will flow into the reservoir (lake Tokke)
from the surrounding terrain is quite uncertain. The power
production is decided by Skagerak Kraft from considering
aspects such as the power demand and the electricity price
change in the future. The prediction of water inflow is
given as 50 possible scenarios for the next 13 days. The
prediction is constructed based on the weather forecast
and complex hydrological models. The water inflow pre-
diction is updated every 24 hours.

Model predictive control (MPC) is an attractive multivari-
able constrained optimal control approach to deal with
dynamic system with multiple inputs, outputs and con-
straints (Morari and H. Lee, 1999; Mayne et al., 2000). In
a previous work, a reference region tracking deterministic
MPC was suggested for the operation of the Dalsfoss power
station. This MPC was designed to let the water level at
the reservoir remain with in a specified region (Lie, 2014).
As a further improvement, a stochastic MPC based on
multi-objective optimization (MOO) was proposed (Men-
chacatorre et al., 2019) to consider the uncertainty on the
water inflow. For the MOO based stochastic MPC, the
optimal control problem (OCP) formulation was similar
to the reference region tracking MPC. A new OCP, based
on the maximization of the water level at the reservoir is
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formulated, simulated and compared to the OCP of the
reference region tracking MPC. Although a deterministic
MPC based on the new OCP maintains a higher level
of water at the dam, it shows that robust constraint
satisfaction cannot be guaranteed for all 50 possible inflow
scenarios (Jeong et al., 2021).

In this paper, further works on Dalsfoss hydropower plant
have been discussed with the aim to prevent the potential
violation of constraints due to the uncertainties in the
system, and to systematically handle large computational
time associated with stochastic MPC. For this, a certainty
equivalent MPC with a safety margin on the water level
constraint, and a multi-stage MPC are proposed and
discussed in detail in this paper.

The paper is organized as follows: In section 2, a brief
introduction of the multi-stage MPC is presented. The
system model, constraints and the optimal control problem
are described in section 3. In sections 4 and 5, it discusses
the simulation condition and the results of the simulation
for certainty equivalent MPC and multi-stage MPC. Fi-
nally, the conclusion is written in section 6.

2. MULTI-STAGE MODEL PREDICTIVE CONTROL

A standard formulation of a deterministic MPC does
not deal with uncertainty in the system. It is because
the optimization technique does not consider uncertainty
(Birge, 1997; Shapiro et al., 2009).

Fig. 2. Scenario tree representation of uncertainty evolu-
tion for multi-stage MPC (Lucia et al., 2013)

Multi-stage MPC includes the uncertainty of the system,
as a form of scenario tree, into the optimization problem.
A typical structure of a scenario tree is displayed in
Fig. 2. The scenario tree describes the possible evolution
of the uncertainty at each time step. It branches out at
each node. Every node has expected states by branched
uncertain events and control input from the events. For
the Dalsfoss hydropower, the scenario tree will have 50
branches with each branch corresponding to each possible
water inflow prediction. OCP for multi-stage MPC is
described as follow:

min
x

S∑
j=1

ωj

N∑
i=1

J(xi,j , ui,j , pi,j) (1a)

subject to g(xi,j , ui,j , pi,j) ≥ 0, (1b)

h(xi,j , ui,j , pi,j) = 0. (1c)
S∑

j=1

Ējuj = 0 j ∈ 1, ..., S (1d)

where ω denotes the probability or weight for each sce-
nario, (1a) is the cost function, (1b) and (1c) are inequality
and equality constraints. The last constraint, (1d), is the
non-anticipativity constraint which guarantees to have the
same control input for all branches arising from the same
parent node (Lucia et al., 2013).

Since the future uncertainty is included in the optimization
problem, the size of the OCP increases exponentially as
the number of branches or scenarios increases. Therefore,
when designing a scenario tree, it is critical to include
the uncertainty in the future but also to have a tractable
size of the OCP for feasible computational time. A good
trade-off between robustness and computational cost can
be achieved by constructing a simplified scenario tree that
uses only the minimum, maximum and mean values of
the scenarios, rather than using all possible scenarios.
The simplified scenario tree will then have less number of
branches but can still describe uncertainty of the system
well. (Thangavel et al., 2018).

