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Summary:  

Navigation of unmanned surface vehicle (USV) is much important now a days due to 

much improvement in communication system. Details survey information can be 

collected using USV by passing it over wireless communication. Even remote and 

natural disaster effected places can be greatly helped by this. This paper focuses on 

collision avoidance self-control of USV using model predictive control. For testing and 

simulation GAZEBO is used. ROS is also used to communicate with USV sensor.  

 

This experiment is worked out mainly in two steps. First stability of control and 

mathematical model is checked using mathematical simulation. Later it is tested in 

GAZEBO which simulates real life effect on experiment object in terms of forces acting 

on object. 

Satisfactory outcome is achieved in these steps. Using CasAdi for MPC was stable. 
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1 Introduction 
History shows that industrial revolution was happened when engine was invented; that is to say 

automation. It is no wonder that automation has made a way for us to reach upto this high level 

of comfort in life. After the digital era has started and with much more computational power, 

automation has changed its course and currently solving much more difficult task which was 

never thought of before. 

Advancement of computational power has opened up way to solve problems faster than ever. 

Time consuming calculation like iterations or decision based on large data are no more obstacle 

to handle. In similar fashion, control system also reached reliable and stable position. 

Simulation of model to predict future behavior is no wonder now a days.  

This project tries to solve such a problem, automatic control of USV, by model predictive 

control. The USV selected for this project is rudderless double thruster. The reason behind 

rudderless is to minimize the model complexity which will consequently reduce the pressure 

of optimizing. 

Main idea behind this work is to reduce computational power in optimization. Providing too 

much constrain i.e. obstacle avoidance or keeping safe distance etc., makes the MPC too 

complex and vulnerable. As we know that solvers are sometimes stuck in local minima unless 

constrains are widen up. In contrast widening up constrain also lead to high computational 

requirement. To attend this problem, this paper aims to separate all the calculation of obstacle 

detection and path planning funcitons from main MPC solver. MPC solver will only be given 

target to reach. And this target will be updated time to time to maneuver through obstacle.  

1.1 Motivation 

Continues development in automation lead to verities of controlling methods. Although PID 

was initially well stablished and widely used method, but now Model Predictive Control has 

taken much of space because of its accuracy compared to PID. Despite of having dependencies, 

still MPC seems stable and promising. 

In many field MPC has made its way as control method. For example, in autonomous vehicle, 

aircraft, robots etc. It is also used widely in water vessels to assist navigation or to suggest 

economic route. Although many works has been done and implemented in these fields, but not 

so significant improvement has been done for low speed fully automated vessels or unmanned 

surface vehicle (USV). 

The need of USV has recently became concern due to demand of survey in natural disastrous 

places or any remote or hazardous places where it may be dangerous for humans to access. 

This work is motivated by such a cause, to survey flood or any victim areas immediately for 

rescue service. European Union and some other partners has initiated the idea. 
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1.2 Literature Review 

Article [1] has come up with a concept of separating control application into 3 layers. Where 

first layer does long term planning, second layer or mid-level COLAV is responsible for 

trajectory planning and local adaptation. Finally reactive layer follows the command from top 

layer and execute control signal. This paper has used simplified 3 DOF for ASV. With control 

signal vehicle velocity and yaw rate. MPC is used to get optimized control output. CASADI 

library is used with IPOPT solver. The paper has taken account for COLGERS rule number 8, 

13, 14, 15, 16 and 17 while planning path. 

Paper [2] focus on implementation of PID on rudderless two thruster USV. The implementation 

is done up to physical USV. Controller input and output are RPS of thruster and movement in 

x,y and r (rotation) direction. The report derive the mathematical model of thruster propeller as 

it is relevant to input. Then it is combined with the 3DOF model of USV. Furthermore, system 

identification is implemented to collect specific model parameters. In testing, different type of 

trajectory following task done to calculate its accuracy. 

Main objective of paper [3] is to explore advance path of ship. To get future path, it is depended 

on the current turn rate. This future path is send to UAV for explore. MPC is used to control 

UAV. Limit of flight length is set in constrain. Significant improvement of error is observed 

when ship model is included in the calculation. For simulation, ships velocity was considered 

as constant. It was also concluded that test of changing ship velocity and heading was 

satisfactory. 

This [4] paper’s main objective is to minimize or avoid conventional MPC computation to 

implement collision avoidance system. COLREGS rules are coupled with the cost function in 

constrain. Instead of dealing full range in mathematical models to come with optimized 

solution, it simulates probable scenario and try to find out optimized solution. Control signal 

is also segmented to reduce probable scenario. Result demonstrate that the controller is capable 

to handle multi obstacle or complex scenario with ease. 

