
www.usn.no

FMH606 Master’s Thesis 2022
Electrical Power Engineering

Development of an open control interface

for a servo machine test stand

Anniken Semb Kvalsund

Faculty of Technology, Natural Sciences and Maritime Sciences

Campus Porsgrunn

http://www.usn.no




www.usn.no

Course: FMH606 Master’s Thesis 2022
Title: Development of an open control interface for a servo machine test stand

Pages: 125
Keywords: servo machine, load simulation, open control, Python, Arduino

Student: Anniken Semb Kvalsund
Supervisor: Dietmar Winkler

External partner: University of South-Eastern Norway

Summary:
A few years ago, the University of South-Eastern Norway acquired a Servo Machine Test
stand, consisting of an asynchronous servo machine with a corresponding drive coupled to
a small frequency drive controlled asynchronous machine. The stand is used for small-scale
load-handling demonstrations and was planned to be used in teaching and research settings.
The servo machine is configured as a brake, mimicking various load conditions, controlled
by either a physical user panel or a computer program via a USB interface. However, as
the supplied software only included a narrow range of applications, the goal is to develop a
more flexible control interface allowing for further simulations and control applications.

The thesis analyses the test stand’s components and their restrictions, including its commu-
nication options, including CANopen, LenzeDiag and analogue I/O terminals, and considers
the most viable one to be the analogue I/O terminals due to the serial ports secured access
and cost.

A new control interface is developed based on Python’s open-source programming software
and Arduino’s open-source and accessible hardware. The new interface communicates with
the test stand through its I/O terminals via developed electronic amplifiers and creates a solid
base for further development towards more extensive hardware in the loop simulations.

The University of South-Eastern Norway accepts no responsibility for the results and
conclusions presented in this report.

http://www.usn.no




Preface

This master’s thesis constitutes the final part of the two-year master’s program in Elec-
trical Power Engineering at the University of South-Eastern Norway (USN). The thesis
was conducted from January to June during the spring semester of 2022 and extends
30ECTS.

I would like to thank Dietmar Winkler, my supervisor at USN, for providing outstanding
support and guidance whenever needed. He lowered the infamous threshold for questions
I feared were too dumb to ask and have been a relieving consistent and reliable source of
advice after two years filled with COVID uncertainty. I also want to thank Bjørn Vegard
Tveraaen and Kjetil Svendsen for their help with microcontrollers and electronics.

Finally, I would like to thank all my classmates who, somehow, have made the two years
filled with online and hybrid lectures into an enjoyable time spent in good company.

Porsgrunn, 18th May 2022

Anniken Semb Kvalsund

5



6



Contents

Preface 5

Contents 8

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1 Introduction 17

2 Concept 19

2.1 Induction motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Variable Frequency Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Servo Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 System 27

3.1 Hardware Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Control interface and software . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 User panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 ActiveServo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Communication Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 Serial Communication . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.2 Analogue Communication . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Implementation 45

4.1 Servo Drive serial communication . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 I/O Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.1 Existing setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.2 National Instruments DAQ . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.3 PicCircuit microcontroller . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.4 Arduino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.5 Analogue signal converters . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Interface programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.1 USB transmission structure . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.2 Arduino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.3 Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.4 Lenze Engineer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7



5 Analogue results 71

5.1 Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Discussion 75

7 Conclusion 77

Bibliography 79

A Stripboard layouts 85

A.1 Tuning the converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

B Python Script 93

C Arduino Sketch 105

D Converter results 115

E Servo Drive FB Diagram 123

8



List of Figures

2.1 Test stand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Simplified squirrel cage induction motor . . . . . . . . . . . . . . . . . . . 20
2.3 Stator windings illustration . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4 Illustration of a frequency drive’s three main components. [20] . . . . . . . 23
2.5 Ideal diode bridge rectifier . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6 PWM generated sinusoidal wave [24] . . . . . . . . . . . . . . . . . . . . . 24
2.7 Open-loop versus closed-loop control systems . . . . . . . . . . . . . . . . 24
2.8 Resolver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Test stand setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Current measurement between frequency converter and motor . . . . . . . 27
3.3 Machine nameplates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 ABB ACS350 Variable Frequency Drive . . . . . . . . . . . . . . . . . . . 29
3.5 Lenze 9400 Highline Servo Drive Front . . . . . . . . . . . . . . . . . . . . 29
3.6 Lucas-Nülle servo motor test stand interface . . . . . . . . . . . . . . . . . 30
3.7 Four Quadrant Machine Operation . . . . . . . . . . . . . . . . . . . . . . 31
3.8 ActiveServo main window . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.9 ActiveServo properties window . . . . . . . . . . . . . . . . . . . . . . . . 32
3.10 ActiveServo Load modules speed/torque relations . . . . . . . . . . . . . . 34
3.11 Communication from computer to drive . . . . . . . . . . . . . . . . . . . 36
3.12 ASCII character ’A’ using RS232 [31] (edited). . . . . . . . . . . . . . . . . 36
3.13 Standard CAN frame [33] (edited). . . . . . . . . . . . . . . . . . . . . . . 37
3.14 Lenze Highline 94000 Servo Drive Drive State indicator . . . . . . . . . . . 38
3.15 Standard USB pins up to USB 2.0 [35] . . . . . . . . . . . . . . . . . . . . 38
3.16 Standard USB token packet . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.17 Increasing analogue value continuous and step-wise [39](Edited) . . . . . . 41
3.18 Pulse Width Modulation Voltages . . . . . . . . . . . . . . . . . . . . . . . 42
3.19 RC Low Pass Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.20 RC Low Pass Filter output with PWM input . . . . . . . . . . . . . . . . 43

4.1 Lenze 9400 servo drive CANbus connection . . . . . . . . . . . . . . . . . . 45
4.2 Lenze 9400 servo drive diagnostics port . . . . . . . . . . . . . . . . . . . . 46
4.3 I/O terminals on test setup . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 National Instruments compact Data Acquisition . . . . . . . . . . . . . . . 49
4.5 NI DAQ serial communication Python task . . . . . . . . . . . . . . . . . . 49

9



4.6 PicCircuit iCP12 USB stick [49] . . . . . . . . . . . . . . . . . . . . . . . . 50
4.7 Off-brand Arduino Uno board [52] . . . . . . . . . . . . . . . . . . . . . . 50
4.8 Operational Amplifier IC Lm324-N pinout diagram. [56] . . . . . . . . . . 52
4.9 Voltage Follower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.10 Op-Amp Differential Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.11 0-5 v to 0-10 V converter circuit . . . . . . . . . . . . . . . . . . . . . . . . 53
4.12 0-5 v to 0-10 V converter stripboard layout . . . . . . . . . . . . . . . . . . 54
4.13 0−5V to 10V converter circuit . . . . . . . . . . . . . . . . . . . . . . . . 55
4.14 0-5 v to ±10 V converter stripboard layout . . . . . . . . . . . . . . . . . . 55
4.15 ±10 V to 0-5 v converter circuit . . . . . . . . . . . . . . . . . . . . . . . . 56
4.16 ±10 V to 0-5 v converter stripboard layout . . . . . . . . . . . . . . . . . . 57
4.17 4-20 mA to 0-5 v converter circuit . . . . . . . . . . . . . . . . . . . . . . . 57
4.18 4−20mA to 0−5V converter stripboard layout . . . . . . . . . . . . . . . 58
4.19 A5W-K relay [60](edited) . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.20 Relay stripboard layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.21 Communication between hardware and software . . . . . . . . . . . . . . . 59
4.22 Python to Arduino message example . . . . . . . . . . . . . . . . . . . . . 60
4.23 Example of a 50% speed setpoint value conversion from Python to Arduino 61
4.24 Flowchart of how Arduino selects which function in Table 4.3 to run . . . . 62
4.25 Select output Arduino . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.26 Flowchart for reading analogue values in Python . . . . . . . . . . . . . . . 66
4.27 Flowchart for writing output values in Python . . . . . . . . . . . . . . . . 66
4.28 Flowchart for calibration sequence in Python . . . . . . . . . . . . . . . . . 67
4.29 Lenze Engineer main window(device offline). . . . . . . . . . . . . . . . . . 69
4.30 Analogue terminals in Lenze Engineer. . . . . . . . . . . . . . . . . . . . . 70

5.1 Analogue output converters. . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Revisited 0−5V to 0−10V converter stripboard. . . . . . . . . . . . . . . 72
5.3 Revisited 0−5V to 0−10V converter build. . . . . . . . . . . . . . . . . . 72
5.4 Analogue input converters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.5 Digital outputs relay circuit . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.6 Complete I/O module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.7 Converter response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

D.1 Analogue voltage doubler output . . . . . . . . . . . . . . . . . . . . . . . 116
D.2 Analogue voltage quadrupler output . . . . . . . . . . . . . . . . . . . . . 117
D.3 Analogue voltage quarter output . . . . . . . . . . . . . . . . . . . . . . . 118
D.4 Analogue current to voltage converter results . . . . . . . . . . . . . . . . . 119
D.5 0−5V to Arduino 10bit converter . . . . . . . . . . . . . . . . . . . . . . . 120
D.6 Arduino 8bit to 0−5V converter . . . . . . . . . . . . . . . . . . . . . . . 122

10



List of Tables

3.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Test stand interface features in Figure 3.6. . . . . . . . . . . . . . . . . . . 30
3.3 Analogue control signals and common device applications . . . . . . . . . . 40
3.4 Analogue Digital Converters . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1 I/O terminals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Stripboard circuits symbol description . . . . . . . . . . . . . . . . . . . . 51
4.3 Python to Arduino 1st character commands . . . . . . . . . . . . . . . . . 60
4.4 Main commands in Python script . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Calibration function results . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.1 Stripboard circuits symbol description . . . . . . . . . . . . . . . . . . . . 85

D.1 0−5V to 0−10V converter results . . . . . . . . . . . . . . . . . . . . . . 116
D.2 0−5V to ±10V converter results . . . . . . . . . . . . . . . . . . . . . . . 117
D.3 ±10V to 0−5V converter results . . . . . . . . . . . . . . . . . . . . . . . 118
D.4 4−20mA to 1−5V converter results . . . . . . . . . . . . . . . . . . . . . 119
D.5 0−5V to 10bit Arduino converter results . . . . . . . . . . . . . . . . . . . 120
D.6 8bit Arduino to 0−5V converter results . . . . . . . . . . . . . . . . . . . 121

11



12



Nomenclature

Abbreviations

ACK Acknowledge

ADDR Address

CAN Controller Area Network

CRC Cyclic Redundancy Check

CS Control Signal

CSLRV Control Signal Lower Range Value

CSres Controller Signal Resolution

CSURV Control Signal Upper Range Value

DAQ Data Acquisition

DIP Dual In-line Package

EMF Electromotive Force

ENDP Endpoint

EOF End of Frame

EOP End of Package

I/O Input/Output

IC Integrated Circuit

ID Identifier

LRV Lower Range Value

13



Maxoutput Maximum output value

MV Measured Value

MVscaled Normalised measured value

P.ID Package Identifier

PF Power Factor

PLC Programmable Logic Controller

PWM Pulse width modulation

RMF Rotating magnetic field

RT R Remote Transmission Request

SOF Start of Frame

SPreceived Received setpoint

SY NCH Synchronise

URV Upper Range Value

USB Universal Serial Bus

ASCII American Standard Code for Information Interchange

Variables and constants

Nn Nominal speed [rpm]

ṁ Flow [m3

s ]

ω Mechanical speed [rpm]

τ Torque [Nm]

A Ampere [A]

D Duty Cycle [%]

E2 Induced EMF at standstill [V ]

14



E2r Rotor induced EMF [V ]

f Frequency [Hz]

fr Rotor frequency [Hz]

lc Load constant

Mmax Maximum torque [Nm]

N Machine speed [rpm]

Nr Rotational speed [rpm]

Ns Synchronous speed [rpm]

p Number of poles

tcycle Cycle time [s]

to f f Off-time [s]

ton On-time [s]

V Voltage [V ]

Vin Input voltage [V ]

Vout Output voltage [V ]

W Watt [W ]

P Power [W ]

s Slip [%]

15



16



1 Introduction

As the world slowly turns its back on fossil fuels due to skyrocketing prices and the
undeniably negative environmental impact, the widely discussed and inarguable praised
hero called electricity is head-on full speed into a new energy supply revolution. The
century-old traffic supplying fossil energy to households, factories, automotive, and off-
shore industries experience occurring changes that dramatically alter the fundamental
structure of the trade, leading to a neverending quest for the next, new, best tradeoff.
Of course, electricity itself is no new invention in terms of the rapid-evolving community
seen over the last six decades. Still, in the vicinity of only a couple of centuries, it has
evolved from a compelling, unexplored scientific discovery to one of, if not the very staple
of the modern world. [1][2]

In the later years, sustainability, green energy and climate consciousness have been the
topics on everyone’s lips, more or less regardless of one’s industry, occupation and geo-
graphical identity. A prominent effect of the green energy shift is the extended use of
electricity in fields fossil energy sources traditionally dominate, especially in the power
generation and the automotive industry. Moreover, the increased use of large electrical
machines and the constant strive for energy optimisation results in a pang of hunger
for knowledge about the machines’ load handling, control systems and power losses, to
mention a few. [3][4]

In 2012, the University of South-Eastern Norway acquired a Servo Machine Test stand
intended for load-handling demonstrations and other research purposes [5][6]. The stand
consists of a servo motor and drive coupled to a small frequency drive controlled asyn-
chronous machine. The frequency drive is controlled through a user panel, while the servo
drive either by a physical control panel built around the drive or via a USB interface and
its program ActiveServo. Unfortunately, the program is somewhat restricted concerning
how the different available parameters can be controlled and allow for only a few differ-
ent load settings. The goal is to develop a more open, adjustable user interface that fits
various project needs and allows for more flexible speed and torque control. [6]

In this project, the servo drive test stand’s components and capabilities are analysed,
along with the software ActiveServo and its restrictions. This paper goes through various
communication options, their possibilities and limitations and elaborates on the currently
most feasible open-source communication method, a microcontroller-based I/O module
run by a Python script.

17



18



2 Concept

The servo-machine test stand is a complete test system for electrical machines and drives.
The stand consists of a digital controller with corresponding software controlling a brake
coupled to an induction motor controlled by a variable frequency drive, as illustrated in
Figure 2.1

Figure 2.1: Test stand

The test motor runs at a fixed speed controlled by the variable frequency drive (VFD),
while the asynchronous servo-brake applies a programmable, variable torque using regen-
erative braking. With caution not to overload the test motor, the brake can also run to
create the effect of a generator.

The servo drive interface stand can either be controlled through its physical user panel, or
be connected to and controlled by a computer through a USB interface and the software
ActiveServo, a program for examining the responses of load machines [7]. For further
details revolving around the user panel and computer program, see subsection 3.2.1 and
subsection 3.2.2.

2.1 Induction motors

The system consists of two induction motors, often referenced as asynchronous motors.
These are among the most popular motor choices due to their simple but rugged con-
struction, low maintenance, and low price compared to the alternatives [8]. There are
two main kinds of three-phase induction motors, the squirrel-cage and the slip ring, the
squirrel cage often being the favourite one due to its rugged construction [9].The squirrel
cage induction motor consists of a stator with a three-phase winding circuit placed in
highly permeable steel laminations and a rotor made of a laminated core with parallel
slots carrying conductors aesthetically resembling a squirrel cage [10]. A simplified version
without rotor windings is shown in Figure 2.2.

19



Figure 2.2: Simplified squirrel cage induction motor

The rotor conduction bars are usually not placed parallel to the shaft, but a bit skewed
and short-circuited through an end ring to form a complete closed circuit. The slight
angle of the bars allows for a more uniform torque curve through different rotor positions,
reduces the locking tendency and increases the rotor resistance due to the increased length
of the rotor bar conductors [11]. The increased resistance provides a higher starting
torque and lowers starting current, the drawback being a bit higher losses during regular
operation [12].

The stator consists of a 3-phase winding with metal housing and a core. The windings are
placed electrically and mechanically 120° apart, providing a rotating magnetic field when
a power source is connected [13]. The windings’ terminals are connected in either star or
delta in the machine’s terminal box. Figure 2.3 illustrates a simple 2-pole, three-phase,
star-wound stator wiring diagram.

A three-phase alternating current passes through the windings and produces a rotating
magnetic field. (RMS). The peed of the machine’s internal rotating magnetic field, known
as the synchronous speed (Ns), is determined by the number of poles (P) and applied
frequency ( f ). The relationship between the motor speed and its pole number is given in
Equation (2.1).

Ns ∝
1
p

or Ns =
120 f

p
(2.1)

According to Faraday’s law, if a closed-loop conductor is placed inside the rotating mag-
netic field, an electromotive force (EMF), will be induced in the loop, causing the loop,
or the rotor, to rotate [10]. A significant advantage of this, especially in squirrel cage mo-
tors, is that the motor is inherently self-starting, eliminating the need for external prime
movers or damper windings needed in synchronous motors, thus reducing complexity and
cost [14].