3. SYSTEM DESCRIPTION

3.1 System model

Lake Toke is located next to the Dalfoss power station and
it works as a water reservoir for the hydro power plant.
The simplified layout of the lake is displayed in Fig. 3.
The lake is divided into two compartments described by
two different water levels (h1 and h2) in Fig. 3. The left
side is the upper part of the lake called Merkebekk and
the right side is Dalsfoss which is the lower part of the
lake near to the dam and the plant. The dynamic model
of the lake Toke is described in Lie (2014)

Fig. 3. Schematic of lake Toke (Lie, 2014)

The states of the systems are water levels at Merkebekk
and Dalsfoss which are denoted as h1 and h2 respectively.
The water levels above the sea level at Merkebekk and
Dalsfoss, xM and xD, can be expressed as:
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The states of the systems are water levels at Merkebekk
and Dalsfoss which are denoted as h1 and h2 respectively.
The water levels above the sea level at Merkebekk and
Dalsfoss, xM and xD, can be expressed as:

xM = h1 + xmin
LRV (2)

xD = h2 + xmin
LRV (3)

where xmin
LRV means the low regulated value of the water

level.

The area of the lake surface is calculated based on the
water level as:

A(hi) = max(28× 106 · 1.1 · h
1
10
i , 103) (4)

The inter compartment flow, V̇12, is defined based on the
height difference of the water levels as follow:

V̇12 = K12 · (h1 − h2)
√
|h1 − h2| (5)

where K12 is the inter compartment flow coefficient.

Fig. 4. Structure of floodgate (Lie, 2014)

The Dalsfoss dam has two flood gates. The height of the
gate openings are denoted as hg1 and hg2. The layout
of floodgate structure is displayed in Fig. 4. The water
flowrate through floodgate is expressed as:

V̇g = Cdw ·min(hg, h2)
√
2g ·max(h2, 0) (6)

where Cd means the discharge coefficient and g represents
the acceleration of gravity. The width of the floodgate is
denoted as w. The maximum opening height of floodgates
is up to 5.6m.

The water inflow to the lake and the power production are
disturbances in the system. The water inflow is denoted as
V̇i. The water inflow prediction is updated everyday based
on weather forecast data. The power produced is written
as We. The water flowrate through a turbine, V̇t, is given
by:

V̇t = a
Ẇe

xD − xq
+ b (7)

In (7), a and b are coefficients obtained from the data
fitting method and xq means the water level at quoy. The
water level at quoy is calculated by solving the following
cubic equation.

0 = c1x
3
q + (c2 − c1xD)x

2
q

+ (c3 − c2xD + c4V̇g)xq

+ Ẇe − c3xD − c4V̇gxD − c5

(8)

where c1, c2, c3, c4, and c5 are obtained by coefficient from
polynomial data fitting.

The total water outflow from the Dalsfoss power station,
V̇o, is a summation of water flowrates through the flood-
gates and the turbines as follow:

V̇o = V̇t +
∑

V̇g (9)

The dynamic model of states, h1 and h2, are described by
the following equations:

dh1

dt
=

1

(1− α)A(h1)
((1− β)V̇i − V̇12) (10)

dh2

dt
=

1

αA(h2)
(βV̇i + V̇12 − V̇o) (11)

Parameters for the model are specified in Table 1.

3.2 Operational constraints

The operational requirements are decided by NVE. It is
mandatory to satisfy those requirements for (i) operational
safety, (ii) securing ecological diversity, and (iii) avoiding
property damage. The constraints are:

(1) The flowrate of the total water outflow, V̇o, should not
change abruptly. This constraint ensures that people
and animals downstream do not experience sudden
large changes in the outflow.