The thesis paper [5] designs MPC controller to maintain COLREGS. Implementation was done 

in C++ within ROS framework. Comparison between linear and non-linear ship model is being 

done. Also SB-MPC and VO algorithm is compared. Results indicates that controller is capable 

to handle complex scenarios with ease. It also demonstrates that controller prefers to change 

its course rather than changing speed. It is also mentioned that controller is heavily depended 

on tuning of parameters for specific scenario. 
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1.3 Assumption 

This project focuses on the control system which should be simple and should not contain 

many constrain.  To achieve that some related process was assumed and mocked due to scope 

and time limit. Assumption and limitations can be considered as follows. 

1. All sensor data are available readily and accurately without any delay. 

2. No disturbance considered in the simulation. i.e. wave or wind 

3. Obstacle position is known and movement and direction of movement is known. 

4. Planning of route and to calculate optimal temporary trajectory is available. 

 

1.4 Contribution 

Control of USV is wide area. Although many topics has to be addressed to establish a 

working concept, this paper mainly focus on use of MPC theory. CasAdi [6] library is also 

used to have an experience on it. Use of ROS is another important software (framework) 

which is studied and heavily used in this work. 

Simulation in GAZEBO is done to have a pre-assessment before implementation. And finally 

writing code in python was second main focus to address collision avoidance while automatic 

control. 

1.5 Thesis structure 

Work of this paper presented in this report mainly in chapter 2, 3, 4 and 5. Chapter 6 discuss 

some scope of future work. 

In chapter 2, theories are discussed. These theories are considered as basic and stable working 

principle of the experiment. Moreover, description and fundamental information of software 

and simulators are also briefly discussed. 

Chapter 3 elaborates how the idea behind this paper is implemented. This chapter also 

includes flow and logic behind the application. 

Chapter 4 demonstrate testing and result of the implementation. Using graphs results are 

presented. 

Chapter 5 explains the reason and limitations those are observed in result. 

Chapter 6 discuss about very relevant future work of this paper. 

Finally, chapter 7 summarize the work. 
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2 Theoretical Background 
In this chapter theories will be briefly discussed. Based on this theories the experiment is done. 

State space model of USV is the main equation, on top of that all prediction of controller is 

done as well as simulation. 

2.1 Surface Vessel Model 

The USV model used in this paper is simplified 3 DOF model which is derived in [7]. Instead 

of 6 DOF, 3 DOF is chosen to minimize the complexity of the control equation. And this 

simplified 3 DOF is very much correct for USV as roll and pitch movement are barely 

effective. Furthermore is discussed in the paragraph below. 

Generally, motion of a USV is divided into kinematics and kinetics. Kinematics deals with 

geometrical movements and kinetic deals with forces acting on the object. 

2.1.1 Equation of motions 

Kinematic: When considering kinematic, any water vessel is capable to move in 6 DOF i.e. 

surge, sway, heave, roll, pitch and yaw. USV having stability in heave, roll and pitch due to 

its construction, the equation of those DOF can be eliminate to reduce the complexity of 

equation. First of all, heave can be ignored due to stable position of having buoyancy and less 

weight. Roll and pitch movement can also be ignored due to its smaller dimension[8]. 

 

 

Figure 2-1 : 3 DOF USV Source: [2] 

Two coordinate systems are considered when describing water vessels. One is fixed or 

inertial to earth 𝑂𝑒𝑋𝑒𝑌𝑒. Another one is USV’s structure based 𝑂𝑠𝑋𝑠𝑌𝑠. Movement of USV 

is defined based on the earth frame. Direction of movement is considered based on the USV 

frame. Where 𝑋𝑠 and 𝑌𝑠 defines direction of forward velocity u and left side velocity v 

respectively. Yaw rate of angular movement is based on 𝑂𝑠 denotated as r. 
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Without considering any wave or wind present while experiment, typical kinematic motion 

can be written as[7], 

�̇� = Ј(𝜂)υ            2-1 

Where 𝜂 = [ 𝑥  𝑦  𝜓]𝑇 , 𝑥 and 𝑦 are position and 𝜓 is heading of the USV.  �̇� = [ �̇�  �̇�  �̇�]𝑇 

symbols velocity on these axes in the earth frame. υ = [u  v  r]𝑇 where u, v and r are surge, 

sway and yaw velocity. Transformation matrix Ј(𝜂) can be define as, 

Ј(𝜂) =  [
cos𝜓 −sin𝜓 0
sin𝜓 cos𝜓 0
0 0 1

]   2-2 

 

Kinetic part:  

To calculate the effect of force acting on the USV, kinetic model is also formulated. 

