
 
www.usn.no  

 

The University of South-Eastern Norway takes no responsibility for the results and 

conclusions in this student report. 

Course: FMH606-1 22V Master's Thesis, 2022 

Title: AE-Sensors and Multimodal Sensor Data Fusion in Liquid Flow metering 

Number of pages: 85 report + 41 appendices  = 126 

Keywords: Accelerometer, multiphase, flow rate, machine learning, neural network 

Availability: Open 

Student: Shailesh Kharche 

Supervisor:   Ru Yan (main supervisor) 

 Saba Mylvaganam (co-supervisor) 

External partner:    Kjetil Fjalestad, Equinor 

 Tonni Franke Johansen, SINTEF 

  

 

Summary:  

One of the biggest challenges in Oil and gas industries is finding convenient method for 

accurately measuring flow rate of multiphase materials flowing through a system. There 

are different approaches done to handle this situation and each ended up with different 

results. To continue research & development on this topic, two such experiments sites in 

this case rigs are present, one is in University of South-Eastern Norway and other one in 

Equinor. 

This thesis objective is to estimate single phase flow velocity using clamp-on 

accelerometer sensors fitted on outer surface of pipes. Raw accelerometer data along with 

other sensor data like temperature and differential pressure was collected at both rigs. 

Since the main focus was on accelerometer data, complete thesis was done using only 

accelerometer data. The data was analyzed using FFT and PSD plots, filtered and pre-

processed. Feature extraction was done. 

The top thr.ee features were used to develop classification models to identify the type of 

flow material i.e., Gas, Oil or Water. The test accuracy of classification model is around 

98 %. Then prediction model was developed for estimation of flow velocity. Top 

accelerometer features selected for prediction gave an RMSE of nearly 10.2.  
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1 Introduction 
For the last two decades, extensive research has been done for multiphase flow measurement 

in oil and gas production industry. Different approaches like non-invasive and invasive 

methods are tried to get better results of flow measurement. To continue further research, two 

such experimental setup is present, one in USN, Porsgrunn and one in Equinor, Herøya, 

Grenland. Recently the focus is on flow measurement using clam-on accelerometer sensors. 

1.1 Objectives 

Multiphase flow consists of thr.ee materials i.e., Oil, Gas and Water. The main objective of this 

thesis is to predict type of material flowing inside pipe and also to estimate flow velocity of 

that material using accelerometer data and machine learning models (see, Appendix A). 

1.2 Workflow 

Raw accelerometer data is collected at both the rigs. Data is imported in MATLAB. Since the 

accelerometer data is in the form of signal, signal analysis is done. Analysis like FFT is done 

to study frequencies in data and the change in frequency patterns when flow type changes and 

also when flow rate changes. Spectral analysis is also performed to study power spectrum of 

accelerometer signals and the variations in power due to change in flow type. Filtering of 

signals is performed. Signal is then split into few seconds duration. Feature extraction is done 

and this feature acts as an input to machine learning models. Classification model and 

Prediction model is developed. 

 

 

Figure 1.1 Overview of workflow carried in this thesis 
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1.3 Scope 

The nature of accelerometer data is limited to experimental setup at mentioned locations. Also, 

the models developed are expected to work for single-phase flow metering. The minimum and 

maximum flow rate for estimation is limited to the flow rate at which the data is captured. The 

values are mentioned in respective chapters. 

1.4 Report Structure 

The coming chapters follows the workflow mentioned above and are organized as follows: 

 

Figure 1.2 Block Diagram of report structure 

Chapter 2 covers the literature study of latest developments in fluid flow metering and different 

approaches done to estimate flow velocity. Chapter 3 covers experimental setup scenario, types 

of experiments performed, and the raw data generated from these experiments. First raw data 

analysis is performed and is mentioned in chapter 4. Analyzing accelerometer data is then done 

in chapter 5. Pre-Processing of this accelerometer data is then done in chapter 6. Chapter 7 

covers developing classification model for estimating flow type and chapter 8 covers 

developing prediction model for estimation of flow velocity. Chapter 9 includes testing of 

models developed in previous chapters. Since there is additional accelerometer data from USN 

rig, pre-processing of this data and testing of this data with ML models developed using 

Equinor data is covered in same chapter 9 as one separate section. Discussion based on outcome 

of work done in this thesis is covered in chapter 10. Finally, conclusion is covered in chapter 

11. 
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2 Fluid Flow metering 
In this chapter, brief survey of fluid flow metering is mentioned, particularly focusing on latest 

development in this field followed by different approaches to estimate flow velocity and 

different types of liquid flow meters. 

2.1 Latest developments 

Virtual Flow Metering is well-known term in latest developments related to fluid flow 

metering, especially done in multiphase flow scenarios. This kind of approach involves 

gathering not directly related sensor readings like pressure at different points in experiment, 

temperature of liquid and many more. In one such study, VFM was able to reconcile total oil 

and total water flow rates with average relative deviations of 0.87% and 17% respectively and 

maximum deviation of 2.3% for oil flow rates [1]. Another is thermal pulse time-of-flight based 

liquid flow meter. In this the heat pulse is imparted in flowing liquid and its detection in arrival 

downstream is used to predict flow velocity [2]. Ultrasound based flow velocity measurements 

is another non-invasive approach [3]. Electrical Capacitance Tomography which involves 

technique of reading several capacitance sensor’s readings, which is a result of dielectric 

permittivity influence of liquid flowing thr.ough a pipe [4]. 

2.2 Types of flow meters 

Below table shows different types of flow meters used till now to estimate flow velocity 

along with the principles they are based on. 

Table 2.1: Types of flow meters based on setup and working principle. 

Type Setup Description 

Differential 

Pressure 

Invasive Based on the difference in pressure between upstream and 

downstream sides of a restriction in a confined fluid 

stream, which is related to square of fluid velocity 

Differential 

Area 

Invasive A free moving float inside a glass tube to get the fluid 

velocity 

Electromagnetic Non -

Invasive 

Based on Faraday’s law of magnetic induction which states 

that when a conductive material (in this case a conductive 

fluid) moves in a magnetic field, a voltage is generated 

between two electrodes at right angles to fluid velocity. 

Ultrasonic Non -

Invasive 

Acoustic waves are passed in between transmitter and 

receiver. Time difference to travel these waves varies in 

correspondence to fluid velocity. 

Turbine Invasive Multi-bladed rotor mounted and suspended in the fluid 

stream to get flow velocity. 
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Vortex Invasive An obstruction placed inside a pipe creates vortices and 

this shedding frequency is directly proportional to fluid 

velocity. 

Positive 

Displacement 

Invasive This meter repeatedly entraps the fluid into a known 

quantity and then passes it out. Rotor rotational velocity is 

directly proportional to flow rate, since the flow of fluid is 

causing the rotation. 

Coriolis Mass Invasive Flow is passed through a tube which is continuously 

moving and flow rate causes change in frequency of this 

tube’s movement. This movement is directly relating to 

mass flow rate.  

Thermal Mass Non -

Invasive 

Two temperature transducers are used out of which one 

monitors actual gas flow temperature. Flow velocity causes 

the change in temperature on one transducer and this 

difference is used to calculate flow velocity. 

2.3 Flow meters and their influence in multiphase flow 

The flow meters mentioned in table above are successfully used in other common applications 

where flow fluid is of one phase and the phenomenon is simple to model and understand like 

water, non-viscous and semi-viscous chemicals, only oil, different gas flow applications. But 

multiphase is complex phenomenon which is difficult to understand, predict and model [5]. 

Venturi meter based on differential pressure type is often used to determine velocity of 

multiphase flow. However, the equations for single phase can-not be directly applied to 

multiphase flows and thus are modified for use in multiphase flow measurement. 

Multiphase flow metering usually comprises of combination of different techniques described 

above. For instance, a positive displacement meter will usually measure total volumetric 

multiphase flow rate (gas and liquid) [5]. 

Many meters are developed using electromagnetic measurement principles to apply cross-

correlation techniques to calculate characteristic velocity of multiphase mixture [5]. 

Several Electrical Impedance techniques which are based on measuring the electrical 

permittivity and conductivity characteristics of materials of fluid flowing is used to determine 

the proportion of materials flowing which is further used to classify flow regimes in one of the 

studies [6]. 

Gamma Ray Meter is also used to find fluid density based on its multiphase components. 

This thesis brings in non-invasive way of measuring flow type and flow velocity using 

vibrations caused by single-phase flow in the pipe. 
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3 Single phase flow rate experiment 
The work done in this thesis is based on two large datasets. One dataset is from Equinor Rig 

and another dataset is from USN rig. This chapter presents the experimental setup with focus 

on location of accelerometer sensors. Also, the details of experiments along with structure of 

data obtained is mentioned. 

3.1 Equinor rig experiments 

The rig is a multiphase flow rig consisting of different flow meters of make Krohne and Enders. 

Also, Differential pressure transmitters of make Emco and Wika are present on the rig. 

Temperature and pressure sensors are fitted at certain locations. 4 accelerometer sensors are 

fitted on certain locations as shown in figure 3.1. Since the main focus is only on accelerometer 

sensor readings, in the figure only accelerometer sensors position is mentioned. Also, it is worth 

mentioning that accelerometer sensor 2 is defective at the time of performing these 

experiments. 

 

Figure 3.1: Accelerometer sensors position in Equinor rig (Simplified drawing, provided by Equinor) 

Experiments performed are shown in table 3.1 below. 

Table 3.1: Experiments performed at Equinor (“xx”: test sequence numbers) 

 Experiment Number of 

experiments 

Data File 

Name 

Flow Range (m3/h) 

1 Water 7 Wxx 2 – 60 

2 Oil 15 OTxx 2 – 40 

3 Gas 10 Gxx 30 - 200 
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The pipe on which accelerometer channel 1 is fitted is vertical pipe with flow direction from 

bottom to top. Accelerometer channel 2 and 3 are also fitted on vertical pipe with flow direction 

from top to bottom. Accelerometer channel 4 is located after the choke valve. Channel 2 is 

defective in all these experiments hence no data is present from that channel. The details of 

experiments conducted is mentioned in appendix C. Gas and Water experiment’s duration is 

around 10 minutes per experiment while Oil experiment’s duration is around 15 minutes per 

experiment. 

3.2 USN rig experiments 

The rig is a multiphase flow rig consisting of various sensors like flow meters, pressure 

transmitters and accelerometers as shown in figure 3.2. The location of accelerometer sensors 

in this rig is as shown in figure below using naming convection of Loc.1 and Loc. 2 meaning 

location of accelerometer 1 and 2 respectively. 

 

Figure 3.2: Piping & Instrument Diagram of USN rig 

Unlike to Equinor rig, the location of accelerometer sensors in USN rig is on horizontal pipe. 

Single phase flow experiments are performed and only accelerometer sensors data is recorded 

along with reference flow rate. The experiments brief summary is as shown in table below. 

Table 3.2: Experiments performed at USN (“x” and “xx”: flow rates) 

 Experiment Number of 

experiments 

Data File Name 

(x: flow || xx: channel) 

Flow Range 

(kg/min) 

Flow 

Range 

(m3/hr.) 

1 Water 5 Water_x_acc_xx 2 - 50 0.12 - 3 

2 Oil 5 Oil_x_acc_xx 2 - 50 0.12 - 3 

3 Gas 7 Air_x_acc_xx 0.2 - 2 0.01 – 0.12 
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Figure 3.3: USN rig site photo with focus on accelerometer sensor’s location 

3.3 Accelerometer Sensor 

An accelerometer sensor measures the acceleration forces acting on an object, which enables 

to monitor object’s movement and position in space. There are two types of acceleration forces: 

static forces and dynamic forces. Static forces are forces that are constantly being applied to 

the object (such as friction or gravity). Dynamic forces are “moving” forces applied to the 

object at various rates (such as vibration, or the force exerted on a cue ball in a game of pool). 

In the experiments mentioned in this Theis, the accelerometer of make Hansford Sensors 

having model number HS-100 is used having a frequency response with minimum sensitivity 

changes of ± 3dB in between 0.8 Hz to 15 kHz [7]. However, the mounted resonant frequency 

of this sensor is 30 kHz. As the name implies, it is the result of the natural resonance of the 

mechanical structure of the accelerometer itself. 

 

Figure 3.4: Clamp-on HS-100 accelerometer sensor fitted on horizontal pipe in USN rig 
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4 Raw Data Analysis 
In this chapter analysis of raw data from Equinor is performed. This covers data handling like 

getting all data in MATLAB, putting data in tabular format, finding missing values, find 

outliers with respect to single phase experiments. 

4.1 Raw Data structure 

The Data obtained is in the form of MATLAB data file and is named according to type of flow 

material and corresponding number of experiment, for example one such file is G02.mat which 

contains sensor readings of one gas experiment with flow rate of 200 m3/h. In total 32 such 

files are present from Equinor rig experiments. 

For each experiment, 52 variables are collected. Variables in this context is the values of 

different sensors located at various positions and includes values of temperature, differential 

pressure, density, choke valve position, mass flow rate, volumetric flow rate and accelerometer 

sensor. Table 4.1 shows variables present in raw data along with their meaning and units. 

Custom made MATLAB functions mentioned in appendix is used to extract data from each 

raw data experiment file and data is put in tabular format for further processing. After 

performing loop to find missing values, 4 values of Krohne flowmeter were found missing. 4 

experiments named W12, OT30, OT28 and OT26 doesn’t have Krohne flow rate. Internal 

structure of files is as shown in figure 4.1. 

 

Figure 4.1 Internal Structure of Raw Data files (.mat) 
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Table 4.1: Variables present in raw data from Equinor 

 

Sr No Variable Variable Sub Set Meaning Unit

1 oilRef q Volumetric Flow m3/h

2 w mass flow rate t/h

3 rho density kg/m3

4 T Temp deg C

5 WiO Water in Oil %

6 watRef q Volumetric Flow m3/h

7 w mass flow rate t/h

8 rho density kg/m3

9 T Temp deg C

10 gasRef q Volumetric Flow m3/h

11 w mass flow rate t/h

12 rho density kg/m3

13 T Temp deg C

14 temp in In Temperature deg C

15 out Out Temperature deg C

16 press in In pressure bar

17 out Out Pressure bar

18 STec rho density (measured by gamma densitometer) kg/m3

19 HIC pos choke valve position %

20 MPP TIn In Temperature deg C

21 TOut Out Temperature deg C

22 pIn In pressure bar

23 dp differential pressure psi

24 HIC choke valve position %

25 f ?? --

26 Sep T Temp deg C

27 p pressure bar

28 hOil Height of interaface level : Oil --

29 hWat Height of interaface level : Water --

30 rho02 density kg/m3

31 rho10 density kg/m3

32 rho11 density kg/m3

33 rho20 density kg/m3

34 rho21 density kg/m3

35 Endres w mass flow rate t/h

36 q Volumetric Flow m3/h

37 rho density kg/m3

38 T Temp deg C

39 Krohne w mass flow rate t/h

40 q Volumetric Flow m3/h

41 rho density kg/m3

42 T Temp deg C

43 RedEye WC Water Cut (Ratio of water compared to Total Volume) %

44 Emco dp1 Differential pressure # 1 psi

45 dp2 Differential pressure # 2 psi

46 Wika dp1 Differential pressure # 1 psi

47 dp2 Differential pressure # 2 psi

48 dp3 Differential pressure # 3 psi

49 Data ch:1 Accelerometer data from channel 1 g

50 ch:2 Accelerometer data from channel 2 (defective) g

51 ch:3 Accelerometer data from channel 3 g

52 ch:4 Accelerometer data from channel 4 g



 

 

   

20 

At this stage main work is to get data from different .mat files, combine them and put them in 

tabular format. MATLAB code mentioned in Appendix E is used for the same. Also, it is 

observed that Oil Choke experiments were creating outliers in many sensor readings which in 

turn were expanding the distribution of sensor readings range in histogram and box plot. The 

values in Oil Choke experiments (OCxx) can be seen in figure 4.2 below.  

