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Summary:  

With rail-vehicle transport considered as greener and more sustainable means of travel 

in recent global times, there is a need for study and exploration of a real-time monitoring 

system for rail and its vehicle structures, that can facilitate identification of track defects 

and the vehicle’s structural monitoring. The method proposed for this is acoustic 

chemometrics, is a data-driven approach, where acoustics, or vibrational data is 

collected across three orthogonal axes and analyzed for structures or patterns that can 

suggest and/or indicate any faults or irregularities as can validate some of the hypotheses 

proposed by from Cemit.  

With an objective to understand and apply the mechanism of acoustic chemometrics for 

such purposes, pre-existing acoustic data from Cemit’s data collector has been used. The 

accelerometer data was converted from time-domain to frequency domain, and plotted 

across a spectrum to have an initial understanding of the dominant frequencies at play. 

Based on visual observations of the existing dominant frequencies, unusual or 

interesting spots along the original track of Brevikbanen, which was the track used for 

experiment, was suggested for deeper analysis. An initial chemometric analysis on 

averaged spectra was performed as an exploratory analysis, and modifications were 

suggested for more productive and specific chemometric analysis. The need for more 

experiments to produce reference data is also talked of, and a brief review of few studies 

that has worked with modelling and simulating track defects and rail-wheel interactions 

were also brought into light.    
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1 Introduction 
This chapter starts with a background that provides context from previous research around this 

area, followed by problem definition, which essentially is the question that this study attempts 

to answer. Then presented are the purpose and objectives, detailing any goals achieved that are 

fruitful to the problem at hand.  

Scopes and limitations are also included in this section, which will describe the area and 

boundaries within which the study is done. The final subchapter will explain the thesis 

structure, which will mainly be the outline of the paper.  

1.1 Background 

There is a rise in awareness of the fact that rail transport is becoming more prevalent as a 

regular means of passenger commute, material transport between facilities, export, import, 

and more recently, the remarkable idea of working out a rail management system [1] that can 

enable passenger travel spanning national borders without worrying about signaling system 

compatibilities.  

This uprise in demand, and the realization that rail transportation is favored as a sustainable, 

greener and more carbon-friendly public transportation of choice[2], has also drawn more 

invested research towards subjects related to it now more than ever. Anticipating the growing 

traffic rates, and the stress undertaken by the currently existing rail structure and soil 

structures, several studies have emerged to propose analysis of acoustic data collected from 

train, rail, and soil structures in attempts to find correlation amongst rail conditions and  the 

underlying frequencies[3]. Accelerometers are almost always the preferred sensor, compared 

to alternatives such as geophones[4] or microphones, and have been found to be the standard 

sensor type for studying vibrational data on any sort of rail or rail vehicle structures.  

 

Related Studies: 

Frequency analysis, performed from acquiring acoustic measurements mounted on sleepers 

and the rail, can be analyzed for effects of dynamic load on sub-soil structures[5], as found by 

a foundational master thesis work at NTNU. The analysis showed expected change in 

eigenfrequencies in correlation to different soil conditions along two extreme periods of 

weather in a year.  

Analysis of vibrational acceleration data gathered from sleepers and the lying rail structure 

were also studied for seasonally frozen regions[3]. Dynamic and experimental modelling 

methods have been performed using tri-axial accelerometers attached on wheel to study 

noises that occurs due to wheel and flanges passing a curve [6], and on bogie side frames of 

freight car to study rail defects using wavelet based algorithm[7], although these studies and 

experiments were either done in very controlled environments with fixed track or bogie 

lengths, and/or inside roller test rigs. These studies are very specialized towards working with 

particular aspects of rail-wheel analysis, and can help provide explanations and basis for the 

findings that may emerge from this thesis. 
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1.2 Problem Definition 

In order to model the aspects of rail wheel interaction, which is very essential in understanding 

how rolling stock affects rail structure over time, a good comprehension of the dynamics 

relating to the forces acting on the rail surface and the wheel contact surface are important to 

achieve. While many studies have tried to answer questions about these interaction dynamics 

using mathematical modelling and often expensive controlled experiments, a head-on approach 

to analyzing the frequency changes in presence of multivariate, natural external forces and 

noise could be much more desirable.  

Cemit is a digital solutions company that aims to pioneer in building viable rail monitoring 

technology that considers future advancements by exploiting the numerous amounts data it 

gathers using its own sensor-DAQ unit called the CDC. As such, Cemit, wants to explore the 

idea of investigating various of its hypothesis (Appendix A) - many of which suggest amplitude 

variations in vibrational data in drawing out track defects and wheel conditions - using a rather 

data-driven approach, where acoustic data gathered from a chosen subject vehicle can be 

analyzed over the course of various runs to understand where to look for information that says 

something about the condition of the rail and the vehicle infrastructure.   

1.3 Purpose and Objectives 

The purpose of this study is to analyze the acoustic measurements from already gathered 

accelerometer data of a freight train body running along Brevikbanen, in order to observe the 

frequencies that surmise while the freight vehicle rolls on the rail track. An observation of a 

changing of these frequencies is expected to reveal more information about important areas to 

look into for further specific data harvesting and analysis – with a goal to validate the 

proposed hypotheses.  

Given the accelerometer data available from IMU and location co-ordinates from GPS, the 

goals are to- 

• Analyze, study and establish common frequencies  that are dominant along various 

ranges in frequency spectrum, in all three axes (transverse, longitudinal and vertical) 

• Investigate deviation in amplitudes of frequencies compared to an averaged, 

representative frequency spectrum specific to the rail route, serving as a reference 

start 

• Explore relationship between the train’s velocity and from frequency spectra to 

identify or suggest features or specific areas as candidates for multivariate analysis 

• Perform a preliminary multivariate analysis, namely PCA, to interpret and evaluate 

the findings on the scores and loadings 

The outcomes of the objectives have no specifics yet, but is to be determined based on the 

findings from the analysis. However, a fruitful study would help establish, in the least, the 

ability of chemometric analysis in explaining some the variation in acoustics of a given 

vehicle running on the same rail route.  
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1.4 Scope and Limitations 

The study is done using data collected from a single subject vehicle, namely Skd 22[8], a shift 

tractor with suitability for tunnel work purposes. A picture of the vehicle taken by Cemit’s 

personnel, is shown in Figure 1.1.  

The data is collected over the track of Brevikbanen, which runs routinely between the limestone 

quarry in Porsgrunn and Norcem’s cement factory at Brevik, and is the only track that data is 

available for. The extent of study and analysis applied to it are constrained to this subject 

vehicle and the track.  

This thesis was undertaken in co-operation with Cemit, in order to provide insightful approach 

to the concept of real-time analysis using accelerometer data - a system which was proposed in 

a prior project study. The data acquisition methods for this thesis, however, vary in certain 

manners, such as pre-processing of raw data, where, in past methodology, pre-processing 

measures such as amplification and filtering were possible for modification.  

It should also be noted that the initial plan to conduct field experiments with custom-ordered 

accelerometers by Cemit, for exactly this study, were delayed due to the understandably 

occupied schedule of personnel, whose presence and assistance were a must for initiation and 

conduction of such field experimentations.  

 

 

Figure 1.1 Subject vehicle, a 1972 Skd 226, weighing 32tonnes (without carriages) 

 

Therefore, past data from the company’s own device, commonly called the CDC, is used to 

proceed with the study. Using just historical data has its limitations of course, many of which 

has contrived the quality and extent of the analysis. Additional data, for example, regarding the 

structure of the vehicle, weight of material it carries during the experiments, and a visual 

inspection of parts of the track in Brevikbanen – are some of the freedom new experimentations 

could allow that historical data wouldn’t.  

And hence, the following limitations relevant to this study are reminded : 

- The analysis is only applicable for the subject vehicle, and could be applied with more 

versatility if subject vehicle type and factor could be experimented with.   

- As the duration of this thesis is also subject to time constraints, study and analysis were 

continued with past data, and potential to conduct new experiments were not regarded 

after a certain period. Data analysis is thus applicable for only rail and vehicle 
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conditions of that time 

 

- Since sampling rates and conduction of test experiments to analyze various scenarios 

proposed by hypotheses were not available for moderation, the available data was 

utilized for analysis to the best of knowledge and with time constraints as reminders. 

 

1.5 Thesis Structure 

This thesis report is structured to provide the reader with relevant, yet simplified theory and 

background knowledge of the concepts connected to the analytical aspects of acoustic 

monitoring and chemometrics. The aims, constraints, purpose, and objectives have been 

introduced, with a brief preface to some of the related work done on similar topics, to 

acclimatize the reader to a proper context before diving into the technical chapters.  