According to [2] vectorial model is chosen rather than Tylor-series expansion in Abkowitz 

model. Which was possible because of symmetric shape of the vessel. Kinetic model is 

defined as equation 

𝑀�̇� + 𝐶(𝜐)𝜐 + 𝐷(𝜐)𝜐 = 𝜏 + 𝜏𝐸  2-3 

𝑀 = [

𝑚 − 𝑋�̇� 0 −𝑚𝑦𝑔
0 𝑚 − 𝑌�̇� 𝑚𝑥𝑔 − 𝑌�̇�

−𝑚𝑦𝑔 𝑚𝑥𝑔 − 𝑁�̇� 𝐼𝑍 − 𝑁�̇�

] 2-4 

𝐶(𝜐) = [

0 0 −𝑚(𝑥𝑔𝑟 + 𝜐) + 𝑌�̇�𝜐 +
𝑌�̇�+𝑁�̇�

2
𝑟

0 0 (𝑚 − 𝑋�̇�)𝑢

𝑚(𝑥𝑔𝑟 + 𝜐) − 𝑌�̇�𝜐 −
𝑌�̇�+𝑁�̇�

2
𝑟 −(𝑚 − 𝑋�̇�)𝑢 0

]2-5 

 

𝐷(𝜐) = 𝐷 + 𝐷𝑛(𝜐) = [

𝑋𝑢 0 0
0 𝑌𝜐 𝑌𝑟
0 𝑁𝜐 𝑁𝑟

] − [

𝑋𝑢|𝑢||𝑢| 0 0

0 𝑌𝜐|𝜐||𝜐| + 𝑌𝜐|𝑟||𝑟| 𝑌𝜐|𝜐||𝜐| + 𝑌𝜐|𝑟||𝑟|

0 𝑁𝜐|𝜐||𝜐| + 𝑁𝜐|𝑟||𝑟| 𝑁𝑟|𝜐||𝜐| + 𝑁𝑟|𝑟||𝑟|

]  

 2-6 

 

Where, M in mass matrix. USV body-fixed frame center of gravity is 𝑥𝑔 and 𝑦𝑔. 𝐼𝑍 is 

Moment of inertia about Z-axis. C(υ), D(υ) represents Coriolis and centripetal matrix, drag 

matrix. 

Force creating on the thruster is demonstrated as τ. 

𝜏𝐸 represent vector of forces caused by the disturbance. 

As USV is considered as rudderless double thrusters, the thrust acting on the USV is always 

in forward or backward direction. The thrusters of port and starboard can vary its force and 

thus movement on left or right is achieved. Vector of τ is considered as following. 

𝜏 = [𝜏𝑢 0 𝜏𝑟]
𝑇 2-7 
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In equation 𝜏= [𝜏𝑢 0 𝜏𝑟]
𝑇 2-7, 𝜏𝑢 = 𝑋𝑃1 + 𝑋𝑃2, Where 𝑋𝑃1 and 𝑋𝑃2 represents 

force on port and starboard thruster. 

𝜏𝑟 = (𝑋𝑃1 − 𝑋𝑃2)𝑑𝑝 

Where, 𝜏𝑢 𝑎𝑛𝑑 𝜏𝑟 represents the result of thrusters forward/backward and rotational 

movement. If both thrusters are applying force in same direction with same amount, then the 

force will be added and there will be no movement on Y-axis and in yaw. In contrast, if 

powers are different and/or opposite, it will contribute to movement on Y-axis and yaw. 

 

USV by construction is symmetric and the floating mechanism is designed in such a way that 

movement on heap can be ignored. Also because of its flat shape and floating position change 

in pitch angle and roll angle can be ignored. Considering these characteristics the model of 

USV is simplified into simpler kinematic equation by this author [2]. 