20



Figure 2.3: Stator windings illustration

As the rotation of the rotor merely relies on the induced EMF, its rotational speed will
never be able to catch up to the synchronous speed of the magnetic field, hence the term
asynchronous machine. As a result, the rotational speed Nr is always slightly less than
the synchronous speed, with the relative difference known as slip. The slip is calculated
using the synchronous speed Ns and the corresponding rotational speed Nr, as shown in
Equation (2.2) [15].

s =
Ns −Nr

Ns
(2.2)

The slip can be used to calculate several properties of the motor. Equation (2.3) and
Equation (2.4) shows how the rotor frequency fr, and rotor induced EMF E2r are calcu-
lated. E2 represents the rotor-induced EMF per phase at a standstill [15].

fr = s f (2.3)

E2r = sE2 (2.4)

As described in Section 3.1, the test stand revolves around two motors coupled to each
other, one acting as a motor and the other as a regenerative brake. By applying a
low-frequency power supply to the brake’s stator, causing an RMF-speed lower than
the rotor speed, the brake, an asynchronous machine, turns into an inductive generator
feeding power back into the supply line [16]. During this process, the slip, as shown in

21



Equation (2.2), becomes negative, causing a negative torque seen from the brake’s point
of view. The torque, τ , can be found using the power, P and mechanical speed ω , as
described in Equation (2.5) [17]

τ =
P
ω

(2.5)

Expanding Equation (2.5), the correlation between an inductive machine’s torque and
slip becomes clear in the induction motor torque equation, presented in Equation (2.6),
where I2 is the rotor current, R2 the rotor resistance, s the slip and ωs the synchronous
mechanical speed [17].

τ =
3I2

2 R2

sωs
(2.6)

When using induction motors as regenerative brakes, the stress levels can become very
high, especially during quick stops. Therefore, the machine should always be able to
handle more power than transferred during the breaking. The brake used in this setup
has a nominal power rating equal to more than 4.5 times the motor.

As the rotation of the rotor merely relies on the induced emf, and the number of poles
and frequency determines the electromagnetic speed, the common way to control the rotor
speed is to alter the frequency by feeding the machine’s power supply through a frequency
converter.

2.2 Variable Frequency Drive

The two induction motors in the setup are controlled by Variable Frequency Drives
(VFDs), which are popular motor control devices that drive electric motors by vary-
ing the frequency and voltage of their respective power supplies [18]. As of today, VFDs
are found in most industries requiring accurate variable motor speed or torque control, in
addition to making their entry into the green technology by improving system efficiencies
and reducing mechanical stress on machines during starts and stops by controlling the
ramp-up and ramp-downs.

The VFD essentially consists of three main parts: An AC to DC converter, a DC-bus and
a DC to AC inverter, as illustrated in Figure 2.4 [19]. The figure pictures a VFD with a
three phase input, a single-phased VFD has the an equal structure.

First, the power is fed through the AC to DC converter, often diode, transistors or silicon
controlled rectifiers.Diode based rectifiers are the most common ones used due to their low
cost and usually consist of a diode bridge paired with a capacitor in parallel to smother

22



Figure 2.4: Illustration of a frequency drive’s three main components. [20]

out the remaining AC ripples [21]. Figure 2.5a pictures a simplified illustration of an ideal
diode bridge rectifier and Figure 2.5b what the output waveforms of such a rectifier looks
like with and without the added capacitor.

(a) Ideal diode bridge rectifier

(b) Ideal diode bridge rectifier output wave-forms. [21]

Figure 2.5: Ideal diode bridge rectifier

After the rectifier stage, the power runs through the DC bus, consisting of mainly a large
capacitor to provide a high-quality low-ripple voltage at the input of the inverter. The
DC bus capacitor determines the amount of transient energy the VFD can absorb, and as
a consequence, the largest DC bus capacitance within the suitable economic range is often
preferred. Therefore, the capacitor is sized not only to minimise the ripple current, but
also to provide acceptable compensation for momentary power loss or voltage-sag. [22]

Before the output, the VFD’s final stage is the AC inverter stage, where the DC voltage
is converted back to AC voltage at desired level and frequency. The currently most
widely used technique for voltage inversion is pulse width modulation (PWM), controlled
by a microcontroller. [23] PWM decides voltage levels with time as its main parameter,
switching a voltage on and off on a high frequency, using duty cycles to decide how
long the voltage is high or low. A common way to create sinusoidal waves using PWM
is to compare the sinusoidal AC voltage with a high-frequency triangular wave in real-
time, which determines each switching state for the poles in the inverter, illustrated in
Figure 2.6. [24]

23



Figure 2.6: PWM generated sinusoidal wave [24]

By adjusting the duty cycle and triangular waves, the frequency inverter’s output has a
wide range and can be used to drive motors efficiently, safely, and accurately.

2.3 Servo Drive

The servo drive controls the servo motor much like the VFD controls the ordinary induc-
tion motor, but includes a feedback system that allows for closed-loop control in contrast
to the VFD. For example, if one wants to achieve a certain motor speed and adjusts
the VFD’s output frequency to match the speed, the VFD does not know if the motor
reached the desired speed or if, e.g. a connected load caused it to go faster or slower. A
feedback loop solves this issue by measuring the relevant value and sending it back to the
controller, which in turn adjusts its output value, for example, frequency, accordingly. [25]
Figure 2.7 illustrates the an example of the difference between an open-loop (a) control
system versus a closed-loop (b) speed control system such as the one used for the servo
drive.

(a) Open-loop.
(b) CLosed-loop.

Figure 2.7: Open-loop versus closed-loop control systems

The servo drive used in this project contains a speed sensor in the form of a resolver, a
robust sensor consisting of a stationary stator and a rotor attached to the motor shaft.

24



A resolver can be viewed as a rotating transformer and uses induced voltage to measure
speed and angular shaft position.

(a) Resolver example [26].










































































































sin

S1 S3

R2

R1

Sine 
 output SecondaryPrimary

Cosine  
output

S4

S3
Stator windingsRotor windingAC input

(b) Resolver windings [27].

Figure 2.8: Resolver

Figure 2.8b illustrates that the stator contains three windings, a primary winding where
a fixed induced sine voltage is applied, and two stationary windings mounted 90° apart,
named the secondary, or sine and cosine winding. As the shaft rotates, the resolver’s al-
ternating magnetic rotor field induces alternating voltages in the sine and cosine windings,
where their amplitudes depend on the position of the rotor. The rotor’s angular position
and speed can then be determined by measuring the induced voltage in the secondary
windings.

25



26



3 System

3.1 Hardware Description

The test stand, provided by the German technology company Lucas Nülle GmbH[7] con-
sists of an original servo drive controlling a 1.7kW induction motor acting as a brake to
another motor driven by a frequency controller, as shown in Figure 3.1 and Figure 3.1.

Figure 3.1: Test stand setup.

The servo brake has an internal speed sensor in the form of a resolver connected to the
servo drive. The only other feedback sent from the machine rig is a safety sensor checking
if the shaft cover is attached correctly (not pictured). If not attached correctly, the drive
interface will display an error and shut down the brake.

The power supply from the frequency drive to the motor can optionally be connected
through the control panel to allow for some integration, as shown in Figure 3.2. Phase
L1 runs through an ammeter and allows the test stand to log the motor’s response to the
various applied loads.

Figure 3.2: Current measurement between frequency converter and motor

27



Table 3.1: Hardware

Hardware Model
Frequency Converter ABB ACS360-01E-02A4-2
Test Motor ABB 3GVA083001-ASC
Servo Drive Test Stand Lucas Nülle CO3636-6V7
Servo Drive Lenze E94ASHE0044A22NNNN
Brake Motor Lenze MCA 13I41-RS0B0-B19N-ST5S00N-ROSU

(a) ABB 0.37kW machine nameplate

(b) Lenze 1.7kW machine nameplate

Figure 3.3: Machine nameplates

Machines. The test motor is, as presented in Figure 3.3a, a small 0.37kW ABB asyn-
chronous machine, rated 220−240V in a delta configuration and 910rpm at 50Hz, with
a power factor PF , often referred to as cos φ , of 0.72. The motor and frequency controller
differ from the ones initially sold with the test stand, but were chosen in favour of the
original ones to reduce costs. In contrast, the brake is a more powerful rated machine
selected to withstand the powers caused during regenerative braking. As shown in Fig-
ure 3.3b, the brake consists of a 1.7kW Lenze asynchronous machine, rated 390V and
050rpm at 140Hz, with a PF equal to 0.76.

Variable Frequency Drive. The frequency drive ABB ACS350 can be controlled locally,
using the control panel mounted on its front, as pictured in Figure 3.4 Using the panel
is a relatively quick and user friendly way to operate the drive, albeit it does not allow
cascade control or more extensive system integration. Therefore, ABB created multiple
additional extension adapters enabling communication through various field bus com-
munication protocols such as TCP/IP, Profibus, CANbus, and others to remote control
the frequency drive. The frequency drive in question has a Profibus adapter available.
Another control option is to use the provided analogue in- and outputs (I/O) found on
the frequency drive underneath the white panel below the local control panel, further
described in Section 4.2.

28



Figure 3.4: ABB ACS350 Variable Frequency Drive

Servo Drive. As described in Table 3.1, the servo drive is a Lenze Highline 9400 Single
drive (see Figure 3.5), a three-phased 0.37 − 240kW servo inverter with, among tons of
other features, a resolver input, a brake resistor to dispose of power generated through
braking, digital and analogue I/Os and a variety of optional communication extensions [28].
The drive is for this setup configured as a three-phase 400V input at 50Hz, 400V
0 − 140Hz output drive using the resolver input as a speed control to match the chosen
servo motor. Communication wise, the servo drive has three different options; CANopen,
Diagnostics Port and I/O terminals, further described in subsection 3.3.1

Figure 3.5: Lenze 9400 Highline Servo Drive Front

The servo drive is in the original test stand setup controlled using an interface made by
the German technology training company Lucas-Nülle and consists of a physical control
panel and a program named ActiveServo, elaborated in Section 3.2.

3.2 Control interface and software

As the VFD covered in Section 2.2 controls the motor, this section (Section 3.2) is ded-
icated to the servo drive and brake control. The Lucas-Nülle user panel is built for and
around the Lenze Servo drive and uses the protocol CANopen, further described in sub-
subsection 3.3.1, as communication between the drive and the interface. The interface

29



Table 3.2: Test stand interface features in Figure 3.6.

No. Feature
1 Torque display
2 Quadrant indicator
3 Speed display
4 Speed / Torque adjuster
5 Mode switch and indicator
6 On / Off switch
7 Motor line in / out for current measurements (Figure 3.2)
8 Thermal sensor and relay output
9 Connection for syncing to grid
10 Torque and speed output in mV
11 USB Port
12 Run / stop buttons

allows for control by using simple commands with buttons and dials on the physical
controller or connecting it via a USB to a PC running ActiveServo [29].

3.2.1 User panel

Figure 3.6 shows the front panel of the servo drive controller interface, with its simple
layout features described in Table 3.2.

Figure 3.6: Lucas-Nülle servo motor test stand interface

The panel contains two four-digit, seven-segment displays used to show torque and speed
or specific errors, such as communication and drive failures. The interface itself cannot
record and store data, which means every displayed value is live, and all adjustments are

30








































































































n 
M

n
M

n 
MM

n

 

Reverse motoring Reverse braking

Forward motoringForward braking
Speed (n)

ΙΙ Ι
ΙVΙΙΙ Torque (M)

Figure 3.7: Four Quadrant Machine Operation

immediate. Thus, as the servo is operated independently from the test motor, it should
be operated with caution to avoid overloading the test motor.

The four-quadrant display (2) shows which quadrant the servo machine operates by
switching on or off LEDs in each quadrant. In essence, as illustrated in Figure 3.7, the
display indicates in which direction the machine rotates and if it is currently operating
as a motor or generator. As the servo machine mainly works as a brake, it will usually
operate within the second and fourth quadrant. [28]

3.2.2 ActiveServo

ActiveServo is the program made for comtrolling the Test Stand Setup by Lucas-Nülle
and is tailored to examine load machines’ static and dynamic responses. The program
contains modules to simulate pumps, calendering, hoist machines, inertia wheels and
time-dependent loads.

Overview

ActiveServo uses a Windows-based layout with a menu bar containing drop-down menus
located at its top, allowing for intuitive navigation between its various applications. For
example, Figure 3.8 shows the program’s main window, containing a large plotting area
with a grid, a machine load parameters tab on the left side of the screen, and a tool-
bar placed right under the menu bar. The plotting area is the heart of ActiveServo,
where the brakes behaviour and the test motor’s response are shown during tests. The
default units of the x and y-axis are speed [rpm] and torque [Nm], but can be changed
according to the user’s need and preference. The machine area on the left hand contains

31



real-time displays of the brake’s recorded values, such as speed, torque and mechanical
power consumption/generation. Other displayable values include slip, voltage, current
consumption, power factor and efficiency. Finally, the toolbar allows for quick access to
frequently used functions such as saving, settings, display characteristics and run/stop
the machine.

Figure 3.8: ActiveServo main window

The first step in initialising the program is to add the test machine’s parameters into
the properties window. The parameters needed are the various nominal speeds, power,
voltage, current and power factor, as shown in Figure 3.9, as well as information about
whether this is a multi-, single-phase or DC machine, its voltage- and current range and
safety limits filed under the Circuit, Ranges and Options tabs. These parameters allow
the program to tailor the brake force and calculate the appropriate responses based on the
test motor’s abilities. ActiveServo is explicitly created for the test stand, so the brake’s
machine info is already hardcoded into the program.

Figure 3.9: ActiveServo properties window

32



One very convenient feature found in ActiveServo is the ability to record the machine
characteristics of the test motor. During this test, the test motor is gradually braked in
steps from its no-load speed down to a complete halt by the servo-brake, all while the
torque and speed are recorded and plotted in the main window in Figure 3.8. The result is
the machine characteristics speed torque plot, which provides crucial information about
the machine’s working range, up to the pull-out torque. In addition, the parameters
braking process parameters can be specified to a various number of steps and starting
points in the slope tab found in the properties window displayed in Figure 3.9, allowing
for, to a certain degree, customised braking sequences. The sequences are initiated by
the command Switch drive on found in Settings or pressing the run-button found in the
toolbar and manually switching the drive to RUN using the button displayed as 11 in
Figure 3.6.

The machine parameter tab in ActiveServo also contains a speed-control mode, where
the servo-motor is synchronised to the constant speed of the test motor. In this mode of
operation, the test motor can be tested in all four quadrants (see Figure 3.7), which is
particularly suitable for recording the characteristics of an asynchronous machine.

Using the machine characteristics plot, one can predict how the motor will handle the
various load at various speeds. ActiveServo includes seven premade load simulation modes
to demonstrate the effects of torque change, each affecting the braking torque and speed
relation in different ways. The modes are found under settings when ActiveServo is in
Load Emulation mode and their corresponding load constant is adjusted using the panel
on the left hand.

In the Pump/Fan mode, the brake resembles the torque response of a pump or a fan with
a quadratic torque rise as the speed increases. The model assumes an ideal characteristic,
ignores other factors such as friction and inertia, and lets one adjust a Load Constant
parameter that resembles a unitless diameter of the pump or fan impeller—the higher the
load constant, the larger the diameter and steeper torque curve. Equation (3.1) describes
the torque curve seen in Figure 3.10a, where M is the torque, N the motor speed, ṁ the
flow and Mmax the maximum possible torque, in this case, with a 0.37kW test motor,
10Nm.

M =

(
N

ṁ·lc
4000 ·27

)2

Mmax (3.1)

In the Calander mode, the brake simulates the torque response of a calander, a machine
that presses cloth or paper through rollers. As Figure 3.10b shows, the brake torque
increase is linear with the increase in speed. As in the Pump/Fan mode, the model
ignores other variables such as friction and inertia, and the torque is calculated as in
Equation (3.2).

33










































































































n [RPM]

M [Nm]

Load Constant

LM  ~ n2

P ~ n3

(a) Pump/Fan








































































































n [RPM]

M [Nm]

L

Load Constant

M  ~ n
P ~ n2

(b) Calander







































































































n [RPM]

M [Nm]

LM  = const
P ~ n

Torque

(c) Hoist Drive








































































































M [Nm]

L

Thickness

M  ~ φ
Μ ~ n-1

P = const

Φ [  ]O

(d) Winding Machine

Figure 3.10: ActiveServo Load modules speed/torque relations

M =
n

ṁ·lc
4000 ·50

·Mmax (3.2)

The Hoist Drive mode shown in Figure 3.10c is the simplest load model included and is
used for loading the test motor with a constant torque over its whole speed range. In this
mode, the torque is directly adjusted in the parameter dialogue box on the left side of the
screen, and no load constant is used. This mode can operate in all four quadrants and
can simulate a crane lifting or lowering a load.

The last model shown in Figure 3.10, the Winding Machine mode, emulates the torque of
a winding machine where the torque increases linearly with the amount of wound turns in
one direction. The increased torque comes from the simulated increased thickness of the
wound material, which increases the offset of the pulling angle. If the machine rotates in
the other direction, no counter-torque is applied, and the number of turns is reset to 0 if
the numbers of turns in both directions are equal. This mode also corresponds to an ideal
characteristic where friction and inertia are ignored. The adjustable parameter in the
dialogue box is the thickness of the wound material, which translates to the Figure 3.10d
line’s steepness.