Methodology has been reserved in a single chapter that explain the tools, software, and 

walkthroughs on how to arrive at results. Results and analysis are separated into two chapters, 

so the results are viewable in a single section. The analytical process used in this study have 

no concrete start to finish, so much of this is addressed in a much-needed Discussion chapter, 

after which a short conclusion and some suggestions to carry future research work is provided  
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2 Theory 
This chapter aims to provide background on the working principle of the sensors used for the 

acoustic measurements, relevant frequency analysis of the time-domain data, and a related brief 

literature study to assist in the interpretation and understanding of the patterns revealed in the 

frequency domain.  

2.1 Accelerometers 

Accelerometers are quoted to be among the “legacy micro electro-mechanical systems from 

early years”[9],  and is the preferred sensor for measuring the rate of change of movement of a 

body it is attached to.  The working principle of an accelerometer can be depicted using a 

simple model of a second-order spring-mass system essentially forming a well-known 

oscillator[9], visualized in Figure 2.1.  

 

 

Figure 2.1 A spring-mass-damper model [9, p. 880] 

 

Where k is the spring stiffness, c is the damping co-efficient, which is considered, since the 

oscillations measured on a rail vehicle are not expected to last forever without resistive 

forces.  

The differential equations that model the dynamics are of second order, and considers the 

damping co-efficient, however, a deeper dive of the entire system of equation[9, p. 880], but 

the details of these are perhaps not essential for a rudimentary understanding of 

accelerometers at this point.   

In consistence with the physical principles of Hooke’s Law, the spring will manifest a 

restoring force proportional to the amount that us stretched or compressed[10], and that force 

can be calculated using the Equation 1.1: 

 

𝐹 = 𝑘𝑥 (1.1) 

or, 

𝐹 ∝   𝑥 (1.2) 

 

indicating that a higher force will be exhibited by the spring with higher displacement. Given 

Newton’s second law of motion, 𝐹 =  𝑚𝑎, and equating the forces from Equation 1.1, the 

following is justified: 
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𝑚𝑎 = 𝑘𝑥 (2.3) 

𝑎 =
𝑘𝑥

𝑚
 (1.4) 

where, 

𝑎 = acceleration of mass attached to spring, 

revealing the rate of change of a body’s movement in terms of its mass, measuring the 

vibration of the body.  

This principle can be adapted to create MEMS of various mechanisms, and the one used in 

CDC is that of electrical capacitance. Capacitive accelerometers are preferred for monitoring 

large structures because of their ability to detect measurements across a wide frequency rage 

while maintaining good stability compared to other mechanisms[11], piezoresistive ones for 

example.   

 

 

Figure 2.2 Capacitive accelerometer principle demonstrated 

 

Figure 2.2 shows a good depiction of the mass-spring-damper system adapted as a capacitive 

accelerometer, with a stationary plate and a secondary freely-moving plate connected to the 

measured mass-body, forming a capacitor[12]. The capacitance detected is a function of the 

distance d between these plates, and later converted to output in electrical volts.    

 

2.2 Frequency Analysis of Time Series Data 
 

Why analyze frequency spectrum? 

When measuring time-series data, accounting for the frequency components of a signal can be 

difficult from just looking at the time-domain information. Analyzing noise, for example, 

would be challenging from just looking at a time-domain signal, while the same signal 

displayed on a frequency spectrum would show prominent and noisy amplitudes with much 

more clarity, an exhibit shown from a collected example online on Figure 2.3. 



 

 

                    15 

 

Figure 2.3 Time-domain vs Frequency-domain representation of signal [collected] 

 

Plus, for systems and processes where particular frequency components carry or reveal 

important information about states of that system, it becomes important to monitor the  

spectrum to understand the signals along the time domain.  

2.2.1 Fast Fourier Transform (FFT) 

The Fast Fourier Transform (FFT) is such an algorithm that allows calculation of the 

frequencies for a discretized time window of the signal, an operation known as Discrete Fourier 

Transform or DFT[13], but in a computationally efficient manner. The FFT is very prevalent 

in its use for spectral frequency analysis, and is conceptually intuitive to understand in its 

mechanisms.  

The following terms and parameters are introduced to understand parameters used in 

generating spectrograms.  

 

Parameters for FFT: 

Sampling rate (𝑆𝑟):  Time series data are discretely sampled at a fixed sampling rate per 

second, hence denoted in Hertz, Hz. Sampling rate (𝑆𝑟) is chosen considering Nyquist 

Theorem for sampling, which states that sampling rate has to be double the maximum 

frequency component being sampled[14].  Therefore, 

 

𝑆𝑟  =  2 × 𝐹𝑚𝑎𝑥 (1.5) 

where, 

𝐹𝑚𝑎𝑥 𝑖𝑠 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 

 

Window size (n): window size is selected in number of samples, and determines the duration 

of time window on which FFT is performed. For n number of samples, the duration of the 

window, denoted as 𝑇(𝑛) is thus: 

 

𝑇(𝑛)  =  𝑛 ∗  𝑇(𝑁) (1.6) 
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or,  

𝑇(𝑛)  =  𝑛 ∗  1/𝑆𝑟 (1.7) 

 

where, 

𝑇(𝑁) is the period of the signal, assuming 𝑁 is the total number of samples in 1 second.   

Depending on the frequency component wished to be sampled, the window size should be 

adjusted. If high frequencies are to be sampled, window size should be smaller, which results 

in smaller time duration of that window size and hence, higher frequencies captured. The 

duration of the window size is also known as the ‘time resolution’ or 𝑇𝑟, is essentially the 

duration analyzed for FFT as a time.   

Frequency resolution(𝑭𝒓): the frequency band of a ‘bin’ 

Bins: a bin is a single band of frequency, or unit frequency in an FFT. If an FFT is divided into 

more bins, the resolution in increased for that FFT, in other words, the more precise and less 

truncated the FFT peaks are.  

A bin can be equal to or less than the window size, n. Bins are usually in powers of 2.  

While 𝑇𝑟  is a duration of the length of signal analyzed for FFT, 𝑭𝒓 is the precision of that the 

FFT is plotted with. 𝐹𝑟  and 𝑇𝑟  are inversely proportional, and 𝐹𝑟  can be found by just inversing 

𝑇𝑟.  

𝐹𝑟  can found by- 

𝐹𝑟  =
1

𝑇𝑟
=

1
𝑛
𝑆𝑟

=
𝑆𝑟

𝑛
 

or, 

(1.8) 

 

𝐹𝑟   =
𝐹𝑚𝑎𝑥  

𝑛𝑜. 𝑜𝑓 𝑏𝑖𝑛𝑠
 (1.9) 

 

 

 

However, the window size is usually too large for the number of divisions (bins), so smaller 

intervals are used instead. The number of bins can be half the window size, or smaller. 

Equation 1.9 is then used to calculate the frequency resolution.  

A frequency resolution of 1Hz, for instance, will thus mean that each amplitude plotted in 

frequency axis will have a width of 1Hz.  

An FFT can also have an FFT Size, which is essentially defining the FFT in in terms of the 

intervals or number of bins used to divide FFT. [improve] 
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Spectral Leakage and Windowing:  

When a window is applied to the time signal to obtain the FFT, the period of the original signal 

sampled may not be in the same period as the window that is analyzing part of that signal. 

Thus, spectral leakage can arise if the period for FFT and the window size duration are assumed 

to repeat in exact intervals throughout all time[15]. Figure 2.4 is collected to demonstrate the 

undesired effect of spectral leakage on the resulting FFT. 

 

Figure 2.4 Effects of a spectral leakage [16] 

 

A windowing function can prevent spectral leakage due to non-integer number of cycles by 

tapering the shape of the time window used to perform DFTs. It multiplies the time record by 

a finite-length window with an amplitude that varies smoothly and gradually toward zero at the 

edges[16], an example of such a window shown in Figure 2.5. 

 

 

Figure 2.5 Effect of windowing function, collected 

 

There are many window functions, and selecting the appropriate one will depend on how far 

the freqeucny content can vary from the frequency of interest[16].  
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2.2.2 Spectrograms 

A single FFT displays frequency components for a duration of a time window. For a process 

where frequency components have to be analyzed along time, the FFTs would have to be 

stacked consecutively along the time axis, displayed using a spectrogram.  

A spectrogram can be 2D, where a color scheme demonstrates the varying power intensity of 

the signal along the frequency axis, such as one demonstrated in Figure 2.6.  A 3D spectrogram 

would show just the same information, in form of a surface plot, as exhibited by an example 

from MathWorks’s demonstration of the concepts[17]  

 

 

 

Apart from the required time signal data, spectrograms can take in arguments specifying : 

➢ sampling rate 

➢ window size,  

➢ windowing function and  

➢ the number of samples for overlapping. Overlapping is done to ensure that the samples 

at the edge of the time window are weighted higher than the samples mid-window, since 

applying a window function will reduce amplitude around the edge of the time 

windows. This ensures minimal loss of information due to windowing functions 

Since data pre-processing and treatment are all developed in Python, its SciPy. Signal library 

is used to generate spectrograms. The function returns the time, frequencies, and the amplitudes 

to be plotted, in three separate arrays[18].  

