
Segmentation, Transcription, Analysis and Visualisation of the
Norwegian Folk Music Archive

Olivier Lartillot
olivier.lartillot@imv.uio.no

RITMO Centre for Interdisciplinary
Studies in Rhythm, Time and Motion,

University of Oslo
Oslo, Norway

Anders Elowsson
anderselowsson@gmail.com

RITMO Centre for Interdisciplinary
Studies in Rhythm, Time and Motion,

University of Oslo
Oslo, Norway

Mats Johansson
Mats.S.Johansson@usn.no

University of South-Eastern Norway
Rauland, Norway

Hans-Hinrich Thedens
Hans-Hinrich.Thedens@nb.no
National Library of Norway

Oslo, Norway

Lars Monstad
lars.monstad@gmail.com

RITMO Centre for Interdisciplinary
Studies in Rhythm, Time and Motion,

University of Oslo
Oslo, Norway

ABSTRACT
We present an ongoing project dedicated to the transmutation of a
collection of field recordings of Norwegian folk music established in
the 1960s into an easily accessible online catalogue augmented with
advanced music technology and computer musicology tools. We
focus in particular on a major highlight of this collection: Hardan-
ger fiddle music. The studied corpus was available as a series of
600 tape recordings, each tape containing up to 2 hours of record-
ings, associated with metadata indicating approximate positions of
pieces of music. We first need to retrieve the individual recording
associated with each tune, through the combination of an auto-
mated pre-segmentation based on sound classification and audio
analysis, and a subsequent manual verification and fine-tuning of
the temporal positions, using a home-made user interface.

Note detection is carried out by a deep learning method. To
adapt the model to Hardanger fiddle music, musicians were asked
to record themselves and annotate all played note, using a dedi-
cated interface. Data augmentation techniques have been designed
to accelerate the process, in particular using alignment of varied
performances of same tunes. The transcription also requires the
reconstruction of the metrical structure, which is particularly chal-
lenging in this style of music. We have also collected ground-truth
data, and are conceiving a computational model.

The next step consists in carrying out detailed music analysis
of the transcriptions, in order to reveal in particular intertextuality
within the corpus. A last direction of research is aimed at design-
ing tools to visualise each tune and the whole catalogue, both for
musicologists and general public.
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1 INTRODUCTION
There is a growing amount of research dedicated to the develop-
ment and application of Music Information Retrieval (MIR) tech-
nologies dedicated to the analysis of music archives [3]. The study
presented in this paper is being carried out in the context of the
MIRAGE project1, funded from 2020 to 2023, and aimed at design-
ing new technologies for computational music analysis, with close
interaction with musicology needs, with application in music cog-
nition, for the public and for music libraries. The aim of this present
work is to complete the digitalisation of the Norwegian Folk Music
Collection—or more precisely the subset that can be considered
in the public domain—and to augment the audio recordings with
automated score transcription and music analysis. The objective
in a longer term is to provide a large range of music analysis and
visualisation and navigation capabilities, in order to make the mu-
sic largely accessible to both scholars and the public. We are also
making the technologies and interfaces available to the research
community.

1https://www.uio.no/ritmo/english/projects/mirage/index.html
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Figure 1: Transcription of a Springar tune called Fossekallen
[2]. © The Norwegian Research Council for Science and the
Humanities 1979

2 CORPUS
2.1 Hardanger Fiddle Music
The Hardanger fiddle is a variety of the violin used in the folk music
of the western and central part of southern Norway. It is played
as a solo instrument for couple dancing. It spread from the area of
Hardanger to many of the valleys in southern Norway in the 18th
century. The intricacy of the performance style makes machine
transcription difficult. Publishing transcriptions of fiddle tunes has
been an important part of Norwegian folk music research in the
20th century. Between 1958 and 1981 the Norwegian Folk Music
Institute published seven volumes of such transcriptions covering
most of the traditions of Hardanger fiddle playing, organized by
melody type and in tune families2. Figure 1 shows the transcription
of one of the pieces.

2.2 Norwegian Folk Music Archive
The Norwegian FolkMusic Archive, now at the Norwegian National
Library, was founded in 1951 with the purpose of building a corpus
of audio recording for research. First musicians were invited to Oslo
to record and later collectors went for trips to areas with strong
folk music traditions. The recordings were made on reel-to-reel
tape machines.