34



In addition to the models shown in Figure 3.10, ActiveServo has three additional modes,
the Compressor, the Inertia Wheel and the Time-dependent load. The torque response
corresponds to that of a reciprocating compressor (also known as piston compressor) with
a pressure tank in the compressor mode, where each revolution increases the torque until
the maximum torque is reached and the compressor discharges. During discharging, the
torque rapidly collapses. The volume of the pressure tank is altered in the parameter
dialogue, and a linear increase in torque can be seen due to the increasing pressure. If
one attempts to rotate the motor in the reverse direction, it will be blocked by maximum
torque, and great care must be taken to ensure the motor is wired and configured to
run the correct way before powering it on. The Inertia Wheel mode, on the other hand,
represents the response of an inertia wheel, or mass, with a lagging reaction. The test
machine’s response to starting and stopping various masses can be examined by adjusting
the mass in the parameter dialogue box, ranging from 3 to 3000, where 1000 corresponds
to 14000kg · cm2. Friction can also be added from 1 to 100

Finally, the Time-dependent mode allows for a more customised load sequence and allows
for rapid torque changes. The torque sequence can either be programmed using the built-
in function that allows for dragging and adding multiple points to a premade, initially
flat time-line, i.e. a constant torque, or by adding a series of comma-separated values
using the Import from clipboard function. The selected values are then imported and
plotted in equal x-intervals along the graph, and the program is started by pressing the
Run-button.

Restrictions

As described in the sections above, ActiveServo enables quite a few albeit reasonably
simple load-emulation models. However, it lacks the options of further model expansions
and adaptations, appears somewhat restricted to its existing models and does not con-
tain any control options for the test motor, as a separate frequency drive runs that (see
Section 2.2). In other words, the communication solutions need to be revisited to include
the test motor in the control circuit or expand the control interface to include external
models made in other programming environments.

3.3 Communication Paths

The test stand and servo motor controller built by Lucas-Nülle described in Section 3.1
is based on a servo drive (see Section 2.3), model 9400 as seen in Table 3.1, made by
the German company Lenze. The servo drive itself is a standalone component made
for implementation in larger systems and not necessarily tailored for this specific test
stand. The preconfigured communication consists of the USB port shown as number 12

35



in Figure 3.6, which allows for computer control using ActiveServo or manual control
using the physical user interface. All the information received by the interface (either
manually or through USB) is processed, translated and sent to the servo drive through a
CAN-bus protocol, as sketched in Figure 3.11.

Figure 3.11: Communication from computer to drive

3.3.1 Serial Communication

In short, serial communication is a form of digital signal transmission used extensively
within the computer- and electronics industry. Serial communication is often favoured over
other communication solutions such as parallel interfacing or analogue controllers due to
its simplicity and low hardware overhead [30]. Although there are many protocols within
the serial communication category, their base working principle is the same: Sequences of
digital signals sent one by one through a pair of wires. The sequence represents a message,
where the structure is dependent on what protocol is used. Figure 3.12 shows an example
of the character ’A’ transmitted as the ASCII binary pattern 0100 0001 over a serial line
using the popular RS232 protocol, where the line represents the state of the transmitted
voltage level (low or high) [31].




























































































Start 1 0 0 0 0 0 01 Stop

Idle

Figure 3.12: ASCII character ’A’ using RS232 [31] (edited).

The main serial communication used on the test setup is as described in Figure 3.11 USB
and CAN-bus, further elaborated in subsubsection 3.3.1 and subsubsection 3.3.1.

CAN-bus and CANopen

CAN-bus is a system used as a standard in almost all automotive industries, ranging from
motorcycles to trucks to even ships and aeroplanes, for various reasons:

• The digital bus system allows for more straightforward wiring and cost-efficient
installation than analogue signalling.

36



• The system is fully decentralised, enabling one point of entry for central diagnostics,
data logging and configuration.

• CAN-bus system is very robust and efficient., as the signals are close to unaffected
by electromagnetic interference and disturbances.

• All the frames are ID-prioritised, so the top priority frames are sent out on the bus
without causing a disturbance, making CAN-bus ideal for safety-critical applications
such as vehicle and machinery control.

The CAN-bus protocol provides the essential means of communication, but is a very
simple messenger. Therefore, higher layer protocols have been created to implement more
advanced functionality. As a result, several higher layer protocols are tailored to fit specific
needs. For example, in the case of the servo drive used in this project, CANopen is used
as the communication link between the control panel and the servo drive and the link
between the drive’s internal parts. [32]

CANopen is widely embedded in control applications such as industrial automation and
is today extensively used in motor control. CANopen is a higher layer protocol based
on CAN-bus, meaning it uses the same frame structure and 11-bit identifier. Figure 3.13
illustrates the structure of a standard CAN frame or message, where the numbers signify
the bit size of each field.

Figure 3.13: Standard CAN frame [33] (edited).

The frame starts with a dominant 0 to signal a new message being sent. After comes
the identifier, where lower values have a higher priority, followed by the RTR, which
tells if there is a send message or a request for data from another node and the control
field that contains the Identifier Extension Bit (IDE) and length of the data field that
comes after. The data field includes the payload (data bytes) that can be extracted and
decoded for information. Next, the CRC ensures data integrity after transmitting, and
ACK acknowledges if the node has received the data correctly. In the end, the EOF
signals the end of the frame. [33]

CANopen allows for a few more options, allowing for a few different communication
models, such as controller/agent or client/server. In addition, a preset of encoded device
states can be changed in agent devices by the controller, e.g. reset after a fault. Finally,
object dictionaries, electronic datasheets, and device profiles enable CANopen devices to

37



be integrated into more extensive, vendor-independent systems. The servo drive used
in this project has a handy LED display seen in Figure 3.14 signalling the drive’s state,
which adds to a quicker troubleshoot if anything were not to work correctly.

Figure 3.14: Lenze Highline 94000 Servo Drive Drive State indicator

The indicator can constantly display the drive’s current state or errors through a series
of blinking signals and colour codes thoroughly explained in the drive’s manual[34].

Universal Serial Bus

The USB (Universal Serial Bus) is, without doubt, one of the most widespread and com-
monly known serial communication protocols there is today. For example, the servo motor
control panel of the test stand uses USB to communicate with a computer and its program
ActiveServo, further described in subsection 3.2.2. The protocol allows for fast data trans-
mission over a two-wire (D+ and D-) cable controlled by clock pulses. The two remaining
pins are a 5V pin used to power devices, and a ground pin. Figure 3.15 illustrates the
pinout on an ordinary USB connector up to USB 2.0. In the newer USB 3.0 connectors,
there is are 5 additional pins, in short allowing for a higher bandwidth and even faster
transmissions.

The USB is, like CANbus, a serial protocol used where messages are transported one by
one through the cable. A USB package can consist of up to six data packet fields, as
shown in Figure 3.16. The package illustrated is a token package, where the sync field
synchronizes the clocks from both the receiver and the transmitter, while the PID field
provides information about what type of data is being sent. The four types of PID are
tokens, data, handshake and special, which serve different purposes and determine the

Figure 3.15: Standard USB pins up to USB 2.0 [35]

38



structure for the rest of the USB package. The address field includes the address of the
device the package is sent to, while the endpoint specifies the endpoint number. Finally,
the CRC, as in CANbus, checks if the data in the package is free of errors before the EOP
field indicates the end of the packet. [36] [37]

Figure 3.16: Standard USB token packet

In contrast to CANbus(unless using CANopen in controller/agent mode), USB is a host-
centric bus, meaning the host initiates all transactions. The host is usually a computer,
controlling various applications connected to it. In this project, the various applications
are the servo drive control interface and a microcontroller, further elaborated in subsec-
tion 4.2.4. An essential factor to remember is that although one is used to multiple USB
devices connected, the USB is still a form of serial communication. The sheer speed of
the USB protocol allows for the illusion of multiple devices and packages being handled
simultaneously, despite only one package is transferred at a time. [38]

3.3.2 Analogue Communication

In the early days, before the digital revolution and when processor speed and memory
were too limited to support anything but discrete control functions, analogue signals were
used for most control applications. The analogue control signals offer simple, universal
units that are easy to implement in cross-brand systems. Every value is defined as simple
physical SI-units such as voltage or current and requires no translators for byte-long
packages. Due to their universal and straightforward nature, analogue control signals are
still widely used in control applications today. In this project, both the VFD and Servo
Drive allow for control by analogue signals, as seen in Figure 4.3a and Figure 3.5.

Standardised analogue control signals include 0-10V, +-10V and 4-20mA, where the con-
trol range or sensor range is scaled to match the control signal. First, the measured value
(MV) is scaled to a value between 0-1, based on the measuring span and lower range value
(LRV). Next, the scaled measured value (MVscaled) is implemented into the equation for
the control signal output CSout , scaled similarly between its Lower Range Value CSLRV
and Upper Range Value CSURV . The equation assumes linear changes. [39]

39



Table 3.3: Analogue control signals and common device applications

Signal Commonly used in
4 - 20 mA PLCs, Drives, Sensors.
0 - 20 mA Sensors, Actuators.
0 - 5V Microcontrollers and computers.
0 - 10V PLC and Drives.
-10 - +10V PLC and Drives.

Table 3.4: Analogue Digital Converters

Type Meaning
ADC Analogue to Digital Converter. Enables analogue reading by a digital controller.
DAC Digital to Analogue Converter. Enables analogue writing by a digital controller.
ADC,DAC Both of the above, often referred to as Analogue I/O-modules.

MVscaled =

(
MV −LRV

|URV −LRV |

)
CS = (|CSURV −CSLRV |) ·MVscaled +CSLRV

(3.3)

Computers, be it personal laptops, PLCs (Programmable Logic Controllers), or a micro-
controller, only understand digital messages. Therefore, converters are needed to write or
read any analogue control signals. Table 3.4 describes the three main categories of such
converters.

ADCs essentially work by taking snapshots of the analogue value in one instant of time
and converting it into a binary number representing the ongoing analogue level. While the
analogue or ”real” value has an infinite number of different levels, the digital versions have
to work in steps, determined by their resolution. Figure 3.17a illustrates the difference
between a linear analogue level in real life (3.17a and how the digital converter views
it(3.17b. [39]

The converter’s resolution determines the number of steps, as shown in Equation (3.4),
where CSres is the Control Signal resolution and b is the converter’s number of bits.

CSres =
|URV −LRV |

2b −1
(3.4)

For example, an 8-bit 0-10V converter will have a resolution of |10V−0V |
28−1 ≈ 0.04V .

40










































































































Analogue 
Value

0 t

Output 
Value

Continuous

(a) Continuous (Analogue)








































































































Analogue 
Value

0 t

Output 
Value

Stepped

(b) Step-wise (Digital)

Figure 3.17: Increasing analogue value continuous and step-wise [39](Edited)

DACs are the opposite of the ADCs. They convert digital data into analogue values with
output voltage or current proportional to the value of their digital input. The digital to
analogue values are scaled similarly to the ADC described in Equation (3.3), where the
digital range and the analogue values remain proportional, assuming a linear relationship.
The output value increase will remain similar to the one illustrated in Figure 3.17b if the
x-axis is the corresponding digital value and the y-axis represents the analogue output
value. Hence, the higher resolution, the smaller steps and the more accurate control, as
described in Equation (3.4). [40]

There are multiple methods to convert a digital signal to an analogue output. How-
ever, one of the most common methods found in low-cost applications is a Pulse-Width-
Modulation (PWM) DAC [40]. PWM essentially works by switching a fixed DC voltage
on and off in specific intervals, creating a high-frequency pulse. As seen in Equation (3.5),
the relationship between the on-time (ton) and off-time (to f f ), named Duty Cycle (D), de-
termines the output voltage, as described in Figure 3.18 and Equation (3.6), where Vin
is the fixed input voltage and Vout is the mean output voltage. The PWM frequency
in Equation (3.7) is calculated by dividing 1 by the total cycle time, tcycle, measured in
seconds. [41]

D =
ton

to f f
(3.5)

Vout =Vin ·D (3.6)

f =
1

tcycle
(3.7)

41








































































































V

V

D = 0.5

out

in

offon tttcycle

Figure 3.18: Pulse Width Modulation Voltages

Figure 3.18 shows an example of a PWM with a duty cycle = 0.5, which means the voltage
is on half of the time, causing, as shown in Equation (3.6), resulting in a mean voltage
and PWM output voltage of 0.5 ·Vin.

An apparent disadvantage of PWM regulation is the chronic voltage variation, constantly
switching between zero and maximum voltage. Firstly, this means the equipment con-
nected to the DAC will be exposed to the maximum voltage level even at lower output
voltages. Secondly, constant switching, especially at high frequencies, can cause elec-
trical noise that affects the equipment if the cables are not shielded. Therefore, when
using PWM as a voltage regulator, great care must be taken to ensure the equipment
can handle the switching output, unless measures to reduce the switching voltage are
taken. [42]

A simple method to reduce the sudden square voltage changes is to add an RC-filter,
consisting of a resistor in series and a capacitor connected to ground, as shown in Fig-
ure 3.19.

Figure 3.19: RC Low Pass Filter

The filter smoothes the voltage ripples, creating a less noisy, more stable voltage and works
according to the principles shown in Equation (3.8). The output voltage Vout depends on
the relationship between the resistor R and the reactance XC of the capacitor C. [42]

42



Vout =Vin ·
(

Xc√
R2 +X2

C

)
(3.8)

The reactance is calculated using Equation (3.9), where f is frequency and C the capa-
citance.

XC =
1√

2π fC
(3.9)

Providing approppriate resistive and capacitive values to an RC low pass filter will at
medium frequencies result in an output similar to the one shown in Figure 3.20, where
the capacitor charges during the ton and discharges during to f f , reducing the voltage
difference between the two states. [43]

Figure 3.20: RC Low Pass Filter output with PWM input

43



44



4 Implementation

The servo drive test stand allows, as elaborated in subsection 3.2.2, for either manual
control by a physical user panel or through its corresponding program ActiveServo. These
allow essential control of speed and torque and can, in elementary manners, simulate a
few applications such as a pump or a hoist drive. However, other customised control
options are not possible using the current interfaces. Therefore, the communication paths
and control interfaces must be revisited to expand the stand’s application areas.

4.1 Servo Drive serial communication

As the test stand is to be used with computer run simulation tools, the intuitive solution
is to utilise the existing USB connection found in Figure 3.6, used as the communication
path to ActiveServo. However, to prevent any unintentional use, the USB driver for the
control interface seems to be restricted only to cooperate with the ActiveServo-program.
As a result, other programs cannot read and decode the serial packages (described in
subsubsection 3.3.1) sent from the control interface, leaving the option of adapting other
simulation tools to control the interface through the existing USB port out.

The servo drive’s communication with the control interface happens through the CANopen
protocol, connected by an easily accessible serial port marked X1 found on the drive’s side
panel, as shown in Figure 4.1a. This port allows for direct communication with the servo
drive without having to go through the additional external control interface.

To access the CANopen drive interface, any standard CANconnector would, in theory,
work as CANopen is a higher layer protocol of CAN. The Ixxat USB to CAN adapter

(a) Servo Drive serial CANopen connector
(b) IXXAT USB to CAN adapter

Figure 4.1: Lenze 9400 servo drive CANbus connection

45



(a) Diagnostics port location

(b) Diagnostics USB adapter

Figure 4.2: Lenze 9400 servo drive diagnostics port

shown in Figure 4.1b was used to connect the drive to a computer. A compact, portable
adapter acts as a translator between the USB and CAN protocol described in subsec-
tion 3.3.1. There is a 120 Ω terminal resistor between the CANhigh and CANlow pins on
the adapter’s right-hand side to mimic the bus terminator found on each end of a physical
CAN-network. [44]

The adapter is connected between the X1 port and a USB port on the computer, and
run through a configuring program named Lenze Engineer (further described in subsec-
tion 4.3.4), a program made for configuring this series of Lenze servo drives. Unfortu-
nately, this program and drive are restricted exclusively to accept on-brand adapters,
resulting in the Ixxat adapter only being able to read incomplete messages, rendering the
data unreadable. Lenze does provide an on-brand CANbus to USB adapter [45], but due
to economic reasons, the purchase of such an adapter was not prioritised in this project.
The remaining option for serial communication between the drive and a computer is the
diagnostics port marked as X6, located at the front of the servo drive and highlighted in
Figure 4.2a.

The diagnostics port is not made for permanent control signals but for simple configur-
ations and drive maintenance, such as troubleshooting faults and firmware updates. To
access the diagnostics port, one needs the diagnostics adapter pictured in Figure 4.2b,
running an rj50 cable to the drive and a USB plug to the computer. When connected,
the program Lenze Engineer (subsection 4.3.4) is used for configuring the drive. However,
the diagnostics adapter does not allow for extensive real-time drive control, leaving the
only viable option for the final communication module, the analogue I/Os.

4.2 I/O Modules

The servo drive and the VFD both include analogue I/O modules, which, as described in
subsection 3.3.2, rely purely on analogue voltage- and current levels and are not vendor-

46



specific. The I/O module’s simple nature makes them ideal for combining multiple cross-
brand devices into one system. This section describes the I/O modules found on the VFD
and the Servo Drive, as well as the three modules for USB (computer) to analogue I/O
considered for this project.