2.3 Acoustic Chemometrics 

The concept of measuring acoustic data without being invasive to the operations of a process 

or system, and pre-processing of that data to make it suitable for multivariate calibration and 

data-driven, chemometric analysis, is widely recognized as the term ‘Acoustic Chemometrics’, 

or AC. This technique has not only proven suitable for a growing number of industrial and 

process applications, but also due to its ability to seamlessly utilize multivariable for calibration 

and modelling quite well.  

Figure 2.6 (left) A 2D Spectrogram with signal strength depicted using color changes, {right) 3D 

plot of spectrogram using surface plot  



 

 

                    19 

Figure 2.7 shows an overview of the steps involved in a flow - a popular schematic used often 

to put into picture the A to Z of the technique. 

 

 

Figure 2.7 General flow and steps involved in Acoustic Chemometrics process[19] 

 

Studies and experiment that have used this approach have seldom had to change this flow, and 

is therefore applicable for the purposes of this study too. The diagram itself explains the process 

fairly well, however, since the analysis done on the data for this study is pre-exiting and did 

not involve carrying out any new experiments, the methodology of this study does not include 

details of signal adaptation, filtering and A/D conversion. Information and details gathered 

about these steps, however, shall be included along appropriate, relevant chapters.  

Signal Analysis:  

Aforementioned FFT and Spectrogram Analysis, available in details in Chapter 2.3, of the 

acoustic data are the signal analysis performed.  

Multivariate Analysis: While multivariate analysis approaches span many algorithms, from 

unsupervised ones, such as PCA, to supervised methods, such as PCR and PLS-R, the 

algorithms that this study concerns, given the available data and stage of study, is Principle 

Component Analysis, PCA.  

The next subchapter covers the fundamentals concerning PCA, including the parameters that 

are used in evaluating the results of PCA.  

2.3.1 Principle Component Analysis 

Principle Component Analysis is a multivariate analysis approach that can help interpret data 

visually, help recognize important, recursive patters, while simplifying complexity of the data 

by reducing the dimensionality.  

It does so by reducing the number of variables, p, according to components that explains the 

highest variance, resulting in reduced number of variables, hence fewer dimensions[20].  

Equation 2.4 represents how PCA decomposes multidimensional, multivariate data matrix, X 

into information in terms of ‘scores’ and ‘loadings’: 

 

𝑋 = 𝑇𝑃′ + 𝐸 (2.0) 
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where, 

 

𝑋 is 2D data matrix of size 𝒏𝑥𝒑, n being the number of samples, and p being number of 

variables 

𝑇 is a matrix of the calculated scores of respective Principle Components, and is the same size 

as 𝑋 

𝑃 is a vector containing the Principle Components, as can at max be of size p, 

𝐸 is the error term, often not included when if data is mean-centered.  

 

Summary of how PCA is performed: 

 

1. Sample data from experiment is plotted in the original variable space. Data is checked 

to see if any pre-processing is needed.  

 

2. Data pre-processing is then performed, (standardized scaling, mean centering) as seen 

fit 

 

3. The first PC is calculated in the direction of maximum variance, using the well-known 

Sum of Least Squares method. A PC, compared to a p-variable, is then actually a linear 

combination of the original set of p-variables.  

 

4. The second PC (equation of a straight line) is calculated orthogonal to the first PC, in 

direction of second, and continues on for the rest of PCs. The highest possible number 

of PCs for a dataset is equal to the number of variables, p. The PCs are now linear 

equations that are orthogonal to each other.  

 

5. Calculated value of each data sample is projected on to the PCs. The projected data 

values on each PC are now called ‘scores’. The number of scores for each PC is the 

same as the original number of data points 

 

6. The co-efficients that make up the linear equation of each PC are then called ‘loadings’ 

for that PC.  

 

7. The score plots and the loading plots are now the scores and loadings plotted in the PC 

space.  

 

PC space can be multidimensional, although is easily viewed in 2D space using Unscrambler, 

a software that caters to such Multivariate Analysis. The software contains multiple useful 

features that makes it easy to view, import, process and interpret multivariate data.  
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3 Methodology 
This chapter dives into details about methods and tools used in processing of data, how data is 

treated for analysis, processing and description of other processed data not obtained directly 

from sensors, and any related parameters relevant to the processing of data 

Python (Spyder) and Unscrambler X 10.3 are used for all analysis and processing of all 

datafiles. Pandas, SciPy and Matplotlib are libraries used from Python for all data analysis.  

All data matrices imported in Unscrambler were in Excel(.xslx) format.  

3.1 CDC Data 

Cemit’s Data Collector (CDC)’s IMU unit consists of a 3-axis MEMS accelerometer and a 

gyroscope, although just accelerometer measurements sampled in time are used for this stage 

of research. The CDC unit also houses a GPS, the co-ordinates for which are also used to 

pinpoint interesting points along the track where frequencies varied across multiple runs. 

Sampling Frequency (Sr):  

Accelerometer data along all three axes are sampled at a sampling frequency of  500Hz, 

while location data and velocity are recorded at a rate of 5Hz. Since velocity and location 

data were sampled at different frequencies, they could not be plotted against the same time 

samples.  

The maximum frequency sampled by the acoustic sensors is thus 250Hz.  

Subject Vehicle): 

The subject vehicle is introduced in previous sections, but it is useful to denote once again 

that the vehicle is s freight train, notably the Skd 22, 400Hk (horsepower), described as 

suitable for driving in tunnel work[8].  

The locomotive (including wheelset) weighs 32tonn according to the information in Grenland 

Rail’s site, however, the locomotive is usually attached to more railway carriages transporting 

limestone to Norcem factory, which was not noted or obtained to the best of knowledge.  

3.1.1 The S-direction  

Instead of plotting acoustics data along the latitude and longitude, a referencing ‘s-direction’ 

is used to quantify the distance along the track. The s-direction is used instead of calculation 

distance between each GPS coordinates, and is a measure of the distance from Oslo,  

according to information from data experts in Cemit. This standard is yet to be patented, and 

online sources containing proper details are not available yet, although the reference is 

reliably used by analyst specialists at Cemit.  

Figure 3.1 shows a roughly produced reference of the distance and direction where the 

Brevikbanen lies in comparison to Oslo’s location. The distance in kilometer, in the s-

direction, is naturally expected to increase as the rail vehicle runs towards Brevik.  
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Figure 3.1 S-direction, distance from Oslo 

 

Since GPS co-ordinates are not plotted along frequency or velocity, a reference plot showing 

the corresponding latitude and longitude values along the s-direction is generated specific to 

each dataset (although the s-data is roughly the same). Hovering over such a plot will show 

the GPS co-ordinates, tracing the analyzed spectra back to the original location data.  

Figure 3.2 shows an example of s-direction and GPS data from one of the datasets.  

 

 

Figure 3.2 GPS plotted along s-direction 

 

Each datafile had an accompanying datafile containing s-direction values, and had same 

number of datapoints as GPS data sampled at 5Hz.  
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3.1.2 Brevikbanen 

The track along which the freight locomotive runs is a single lined track name Brevikbanen, 

and is currently used only in parts by freight trains for raw material transportation to 

Norcem’s cement factory. It originally stretches approximately 11km [21] from Eidanger to 

Brevik, as demonstrated in Figure 3.3, however, the current usage of the track spans 9km. 

The track is known to have a narrow gauge of 1,067mm[21]. 

The experimental runs span s-directions from approximately 191.919 km to 201.276 km 

(distance from Oslo) where the locomotive carries limestone from limestone mine in 

Porsgrunn, to Norcem’s cement factory in Brevik.  

Experimental data were collected on runs along the track running in both directions, and 

therefore a ‘direct’ and a ‘reverse’ route has been marked for ease of understanding the 

direction along which the data is collected. The direction along which the train runs towards 

the Norcem factory can briefly be used to remembered as ‘direct’. 

As it turns out, most of the datasets used in analysis are from ‘direct’ runs, but data from 

‘opposite’ runs were also analyzed, although not in similar depths.  

 

 

Figure 3.3 Route of Brevikbanen. Image at left shows a collected diagram of the route starting from Eidanger, 

ending at Brevik. Direct and Reverse directions are marked, and a map tracing the GPS coordinates of the track 

is shown on the right. The map on right thus shows only the track coordinates collected by CDC. 

3.2 Data Treatment 

The treatment of the acoustic data involves plotting time-domain data, spectrograms for all 

axes of each data,  and plotting velocity along both time and s-directions. While spectral 

analysis can be run for all three orthogonal axes, the vertical direction, or z-axis, will be the 
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axis of scrutiny. This could be understood more well once spectrogram results from all the axes 

are introduced, and would lead to the understanding that the z-axis carries more relevant 

information related to rail-wheel dynamics.  