  

Figure 4.2 Screen Snip of rows showing values of Oil Choke experiments (OCxx) 

Since the focus of this work is to find relation between accelerometer data and single - phase 

flow rates, Oil Choke experiments were removed from the dataset and only single - phase 

experiments were considered for further analysis. 

4.2 Revamped Data Structure for ML 

At this point the data is split into two parts as follows : 

1. All Variables except accelerometer data (Variable named ‘Data’ from figure 4.1 & table 4.2) 

This data is sensor variables for each experiment and contains 51 variables for each 

experiment. 

2. Accelerometer data 

This data is accelerometer channel 1, 3 & 4 values are each experiment and contains 78 

variables i.e., 26 features of each channel for each experiment. 
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5 Accelerometer Data Analysis 
Since the main area of focus of this thesis is estimating flow velocity in single phase flows 

using accelerometer sensor network, further thesis continues with only 3 variables from total 

of 52 variables. The 3 variables are accelerometer channel 1, channel 3 and channel 4. 

This chapter covers the working principle of accelerometer sensor. Relationship of 

accelerometer signals with flow velocity is studied. Spectral Analysis is performed to study 

effect of flow velocity and flow type on accelerometer signals. 

5.1 Working of accelerometer sensor 

Accelerometers are full-contact transducers typically mounted directly on high-frequency 

elements. They rely on the use of piezoeltric effect which occurs when a voltage is generated 

across certain trypes of crystals as they are stressed. The vibration of test strcture on which 

these accelroemters are fitted, is transmitted to a sismic mass inside the accelerometer that 

generates a proportional force on the piezoelectric crystal. This external stress on the crystal 

then generates a high-impedance electrical charge proportional to the applied force and thus 

proportional to vibration. 

 

Figure 5.1 Basic illustration of accelerometer sensor on pipe 

Piezoelectric or charge mode accelerometers require an external amplifier or inline charge 

converter to amplify the generated charge, lower the output impedance for compatibility with 

measurement devices, and minimize susceptibility to external noise sources and crosstalk. 

Other accelerometers have a charge-sensitive amplifier built inside them. This amplifier 

accepts a constant current source and varies its impedance with respect to a varying charge on 

the piezoelectric crystal. The benefits of an accelerometer include linearity over a wide 

frequency range and a large dynamic range. 

 

Accelerometer sensor 

Piezoelectric crystal 

vibrations 
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5.2 Vibrations and flow rate 

Accelerometer sensor measures vibrations caused by material flowing through pipes. 

Theoretically it is proved that the flow rates in pipes are linearly related to the transverse 

vibrations induced in pipes [8]. Also, relationship between fluid flow rates in pipes and 

vibrations due to it is mentioned in Blake [9]. 

In the literature, the experimental correlation between the fluid flow rate through a pipe (Q) 

and the acceleration affecting the pipe wall in the radial direction has been described with a 

series of linear relations (∝), expressed by (5.1) 

𝑄 = 𝐴𝑈 ∝ 𝑢′ ∝ 𝜏𝑤 ∝  
𝜕2𝜏𝑤

𝜕𝑡2
 (5.1) 

Where, 

A = cross sectional area of pipe 

U = average flow velocity 

𝑢′ = flow velocity fluctuations along axial 

𝜏𝑤 = shear stress in the pipe 

Direct mathematical relation between vibration and flow rate in third order root function of 

water flow rate is shown by Equation (5.2) [10]. 

𝑓(𝑡) = α3√𝑣(𝑡) + 𝛽√𝑣(𝑡) + 𝛾𝑣(𝑡) + 𝛿 (5.2) 

Where, f(t) = flow rate, v(t) = measured vibration and α, β and γ are function parameters that 

must be adjusted according to study case. 

Since the nature of study which is dealt in this thesis is the basis for complex process of multi-

phase flows, it’s difficult to make mathematical model relationship between vibration and flow 

rate. Hence considering that there is relation between vibration patterns induced on pipe walls 

due to flow velocity, further spectral analysis is done to obtain the vibrations patterns due to 

Oil, Water and Gas flow type. And this vibrations patterns forms as basis for feature extraction. 

But there are many things to cover before getting there. 

5.2.1 Various Studies Based on Vibration & Flow velocity 

As part of the literature study, previous studies based on vibration analysis and its relation to 

flow velocity are studied and summarized in table 5.1 below. This acts as a strong support for 

this thesis in relation to type of approach and features selection. 
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5.3 Spectral Analysis 

The raw data obtained from accelerometer sensor is of form continuous time series data which 

gives gravity (g) against time (t). The data collected for this thesis has a sampling frequency of 

51.2 kHz i.e., 51200 samples are collected every second and that too the experiment’s length 

is around 10-15 minutes.  

5.3.1 Raw Signal Plot 

Directly plotting accelerometer channel 1 data gives output figure like shown below. The figure 

shown below is of experiment G02 and channel 1. Hence corresponding signal processing is 

done on raw data and is covered in the following sections. 

 

 

Figure 5.2 Plot of Raw accelerometer channel 1 of first 25000 samples 

5.3.2 Fast Fourier Transform of vibration data 

Direct plots of accelerometer signals in time domain are not informational. In order to extract 

relevant information from them, an algorithm named FFT is used. This algorithm converts 

original domain i.e., time domain data of signals to a representation in frequency domain. The 

accelerometer data which is in the form of waveform is actually a sum of serious of different 

frequencies, amplitudes and phases. To deconstruct this waveform into individual components, 

Fourier analysis is used. FFT plots in this case enables to study the presence of certain 

frequencies in accelerometer data and identify different frequencies with different amplitudes 

in Gas, Water and Oil type flow and also helps to study change in frequencies and amplitudes 

when flow rate is changed. Plots are plotted according to flow type i.e., all the experiments 

with only Water flow but with different flow rate is shown in figure 5.3 to 5.5. Likewise, Gas 

and Oil FFT plots are shown in figure 5.6 to 5.8 and figure 5.9 to 5.11 respectively. 
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Figure 5.3 FFT plot of Accelerometer channel 1 Water type experiments 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 FFT plot of Accelerometer channel 2 Water type experiments 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5 FFT plot of Accelerometer channel 3 Water type experiments 
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Figure 5.6 FFT plot of Accelerometer channel 1 Gas type experiments 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 FFT plot of Accelerometer channel 2 Gas type experiments 

  

 

 

 

 

 

 

 

 

 

Figure 5.8 FFT plot of Accelerometer channel 3 Gas type experiments 
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Figure 5.9 FFT plot of Accelerometer channel 1 Oil type experiments 

 

  

 

 

 

 

 

 

 

 

Figure 5.10 FFT plot of Accelerometer channel 2 Oil type experiments 

 

  

 

 

 

 

 

 

 

 

 

Figure 5.11 FFT plot of Accelerometer channel 3 Oil type experiments 
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Following observations can be made on basis of FFT plots. 

• For Water experiments (“W”) dominant frequencies lies within range 0 to 2 kHz and 

below amplitude 0.5 (Refer Figure 5.3 to Figure 5.5). 

• For Oil experiments (“OT”) dominant frequencies lies within range 0 to 5 kHz and 

below amplitude 0.5 (Refer Figure 5.9 to Figure 5.11). 

• For Gas experiments (“G”) dominant frequencies lies within range 0 to 15 kHz and up 

to amplitude 1.0 (Refer Figure 5.6 to Figure 5.8). 

• Accelerometer channel 2 is showing less amplitudes for each experiment as compared 

to other 2 channels. 

• Accelerometer channel 3 is showing large noise levels especially in higher frequencies 

in liquid experiments like water and oil, most probably due to presence of Oil Choke 

Valve just before the channel 3. 

5.3.3 Power Spectral density of vibration data 

Analysis of vibration data is incomplete and mostly inaccurate without doing Power Spectral 

density (PSD) analysis since the nature of vibration in real world is random. The main reason 

why PSD is preferred over FFT is that these PSD plots are normalized to frequency bin width, 

preventing the duration of the data set from changing the amplitude of the result. This removes 

dependency over duration of an experiment and enables the developed system to give real time 

accurate analysis of accelerometer data. PSD plots are frequency (x-axis) vs dB/frequency. 

They show the power of frequency present in spectrum. Pwelch() MATLAB method is used 

to get PSD plots. Along with this, windowing parameters are also passed so as to smooth the 

signal by eliminating spectral leakages. The process of windowing a signal involves 

multiplying the time record by a smoothing window of finite length whose amplitude varies 

smoothly and gradually towards zero at the edges. The length, or time interval, of a smoothing 

window is defined in terms of number of samples. Multiplication in the time domain is 

equivalent to convolution in the frequency domain. Therefore, the spectrum of the windowed 

signal is a convolution of the spectrum of the original signal with the spectrum of the smoothing 

window. Windowing changes the shape of the signal in the time domain, as well as affecting 

the spectrum that you see. 

Hanning Window : 

Equation 5.3 [15] 

 

𝑤(𝜏) = {
0.5(1 + cos (𝜋𝜏/𝑇))     for |𝜏| < 𝑇
0     elsewhere 

 (5.3) 
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Figure 5.12 PSD plot of Accelerometer channel 1 Water type experiments (Without Hanning Window) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13 PSD plot of Accelerometer channel 1 Water type experiments (With Hanning Window) 
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Figure 5.14 PSD plot of Accelerometer channel 1 Oil type experiments (Without Hanning Window) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5.15 PSD plot of Accelerometer channel 1 Oil type experiments (With Hanning Window) 
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Figure 5.16 PSD plot of Accelerometer channel 1 Gas type experiments (With Hanning Window) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17 PSD plot of Accelerometer channel 1 Gas type experiments (Without Hanning Window) 
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5.3.4 Relative study of different flow types 

In this section Power spectrum density of same flow rate  i.e., 40 m3/h is analyzed as shown in 

Figure 5. Different vibration profile is observed for different flow type. This forms as a basis 

for classification model. 

 

Figure 5.18 PSD plot of Accelerometer channel 1,2 and 3 for 40 m3/h flow rate (With Hanning Window) 
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6 Pre-Processing of Accelerometer Data 
This chapters covers filtering of accelerometer data using observations obtained from previous 

chapter. Then splitting of signal is done since the experiment is conducted for 10 – 15 minutes 

and for real time usage of machine learning models, it becomes necessary to train the models 

with data from few seconds time span.  

6.1 Filtering of vibration signals 

FFT plots covered in previous chapter revealed dominating frequencies in Water, Oil and Gas 

flow experiments. Also, PSD plots revealed the intensity of these frequencies over the span of 

complete experiment. The main vibration frequencies are located at lower frequency range.  

This frequency range forms the basis for selecting design parameters of the filters. Hence from 

plots study and frequency response of accelerometer, range of 10 Hz to 15 kHz is selected for 

designing band-pass filter. The range for only water and oil experiments vibration data can be 

selected much less in order to get better resolution but since dominating frequencies in Gas 

experiments appear in high frequency range, in order to cover all thr.ee flow types, range of 10 

Hz to 15 kHz is selected. Low frequency cut-off removed the frequency harmonics likely to 

originate from experiment setup and high frequency cut-off removed the added noise since the 

sensitivity of sensor changes above 15 kHz, which is likely to give unwanted noise above this 

frequency. 

Fourth order band pass Butterworth filter of range 10 Hz to 15 kHz is selected to use to filter 

accelerometer sensor data. Butterworth filter is selected due to its maximally flat frequency 

response in the passband. This flat top characteristic is known to give very accurate amplitudes. 

Also, Butterworth filter is ripple free. In this thesis, lower order filter is selected i.e., 4th order 

because high order filters tend to give sharper cutoff at both the edges and this can lead to loss 

of important data especially for Gas experiments whose dominant frequencies lies very close 

to 15 KHz. 

6.2 Designing of filter 

MATLAB filter designer app is used to design a filter of specifications shown in figure 6.1 

below. 
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Figure 6.1 MATLAB filter design screen snip showing parameters 

6.3 Filtered signal output 

6.3.1 For Water flow experiments 

It is observed that since filtering removed the effect of higher frequencies, dominant 

frequencies in lower range got visible, as its amplitude is increased and one such effect can be 

seen for W09 experiment (green line) visible in filtered output at 500 Hz. 

 

Figure 6.2 FFT plots of Water experiments (Unfiltered : Left) and (Filtered : Right) 
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6.3.2 For Gas flow experiments 

For Gas flows, vibration profile is spread over the range so all the dominant frequencies are 

already visible with and without filter as shown in plots below. But what is observed is increase 

in amplitudes of dominant frequencies which can help in differentiating flow type and flow 

rates better due to increased visibility. This in turns make ML models more accurate. 

 

Figure 6.3 FFT plots of Gas experiments (Unfiltered : Left) and (Filtered : Right) 

6.3.3 For Oil flow experiments 

Filtering in this case revealed the dominant frequencies since their amplitudes are increased 

and also peaks for each experiment are now more clearly visible. This peak will act as one of 

the features for ML models. Looking at y-axis i.e., amplitude range, the peaks of each 

experiment are more clearly distinguishable, forming a basis for training ML models. 

 

Figure 6.4 FFT plots of Oil experiments (Unfiltered : Left) and (Filtered : Right) 

6.4 Splitting of filtered signal 

At this point, filtered accelerometer signal from all 3 channels is available. But the signal for 

each experiment is over a timespan of around 10-15 minutes. In order to develop ML models 

which can classify and predict in real-time, it is necessary to split each signal in duration of 
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few seconds. Using the data of this split signal which is of duration of certain seconds is then 

used to train ML models. Usually, real-time systems give output immediately when an input is 

given to them but since this thesis is still on research level, to be on safe side, duration of 1 

second is used for splitting signal. Based on the sampling frequency of 51.2 kHz, 1 second 

duration contains 51200 samples, which contains enough information of signal. To avoid loss 

of data due to split of signals, signals are being split with 50 % overlapping technique. To 

explain, consider plot shown in figure 6.5 below, showing filtered signal of first 200 samples 

of accelerometer channel 1 of an experiment G03. The split of 1 sec based on x – axis co-

ordinates is just for demonstration in the figure. 

 

Figure 6.5 One second split of accelerometer channel 1 signal of experiment G03 

6.5 Feature Engineering 

The data at this point is filtered accelerometer signal of duration 1 second. Even though it is 

filtered, it is still a raw signal. This raw signal cannot be applied directly to machine learning 

models. Feature engineering is the process of transforming raw data into features that better 

represent the characteristics of raw data to machine learning models, resulting in improved 

model accuracy on unseen data. Better features mean increased flexibility and more open ML 

models. Wrong models will still give good results since they can pick up on good structure in 

data. But flexibility of good features will allow to use fewer complex models that run faster, 

easier to understand and easier to maintain. Selecting good features to develop less complex 

machine learning model is desirable in almost all ML related developments. 