(2) The flowrate of the total water outflow, V̇o, must
be kept bigger than 4m3/s. The ecosystem is not
disturbed and fishes in downstream can move freely
by satisfying this constraint.

(3) The water level at Merkebekk, xM, must be main-
tained within a specified water level range:

xM ∈ [xLRV, xHRV]
where xLRV and xHRV mean the low and the high reg-
ulated value for the water level respectively. The sea-
sonal level requirement changes are shown in Fig. 2.

(4) When severe flooding occurs, xHRV can be extended
to xmax

HRV. However, after the culmination of flooding
ends, xM must reach xHRV as soon as possible.

(5) The flow rate through the turbine, Vt, is limited up
to 36m3/s.

3.3 Optimal control problem

When handling the flood gates, care should be taken that
the water from the dam is not thrown out through flood
gates unnecessarily. This would result in loss of water
which otherwise could be used to produce electricity. In
this sense, saving as much water as possible (i.e. having
as high water level as possible) in the dam while still
satisfying the concession requirements becomes necessary.
The objective function in the OCP is designed to maximize
the water level at Merkebekk and to minimize the control
action and its rate of change as: (Jeong et al., 2021)

min
u

N∑
i=1

ωRR
2
new(xt+i)+ω∆u∆u2

c,t+i−1+ωuu
2
c,t+i−1+p2ωp

(12)
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Table 1. Parameters for Lake Toke model

Parameter Value Unit Comment

α 0.05 - Fraction of surface area in compartment 2
β 0.02 - Fraction of inflow to compartment 2

K12 800 m
3
2 /s Inter compartment flow coefficient

Cd 0.7 - Discharge coefficient, Dalsfoss gate
w1 11.6 m Width of Dalsfoss gate 1
w2 11.0 m Width of Dalsfoss gate 2

xmin
LRV 55.75 m Minimal low regulated level value

xmax
HRV 60.35 m Maximal high regulated level value
g 9.81 m/s2 Acceleration of gravity
a 124.69 Pa−1 Coefficient in equation 7
b 3.161 m Coefficient in equation 7
c1 0.13152 W/m−3 Polynomial coefficient in equation 8
c2 -9.5241 W/m2 Polynomial coefficient in equation 8
c3 1.7234 ·102 W/m Polynomial coefficient in equation 8
c4 -7.7045 ·10−3 Pa/m Polynomial coefficient in equation 8
c5 -8.7359 ·10−1 W Polynomial coefficient in equation 8

Table 2. Seasonal level requirement

Date xLRV[m] xHRV[m]

Jan. 1 - Apr. 30 55.75 60.35
May. 1 - Aug. 30 58.85 59.85
Sept. 1 - Sept. 14 55.75 59.35
Oct. 28 - Nov. 11 55.75 59.85
Nov. 12 - Dec. 31 55.75 60.35

The first term in (12) is to maximize the water level at
Merkebekk and expressed as:

Rnew(xt+1) = xM,t+1 − xHRV (13)

The last term, p2ωp, is the penalty for violation of level
constraints. The variable p is the slack variable which is
automatically decided by the optimizer. It allows the viola-
tion on xLRV to satisfy the minimum flowrate constraints.

4. SIMULATION

4.1 Simulation setup

To implement the simulations, the two disturbances, the
power production and the water inflow to the lake Toke,
must be defined.

The synthetic data of the power production plan used for
the simulation is described on Fig. 5. In this paper it is
assumed that the power production is perfectly known.

For the water inflow, the real data of the water inflow
prediction stored by the plant operator as historical data
is utilized. The water inflow prediction data is updated
every 24 hours. The prediction consists of an averaged
water inflow on each day for the next 13 days and there are
50 such prediction scenarios. Since the prediction does not
reflect hourly changes in water inflow, the water inflow is
assumed to be constant during each day. The real historical
data is multiplied by 3 to simulate the flooding situation.