𝑀�̇� + 𝐶(𝜐)𝜐 + 𝐷(𝜐)𝜐 = 𝜏                                 2-8 

𝑀 = [

𝑚 − 𝑋�̇� 0 0
0 𝑚 − 𝑌�̇� 0
0 0 𝐼𝑍 − 𝑁�̇�

]                  2-9 

𝐶(𝜐) = [

0 0 −(𝑚 − 𝑌�̇�)𝜐

0 0 (𝑚 − 𝑋�̇�)𝑢

(𝑚 − 𝑌�̇�)𝜐 −(𝑚 − 𝑋�̇�)𝑢 0
]           2-10 

𝐷(𝜐) = 𝐷 = − [
𝑋𝑢 0 0
0 𝑌𝜐 0
0 0 𝑁𝑟

]                          2-11 

 

According to paper [2] Final model of USV sums up to, 

{
  
 

  
 

�̇� = 𝑢 cos𝜓 − 𝜐 sin𝜓
�̇� = 𝑢 sin𝜓 + 𝜐 cos𝜓

�̇� = 𝑟
(𝑚 − 𝑋�̇�)�̇� − (𝑚 − 𝑌�̇�)𝜐𝑟 + 𝑋𝑢𝑢 = 𝑋𝑃1 + 𝑋𝑃2

(𝑚 − 𝑌�̇�)�̇� − (𝑚 − 𝑋�̇�)𝑢𝑟 + 𝑌𝜐𝜐 = 0

(𝐼𝑍 − 𝑁�̇�)�̇� − ((𝑚 − 𝑋�̇�) − (𝑚 − 𝑌�̇�))𝑢𝜐 + 𝑁𝑟𝑟 = (𝑋𝑃1 − 𝑋𝑃2)𝑑𝑝

 2-12 

 

Reducing the USV model to this 3DOF, which is rudderless double thruster, makes the 

calculation of the force acting on the USV much simpler. 

 

GAZEBO model 

Model in GAZEBO [9] used in this work takes two inputs as a control signal as for two 

thrusters. The model matches with the previous mathematical model so previous model was 

used in MPC while simulating and testing in GAZEBO 
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XP1              

XP2 

Diagram of input output can be as below. 

 

               F in PORT thruster  

     F in STARBOARD thruster 

 

Figure 2-2: Input output diagram 

 

2.1.2 Model of USV in GAZEBO 

The VRX model [9] in GAZEBO is constructed in similar fashion as the above structure in 

Figure 2-13. Parameters of the USV can also be set on the XACRO file which is provided 

while compiling the model for GAZEBO. 

 

Figure 2-3: VRX model Source: [10] 

 

GAZEBO VRX model powered by Openrobotics [10]  is constructed along with the ROS. 

Subscribing to the proper topic can fetch GPS and IMU data. To send command, topic of 

thruster is used to publish control data. 

 

 

Vx 

Vy 

Yaw 
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2.2 Model Predictive Control 

Model predictive controller is the only controller which takes account of future situation. 

Which drastically increase overshooting. It is dependent on dynamic model of the system 

with real time input from sensor so it could provide best control signal. MPC uses solvers to 

come up with optimized control signal with the help of optimization solver. And repetition of 

the fixed time frame makes it possible to solve or optimize, along with consideration of 

uptodate state values.[11] 

In contrast to many benefits, there are also some drawbacks of this controller. This controller 

depends highly on dynamic model so fine model is needed to have a good control output. 

This controller demands high computation power because it have to solve optimization 

problem in each iteration. 

2.3 GAZEBO 

Simulation often save money and time when it comes to testing a very new concept. Gazebo 

is such a simulation tools or platform where testing can be done for any physical object 

considering different force acting upon it. The real power of Gazebo is that it can mimic 

almost accurately all the aspect of physics in terms for dynamics, force, gravity etc. It can 

also create world where effect of surrounding environment can be simulated. For example, in 

this case effect of wave and wind on the water vessel. On top of that simulation can be 

controlled with many parameters such as method of iteration and/or iteration time, speed. 

Overall, Gazebo can handle the dynamics in such a details that usually no significant 

difference is experienced when the system is tested in real life. 

2.4 ROS 

Reading status and controlling robot was never easy because of communicating with many 

sensors at the same time. Often people used to spend lots of time only to prepare 

communication system for every robot project. Robot operating system was developed to 

overcome this problem and gave a common system which can be used in any robotic 

project[12]. It is an application that give full structure of communication. Basic structure of 

ROS is based on Topic and Noes. Topic holds place of value of sensor whether to read or 

write. Alongside Nodes helps to get or set the value on topic. ROS keeps and make sure the 

readiness of values in Topic (in high frequency) so control system or any function can read or 

write value reliably. 

2.5 CasADi 

Casadi is a tool library to manage variables for easily solving optimal control problem. 

Casadi works mainly as a place holder for variable so designer of code doesn’t have to 

concentrate on arranging those. Casadi also integrates popular solvers for example qpoas, 

ipopt etc. which makes it more dynamic and one stop solution provider. 