We are preparing the online publication of on one subset of the
recordings, those taken from the years 1953 to 1968, in order to
avoid music copyrights issues related to more recent recordings.
This corresponds to 900 hours of recordings, which were made on
600 reel-to-reel tape machines. Detailed metadata has been asso-
ciated with the recordings, including the name of the tunes and
information related to the performers.

2https://www.nb.no/forskning/feleverkene/

3 SEGMENTATION OF TAPES INTO TUNES
The tape recordings have not previously been segmented into tunes
and songs, so this needed to be taken care of. For a third of these
recordings, rough indication of temporal location of each tune in
the corresponding tape is indicated in the metadata, but not with
sufficient details to be used directly for audio segmentation. Due
to the very large number of tunes to extract (ca. 20.000), it was
necessary to automate or at least semi-automate the process.

3.1 State of the art
Automated segmentation of audio recordings is a research topic
that has been investigated for several decades [11], with a particular
focus on the discrimination between speech and non-speech—and
in particular music—parts in radio broadcasts, as well as a discrimi-
nation between foreground and background music. More closely
related to our study, a recent study has developed a tool aimed
at labelling and segmenting field recordings into individual units
labelled as speech, solo singing, choir singing, and instrumentals
[11]. The software, SeFiRe, is available for free, and offers the possi-
bility of visualising the recordings and the segmentation as well as
modifying the results if needed. The approach is aimed at ignoring
particularly short speech segments within longer music sections,
focusing rather on larger scale segmentation. There is no attempt
to precisely find the starting time of each music section. In our case,
we would need to detect very short speech sections that sometimes
separate successive tunes, as well as to get a precise estimation of
the starting time of each tune.

Commercial sound classification software solutions are also avail-
able. Apple’s SoundAnalysis framework 3 includes a sound classifier
that can identify over 300 different types of sounds. This framework
can be integrated into software running on Apple devices and be
distributed for free.

3.2 Proposed solution
We use the sound classifier included in Apple’s SoundAnalysis
framework, focusing on the sound classes Music, Speech, Singing,
Bowed and Violin. Sound identification is performed on a moving
window of duration 1.5 seconds with a step of 0.75 seconds. For each
successive time window, for each sound class is associated a score.
We obtain a superposition of time curves, shown in various colors
in Figure 2. Bowed and Violin are further fused together, by taking
the maximum score. Music score is used to characterised moments
where there is music detected but without a clear detection of either
singing or bowed instrument, or for other types of music.

Further process is necessary to turn this multidimensional con-
tinuous data into a clear temporal segmentation of the audio based
on those scores. We design a solution consisting of a graph of states,
as shown in Figure 3, corresponding to various configurations re-
lated to the time curves, and where transition between segments
is modelled by particular transitions between states, themselves
conditioned by threshold detection on one or several time curves.

For instance, from the Start state, the transition to the Speech
state requires a Speech score higher than .85, on a scale between
0 and 1. If the Speech score further decreases below .3 (and if the
Singing score is low), there is a transition towards the Speech? state,
3https://developer.apple.com/documentation/soundanalysis
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Figure 2: Screenshot of the AudioSegmentor GUI. Coloured curves correspond to the scores, for each successive temporal frame
from left to right, related to the classifiers Speech (yellow), Singing (red), Music (purple), Bowing (dark blue) and Violin/fiddle
(light blue) of an excerpt of a tape recording. Audio dynamics is represented in grey. Red vertical lines indicate the beginning
of tunes, as detected by the automated segmentation system, generally starting with a little speech, and then followed by the
actual music, starting at the green vertical line. The title of each tune is shown on the right of each read line.
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Figure 3: Speech and music type states and transitions be-
tween them. For each transition is indicated the required
threshold for the score related to the destination state. See
the text for further explanation.

and a further transition back to the Speech state if the score exceeds
.3 again.

As explained above, the Music state is used to denote a music
segment where neither singing nor bowing are detected. This state
can turn into one of these two more specific states at a later stage if
the corresponding threshold is reached. Short speech segments of
less than 2 second in between Singing segments are removed and
the two Singing segments are merged.

By dividing each identification type (Speech, Bowing, etc.) into
two separate states (“Speech" and “Speech?"), this enables to avoid
false transition between identification types. For instance, when
in Singing state with high Singing score, a high Speech value does

not trigger a transition to the Speech state. Only when the Singing
score gets lower than .5—entering the “Singing?" state—could such
transition happen.