The period of the simulation is set from April 15 to May 15.
This period involves the drastic change of the water level
constraints at Merkebekk. The step size is set as 1 hour.
The length of the prediction horizon is 3 days i.e. 72 hours.
The weighting parameters for OCP are determinded from
trial and error and are stated in Table 3. For the solution of
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Fig. 5. Synthetic plan for power production during the
simulation period

Table 3. Parameters for the simulations

Parameter Value Unit

ωR 10 -
ω∆u 1 -
ωu 1 -
ωp 100 -

multi-stage MPC, multiple shooting method and IPOPT
solver in CasADi are used (Andersson et al., 2019).

4.2 Robustness analysis

Robustness analysis is a tool that shows how the controller
performs due to the influence of uncertainty. It is per-
formed to show the number of potential violation of the
constraints when the realized disturbance is different from
the one that was used for prediction. The procedure of
the robustness analysis is displayed in Fig. 6. When the
optimal control input is calculated by the optimizer, it is
applied not only to the nominal system but also to imagi-
nary systems each having different realization of the input
disturbance. However, the state is not updated through
the imaginary systems but only stored for analysis.

4.3 Control strategies

In this subsection, MPC formulations which can handle
the effect of future uncertainty is described. In this paper,
3 types of formulations have been studied as follow:
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automatically decided by the optimizer. It allows the viola-
tion on xLRV to satisfy the minimum flowrate constraints.

4. SIMULATION
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To implement the simulations, the two disturbances, the
power production and the water inflow to the lake Toke,
must be defined.

The synthetic data of the power production plan used for
the simulation is described on Fig. 5. In this paper it is
assumed that the power production is perfectly known.

For the water inflow, the real data of the water inflow
prediction stored by the plant operator as historical data
is utilized. The water inflow prediction data is updated
every 24 hours. The prediction consists of an averaged
water inflow on each day for the next 13 days and there are
50 such prediction scenarios. Since the prediction does not
reflect hourly changes in water inflow, the water inflow is
assumed to be constant during each day. The real historical
data is multiplied by 3 to simulate the flooding situation.

The period of the simulation is set from April 15 to May 15.
This period involves the drastic change of the water level
constraints at Merkebekk. The step size is set as 1 hour.
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multi-stage MPC, multiple shooting method and IPOPT
solver in CasADi are used (Andersson et al., 2019).

4.2 Robustness analysis

Robustness analysis is a tool that shows how the controller
performs due to the influence of uncertainty. It is per-
formed to show the number of potential violation of the
constraints when the realized disturbance is different from
the one that was used for prediction. The procedure of
the robustness analysis is displayed in Fig. 6. When the
optimal control input is calculated by the optimizer, it is
applied not only to the nominal system but also to imagi-
nary systems each having different realization of the input
disturbance. However, the state is not updated through
the imaginary systems but only stored for analysis.

4.3 Control strategies

In this subsection, MPC formulations which can handle
the effect of future uncertainty is described. In this paper,
3 types of formulations have been studied as follow:

Fig. 6. The procedure of robustness analysis

• Certainty-equivalent MPC with safety margin:
With this method, a virtual upper bound for the

water level is created by subtracting a small value
(safety margin) from the actual upper bound. This
virtual upper bound of the water level is then used
to formulate a certainty-equivalent MPC. The safety
margin decreases the maximum allowed water level
at the reservoir by a small value. The idea is that
any fluctuations of the water level due to uncertainty
will remain within the safety margin and will never
go above the actual upper bound. In this study, the
value of the safety margin is set as 5cm.

• Multi-stage MPC using all the 50 scenarios:
The weight on each scenario is set as 1 for the

implementation of the multi-stage MPC because ev-
ery scenario has an equal probability of occurrence.
However, using all 50 prediction scenarios increases
the size of the OCP by 50 times, which increases
the complexity of the problem and will therefore also
require significantly larger computational time.