  

15 

3 Implementation 

3.1 System overview 

 

Figure 3-1 : Overview of System 

Control system for this USV follows regular workflow of controlling. Sensors are read and 

data are fed to both Control system and Plan & Guide module. Control System receives 

updated goal from Plan & Guide module and try to reach that. Model Predictive Control 

(MPC) is used to reach latest target. Hence dynamic model of the system is embedded in 

Control System. Finally output from the Control System controls two thrusters to guide USV 

to reach its goal. 

 

Two implementation is done for this work, 

1. At first, model in implemented and simulated in python code and all the state data is 

generated from mathematical model iteration. Output is plotted on graph. 

2. Secondly, GAZEBO is used to simulate USV and all state data are collected from 

GAZEBO sensors. 

To collect data in GAZEBO, ROS is used and corresponding variables were updated other  

modules to fetch. 

 

Some module and function are mocked and those can be developed in future projects. 

Following are those modules. 

1. Using visual sensors, Lidar, camera and sonar, data will be analyzed to detect 

position, velocity and heading of obstacle.  

2. Function to detect obstacle position (port/starboard side). Which is used to conclude 

whether obstacle is passed or not. 

This project creates dummy or mock of those to focus on control problem as that is the scope 

of this work. 
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3.2 Collision Avoidance System 

This paper deal with COLREG RULE 14, 15, 17: where obstacle coming from left should be 

given way and to cross vessels on port side when head to head situation occurs. Two type of 

obstacle is considered, one stationary and one moving body. Both are tested in separate 

scenario. Position, heading and velocity of the object is considered to be available accurately 

and control system act upon that.  

3.3 Software Flow and logic 

 

Figure 3-2 : Software Flow 

As described in Figure 3-2 : Software FlowisTargetReached in the main loop with condition 

to exit when satisfactory level of error is reached between current state and target. 

isObstacleDetected and checkRuleToPass are mocks. updateTemporaryTarget is the 

function where logics are implemented to update target periodically based on the obstacle 

information. For example, there are two different scenarios dealt inside this function both 

stationary and moving obstacle. For stationary object target is updated once and for moving 

obstacle it is updated periodically till it reaches the position which is safe from obstacle and 

heading to final target. 
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3.4 Implementation of model 

As kinetic model deals with forces, some parameters were necessary to set. Following are the 

parameters which were considered for the model. All parameters are aligned with the 

GAZEBO USV model, so later it can be used to simulate in GAZEBO. Parameters are 

collected from the XACRO files which are used as a parameters input file in GAZEBO USV 

model simulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Kinetic model parameters 

3.5 MPC design and implementation 

Cost Function 

Cost function is designed to minimize difference between target and current state as 

following.  

𝑚𝑖𝑛∑([𝑓(𝑦𝑖)]
𝑇𝑄[𝑓(𝑦𝑖)] + [𝑓(𝑧𝑖)]

𝑇𝑅[𝑓(𝑧𝑖)])

𝑁

𝑘=0

 

3-1  

Where, 𝑓(𝑦𝑖) is function of  [𝑥 𝑦 𝜓 𝑢 𝑣 𝑟]  which are the sates of USV. 

And 𝑓(𝑧𝑖) is function of control inputs as [𝑋𝑃1 𝑋𝑃2 ]. 

Q and R, are weight matrices to tune optimization. Point to note that weight on 
𝑥 𝑦 𝜓 are emphasis and rest are set to zero as for this experiment main concern is to reach 

the goal in correct orientation. 

 

PARAMETER VALUE 

MASS (M) 180 kg 

INERTIA (𝑰𝒁) 446 kg-m2 

(𝑿𝒖) 53.1 kg-s-1 

(𝒀𝝊) 40 kg-s-1 

(𝑵𝒓) 446 N-mθ-1 

(𝑿�̇�)  0 

(𝒀�̇�)  0 

(𝑵�̇�) 0 

(𝒅𝒑) 2.4 m 
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Setting up MPC parameters was finalized by trial and error of different values for parameters. 

With step size of 0.1 sec and 10 prediction horizon was good enough to control USV while 

using mathematical simulation. For GAZEBO step size was chosen 1 because the simulation 

updat was every 1 sec for states. 

To manage the solver and optimization variables, CasAdi [6] library is used. The non-linear 

equation was optimized using popular solver ipopt which was configured in CasAdi tools. 

Sum of cost function for full prediction horizon was done using Raunge Kutta 4th order 

method. Objective was to minimize the weight cost function for whole horizon. 

 

Constrains 

Constrains are set according to the physical limitation of USV, these values were also 

collected from the GAZEBO model of USV. But after that it was widened up to make it easy 

for solver to reach minima. 