The starting position of each segment is fine-tuned through
a detection of the rising phase from the dynamics in the audio
recording, so that the start time is reassigned half a second before
the lowest amplitude point, at the very beginning of the rising
phase.

The positions of the segments are then verified and, if needed,
corrected by an expert, with the help of a graphical user interface,
called AudioSegmentor, that we have designed for that purpose
(cf. Figure 2). The tune names are retrieved from the metadata
and displayed. The successive segments can be quickly listened to,
translated along time, or deleted. The resulting segments positions
are finally exported back into the metadata database, and the tune
recordings are collected.

3.3 Current state
In the middle of June 2022, 70 tape have been segmented (corre-
sponding to more than 5000 tunes), with an objective of 120 tapes
at the end of July. Until June it took from 10 minutes (for the easiest
cases where tapes only contained solely fiddle music separated by
little speech) to to one hour for more complex cases, in particular
those involving lullabies songs. The objective is to significantly
reduce further this time spent on manual editing, by improving the
editing capabilities and improving the automated presegmentation.

4 NOTE DETECTION
Automated transcription can be decomposed into two separate
tasks: first, detection of individual notes and their intrinsic char-
acterization, in particular corresponding to their time localisation
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(in seconds) and their pitch height (in Hertz). The subsequent task,
described in the following sections, incorporates these individual
notes within the musical context, defined in particular by the met-
rical and modal or harmonic structures.

The first step is to detect all the “notes" played by the musi-
cian. The playing style in Hardanger fiddle music is generally very
ornamented, each ornamented “note" is often decomposed into a
series of very short discrete events with a starting point (or onset
time) and an ending point (or offset time). In this style of music,
each of those discrete events generally features a rather stable pitch
height (expressed as frequency in Hz). The objective of the first step
of automated transcription consists in detecting the notes at this
micro-level and measuring their onset, offset and pitch as precisely
as possible.

4.1 State of the art in automated transcription
Commercial music technology plugins such as, CelemonyMelodyne
5, Logic Pro X Flex Pitch and Cubase Pro 12 VariAudio, have been
tested on a few pieces of our corpus, with unsatisfying results. The
main issue with pitch tracking plugins such as Melodyne is that
the software fails to filter out noise and the pitch harmonics of a
single note are often transcribed as individual polyphonic notes.

Automated music transcription remains a nascent research topic.
Robust technologies might exist for particular types of music such
as solo piano, but in more general cases, the results are less reliable.
State-of-the-art approaches are based on deep learning framework,
although Non-negative Matrix Factorization still showing some
advantages sometimes [1]. Machine learning methods requires a
sufficiently large number of manual annotations of music record-
ings, used as training data.

Our approach is based on the “deep layered learning" [4]. In
the level of onset detection this consists in the establishment of
a 2-dimensional “onsetgram," consisting of onset activations dis-
tributed across pitch and time. The onset activations are first com-
puted using a polyphonic transcription system, whereby an initial
network detects framewise f0 activations, in the form of a so-called
“pitchogram", which are used to identify the contours of the music.
An additional network then operates across each detected contour,
computing an onset activation at each time frame of the contour.
The onset activations are inserted at the corresponding pitch bin
and time frame of the onsetgram.

4.2 Proposed approach
The model presented in [4] was initially trained on a wide variety of
music, but not on Hardanger fiddle music. The proposed approach
is based on the constitution of annotated music, with the desired
level of details and precision, from our corpus of study, to be used
as training data for the machine learning models, and in particular
for the deep layered learning approach mentioned above.

To facilitate the development of high-quality transcription algo-
rithms, we need examples of transcriptions that could be considered
as references. Concerning the first step, we need to collect a set
of high-quality annotations of recordings of music performances,
listing the temporal location (in seconds) and pitch height of each
note.

Figure 4: Screenshot of the Annotemus software, showing
the pitchogram (in grey) of an excerpt of a Hardanger fiddle
tune, and the manual note annotations, shown with vertical
blue and red lines. Red lines correspond to selected note
annotations.

The validation of the machine learning predictions is typically
ruled by very restrictive criteria, tolerating no more than 50 ms
of difference between the onset (or offset) positions given by the
machine and by the human annotator, and no more than 50 cents in
pitch height. We therefore needed to ask the annotators to indicate
all the micro-events and determine their onset, offset and pitch with
this very high level of precision, which can easily be a cumbersome
task. It is also preferable to ask the annotators to annotate from
scratch, without relying on any suggested annotation given by any
prior transcription system, to avoid any bias towards that prior
transcription.