• Multi-stage MPC using 3 synthetic scenarios:
To have the balance between the robustness and the

computational demand, only three synthetic scenarios
are generated from the all of the 50 possible sce-
narios by extracting maximum, minimum and mean
values along the prediction horizon. Therefore, these
3 synthetic scenarios cover the whole range of the 50
possible scenarios.

5. RESULT

Fig. 7 shows the results of the robustness analysis when
the certainty-equivalent MPC is used. There are 1287 cases
of total possible violations counted by robustness analysis
throughout the whole simulation period. Although cer-
tainty equivalent MPC maintains the water to the maxi-
mum possible level, it is shown that there is a danger that
the constraints may be violated in the future. However,
there were zero constraint violation counted by robustness
analysis when the two multi-stage MPC techniques, and
certainty equivalent MPC with safety margin are em-
ployed.

The level changes and the control input throughout the
simulation period are displayed in Fig. 8 and Fig. 9.
CE-MPC means the certainty equivalent MPC and CE-
MPC(S) stands for the certainty equivalent MPC with a
safety margin. MS-MPC shows the water level changes
when multi-stage MPC with all of 50 possible scenarios
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Fig. 7. The robustness analysis of certainty equivalent
MPC: (a) robustness analysis through the whole sim-
ulation period, (b) detailed image of robustness anal-
ysis (blue color area in (a)), (c) detailed image of
robustness analysis (green color area in (a))

are used. MS-MPC(R) shows the simulation result, using
multi-stage MPC with only the three synthetic scenarios.
Certainty equivalent MPC(CE-MPC) pursues the most
maximized water level, but the robustness is proven to
be vulnerable as shown in Fig. 6. The performance of
the certainty equivalent MPC with the safety margin(CE-
MPC(S)) is the worst compared to the other approaches,
i.e. it maintains the lowest water level at the dam.
Multi-stage MPC with all of 50 possible scenarios(MS-
MPC) shows more conservative performance compared
to the certainty equivalent MPC but better performance
than the certainty equivalent MPC with a safety margin.
Multi-stage MPC with the three synthetic scenarios(MS-
MPC(R)) has similar (only negligible performance loss)
compared with the MS-MPC. MS-MPC and MS-MPC(R)
shows less drastic changes on control input through simu-
lation period.

Table 4 is the summary of the computational time required
to complete simulations. When CE-MPC is used for the
simulation, it takes only 163s(avg. iteration time: 227ms).
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Fig. 9. The control input throughout the simulation period

Table 4. Computation time for simulations[s]

CE-MPC MS-MPC MS-MPC(R)

163 2977 257

However, it takes 18.2 times more, 2977s(avg. iteration
time: 4135ms), when the MS-MPC is applied. The compu-
tational time decreases significantly to 257s(avg. iteration
time: 358ms) when MS-MPC(R) is used.

6. CONCLUSION

Although with the certainty-equivalent MPC, constraint
violations can occur, this paper presents three approaches
to eliminate the influence of future uncertainty. One is to
add a conservative safety margin on the certainty equiva-
lent MPC. The other two is to employ multi-stage stochas-
tic MPC. From the simulation results, all of approaches
perform well. However, multi-stage MPC shows better
performance compared to certainty equivalent MPC with
safety margin. Therefore, the implementation of multi-
stage MPC on the Dalfoss hydropower station seems ben-
eficial because it gives strong robustness while it keeps

the water level as maximum as possible. Also, The com-
putation time for implementing multi-stage MPC can be
significantly reduced without performance loss by selecting
only the three synthetic scenarios instead of using all of the
50 scenarios. The performance is not significantly degraded
when the three synthetic scenarios are used with the multi-
stage MPC.

Although multi-stage MPC shows advantages compared
to the other approaches, there is still more uncertainty to
consider. Firstly, there may be a case that the actual water
inflow might be out of the considered uncertainty range.
Secondly, the water inflow may change every hour or every
minute unlike how it is assumed in this paper. It may be
necessary to investigate how to implement the multi-stage
MPC under these conditions.
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