6.5.1 Accelerometer features 

Feature functions which can be applied on 1 second vibration signal can be divided in to 3 

categories.  

1. Basic Statistical features 

2. Time-domain features 

3. Frequency domain features 
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Following table gives brief review of the top features used on the signal. 

Table 6.1: Features used on accelerometer signals  

Sr 

No 

Categor

y 
Feature Name Definition Formula / Derived 

1 

F
re

q
u
en

cy
 d

o
m

ai
n

 

Peak value 1, 2 

and 3 

Use of top 3 peaks 

from FFT of 

accelerometer signal 

 

2 State levels 
High and Low level of 

signal 

Using histogram : 

Lower : 𝑖low ≤ 𝑖 ≤
1

2
(𝑙ḣigh − 𝑖low ) 

Higher : 𝑖low +
1

2
(𝑖high − 𝑖low ) ≤ 𝑖 ≤

𝑖high  

3 Peak to peak 

Difference between 

maximum positive 

and maximum 

negative amplitude 

 

4 

T
im

e 
D

o
m

ai
n
 

Zero cross rate 

Rate at which signal 

changes from positive 

to zero to negative or 

vice versa. 

𝑧𝑐𝑟 =
1

𝑇 − 1
∑  

𝑇−1

𝑡=1

1ℝ<0
(𝑠𝑡𝑠𝑡−1) 

5 
Spurious free 

dynamic range 

Dynamic range 

between the 

fundamental tone and 

largest spur 

SFDR = Amplitude of 

fundamental (dB) – 

amplitude of largest spur 

(dB) 

6 
Power 

Band-width 

Difference between 

upper frequency and 

lower frequency 

where the response of 

both is 3 dB down 
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7 
Occupied 

bandwidth 

Bandwidth of the 

frequency band that 

contains a specified 

percentage of total 

power of signal 

 

8 Band power 
Average power in 

accelerometer signal 

𝑃[𝜔1,𝜔2] =
1

2𝜋
∫  

𝜔2

𝜔1

[𝑆(𝜔)

+ 𝑆(−𝜔)]𝑑𝜔 

9 Peak to RMS 

Ratio of largest value 

in signal to root-

mean-square value of 

that signal 

∥ 𝑋 ∥∞

√1
𝑁

∑  𝑁
𝑛=1 |𝑋𝑛|2

, 

10 RSSQ 
Root Sum of Squares 

level of signal 𝑥RSS = √∑  

𝑁

𝑛=1

|𝑥𝑛|2 

11 RMS 

Square root of 

average of squared 

value of signal 
𝑥RMS = √

1

𝜏
∫  

𝜏

0

𝑥2(𝑡)d𝑡 

12 Peak to peak 

Difference between 

maximum and 

minimum values 

 

13 
Median 

frequency 

Represents the 

midpoint of power 

distribution of signal 

Median = 1 + [

𝑛
2

− 𝑐

𝑓
] × ℎ 

14 Mean frequency 
Mean frequency of 

power spectrum 
𝑓mean =

∑  𝑛
𝑖=0 𝐼𝑖 ⋅ 𝑓𝑖

∑  𝑛
𝑖=0 𝐼𝑖

 

15 State levels 
High and Low level of 

signal 

Using histogram : 

Lower : 𝑖low ≤ 𝑖 ≤
1

2
(𝑙ḣigh − 𝑖low ) 

Higher : 𝑖low +
1

2
(𝑖high − 𝑖low ) ≤ 𝑖 ≤

𝑖high  

16 

B
as

ic
 

S
ta

ti
st

ic

al
 Standard 

Deviation 

Measure of how far 

the signal fluctuates 

from mean 
𝑆 = √

1

𝑁 − 1
∑  

𝑁

𝑖=1

|𝑥𝑖 − 𝜇|2 
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17 Max 
Largest value in 

signal vector 

 

18 Range 

difference between 

the maximum and 

minimum values in 

signal vector  

19 
Interquartile 

range 

Spread of the values 

in signal calculated on 

basis of lower and 

higher quartile 

Lower quartile = median of  

smallest values 

Higher quartile = median of 

largest values 

20 mean 
Mean of time series of 

signal 
𝜇𝑥 =

1

𝑁
(𝑥(1) + 𝑥(2) + ⋯ + 𝑥(𝑁)) 

The details of symbols mentioned in equations [23] in table 6.2 is as following: 

𝑖low  = lowest-indexed histogram 

𝑙ḣigh  = highest-indexed histogram 

S = signal of length T 

1ℝ<0
 = indicator function 

𝑆(𝜔) = power spectral density 

[𝜔1, 𝜔2] = band limits 

X = signal vector (1 sec signal in time-series form) 

𝜏 = signal length 

𝑛 = number of frequencies 

𝑐 = cumulative frequency preceding to the median class frequency 

ℎ = width of the class interval 

𝜇 = weighted mean of x 

6.6 Feature Dataset 

All the features engineering for the features mentioned in table 6.1 is performed on 1 second 

split signal of all thr.ee accelerometers channel. MATLAB inbuilt functions are used for the 

same. The output of each feature function is then stored in newly created column in existing 

dataset. Column name in the dataset is kept similar to function name used and corresponding 

channel. Dataset generated by feature extraction on all thr.ee accelerometers is shown in figure 

6.6. 
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6.7 Normalization of dataset 

Normalizing is done in categories i.e.; it is done based on the type of variable under 

consideration. For example, accelerometers features are not normalized with other variables 

like temperature and pressure. Same features like meanfreq_1 and meanfreq_2 is normalized 

together to not lose their spatial relationship. Let’s consider an example using values to explain 

further: 

For example, imagine these values for meanfreq_1 and meanfreq_2. Note that first thr.ee 

elements are the same. 

meanfreq_1_example = [1 2 3 3 5 6 2 2]; 

meanfreq_2_example = [1 2 3 9 11 12 14]; 

If they are normalized separately, output is the different values for first thr.ee elements 

although they have the same unit and magnitude: 

normalize(meanfreq_1_example) 

ans = 1×8 

-1.1832   -0.5916         0         0    1.1832    1.7748   -0.5916   -0.5916 

normalize(meanfreq_2_example) 

ans = 1×7 

-1.2087   -1.0207   -0.8327    0.2955    0.6715    0.8595    1.2356 

To solve this, signal features are combined in one vector, normalize that vector, and then split 

it back into 4 features. Continuing with the example: 

meanfreq_all = [meanfreq_1_example, meanfreq_2_example] 

meanfreq_all = 1×15 

1     2     3     3     5     6     2     2     1     2     3     9    11    12    14 

meanfreq_all_normalized = normalize(meanfreq_all); 

meanfreq_1_normalized = meanfreq_all_normalized(1:8) 

meanfreq_1_normalized = 1×8     

-0.9384   -0.7076   -0.4769   -0.4769   -0.0154    0.2154   -0.7076   -0.7076 

meanfreq_2_normalized = meanfreq_all_normalized(9:end) 

meanfreq_2_normalized = 1×7     

-0.9384   -0.7076   -0.4769    0.9076    1.3691    1.5999    2.0614 

Now, same normalized values for the first thr.ee elements is obtained. 

6.7.1 Adding de-normalizing capability 

While performing normalization on the dataset, the corresponding mu and sigma value of each 

variable is stored in separate variable named ‘normalization’. This variable can be later used to 

de-normalize the dataset for further analysis. Also, this data from normalization can be used 

while trying to use completely new data for this thesis. 



 

 

   

43 

6.8 Final Dataset for ML models 

Since one of the machine learning models is for classifying flow type based on Water, Oil and 

Gas, extra column named ‘category’ is added for each row and corresponding alphabet is added 

in that row for each experiment i.e., G for Gas, OT for Oil and W for Water. Each experiment 

is conducted for 10 to 15 minutes and in total 32 experiments were performed by Equinor. 

Initially there is only one row per each experiment but splitting accelerometer signal in duration 

of 1 second for each experiments caused 1000 rows for each experiment. So final dataset is of 

table : 16,680 Rows and 114 columns. For machine learning purpose, two datasets are required 

i.e., training dataset and test data. While there is in-built mechanism in MATLAB to randomly 

separate training and test data, to make the models more robust and to justify it better, manually 

training data and test data are separated. So, 6 experiments, 2 of each flow type are kept totally 

separated from training of Machine learning models in next section and test results are entirely 

from experiments not at all included in training data set. Following Table 6.2 illustrates 

manually separated training and test data. 

Table 6.2: Manually separated training and test data 

Training Data Test Data 

Experiment 

Name 

Flow Rate 

 (m3/h) 

Experiment 

Name 

Flow Rate 

(m3/h) 

Experiment 

Name 

Flow Rate 

(m3/h) 

Experiment 

Name 

Flow Rate 

(m3/h) 

Water Type OT8 8.0 Gas Type G04 160.0 

W01 2.0 OT28 28.0 G11 30.0 G06 120.0 

W02 5.0 OT26 26.0 G02 200.0 OT09 30.0 

W08 20.0 OT24 24.0 G05 140.0 OT22 22.0 

W10 40.0 OT6 6.0 G03 180.0 W03 10.0 

W11 50.0 OT20 20.0 G07 100.0 W09 30.0 

Oil Type OT18 18.0 G08 80.0   

OT4 4.0 OT16 16.0 G09 60.0   

OT2 2.0 OT14 14.0 G10 40.0   

OT08 40.0 OT12 12.0     

OT10 20.0 OT30 30.0     

 

6.8.1 Tabular format of training and test data set 

Seperating the dataset caused following sizes: 

• Training dataset : 14860 Rows x 114 Columns 

• Test dataset : 2000 Rows x 114 Columns 
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7 Classification Model 
For the purpose of estimating flow velocity in these experiments, it is needed to also identify 

what is the type of material that is flowing. Since this is part of multiphase flow meters in oil 

& gas applications, the type of material flowing can be anything from Oil, Gas, Water or a 

combination of any two or thr.ee. Since the main focus here is single phase flow analysis, the 

estimation will be of only Gas, Oil or Water. This chapter covers development of classification 

model in order to predict flow type i.e., Oil, Water or Gas based on accelerometer channel 

input. 

7.1 Basics of Machine Learning 

Machine learning can be briefly defined as a system of computer algorithms that are initially 

programmed using historical inputs and corresponding outputs. So, these algorithms can 

predict new output values when similar type of inputs are given to them. Like humans, ML 

applications learn from experiences without new for direct programming. Machine Learning is 

complex, which is why it has been divided into two primary areas, supervised learning and 

unsupervised learning. Each one has a specific purpose and action, yielding results and utilizing 

various forms of data. 

In this thesis, since the data is known, supervised learning approach is used for classification 

and prediction models. 

 

 

Figure 7.1 Basic Machine Learning Diagram 
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7.1.1 Common Terminology 

This section covers common terms used in machine learning application. 

Regression : 

A method that attempts to determine the strength and character of the relationships between 

one dependent variable and series of other variables. Mostly commonly used regression 

techniques are Linear regression and logistic regression. 

Mean Squared Error (MSE) : 

Average of squared differences between predicted and actual output. This is usually used to 

showcase the performance of ML model developed and compare different types of models. 

Confusion Matrix : 

A table which defines the performance of a classification algorithm. It visualizes and 

summarizes the performance of a classification algorithm. Basically, it shows how correctly 

the inputs in test data is classified in desired category. Higher the percentage, higher is the 

accuracy of that model. 

True Positive Rates (TPR) : Unlike the false alarm situation encountered in our day to day 

lives, true positive is an outcome where the model correctly predicts the positive class. They 

are the actual positives which are correctly identified. 

 Receiver Operating Characteristic (ROC) curve : 

It is a graphical plot that illustrates the diagnostic ability of a binary classifier system as its 

discrimination threshold is varied. The method was originally developed for operators of 

military radar receivers starting in 1941, which led to its name [16]. 

Area Under the Curve (AUC): 

It is the measure of the ability of a classifier to distinguish between classes and is used as a 

summary of the ROC curve. Higher the value of AUC i.e., as close as possible to 1 or 1, the 

better the performance of model to distinguish between positive and negative classes. 

7.2 Algorithms Explained 

There are many algorithms being used in machine learning applications and many new are 

being developed. But some basic algorithms which can serve as basis for this study are used 

here and only that algorithms are explained in this section. 

7.2.1 Linear Discriminant Analysis 

It is a classification method that projects high-dimensional data onto a line and performs 

classification in this one-dimensional space. The projection maximizes the distance between 

the means of the two classes while minimizing the variance within each class. Each variable in 

the data is shaped in the form of a bell curve when plotted i.e., Gaussian. The values of each 

variable vary around the mean by the same amount on the average i.e., each attribute has the 

same variance. Figure 7.2 shows basic illustration [17] of LDA approach. 
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Figure 7.2 Linear Discriminant Analysis illustration 

7.2.2 Naive Bayes 

It is a classification method based on applying Bayes’ theorem with the “naive” assumption of 

conditional independence between every pair of features given the value of the class variable. 

Bayes’ theorem states the following relationship [18], given class variable 𝑦 and dependent 

feature vector 𝑥1 through 𝑥𝑛 : 

 

𝑃(𝑦 ∣ 𝑥1, … , 𝑥𝑛) =
𝑃(𝑦)𝑃(𝑥1, … , 𝑥𝑛 ∣ 𝑦)

𝑃(𝑥1, … , 𝑥𝑛)
 (7.1) 

 

for all , this relationship is simplified to 

 

𝑃(𝑦 ∣ 𝑥1, … , 𝑥𝑛) =
𝑃(𝑦) ∏  𝑛

𝑖=1 𝑃(𝑥𝑖 ∣ 𝑦)

𝑃(𝑥1, … , 𝑥𝑛)
 (7.2) 

 

Since 𝑃(𝑥1, … , 𝑥𝑛) is constant given the input, we can use the following classification rule: 

 

𝑃(𝑦 ∣ 𝑥1, … , 𝑥𝑛) ∝ 𝑃(𝑦) ∏  

𝑛

𝑖=1

𝑃(𝑥𝑖 ∣ 𝑦)

⇓

𝑦̂ = arg 𝑚𝑎𝑥
𝑦

 𝑃(𝑦) ∏  

𝑛

𝑖=1

𝑃(𝑥𝑖 ∣ 𝑦)

 (7.3) 

 

Relationship 

between x1 & x2 Dimensionality 

reduction using 

direct method 
Dimensionality reduction using LDA 
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7.2.3 Support Vector Machine (SVM) 

It is one of the most robust classification models developed at AT&T Bell Laboratories by 

Vladimir Vapnik [19]. It creates a hyperplane which acts as a border between positive and 

negative class and the data is classified based on the position in relation to this border. 

 

 

 

 

 

 

 

 

 

Figure 7.3 Support Vector Machine plot [19] 

7.2.4 K-Nearest Neighbour (KNN) 

It is a classification model where object is classified by the plurality vote of its neighbours with 

the most being assigned to the class most common among its k nearest neighbors. Consider a 

data point in n dimensional space which is defined by n features. This algorithm calculates the 

distance between one point to another and then assign the label of unobserved data based on 

the labels of nearest observed data points. 