To enable our annotators to work efficiently, they therefore
should work on material that they are familiar with. For these
reasons, we hired three skilled musicians to record songs that they
are deeply familiar with. Olav Luksengård Mjelva is a well-known
professional musician fidler and Astrid Garmo and Henrik Nordtun
Gjertsen were students at the Norwegian Academy of Music at the
time of the recording. Each musician also annotated each of their
recordings. The students’ recordings and annotations have been
published [5].

4.3 Annotemus, a new annotation software
To ensure that the annotation be carried out with minimum time
and effort while obtaining data of the highest quality, it is important
to make sure that the interface used to perform the annotation be
as convenient and easy to use as possible. For that purpose, we
designed—in the MATLAB programming language—our own soft-
ware, called Annotemus, aimed at facilitating manual annotation of
note onset, offset and pitch. First a graphical representation of the
audio recording is displayed as a visual support for the annotation
task. A simple solution would consist in displaying a spectrogram.
We chose to display a more refined representation, showing only
the fundamental frequencies and filtering out the harmonics of
each sound. The chosen representation is the pitchogram, part of
the deep learning system presented above, section 4.2.

It is possible to zoom in by drawing a box to indicate the chosen
time and frequency region and to listen to the selected time region
in the audio recording. This seems to be a convenient method for
annotating complex music: by focusing on short time sequences,
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listening repetitively the corresponding audio excerpt, completing
and correcting the annotation accordingly, and then moving the fo-
cus on a slightly later part. Horizontal lines, indicating the temporal
location and pitch height of notes, are created by simply clicking
and drawing. Lines can then be modified.

In some cases, it may be up to interpretation if a sound event
should be included as a note or defined as noise. This may happen,
for example, during very short notes, or if the player hesitates
during bowing, creating the impression of an extra onset, or if a
string is faintly touched during the performance. The annotator
can therefore flag any note as uncertain.

The annotation can be played back alone, or with the audio
recording. The temporal precision of the onset and offset positions
can be checked aurally through various playback methods: The
options are to play:

• The audio from the onset time to the offset time of the se-
lected note. This enables users to listen to if the annotation
spans the full extent of the note.

• The audio from 600 ms before the onset position up until the
exact time point of the annotated onset. This can be used
to locate the exact position where the onset of a new note
becomes just barely audible.

• The audio from 500 ms before the onset position until the
offset position, with a burst of noise indicating the onset
position. In this way, annotators can listen to the start of
the note, including a brief part before the start, and check
whether the location of the burst of noise corresponds to
what we would consider as the onset position.

• The audio from 500 ms before the onset position until 1 s
after the offset position, with bursts of noise indicating both
the onset and offset positions. Same as for the previous point,
but this time checking both onset and offset times.

All these options (except the second one) can be performed on a
sequence of selected annotations: the whole audio from the onset
(or 500 ms before) of the first note to the offset (or 1 s after) of
the last note is played, with, when appropriate, the bursts of noise
corresponding to the selected notes onset and/or offset.

The system offers a rudimentary function for separating indi-
vidual tones, so that the annotators can listen to them with less
interference from other concurrent tones. The users can also se-
lect to perform the opposite operation, i.e., filter out the currently
selected tones and only playback the residual. This is useful for de-
termining if the currently annotated notes cover all partials present
in the audio recording. More precisely, the filtering of notes is
performed on the spectral domain (computed via a Constant-Q
transform, or CQT) by applying masks at frequencies related to
the fundamental and a series of harmonies for each annotated note.
More details in [5].

All playback functionality is offered with the option of slow-
ing it down to an arbitrary speed. Since Hardanger fiddle music
contains frequent sequences of very fast note successions, the slow-
down functionality was used extensively during the annotation
process. A novel time-shifting algorithm was developed for that
purpose. It consists of two parts: a resampling of the audio wave-
form in the time-domain to speed up or slow down the audio, and a
pitch-shifting of the resulting audio waveform in the log-frequency

domain to compensate for the change in pitch introduced by the
resampling operation. More details in [5].