4.2.1 Existing setup

As mentioned in subsection 4.2.1, the VFD and the servo drive come with preinstalled
I/O-modules, allowing for communication through analogue signals. The I/Os are, to a
certain extent, programmable as to which values they control. The VFD has multiple
pre-programmed presets with various IO configurations, the configuration named Torque
Control allows for both speed and torque adjustments, with the functions of each I/O
terminal described in Table 4.1. The functionality of the servo drive’s I/O terminals found
in Figure 4.3b are not tied to fixed functions like the VFD’s terminals in Figure 4.3a but
can be configured to various settings using the manufacturer’s software Lenze Engineer,
further described in subsection 4.3.4 [46].

(a) ABB Variable Frequency Drive [47]

(b) Lenze Servo Drive [48]

Figure 4.3: I/O terminals on test setup

Table 4.1 describes the analogue ranges for the various terminals. Conversion from ref-
erence function value to analogue voltage setpoint and vice versa is shown in Equa-
tion (3.3).

Reading and writing to the setup’s I/O terminals requires an interface able to translate
serial communication USB to corresponding analogue voltages. The three attempted
versions of DAQs are described in subsection 4.2.2 toi subsection 4.2.4.

47



Table 4.1: I/O terminals

Terminal Range Alt. range Function
ABB ACS350 VFD

AI 1 0-10 V ±10 V Speed SetPoint
AI 2 0-10 V 0-20 mA Torque SetPoint
AO 4-20 mA - Speed
DI 1 24 V - Direction
DI 2 24 V - Speed / Torque mode
DI 3 24 V - Preset const. speed 1
DI 4 24 V - Ramp Pair Selection
RO 24 V - Fault
DO 24 V - Fault

Lenze 9400 Servo Drive

AI 1 ±10 V ±20 mA Programmable
AI 2 ±10 V - Programmable
AO 1 ±10 V - Programmable
AO 2 ±10 V - Programmable
RFR 24 V - Controller Enable
DI 1…8 24 V - Programmable
DO 1…4 24 V - Programmable
24O 24 V - Voltage supply

4.2.2 National Instruments DAQ

The American company National Instruments has a product line specifically for data
acquisition (DAQ) systems, i.e. measuring physical phenomena, converting them to
computer-friendly values and utilising them through programmable software. The DAQ
devices include the NI-DAXmx driver software and are fully integrable with LabVIEW en-
vironments and languages such as Python, ANSI C, and Visual C#. Figure 4.4 shows the
NI CompactDAQ 9174 chassis with the NI9201 and NI9263, analogue input and output
modules made for -10 to +10V.

The NI DAQ instruments all come with NI MAX software, made for easy implementation
and straightforward testing of the equipment. The module is connected to the computer
through a USB and runs through the NI MAX. The analogue outputs can, through this
program, write value out for each channel with impressive accuracy. The program can also
read analogue inputs and show the results in a live plot. If the chassis contained digital
out- and input modules, the same actions could be performed with them. However,
to implement the hardware in a more automated system, one would have to add it to
another program, for example, a Python script. To implement any NI DAQ hardware

48



Figure 4.4: National Instruments compact Data Acquisition

into a Python script, functions from nidaqmx library can be used to access the terminals
directly. Below is an example of using the nidaqmx Task to read values using the nidaqmx
library:

import nidaqmx
with nidaqmx.Task() as task_read:

task_read.ai_channels.add_ai_voltage_chan(terminal)
value = task_read.read(number_of_samples_per_channel=1)
return value

Figure 4.5: NI DAQ serial communication Python task

These premade functionalities within the library create a very straightforward access to
the I/O terminals, setting up for a fast and easy I/O control. The downside of these
DAQ systems from National Instrument is their cost. None of their simpler models has
the required I/O terminal configuration to satisfy the needs shown in Table 4.1. The only
viable option is the compactDAQ shown in Figure 4.4, which unfortunately is not within
the university’s budget to remain at this test stand.

4.2.3 PicCircuit microcontroller

A much more budget-friendly solution to an I/O-module is a microcontroller. Used for
a previous project, the university had access to a PicCircuit iCP12 USB stick, shown
in Figure 4.6. This is a small, very simple USB IO Board in microcontroller format,
capable of reading and writing analogue and digital values up to 5V. The board comes
with corresponding software similar to NImax, albeit more straightforwardly without too
many settings available. [49]

Unfortunately, this board only contains two analogue outputs, as opposed to the four
needed (see Table 4.1) to run the test stand. In addition, it has no form of premade
libraries available for further expansion, e.g. Python scripts or any other language, making

49



Figure 4.6: PicCircuit iCP12 USB stick [49]

it challenging to implement in a larger system. However, a microcontroller that does
contain enough analogue outputs and can communicate with Python scripts is the Arduino
Uno described in subsection 4.2.4. [50]

4.2.4 Arduino

Arduino is well-known open.source electronics platform consisting of both hardware and
software. Arduino boards are relatively inexpensive microcontroller-based boards that
are able to read from inputs and write to outputs in a similar fashion to the iCP12
stick described in subsection 4.2.3. However, the Arduino boards has the significant
advantage of being fully programmable down to every pin and every bit transmitted
back and forth to them. In addition, they are cross-platform compatible, with both
the software and hardware being open-source and extensible. The programming of an
Arduino board is done through the Arduino IDE, using a programming language much
similar to C++, named simply the Arduino Programming Language and further described
in subsection 4.3.2. [51]

Figure 4.7: Off-brand Arduino Uno board [52]

The chosen board, shown in is a fully compatible knock-off version of the most popular
Arduino board, the Arduino Uno [52]. For simplicity, the board will from here on be
referred to as the Arduino. Arduino Uno is considered the standard Arduino board and
contains 14 digital I/O pins, out of which 6 provide PWM output and six analogue input
pins. All the digital pins can be configured as either output or input pins. The board
operates at 5V, with the option of powering through an external power supply or using
the power provided by USB, described how in subsubsection 3.3.1. If using only the USB

50



as power, one must ensure that the board’s power consumption does not exceed 500 mA,
as that will break the internal fuse added to protect the computer’s USB port. [50]

The Arduino will not be used to store any data but will act as an I/O-module, translating
and transporting values back and forth between the test stand setup and the computer.
However, the Arduino’s output and input voltage range are 0−5V , unlike the 4−20mA,
0− 10V , 10V and 24V used by the servo drive and VFD (see Table 4.1). Therefore, a
few converters are necessary to add between the test stand and the Arduino to combat
the voltage difference. subsection 4.2.5 describes these custom-designed converters.

4.2.5 Analogue signal converters

The Arduino board is based on the typical 5V USB power and will need external amp-
lifiers, reducers, and relays to correctly communicate with the test stand. Table 4.1
describes the voltage or current needed for each terminal, and this section goes through
the converters made to fit the Arduino to meet those needs.

All the converter circuits are first designed as standard schematics and tested using the
online electronics simulation tool CircuitLab [53]. After confirming the circuit works, the
stripboard layout is designed manually and illustrated using the CAD (Computer-Aided
Design) software AutoCad [54], where the circuit design and the components’ physical
size determine their spacing and board placement. Table 4.2 contains the description of
all components’ symbols.

Table 4.2: Stripboard circuits symbol description

Symbol Description

Control signal wire
Power supply wire
Ground wire
Wire break
Capacitor
Resistor

Potentiometer

Voltage Regulator

IC (size varies)

51



A generic 17W AC-DC converter [55] producing a DC output voltage of +- 15W powers
the circuits’ ICs and various reference voltages. In addition, all stripboard layouts for
circuits containing op-amps are based around the IC op-amp LN324-N containing four
independent channels with a pinout configuration as displayed in Figure 4.8.

  

.WIDE GAIN BANDWIDTH : 1.3MHz. INPUT COMMON-MODE VOLTAGE RANGE
INCLUDES GROUND. LARGE VOLTAGE GAIN : 100dB.VERY LOW SUPPLY CURRENT/AMPLI : 375µA. LOW INPUT BIAS CURRENT : 20nA. LOW INPUT OFFSET VOLTAGE : 5mV max.
(for more accurate applications, use the equivalent parts

LM124A-LM224A-LM324A which feature 3mV max). LOW INPUT OFFSET CURRENT : 2nA.WIDE POWER SUPPLY RANGE :
SINGLE SUPPLY : +3V TO +30V
DUAL SUPPLIES : ±1.5V TO ±15V

DESCRIPTION

These circuits consist of four independent, high
gain, internally frequencycompensatedoperational
amplifiers . They operate froma singlepowersupply
over a wide range of voltages. Operation from split
power supplies is also possible and the low power
supply current drain is independent of the magni-
tude of the power supply voltage.

Inve rting Input 2

Non-inve rting Input 2

Non-inve rting Input 1

CCV -CCV

1

2

3

4

8

5

6

7

9

10

11

12

13

14

+

Output 3

Output 4

Non-inve rting Input 4

Inve rting Input 4

Non-inve rting Input 3

Inve rting Input 3

-

+

-

+

-

+

-

+

Output 1

Inve rting Input 1

Output 2

PIN CONNECTIONS (top view)

ORDER CODES

Part
Number

Temperature
Range

Package

N D P
LM124 -55oC, +125oC • • •
LM224 -40oC, +105oC • • •
LM324 0oC, +70oC • • •
Example : LM224N

N
DIP14

(Plastic Package)

D
SO14

(Plastic Micropackage)

LOW POWER QUAD OPERATIONAL AMPLIFIERS

LM124
LM224 - LM324

June 1999

P
TSSOP14

(Thin Shrink Small Outline Package)

1/14Figure 4.8: Operational Amplifier IC Lm324-N pinout diagram. [56]

Ouput voltage converters

As the VFD and the servo drive use 0− 10V and ±10V as analogue input values, the
Arduino’s 0−5V output voltage needs to be amplified before being sent to the devices.
This section describes the process from the Arduino PWM output pins to the VFD and
servo drive’s analogue input terminals.

First, the PWM output voltage should go through a low pass filter similar to the one
described in Section 2.2 to reduce the voltage ripples. The low pass filter is a low-cost
and straightforward way to create a more stable voltage, allowing for more accurate
control. It cannot produce a perfectly flat voltage output but is sufficient for this control
circuit. The filter consists of a 47kΩ resistor in series and a 1 µF capacitor connected
in parallel to ground. These values are chosen based on Equation (3.8), creating a low
ripple, albeit reasonably slow response time due to its high resistance. The slow response
should however not cause any significant disadvantage compared to the motors’ inertia.

Figure 4.9: Voltage Follower

After the low pass filter, the filtered signal is sent through an operational amplifier(op-
amp) configured as a voltage follower. The voltage follower is added because the low
pass filter used is passive, causing any component added to the circuit to affect the filter’s
characteristics without a buffer. For example, the configuration shown in Figure 4.9 offers
an op-amp where the output is connected to the input, which forces the op-amp to adjust

52



its output voltage to equal the input voltage. Hence, the output voltage ”follows” the input
voltage and avoids any retroactive influence on the filter connected to its input. [57]

Figure 4.10: Op-Amp Differential Amplifier

From the voltage follower, the signal is sent through another op-amp, configured as a
differential amplifier. In short, the op-amp multiplies the difference with a factor determ-
ined by the resistors. If R1 = R2 and R3 = R4, the output voltage in Figure 4.10 can be
calculated as shown in Equation (4.1). [58]

Vout=R3
R1

·(V2−V1)
(4.1)

Voltage doublers. The 0−5V to 0−10V converters allow the Arduino’s 0−5V outputs
to communicate with the VFD’s 0 − 10V analogue inputs. The circuit illustrated in
Figure 4.11 is created by combining the low pass filter, voltage follower, and differential
amplifier. Here, the resistors R1 and R2 from Equation (4.1) consist of a connected
resistor and potentiometer (R3+R6 and R1+R7, respectively). The potentiometers allow
resistance adjustments for calibration even after the circuit is soldered, and their ideal
value is calculated as the mid position.

Figure 4.11: 0-5 v to 0-10 V converter circuit

This differential amplifier uses ground as its reference voltage and a resistance ratio that
based on Equation (4.1) results in the voltage amplification:

53



Vout =
R4

R3 +
R6
2

· (Vinput −0) =
100kΩ

45kΩ+ 10kΩ

2

·Vinput = 2 ·Vinput

Thus resulting in a linear amplification circuit with a low pass filtered input, where
Vouput = 2Vinput, i.e. a voltage doubler. The filtered voltage doubler circuit is placed
between the PWM output pins 4 and 6 and the VFDs analogue input terminals AI1 and
AI2. The VFD will receive double the PWM voltage these Arduino pins outputs.

Figure 4.12: 0-5 v to 0-10 V converter stripboard layout

As the setup needs two voltage doublers, and each voltage doubler circuit needs two op-
amps, one four-channel lm324-N IC should ideally cover the needs for both voltage doubler
circuits. The components are all pin-mounted and 1/4w rated, and the 15V power supply
is connected directly to the IC’s positive power input. Figure 4.12 pictures the stripboard
layout, with one amplifier mirrored on each side of the IC. All wires connecting to the
power supply, the microcontroller and the VFD are placed on the side to improve wire
management.

Voltage quadrupler. The 0−5V to ±10V converters allow the Arduino’s 0−5V outputs
to communicate with the servo drive’s ±10V analogue inputs. This converter is based on
the same principles as the voltage doubler, the most noticeable difference being its other
negative voltage range. The circuit shown in Figure 4.13 contains the same low pass
filter and differential amplifier as the voltage doubler, albeit with different resistor values
and the reference voltage. For its reference voltage, the circuit uses a potentiometer as
a voltage divider powered with 5V from a voltage regulator to create an input of 2.5V ,
which is further sent through a voltage follower. With a reference voltage of 2.5V and an

54



input voltage ranging from 0− 5V , the differential amplifier senses a difference between
−2.5V and 2.5V .

Figure 4.13: 0−5V to 10V converter circuit

By choosing resistive values to create an amplification of 4 ·Vinput, the circuit’s output
voltage will reach a range from −10V to +10V . The circuits amplification is calculated
using Equation (4.1) accordingly:

Vout =
R5

R4 +
R6
2

· (Vinput −Vref) =
100kΩ

20kΩ+ 10kΩ

2

· (Vinput −2.5V ) = 4 · (Vinput −2.5V )

The stripboard layout displayed in Figure 4.14 shoes two voltage quadruplers based on
their IC op-amp lm324-N as shown in Figure 4.8, built using the same techniques as
the voltage doubler board in Figure 4.12. The most noticeable features separating them
are the need for an additional IC and the two voltage regulators. The voltage regulators
reduce the 15V input voltage down to 5V before using a potentiometer as a voltage divider
to create the 2.5V reference voltage.

Figure 4.14: 0-5 v to ±10 V converter stripboard layout

55



Voltage reducer The ±10V to 0− 5V converters allow feedback from the servo drive’s
analogue outputs to be read by the Arduino’s analogue input pins. The converter bases
its voltage transformation on the same principles as the amplifiers but with the resistor
values reversed to reduce the voltage instead of amplifying it.

Figure 4.15: ±10 V to 0-5 v converter circuit

In this case −10V , the reference voltage is achieved by a potentiometer voltage divider
receiving the −15V from the generic power supply. In addition, the input low pass filter
used in the two previously described amplifiers is omitted, as the servo drive outputs
levelled DC voltage. The circuit’s voltage reduction can be calculated using the same
Equation (4.1) as the amplifiers:

Vout =
R5 +

R6
2

R4
· (Vinput −Vref) =

20kΩ+ 10kΩ

2
100kΩ

· (Vinput − (−10V )) =
1
4
· (Vinput +10V )

which results in the voltage read by the Arduino essentially being a quarter of the output
voltage if the reference voltage -10 is perceived as 0.

As illustrated in Figure 4.16, the voltage reducers’ stripboard layout resembles the voltage
quadrupler (Figure 4.14) in many ways. The stripboard contains two circuits, each based
around three out of the four op-amps in each IC. The layout neither contains any low
pass filter nor voltage regulator in contrast to the quadrupler, and their reference voltage
is adjusted using R7 to -10V.

Current to voltage converter

The 4-20mA to 1-5V voltage converter allows feedback from the VFD’s analogue output
to be read by the Arduino’s analogue input pins. This converter is the simplest of the

56



Figure 4.16: ±10 V to 0-5 v converter stripboard layout

ones created for this setup and consists in all its simplicity of four resistors, one of them
a variable resistor, as illustrated in Figure 4.17.

Figure 4.17: 4-20 mA to 0-5 v converter circuit

The converter consists of one 500ohm resistor parallel with two 1MΩ and a 10kΩ po-
tentiometer. The high resistance in parallel with the 500ohm resistor causes the total
resistance to be close to 500Ω:

Rtot =
R1 ·R2

R1 +R2
=

500Ω · (1MΩ+1MΩ+1kΩ)

500Ω+(1MΩ+1MΩ+1kΩ)
= 499.875Ω

Using ohm’s law results in a voltage of 9.998V measured over the parallel resistors. Thius,
the potentiometers’ middle position results in an output close to 5V when the maximum
current of 20mA is supplied: [59]

Vout =
1MΩ+(0.5 ·1kΩ)

1MΩ+1MΩ+1kΩ
·9.9975V = 4.999V

57



Figure 4.18: 4−20mA to 0−5V converter stripboard layout

By adjusting the potentiometer, it is then possible to convert the 20mA to 5V. Using
the same procedure for the lowest 4mA VFD output gives a voltage of approximately
1V , which results in a voltage input range of 1− 5V . This passive method consists of
few elements and is simple to implement, albeit not the most accurate. It is, however,
considered satisfactory for the current application.