Table 2: Constrains 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONSTRAIN MIN MAX 

Velocity in u direction -10ms-1 10ms-1 

Velocity in y direction -10ms-1 10ms-1 

Thruster Force Limit -100N 250N 

Angular Velocity -30 θs-1 30 θs-1 
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3.6 GAZEBO code 

USV simulation in GAZEBO runs with ROS. Out of many rostopics, only GPS, IMU and 

thruster topic was subscribed to get status data and to publish thruster command. 

 

Figure 3-3: GAZEBO VRX model 

GPS 

Raw data of GPS (latitude and longitude) is converted to cartesian coordinated, ENU. That 

make it easy to work with position and target, as the movement of the experiment is done 

within very small range. 

 

IMU 

From the IMU sensor, velocity and orientation data was collected. Orientation data was 

converted from quaternion to Euler as model used Euler angle in rad. From Euler angle only 

rotation of z-axis is taken as the USV model consider rotation in only yaw. 

 

Thruster topic 

Control signal is continuously published in thruster topic (left and right two separate topics). 

UVS model in GAZEBO takes value only in range from 1 to -1. Therefore, in the code 

control signal is scaled down to this range before publishing in topic. 

 

Control code 

Control code in GAZEBO simulation is repetition of previous MPC loop. Only two 

parameters are changed and those are mass and inertia. The reason being, in the simulation 

extra components are being added in the USV such as lidar, GPS, camera, shooter etc. 
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4 Results 
As mentioned earlier, this experiment is simulated in two different ways. First the code is ran 

in plain python and movement path is plotted. Parallel to MPC, USV mathematical model is 

also ran to get state values. 

In second experiment GAZEBO is used to simulate USV model. Some target is given and 

movement path is collected for plotting graph along with video capture of GAZEBO 

simulation. 

Do same test is done in both way. 

4.1 First experiment using mathematical model 

4.1.1 No obstacle (Mathematical Simulation) 

 

           

                                                                                   

 

 

 

 

 

 

 

 

                                                                                   Figure 4-2: No obstacle test 2 

These tests indicates that designed controller is capable to reach its target. 

 Initial 

State 

Target Result 

x 0 30 30.13 

y 0 40 40.37 

ψ 90° 270° 259° 

 Initial 

State 

Target Result 

x 0 0 -0.34 

y 0 40 39.99 

ψ 90° 90° 89.9° 

     Figure 4-1: No obstacle test 1 
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4.1.2 With Obstacle 

Weight: 180, Inertia: 446 

This test is done by keeping COLREG RULE 17 in mind; which define Actions by stand-on 

vessel: It states that if possible, course should be kept as it is and if necessary USV should 

pass the obstacle by keeping obstacle on USV’s own port side. 

 

Weight: 250, Inertia: 495 

                

 

 

 

 

 

 

 

 

 

 

This test demonstrate that change of weight and inertia did not have much effect on control. 

 

 

 Initial 

State 

Target Obstacle 

x 0 45 15 

y 0 40 10 

ψ 0° 45° 0 

 Initial 

State 

Target Obstacle 

x 0 45 15 

y 0 40 10 

ψ 0° 45° 0 

Figure 4-3: Stationary Obstacle USV 180kg 

Figure 4-4: Stationary Obstacle USV 250kg 
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4.1.3 Moving obstacle (Mathematical Simulation) 

 

 

 

 

 

 

 

 

 

 

In this test, movement of obstacle is simulated from [30,10],[20,20],[10,30],[0,40]. USV 

travelling upto point (10,0) chases target [30,10]. At this moment it is considered that updated 

target is provided by trajectory module(not implemented in this project) based on latest 

movement of obstacle. From this point USV starts chasing new target which is [20,20]. At 

(20,15) target is being updated to ultimate target as it is already detected that obstacle is 

crossed or on the lift hand side(not implemented in this project). This testing and simulation 

is done considering COLREG RULE 15. Which states that crossing vessel should be given 

way if the vessel is coming from own starboard side. 

 

 

 

 

 Initial 

State 

Target Obstacles 

x 0 70 (15,15) 

(40,40) 

(65,65) 
y 0 80 

ψ 0° 45° 

 Initial 

State 

Target 

x 0 45 

y 0 40 

ψ 0° 45° 

Figure 4-5: Multiple stationary obstacle 

Figure 4-6: Moving obstacle 
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This test is done to simulate COLREG RULE 14: which states that in head to head situation 

vessels should pass each other on port side. 