4.4 Augmenting the dataset by varying the
performance style of given tunes

Annotating all the notes in a recording of one single tune remains
time-consuming for the musicians, despite the improvements im-
plemented in the Annotemus interface. Because we need to collect
a significant amount of tunes annotations to train our machine
learning models, we conceived a methodology allowing a reduc-
tion in the amount of annotation work [5]. The idea is to ask the
musicians to play each tune five times, trying to keep the same
ornamentations for each version, but at the same time varying
significantly the other aspects related to timing, accentuation, nu-
ances, playing styles, etc. More precisely, we invite the musicians
to use a series of emotion-related musical expressions, namely: nor-
mal, sad, angry, happy, and tender. For each song, they annotate
one of the recordings from scratch, using the Annotemus inter-
face. These annotations can then be automatically transferred to
the other performances of the same tunes, using automated mu-
sic alignment. The annotators just need to check and adjust the
preliminary transcriptions if needed.

The temporal alignment of two given audio files is automatically
performed on their respective Onsetgrams, i.e., on the note anno-
tation automatically inferred by the deep learning model. First, a
start- and endpoint was computed for both audio files and the nor-
mal Onsetgram was then re-scaled to have the same length as the
Onsetgram of the emotional expression using linear interpolation.
The annotations were also re-scaled with the same transformation.

State-of-the-art approaches in temporal alignment are generally
based on Dynamic Type Warping (DTW), which is “local" in scope
and will not model differences in tempo and gradual tempo vari-
ations observed across longer sections. This can produce a rather
irregular warping path, which is also discrete, bounded by the time
frame hop length. To overcome this, we explored two separate
techniques developed for image registration. The first approach
was based on a free-form deformation with a B-spline grid [12]. It
was performed at multiple different image scales (so-called pyramid
levels), starting from a coarser scale to fit the Onsetgrams according
to the general structure of the music. The finer scale of the last
pyramid levels then accounted for local variations between the
performances. The second approach was the Demons algorithm
for non-rigid image registration [13]. It uses the gradient from one
Onsetgram to compute a “demons" force that deforms the other
Onsetgram. With this approach, individual pitch bins are allowed
to diverge somewhat from the warping path to account for natural
variations in timing between concurrent notes. The method pro-
duces displacement matrices for time and pitch that also account
for local timing variations across the pitch range. These computed
displacement fields are then used as a backward transformation to
transfer the annotations to the recordings with emotional expres-
sions.

In our tests, the Demons algorithm was more accurate even
though the B- spline method was used as a starting point for the
aligned expressive performances [5]. The Demons algorithm is
faster and easier to adapt to music and it also produces the best
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alignments. A method for adjusting the pitch of each note was
applied as a post-processing step.

The dataset is further expanded using data augmentation. Several
microphones are used during recording to create additional audio
tracks. The tracks are also shifted in tempo and pitch, and randomly
equalized. Furthermore, noise and ambiance are added.

In total 20 different tunes (of average duration between around 1
and 25 minutes ) have been recorded, with 5 variants for each tune,
totaling 100 recorded tunes. The audio recordings and annotations
related to the two students’ recording (8 out of the 20 tunes in total)
are available online, as well as MATLAB source code [5]. A subse-
quent set of 12 tunes, with their 5 variants, is under preparation by
the professional fiddler, Olav Luksengård Mjelva.

4.5 Application to the transcription of the
music collection

This collected music annotation dataset of Hardanger fiddle music
is used to train the deep learning model. As of June 2022, we are
finishing the training phase and are starting testing the new model
on tunes from the Norwegian folk music collection. One particular
difficulty concerning evaluation is that there is no ground-truth
data to which the model’s transcription can be compared. Hence
the results need to be evaluated manually by music experts. One
potential strength of the approach is that the Annotemus interface
should facilitate the precise correction of the model’s output, which
could then be used as additional training data.

5 RHYTHMIC ANALYSIS
The second step of music transcription involves the reconstruction
of the metrical structure particular to each piece (discussed in this
section), as well as of its modal/harmonic structure and the melody
and drone lines (next section).