Figure 7.4 Illustration of KNN classification algorithm 
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7.2.5 Gaussian Processes (GP) 

These are the generalization of gaussian probability distribution. Whereas a probability 

distribution describes random variables which are scalars or vectors (for multivariate 

distributions), a stochastic process governs the properties of functions. Leaving mathematical 

sophistication aside, one can loosely think of a function as a very long vector, each entry in the 

vector specifying the function value f(x) at a particular input x [20]. 

Figure 7.5 Illustration of Gaussian Probability Function [21] 

On the left in figure 7.5, each line is a sample from the distribution of functions and each feature 

as an input to model is reflected in the wide range of possible functions and diverse function 

shapes on display. Sampling from Gaussian process is like getting outputs of unknown function 

at various points as shown in right side in figure 7.5. 

7.2.6 Ensemble Methods 

It is a machine learning technique that combines several base models in order to produce one 

optimal predictive model. A Decision Tree determines the predictive value based on series of 

questions and conditions. Rather than just relying on one Decision Tree and hoping to make 

the right decision at each split, Ensemble Methods takes a sample of Decision Trees into 

account, calculate which features to use or questions to ask at each split, and make a final 

predictor based on the aggregated results of the sampled Decision Trees. The thr.ee main 

classes of ensemble learning methods are bagging, stacking, and boosting [22]. 

• Bagging : Fitting many decision trees on different samples of the same dataset and 

averaging the predictions. 

• Stacking : Fitting many different models’ types on the same data and using another 

model to learn how to best combine the predictions. 

• Boosting : Adding ensemble members sequentially that correct the predictions made by 

prior models and outputs a weighted average of the predictions. 

Popular Bagging ensemble algorithms are Random Forest, Bagged Decision Trees and Extra 

Trees. Since bagging algorithm is used in this thesis, its structure is shown in figure 7.6. 

7.2.7 Neural Network 

These systems are inspired by biological neural networks that constitute animal brains. So, it 

is a collection of connected nodes called artificial neurons. The signal at the connection is a 

real number and the output of each neuron is computed by some-nonlinear function of sum of 

its input. Each node has an associated weight and thr.eshold and changes based on learning due 

to past inputs. The layers of functions between the input and the output are what make up the 
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neural network. In practice, the neural network is slightly more complicated than the figure 7.7 

shown below. 

 

 

Figure 7.6 Structure of Bagged Ensemble Algorithm 

 

Figure 7.7 Simple Structure of Neural Network 
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7.3 Flow type classification model 

Classification is a process of categorizing a given set of data into classes. Over 100 inputs for 

single row are present in dataset. But to maintain the focus of this thesis on accelerometer 

signals, only accelerometer channel inputs are used for training and testing these models. 

Selecting all 25 features of channel 1 gave testing accuracy of 99%. So, to stretch models a bit 

more and to limit the input data to just top features, only 3 features of just 1 channel is used 

further in this thesis. MATLAB classification learner app is used for training and testing using 

various classification algorithms and the model accuracy with total cost is mentioned in table 

7.1 below.  

Table 7.1: Different classification model performance 

 Inputs 

Accelerometer channel 1 

(Numbers) : Feature name 

Algorithm 

Test 

Accuracy 

(%) 

Confusion Matrix 

True Positive Rates (%) 

 Gas Oil Water 

1 (25) 

All features 

Linear Discriminant 91.5 85.5 96.5 99.8 

2 Naive Bayes 84.9 95.1 99.0 63.3 

3 SVM 98.4 97.2 99.5 100 

4 KNN 99.2 98.6 100 99.9 

5 Neural Network 97.2 95.1 99.5 100 

6 (3) 

Median frequency 

Mean frequency 

Zero cross-rate 

Linear Discriminant 98.9 98.3 100 99.5 

7 Naive Bayes 98.9 99.7 99.2 97.6 

8 SVM 97.0 95.5 98.5 99 

9 KNN 93.6 88.6 100 99.7 

10 Neural Network 93.6 89 98 99.8 

11 (2) 

Median frequency 

Peak value 1 

SVM 78.0 92 7.8 78 

12 KNN 98.2 97.6 98.8 99.2 

13 Neural Network 79.7 96.7 1  77.8 

14 (1) 

Median frequency 

SVM 87.8 99.9 0 96.8 

15 KNN 97.2 95.8 99.2 98.8 

16 Neural Network 84.6 96.8 0 92.6 

17 (2) 

Median 

State levels (low & high) 

SVM 67.4 99.7 100 2.6 

18 KNN 98.2 96.9 99.5 99.9 

19 Neural Network 95.2 96.8 73.0 100 
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Looking at the results of different models along with different features, the best model for 

classification of flow type is found to be : 

• KNN model with 3 inputs i.e., Median frequency, state levels low and state levels high. 

Here one feature is time domain feature i.e., median frequency and another one is 

frequency domain feature i.e., state levels. 

7.3.1  KNN Model  

Model Hyperparameters : 

• Preset : Fine KNN 

• Number of neighbors : 1 

• Distance metric : Euclidean 

• Distance weight : Equal 

• Standardize data : false 

PCA : Disabled 

Features : Median frequency, state levels low and state levels high 

Table 7.2: KNN model performance 

Training Results Test Results 

Accuracy (Validation) 99.8% 

 

Accuracy 98.2 % 

Total Cost (Validation) 31 

 

Total Cost 66 

Prediction Speed ~62000 obs/sec   

Training Time 7.3088 sec   

Figure 7.8 Test Confusion Matrix of Fine KNN model  
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7.3.2 SVM Model 

Model Hyperparameters : 

• Preset : Linear SVM 

• Kernel function : Linear 

• Kernel Scale : Automatic 

• Box Constraint level : 1 

• Multiclass method : One-vs-One 

• Standardize data : false 

PCA : Disabled 

Features : Median frequency, Mean frequency and Zero cross-rate 

 

Table 7.3: Linear SVM model performance 

Training Results Test Results 

Accuracy (Validation) 91.3% 

 

Accuracy 97 % 

Total Cost (Validation) 1141 

 

Total Cost 108 

Prediction Speed ~220000 obs/sec   

Training Time 47.969 sec   

 

Figure 7.9 Test Confusion Matrix of Linear SVM model  
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8 Flow rate Regression Model 
Machine learning algorithms are described as learning a target function (f) that best maps input 

variables (x) to an output variable (y): y = f(x). This is a general learning task to make 

predictions in the future (y) given new input variables (x). In this scope, input variables are 

features of accelerometer channels and output i.e., to be predicted variable is flow rate. 

Following table gives overview of performance of different models with different inputs. 

Table 8.1: Different Prediction Model Performance 

Sr No Input 

(Accelerometer) 

Algorithm RMSE 

(Test) 

R-Squared 

(Test) 

 Channel Features    

1 

1 

 

26 SVM 18.995 0.90 

2 7 GP Regression 15.713 0.94 

3 26 Neural Network 12.877 0.96 

4 5 GP Regression 13.846 0.95 

5 7 Ensemble Bagged 13.35 0.95 

6 

2 

 

26 SVM 32.389 0.72 

7 26 GP Regression 9.113 0.98 

8 26 Neural Network 11.162 0.97 

9 4 GP Regression 10.207 0.97 

10 4 Neural Network 13.454 0.95 

11 
3 

 

26 SVM 17.917 0.92 

12 26 GP Regression 17.426 0.92 

13 26 Neural Network 17.323 0.92 

14 

1, 2, 3 

76 Linear Regression 11.701 0.96 

15 76 SVM 12.016 0.96 

16 8 Neural Network 16.41 0.93 

17 8 Ensemble Bagged 12.739 0.96 

18 

1,2 

51 GP Regression 8.756 0.98 

19 51 SVM 9.2741 0.98 

20 13 Ensemble Bagged 12.717 0.96 

21 7 Ensemble Bagged 14.263 0.95 
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Following Section covers the  details of model with lowest RMSE and based on accelerometer 

channels. 

8.1.1 Accelerometer Channel 1 GP Model 

Model Hyperparameters : 

• Preset : Exponential GPR 

• Basis function : Constant 

• Kernel function : Exponential 

• Use isotopic kernel : true 

• Kernel Scale : Automatic 

• Signal Standard Deviation : Automatic 

• Sigma : Automatic 

• Standardize data : false 

• Optimize numeric parameters : true 

PCA : Disabled 

Features :  

• Median Frequency 

• Category 

• Peak to RMS 

• Peak value 1 

• Inter quartile range 

 

Table 8.2: Accelerometer Channel 1 GP model performance 

Training Results Test Results 

RMSE (Validation) 5.01 

 

RMSE 13.84 

MSE (Validation) 25.19 

 

R-Squared 0.95 

Prediction Speed ~10,000 obs/sec MSE (Test) 191.7 

Training Time 255.9 sec   
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Figure 8.1 Response plot of Accelerometer Channel 1 GP model 

 

Figure 8.2 Predicted vs Actual Test plot of Accelerometer Channel 1 GP model 
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8.1.2 Channel 2 GP Model 

Model Hyperparameters : 

• Preset : Rational Quadratic GPR 

• Basis function : Constant 

• Kernel function : Rational Quadratic 

• Use isotopic kernel : true 

• Kernel Scale : Automatic 

• Signal Standard Deviation : Automatic 

• Sigma : Automatic 

• Standardize data : false 

• Optimize numeric parameters : false 

PCA : Disabled 

Features :  

• Category 

• Peak value 1 

• Median Frequency  

• Inter quartile range 

 

Table 8.3: Accelerometer Channel 2 GP model performance 

Training Results Test Results 

RMSE (Validation) 7.83 

 

RMSE 10.20 

MSE (Validation) 61.43 

 

R-Squared 0.97 

Prediction Speed ~6100 obs/sec MSE (Test) 104.18 

Training Time 81.5  sec   
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Figure 8.3 Response plot of Accelerometer Channel 2 GP model 

Figure 8.4 Response plot of Accelerometer Channel 2 GP model 
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8.1.3 Channel 1,2,3 Ensemble Bagged 

Model Hyperparameters : 

• Preset : Bagged Trees 

• Minimum leaf size : 8 

• Number of learners : 30 

• PCA : Disabled 

Features :  

• Peak to RMS (all 3 channels) 

• Category 

• Peak value 1 (all 3 channels), Median frequency 

 

Table 8.4: Accelerometer Channel 1,2,3 Ensemble model performance 

Training Results Test Results 

RMSE (Validation) 2.44 

 

RMSE 12.73 

MSE (Validation) 5.98 

 

R-Squared 0.96 

Prediction Speed ~78,000 obs/sec MSE (Test) 169.8 

Training Time 4.18  sec   
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Figure 8.5 Response plot of Accelerometer Channel 1,2,3 Ensemble bagged model 

Figure 8.6 Predicted vs Actual Test plot of Accelerometer Channel 1,2,3 Ensemble bagged model 
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8.1.4 Channel 1 and 2 GP 

Model Hyperparameters : 

Preset : Exponential GPR 

Kernel function : Exponential 

Use isotopic kernel : true 

Kernel Scale : Automatic 

Signal Standard Deviation : Automatic 

Sigma : Automatic 

Standardize data : true 

PCA : Disabled 

Features : All 51 features 

 

Table 8.5: Accelerometer Channel 1 and 2 GP model performance 

Training Results Test Results 

RMSE (Validation) 2.4216 

 

RMSE 8.7561 

MSE (Validation) 5.864 

 

R-Squared 0.98 

Prediction Speed ~3800 obs/sec MSE (Test) 76.67 

Training Time 1433.5 sec   
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Figure 8.7 Response plot of Accelerometer Channel 1 and 2 GP model 

Figure 8.8 Predicted vs Actual Test plot of Accelerometer Channel 1 and 2 GP model 



 

 

   

64 

8.1.5 Channel 1 and 2 Ensemble Bagged 

Model Hyperparameters : 

• Preset : Bagged Trees 

• Minimum leaf size : 8 

• Number of learners : 30 

PCA : Disabled 

Features : 

• Median Frequency (both channels) 

• Mean (both channels) 

• Category 

• Peak value 1 (both channels) 

 

Table 8.6: Accelerometer Channel 1 GP model performance 

Training Results Test Results 

RMSE (Validation) 2.4914 

 

RMSE 14.263 

MSE (Validation) 6.206 

 

R-Squared 0.95 

Prediction Speed ~77000 obs/sec MSE (Test) 203.44 

Training Time 4.721 sec   
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Figure 8.9 Response plot of Accelerometer Channel 1 and 2 Ensemble Bagged model 

Figure 8.10 Predicted vs Actual Test plot of Accelerometer Channel 1 and 2 Ensemble Bagged model 
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9 Results 
This chapter details the combined performance of classification and prediction models 

developed in previous section. The results are showcased based on the testing of 6 experiments 

which were kept isolated from training dataset. So, the models discussed next doesn’t have any 

prior information of these 6 experiments. Following block diagram showcases the workflow 

for testing. 

As shown in figure 9.1, first the input is given to classification model. Here the input is 

accelerometer channel 1 features named median frequency, state levels low and high. The 

output of this classification model is type of flow material i.e., Gas, Oil or Water. This 

categorical output type acts as one of the inputs to prediction model. Prediction model also has 

other inputs and they depend upon the model and accelerometer channel, as mentioned in 

previous chapter. Although many models with different combination were tested. Only the 

robust models from Table 7.1 and Table 8.1 are selected for this section. 

Here, following mentioned models are used : 

Classification Model : 

1. KNN with accelerometer channel 1 features (3) 

2. SVM with accelerometer channel 1 features (3) 

3. Neural Network with accelerometer channel 1 features (3) 

Prediction Model : 

1. GPR with Accelerometer channel 1 (5) 

2. GPR with Accelerometer channel 2 (4) 

3. GPR with Accelerometer channel 1 and 2 (51) 

4. Ensemble bagged with Accelerometer channel 1 and 2 (8) 

5. Ensemble bagged with Accelerometer channel 1, 2 and 3 (8) 

9.1 MATLAB Live Editor 

This section covers the testing performed on a dataset of 3600 rows of 6 experiments. Here 

screen snippets of live editor are shown. 

 

Median Frequency 

State levels low 

State levels high 

Classification 

Model 

Prediction 

Models 

Oil 

Water 

Gas 

Flow Rate  

20 m3/h 
Channel features 

Figure 9.1 Block Diagram showing testing scenario used to showcase the results 
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Random Row selected from test data 

Original Flow Type 

Predicted Flow Type 

(Oil) 

Figure 9.2 Screen Snips of MATLAB live editor showing testing of classification models 
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Original Flow Rate 

Predicted Flow Rate 

Figure 9.3 Screen Snips of MATLAB live editor showing testing of Prediction models 
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9.2 MATLAB Simulink Demonstration 

To represent the real time performance of work done in this thesis, Simulink model is 

developed using classification and regression models developed before. Screen snip of usage 

of classification model is shown in figure 9.4 and usage of regression model is shown in figure 

9.5. 

  

Figure 9.4 Screen Snips of MATLAB Simulink showing usage of classification model (NN) 

Figure 9.5 Screen Snips of MATLAB Simulink showing usage of regression model (NN) 
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9.3 Model Accuracy 

Classification Models accuracy is directly plotted by MATLAB in form of confusion matrix. 