Studying underlying relationship between frequency components from all tri-axes could even 

be worth a separate study. It has been found that the x and y acceleration components carry 

useful information at instances of track exceptions which could aid in recognizing track defects, 

albeit using a different time-series analysis using wavelet-based algorithm[7] - quite outside 

the objective and scope given the chosen methodology for analyzing time-series data, and thus 

it is deemed both relevant and practical to focus on just the vertical component analysis 

germane to this particular study.  

3.2.1 Pre-analysis of relevant data 

A total of 23 datafiles were used for spectral analysis, amongst which 17 files were from 

‘direct’ runs, and 6 were from ‘indirect’ runs. Although more datasets were available, no more 

were included since it would start to take longer for processing spectrograms. A separate 

python was created  (datafiles.py) for storing these excel file names were used to make usage 

of analysis codes easier and more robust. The file can be found in GitHub as datafiles.py 

Most of the analysis were done using datafiles from ‘direct’ routes. Whether a datafile was 

from  direct or reverse route was understood by plotting s-direction against time. Figure 3.4 

shows 2 such plots that would show information about the direction of the locomotive’s route.  

 

 

 

 

Since many operations were repeated throughout several code files, the following codes were 

developed as functions, and later imported as needed into code files that ran spectral analysis. 

All codes are available in the mentioned names in GitHub (Appendix B). 

➢ load_from_df.py: contains 2 functions, first of which takes in file number and 

returns the datafram from that excel file, while the second takes in the dataframe as 

argument and retuns vectors for time stamps and the 3 axes signals 
 

➢ spectra_signals.py: contains functions that takes in accelerometer data as 

arguments and generates spectrogram data. The functions return the frequency 

segments, segmented times and amplitudes calculated for the FFTs 
 

➢ visuals.py:  contains various functions for plotting spectras across various codes, 

and exporting FFTs and spectrogram data as excels.  
 

Figure 3.4 (Left) s-direction vs time plot, showing the locomotive’s run from Porsgrunn to Brevik 

(Right) reverse direction from approx. 201 km to 190 km, from Brevik to Porsgrunn 
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➢ spectraAnalysisFunctions.py:tcontains function for calculating standard 

deviation spectra, and functions that calculate minimum length between all files, a 

necessary adjustment made because not all datafiles have sample number of samples, 

and generates unequal FFTs, which would become an issue when calculating averaged 

spectra.  

3.2.2 Spectrograms 

Spectrograms, as seen earlier, are essentially stacked FFTs, shown usually in a 2D colormapped 

plot along frequency vs time axes. The following parameters are provided to the spectrogram 

function [18] in Python : 

• nperseg, time window: 610 samples (equal to 1.22s) 

• window, windowing function : ‘blackman’ 

• noverlap, number of overlapping samples : 100 samples (equal to 0.2s) 

• fs, sampling rate : 500 

Resultant spectrograms have dimensions that depend on the number of data samples in a 

datafile. For the first datafile from ‘direct’ datafiles, for example, a total of 653,133 samples 

sampled from 500 Hz, would mean the duration of that run is  

 

Number of samples * sampling period = 653,331 * 0.002 = 1306.266s  

 

Performing FFT on each window of 610 samples, where 100 samples are overlapped, would 

mean 510 samples are stored for an FFT. If a window has 510 samples, the duration of a 

window is then, 

 

Number of samples (time window) * sampling period = 510 * 0.002 = 1.02s 

 

The total number of time segments is then 1306.22/1.02 = 1208, for spectrogram generated 

from this file. This is also the total number of FFTs from this datafile, each FFT being plotted 

along the time segments 

The total number of frequency bins, utilizes time duration of 1.22s, and hence the Fr equals  

 

Fr = 1/1.22s = 0.819Hz , using Equation 1.8 

 

The number of frequency bins is then 250Hz/0.819Hz  ≈ 306 bins.  

The number of time segments vary for each file according to the number of samples, but the 

time and frequency resolution are constant, since time resolution and frequency resolution are 

dependent on the time window sample and sampling rate, which are same for all files. 

3.2.3 Time Axes for Spectra and Other Time-Series Data 

As seen from calculations, the duration for which FFTs are generated from the spectrogram is 

1.02s. When spectrogram is plotted along time axis, therefore, a datafile where the total 
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duration of the experimental run is 1306s, for example, will have approximately 1280s 

(1306*1.02) in its spectrogram duration.  

When comparing timing along x-axis between velocity and spectrogram, this feature is 

exploited. Of course, this is perhaps not the best approach, since time resolution is not always 

the same, however, the benefit of having almost identical time axis for both spectrograms and 

velocity plots proved to be useful.  

3.2.4 Comparing spectra and time-series data 

The spectral data alone should expose patterns and variation in signal strength of different 

frequencies for a particular run. Dominant frequencies on each axis, for example, could be 

found from just observing the spectra. The goal, however, is to understand and diagnose the 

acoustic ‘soundscapes’ in real time, and that demands understanding the acoustics of the rail-

wheel interactions in terms of more than just the common, dominant frequencies.  

And as such, the spectrograms will be analyzed along the velocity of the rolling stock, in 

attempts to see if velocity bears a change in the spectrum along time axis, and on the intensity 

of the signal.  

Aforementioned plotting of s-direction along the GPS coordinates, as shown in Figure 3.2, 

should help in tracing the location in latitude and longitude, given s-direction value is known.  

The flow of analysis is therefore- 

➢ To generate spectrograms for a dataset/run 

➢ To plot velocity along time and s-direction, plotted in same figure as subplots for 

comparison 

➢ To have a referencing s-direction and GPS plot, to be able to pinpoint an exact 

location along a track to see where acoustic of interest lay.   

Figure 3.5 shows a demonstration of such a flow using data from file 20200824T1135. It is 

also useful to denote that the file numbers are included in all analysis, along with the axis for 

which spectrum is generated.   

 

 

Figure 3.5 Using spectrogram, velocity plot and s-data plot to draw observations 
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In the plots in Figure 3.5, a few details owe explanation before results can be drawn for more 

datasets. The velocity plot, right beneath the spectrogram, is plotted from the s-data file 

generated for each original dataset. Generation of this s-data file is done by data specialist 

Wathsala Upamali at Cemit.  

Time and s-direction data from these files are used along x-axes since the velocity is the same 

regardless. However, the s-data can ‘stretch’ a little back and forth since each unit in 

kilometer in s-direction does not necessarily equal to each unit in time axes. Nevertheless, the 

two x-axes were plotted to use time as reference from the spectrogram plot, and to use that 

time stamp to find the s-direction value from the velocity plots (exact value found out using 

yellow markers that show up on hover). The s-direction value can then be used to trace the 

latitude and longitude co-ordinates (using 3D plot on right of Figure 3.5)) 

Figure 3.6 shows another demonstration, for clarity.  

 

 

Figure 3.6 S-direction data traced from velocity plots and spectrum 

 

Although somewhat lengthy, the plots help provide an overview of how velocity varies along 

distance and the spectrogram at the same time. The white line plotted on top of the 

spectrogram is also the velocity plot line along time axis, but is quite obviously not scaled to 

a height that would be suitable for a better view. It is left on the spectrogram anyways, yet as 

an attempt to have as much information as possible within few plots. The line is, of course, 

not accurate since a separate axis for velocity along y-axis is not given, and can simply be 

dropped off or disregarded in case it causes more confusion for anyone running the codes 

without a heads-up on this.  

3.3 Spectral Processing for Specific Analysis 

While techniques mentioned this far can be used to analyze individual datasets to a reasonable 

degree, it can become hectic and rather time-consuming to have to look into individual datasets 

when files become more in number. In order to be able to make overall observations and 

comparisons, a reference spectrum can be designed from linear averaging of multiple spectra 
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into one. This referencing spectrum representing most of the dominant frequencies, could help 

in a number of ways, including: 

- Reducing the effect of noisy signal: much like averaging of signals in time-domain, 

taking an averaged spectra can highlight frequencies that are present among along most 

runs, adding to the amplitudes, and will cancel out signals that are random.  

 

- Having a preliminary reference: At the absence of reference ‘acoustic signatures’ that 

would have to be generated to performed advanced multivariate analysis such as 

classification using PCA or regression using PLS-R, an averaged spectra could be 

analyzed to have a preliminary understanding of the main frequency components for 

the given track and vehicle.  

 

- Comparing with a standard deviation spectrum: With an averaged spectra as 

reference, the variation of datasets compared to this reference can be used to identify 

special areas for further analysis 

 

And so, Python codes for generating a mean spectra and corresponding standard deviation 

spectra, possible as plots for each frequency spectrum, are also included in GitHub names as 
spectra_average.py 

Elimination of certain frequencies: 

It must be notified at this stage, that the first few frequencies, especially from 0 Hz to 5Hz, are 

not taken into consideration when generating spectrograms, 3D spectras, or PCA analysis. This 

is because the power presernt in these frequency components are many folds higher than the 

rest of the frquencies, making their visibliites extremely low along the rest of the spectrogram. 