The converter is built on a small stripboard as shown Figure 4.18.

Digital terminals

The digital terminals of the ABB VFD and the Lenze servo drive use 24V as input
voltage. Conveniently, both devices contain a 24V output terminal, where combining this
with relays allows for control by the Arduino. The relays used are Fujitsu Takamisawa
A5W-K miniature relays with nominal voltage of 5V and nominal current draw of 28mA,
ideal for the Arduino outputs. As seen in Figure 4.19, the relays are to be controlled by
digital Arduino output pins, Vcontr with GNDcontr as ground, while the 24V is supplied by
the 24V outputs on the VFD and servo drive. The relays are double, but only one side is
used to feed the digital terminals.

Figure 4.19: A5W-K relay [60](edited)

As seen in Figure 4.20, the relays are wired onto stripboards to save space and keep the
wiring organised. In addition, the four relays are divided into two groups, keeping the
24V VFD and servo drive voltage sources separated.

58



Figure 4.20: Relay stripboard layout

4.3 Interface programming

The programming employed on this interface is twofold and consists of an Arduino micro-
controller sketch and a Python based control script. The Arduino sketch can be viewed as
the created I/O module’s firmware and is not to be changed once completed and uploaded,
as it merely acts as an intermediary device and a translator between the Python script
and the analogue values. On the other hand, the Python script contains all the logic and
commands used to control the devices. Figure 4.21 illustrates a simplified version of the
control signal path and its communication media.

Figure 4.21: Communication between hardware and software

Before going into details, the key to understanding the process shown in Figure 4.21 is
to know how the USB transmits data between the Arduino and the Python script. As
described in subsubsection 3.3.1, the USB is a serial communication protocol, meaning it
can only send one message at a time, albeit with a speed that enables the illusion of it
transmitting multiple messages simultaneously. The same goes for the USB communic-
ation between the computer and the Arduino. Therefore, subsection 4.3.1 describes the
data transmission structure between the Python program and the Arduino, while subsec-
tion 4.3.2 and 4.3.3 detail how the two scripts build, receive, and treat the messages.

59



4.3.1 USB transmission structure

All communication between the Python script and the Arduino happens through the USB,
using functions created for serial communication. However, one weakness in Arduino’s
serial read functions is the excessive use of timeout-based solutions to determine the end
of a serial message consisting of multiple elements, for example, a string. This weakness
can lead to issues when attempting to read, e.g. something as simple as a number with
multiple digits, as Arduino perceives it as not one multi-digit number but multiple one-
digit numbers. When reading from the serial buffer into a String, the Arduino waits until
the read function times out to determine if the string has ended. The timeout is often set
to 1000ms, which is too slow for most control-related purposes and leaves the Arduino
occupied even after receiving the entire message. One can reduce the timeout duration
to minimise the dead time, but that leaves the risk of ending the read function too early
and hence end up with only partial messages received. Therefore, to avoid the timeout
issue, the serial communication from the Python script to the Arduino in this setup is
configured to send and accept only one character at a time, whereas Arduino manually
stores them in an array until a terminating character is received.

Most messages sent from the Python script to Arduino are based around three individual
characters sent one by one, separated by the character ’x’ and ended with a termination
character, chosen to be ’~’. A typical example of a message structure from Python to
Arduino is therefore:

axbxc~

Figure 4.22: Python to Arduino message example

In these messages, the first character, in Figure 4.22 ’a’, tells Arduino the primary intent
behind the command, whether to write values to the output pins, calibrate its maximum
values or any of the other functionalities described in Table 4.3 and subsection 4.3.3.

Table 4.3: Python to Arduino 1st character commands

1st Character Command
e Read all analogue inputs
o Write to analogue output
p Write to digital ouptut
q Calibrate analogue output values
h Switch built-in LED on
i Switch built-in LED off

The second character, ’b’ in Figure 4.22, decides which channel number the message
applies. For example, ’ax2’ as the initial characters tells the Arduino to write something

60



to analogue channel number two. That something is decided by the final character ’c’,and
requires a more thorough explanation to comprehend fully.

As the Arduino cannot read strings without a function including timeout, as stated previ-
ously, multi-digit numbers can lead to quite a headache when wanting to write to analogue
outputs. As a solution, numbers can be converted into single characters using their cor-
responding ASCII characters and sent as a single byte. ASCII code is the numerical
representation is a character and was originally created to represent characters as num-
bers due to computers only understanding numbers [61]. However, as the ASCII table
only contains a limited number of characters, the numerical range will be limited. All
numbers to be sent as an ASCII character are therefore scaled to integer percentage values
as a workaround, meaning all values sent from Python to Arduino is within the range
0−100. When Arduino receives the percentage value encoded as an ASCII character, it
decodes it back to its integer value and scales it to fit the analogue output values, which
in the 8bit PWM outputs are in the range between 0 and 255. The scaling is done using
the process described in subsection 3.3.2. Figure 4.23 shows an example of the conversion
process where the setpoint of a nominal 910rpm motor is set to 405rpm.

Figure 4.23: Example of a 50% speed setpoint value conversion from Python to Arduino

4.3.2 Arduino

The Arduino microcontroller described in subsection 4.2.4 comes as a blank microcon-
troller with no functions implemented when purchased. Therefore, all procedures to be
performed by the Arduino must be programmed using the Arduino Programming Lan-
guage, for example, creating scripts called sketches using the Arduino IDE. The sketches
are written as plain text in the text editor and saved with the file extension .ino. As the
Arduino is, in this setup, not supposed to contain any comprehensive control functions
but merely act as a translator between the Python script and the equipment, its main
parts revolve around receiving, sorting and performing commands received through the
serial bus.

The sketches’ structure can vary to a certain extent, although two main void functions,
void setup() and void loop(), always have to be included. The setup function runs

61



once every time the sketch is reloaded to the Arduino and is followed by a continuously
repeating loop function. Of course, one can further extend the sketch by creating ad-
ditional customised functions, but these will only execute if called for in the setup or
loop function. Arduino uses the communication function Serial to communicate with a
computer or another device. This section further describes the complete Arduino sketch
found in Appendix C

Decode serial messages. The main loop() is kept short and transparent by creating sep-
arate functions for each functionality described in Table 4.3. As illustrated in Figure 4.24
the loop() begins with an if-statement checking the serial bus for newly available data
every iteration. If no new data is available, the Arduino will continue running in its pre-
vious state without changing any parameters. On the other hand, if data is available, the
sketch runs the function named recvWithEndMarker(), which reads the received data,
stores it in an array until it gets the end character and then, if the data was collected suc-
cessfully, calls a function named parseInput(). parseInput() splits the received array
using x as separation and essentially decides which of the main functions to run. If the
function receives multiple characters and the second is not an x, there is something wrong
with the string. The sketch will then return to the main loop and do nothing except
ensure the variable notifying the arrival of new data, newData, is set to False.

Start

Run
Setup()

Serial data
available?

No

recvWithEndMarker()

Yes

Collect all data
until endmarker 

loop()

Data
collection
success?

Yes

No

Reset newData
variables

parseInput() Only one
char

received?

Is second
char x?

NoNo

Split by x and
sort to arrays

YesYes

Set 1st char
function variable

to True

loop()

Run
corresponding

function
End

Figure 4.24: Flowchart of how Arduino selects which function in Table 4.3 to run

62



Read analogue values. The single-character serial commands control functions where
there is no need to specify which channel the communication is directed to, such as
reading analogue inputs and switching the internal LED on/off. While the LED switch is
not relevant for controlling the I/O, it comes handy during communication troubleshoot-
ing. However, the read analogue input function serves a more vital purpose as it records
the feedback from the physical devices. The function runs a for loop to collect the voltage
levels, represented as a number between 0 and 210, stores them in an array and transmits
that array to the serial bus.

One thing to notice is that the Arduino does not have the same speed issues when send-
ing data to the serial bus as when receiving data, which means the data transmitted
from the Arduino can be sent as raw multi-digit integers. This means they do not have
to be converted into ASCII characters as the values sent to the Arduino have to (see
Figure 4.23).

Write to analogue and digital outputs. When the function parseIntput(), as shown
second to last in Figure 4.24, splits the received array into three different values, these
values are stored in three global variables. One describes the channel type, one represents
the channel number, and one declares the new channel value. These are stored globally
as they are overwritten when a new command arrives, and it allows access to all functions
without running the parsing function multiple times, as that quickly slows down the Ar-
duino. As shown in Figure 4.25, the first two variables, pictured as a and b in Figure 4.23,
are run through a series of if- statements and switch cases to determine which channel is
to receive a new setpoint, the final value c. If the channel is an analogue output, the c
value is scaled to its corresponding value (as described in Figure 4.23) and then written
to the analogue PWM output pin. If the channel is digital, the digital out pin is set to
HIGH if the value is equal to or greater than 50.

Figure 4.25: Select output Arduino

63



When an analogue output changes setpoint (SPrecieved), its output values (OutValArduino)
are scaled according to Figure 4.23 converted to Equation (4.2), where Maxoutput is the
maximum possible Arduino output value, usually 255 on 8-bit PWM outputs, unless
adjusted by the calibration function:

OutValArduino =

(
SPreceived

100

)
·Maxoutput (4.2)

Calibration. The functions described in paragraph 4.3.2 and converters described in sub-
subsection 4.2.5 are based on an Arduino PWM output voltage ranging from 0− 5V .
However, some Arduinos tend to output a maximum voltage higher than 5V when writ-
ing 255 to a PWM output. Therefore, the calibration function is created to combat the
slight overvoltage by adjusting the maximum output value down from 255 to a value that
results in a more desired output voltage. The function is based on the output voltages
after the converters, i.e. 10V being the desired top value, and uses the same structure to
receive values to assigned channels as described in subsection 4.3.1. The first character
signals the calibration mode to start, the second one signals the channel number, and
the third declares the measured voltage level as a number between 0 and 100, repres-
enting the voltage between 10V and 11V . If the measured voltage is outside this range,
one must take other measures, such as adjusting the converters’ resistance as described
in subsubsection 4.2.5. The function calculates the new maximum output using Equa-
tion (4.3), where Maxoutput is the previous maximum output value and valreceived is the
value representing a voltage between 10V and 11V

MaxnewOutput =

(
URV −LRV

(URV−LRV )+(
valreceived

100 )
Maxoutput

)
(4.3)

The new maximum value for each channel is stored in a global variable and used to scale
every forthcoming analogue output. The function can also reset the maximum value to
its original 255 by receiving the character ’r’ instead of the measured value.

4.3.3 Python

While the Arduino acts as the bridge between the virtual environment and physical, ana-
logue values, it contains no form of controller. Instead, as illustrated in Figure 4.21,
the Python script is responsible for roles such as user interaction, data scaling, data
presentation and other controller functions. Python is an open-source, object-oriented
programming language widely used due to its accessibility, extensive libraries and large

64



community, and chosen as the primary language for this application for the same reas-
ons [62].

The script is based around the package named Pyserial for serial communication with
the Arduino through USB. The Pyserial package facilitates serial communication, al-
lowing data exchange between the python script and external hardware through, for
example, USB. Pyserial has to be installed and imported to the script as a package
import serial. [63] The line ser = serial.Serial('COM3', baud rate = 9600, timeout = 1),
is used to open the serial port. This example is taken directly from the script found in
Appendix B where 'COM3' corresponds to the port used by Arduino, the baud rate of
9600 matches the Arduino Uno’s baud rate and the timeout is set to 1s. ser.write()
sends data to the serial bus using this line, while ser.read() reads data from the serial
bus in a similar fashion. To avoid the Arduino timeout-issue described in subsection 4.2.4,
all data from Python is converted to individual bytes before being sent to the bus.

User Interaction. The python script, found in Appendix B consists of multiple functions
serving various purposes. For example, the application() function, the main function
running when compiled, comprises a text-based user interface continuously asking the
user for input. Depending on the input, the script chooses which actions to perform and
what commands are sent to the Arduino. The script consists of five main processes, listed
in Table 4.4.

Table 4.4: Main commands in Python script

Command Action
read Read from analogue inputs
write Write to analogue/digital outputs
cal Initiate calibration sequence
on/off Switch internal LED on or off
q Exit main loop and close Arduino’s serial port

The user input runs through a function [64] checking if the input value is defined as
valid. If anything not specified in Table 4.4 is typed, the input function runs continuously
until a valid input is inserted. Then, depending on the input, the script either runs a
corresponding function directly or asks for follow-up input.

Read analogue inputs. Reading the feedback values from the VFD and servo drive re-
quires the python script to send a request to the Arduino, asking it to print the recorded
values onto the serial bus. As declared in Table 4.3, this request is in the form of an
'e' sent to the bus. When the Arduino receives the 'e', it runs through the function
for recording its analogue input values and sends them back to the serial bus, where the

65



Python script reads the response. The function named AI_read is responsible for reading
the Arduino’s response and splitting the received string into its three original elements,
while the sortData() makes sure to sort the received array into separate channels and
store their values in different arrays. The process is repeated until the desired number of
values, numPoints, are recorded, as illustrated in Figure 4.26.

Figure 4.26: Flowchart for reading analogue values in Python

Write to analogue and digital outputs. When writing to the analogue or digital outputs,
the user is asked for three statements to be sent to the Arduino, as illustrated in Fig-
ure 4.27. These are if the output is an analogue or digital channel, its channel number and
the desired output value. The response is sent to a function named byteWriteArray()
illustrated below, which ends with printing the three variables to the serial bus.

Figure 4.27: Flowchart for writing output values in Python

The function byteWriteArray(AD,chNo,chVal) takes its three input arguments resp-
resenting analogue/digital (AD), channel number(chNo) and value(chVal), converts them
from characters in string-format to byte values using the function bytes(z, 'utf-8')
and stores the bytes in a temporary array. 'utf-8', short for 8-bit Unicode Transform-
ation Format, is one of the most popular character encoding methods used today, and
what Arduino is able to read from the serial bus [65]. Next, the array of bytes is sent
through a for loop, where each element is printed to the serial bus, separated by an x
until its last element, which is followed by the character signifying the end of the message.
This sequence results in a message perceived by the Arduino as the sequence illustrated
in Figure 4.22.

66



Calibration. As described in paragraph 4.3.2, the Arduino sometimes has a higher PWM
voltage output than its standard 5V, causing the maximum output voltage to be more
than the expected 10V . As a solution, the maximum analogue write value in the Arduino
is adjusted down from 255 to a level that results in a 5V PWM output, based on the
measured voltage after the converters. The Arduino receives the voltage level between
10V and 11V , represented as a number between 0−100. The python program’s task is
to record and send this value safely and efficiently.

During this process, the channels are set to their maximum output value, and the output
voltages are measured using a voltmeter and typed into the script. As the calibration res-
ults in changed output values, the user is first asked to make sure all necessary equipment
is disconnected or switched off before going through the analogue output channels one by
one.

Figure 4.28: Flowchart for calibration sequence in Python

As illustrated in Figure 4.28, the sequence begins with setting all the analogue output
channels to their maximum value. It then runs through a for-loop with one iteration for
each channel, starting with channel AO0, where the user is asked to measure the channel’s
output value and type it into the script. Here, the script accepts three different types of
inputs:

67



• Press ’enter’. If the user presses ’enter’ without any other information, the loop
will skip to the next iteration (next channel) without any further action.

• Type 'reset'. If the user types ’reset’, the script sends an ’r’ to the Arduino,
causing the maximum output value to reset to 255.

• Type a number, e.g. '10.25'. If the user types a number, the script will check if it
is within the specified range and then continue processing it.

• Any other data will not be accepted as input.

If the user inserts a number, the script checks if it is within the specified range, which
in this case is between 10V and 11V . Any voltage level above 11V is unlikely singularly
caused by the Arduino, and the source of trouble is more likely to be found in the con-
verters calibration. The same goes for any values below 9V . If the voltage is between
−10V , Arduino resets the maximum voltage, and the iteration is repeated. When the
user inputs a voltage between 10−11V , the value is scaled according to Equation (4.4),
where LRV is 10V , URV is 11V , MV is the measured voltage and valsent is the final value
transmitted to the Arduino.

valsent =
MV −LRV

(URV −LRV )
·100 (4.4)

Scaling. As the number exchanges from Python to Arduino are all represented as values
between 0-100, the script also contains a beneficial yet straightforward scaling function.
The function takes five input arguments: The input valueinValue, its range represented
by the max and min value inmin and inmax and the output range outmin and outmax. It
returns a single output number scaled according to Equation (4.5), bearing quite a few
resemblances to the scaling of analogue values presented in Equation (3.3).

inValue = inValue− inmin
inmax − inmin

· (outmax −outmin)+outmin (4.5)

4.3.4 Lenze Engineer

As described in subsection 3.2.1, the servo drive in the original test stand is controlled
using the CANopen communication between the front panel and the drive. The majority
of the analogue I/O terminals are not in use. Therefore, the software Lenze Engineer,
a part of the EASY engineering tools package, comes into play to configure the drive,
whether the I/O module setup or other application aspects. Engineer is an extensive
software with a significant number of functionalities, and as a result, this section will only
cover the basics needed to configure the I/O terminals.