5.1 Played beats vs. experienced beats
Particularly challenging in Hardanger fiddle music is the determi-
nation of the metrical structure of each piece, due to the asym-
metrical and fluctuating beat duration structure, and because the
beats are not always clearly indicated by accentuated notes. In fact,
even Hardanger fiddle music experts might find it challenging to
precisely pinpoint the exact localization of beat onsets (i.e., the
timepoint where a beat appears in the musical sound). Moreover,
following a conversation with the professional musician Olav Luk-
sengård Mjelva and the musicologist Mats Johansson, it appears
that a distinction ideally should be made between precise annota-
tion of beat onsets that are associated with onsets of notes—that
is, played beats—and the beat that listeners would feel, in a kind
of more approximate way, as expressed through, e.g., dance move-
ments, foot tapping and head nodding. This second, more holistic,
concept of beat—which could be called experienced beat or groove—
is related to but not equal to the unfolding of played beats. Impor-
tantly, this does not mean that the played beats are to be understood
as syncopations against or deviations from some actual beat onset
position. Instead, what should be emphasized is that 1) a specific
point in time is not an ecologically valid representation of an expe-
rienced beat onset, and that 2) “feeling the beat" is informed by the

interaction between several musical parameters—including accentu-
ation/dynamics, attack quality, phrasing, rhythmic subdivision, and
melodic and ornamental articulation—and thus cannot be reduced
to beat timing alone [8]. For all practical-analytical purposes in the
present context, however, the played beats are the beats. Moreover,
at this stage, our study is solely focused on music transcription and
the most immediate need is to associate each detected note with its
corresponding metrical position. Analytically exploring the concept
of experienced beat, then, would require a correspondingly more
holistic and multidimensional/-parametrical approach (cf. above)
complemented by additional music cognition studies.

5.2 Beat annotation
Even if played beats can be indicated in a rather tangible way, there
can still be possible divergence between annotators on the exact
positions of those beat onsets. We collected, for the 12 tunes that
have so far been recorded and note-annotated by Olav Luksengård
Mjelva, the annotation of the played beats by the musician himself,
as well as the musicologist Mats Sigvard Johansson and students
with Hardanger fiddle expertise. The Annotemus software offers
the capability to annotate beat onsets on top of note annotations,
by selecting for each successive beat onset one note for which the
annotate considers the onset to be synchronous to the beat onset.
“Silent beat onset" for which no note onset is associated are simply
ignored.

As aforementioned, Hardanger fiddle springar dances generally
follow a triple meter, in the sense that each bar is decomposed into
3 beats. The first beat of a bar will be noted 1/3, the second beat 2/3
and the third beat 3/3. In traditional time meter notation, a quarter
note is represented by the denominator 4, and an eighth note is
represented by the denominator 8, implicitly setting the reference
unit to the whole note, which is four beat long. Since we focus on
triple meter, we prefer setting the reference unit to the three-beat
bar, hence using the denominators 3 and 6 for the beat (“quarter"
note) and the half-beat (“eighth" note) respectively. The first eighth
note of a bar, 1/6 starts at the same time position as the first quarter
note 1/3, while the second eighth note, 2/6, corresponds to the
eighth note between 1/3 and 2/3. Following this convention, the six
eighth notes in a bar would have the following metrical positions:

• First downbeat: 1/3(=1/6)
• Upbeat: 2/6
• Second downbeat: 2/3(=3/6)
• Upbeat: 4/6
• Third downbeat: 3/3(=5/6)
• Upbeat: 6/6.

Another aspect related to the transcription of fiddle music con-
cerns the detection of bow strokes—tying succession of notes under
single bowing gestures—and of bowing shifts—i.e., the transition
between successive bow strokes. We discovered that the note tran-
scription of the drone line implicitly indicates bowing shifts: since
a drone line is made of a single pitch, only one note is generally
played within a single bow stroke and each bowing shift implies
the iteration of a new note of the same pitch. The bow strokes com-
bined with the melodic line provide a dataset that can be further
used for designing a machine learning model to detect bow strokes
in the absence of a drone line.
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Figure 5: Transcription of an excerpt of a Springar tune called
Vrengja. The pitchogram is shown with grey lines. A coarse
approximation of the pitch levels is shown by the superposed
score staff in blue. Detected note onsets are shown with red
circles. An attempt of metrical analysis is shown with red
stems and beams, as well as bar lines in blue.