An exhibit of this is shown in Appendix C. The top image in the appendix shows a spectrogram 

with all frequencies taken into account, while the bottom image shows the same spectrogram 

without the frequencies. The frequencies are, of course, not deleted from any files or stored 

variables, just not selected when generating spectra or performing PCA.  

3.4 Principle Component Analysis 

PCA is known to reduce-dimensionality, i.e, reducing the number of variables by utilizing only 

the most important ones in form of Principle Components, which is the new, most effective 

variable are expressed as a linear set of co-efficients. The largest variance amongst the samples 

is explained with these PCs, and can be a powerful tool to use for feature extraction. With this 

understanding, PCA is performed on the averaged spectra of z-axis, the outcome of which 

should indicate the most prominent Principle Components, in the form of a spectra.  

3.4.1 Disclaimers Regarding PCA on Spectral (FFT) Data 

While PCA is popularly used to understand and observe trends in data, to identify clusters, 

outliers, and in classification problems[22], applying PCA to serially timed FFTs is not a 

method known to have been applied often.  

In fact, PCA has been applied before to assist in reducing the number of FFT co-efficients[22] 

(signal values in frequency domain), in order to facilitate storage of data, for example. In 

another instance, it has even been used in  rather comparison with FFT in effectively identifying 

heart rate and respiration rate, according to a 2015 conference journal published in Sweden[23].  
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Moreover, PCA has been shown to be effective when applied to spectroscopic measurements 

such as NIR spectroscopy, where number of wavelengths are reduced with the help of 

PCA[24]. The spectral data for this case for instance, was not FFT, more notably, not spectra 

that are taken of a time-varying process, as is the one attempted in this study. 

Therefore, PCA done on the FFT data as part of study of this thesis, where the FFTs are not 

only taken along the time-axis but also used as the data samples for PCA, is quite 

unconventional, and hence are expected to yield results that could have different interpretation 

than how it is usually done.   

Suggestions to improve and explore more effective ways to perform PCA using spectral FFTs 

are discussed more into in later chapters. However, performing this initial PCA on the averaged 

z-axis spectra should, in the least, expose frequencies that are not common throughout this 

representative spectrum, and the first PC, essentially an acoustic spectrum that contains 

frequencies accounting for the largest variation for the averaged ‘run’ spectra, could be 

registered as a ‘latent phenomenon’, the frequency composition of which could be worth 

analyzing.  

3.4.2 X-Variables and Objects 

The spectrogram is adjusted for proper labels and orientation, and then exported from Python 

to be imported into Unscrambler as excel data.  

The X-variables are the sampled frequencies, and are same as the number of frequency bins 

calculated in Section 3.2.2, and the number of objects, similarly, is equal to the number of 

time segments, or the number of FFTs. Figure 3.7shows what the data matrix looks like after 

it is imported in Unscrambler.  

 

 

Figure 3.7 Loaded X data-matrix into Unscrambler X. The samples, or FFTs, are the objects, while the 

frequencies (bins) are the variables 
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The data matrix only contains amplitude values, hence is not processed for scaling. The data 

is, however, mean centered. Since the analysis is initial, PCA is set to show 12 PCs, assuming 

that the data is noisy, and important PCs can still be present in higher components.  
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4 Findings and Results 
This section presents results from spectrograms of individual datafiles (runs), of averaged and 

deviation spectra, and results from PCA done on reference (averaged) spectra. The 

subsections show the relevant results, and reports on observations based on them. 

File numbers mentioned here correspond to the index used to read the files into the program. 

Since 17 files were analyzed, index 0-16 is used. The file names have information on then, 

such as date and time, which is why filenames were preserved too. The file names can be 

seen displayed on the title of relevant plots.  

4.1 Spectral Methods 

4.1.1 Time-domain data and Velocity 

 

  

  

Figure 4.1 Time signals from 4 of the 17 datafiles (file 0[top left], 5[top right], 10[bottom left], 15[bottom 

right]), all from direct routes. The velocity changes up to 500s appears to be almost identical, and the time 

signals reflect the same. 
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Figure 4.2 File 8, with distinguishable variation in acceleration compared to most dataset from ‘direct’ runs.  

 

Observations: 

 

- Unlike all the other runs, file 15 does not have a sharp rise in velocity at the beginning 

of the run, and is telling from the time domain signal where a spike is missing, which 

is existent on all other runs shown in Figure 4.1and Figure 4.2 

 

- Velocity changes at the end of the run are very similar, if not identical, for file 0, 5 and 

10. This can also be observed on time-domain signal where the signal appears to be 

pinched out at the timestamp where there is a drop in velocity at 30km/h. This fall to 

30km/h and an instant rise of velocity is missing in files 15 and 8, and does not appear 

to have a pinched pattern at the end of the run.   

 

- Runs 0 and 5 appear to have higher amplitudes in time domain signal, and are the only 

runs where velocity reaches close to 5km/h.  

4.1.2 Spectrograms – X,Y,Z Axis 

Spectrogram results from the first datafile is demonstrated for initial observation of tri-axis 

spectra. Not all of the 17 files are shown, but 4 of them are chosen to show commonalities. 

Indirect route data are not observed or analyzed, given the scope and limitation of time.  
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Spectrogram from 0th,  X, Y, Z axis: 

 

Figure 4.3 Spectrum X-Axis, 0th file, direct route 

 

 

Figure 4.4 Spectrum Y-Axis, 0th file, direct route 
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Figure 4.5 Spectrum Z-Axis, 0th file, direct route 

 

Observations from Figures 4.3, 4.4, 4.5: 

 

- Time stamps in spectrograms where the locomotive appears to accelerate seem to create 

vertical streaks along the frequency axis, visible along the start t = 15s, 250s < t < 280s, 

500s < t < 950s (approx.), true across all axes 

 

- Constant frequencies, or hereafter referred to as ‘dominant frequencies’, visible along 

25Hz, 60Hz, and in ranges from 198Hz to 220Hz in x-axis.  

 

- A dominant frequency of 25Hz appears distinctive in the y-axis spectrum. 

  

- Looking at z-axis spectra, it can be summarized that it displays most of the dominant 

frequencies as in x and y spectra, with the exception of the lower 25Hz. The distinction 

in the longitudinal streaks along frequency axis from t = 500s to t = 1000s is the most 

visible along this direction.  

 

- It might be helpful to note that the vehicle, for his run, reached a maximum velocity of 

52km/h 
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Figure 4.6 S-data and velocity plots to confirm the direction (direct/reverse) 

 

An additional analytical code is written, that plots analytical data of every s-data file, which 

contains velocity and GPS coordinates, all in same sampling frequency of 5Hz. Figure 4.6 

shows the complementary plots for the 0th file, along with the referencing s-direction 3D lot 

with GPS coordinates.  

 

 
 

Figure 4.7 Tracing s-direction value for vertical streaks from t = 500s, using spectrogram and velocity plots, 0th 

file 

 

Figure 4.7 demonstrates how values are read using the two graphs, and used in the 3D plot to 

track the GPS coordinates, exhibited in Figure 4.8. The portion of this s-value is also shown in 

the original Google Map which shows the track coordinates along a real map, Figure 4.9. This 

map, with the GPS coordinates plotted using geoJSON file, is also using codes obtained from 

data specialists at Cemit.  
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Figure 4.9 Part of original track along which experiment was conducted. The blue arrows show the section of 

track where the intense longitudinal streaks show up in z-axis spectrum 

 

 

 

Figure 4.8 Tracing GPS coordinates using s-direction marker 

in the refencing 3D plot 
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Spectrogram of X-Axis from 2nd , 5th , 10th  and 15th datafiles: 

 

 

Figure 4.10 Spectrograms of x-axis (longitudinal acceleration) from 4 of the 17 files analyzed. The first 8 digits 

of file number contains date the data is collected on. Acceleration of the locomotive is very similar at for first 

400s. Longitudinal streaks visible between times 500s to 1000s approximately, common amongst all spectra.  

 

The streaks previously observable in x-axis of 0th file is also observable in more files from 

‘direct’ route, as shown in Figure 4.10. File 10, bottom left of the figure, shows much more 

visible frequencies in the higher band (150Hz to 250Hz) than the other runs.  
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Spectrogram of Y-Axis from 2nd , 5th , 10th  and 15th datafiles: 

 

 

Figure 4.11 Spectrograms from 4 of the 17 ‘direct route’ datafiles from y-axis (lateral acceleration). Very 

distinct, repeating patterns can be observed on lower band of frequency [10Hz – 30Hz approximately], with a 

spot seen occurring at 300s on all runs.  