68



When initialising the software, one gets the option of creating a brand new project, open-
ing an existing project or uploading data from an online device. As the goal is to add the
I/O as an extension of the current control interfaces and not changing the functionalities
already implemented in the drive, uploading data from the device is wise. Connecting
the servo drive to the computer using the diagnostics adapter pictured in Figure 4.2b and
pressing ”upload data from system” imports all the device settings, functionalities and
other parameters from the servo drive to the Engineer software.

Figure 4.29: Lenze Engineer main window(device offline).

Once opened, the main Engineer window consists, as in Figure 4.29, of the main overview
displaying the live Speed, torque, current consumption and other vital values. In the top
mid tabs, one can navigate various parameters, editors, logs, etc. The relevant ones for
adding the I/Os are the Terminal assignment tab and FB editor. The Terminal assignment
gives an overview of the terminals’ current tasks but has minimal editing options. To edit
the terminal assignments, one must use the Function Block editor located in the tab
next right. This tab contains the heart of the servo drive and essentially decides how the
drive is to respond to various events and parameter changes.The complete Function Block
Diagram imported from the servo drive is presented in Appendix E.

By adding an input block for the analogue input terminals and assigning their values to
variables, AI_speedSP and AI_torqueSP, as shown in Figure 4.30a, the analogue inputs
are added throughout the function block diagram to replace or add further control options
to the already existent. The variables will then show up in the Terminal Assignment tab,
connected to their corresponding analogue input as in Figure 4.30b.

69



08.05.2022   Stellantrieb - Drehzahl

Applikation P8 in User Task

P8: Positionieren

P7: Kalander
( lineare Kennlinie)

P6: Wickelantrieb

P5: Pumpe
( quadratische Kennlinie )

P4: Träge Masse

P3: Kolbenkompressor

P2: Drehzahl- Momenten- Regelung

Applikation P8 in USER TASK

-

-

-

-

-

-

-
P1: Windkraft

Allgemeine Grundfunktionen

Aktivierung Positionierung

-

MCK PositionFollower

MCK Positioner

MCK

MCK SpeedFollower

Aktivierung PositionFollower

-

-

Auswahlbereich

Aktivierung SpeedFollower

-

-

-

OUTPUT
INPUT

---

QSP_bActive
---

QSP_bActivate1

---

QSP_bActivate2

---

QSP_bActivate3

---

QSP_bActivateDCBrake

LS_Quickstop

---

DIGIN_bCInh

---

DIGIN_bIn1

---

DIGIN_bIn2

---

DIGIN_bIn3

---

DIGIN_bIn4

---

DIGIN_bIn5

---

DIGIN_bIn6

---

DIGIN_bIn7

---

DIGIN_bIn8

---

DIGIN_bStateBusIn

LS_DigitalInput

---

PF_bEnabled
---

PF_bEnable

--- inc

PF_dnPositionSet_p

--- rpm

PF_dnSpeedAdd1_s

LS_PositionFollower

---

SF_bEnabled
---

SF_bEnable

--- %

SF_dnSpeedSet_n

LS_SpeedFollower

---

DIGOUT_bOut1

---

DIGOUT_bOut2

---

DIGOUT_bOut3

---

DIGOUT_bOut4

---

DIGOUT_bStateBusOut

---

DIGOUT_bUserLED

LS_DigitalOutput

---

MI_bMotorOrientationInverse

---

MI_dwReferenceTorque

---

MI_bLimitationActive

--- %

MI_dnSpeedSetpoint_n

--- %

MI_dnTorqueSetpoint_n

---

MI_bMotorOverloadWarning

---

MI_bSpeedBelowThresholdC19

--- %

MI_dnActualMotorCurrent_n

--- %

MI_dnActualMotorTorque_n

--- %

MI_dnActualMotorSpeed_n

--- rpm

MI_dnActualMotorSpeed_s

--- inc

MI_dnActualMotorPos_p

---

MI_bResetSpeedCtrlIntegrator

--- %

MI_dnTorqueHighLimit_n

--- %

MI_dnTorqueLowLimit_n

--- %

MI_dnFluxSetpoint_n

--- %

MI_dnInertiaAdapt_n

--- %

MI_dnBoostSet_n

---

MI_bFlyingSyncBlocked

--- rpm

MI_dnActualMotorFreq_s

--- %

MI_dnActualFlux_n

---

MI_bFlyingSyncBusy

---

MI_bClampIsActive

---

MI_bMagnetisationFinished

--- %

MI_dnTorqueAdd_n

LS_MotorInterface

--- %

AOUT1_dnOut_n

--- %

AOUT2_dnOut_n

LS_AnalogOutput

---

DI_bReady

---

DI_bFailActive

---

DI_bImpActive

---

DI_bCInhActive

---

DI_bWarningActive

---

DI_bOperationEnabled

---

DI_dwErrorCode

---

DI_AxisData

---

DI_bSetCInh

---

DI_bResetError1

---

DI_bResetError2

---

DI_bResetError3

---

DI_bSetExternError

LS_DriveInterface

---

MAN_bEnabled
---

MAN_bEnable

---

MAN_bJogPositive

---

MAN_bJogNegative
---

MAN_bActive

---

MAN_bStepMode

---

MAN_bIntermediateStopMode

--- %

MAN_dnSpeedOverride_n

---

MAN_FBData

LS_ManualJog

---

HM_bEnabled

---

HM_bActive

---

HM_bDone

---

HM_bHomePosAvailable

---

HM_bEnable

---

HM_bActivateHoming

---

HM_bHomingMark

---

HM_bLoadHomePos

--- inc

HM_dnHomePos_p

---

HM_bResetHomePos

--- %

HM_dnSpeedOverride_n

LS_Homing

--- inc

FDB_dnActualPos_p

--- rpm

FDB_dnActualSpeed_s

--- inc

FDB_dnPosFollowingError_p

--- rpm

FDB_dnSetSpeed_s

--- rpm/s

FDB_dnSetAcc_x

---

FDB_bResetPosFollowingError
LS_Feedback

---

POS_dnState

---

POS_bEnabled

---

POS_bActive

---

POS_bDone

---

POS_bInTarget

---

POS_bActPosInTarget

---

POS_bDriveInTarget

--- inc

POS_dnSetPos_p

--- inc

POS_dnProfileTarget_p

---

POS_dwActualProfileNumber

--- inc

POS_dnSetPosRelative_p

--- inc

POS_dnActPosRelative_p

---

POS_bEnable

---

POS_bStart

---

POS_bAbort

---

POS_bRestart

---

POS_ProfileData

--- %

POS_dnDecOverride_n

LS_Positioner

---

w_Steuerwort

---

n_nSoll

---

n_MLim

---

nReserve

LPortInPLC_1
---

w_Statuswort

---

n_nact

---

n_Mact

---

n_Reserve

LPortOutPLC_1

---

n_SetPos

---

n_ActPos

---

n_ActSpeed

---

n_Schleppfehler

LPortOutPLC_2

---

n_SetPos

---

n_SetSpeed

---

n_SetAcc

---

n_Reserve

LPortInPLC_2

--- %

dnMinus100Pct_n

--- %
C3040S0_n [P4 CONV Num]

--- %
C3041S0_n [P4 CONV Den]

--- %

dn0Pct_n

--- %

C3050S0_n [P5 CONV Num]

--- %

C3051S0_n [P5 CONV Den]

--- %

C3060S0_n [P6 CONV1 Num]

--- %
C3061S0_n [P6 CONV1 Den]

--- %

C3070S0_n [P7 CONV Num]

--- %
C3071S0_n [P7 CONV Den]

--- %

C3001S0_n [Vergl. nact=0]

---

C3006S0 [Appl_Umschalt]

--- %

dnPlus100Pct_n

--- %

C3030S0_n [P3 Vergleich Mot.-Umdr.]

--- %

C3031S0_n [P3 Faktor Mul]

--- %

C3032S0_n [P3 Divisor DIV1]
--- %

C3033S0_n [P3 ADD3]

---

TorqueDen

---

Var65536

---

C3066S0 [P6 ADD3]

---

TRUE_b

---

C3035S0 [P3_Vergl_Mot_Neg]

--- %

C3034S0_n [P3_Vergleich_nact/s]

--- %

C3002S0_n [TORQUE_NUM]

---

nOutDen
---

nOutNum

---

MOutNum

---
MOutDen

---

TourqueOutDen

--- %
C3003S0_n [LoadReset]

---
TorqueNum

---

DF_Umschalt_P4

---

Pos_Umschalt_P8

---
C3010S0 [P1 Windgeschwindigkeit v]

---

C3012S0 [P1 Konstante Flügeprofil]

--- %

C3014S0_n [P1 max Drehzahl]

--- %
C3011S0_n [P1 Pitchverstellung]

---

C3015S0 [P1 Motor nmax]

--- %

C3018S0_n [Fix 100%]

---

C3043S0 [P4 CONV  Den]
---

C3042S0 [P4 CONV Num1]

---

e4

---
C3100S0 [SetPos]

---
C3101S0 [SetSpeed]

---

C3102S0 [SetAcc]

---

ProfilData

---
e3

---

C3024S0 [Pos_Ref.-Pos]

--- %

C3052S0_n [P5 Druck_Offset]

---

C3025S0_b [Umschaltung]

---
C3027S0 [Massenträgheit]

---

C3013S0 [P1 Konstante Mechanik]