5.3 Computational beat tracking of Hardanger
fiddle music

A computational model predicting the localization of played beat
onsets — and therefore reconstructing the underlying metrical grid
— from the note annotations is currently being conceived and ex-
perimented. The approach infers beats through a single scanning
of the note sequence from start to end. Structures are progressively
constructed note after note, based on the local context. The deci-
sions are based on a set of explicit rules, inspired by musicological
and cognitive principles, a model that was progressively established
while observing the behavior of the system in practical examples.
One underlying objective is to establish a rule-based system that is
as simple as possible, although at the same time should be able to
offer results congruent to the experts’ annotations. Although the
model progressively augments in complexity due to the complexity
of the musical problem itself, the hypothesis is that all specific
rules would ultimately be replaced by more general mechanisms.
This methodology was previously experimented for other musical
problems such as the discovery of motivic patterns [9]. One core
advantage of this approach, as we will see below, is that it enables
to study the complex interdependencies between various musical
dimensions.

When several notes are played nearly at the same time, they
are considered as one single cluster with a cluster onset to which
is assigned a metrical position. It often happens also that clusters
form a quick succession, such as a trill. One of these clusters is
considered to corresponds to the onset of the beat (or any other
metrical position between two beats), and its metrical position is
notated with an additional offset position set to zero. For instance,
for the cluster right on the onset of the first beat of a bar, the
metrical position is (1/3, 0). If one of the other clusters is just before
that beat onset, it has an offset of -1, hence notated (1/3, -1). Same
for a cluster just after that metrical onset, with metrical position
(1/3, +1), then the subsequent cluster would have the position (1/3,
+2), etc.

As mentioned in the previous paragraph, the proposed computa-
tional analysis method is based on a single scanning of the notes
from start to end. The assignment of notes to clusters and trills can
be formalized within that chronological paradigm using temporal
thresholds. At the lowest level, a threshold of 20 ms determines
whether successive notes are clustered (if the inter-onset-interval
(IOI) between successive notes is below the threshold) or not (else).
When the IOI falls near the threshold value, the ambiguity leads
to a somewhat arbitrary decision but that is not an issue as this
distinction does not play a core role in the metrical analysis. The de-
cision whether successive clusters are part of a same trill or instead
of successive metrical onsets is based on a temporal threshold, this
time of 70 ms, further refined by additional heuristics, as developed
below.

Deciding about the metrical position of successive notes (or clus-
ters) cannot be simply based on IOI duration between successive
notes, but requires taking into consideration the underlying musical
context, in particular the metrical structure already constructed but
also aspects related to other musical dimensions. For each new note
(or cluster), the metrical structure already inferred might indicate
a clear metrical position, or instead there can be several alterna-
tive solutions. In such case, all solutions are tried in parallel and
progressively extended further, note after note. Each alternative
analysis is associated with a score indicating the degree of con-
gruency with respect to stylistic constraints, such as the range of
tempi, the regularity of the beats, etc. At the very beginning of a
tune, due to the absence of a metrical context, many alternatives
might arise, each attempting to consider one of the first played note
as anchor of one possible metrical position, but quickly after a few
more notes, many of those alternatives are deemed impossible.

Occasionally, a rhythmical regularity can be detected and tracked,
and can guide the metrical analysis. For instance, if a given succes-
sion of beats is characterized by a very regular binary or ternary
rhythm, the simple continuation of this regular rhythm will offer a
clear indication of the localization of the beat anchors. In the case
of a sequence with very regular successive IOIs, it might be difficult
to infer the localization of the beat onsets. It can appear sometimes
that the melodic content will indicate the rhythmical subdivision,
such as in the example in Figure 5, where we observe the successive
repetition of a three-note melodic pattern. We have integrated the
capability of detecting such patterns, thus indicating the beat onsets
for the beginning of the sequence. Another possible strategy to es-
tablish the beat in a regular rhythmical sequence is based on change
of chords melodic-harmonic content. Then by simply continuing
further this rhythmical and metrical regularity, the beat onsets can
be inferred directly even if the melodic pattern is not expressed
anymore. The absence of salient characteristic indicating the beat
onsets may lead to a somewhat ambiguous rhythmical sequence,
although other factors, such as, here again, change of chords, can
offer additional cue for the beat onsets. This suggests that robust
beat tracking in challenging music cases needs to be integrated
within a more comprehensive music analysis system.