 

Figure 4.11 contains spectra of same files as Figure 4.10 for the lateral y-axis. Dominating 

frequencies along this axis appear to be more in the lower ranges (10Hz -  50Hz), with once 

again, more pronounces and even fairly visible frequencies exhibited by file 10, bottom left 

of figure.  
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Spectrogram of Z-Axis from 2nd , 5th , 10th  and 15th datafile: 

 

Figure 4.12 The vertical acceleration in spectrogram. An underlying pattern can be identified, but the strength of 

signals at some of the bands of frequencies seen to vary a lot in intensity.  

 

Figure 4.12 shows perhaps the most detailing spectra of all direction, the z-axis spectra for 

the same previous runs. This axis clearly vibrates at frequencies across multiple ranges, 

noticeably in frequencies greater than 50Hz, at 100Hz and around 200Hz, which are similar 

to what was observed for z-axis for 0th file, too. The pattern that can be schemed from a 

glance at z-axis spectra were quite constant across all direct files, apart from a few 

exceptions, two of which are shown in Figure 4.13.  
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Figure 4.13 Experiment files 4 and 8, showing ‘breaks’ or up-down shifts along the otherwise consistent 

dominant frequencies depicted in Figure 4.12 

 

Explanation as to what can cause the dominant frequencies to arise, and what parameters are 

required to use this information from spectrograms for chemometric analysis, is dived to in 

more next in the upcoming main chapters.   

4.1.3 Referencing  - Averaged Spectra  

The same number of files, as was analyzed for individual spectra, were selected to produce the 

average spectra. It ought to be mentioned that the files in datafiles.py were carefully selected 

to begin with. Files that are clearly have exceptional information in the spectra or were start in 

exception, were saved in a different file variable list.  

The averaged spectra were therefore constructed after visually inspecting more than the 23 files 

used in this study.  

Figure 4.14, Figure 4.15 and Figure 4.16 shows (linearly) amplitude averaged spectra of x, y 

and z-axes respectively. A milder colormap is chosen to display the spectra, and the color bars 

are provided abreast for reference. A 3D surface plot is also plotted alongside spectra, since it 

gives the freedom to rotate the plot and the axes as wanted. 3D surface plots are also more 

useful when viewing the standard deviation spectra.  

It must, however, be noted that the color change along the height of the 3D surface plot does 

not reflect the amplitude, although it does accentuate the high amplitude areas. Attempts were 

made to reflect the amplitude along the height of the 3D plot, but requires alterations and 

modifications to code that would take up much of the limited time available for analytical 

purposes of the study. Nevertheless, the amplitudes are still visible along the numerical axes to 

exact readings. Figure 4.14 and Figure 4.15 show the spectra for x and y axis, with the dominant 

frequencies standing out quite well. The band of vertical streak is comfortable visible in x-axis 

average spectrum. The 3D surface plot also reflects little noise along the data, as expected due 

to averaging effect.  
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Figure 4.14 Averaged spectrum for X-axis, calculated over 17 files. Surface plot shown at left, and 2D spectrum 

at right 

 

 

 

 

 

Figure 4.15 Averaged spectrum for Y-axis, with surface plot and 2D spectrum 
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Figure 4.16 3D plot of averaged Z-spectrum 

 

Figure 4.16 and Figure 4.17 are both averaged Z-spectrum, shown in separate figures. It is 

worth looking into the Z-spectra in greater detail since this direction is known to carry more 

important information related to track conditions and defects[7].  

The 3D plot in Figure 4.16 shows a spectrum that also does not appear to have a noisy texture 

at the weaker frequencies. The active, dominant frequencies common throughout z-axis plots 

are clearly accentuated, with the characteristic bright frequency streak at the higher band of 

150Hz standing out.  

 

Figure 4.17 Spectrogram of averaged Z-spectrum 
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Figure 4.18 shows the previously mentioned set of individual spectra, as demonstration of some 

of the samples that were used to draw the average. The amplitude scale (z-limit in the plot) was 

kept constant, so it is not autoscaled according to individual spectrum amplitude values.  

The comparison thus has sample spectrum that appears to overshoot the plot, such as the last 

plot in Figure 4.18.  
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Figure 4.18 Averaged vs. Individual spectra 
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4.1.4 Visualizing Peak Variances - Standard Deviation Spectra 

 

Figure 4.19 Variation in some of the sample spectra compared to mean spectra 

 

Figure 4.19 shows the standard deviation spectra, where the amplitudes are calculated using 

the regular standard deviation formula.  

The datasets used to calculate the standard deviation are part of the data used to calculate the 

average, so the average spectrum is not used as a reference against a new dataset in the plots 

here.  

4.2 Chemometric Results – PCA 

 

Figure 4.20 shows the results from PCA performed on the averaged Z-spectrum. Since it is 

not known how many PCs are needed to explain the variation amongst the data, the number 

of PCs was set to 12.  

Scores and loadings are shown at the top row of the results in Figure 4.20. The results display 

samples and variables plotted along PCs 1 and 2. An Explained Variance plot at the bottom 

left shows how the 12PCs account for the variances in the dataset.  
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Scores:  

Figure 4.21 shows the score plots along PC1-PC2, and PC1-PC3, at the right of the plot. 

Score plots were also checked across more PCs to see if any other PCs had an effect on the 

scores.  

Loadings:  

The loadings are similarly plotted for PC1, PC2 and PC3, shown in Figure 4.22, but were not 

easy to interpret at a glance. As recommended with  PCA of spectral analysis[20], the 

loadings were plotted as line plots, which would mean looking at a particular ‘acoustic 

spectrum’ represented by that particular loading.  

 

 

 

Figure 4.20 PCA Results – Average Spectrum – Z axis 

 

Figure 4.23 shows the first 4 PCs as loading spectra. The remaining PCs vaguely resembled 

PC4, with distinct peaks, but very low percentage to account for variance.  

 

Figure 4.21 Score plots along PC1-PC2 space(left) and PC1-PC3 space (right) 
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Figure 4.23 Loadings from first 4 PCs plotted as line plots.  

Figure 4.22 Loadings along PC1-PC2(top) and PC1-PC3(bottom) 
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5 Analysis  

5.1 Spectral Analysis of Tri-axial Acoustic Data  

 

Establishing frequency bands:  

 

After observations from all spectra depicted in results, the following frequency bands are 

referred to for the rest of the analysis. The bands are within 250Hz, and not equal, rather, is 

sectioned to reflect the most recurring frequencies observable across a band. Therefore, 

 

Low Frequency Band :  10Hz to 50Hz 

Medium Frequency Band:  51Hz – 100Hz 

High Frequency Band:  101Hz – 220Hz 

 

Frequencies up to 5Hz have not been taken into consideration because they were already 

observed to have much higher intensities, and would have little significance given the 

conditions sought after in relation to the hypothesis, such as noises or defects generated along 

curved tracks, would usually be present at higher frequencies[6] 

 

Common frequencies among all directions: 

 

The averaged spectra of all the three axes, also found in Figures  4.14, 4.15 and 4.16 are 

compared since they are representative of all 17 datasets, and have pronounced dominant 

frequencies common across many experiments.   

 

X and Z axis spectra have much of the structure in common, with both average spectra 

displaying two significant, high band frequencies of around 200Hz and 230Hz, present 

continually throughout the spectra. X and Y spectra, too, have common frequency bands in 

the lower range, of around 25Hz. Figure 5.1 shows a side-by-side shot of all 3 spectra.  

 

 

Figure 5.1 Average spectra of all 3 axes, with X spectrum sharing common frequencies with Z and Y spectra 

 

Estimation or suggestion as to what contributes to these dominant frequencies are hard to offer 

without conducting proper experiments or modelling to find out what structures or rail-wheel 

dynamics constitutes these frequencies. However, an understanding of general acoustics and 
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spectrograms suggest that the harmonics appear as horizontal lines and as constant 

frequencies[25]. Some of these constant frequency bands, continuing at 50Hz, and 100Hz, as 

can be observed for Z average spectra, for instance, are also indicative of harmonics, and could 

arise due to structural vibration of the freight locomotive.   

 

Bright, vertical streaks along frequency axes are also present on all 3 axes, although extremely 

vague in Y spectrum, seen in Figure 5.1, and is a feature deserving of further analysis. Although 

velocity of the vehicle was available, more information, such as the weight of the locomotive 

at the time of experiment, weight of the rail carriages attached to it, and some basic health 

checks of the rail tracks could solidify a better understanding of such patterns throughout the 

runs. Investigating velocity with acoustic data alone is not expected much using numerical 

methods.  

 

Mean and Deviation Spectra: Comparing a new Z-axis spectrum with the averaged 

spectra:  

A new, test spectrum is used to view results using the reference (averaged), Z-spectrum. Figure 

5.2 shows the original z-spectrum from datafile name visible at the title of the figure. The test 

spectrum is observed to have quite high amplitudes at high frequency band.  