It is mentioned in Table 7.1. For KNN model with 3 features of Median frequency, state levels 

low and high, accuracy is as follows : 

• Gas : 96.9 % 

• Oil : 99.5 % 

• Water : 99.9 % 

Overall Model accuracy is 98.2 %. 

However, accuracy of prediction or regression model is not directly mentioned in MATLAB 

regression. The model performance is given out in form of Root Mean Square Error (RMSE). 

It is mentioned in table 8.1. 

To mention the testing results for the work done in this thesis in terms of flow rate prediction, 

following workflow scenario  is performed to show the model performance in form of accuracy 

(%). Microsoft Excel is used to perform this action. 

 

 

  

 

Each Test experiments (1 sec) data is available

5 Prediction model functions performed on 
1 sec data

Table of 5 Predicted flow rates

Average of each column 

Accuracy : Calculated by 

[1 − 𝐴𝐵𝑆(
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒

𝑇𝑟𝑢𝑒 𝑓𝑙𝑜𝑤
− 1)] %

Figure 9.6 Work Flow Chart of test data handling to get accuracy 
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Performing following action gives results mentioned in table 9.1 below. Models are as 

follows : 

1. GPR with Accelerometer channel 1 (5) 

2. GPR with Accelerometer channel 2 (4) 

3. GPR with Accelerometer channel 1 and 2 (51) 

4. Ensemble bagged with Accelerometer channel 1 and 2 (8) 

5. Ensemble bagged with Accelerometer channel 1, 2 and 3 (8) 

 

Table 9.1: Flow Rate Prediction Model accuracy for each test experiment 

Experiment True 

Flow 

(m3/hr.) 

Predicted Flow Rate Average (m3/hr.) || Accuracy (%) 

Model 1 Model 2 Model 3 Model 4 Model 5 

G04 161.9 164.0 99 157.2 97 166.5 97 157.5 97 170.5 95 

G06 119.8 116.2 97 121.0 99 122.4 98 136.0 86 124.3 96 

OT09 24.3 20.57 85 22.78 94 26.3 92 19.0 78 13.3 55 

OT22 22.1 23.4 94 22.1 100 18.7 91 20.2 91 18.7 85 

W03 10.0 15.4 45 9.0 90 12.8 72 11.5 85 15.6 43 

W09 30.0 23.4 78 41.1 63 29.2 98 34.3 85 32.7 91 

9.4 USN Test Data 

This section covers analysis of experimental data obtained from USN rig. Also, compatibility 

check of USN rig data with Equinor rig data is performed and then testing results of USN data 

with Equinor data trained model is mentioned. 

9.4.1 Spectral Analysis of USN data 

After studying the raw FFT plots of both accelerometer channels, 4th order Butterworth band 

pass filter is used. But the range used here is 10 Hz to 10 kHz. The range is selected based on 

following two points. Low frequency cut-off removed the frequency harmonics likely to 

originate from experiment setup and high frequency cut-off removed the added noise since the 

sensitivity of sensor changes above 10 kHz, which is likely to give unwanted noise above this 

frequency. Also, frequencies like 12 and 13 kHz are known noise from surrounding and is 

observed in all FFT plots. So high cut-off of 10 kHz is selected. 
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9.4.1.1 Air flow experiments plots 

 

 

Figure 9.7 FFT of air experiments at USN rig (Unfiltered) 

Figure 9.8 FFT of air experiments at USN rig (Filtered) 
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9.4.1.2 Oil flow experiments plots 

 

 

 

Figure 9.9 FFT of oil experiments at USN rig (Unfiltered) 

Figure 9.10 FFT of oil experiments at USN rig (Filtered) 
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9.4.1.3 Water flow experiments plots 

 

 

 

Figure 9. FFT of water experiments at USN rig (Unfiltered) 

Figure 9.12 FFT of water experiments at USN rig (Filtered) 
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9.4.2 Power Spectral Density of accelerometer channel data 

To study the intensity of frequencies, present in vibration data, power spectrum density plots 

of each flow type i.e., air water and oil are plotted as shown in figure 9.13, 9.14 and 9.15 

respectively. 

Figure 9.13 PSD plot of air experiments at USN rig (Using Hanning Window) 

Figure 9.14 PSD plot of water experiments at USN rig (Using Hanning Window) 
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Following Observations can be made based on plots : 

• High amplitudes of noise frequencies i.e., 12 to 13 kHz are observed in unfiltered plots 

in each flow material type. This causes the amplitudes of desired frequencies to appear 

very small in plots. 

• Amplitudes of frequencies in USN data set appears to be very less as compared to 

amplitudes of frequencies in Equinor dataset. This is most likely due to experiments 

conducted at very low flow rate as compared to Equinor flow rate experiments. 

• Also, power of vibration frequencies is not that high as can be in PSD plots. Also, PSD 

plot of water and oil shows same behavior. This is interesting thing as it affects 

classification model developed in later section. 

9.5 Compatibility check of USN dataset with Equinor dataset 

Experiments at both the rigs are conducted at different flow rates as shown in table 9.2 below. 

Table 9.2: Flow Rate Prediction Model accuracy for each test experiment 

Experiment Flow Type Equinor flow range (m3/hr.) USN flow range (m3/hr.) 

Water 2 – 60 0.12 - 3 

Oil 2 – 40 0.12 - 3 

Gas 30 - 200 0.01 – 0.12 

  

 

Figure 9.15 PSD plot of oil experiments at USN rig (Using Hanning Window) 
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The table 9.2 implies following things : 

• Model trained using Equinor dataset is not directly compatible with USN dataset due 

to mismatch of flow range since the data in Equinor dataset is normalized before 

training and normalizing USN dataset with same parameters causes error in values. 

• Equinor trained model for Water, Oil and Gas experiments has no values of low flow 

rates i.e., below 2 m3/hr. as desired by USN dataset. 

• Hence Gas experiments from USN dataset will be completely eliminated for testing 

since it will only cause incorrect results. 

• Also, a mini dataset from Equinor is formed including only values of Water and Oil 

with low flow rates to again train classification and regression models to test with USN 

dataset of water and oil only. 

9.5.1 Classification model test results 

Training dataset :  

• Equinor dataset (Oil and water experiments with flow range : 2 to 5 m3/hr.) 

• 1600 Rows and 54 Columns 

Test dataset :  

• USN dataset (Oil and water experiments with flow range : 1 to 3 m3/hr.) 

• 20,253 Rows and 54 Columns 

 

Table 9.3: Linear Discriminant classification model performance with USN test data 

Training Results Test Results 

Accuracy (Validation) 100 % 

 

Accuracy 57.8 % 

Total Cost (Validation) 0 

 

Total Cost 11617 

Prediction Speed ~44000 obs/sec   

Training Time 1.7 sec   
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Figure 9.16 Test Confusion matrix of classification model with USN test data 

Figure 9.17 Different classification model performances with USN test data  
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9.5.2 Regression model test results 

Model Hyperparameters : 

• Preset : Rational Quadratic GPR 

• Basis function : Constant 

• Kernel function : Rational Quadratic 

• Use isotopic kernel : true 

• Kernel Scale : Automatic 

• Signal Standard Deviation : Automatic 

• Sigma : Automatic 

• Standardize data : true 

• Optimize numeric parameters : true 

PCA : Disabled 

Features :  

• All features of Accelerometer Channel 1 & 2 & category 

 

Table 9.3: GPR model performance with USN test data 

Training Results Test Results 

RMSE (Validation) 0.32 

 

RMSE 1.01 

MSE (Validation) 0.10 

 

R-Squared -5.0 

Prediction Speed ~29000 obs/sec MSE (Test) 1.02 

Training Time 126.8  sec   



 

 

   

80 

Following Observations can be made based on classification model and regression model 

performance. 

• All of the Water rows are also wrongly classified as Oil. This was expected based on 

compatibility check section. The vibration profiles are almost same or both the flow 

material type of experiments as seen in FFT and PSD plots. 

• Regarding flow rate estimation the range of flow was not that diverse to predict i.e., test 

data range is 1 to 3 m3/hr. and training data range is 2 to 5 m3/hr.. So, even low flow 

rate is predicted as higher flow rate and this make sense since trained model has no 

information for low flow rate. 

• But in case of rows where flow rate matches, it can be seen that at that point prediction 

of flow rate is better. But it has limitations due to a smaller number of experiments in 

this range. 

Figure 9.18 Response plot of GPR regression model with USN test data 
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10 Discussion 
This chapter covers the interpretation of results mentioned in previous chapter, the implications 

of the results found in this thesis in terms of the field of oil and gas sector of flow metering, 

the limitations of the results and recommendation from the author point of view. 

10.1  Key Findings 

Different type of approaches is used to find accurate flow measurements in oil and gas, 

multiphase process environment. This study brings into attention the vibration data type of non-

invasive approach which gives promising results in terms of finding type of flow material and 

estimating its flow velocity. High correlations are observed between some accelerometer 

features and flow material type and also with flow velocity. 

10.2  Limitations 

Based on the total workflow performed in this thesis and analyzing the model performances of 

classification and regression models, it can be said that better correlations between 

accelerometer features can be achieved and accuracy of prediction models can be further 

increased with following recommendations : 

• Accelerometer data at no flow state. 

• Experiments at linear flow rate difference. For example, one experiment at 10 m3/hr. 

and another at 11 m3/hr. This can help in analyzing the change in vibration profile at 1 

m3/hr. change. 

• The results mentioned here are limited to flow range mentioned in tables in chapter 3. 

• Equinor Dataset and USN Dataset : Inter-compatibility of these datasets can be 

confirmed with more data like experiments performed in both the rigs are carried with 

same flow rate. 

10.3  Sensor Fusion Possibility with ECT based approach 

Different possibilities open when one system working on one principle is combined with 

another system which is working on different principle. One such data fusion possibility 

explained here in Figure 10.1 is combination of accelerometer features along with Electrical 

Capacitance Tomography system working on electrical permittivity and conductivity 

characteristics of material flowing. 
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ECT 

Accelerometer 

ML Model 

Currently giving 87% accuracy for plug flow [6] 

Studying Vibration profile for different flow type 

Improved 

Flow regime 

identification 

Figure 10.1 One possible sensor data fusion with electrical capacitance tomography 
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11 Conclusion 
The work done in this thesis brings in the approach of vibration data in estimating flow material 

and estimating flow velocities in oil and gas section of multi-phase flow metering. Many 

accelerometer features are tested and this can be used as basis for further selecting suitable 

features which gave promising results in this thesis.  

Machine learning models trained and tested showed the ability to classify the flow material 

type based on vibrations and also estimate flow velocities based on vibration profile. Models 

used were simple models without any kind of optimization. Further models can be developed 

to get even better results. Also, deep learning methods can be tested using different 

accelerometer features mentioned in this thesis. 

Fine KNN classification model with accelerometer channel 1 features like median frequency, 

state levels low and high as an input gave accuracy of 98.2 %. 

Rational Quadratic GPR model with Test RMSE of nearly 10.2 with accelerometer channel 2 

features like Category, Peak value 1, Median Frequency and Inter quartile range gave an 

accuracy as mentioned in table below. 

 

Table 11.1: GP regression model results showing true flow and predicted flow using 4 features of accelerometer 

channel 2 

Experiment True Flow (m3/hr.) Predicted Flow (m3/hr.) Accuracy (%) 

G04 161.9 157.2 97 

G06 119.8 121.0 99 

OT09 24.3 22.78 94 

OT22 22.1 22.1 100 

W03 10.0 9.0 90 

W09 30.0 41.1 63 

 



 

 

   

84 

References 
 

[1] Gabriel M.P. Andrade, Diego Q.F. de Menezes, Rafael M. Soares, Tiago S.M. Lemos, 

Alex F. Teixeira, Leonardo D. Ribeiro, Bruno F. Vieira, José Carlos Pinto. (2022). Virtual 

flow metering of production flow rates of individual wells in oil and gas platforms through 

data reconciliation. Journal of Petroleum Science and Engineering, Volume 208, Part E, 

109772, ISSN 0920-4105. 

https://doi.org/10.1016/j.petrol.2021.109772 

[2] Theodore E. Miller and Hamish. Small Analytical Chemistry 1982 54 (6), 907-910 

https://doi.org/10.1021/ac00243a016 

[3] J. Hitomi, Y. Murai, H. J. Park and Y. Tasaka, Ultrasound Flow-Monitoring and Flow-

Metering of Air–Oil–Water Thr.ee-Layer Pipe Flows, in IEEE Access, vol. 5, pp. 15021-

15029, 2017, doi: 10.1109/ACCESS.2017.2724300. 

https://www.mdpi.com/1424-8220/20/1/306 

[4] Mosorov V, Zych M, Hanus R, Sankowski D, Saoud A, Improvement of Flow Velocity 

Measurement Algorithms Based on Correlation Function and Twin Plane Electrical 

Capacitance Tomography. Sensors 2020, 20, 306.  

https://doi.org/10.3390/s20010306 

[5] Eivind Dahl, Christian Michelsen Research AS, (2005), Handbook of Multiphase Flow 

Metering. Retrieved from 

https://nfogm.no/wp-

content/uploads/2014/02/MPFM_Handbook_Revision2_2005_ISBN-82-91341-89-3.pdf 

[6] Aleksander Tokle Poverud. (2019). Flow-Analytics using Multiphase Flow Rig with 

Multimodal Sensor Suite – with focus on Void Fraction, Water-Cut and Flow Regimes 

(Master Thesis). USN, Porsgrunn. 

[7] Hansford Sensors, 2022. Retrieved from 

https://www.hansfordsensors.com/wp-content/uploads/datasheets/TS015U.pdf 

[8] R.  P.  Evans,  J.  D.  Blotter,  A.  G.  Stephens,  Flow  rate  measurements using flow-

induced pipe vibration, Trans. ASME, vol 126, pp. 280-285, March 2004. 

[9] W. K. Blake, Mechanics of flow-induced sound and vibration, Ac. Press. Inc., Harcort 

Brace Jovanokich Publishers, Orlando, FL, 1986, pp. 1-43, Chap.1. 

[10]  M. M. Campagna, G. Dinardo, L. Fabbiano, and G. Vacca, Fluid flow measurements by 

means of vibration monitoring, Meas. Sci. Technol., vol. 26, no. 11, p. 115306, 2015, DOI: 

10.1088/0957-0233/26/11/115306. 

[11]  Olle Penttinen, Marcus Ulveström, Kristina Karlsson, Veronika Andersson, Håkan 

Andersson, Johan Pettersson, Oliver Büker. (2021). Towards flow measurement with 

passive accelerometers, Flow Measurement and Instrumentation, 

https://doi.org/10.1016/j.flowmeasinst.2021.101992. 

https://doi.org/10.1021/ac00243a016
https://www.mdpi.com/1424-8220/20/1/306
https://nfogm.no/wp-content/uploads/2014/02/MPFM_Handbook_Revision2_2005_ISBN-82-91341-89-3.pdf
https://nfogm.no/wp-content/uploads/2014/02/MPFM_Handbook_Revision2_2005_ISBN-82-91341-89-3.pdf
https://www.hansfordsensors.com/wp-content/uploads/datasheets/TS783.pdf


 

 

   

85 

[12]  Fabbiano, Laura & Vacca, Gaetano & Dinardo, Giuseppe. (2013). Fluid Flow Rate 

Estimation using Acceleration Sensors. Proceedings of the International Conference on 

Sensing Technology, ICST. 10.1109/ICSensT.2013.6727646. 

https://www.researchgate.net/publication/281652853_Flow_Measurement_by_Piezoelect

ric_Accelerometers_Application_in_the_Oil_Industry  

[13]  De Oliveira, Elcio & Medeiros, K. & Barbosa, C. (2015). Flow Measurement by 

Piezoelectric Accelerometers: Application in the Oil Industry. Petroleum Science and 

Technology. 33. 1402-1409. 10.1080/10916466.2015.1044613. 