6 OTHER ASPECTS RELATED TO MUSIC
TRANSCRIPTION AND ANALYSIS

In Hardanger fiddle music, there often is a superposition of two
monodic voices, one upper and one lower. One voice plays the
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role of the melody while the other is a drone, generally based
on successive repetition of a same note emphasizing an important
degree in the mode. At times only the melody voice is played on one
string, meaning that the drone line stops from time to time, resulting
in a solo melody. One challenge is that the melodic and drone voices
may sometimes cross, and this needs to be automatically detected.
The melodic and drone lines may sometimes join into a unison
played on two different strings, and this needs to be represented as
such. Since the drone line sometimes stops, a decision needs to be
made whether the drone stops in a note specific to the drone line,
or instead on a melody note. Sometimes the upper and lower voices
change function, the melody switching from one to the other and
the drone reversely. We are working on a model that systematizes
and automatizes this segregation between the two monodic lines.
This is based on a combination of heuristics, focusing on aspects
such as: the presence of ornamented notes (which by definition
belong to generally emphasize note of the melodic line); whether
additional notes are played on one of the voices—which would be
the melodic voice—while the other keep a steady note—the drone.
One example of crossing is when a given pitch height is repeated
while at the same time a note below that pitch is followed by a note
above that pitch: the repeated pitch forms the drone while the pitch
jump is part of the melody.

A more detailed modal analysis of the music is needed, in order
to distinguish, within the melody, the notes that constitute the
structural pitches and form the successive chords , and those that
are ornamental and thus of lesser importance. We are considering
this progressive reduction on multiple hierarchical levels, in order
to reveal core articulations in the modal discourse.

Music is often characterized by the repetition of sequences of
notes, at multiple levels, starting of very short cells of a few notes,
to longer phrases and finally complete sections. The repetition can
be identical or with various types of transformations. Automatically
detecting those repetitions is a hard problem, due to the combina-
torial explosion of possible solutions. One challenge is to offer a
clear and synthetic depiction of the motivic and thematic material,
while at the same time aiming at revealing as much information
as possible related to the richness of the melodic development [9].
One difficulty in the case of Hardanger fiddle music is the presence
of ornamentation, which are not necessarily repeated the same way
for each repetition of a given phrase. Hence to be able to detect the
repetition, the ornamentation needs to be reduced automatically.

Combining these different analyses, while also considering as-
pects related to phrasing and silence leads to a multi-level seg-
mentation of music [10], which will be further investigated. Other
music analysis aspects are also considered, such as the musicologi-
cal characterization of styles, or the computational prediction of
musical/perceptual features from audio or transcription, such as
rhythmic entrainment.

Recent studies have shown that beat-level variations in the asym-
metrical timing patterns of springar performances seem to be re-
lated to “melodic-rhythmic" structures, in the sense that particular
motivic segments are associated with particular timing profiles,
suggesting that structural and other expressive features influence
beat duration patterns [7]. Inspired by these findings, additional
graphical user interfaces have been developed in theMax/MSP/Jitter

platforms for data visualization and exploration of performance pat-
terns related to the duration of the successive beats, offering struc-
tural and multi-dimensional perspectives on the complex rhythmi-
cal structuring of springar performances [14]. Interaction between
the music, the fiddler’s gestures and the dancer’s movements have
also been investigated [6].

Each tune in this catalogue is then transcribed—following the
steps described above: note detection, beat and voice tracking, pitch
spelling—as well as subject to modal and motivic analysis and
segmentation. We are experimenting on this digital catalogue the
design of additional tools to make the analyses easily accessible to
musicians, musicologists and the general public, through interactive
visualization of the music content of each tune as well as a visual
distribution of the whole catalogue based on their intrinsic content,
guided for instance by stylistic clustering, allowing to navigate into
the catalogue, to aid listeners to better understand and appreciate
the richness of these catalogues.

7 AVAILABILITY OF THE DATASET AND
TOOLS

The following tools are dataset are available for free from the MI-
RAGE website4:

• AudioClassify, generating a Sound Classification File (SCF)
from a tape recording, featuring scores for the classes Music,
Speech, Singing, Bowed and Violin (cf. Section 3.2). This
software needs to be run on either Mac or iOS devices.

• AudioSegmentor (cf. Section 3.2), running on Mac or PC,
requiring Matlab Runtime component, which is included
and installed for free. It loads the tape recordings altogether
with the SCF file and generates a presegmentation that can
be further edited.

• Annotemus (cf. Section 4), also running on Mac or PC with
Matlab Runtime component. It enables to load and display
audio recordings, load corresponding note annotations, or
manually add those annotations. Further versions will in-
clude automated note annotation as well as beat annotation
and music analyses.

• Individual tunes from the subset of the Norwegian Folk Mu-
sic Archive indicated in Section 2.2 will be progressively
added, with metadata and annotations.
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