 

 

 

 

 

Although the new data is referred as test spectra, there is no value tested yet per se. However, 

visual inspection can be done to observe if the reference spectra is representative of the new 

one. Figure 5.3 shows a comparison. The test spectrum appears unusually noisy because its 

amplitude axis is fixated with limits.  

Figure 5.4 shows the standard deviation of the new dataset compared to the referenced 

spectrum. Upon observation, it can be said that the deviation is found mostly at higher 

frequency band, and not much in other areas, indicating the new test spectrum is not very far 

from the averaged one. The average spectra can thus be an acceptable reference to distinguish 

new data and note areas in spectra for further analysis. 

Figure 5.2 A new, test spectra, not used in prior analyses 
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Figure 5.3 Average spectrum Vs. Test Spectrum 

 

 

Figure 5.4 Standard Deviation spectrum from the newly compared data 

 

5.2 Interpretation of Multivariate Data Analysis 

Recalling Figure 4.20, the results revealed plots of PCA of averaged Z spectra, where the 

samples were essentially FFTs computed for the spectrogram. The score plots showed slight 

patterns towards PC1 and PC2, but when PC1 and PC3 were plotted, the scores showed no 

significant changed across PC3 component.  

Observing Figure 5.5, which is the Explained Variance plot in numerical view, PC2 can be 

seen to account for 65% of the variance, and PC5 accounted for 1/3rd of it.  
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The loading plots were also revealed in Figure 4.22 and Figure 4.23, but can hardly be 

interpreted at this stage without understanding what contributes to the frequencies that the 

loadings constitute of.  

 

 

Figure 5.5 Explained Variance – numerical view 

What does the PCA results mean for an averaged spectrum? 

As an unsupervised algorithm, PCA itself is a method that will organize any data according to 

a parameter explaining differences in that data. For the averaged Z spectra, the best a PCA can 

reveal is the combination of frequencies that have changed most throughout an average day of 

the locomotive in its track on Brevikbanen. This analysis is very far from being able to identify 

what is unusual about the rail-wheel dynamic, but has still produced a ‘signature’ of Principle 

Components that can apparently account for half the variation in the time-sequenced FFT.  

However, when assuming PCA analysis for extracting features from spectral data, this 

approach is not the recommended one. For an acoustic monitoring system sought to identify 

and locate rail structure and vehicle structure defects, these FFTs would have to be studied and 

sorted for particular time segments, where interesting developments in amplitudes lie. 

Therefore, instead of using consecutive FFTs from spectrum,  they would have to be selected 

based on unusual activity, or by using averaged and deviation spectra to find out interesting 

arenas, as is suggested in previous chapters.  

Some analysis was attempted to isolate FFTs from a number of individual spectral data instead 

of a single averaged one, but the analysis yielded anomalous results, which indicated making 

improvements to the segmentation of time-signal data – resulting in halted attempts given the 

scope and limitations of the study.  
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6 Discussion 
Much of the performed analysis proposed in this study have an indistinct structure, and has 

been lacking numerical definition for quantifying the analysis. Denoting dominant 

frequencies and velocity changes, for example, were done mostly on visual observations. 

While visual interpretation has largely a role in interpreting chemometrics results, many of 

the analytical approach have room for improvement that require more time and some much 

in-depth understanding of data manipulation – a lot of which cannot be done in the span of a 

semester, especially given the pre-existing, minimal set of data to work with.  

 

A lack of reference data: 

Although unsupervised means are available for starting phase chemometrics, in order to be 

able to use acoustic chemometrics to a more rigorous degree, reference data have to be 

established for more supervised analyses, either by mathematical modelling or by 

experimental means.  

Many literature have been overviewed to observe what category of experiments and dynamic 

modelling studies have been done, and there indeed has been a number of studies where 

wheel squeal and effect of flanging on curves have been experimented with in roller rigs[6], 

with findings suggesting, for instance, that high squealing us likely to occur if the ratio of the 

axle distance to the curve radius is 100 or less. The results from this extensive study also 

confirmed that curve noise occurs at the natural frequency of the wheel, squealing occurs at 

high frequencies and flange noises occur in various modes. The methodology used in this 

study was to observe the frequency response upon hammer impact. Studies conducted with 

objective to improve ride quality and reduce the effects of vibrations [26] have also attempted 

to simulate track irregularities. Finite element model and graphic modelling using CAD were 

done in one of the studies in order to develop a rail vehicle model that takes into account 

interactions with other connected structures of the vehicle[27].  

 

A schematic overview of these papers was suggestive of many ways of modelling effects and 

interaction of a vehicle rolling on a rail. The suggestions could be studied more to find ways 

to model the hypotheses and track dynamics to be finally used for calibration and validation 

in chemometric analyses.  

 

Analytical methods 

Tracking of spectra to the corresponding map containing track data could use improvements 

and much less chaotic way of tracing spectrum data to the location, but devising a code for 

just this one feature would have meant investing a large amount of time studying functions 

and libraries of Python, which was not to be the focus of the analysis. Thus, even though the 

method requires a careful guidance between plots, was kept as is. This analysis method can 

for sure be made much simpler.  

 

Different sampling rates 

Acoustic data and vehicle velocity data were also sampled at different rates, which posed a 

problem velocity data was attempted to be included in chemometric analysis. The 5Hz data 

could have been interpolated to fill 500Hz sampling, but would again require time to create a 

proper code before any analysis can begin. However, attempts were still made to gather 5Hz 

velocity data to fit into the spectrum matrix (X data matrix), but proved inefficient and time 

consuming.  
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Improvements 

It is also worth discussing that simple averaging formula were used to compete amplitude 

averages, but this method would have to be changed when working with new data, in which 

case exponential averaging is recommended, which should give more weights to newer data. 

Filtering and replicates averaging were not included as part of methodology, since the CDC is 

not reported to have any low-pass filters in it.  

 

Any further studies carried on this topic is urged to re-conduct planned experiments with 

proper sampling rates, filtering, static data monitoring - and ensure that the needful data 

processing steps are in place to obtain informative, quality data for analysis.   
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7 Conclusion 
The thesis has explored frequency analysis and primary multivariate analysis to study the 

potential of acoustic chemometrics on pre-existing acoustic data from IMU measurements. 

The goal of the study was to observe the frequency spectra along a vehicle’s runtime to see if 

the frequency content was indicative of diagnosing anything out of the ordinary in a time-

varying process.  

 

The frequency bands from all three axes were noted to get an initial understanding of the 

dominant frequencies existing along all axes. analyzed and patterns along the spectra were 

visually observed to extract areas or information that can be used for further specific analysis. 

Average spectra were also studied to get a much precise understanding of the existent 

frequencies along the three orthogonal axes. Similar frequency bands were observed among 

all three axes along 25Hz, 50Hz and 100Hz, explainable by the concept of harmonic 

frequencies which occur at multiples of fundamental frequency. 

 

Velocity and s-direction data were observed to see if a pattern emerges when velocity is 

compared to spectra, and if interesting pattern can be traced back using s-direction data using 

GPS coordinates. Using the s-direction reference, the section of track where streaks appeared 

along all axial spectra was identified, and is worth investigating further into. 

 

Mean and standard deviation spectra were generated for all axes, but analyzed for z-axis only. 

Comparison showed that the averages spectra well represented spectrum of any given dataset, 

which was tested with a newly imported dataset not used for calculation of mean spectra. The 

standard deviation plots helped protrude areas where the amplitudes stood out compared to 

the averaged spectra, and could be a decent starting point for analysis at the absence of proper 

reference data to draw chemometric (regression) analysis with.     

 

Shortcomings and limitations of the study were brought into light and discussed, along with 

examples of a few studies that illustrate how rail-wheel modeling can be done and what these 

modelling and experimental results can be used for.  

 

New, planned experiments with a more controlled and informative method is suggested.  
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8 Future Works 
 

So far, FFT has been applied to time series data, it has been scrutinized for not retaining 

information about time[28], but rather as a function of position. A study on Condition-Based 

Monitoring has also challenged FFTs abilities in being used for fault detection and diagnosis, 

stating FFTs indication of harmonics, where there should be in presence of defects, shows how 

FFT treats the “change of vibration signal from sinusoidal to something twisted or 

flattened”[29].  

The time-series analysis method that is more often suggested in replacement of FFTs is 

wavelet-based transform. A more detailed study of this transform for signal analysis is 

available in the research article noted in this reference[30]. This analytical approach is reported 

to display both time and frequency localization very well, which would be nothing short of 

advantageous given the study at hand. Further study of this algorithm for frequency analysis is 

highly recommended. 

An IEEE paper published back in 1997, alternatively, suggested FFTs based on wavelet-based 

transform, which could be another possibility worth testing out.  