[14]  Yang, Wonseok. 2021. Prediction of Flow Velocity from the Flexural Vibration of a 

Fluid-Conveying Pipe Using the Transfer Function Method, Applied Sciences 11, no. 13: 

5779. 

https://doi.org/10.3390/app11135779 

[15]  Stankovic, L., Dakovic, M., & Thayaparan, T. (2013). Time-frequency signal analysis 

with applications. Artech House. 

[16]  Wikipedia contributors. (2022, April 8). Receiver operating characteristic. In Wikipedia, 

The Free Encyclopedia. Retrieved 09:31, May 24, 2022, Retrieved from 

https://en.wikipedia.org/w/index.php?title=Receiver_operating_characteristic&oldid=10

81635328 

[17]  Priyanka Sarkar, (2022). What is LDA: Linear Discriminant Analysis for Machine 

Learning. Retrieved from  

https://www.knowledgehut.com/blog/data-science/linear-discriminant-analysis-for-

machine-learning 

[18]  Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 

2011. Retrieved from  

 https://scikit-learn.org/stable/modules/naive_bayes.html 

[19]  Wikipedia contributors. (2022, March 25). Support-vector machine. In Wikipedia, The 

Free Encyclopedia. Retrieved 09:49, May 24, 2022, Retrieved from 

https://en.wikipedia.org/w/index.php?title=Support-vector_machine&oldid=1079167701 

[20]  C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT 

Press, 2006, ISBN 026218253X, Retrieved from 

http://gaussianprocess.org/gpml/chapters/RW1.pdf 

[21]  Oscar Knagg, (2019), An intuitive guide to Gaussian processes, Retrieved from 

https://towardsdatascience.com/an-intuitive-guide-to-gaussian-processes-ec2f0b45c71d 

[22]  Zhi-Hua Zhou. (2012). Ensemble Methods: Foundations and Algorithms (1st Edition), 

Chapman & Hall/CRC Machine Learning & Pattern Recognition. 

[23]  MATLAB. (2022). Version (9.12.0.1884302) (R2022a). Natick, Massachusetts: The 

MathWorks Inc. 

https://en.wikipedia.org/w/index.php?title=Receiver_operating_characteristic&oldid=1081635328
https://en.wikipedia.org/w/index.php?title=Receiver_operating_characteristic&oldid=1081635328
https://www.knowledgehut.com/blog/data-science/linear-discriminant-analysis-for-machine-learning
https://www.knowledgehut.com/blog/data-science/linear-discriminant-analysis-for-machine-learning
https://scikit-learn.org/stable/modules/naive_bayes.html
https://en.wikipedia.org/w/index.php?title=Support-vector_machine&oldid=1079167701
http://gaussianprocess.org/gpml/chapters/RW1.pdf
https://towardsdatascience.com/an-intuitive-guide-to-gaussian-processes-ec2f0b45c71d


 

 

   

86 

Appendices 
 

Appendix A Task Description 

Appendix B Gantt Chart 

Appendix C Experiment Details 

Appendix D Tools Used in Thesis : Specifications 

Appendix E Importing Raw Data to MATLAB 

Appendix F Accelerometer Data Plots : MATLAB code 

Appendix G Accelerometer Data Processing 

Appendix H Manual Separation of Training Data and test data 

Appendix I Normalization of data 

Appendix J Designed Filter 

Appendix K USN Data Processing



 

 

   

 

 

Appendix A 

Task Description 
Final Version of Task description that outlines the work done in this thesis. 
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Task background: 
Multiphase flow rig in USN built and modified many times with funding from the industries 
and Research Council of Norway, has been used in in various CFD studies, testing different 
multiphase and single flowmetering principles and phenomena. 
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Appendix B 

Gantt Chart 

This appendix contains the screen snip of the Gantt chart used for doing this thesis. Even though 

the Gantt chart is finished at the end, for illustration purpose, Gantt chart somewhere in the 

middle is shown here. Gantt chart was made in SharePoint and put as one of the tabs in 

Microsoft teams in order to make it more interactive and easily visible for supervisors.



 

 

   

 

 

 

  



 

 

   

 

Appendix C 

Experiment Details  

 



 

 

   

 

 

 



 

 

   

 

Appendix D 

Tools Used in Thesis : Specifications  

Software Used : 

MATLAB R2022a (9.12.0.1884302) 

 

Laptop Used : 

ASUS ROG Zephyrus G14 GA401II 

Processor : AMD Ryzen 5 4600HS with Radeon Graphics, 3000 MHz, 6 Core(s), 12 Logical 

Processor(s) 

Graphics Processor : NVIDIA GeForce GTX 1650 Ti 

Dedicated video memory : 4096 MB GDDR6 

  



 

 

   

 

Appendix E 

Importing Raw Data to MATLAB 

The files are arranged in one single folder as shown. 

 

  

  



Investigation of the Test Data 

Table of Contents 

Introduction  
Importing the data  
    Load everything except accelerometer data  
    Inspect accelerometer data  
    Load accelerometer features and combine with the other features  
Data Exploration  
    Histogram and Boxplot  
    Descriptive statistics table  
    Missing values  
    Correlation  
    Scatter plots 

Introduction 

In this report, we investigate the test data to understand its structure and contents. At first, we will 

convert the structures to a simple mat format. Second, we will show how to reach the data by an 

example. And finally, we will create descriptive statistics and visuals to better understand the 

behaviour of the data and detect some potential mistakes.  

clear, rng default 

addpath stattools 

mkdir descriptive_figures 

Warning: Directory already exists. 

mkdir descriptive_figures\histograms 

Warning: Directory already exists. 

mkdir descriptive_figures\boxplots 

Warning: Directory already exists. 

mkdir descriptive_figures\scatters 

Warning: Directory already exists. 

Importing the data 

Load everything except accelerometer data 

In this section, all of the .mat files in the "Raw Mat Data" folder are read and combined into a table 

("contents"). Acceleromater data is discarded at this point.  

fds = 

fileDatastore("C:\Users\shail\Documents\Thesis\combined_space_filtered_dataset\R



aw Mat Data\*.mat","ReadFcn", 

@mat_to_table,"UniformRead",true,"IncludeSubfolders",false); 

contents = fds.readall("UseParallel",true) %Use multiple cpus for a quicker 

operation 

contents = 32×51 table  

  name time_start time_stop oilRef_q oilRef_w ⋯ 

1 "G02" 10-Feb-2020 09:07:00 10-Feb-2020 09:17:00 6.8961 5.5765  

2 "G03" 10-Feb-2020 09:24:00 10-Feb-2020 09:34:00 6.8904 5.5671  

3 "G04" 10-Feb-2020 09:40:00 10-Feb-2020 09:50:00 6.8850 5.5585  

4 "G05" 10-Feb-2020 09:56:00 10-Feb-2020 10:06:00 6.8813 5.5532  

5 "G06" 10-Feb-2020 10:12:00 10-Feb-2020 10:22:00 6.8761 5.5485  

6 "G07" 10-Feb-2020 10:30:00 10-Feb-2020 10:40:00 6.8729 5.5451  

7 "G08" 10-Feb-2020 10:50:00 10-Feb-2020 11:00:00 6.8738 5.5454  

8 "G09" 10-Feb-2020 11:15:00 10-Feb-2020 11:30:00 6.8731 5.5451  

9 "G10" 10-Feb-2020 11:37:00 10-Feb-2020 11:52:00 6.8747 5.5463  

10 "G11" 10-Feb-2020 11:58:00 10-Feb-2020 12:09:00 0 0  

11 "OT08" 07-Feb-2020 13:10:00 07-Feb-2020 13:25:00 40.0008 32.4139  

12 "OT09" 07-Feb-2020 13:30:00 07-Feb-2020 13:45:00 30.0004 24.2612  

13 "OT10" 07-Feb-2020 11:15:00 07-Feb-2020 11:30:00 10.0841 8.1543  

14 "OT12" 07-Feb-2020 11:00:00 07-Feb-2020 11:15:00 12.1327 9.8119  

⋮       

 

Inspect accelerometer data 

A function called mat_to_acc converts a raw mat file to a struct that is much easier to work on the 

accelerometer data. This function is to be used when accelerometer data is to be investigated file by 

file. 

acc = mat_to_acc("Raw Mat Data\W01.mat") 

Accelerometer data can now be reached as acc.data(:,n) where n is the channel number, from 1 to 

3.  First channel versus the time is plotted as an example: 

% plot(acc.time_axis(1:250),acc.data(1:250,1)); 

% %plot(acc.data(:,1)) 

% title("1st Ch") 

% xlabel("Time") 

% ylabel("W01 FFT Measurement") 

 



Further operations would also be possible, for instance, one can calculate the magnitude for the 

acceleration vectors and plot it as well: 

% magnitude = sqrt(acc.data(:,1).^2 + acc.data(:,2).^2 + acc.data(:,3).^2); 

% plot(acc.time_axis(1:250), magnitude(1:250)) 

% title("Magnitude") 

% xlabel("Time") 

% ylabel("OT10 Measurement") 

It is also possible to extract descriptive statistics: 

% range_of_magnitude = range(magnitude) 

% mean_of_magnitude = mean(magnitude) 

This feature extraction process will be developed with respect to relevant literature and similar 

projects with operations like smoothing, noise removal,, domain transformation and normalization. 

Load accelerometer features and combine with the other features 

So far, we combined all the scalar features in a table named "contents" and we opened one .mat file 

to view it's accelerometer data. In this section, we will add the extracted features from the 

accelerometer data to the basic features in the "contents" table. Right now, as merely as an example 

to show how the code works, three features are added to the table, interquartile range (iqr), median 

and skewness of the magnitude of the accelerometer data.  

Following code extracts features for all mat files and combines them in table: 

fds_a = fileDatastore("Raw Mat Data\*.mat","ReadFcn", 

@mat_to_acc_features,"UniformRead",true); 

Error using fileDatastore 

Cannot find files or folders matching: 'Raw Mat Data\*.mat'. 

accelometer_features = fds_a.readall("UseParallel",true) 

Following code joins the first table we created ("contents") with the feature table we just created. In 

the end, we have a table with the basic values from the .mat files and the extracted values from the 

accelerometer data. 

% Join tables 

combined = outerjoin(contents,accelometer_features,"Keys","name",... 

    "MergeKeys",true); 

 

combined 

Since the .mat files are now converted to tabular format, we can easily extract it to formats like csv: 



writetable(combined,"combined1.csv") 

Data Exploration 

Histogram and Boxplot 

Histograms and boxplots are common tools in data exploration. We create those for each of the 

numeric table columns (including the columns generated from the accelerometer data). Results are 

saved in the folder "descriptive_figures". 

% descriptiveTableColumnsVisuals(combined); 

Descriptive statistics table 

Again, for all of the columns, some common statistics are reported.  

% stats_table = descriptiveTableColumns(combined) 

Missing values 

The dataset has very little amount of missing values: 

column_names = string(combined.Properties.VariableNames)'; 

for column = 2:1:width(combined) 

missing_amount(column,1) = sum(ismissing(combined(:,column))); 

end 

missings = table(column_names, missing_amount); 

missings = sortrows(missings,'missing_amount','descend') 

It seems that Krohne was not calculated for four experiements. 

Correlation 

As a part of understanding the data, Pearson correlation coefficient is calculated between all 

numerical columns. 

numerical_parameters = combined(:,4:end); 

correlations = 

array2table(corr(table2array(numerical_parameters),"rows","pairwise","type","Pea

rson")); 

vn = string(combined.Properties.VariableNames); 

correlations.Properties.RowNames = vn(4:end); 

correlations.Properties.VariableNames = vn(4:end) 

Since it is harder to see which correlation coefficients are bigger (by the means of absolute values), 

they are also placed in the figures in the following section. 

Scatter plots 



In addition to the correlation coefficients and other statistical tests, scatter plots of each possible 

column pair is also created to detect relationships. 

% for g=1:1:height(correlations) 

%     for gg=1:1:height(correlations) 

%         if g>gg 

%         f=figure; 

%         scatter(combined{:,g+3},combined{:,gg+3}) 

%         lsline 

%         xlabel(vn(g+3),"Interpreter","none") 

%         ylabel(vn(gg+3),"Interpreter","none") 

%         title(vn(g+3) + " vs " + vn(gg+3),"Interpreter","none") 

%         legend("R = " + correlations{g,gg}) 

%         

saveas(f,"descriptive_figures"+filesep+"scatters"+filesep+vn(g+3)+"_vs_" + 

vn(gg+3) + "_correlation.jpg"); 

%         close(f) 

%         end 

%     end 

% end 



 

 

   

 

Appendix F 

Accelerometer Data Plots : MATLAB code 

 



26/05/22 09:22 C:\Use...\phase6_1_fftplots_with_filter.m 1 of 2

clear, rng default, close all
%% New Example
files = ["W10","W10"];
filter = [1 0];
combined_fft_plot(files, filter);
 
%% Old Examples
 
 
%Combined FFT Plot
%Combined plot of W10, OT08 & G10 (since they are having same flow rate i.e 40 m3/h 
but for differnt flow type)
files = ["W10","OT08","G10"];
combined_fft_plot(files);
 
 
%All Ws
files = extractBefore(deblank(string(ls("Raw Mat Data\W*"))),".mat");
combined_fft_plot(files);
 
%All Gs
files = extractBefore(deblank(string(ls("Raw Mat Data\G*"))),".mat");
combined_fft_plot(files);
 
%All OTs
files = extractBefore(deblank(string(ls("Raw Mat Data\OT*"))),".mat");
combined_fft_plot(files);
 
function figs = combined_fft_plot(files, filter)
 
if nargin == 1
    %filter = zeros(1, numel(files));%default behaviour, no filter
    filter = ones(1, numel(files));%default behaviour, filter
end
 
file_names = "Raw Mat Data" + filesep + files + ".mat";
 
for channel = 1:1:3 %%% 
    figs(channel) = figure;
    hold on;
    ffts = [];
    for file_id = 1:1:numel(files)
        acc =  mat_to_acc(file_names(file_id));
        dts(file_id) = acc.dt;
        
        signal = acc.data(:,channel);
        if filter(file_id) == 1
            signal = designedFilter(signal,1/acc.dt);
        end
 
        ffts{file_id} = 2*cut_in_half(abs(fft(signal)))';
        f{file_id} = (0:length(ffts{file_id})-1)*(1/dts(file_id))/length(ffts
{file_id});
        clearvars acc
        lengths(file_id) = length(ffts{file_id});