---

InterateDIV

---
SetSpeed

---
SetPos

---

SetAcc

---
AxisData

---

dnIn

---

dnMaxLimit

---

dnMinLimit

---

dnOut

---

bLimitActive

L_TbLimit1 86

bLimitActive
---

dnOut
---

dnMinLimit
---

dnMaxLimit
---

dnIn
---

---

dnIn1

---

dnIn2

---

bSelectIn2

---

dnOut
P3_TbSelect1 39

dnOut
---

bSelectIn2
---

dnIn2
---

dnIn1
---

---

bIn1

---

bIn2
---

bOut
P4_OR1 50

bOut
---

bIn2
---

bIn1
---

--- rpm

dnSpeedIn_s

---

bLoadStartPos

--- inc

dnStartPos_p

---

AxisData

--- inc

dnPosOut_p

---

bError

P6_Integrate1 57

---

dnIn

---

dnNumerator

---

dnDenominator

---

bNegOutput

---

dnOut

---

bLimit

P4_CONV_L_SdFactor 42

--- %

dnIn_n

---

bLoadStartValue

--- %

dnStartValue_n

--- %

dnOut_n

--- %

dnDeltaOut_n

P4_SdRampGenerator1 45

---

dnIn1

---

dnIn2
---

dnOut
P3_Add1 31

dnOut
---

dnIn2
---

dnIn1
---

---

dnIn
---

dnOut
L_TbNeg3 90

dnOut
---

dnIn
---

---

dnIn

---

dnNumerator

---

dnDenominator

---

bNegOutput

---

dnOut

---

bLimit

P3_Factor1 34

---

bIn
---

bOut
DF_Not2 73

bOut
---

bIn
---

---

wInput
---

bBit0

---

bBit1

---

bBit2

---

bBit3

---

bBit4

---

bBit5

---

bBit6

---

bBit7

---

bBit8

---

bBit9

---

bBit10

---

bBit11

---

bBit12

---

bBit13

---

bBit14

---

bBit15

L_Drive_Steuer 1

bBit15
---

bBit14
---

bBit13
---

bBit12
---

bBit11
---

bBit10
---

bBit9
---

bBit8
---

bBit7
---

bBit6
---

bBit5
---

bBit4
---

bBit3
---

bBit2
---

bBit1
---

bBit0
---

wInput
---

---

dnIn1

---

dnIn2

---

dnTolerance

---

dnHysteresis

---

bOut
P3_TbCompare3 22

bOut
---

dnHysteresis
---

dnTolerance
---

dnIn2
---

dnIn1
---

---

dnIn

---

dnNumerator

---

dnDenominator

---

bNegOutput

---

dnOut

---

bLimit

P7_CONV 63

---

bIn
---

bOut
L_LoadReset_Not1 93

bOut
---

bIn
---

--- %

dnIn_n
--- %

dnOut_n

---

bLimitActive

P3_Deadband_n2 26

---

dnIn1

---

dnIn2
---

dnOut
P6_Add3 59

dnOut
---

dnIn2
---

dnIn1
---

--- %

dnIn_n
--- %

dnOut_n

---

bLimitActive

P3_Deadband_n3 27

---

dnSetValue

---

dnActValue

---

bLoadIntValue

---

dnIntValue

---

bReset

---

dnOut

---

bLimitActive

P4_TbPIController1 46

---

bIn1

---

bIn2
---

bOut
L_Or_DFaktiv 82

bOut
---

bIn2
---

bIn1
---

--- %

nIn_a
--- %

dnOut_n
L_NSoll_Norm_aToNorm_n 2

dnOut_n
--- %

nIn_a
--- %

---

bIn1

---

bIn2

---

bIn3

---

bIn4

---

bIn5

---

bOut
P3_5Or2 19

bOut
---

bIn5
---

bIn4
---

bIn3
---

bIn2
---

bIn1
---

---

dnIn

---

dnNumerator

---

dnDenominator

---

bNegOutput

---

dnOut

---

bLimit

L_MLimFactor 79 ---

dnIn
---

dnOut
L_TbAbs1 89

dnOut
---

dnIn
---

---

bIn1

---

bIn2

---

bIn3

---

bIn4

---

bIn5

---

bOut
P6_5Or 61

bOut
---

bIn5
---

bIn4
---

bIn3
---

bIn2
---

bIn1
---

---

bIn1

---

bIn2

---

bIn3

---

bIn4

---

bIn5

---

bOut
P3_5Or1 18

bOut
---

bIn5
---

bIn4
---

bIn3
---

bIn2
---

bIn1
---

--- %

dnIn_n
--- %

dnOut_n

---

bLimitActive

P3_Limit_n3 30

bLimitActive
---

dnOut_n
--- %

dnIn_n
--- %

---

bError1

---

bError2

---

bError3

---

bError4

---

bError5

---

bError6

---

bError7

---

bError8

---

dnState

---

dnLastErrorNo

L_DevApplErr1 77

---

dnIn1

---

dnIn2
---

dnOut
P3_Add4 36

dnOut
---

dnIn2
---

dnIn1
---

--- %

dnIn_n
--- %

nOut_a
L_Mact_Norm_nToNorm_a 100

nOut_a
--- %

dnIn_n
--- %

---

dnIn

---

dnNumerator

---

dnDenominator

---

bNegOutput

---

dnOut

---

bLimit

P7_CONV2 64

---

dnIn1

---

dnIn2

---

dnTolerance

---

dnHysteresis

---

bOut
L_Comp_Pos 83

bOut
---

dnHysteresis
---

dnTolerance
---

dnIn2
---

dnIn1
---

---

bBit0

---

bBit1

---

bBit2

---

bBit3

---

bBit4

---

bBit5

---

bBit6

---

bBit7

---

bBit8

---

bBit9

---

bBit10

---

bBit11

---

bBit12

---

bBit13

---

bBit14

---

bBit15

---

wOutput
L_Drive_Status 102

wOutput
---

bBit15
---

bBit14
---

bBit13
---

bBit12
---

bBit11
---

bBit10
---

bBit9
---

bBit8
---

bBit7
---

bBit6
---

bBit5
---

bBit4
---

bBit3
---

bBit2
---

bBit1
---

bBit0
---

---

dnIn1

--- %

dnIn2_n
---

dnOut

---

bLimitActive

P3_Mul_n 24

bLimitActive
---

dnOut
---

dnIn2_n
--- %

dnIn1
---

---

dnIn

---

dnNumerator

---

dnDenominator

---

bNegOutput

---

dnOut

---

bLimit

L_MactFactor 80

---

dnIn
---

dwOut
L_DcDIntToDWord1 87

dwOut
---

dnIn
---

---

dnIn1

---

dnIn2
---

dnOut
P3_Mul1 23

dnOut
---

dnIn2
---

dnIn1
---

---

dnIn1

--- %

dnIn2_n
---

dnOut

---

bLimitActive

P5_Mul_n 54

bLimitActive
---

dnOut
---

dnIn2_n
--- %

dnIn1
---

---

dnIn

---

dnNumerator

---

dnDenominator

---

dnOut

---

bLimitActive

P1_MulDivLimIn 7

---

dnIn1

---

dnIn2
---

dnOut
P4_Add1 48

dnOut
---

dnIn2
---

dnIn1
---

--- %

dnIn_n
--- %

dnOut_n

---

bLimitActive

P3_Deadband_n1 25

--- %

nIn_a
--- %

dnOut_n
L_MGrenz_Norm_aToNorm_n 3

dnOut_n
--- %

nIn_a
--- %

---

dnIn
---

dnOut
L_PT_nact 96

---

dnIn1

---

dnIn2

---

dnTolerance

---

dnHysteresis

---

bOut
L_Comp_DF4 81

bOut
---

dnHysteresis
---

dnTolerance
---

dnIn2
---

dnIn1
---

---

dnIn

---

dnNumerator

---

dnDenominator

---

bNegOutput

---

dnOut

---

bLimit

P5_CONV 53

---

dnIn1

---

dnIn2
---

dnOut
P3_Add3 35

dnOut
---

dnIn2
---

dnIn1
---

---

dnIn

---

dnNumerator

---

dnDenominator

---

bNegOutput

---

dnOut

---

bLimit

L_nOutFaktor 98

---

dnIn
---

dnOut
L_Neg_nact 97

dnOut
---

dnIn
---

---

dnIn1

---

dnIn2
---

dnOut
P3_Add2 32

dnOut
---

dnIn2
---

dnIn1
---

--- %

dnIn_n
--- %

dnOut_n

---

bLimitActive

P5_Limit_n 52

bLimitActive
---

dnOut_n
--- %

dnIn_n
--- %

--- %

dnIn_n
--- %

dnOut_n

---

bLimitActive

P3_Limit_n4 37

bLimitActive
---

dnOut_n
--- %

dnIn_n
--- %

--- %

dnIn_n

---

AxisData
--- rpm

dnOut_s
DF_DcNorm_nToSpeed_s 69

dnOut_s
--- rpm

AxisData
---

dnIn_n
--- %

---

dnIn1

---

dnIn2

---

dnIn3

---

dnIn4

---

dnIn5

---

dnIn6

---

dnIn7

---

dnIn8

---

dwSelect

---

dnOut
N_8Select1 65

dnOut
---

dwSelect
---

dnIn8
---

dnIn7
---

dnIn6
---

dnIn5
---

dnIn4
---

dnIn3
---

dnIn2
---

dnIn1
---

---

dnIn

---

dnNumerator

---

dnDenominator

---

bNegOutput

---

dnOut

---

bLimit

L_MOutFactor 95

--- rpm

dnSpeedIn_s

---

bLoadStartPos

--- inc

dnStartPos_p

---

AxisData

--- inc

dnPosOut_p

---

bError

P3_Integrate1 20

---

bIn1

---

bIn2
---

bOut
L_QSP 78

bOut
---

bIn2
---

bIn1
---

---

dnIn1

---

dnIn2
---

dnOut
P4_Add2 49

dnOut
---

dnIn2
---

dnIn1
---

---

dnIn1

---

dnIn2
---

dnOut
P4_Add 43

dnOut
---

dnIn2
---

dnIn1
---

---

bIn1

---

bIn2
---

bOut
N_And1 67

bOut
---

bIn2
---

bIn1
------

bIn
---

bOut
N_Not1 66

bOut
---

bIn
---

---

bIn1

---

bIn2
---

bOut
DF_OR1 71

bOut
---

bIn2
---

bIn1
---

---

bIn1

---

bIn2
---

bOut
DF_Or2 72

bOut
---

bIn2
---

bIn1
---

--- %

dnIn_n

---

bLoadStartValue

--- %

dnStartValue_n

--- %

dnOut_n

--- %

dnDeltaOut_n

P4_SdRampGenerator2 51

---

dnIn

---

dnNumerator

---

dnDenominator

---

bNegOutput

---

dnOut

---

bLimit

P6_CONV1 58

---

dnIn1

---

dnIn2

---

dnTolerance

---

dnHysteresis

---

bOut
L_TbCompare1 92

bOut
---

dnHysteresis
---

dnTolerance
---

dnIn2
---

dnIn1
---

---

bIn
---

bOut
L_Not_Posnichtaktiv 84

bOut
---

bIn
---

---

bIn1

---

bIn2
---

bOut
DF_And1 74

bOut
---

bIn2
---

bIn1
---

---

bIn1

---

bIn2

---

bIn3

---

bIn4

---

bIn5

---

bOut
L_Reset_Error 76

bOut
---

bIn5
---

bIn4
---

bIn3
---

bIn2
---

bIn1
---

---

dnIn

---

dnNumerator

---

dnDenominator

---

bNegOutput

---

dnOut

---

bLimit

P4_CONV 44

--- %

dnIn1_n

--- %

dnIn2_n
---

bOut
L_Comp_n0 103

bOut
---

dnIn2_n
--- %

dnIn1_n
--- %

---

dnIn1

--- %

dnIn2_n
---

dnOut

---

bLimitActive

P4_Mul_n 47

bLimitActive
---

dnOut
---

dnIn2_n
--- %

dnIn1
---

---

bIn1

---

bIn2
---

bOut
L_Drive_Enabled 101

bOut
---

bIn2
---

bIn1
---

---

dnIn
---

dnOut
P2_TbNeg1 14

dnOut
---

dnIn
---

--- rpm

dnSpeedIn_s

---

bLoadStartPos

--- inc

dnStartPos_p

---

AxisData

--- inc

dnPosOut_p

---

bError

P3_Integrate2 33

---

dnIn1

---

dnIn2

---

dnIn3

---

dnIn4

---

dnIn5

---

dnIn6

---

dnIn7

---

dnIn8

---

dwSelect

---

dnOut
L_8Select1 88

dnOut
---

dwSelect
---

dnIn8
---

dnIn7
---

dnIn6
---

dnIn5
---

dnIn4
---

dnIn3
---

dnIn2
---

dnIn1
---

--- %

dnIn_n
--- %

dnOut_n

---

bLimitActive

P4_Limit_n 41

bLimitActive
---

dnOut_n
--- %

dnIn_n
--- %

---

bIn
---

bOut
DF_Not1 70

bOut
---

bIn
---

--- %

dnIn_n
--- %

dnOut_n
P1_Curve_CP 10

---

dnIn

---

dnNumerator

---

dnDenominator

---

bNegOutput

---

dnOut

---

bLimit

P5_CON2 56

--- %

dnIn_n
--- %

dnOut_n

---

bLimitActive

P3_Limit_n1 28

bLimitActive
---

dnOut_n
--- %

dnIn_n
--- %

--- %

dnIn_n
--- %

dnOut_n

---

bLimitActive

P3_Limit_n2 29

bLimitActive
---

dnOut_n
--- %

dnIn_n
--- %

---

dnIn
---

dnOut
P4_TbNeg1 40

dnOut
---

dnIn
---

--- %

dnIn_n
--- %

nOut_a
L_nact_Norm_nToNorm_a 99

nOut_a
--- %

dnIn_n
--- %

---

dnIn1

---

dnIn2

---

dnTolerance

---

dnHysteresis

---

bOut
P6_Compare 60

bOut
---

dnHysteresis
---

dnTolerance
---

dnIn2
---

dnIn1
---

---

dnIn
---

dnOut
L_PT1_Mact 94

--- inc

dnCycleLength_p

---

AxisData

L_SdSetAxisData1 75

---

dnIn
---

dnOut
L_TbNeg1 91

dnOut
---

dnIn
---

--- %

dnIn_n
--- %

dnOut_n

---

bLimitActive

P7_Limit_n 62

bLimitActive
---

dnOut_n
--- %

dnIn_n
--- %

---

dnIn1

---

dnIn2

---

dnTolerance

---

dnHysteresis

---

bOut
P3_TbCompare2 38

bOut
---

dnHysteresis
---

dnTolerance
---

dnIn2
---

dnIn1
---

--- %

dnSpeedSetpointIn_n

---

bLoadExtSpeedSetpoint

--- %

dnExtSpeedSetpoint_n

---

bLoadActualMotorSpeed

--- %

dnActualMotorSpeed_n

---

dwRampMode

---

AxisData

--- %

dnSpeedSetpointOut_n

--- %

dnTargetSetpoint_n

---

bSetpointOutInTarget

---

bStoppingActive

P2_SpeedSet 15

---

dnIn1

---

dnIn2

---

dnIn3

---

dnIn4

---

dnIn5

---

dnIn6

---

dnIn7

---

dnIn8

---

dwSelect

---

dnOut
DF_8Select5 68

dnOut
---

dwSelect
---

dnIn8
---

dnIn7
---

dnIn6
---

dnIn5
---

dnIn4
---

dnIn3
---

dnIn2
---

dnIn1
---

---

dnIn1

---

dnIn2

---

dnTolerance

---

dnHysteresis

---

bOut
P3_TbCompare1 21

bOut
---

dnHysteresis
---

dnTolerance
---

dnIn2
---

dnIn1
---

---

dnIn1

---

dnIn2
---

dnOut
P1_TbAdd1 8

dnOut
---

dnIn2
---

dnIn1
---

---

dnIn1

---

dnIn2
---

dnOut
P1_TbMul1 13

dnOut
---

dnIn2
---

dnIn1
---

--- %

dnIn_n
--- %

dnOut_n

---

bLimitActive

P1_TbLimit_n1 9

bLimitActive
---

dnOut_n
--- %

dnIn_n
--- %

---

dnIn

---

dnNumerator

---

dnDenominator

---

dnOut

---

bLimitActive

P1_TbMulDivMotor 4

---

dnIn
---

dnOut
P1_TbPT1Filter1 6

--- %

dnIn_n
--- %

dnOut_n
P1_Curve_Pitch 11

---

dnIn1

--- %

dnIn2_n
---

dnOut

---

bLimitActive

P1_TbMul_Pitch 12

bLimitActive
---

dnOut
---

dnIn2_n
--- %

dnIn1
---

---

dnIn
---

dnOut
P1_TbAbs2 5

dnOut
---

dnIn
---

---

bIn1

---

bIn2
---

bOut
Pos_And_MAN 104

bOut
---

bIn2
---

bIn1
---

---

dnState
---

bActive

---

bDone

---

bAccDec

---

bCcw

---

bInTarget

---

bActPosInTarget

---

bZeroPos

---

bRestartFailed

---

bErrActive

---

bAbort

---

bRev

---

bMinSpeedOverride

---

bMinAccOverride

---

bLimPos

---

bLimProfile

---

bLimDir

---

bLimAbort

---

bStoppingActive

---

bErrNoHomePos

---

bErrNoCycleLength

---

bErrMode

---

bErrModeChange

---

bErrProfileData

---

bErrPG

---

bDriveInTarget

Pos_PositionerStateDecoder 107

--- inc

dnPosIn_p

---

AxisData
---

dnPosOut_e4

---

bLimit

POS_SetPosToUnit 108

--- inc

dnPosIn_p

---

AxisData
---

dnPosOut_e4

---

bLimit

Pos_ActPosToUnit 109

--- rpm

dnSpeedIn_s

---

AxisData
---

dnSpeedOut_e4

---

bLimit

Pos_SetSpeedToUnit 110

---

dnIn
---

nOut
Pos_ActPosDIntToInt 111

nOut
---

dnIn
------

dnNumerator

---

dnDenominator
---

dnOut

---

dnResidualValue

Pos_ActPosDiv 112

dnResidualValue
---

dnOut
---

dnDenominator
---

dnNumerator
---

---

dnNumerator

---

dnDenominator
---

dnOut

---

dnResidualValue

Pos_SetPosDiv 113

dnResidualValue
---

dnOut
---

dnDenominator
---

dnNumerator
---

---

dnNumerator

---

dnDenominator
---

dnOut

---

dnResidualValue

Pos_SetSpeedDiv 114

dnResidualValue
---

dnOut
---

dnDenominator
---

dnNumerator
---

---

dnIn
---

nOut
Pos_SetPosDIntToInt 115

nOut
---

dnIn
---

---

dnIn
---

nOut
Pos_SetSpeedDIntToInt 116

nOut
---

dnIn
---

---

bIn1

---

bIn2
---

bOut
L_Or_Posaktiv 85

bOut
---

bIn2
---

bIn1
---

---

dnIn1

---

dnIn2
---

dnOut
P5_Add1 55

dnOut
---

dnIn2
---

dnIn1
---

---

bIn1

---

bIn2
---

bOut
Pos_And_HM 105

bOut
---

bIn2
---

bIn1
---

---

bIn1

---

bIn2
---

bOut
Pos_And_POS 106

bOut
---

bIn2
---

bIn1
---

---

dnIn1

---

dnIn2

---

bSelectIn2

---

dnOut
P2_Select1 17

dnOut
---

bSelectIn2
---

dnIn2
---

dnIn1
---

--- %

dnIn_n
--- %

dnOut_n
P2_Curve1 16

---

dnIn
---

dnOut
L_PT1_nAct 117

---

dnIn

---

bLoadStartValue

---

dnStartValue

---

dnOut

---

bLimitActive

L_TbIntegrate1 122

bLimitActive
---

dnOut
---

dnStartValue
---

bLoadStartValue
---

dnIn
---

---

dnIn

---

dnNumerator

---

dnDenominator

---

dnOut

---

bLimitActive

L_TbMulDivLim1 118

---

dnIn1

---

dnIn2
---

dnOut

---

bLimitActive

L_TbMulLim1 120

bLimitActive
---

dnOut
---

dnIn2
---

dnIn1
---

--- %

dnIn_n
--- %

dnOut_n

---

bLimitActive

L_TbLimit_n1 123

bLimitActive
---

dnOut_n
--- %

dnIn_n
--- %

---

dnIn1

---

dnIn2
---

dnOut
L_TbAdd1 119

dnOut
---

dnIn2
---

dnIn1
---

---

dnNumerator

---

dnDenominator
---

dnOut

---

dnResidualValue

L_TbDiv1 121

dnResidualValue
---

dnOut
---

dnDenominator
---

dnNumerator
---

MI_dnActualMotorTorque_n

...

L_TbLimit_n1.dnOut_n

N_8Select1.dnIn1

L_Drive_Steuer.bBit8

...

FDB_dnActualSpeed_s

Pos_SetSpeedToUnit.dnSpeedIn_s

P2_Select1.dnOut

L_MLimFactor.dnIn

L_PT_nact.dnOut

...

L_MGrenz_Norm_aToNorm_n.dnOut_n

P2_Select1.dnIn1

MAN_bActive

L_Drive_Status.bBit14

MAN_bEnabled

L_Drive_Status.bBit13

HM_bHomePosAvailable

L_Drive_Status.bBit12

POS_bActPosInTarget

L_Drive_Status.bBit11

POS_bActive

L_Drive_Status.bBit10

POS_bEnabled

L_Drive_Status.bBit9

MI_bLimitationActive

L_Drive_Status.bBit15

L_Drive_Steuer.bBit15

MAN_bJogNegative

L_Drive_Steuer.bBit14

MAN_bJogPositive

Pos_And_HM.bOut

...

L_Drive_Steuer.bBit11

POS_bAbort

L_Drive_Steuer.bBit10

POS_bStart

L_Drive_Steuer.bBit13

Pos_And_MAN.bIn2

L_Drive_Steuer.bBit12

Pos_And_HM.bIn2

L_Drive_Steuer.bBit9

Pos_And_POS.bIn2

Pos_And_POS.bOut

POS_bEnable

Pos_And_HM.bOut

L_Or_Posaktiv.bOut

...

L_Or_Posaktiv.bOut

DI_AxisData

...

DI_AxisData

DI_AxisData

L_Or_Posaktiv.bOut

FDB_dnActualPos_p

Pos_ActPosToUnit.dnPosIn_p

POS_dnSetPos_p

POS_SetPosToUnit.dnPosIn_p

Pos_And_MAN.bOut

MAN_bEnable

P1_TbPT1Filter1.dnOut

P1_MulDivLimIn.dnNumeratorMI_dnActualMotorSpeed_n

...

L_SdSetAxisData1.AxisData

...

L_SdSetAxisData1.AxisData

L_SdSetAxisData1.AxisData

L_SdSetAxisData1.AxisData

L_SdSetAxisData1.AxisData

L_Not_Posnichtaktiv.bOut

...

L_Not_Posnichtaktiv.bOut

QSP_bActive

...

DI_bCInhActive

...

L_TbNeg1.dnOut

...

P5_CON2.dnOut

L_8Select1.dnIn5

L_TbNeg1.dnOut

L_TbNeg1.dnOut

P7_CONV2.dnOut

L_8Select1.dnIn7

MI_dnActualMotorSpeed_n

L_Drive_Steuer.bBit8

MI_dnActualMotorSpeed_n

L_PT1_Mact.dnOut

...

L_NSoll_Norm_aToNorm_n.dnOut_n

P2_TbNeg1.dnIn

L_LoadReset_Not1.bOut

...

L_LoadReset_Not1.bOut

L_MactFactor.dnOut

...

DI_bWarningActive

L_Drive_Status.bBit7

DI_bCInhActive

DI_bCInhActive

DI_bCInhActive

DI_bCInhActive

DI_bFailActive

...

DI_bFailActive

DI_bReady

L_Drive_Status.bBit0L_Drive_Steuer.bBit8

MI_dnActualMotorSpeed_n

MI_dnActualMotorSpeed_n

MI_dnActualMotorSpeed_n

MI_dnActualMotorSpeed_n

MI_dnActualMotorSpeed_n

MI_dnActualMotorSpeed_n

MI_dnSpeedSetpoint_n

P2_SpeedSet.dnExtSpeedSetpoint_n

QSP_bActive

QSP_bActive

QSP_bActive

QSP_bActive

QSP_bActive

QSP_bActive

P4_SdRampGenerator2.dnOut_n

DF_8Select5.dnIn4

P3_5Or2.bOut

P3_Integrate1.bLoadStartPos

P3_TbCompare1.bOut

P3_5Or2.bIn2

P3_5Or1.bOut

...