4.2 GAZEBO TEST 

Similar test above has been done in GAZEBO simulation using VRX model [9]. As 

mentioned before, weight and inertia on z-axis is increased to match with VRX model. 

4.2.1 No Obstacle (GAZEBO Simulation) 

 

 

 

 

 

 

 

 

 

 

 

 Initial 

State 

Target 

x 0 90 

y 0 90 

ψ 0° 45° 

 Initial 

State 

Target 

x 0 7 

y 0 60 

ψ 45° 90° 

Figure 4-7: GAZEBO path No obstacle 
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4.2.2 Stationary Obstacle (GAZEBO Simulation) 

 

 

 

 

 

 

 

 

 

 

 

 

Animation of simulation is shared via this link in youtube. 

https://youtu.be/JVyHBpnyh0c 

Comparison of same route with and without obstacle is shown in this youtube video. 

https://youtube.com/shorts/cavdPzeXrUI 

 

 

 Initial 

State 

Target 

x 0 7 

y 0 60 

ψ 45° 90° 

Figure 4-8: Crossing obstacle in GAZEBO sim 

Figure 4-9: GAZEBO visual result 

https://youtu.be/JVyHBpnyh0c
https://youtube.com/shorts/cavdPzeXrUI
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5 Discussion 
Objective of this work was to automate USV to reach its goal using model predictive control. 

And on the way it has to avoid collision with obstacle. The obstacle can be stationary or 

moving. 

Implementation of control system was done in three steps. At first, using only kinematic 

model, control was achieved without much error (No plot is shown in result). At second stage 

kinetic model was added, in which control signal was shifted from velocity (u, v) to force 

(XP1 , XP2), in other word control input changed. Some weight and inertia value, i.e weight, 

inertia etc, were set to simulate the mathematical model. 

Testing without any obstacle, to reach goal was very precise and accurate. There were error at 

level ~0.1% when the target orientation was set to odd position. For example, in no obstacle 

scenario target orientation was set to 270° but x and y target was same. In test 2, target for 

vertical movement also was achieved without any difficulties. But overshooting was observed 

when goal was reached. 

When obstacle is placed on the way, shortest path was not achieved. The reason is the weight 

(Q matrix) on the orientation parameter. Weight (Q matrix) on the orientation is set to double 

compared to axis-x, y . The reason behind emphasizing orientation is to keep the heading 

correct, as USV is not capable to move only on Y direction heading to the target keeps the 

USV to move in correct direction. 

Similar behavior is also observed in moving obstacle. When USV has just crossed the 

moving obstacle, it slightly turned clockwise to keep up with target orientation (Which is not 

valid when reaching obstacle i.e. temporary target). It would be more appropriate to keep on 

changing orientation along with x, y target. 

For multiple stationary objects, continuously update of target seems to work fine. Although in 

this test, periodically target is being updated in mock which is expected to happen from visual 

sensor module in future project. Note can be taken that if multiple stationary objects are 

detectable at early stage or as far as possible to detect, optimized trajectory can be planned. 

Expected behavior is also observed in GAZEBO simulation. Despite of having wind and 

wave, controller was able to reach target properly. 
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6 Future Work 
As highlighted in result that detecting obstacle position was mocked in this thesis. On of the 

very immediate future work can be to implement those function which will be feeding the 

planning module with information of obstacle. 

Another future work of this project can be to implement more COLREG RULEs. For 

example based on the size of obstacle or by analyzing image, if it can detect whether the 

obstacle is motor operate or not then few other COLREG RULEs can be immediately 

implemented.  
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7 Conclusion 
In this thesis implementation of MPC to avoid collision has been successfully tested. Well 

stablish simplified 3DOF model of USV was stable and was also able to predict states of 

USV which was fed into MPC to optimize for control signal. 

Apart from plotting graphs with mathematical simulation of system, implementation in 

GAZEBO was also done. MPC controller seems to work well in GAZEBO which increases 

the chance to run error free in physical USV. 

Software architecture of the system is done such a way that in future same architecture can 

be use to further implement the COLREG rules. As MPC module is separate there will be 

no hassle to introduce new functionality. 
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Appendices 
 

Appendix A 
 

Snippet of MPC code 

 
def chaseTarget(): 

    global args, state_init, state_target, n_states,\ 

        n_controls, N, f, solver, nlp_prob, mpc_iter, u0,\ 

        X0, t0, t, cat_states, cat_controls, cont_XP1,\ 

        cont_XP2, times 

    t1 = time() 

     

    args['p'] = ca.vertcat( 

        state_init,    # current state 

        state_target   # target state 

    ) 

     

    args['x0'] = np.zeros(n_states*(N+1) + n_controls*N) 