26/05/22 09:22 C:\Use...\phase6_1_fftplots_with_filter.m 2 of 2

        
    end
    normalized = rescale([ffts{:}]); %note rescale
    clearvars ffts
    indices = [0 cumsum(lengths)];
    for file_id = 1:1:numel(files)
        index_low = indices(file_id) + 1;
        index_high = indices(file_id + 1);
        plot(f{file_id},normalized(index_low:index_high));
    end
    xlabel("Frequency (Hz)");
    ylabel("Normalized Amplitude");
    title("Channel " + channel);
 
    legend_text = files;
    legend_text(filter==1) = legend_text(filter==1) + " F.";
 
    legend(legend_text,"Location","eastoutside");
    hold off
end
end
 
 



 

 

   

 

Appendix G 

Accelerometer Data Processing 
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Import Basic Information and Categorize............................................................................................................. 1
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For Example......................................................................................................................................................2
For Real............................................................................................................................................................ 5

Combine Accelerometer Data and Basic Information...........................................................................................5

Data Import
Import Basic Information and Categorize
We import basic columns (the ones except acc) as usual:

clear;
mkdir descriptive_figures

Warning: Directory already exists.

mkdir descriptive_figures\histograms

Warning: Directory already exists.

mkdir descriptive_figures\boxplots

Warning: Directory already exists.

mkdir descriptive_figures\scatters

Warning: Directory already exists.

addpath stattools\
tic
raw_path = "Raw Mat Data\*.mat";
fds = fileDatastore(raw_path,"ReadFcn", @mat_to_table,"UniformRead",true,"IncludeSubfolders",false);
contents = fds.readall("UseParallel",true); %Use multiple cpus for a quicker operation

Extract category from name:

contents.category = categorical(extractBefore(contents.name,digitsPattern(1)));

Create "average_q" flow rate to be used as target variable:

all_average_q = (contents.Endres_q + contents.Krohne_q)/(2);
contents.average_q(~isnan(contents.Krohne_q)) = all_average_q(~isnan(contents.Krohne_q));
contents.average_q(isnan(contents.Krohne_q)) = contents.Endres_q(isnan(contents.Krohne_q));

Select the reguired input with respect to flow category:

active_ref(contents.category=="G",1) = contents.gasRef_q(contents.category=="G");
active_ref(contents.category=="OT",1) = contents.oilRef_q(contents.category=="OT");
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active_ref(contents.category=="W",1) = contents.watRef_q(contents.category=="W");
contents.active_ref = active_ref;

Select only the columns we will use (either for grouping, predictions or target)

useful = contents(:,["category","name","temp_in","temp_out","press_in","press_out","STec_rho","MPP_TIn","MPP_TOut","MPP_pIn","MPP_dp","active_ref","average_q"])

Import Accelerometer Features
For Example
I'll show how the variables are generated by using one example file. At first, we get the usual acc struct that 
includes accelerometer sensor data. It is not split yet. 

acc = mat_to_acc("Raw Mat Data\G11.mat")

acc = struct with fields:
               dt: 1.9531e-05
             time: 10-Feb-2020 11:59:24
             data: [12288000×3 double]
         filename: "G11"
             name: "G11"
        time_axis: [10-Feb-2020 11:59:24    10-Feb-2020 11:59:24    10-Feb-2020 11:59:24    10-Feb-2020 11:59:24    10-Feb-2020 11:59:24    10-Feb-2020 11:59:24    10-Feb-2020 11:59:24    10-Feb-2020 11:59:24    10-Feb-2020 11:59:24    …    ]
    duration_axis: [00:00:00    00:00:00    00:00:00    00:00:00    00:00:00    00:00:00    00:00:00    00:00:00    00:00:00    00:00:00    00:00:00    00:00:00    00:00:00    00:00:00    00:00:00    00:00:00    00:00:00    00:00:00    …    ]

This new function "acc_to_acc_split" accepts acc structures (as it is generated above), splits the signal with the 
hard coded duration ıf 60 seconds and 50% overlap and returns mean signal values for each bin:

acc_split_tabular = acc_to_acc_split(acc)

acc_split_tabular = 94×102 table

name time peak_value_1_1 peak_value_2_1 peak_value_3_1

1 "G11" 0 sec 939.8540 117.0120 939.8540

2 "G11" 5 sec 935.3531 116.2193 935.3531

3 "G11" 10 sec 930.3504 112.2254 930.3504

4 "G11" 15 sec 923.9186 111.1407 923.9186

5 "G11" 20 sec 923.3273 108.0617 923.3273

6 "G11" 25 sec 917.3268 105.5385 917.3268

7 "G11" 30 sec 913.0665 103.0874 913.0665

8 "G11" 35 sec 907.1930 100.9038 907.1930

9 "G11" 40 sec 120.6305 904.1000 904.1000

10 "G11" 45 sec 133.3369 901.6020 901.6020

11 "G11" 50 sec 114.9123 899.9554 899.9554

12 "G11" 55 sec 901.9232 95.7240 901.9232
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name time peak_value_1_1 peak_value_2_1 peak_value_3_1

13 "G11" 60 sec 896.4178 95.1190 896.4178

14 "G11" 65 sec 892.7634 95.7652 892.7634

15 "G11" 70 sec 892.5700 93.8898 892.5700

16 "G11" 75 sec 887.7307 94.0705 887.7307

17 "G11" 80 sec 881.8858 99.9805 881.8858

18 "G11" 85 sec 881.4912 98.0483 881.4912

19 "G11" 90 sec 875.3679 101.6665 875.3679

20 "G11" 95 sec 872.2985 101.3658 872.2985

21 "G11" 100 sec 868.4773 102.1048 868.4773

22 "G11" 105 sec 865.6083 105.4448 865.6083

23 "G11" 110 sec 858.6680 106.2777 858.6680

24 "G11" 115 sec 858.4149 108.0058 858.4149

25 "G11" 120 sec 851.2797 109.3169 851.2797

26 "G11" 125 sec 846.4181 110.6482 846.4181

27 "G11" 130 sec 141.2236 844.0637 844.0637

28 "G11" 135 sec 139.3006 842.8309 842.8309

29 "G11" 140 sec 166.2708 837.1658 837.1658

30 "G11" 145 sec 830.4737 115.2311 830.4737

31 "G11" 150 sec 826.4937 119.0370 826.4937

32 "G11" 155 sec 818.3498 121.7659 818.3498

33 "G11" 160 sec 812.8049 123.3467 812.8049

34 "G11" 165 sec 806.1078 122.0055 806.1078

35 "G11" 170 sec 806.7952 121.7574 806.7952

36 "G11" 175 sec 802.1173 125.8531 802.1173

37 "G11" 180 sec 797.7815 126.0031 797.7815

38 "G11" 185 sec 787.1332 127.0848 787.1332

39 "G11" 190 sec 783.8144 127.0983 783.8144

40 "G11" 195 sec 143.0505 778.2587 778.2587

41 "G11" 200 sec 782.3865 130.0403 782.3865

42 "G11" 205 sec 775.6748 130.6173 775.6748

43 "G11" 210 sec 769.7599 133.1360 769.7599

44 "G11" 215 sec 769.4961 133.8544 769.4961

45 "G11" 220 sec 766.0338 133.4076 766.0338
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name time peak_value_1_1 peak_value_2_1 peak_value_3_1

46 "G11" 225 sec 762.0754 135.8787 762.0754

47 "G11" 230 sec 757.2138 137.4520 757.2138

48 "G11" 2.5 sec 938.9602 118.6046 938.9602

49 "G11" 7.5 sec 932.9255 112.2592 932.9255

50 "G11" 12.5 sec 926.7545 112.7631 926.7545

51 "G11" 17.5 sec 113.5490 923.7237 923.7237

52 "G11" 22.5 sec 920.2350 107.3312 920.2350

53 "G11" 27.5 sec 914.6670 107.2824 914.6670

54 "G11" 32.5 sec 910.1511 104.1020 910.1511

55 "G11" 37.5 sec 906.3944 102.1886 906.3944

56 "G11" 42.5 sec 148.6048 905.4845 905.4845

57 "G11" 47.5 sec 117.2297 899.9725 899.9725

58 "G11" 52.5 sec 902.3343 96.5751 902.3343

59 "G11" 57.5 sec 899.0494 94.5755 899.0494

60 "G11" 62.5 sec 895.5087 95.9983 895.5087

61 "G11" 67.5 sec 892.2785 93.8178 892.2785

62 "G11" 72.5 sec 889.0020 96.2250 889.0020

63 "G11" 77.5 sec 883.8399 97.1707 883.8399

64 "G11" 82.5 sec 111.8211 881.5444 881.5444

65 "G11" 87.5 sec 878.0424 100.7340 878.0424

66 "G11" 92.5 sec 873.7918 101.2094 873.7918

67 "G11" 97.5 sec 871.6387 102.1223 871.6387

68 "G11" 102.5 sec 864.2257 102.8595 864.2257

69 "G11" 107.5 sec 862.4676 107.0726 862.4676

70 "G11" 112.5 sec 858.6869 110.0589 858.6869

71 "G11" 117.5 sec 853.3808 106.0269 853.3808

72 "G11" 122.5 sec 847.7001 110.7188 847.7001

73 "G11" 127.5 sec 842.0635 112.5980 842.0635

74 "G11" 132.5 sec 136.4733 844.5993 844.5993

75 "G11" 137.5 sec 135.7855 838.4124 838.4124

76 "G11" 142.5 sec 832.5596 114.7667 832.5596

77 "G11" 147.5 sec 828.2279 117.2388 828.2279

78 "G11" 152.5 sec 820.7930 120.6225 820.7930
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name time peak_value_1_1 peak_value_2_1 peak_value_3_1

79 "G11" 157.5 sec 816.5324 119.8442 816.5324

80 "G11" 162.5 sec 810.5630 121.6495 810.5630

81 "G11" 167.5 sec 808.0171 122.0627 808.0171

82 "G11" 172.5 sec 803.3905 123.4138 803.3905

83 "G11" 177.5 sec 799.2798 126.5109 799.2798

84 "G11" 182.5 sec 791.3556 125.5407 791.3556

85 "G11" 187.5 sec 784.9528 127.2978 784.9528

86 "G11" 192.5 sec 153.2586 780.7401 780.7401

87 "G11" 197.5 sec 780.9138 131.0519 780.9138

88 "G11" 202.5 sec 779.0349 132.5400 779.0349

89 "G11" 207.5 sec 773.1123 130.1758 773.1123

90 "G11" 212.5 sec 767.2629 134.2479 767.2629

91 "G11" 217.5 sec 768.7841 131.9620 768.7841

92 "G11" 222.5 sec 762.8802 136.0462 762.8802

93 "G11" 227.5 sec 759.1759 134.8933 759.1759

94 "G11" 232.5 sec 755.2138 138.3797 755.2138

The column "time" is the starting time. 

For Real
Now, we will split the accelerometer data for all the available files and combine them in one table:

fds2 = fileDatastore(raw_path,"ReadFcn",@mat_to_acc_split,"UniformRead",true,"IncludeSubfolders",false);
accs = fds2.readall("UseParallel",true); %Use multiple cpus for a quicker operation
accs

Combine Accelerometer Data and Basic Information
% Join tables
combined = outerjoin(useful,accs,"Keys","name","MergeKeys",true)
combined = movevars(combined, 'time', 'After', 'name');

Now, we finally have our data in a form (table) that can be used by machine learning and correlation test 
algorithms. 

save combined combined
toc
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Appendix H 

Manual Separation of Training Data and test data  



%load combined combined
combined

combined = 16680×114 table

category name time temp_in temp_out press_in press_out

1 G "G02" 0 sec 65.0639 63.8343 37.6910 37.1686

2 G "G02" 1 sec 65.0639 63.8343 37.6910 37.1686

3 G "G02" 2 sec 65.0639 63.8343 37.6910 37.1686

4 G "G02" 3 sec 65.0639 63.8343 37.6910 37.1686

5 G "G02" 4 sec 65.0639 63.8343 37.6910 37.1686

6 G "G02" 5 sec 65.0639 63.8343 37.6910 37.1686

7 G "G02" 6 sec 65.0639 63.8343 37.6910 37.1686

8 G "G02" 7 sec 65.0639 63.8343 37.6910 37.1686

9 G "G02" 8 sec 65.0639 63.8343 37.6910 37.1686

10 G "G02" 9 sec 65.0639 63.8343 37.6910 37.1686

11 G "G02" 10 sec 65.0639 63.8343 37.6910 37.1686

12 G "G02" 11 sec 65.0639 63.8343 37.6910 37.1686

13 G "G02" 12 sec 65.0639 63.8343 37.6910 37.1686

14 G "G02" 13 sec 65.0639 63.8343 37.6910 37.1686

[~,index] = unique(combined.name);
cases = combined(index,["category","name","average_q"])

cases = 32×3 table
category name average_q

1 G "G02" 182.3850

2 G "G03" 169.0726

3 G "G04" 154.3336

4 G "G05" 135.7957

5 G "G06" 116.3570

6 G "G07" 96.4461

7 G "G08" 75.0746

8 G "G09" 57.0950

9 G "G10" 36.8624

10 G "G11" 23.7425

11 OT "OT08" 40.2297
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category name average_q

12 OT "OT09" 30.1061

13 OT "OT10" 10.0102

14 OT "OT12" 12.0815

%combined(ismember(combined.name,["OT24","OT26","OT28","OT30"]),:) = []
[~,index] = unique(combined.name);
cases = combined(index,["category","name","average_q"])

cases = 32×3 table
category name average_q

1 G "G02" 182.3850

2 G "G03" 169.0726

3 G "G04" 154.3336

4 G "G05" 135.7957

5 G "G06" 116.3570

6 G "G07" 96.4461

7 G "G08" 75.0746

8 G "G09" 57.0950

9 G "G10" 36.8624

10 G "G11" 23.7425

11 OT "OT08" 40.2297

12 OT "OT09" 30.1061

13 OT "OT10" 10.0102

14 OT "OT12" 12.0815

gs = groupcounts(cases,"category")

gs = 3×3 table
category GroupCount Percent

1 G 10 31.2500

2 OT 15 46.8750

3 W 7 21.8750

% Compute group summary
summary = groupsummary(cases,"category",["mean","median","max","min","range",...
    "std","var"],vartype("numeric"))

summary = 3×9 table
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category GroupCount mean_average_q median_average_q max_average_q

1 G 10 104.7164 106.4015 182.3850

2 OT 15 19.0355 20.1247 40.2297

3 W 7 22.4829 20.0144 50.2890

test_cases = ["G04","G06","OT09","OT22","W03","W09"];
test_data = combined(ismember(combined.name,test_cases),:)

test_data = 3600×114 table

category name time temp_in temp_out press_in press_out

1 G "G04" 0 sec 69.1188 68.2849 37.0036 36.7077

2 G "G04" 1 sec 69.1188 68.2849 37.0036 36.7077

3 G "G04" 2 sec 69.1188 68.2849 37.0036 36.7077

4 G "G04" 3 sec 69.1188 68.2849 37.0036 36.7077

5 G "G04" 4 sec 69.1188 68.2849 37.0036 36.7077

6 G "G04" 5 sec 69.1188 68.2849 37.0036 36.7077

7 G "G04" 6 sec 69.1188 68.2849 37.0036 36.7077

8 G "G04" 7 sec 69.1188 68.2849 37.0036 36.7077

9 G "G04" 8 sec 69.1188 68.2849 37.0036 36.7077

10 G "G04" 9 sec 69.1188 68.2849 37.0036 36.7077

11 G "G04" 10 sec 69.1188 68.2849 37.0036 36.7077

12 G "G04" 11 sec 69.1188 68.2849 37.0036 36.7077

13 G "G04" 12 sec 69.1188 68.2849 37.0036 36.7077

14 G "G04" 13 sec 69.1188 68.2849 37.0036 36.7077

training_data = combined(~ismember(combined.name,test_cases),:)

training_data = 13080×114 table

category name time temp_in temp_out press_in press_out

1 G "G02" 0 sec 65.0639 63.8343 37.6910 37.1686

2 G "G02" 1 sec 65.0639 63.8343 37.6910 37.1686

3 G "G02" 2 sec 65.0639 63.8343 37.6910 37.1686

4 G "G02" 3 sec 65.0639 63.8343 37.6910 37.1686

5 G "G02" 4 sec 65.0639 63.8343 37.6910 37.1686

6 G "G02" 5 sec 65.0639 63.8343 37.6910 37.1686
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category name time temp_in temp_out press_in press_out

7 G "G02" 6 sec 65.0639 63.8343 37.6910 37.1686

8 G "G02" 7 sec 65.0639 63.8343 37.6910 37.1686

9 G "G02" 8 sec 65.0639 63.8343 37.6910 37.1686

10 G "G02" 9 sec 65.0639 63.8343 37.6910 37.1686

11 G "G02" 10 sec 65.0639 63.8343 37.6910 37.1686

12 G "G02" 11 sec 65.0639 63.8343 37.6910 37.1686

13 G "G02" 12 sec 65.0639 63.8343 37.6910 37.1686

14 G "G02" 13 sec 65.0639 63.8343 37.6910 37.1686

save dataset_to_be_used_in_ml test_data training_data
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Appendix I 

Normalization of data 

  



clear

Introduction
It makes sense to normalize same features using same scales. (meanfreq_1 and meanfreq_2 should be 
normalized together) to not lose their spatial relationship.