A machine learning approach that involves use of ‘Deviation Networks’[31], for anomaly 

detection in absence of volumes of labelled data is also recommended, as it has potential to be 

applied in fault identification analysis with very few classified or labelled data. This method 

is, of course, relevant in the more advanced stages of acoustics study from now, however, this 

method has come forth with promising results that shows better anomaly-scoring in comparison 

to its counterparts, and should very well be worth studying.  

 

 

 



 

 

                    56 

References 
 

[1] H. OUFERROUKH, ‘European Rail Traffic Management System (ERTMS)’, ERA, Sep. 

10, 2018. https://www.era.europa.eu/activities/european-rail-traffic-management-system-

ertms_en (accessed Jun. 01, 2022). 

[2] ‘Rail and waterborne — best for low-carbon motorised transport — European 

Environment Agency’. https://www.eea.europa.eu/publications/rail-and-waterborne-

transport (accessed Jun. 01, 2022). 

[3] Y. Zhao, X. Ling, Z. Wang, W. Gong, and G. Li, ‘Acceleration Frequency Characteristics 

of the Freight-Train-Induced Vibration of the Beijing-Harbin Railway Subgrade’, Shock 

Vib., vol. 2020, pp. 1–11, Nov. 2020, doi: 10.1155/2020/6651713. 

[4] D. Milne et al., ‘Proving MEMS Technologies for Smarter Railway Infrastructure’, 

Procedia Eng., vol. 143, pp. 1077–1084, Jan. 2016, doi: 10.1016/j.proeng.2016.06.222. 

[5] J. Majala, Frequency analysis of accelerometer measurements on trains. 2017. Accessed: 

Nov. 16, 2021. [Online]. Available: http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-

63930 

[6] J. Kim, Y. Yun, and H.-M. Noh, ‘Analysis of Wheel Squeal and Flanging on Curved 

Railway Tracks’, Int. J. Precis. Eng. Manuf., vol. 20, Sep. 2019, doi: 10.1007/s12541-

019-00225-7. 

[7] T. Abuhamdia, S. Taheri, A. Meddah, and D. Davis, Rail Defect Detection Using Data 

From Tri-Axial Accelerometers. 2014. doi: 10.1115/JRC2014-3703. 

[8] ‘Materiell - Grenland Rail’. http://www.grenlandrail.no/?CatID=1180 (accessed May 26, 

2022). 

[9] J.-P. Polizzi, B. Fain, and F. Maspero, ‘Chapter 45 - Accelerometer’, in Handbook of 

Silicon Based MEMS Materials and Technologies (Third Edition), M. Tilli, M. Paulasto-

Krockel, M. Petzold, H. Theuss, T. Motooka, and V. Lindroos, Eds. Elsevier, 2020, pp. 

879–898. doi: 10.1016/B978-0-12-817786-0.00045-1. 

[10] ‘2.5: Spring-Mass Oscillator’, Physics LibreTexts, Aug. 08, 2019. 

https://phys.libretexts.org/Courses/University_of_California_Davis/UCD%3A_Physics_7

A_-

_General_Physics/02%3A_Applying_Models_to_Mechanical_Phenomena/2.05%3A_Spr

ing-Mass_Oscillator (accessed Jun. 01, 2022). 

[11] N. C. Yoder and D. E. Adams, ‘3 - Commonly used sensors for civil infrastructures 

and their associated algorithms’, in Sensor Technologies for Civil Infrastructures, vol. 55, 

M. L. Wang, J. P. Lynch, and H. Sohn, Eds. Woodhead Publishing, 2014, pp. 57–85. doi: 

10.1533/9780857099136.57. 

[12] A. Venkatanarayanan and E. Spain, ‘13.03 - Review of Recent Developments in 

Sensing Materials’, in Comprehensive Materials Processing, S. Hashmi, G. F. Batalha, 

C. J. Van Tyne, and B. Yilbas, Eds. Oxford: Elsevier, 2014, pp. 47–101. doi: 

10.1016/B978-0-08-096532-1.01303-0. 



 

 

                    57 

[13] F. J. Harris, ‘Chapter 8 - Time Domain Signal Processing with the DFT’, in 

Handbook of Digital Signal Processing, D. F. Elliott, Ed. San Diego: Academic Press, 

1987, pp. 633–699. doi: 10.1016/B978-0-08-050780-4.50013-8. 

[14] R. Oshana, ‘4 - Overview of Digital Signal Processing Algorithms’, in DSP Software 

Development Techniques for Embedded and Real-Time Systems, R. Oshana, Ed. 

Burlington: Newnes, 2006, pp. 59–121. doi: 10.1016/B978-075067759-2/50006-5. 

[15] ‘Spectral Leakage’. https://www.physik.uzh.ch/local/teaching/SPI301/LV-2015-

Help/lvanlsconcepts.chm/Spectral_Leakage.html (accessed May 26, 2022). 

[16] ‘Understanding FFTs and Windowing’. https://www.ni.com/en-no/innovations/white-

papers/06/understanding-ffts-and-windowing.html (accessed Jun. 01, 2022). 

[17] ‘Spectrogram using short-time Fourier transform - MATLAB spectrogram - 

MathWorks Nordic’. https://se.mathworks.com/help/signal/ref/spectrogram.html 

(accessed May 27, 2022). 

[18] ‘scipy.signal.spectrogram — SciPy v1.8.1 Manual’. 

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.spectrogram.html 

(accessed May 29, 2022). 

[19] K. H. Esbensen, B. Hope, T. T. Lied, M. Halstensen, and K. Sundberg, ‘ACOUSTIC 

CHEMOMETRICS FOR FLUID FLOW QUANTIFICATIONS—II: A SMALL 

CONSTRICTION WILL GO A LONG WAY’, p. 29, 1999. 

[20] K. H. Esbensen, D. Guyot, F. Westad, and L. P. Houmoller, Multivariate Data 

Analysis: In Practice : an Introduction to Multivariate Data Analysis and Experimental 

Design. Multivariate Data Analysis, 2002. 

[21] ‘Brevikbanen’. https://skinnelangs.no/index.php?line=37 (accessed May 29, 2022). 

[22] N. F. Güler and S. Koçer, ‘Classification of EMG Signals Using PCA and FFT’, J. 

Med. Syst., vol. 29, no. 3, pp. 241–250, Jun. 2005, doi: 10.1007/s10916-005-5184-7. 

[23] H. Rahman, M. Ahmed, and S. Begum, Non-Contact Physiological Parameters 

Extraction Using Camera. 2015. 

[24] D. Pelliccia, ‘Classification of NIR spectra using Principal Component Analysis in 

Python’, Mar. 23, 2018. https://nirpyresearch.com/classification-nir-spectra-principal-

component-analysis-python/ (accessed May 30, 2022). 

[25] ‘Fundamental frequency and harmonics’. 

https://homepage.ntu.edu.tw/~karchung/phonetics%20II%20page%20eight.htm (accessed 

Jun. 01, 2022). 

[26] Y. Fan and W.-F. Wu, ‘Dynamic Analysis and Ride Quality Evaluation of Railway 

Vehicles – Numerical Simulation and Field Test Verification’, J. Mech., vol. 22, Mar. 

2006, doi: 10.1017/S1727719100000721. 

[27] R. MacNeill and G. Gough, Predicting the Natural Frequency of Train Structures 

Using Detailed Finite Element Models. 2016. doi: 10.1115/JRC2016-5835. 

[28] S. Alwadi, M. T. Ismail, and A. P. T. D. S. A. Abdul Karim, ‘A Comparison Between 

Haar Wavelet Transform and Fast Fourier Transform in Analyzing Financial Time Series 

Data’, Res. J. Appl. Sci., vol. 5, May 2010, doi: 10.3923/rjasci.2010.352.360. 



 

 

                    58 

[29] D. Baglee, E. Jantunen, I. El-Thalji, and T. Lagö, Problems with using Fast Fourier 

Transform for rotating equipment: Is it time for an update? 2014. doi: 

10.13140/2.1.2679.1363. 

[30] N. C. F. Tse and L. L. Lai, ‘Wavelet-Based Algorithm for Signal Analysis’, EURASIP 

J. Adv. Signal Process., vol. 2007, no. 1, p. 038916, Dec. 2007, doi: 10.1155/2007/38916. 

[31] G. Pang, C. Shen, and A. van den Hengel, ‘Deep Anomaly Detection with Deviation 

Networks’, arXiv, arXiv:1911.08623, Nov. 2019. doi: 10.48550/arXiv.1911.08623. 

 



 

 

                    59 

Appendices 
 

Appendix A Thesis Task Description 
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Appendix B GitHub link for all Python source codes 
 
GitHub Source Codes 

 

 

 

Appendix C GitHub link for all Python source codes 

 

 
(Left) Spectrum without the initial low frequencies (Right) Spectrum will all frequencies 

 
 
 
 
 
 

 

 

 

 

https://github.com/a-isha/master_thesis_2022_dilruba.git