    # print(args['p']) 

     

    sol = solver( 

        x0=args['x0'], 

        lbx=args['lbx'], 

        ubx=args['ubx'], 

        lbg=args['lbg'], 

        ubg=args['ubg'], 

        p=args['p'] 

    ) 

 

    u = ca.reshape(sol['x'][n_states * (N + 1):], n_controls, N) 

    X0 = ca.reshape(sol['x'][: n_states * (N+1)], n_states, N+1) 

 

     

    print(DM2Arr(X0)[0,0], DM2Arr(X0)[1,0], DM2Arr(X0)[2,0]) 

    # cont_XP1 =  

    cont_XP1 = np.vstack((cont_XP1,DM2Arr(u[0, 0]))) 

    cont_XP2 = np.vstack((cont_XP2,DM2Arr(u[1, 0]))) 

     

 

    t0, state_init, u0 = shift_timestep(step_horizon, t0, state_init, 

u, f) 
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Appendix B 
 

Snippet of ROS code 
 

def gpsCallback(data): 

    # print(data.latitude, data.longitude) 

    global x_init, y_init, z_init,\ 

         init_counter,latitude_ori, longitude_ori, altitude_ori 

     

    latitude = data.latitude 

    longitude = data.longitude 

    altitude = data.altitude 

    #To capture initial lat long for ENU reference 

    #Executes only once at beganing 

    if init_counter: 

        latitude_ori = latitude 

        longitude_ori = longitude 

        altitude_ori = altitude 

        init_counter = False 

 

    x_init_temp, y_init_temp, z_init_temp = pm.geodetic2enu(latitude, 

longitude,\ 

                            altitude, latitude_ori, longitude_ori, 

altitude_ori) 

    x_init = x_init_temp 

    y_init = y_init_temp 

    z_init = z_init_temp 

 

def imuCallback(data): 

    global r_init, theta_init 

    (roll,pitch,yaw) = euler_from_quaternion([data.orientation.x,\ 

        data.orientation.y,data.orientation.z,data.orientation.w]) 

    theta_init = yaw 

    # print(theta_init_copy) 

    r_init_temp = data.angular_velocity.z 

    r_init = r_init_temp 

 

def fixVelCallback(data): 

    # print(data) 

    global u_init, v_init 

    u_init_temp = data.vector.x 

    v_init_temp = data.vector.y 

    u_init = u_init_temp 

    v_init = v_init_temp 

 

 

Full code github link 

https://github.com/samiusn/Masters-Thesis 

 

https://github.com/samiusn/Masters-Thesis
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Appendix C 
COLREG RULES 
This section provides a brief overview of the main technical and operational requirements 

from COLREGS, [13]: 

Rule 6 - Safe speed. The following should be considered: Visibility, traffic density, stopping 

distance and turning ability, wind/waves/current, navigational hazards, draught vs. depth, 

radar/sensor state. 

Rule 8 - Actions to avoid collision. Actions shall be made in ample time. If there is sufficient 

sea-room, alteration of course alone may be most effective. Safe distance required. Reduce 

speed, stop or reverse if necessary. Action by the ship is required if there is risk of collision, 

also when the ship has right-of-way. 

Rule 13 - Overtaking. Any vessel overtaking any other shall keep out of the way of the vessel 

being overtaken. A vessel shall be deemed to be overtaking when coming up with another 

vessel from a direction more than 22.5 degrees abaft her beam. 

Rule 14 - Head-on situation. When two power-driven vessels are meeting on nearly courses 

so as to involve risk for collision, then alter course to starboard so that each pass on the port 

side of each other. 

Rule 15 - Crossing situation. When two power-driven vessels are crossing so as to involve 

risk of collision, the vessel which has the other on her own starboard side shall keep out of 

the way. 

Rule 16 - Actions by give-way vessel. Take early and substantial action to keep well clear. 

Rule 17 - Actions by stand-on vessel. Keep course and speed (be predictable) if possible. If it 

is necessary to take action, then the ship should try to avoid to alter course to port for a vessel 

on her own port side. 

Rule 18 - Responsibilities between vessels. Except for Rules 9, 10, and 13, a power-driven 

vessel shall keep out of the way of: a vessel not under command, a vessel restricted in her 

ability to manoeuvre, a vessel engaged in fishing, and a sailing vessel. 

Rule 19 - Conduct of vessels in restricted visibility. Avoid alteration of course to port for a 

vessel forward of the beam, and avoid alteration of course towards a vessel abeam or abaft 

the beam, if possible. 
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