For example, imagine these values for meanfreq_1 and meanfreq_2. Note that first three elements are the 
same. 

meanfreq_1_example = [1 2 3 3 5 6 2 2];
meanfreq_2_example = [1 2 3 9 11 12 14];

If we normalize them separately, we get different values for first three elements altough they have the same unit 
and magnitude:

normalize(meanfreq_1_example)

ans = 1×8
   -1.1832   -0.5916         0         0    1.1832    1.7748   -0.5916   -0.5916

normalize(meanfreq_2_example)

ans = 1×7
   -1.2087   -1.0207   -0.8327    0.2955    0.6715    0.8595    1.2356

To solve this, I will combine signal features in one vector, normalize that vector, and then split it back into 4 
features. Continuing with the example:

meanfreq_all = [meanfreq_1_example, meanfreq_2_example]

meanfreq_all = 1×15
     1     2     3     3     5     6     2     2     1     2     3     9    11

meanfreq_all_normalized = normalize(meanfreq_all);
meanfreq_1_normalized = meanfreq_all_normalized(1:8)

meanfreq_1_normalized = 1×8
   -0.9384   -0.7076   -0.4769   -0.4769   -0.0154    0.2154   -0.7076   -0.7076

meanfreq_2_normalized = meanfreq_all_normalized(9:end)

meanfreq_2_normalized = 1×7
   -0.9384   -0.7076   -0.4769    0.9076    1.3691    1.5999    2.0614

Now we got same normalized values for the first three elements. 

Normalization of training features
load dataset_to_be_used_in_ml.mat training_data
training_data_normalized= training_data;
clear training_data
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Available features:

Note that, in our data set,  features that should be scaled together ends with the term "out" or "_4". I'll use this 
fact to programatically handle this problem, instead of manually writing code for each variable to be normalized 
together:

available_features = string(training_data_normalized.Properties.VariableNames) ;
variables_ending_with_out = available_features(endsWith(available_features,"out","IgnoreCase",true))

variables_ending_with_out = 1×3 string
"temp_out"   "press_out"  "MPP_TOut"   

variables_ending_with_4 = available_features(endsWith(available_features,"4","IgnoreCase",true))

variables_ending_with_4 = 1×25 string
"peak_value…  "peak_value…  "peak_value…  "statelevels_fd_l…  "statelevels_fd_hi

temp_all = [training_data_normalized.temp_in; training_data_normalized.temp_out];
press_all = [training_data_normalized.press_in; training_data_normalized.press_out];
MPP_Tall = [training_data_normalized.MPP_TIn; training_data_normalized.MPP_TOut];
[temp_normalized, normalization.temp_in.mu, normalization.temp_in.sigma] = normalize(temp_all);
[press_normalized, normalization.press_in.mu, normalization.press_in.sigma] = normalize(press_all);
[MPP_normalized, normalization.MPP_TIn.mu, normalization.MPP_TIn.sigma] = normalize(MPP_Tall);

Note that I saved normalisation mean and std to be able to replicate the same process on test data. We will use 
same parameters for _out versions as well. 

normalization.temp_out = normalization.temp_in;
normalization.press_out = normalization.press_in;
normalization.MPP_TOut = normalization.MPP_TIn;

training_data_normalized.temp_in = temp_normalized(1:(end/2));
training_data_normalized.temp_out = temp_normalized(((end/2)+1):end);

training_data_normalized.press_in = press_normalized(1:(end/2));
training_data_normalized.press_out = press_normalized(((end/2)+1):end);

training_data_normalized.MPP_TIn = MPP_normalized(1:(end/2));
training_data_normalized.MPP_TOut = MPP_normalized(((end/2)+1):end);

training_data_normalized

training_data_normalized = 13080×114 table

category name time temp_in temp_out press_in press_out

1 G "G02" 0 sec -1.6227 -2.3303 1.6186 1.1113
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category name time temp_in temp_out press_in press_out

2 G "G02" 1 sec -1.6227 -2.3303 1.6186 1.1113

3 G "G02" 2 sec -1.6227 -2.3303 1.6186 1.1113

4 G "G02" 3 sec -1.6227 -2.3303 1.6186 1.1113

5 G "G02" 4 sec -1.6227 -2.3303 1.6186 1.1113

6 G "G02" 5 sec -1.6227 -2.3303 1.6186 1.1113

7 G "G02" 6 sec -1.6227 -2.3303 1.6186 1.1113

8 G "G02" 7 sec -1.6227 -2.3303 1.6186 1.1113

9 G "G02" 8 sec -1.6227 -2.3303 1.6186 1.1113

10 G "G02" 9 sec -1.6227 -2.3303 1.6186 1.1113

11 G "G02" 10 sec -1.6227 -2.3303 1.6186 1.1113

12 G "G02" 11 sec -1.6227 -2.3303 1.6186 1.1113

13 G "G02" 12 sec -1.6227 -2.3303 1.6186 1.1113

14 G "G02" 13 sec -1.6227 -2.3303 1.6186 1.1113

for variable_id = 1:1:numel(variables_ending_with_4)
    current_variable_4 = variables_ending_with_4(variable_id);
    current_variable = extractBefore(current_variable_4, "_4");
    current_columns = available_features(startsWith(available_features,current_variable+"_"));
    current_table = training_data_normalized(:,current_columns);
    current_all = current_table{:,:}(:);
    [current_normalized_all, current_mu, current_sigma] = normalize(current_all);
    for column_id = 1:1:4
        modified_variable = current_columns(column_id);
        normalization.(modified_variable).mu = current_mu;
        normalization.(modified_variable).sigma = current_sigma;
        current_normalized = current_normalized_all((1+height(training_data_normalized)*(column_id-1)):(height(training_data_normalized)*(column_id)));
        training_data_normalized.(modified_variable) = current_normalized;
    end
end

training_data_normalized

training_data_normalized = 13080×114 table

category name time temp_in temp_out press_in press_out

1 G "G02" 0 sec -1.6227 -2.3303 1.6186 1.1113
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category name time temp_in temp_out press_in press_out

2 G "G02" 1 sec -1.6227 -2.3303 1.6186 1.1113

3 G "G02" 2 sec -1.6227 -2.3303 1.6186 1.1113

4 G "G02" 3 sec -1.6227 -2.3303 1.6186 1.1113

5 G "G02" 4 sec -1.6227 -2.3303 1.6186 1.1113

6 G "G02" 5 sec -1.6227 -2.3303 1.6186 1.1113

7 G "G02" 6 sec -1.6227 -2.3303 1.6186 1.1113

8 G "G02" 7 sec -1.6227 -2.3303 1.6186 1.1113

9 G "G02" 8 sec -1.6227 -2.3303 1.6186 1.1113

10 G "G02" 9 sec -1.6227 -2.3303 1.6186 1.1113

11 G "G02" 10 sec -1.6227 -2.3303 1.6186 1.1113

12 G "G02" 11 sec -1.6227 -2.3303 1.6186 1.1113

13 G "G02" 12 sec -1.6227 -2.3303 1.6186 1.1113

14 G "G02" 13 sec -1.6227 -2.3303 1.6186 1.1113

% Normalize Data
data_variables = ["STec_rho","MPP_pIn","MPP_dp","active_ref"];
[training_data_normalized,centerValue,scaleValue] = normalize(training_data_normalized,...
    "DataVariables",data_variables);
for data_variable_id = 1:1:numel(data_variables)
    variable = data_variables(data_variable_id);
    normalization.(variable).mu = centerValue.(variable);
    normalization.(variable).sigma = scaleValue.(variable);
end
training_data_normalized

training_data_normalized = 13080×114 table

category name time temp_in temp_out press_in press_out

1 G "G02" 0 sec -1.6227 -2.3303 1.6186 1.1113

2 G "G02" 1 sec -1.6227 -2.3303 1.6186 1.1113

3 G "G02" 2 sec -1.6227 -2.3303 1.6186 1.1113

4 G "G02" 3 sec -1.6227 -2.3303 1.6186 1.1113

5 G "G02" 4 sec -1.6227 -2.3303 1.6186 1.1113

6 G "G02" 5 sec -1.6227 -2.3303 1.6186 1.1113

7 G "G02" 6 sec -1.6227 -2.3303 1.6186 1.1113

8 G "G02" 7 sec -1.6227 -2.3303 1.6186 1.1113

9 G "G02" 8 sec -1.6227 -2.3303 1.6186 1.1113
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category name time temp_in temp_out press_in press_out

10 G "G02" 9 sec -1.6227 -2.3303 1.6186 1.1113

11 G "G02" 10 sec -1.6227 -2.3303 1.6186 1.1113

12 G "G02" 11 sec -1.6227 -2.3303 1.6186 1.1113

13 G "G02" 12 sec -1.6227 -2.3303 1.6186 1.1113

14 G "G02" 13 sec -1.6227 -2.3303 1.6186 1.1113

%denormalized = denormalize(training_data, normalization);

%a = load("dataset_to_be_used_in_ml.mat","training_data");
%isequal(a.training_data, denormalized)

load dataset_to_be_used_in_ml.mat test_data
test_data_normalized = normalize_custom(test_data,normalization);

save dataset_to_be_used_in_ml_normalized normalization test_data_normalized training_data_normalized
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Appendix J 

Designed Filter 

 

 

 
 

  



 

 

   

 

Appendix K 

USN Data Processing 

 
 



clear 

clear csv_to_acc 

%get a list of csv files 

csv_fds = fileDatastore("Raw Mat Data\New accelerometer 

data\","IncludeSubfolders",true,"FileExtensions",".csv","ReadFcn",@csv_to_table,

"UniformRead",true) 

csv_fds =  

  FileDatastore with properties: 

 

                       Files: { 

                              ' ...\Raw Mat Data\New accelerometer data\water_25_acc_1.csv'; 

                              ' ...\Raw Mat Data\New accelerometer data\water_25_acc_2.csv'; 

                              ' ...\Raw Mat Data\New accelerometer data\water_35_acc_1.csv' 

                               ... and 7 more 

                              } 

                     Folders: { 

                              ' ...\Thesis\usn_data_combined_space\Raw Mat Data\New 

accelerometer data' 

                              } 

                 UniformRead: 1 

                    ReadMode: 'file' 

                   BlockSize: Inf 

                  PreviewFcn: @csv_to_table 

      SupportedOutputFormats: ["txt"    "csv"    "xlsx"    "xls"    "parquet"    "parq"    

"png"    "jpg"    "jpeg"    "tif"    "tiff"    "wav"    "flac"    "ogg"    "mp4"    "m4a"] 

                     ReadFcn: @csv_to_table 

    AlternateFileSystemRoots: {} 

  

%a = csv_to_table(d_("Raw Mat Data\New accelerometer 

data\water\water_35_acc_1.csv")) 

 

%read them 

csv_test_data = csv_fds.readall("UseParallel",false) %this errors because of 

one broken experment  we talked about, I ma 

csv_test_data_water_2 = 11617×54 table  

  name active_ref category time peak_value_1_1 ⋯ 

1 "W_water_25_acc_1" 25 "W" 0 sec 8.4792  

2 "W_water_25_acc_1" 25 "W" 1 sec 11.4459  

3 "W_water_25_acc_1" 25 "W" 2 sec 8.7447  

4 "W_water_25_acc_1" 25 "W" 3 sec 8.9975  

5 "W_water_25_acc_1" 25 "W" 4 sec 8.6052  

6 "W_water_25_acc_1" 25 "W" 5 sec 8.1794  

7 "W_water_25_acc_1" 25 "W" 6 sec 11.1384  

8 "W_water_25_acc_1" 25 "W" 7 sec 10.3960  



  name active_ref category time peak_value_1_1 ⋯ 

9 "W_water_25_acc_1" 25 "W" 8 sec 9.6348  

10 "W_water_25_acc_1" 25 "W" 9 sec 8.7550  

11 "W_water_25_acc_1" 25 "W" 10 sec 9.3803  

12 "W_water_25_acc_1" 25 "W" 11 sec 13.5163  

13 "W_water_25_acc_1" 25 "W" 12 sec 10.2929  

14 "W_water_25_acc_1" 25 "W" 13 sec 9.2914  

⋮       

 

save csv_test_data csv_test_data 

function out = csv_to_table(file) 

%Make sure that current dataset_to_be_used_in_ml_normalized.mat file in the 

%folder is up to date. 

 

% Even though normalization of usn test data is mentioned in this function. 

% It is commented out below i.e (out = normalize_custom(r,normalization)) 

% It was removed later due to it giving incorrect values for testing on 

% Equinor trained model. The reasons are explained in report. 

% So direct utlization of accelroemter features is done using directly code 

% out = r 

persistent normalization 

if isempty(normalization) 

    load("dataset_to_be_used_in_ml_normalized", "normalization"); 

end 

try 

    if ~endsWith(file,"1.csv") 

        out = []; 

        return 

    end 

[acc] = csv_to_acc(string(file)); 

r= acc_to_acc_split(acc); 

% out = normalize_custom(r,normalization); 

out = r; 

catch er 

    disp(file) 

    disp(er.message) 

    out = []; 

end 

 

if width(out) ~=54 && width(out) ~=0 

    disp(string(file) + "has weird amount of columns. " + string(width(out))); 

    out = []; 

end 



 

 

end 