P3_TbCompare3.bOut

P3_5Or1.bIn2

L_Or_DFaktiv.bOut

...

L_Or_DFaktiv.bOut

P6_Add3.dnOut

L_8Select1.dnIn6

P3_TbSelect1.dnOut

L_8Select1.dnIn3

L_MactFactor.dnOut

P6_5Or.bOut

P6_Integrate1.bLoadStartPos

P2_SpeedSet.dnSpeedSetpointOut_n

N_8Select1.dnIn2

L_Drive_Steuer.bBit7

L_Reset_Error.bIn2

--- %

AIN1_dnIn_n

--- %

AIN2_dnIn_n

---

AIN1_bCurrentError

LS_AnalogInput

---

AI_SpeedSP

---

AI_TorqueSP

(a) Analogue inputs in FB.

(b) Analogue Terminal Assignment tab.

Figure 4.30: Analogue terminals in Lenze Engineer.

70



5 Analogue results

This chapter presents the results from the cases described in Chapter 4 and Section 4.3.
Although the project revolves around creating a communication module rather than case-
based studies, this chapter contains results based on the actual physical build and pro-
gramming.

5.1 Converters

As presented in Chapter 4, the test stand’s limited options for serial communication led
to an I/O-based approach. Arduino was chosen as the most suitable link between the
Python script and the test setup due to its high versatility, open-source protocol and
budget-friendly cost. The converters required to adjust the voltage levels between the
test stand and the Arduino were built according to subsubsection 4.2.5 and Appendix A
and tested thoroughly to confirm their liability in various voltage ranges. The voltage
tests’ raw data are presented in Appendix A.

(a) 0−5V to ±10V . (b) 0−5V to 0−10V .

Figure 5.1: Analogue output converters.

Figure 5.1 shown the two analogue voltage converters for amplifying the analogue PWM
output value. Figure 5.1a shows the 0-5 to +-10V converter used for communicating with
the Lenze drive, built according to the stripboard layout shown in Figure 4.14, apart from
one main difference. The voltage regulator in channel two is swapped for a simple resistor
acting as a voltage divider. This replacement is for one reason only: the lack of spare
parts when it turned out one of the regulators was faulty.

71



Figure 5.1b shows the voltage doubler 0-5V to 0-10V built based on Figure 4.12 for com-
munication with the VFD. Unfortunately, this circuit turned out to contain one significant
weakness: The IC circuit does, for an unknown reason, start acting out when all its indi-
vidual op-amps are used simultaneously. To avoid this issue, the circuit was extended, as
shown in Figure 5.2, to include two ICs, where each IC only use two of the four available
op-amps. The result are the circuit displayed in Figure 5.2 and Figure 5.3.

Figure 5.2: Revisited 0−5V to 0−10V converter stripboard.

Figure 5.3: Revisited 0−5V to 0−10V converter build.

Figure 5.4 shows the circuits made for the analogue inputs, converting 4− 20mA and
±10V to microcontroller friendly voltage levels. Figure 5.4a is built based on Figure 4.18,
and Figure 5.4b is made according to Figure 4.16.

The digital relay outputs described in Figure 4.20 were built as shown in Figure 5.5.

When all the converters, the power supply and the microcontroller are added together in
a module, the result is a box displayed in Figure 5.6.

Pictures in Figure 5.7a and Figure 5.7b extracted from Appendix D show that the con-
verters as well as the Arduino DAC have a linear response, providing correctly scaled
voltages on all levels. In addition, Appendix D contains similar plots from all converters,
which appear just as linear.

72



(a) 4−20mA to 0−5V .
(b) ±10V to 0−5V .

Figure 5.4: Analogue input converters.

Figure 5.5: Digital outputs relay circuit

Figure 5.6: Complete I/O module.

5.2 Calibration

The Python script and Arduino sketch described in paragraph 4.3.3 and paragraph 4.3.2
are found in Appendix B Appendix C and contain a function for output calibration.

73



0 1 2 3 4 5
Input voltage [V]

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

O
ut

pu
t v

ol
ta

ge
 [V

]

0-5V to ±10V

Channel 1 - AO 2
Channel 2 - AO 3

Voltage quadrupler result

(a) 0−5V to ±10V converter results.

0 1 2 3 4 5
Input voltage [V]

0

200

400

600

800

1000

A
rd

ui
no

 1
0b

it 
va

lu
e

0-5V to 10-bit values

Channel 1 - AI 0
Channel 2 - AI 1
Channel 3 - AI 2

Analogue input result

(b) 0−5V to Arduino 10bit value.

Figure 5.7: Converter response.

Table 5.1: Calibration function results

Pre calibration output Post Calibration output
Ch. no Arduino [V] Channel [V] Arduino [V] Channel [V]

AO 0 5.11 10.22 5.01 10.03
AO 1 5.09 10.20 5.00 10.01
AO 2 5.11 10.46 5.01 10.03
AO 3 5.11 10.22 5.01 10.03

Table 5.1 shows the results from running the calibration function. The results are relat-
ively accurate and reach the proper levels instantaneously.

74



6 Discussion

An Arduino Uno was picked to act as the immediate translator between a computer and
the test stand, as that allows for control using Python and pySerial. All control functions
lie within the Python script, which transmits messages through USB that tells the Arduino
to raise, lower or read its pin values. Then, converters are lined up between the Arduino
pins and the test stand terminals to transpose the signal level to a safe, coherent level for
the sending and receiving equipment.

subsection 3.3.1 describes the serial communication alternatives available on the servo
drive. Although direct serial communication between a computer and the drive would
have allowed for a more accessible, less wire-consuming communication, it does open
the doorway to a few other pitfalls, such as incompatible converters, ineffective signal
handling and clashing firmware updates. The more classic analogue I/O communication
avoids in all its simplicity these pitfalls, although it is more susceptible to disconnected
wires, inaccurate signal scaling and requires more floor space.

Section 4.2 goes through the various DAC modules considered the communication link,
beginning with the National Instruments Compact DAQ. Using a DAC device allows for
the benefits of digitally programmed control sequences, combined with the upsides of the
non-brand-specific, effortlessly applicable analogue communication. The main downside
is adding an extra, bulky device as the middle man. The NI compact DAQ is a reliable,
customisable device with premade modules for correct signal levels and a Python library
made easy to use, allowing for effortlessly implementation into a Python-based control
system. The compact DAQ was initially the favoured choice of I/O-module for this setup
if it had been more budget-friendly.

In searching for a more affordable solution, the microcontroller Arduino became the con-
troller of choice due to its plenty of channels and the fully programmable response system
connected to those pins. However, its lack of premade Python communication libraries
makes it very customisable, albeit susceptible to programming errors. Fortunately, Ardu-
ino has a vast community, and due to its open-source mindset, there are plenty of forums
and guidelines found online. The voltage converters needed between the signal and the
Arduino take up space. However, they do not pose any other significant disadvantages to
the setup, as they are all built with solid, mostly passive components prune to last.

A considerable disadvantage of using the Arduino as an intermedia between the analogue
values and the Python scripts is its slow response time to string messages received through

75



the serial port, creating the need subsection 4.3.1. As this system consists of sending mul-
tiple individual byte messages in a row until the end character is received, it is susceptible
to a large number of plausible errors. It also reduces the resolution of the outgoing control
signal, as every value has to be scaled to an integer between 0 and 100 to fit the ASCII
conversion system created in subsection 4.3.1. Future work should include improving the
transmission integrity and increasing the outgoing resolution.

As the entire control script is built using Python, increasing the use of the setup further
should not pose any immediate unattainable challenges due to the wide range of API
(Application Programming interfaces), libraries and functions created for it. The perhaps
biggest challenge is, at this point, ensuring continuous data integrity when constantly
transmitting and reading values through serial communication.

76



7 Conclusion

The servo drive test stand from Lucas-Nulle, its components and its software have been
analysed and reviewed throughout this thesis. The stand consists of a servo drive and
motor controlled using CANopen and a locally controlled test motor and frequency drive.
The stand’s provided software ActiverServo allows for, through USB communication, basic
load emulations such as pumps, hoist drives and constant setpoints but comes to short
if one wishes to implement it into other systems. To extend the test stand’s control
systems, one should bypass the existing control interface and access the drive directly
through CANopen, its diagnostics port or I/O terminals. The diagnostics port allows for
altering the drive parameters but not direct control, and the CANopen port is restricted
to a brand-specific adapter outside this project’s budget, leaving control through the I/O
terminals the only viable option.

The low-cost I/O module created to fit the stand’s needs is based on an Ardunio and
voltage converters explicitly built to fit the conversion between the Arduino’s pins and the
servo drive and frequency drives I/O-terminals. The Arduino merely acts as a translator
between a Python script and the analogue values, and the Python script is responsible for
all control commands. As the control is Python-based, it allows for future comprehensive
extensions, including entire simulation models, either programmed in Python or through
functional mock-up units.

The project has resulted in a solid base for future extensions. Future work on the setup
may include, for example, adding a graphical user interface, creating a storage system for
saved data, improving the data security in the Python Arduino communication and, last
but not least, creating a system for further extensions to other simulation models.

77



78



Bibliography

[1] J. P. B. a. C. K. Ebinger, The Electricity Revolution, en-US, Nov. 2001. [On-
line]. Available: https://www.brookings.edu/research/the-electricity-
revolution/ (visited on 16/05/2022).

[2] Julian Critchlow, What is the future of electricity? en, Feb. 2015. [Online]. Available:
https : / / www . weforum . org / agenda / 2015 / 04 / what - is - the - future - of -
electricity/ (visited on 16/05/2022).

[3] N. G. Society, Renewable Energy, en, Feb. 2013. [Online]. Available: http://www.
nationalgeographic.org/article/renewable-energy/ (visited on 16/05/2022).

[4] Amy Bennett, Electric Car rEVolution, en-GB, Nov. 2021. [Online]. Available:
https://carbonliteracy.com/electric-car-revolution/ (visited on 16/05/2022).

[5] E. Wiik, F Faktura Ordrenr 2450, Norsk, Nov. 2012. (visited on 14/02/2022).
[6] D. Winkler, Task Description: Development of an open control interface for a servo

machine test stand, Jan. 2022.
[7] Lucas Nülle - Servo machine test stand for 1kW machines incl. software ActiveServo

(D,GB,F,E). [Online]. Available: https://www.lucas-nuelle.com/1004/pid/
26351 / apg / 13659 / Servo - machine - test - stand - for - 1kW - machines - incl -
software-ActiveServo-D,GB,F,E-.htm (visited on 24/04/2022).

[8] S. Bharadwaj, Advantages & Disadvantages Induction Motor, en-US, Apr. 2016.
[Online]. Available: https://instrumentationtools.com/advantages-disadvantages-
induction-motor/ (visited on 28/01/2022).

[9] A. Princy, Induction Motors: Main Types and Different Applications, Apr. 2020.
[Online]. Available: https://www.researchdive.com/blog/induction-motors-
main-types-and-different-applications (visited on 30/01/2022).

[10] S. Mathew, How does an induction motor work? 2019. [Online]. Available: https:
//www.lesics.com/how-does-an-induction-motor-work.html (visited on
30/01/2022).

[11] C. Globe, Construction of Induction Motor, en-US, Jan. 2016. [Online]. Available:
https://circuitglobe.com/construction-of-induction-motor.html (visited
on 04/02/2022).

79

https://www.brookings.edu/research/the-electricity-revolution/
https://www.brookings.edu/research/the-electricity-revolution/
https://www.weforum.org/agenda/2015/04/what-is-the-future-of-electricity/
https://www.weforum.org/agenda/2015/04/what-is-the-future-of-electricity/
http://www.nationalgeographic.org/article/renewable-energy/
http://www.nationalgeographic.org/article/renewable-energy/
https://carbonliteracy.com/electric-car-revolution/
https://www.lucas-nuelle.com/1004/pid/26351/apg/13659/Servo-machine-test-stand-for-1kW-machines-incl-software-ActiveServo-D,GB,F,E-.htm
https://www.lucas-nuelle.com/1004/pid/26351/apg/13659/Servo-machine-test-stand-for-1kW-machines-incl-software-ActiveServo-D,GB,F,E-.htm
https://www.lucas-nuelle.com/1004/pid/26351/apg/13659/Servo-machine-test-stand-for-1kW-machines-incl-software-ActiveServo-D,GB,F,E-.htm
https://instrumentationtools.com/advantages-disadvantages-induction-motor/
https://instrumentationtools.com/advantages-disadvantages-induction-motor/
https://www.researchdive.com/blog/induction-motors-main-types-and-different-applications
https://www.researchdive.com/blog/induction-motors-main-types-and-different-applications
https://www.lesics.com/how-does-an-induction-motor-work.html
https://www.lesics.com/how-does-an-induction-motor-work.html
https://circuitglobe.com/construction-of-induction-motor.html


[12] O. PLanas, Squirrel Cage Rotor | Asynchronous or Induction Motor, Character-
istics and Operation, Oct. 2018. [Online]. Available: https://en.demotor.net/
electric-motors/ac-motors/asynchronous-motor/squirrel-cage-rotor (vis-
ited on 04/02/2022).

[13] Squirrel Cage Induction Motor: Working Principle & Applications, Aug. 2020. [On-
line]. Available: https://www.electrical4u.com/squirrel-cage-induction-
motor/ (visited on 06/02/2022).

[14] C. Globe, Starting of a Synchronous Motor - Prime Mover & Damper Winding,
en-US, Jan. 2016. [Online]. Available: https://circuitglobe.com/starting-of-
synchronous-motor.html (visited on 20/04/2022).

[15] E. Deck, What is Slip in Induction Motor? - Effect of Slip on Induction Motor,
en, Nov. 2020. [Online]. Available: https://www.electricaldeck.com/2020/11/
slip-in-induction-motor-and-effect-of-slip-on-induction-motor.html
(visited on 20/04/2022).

[16] Sushmita, Electrical Braking in Polyphase Induction Motors, en-US, Feb. 2018. [On-
line]. Available: https://www.engineeringenotes.com/electrical-engineering/
electric-braking/electrical-braking-in-polyphase-induction-motors-
electrical-engineering/37426 (visited on 21/04/2022).

[17] A. Knight, Electrical Machines - Induction Motor Torque Speed Curve, English, Edu-
cational, Sep. 2018. [Online]. Available: https://people.ucalgary.ca/~aknigh/
electrical_machines/induction/im_trq_speed.html (visited on 21/04/2022).

[18] Danfoss, What is a variable frequency drive? | Danfoss, Apr. 2022. [Online]. Avail-
able: https://www.danfoss.com/en/about-danfoss/our-businesses/drives/
what-is-a-variable-frequency-drive/ (visited on 21/04/2022).

[19] S. U. Hassan and H. B. Akram, ‘Speed and Frequency Control of AC Induction
Motor Using Variable Frequency Drive,’ en, Department of Electrical Engineering,
Institute of Space Technology - Student Research Paper Conference, vol. 2, p. 8,
2015.

[20] ATO, AC Drives Basics (Benefits, Principle and Theory), Jul. 2017. [Online]. Avail-
able: http://www.acdrive.org/ac-drives-basics.html (visited on 22/04/2022).

[21] M. Malinowski, M. P. Kazmierkowski and A. M. Trzynadlowski, ‘A comparative
study of control techniques for PWM rectifiers in AC adjustable speed drives,’ IEEE
Transactions on Power Electronics, vol. 18, no. 6, pp. 1390–1396, Nov. 2003, issn:
1941-0107. doi: 10.1109/TPEL.2003.818871.

[22] T. Bellei, R. O’Leary and E. Camm, ‘Evaluating capacitor-switching devices for
preventing nuisance tripping of adjustable-speed drives due to voltage magnifica-
tion,’ IEEE Transactions on Power Delivery, vol. 11, no. 3, pp. 1373–1378, 1996.
doi: 10.1109/61.517494. [Online]. Available: https://ieeexplore.ieee.org/
document/517494 (visited on 22/04/2022).

80

https://en.demotor.net/electric-motors/ac-motors/asynchronous-motor/squirrel-cage-rotor
https://en.demotor.net/electric-motors/ac-motors/asynchronous-motor/squirrel-cage-rotor
https://www.electrical4u.com/squirrel-cage-induction-motor/
https://www.electrical4u.com/squirrel-cage-induction-motor/
https://circuitglobe.com/starting-of-synchronous-motor.html
https://circuitglobe.com/starting-of-synchronous-motor.html
https://www.electricaldeck.com/2020/11/slip-in-induction-motor-and-effect-of-slip-on-induction-motor.html
https://www.electricaldeck.com/2020/11/slip-in-induction-motor-and-effect-of-slip-on-induction-motor.html
https://www.engineeringenotes.com/electrical-engineering/electric-braking/electrical-braking-in-polyphase-induction-motors-electrical-engineering/37426
https://www.engineeringenotes.com/electrical-engineering/electric-braking/electrical-braking-in-polyphase-induction-motors-electrical-engineering/37426
https://www.engineeringenotes.com/electrical-engineering/electric-braking/electrical-braking-in-polyphase-induction-motors-electrical-engineering/37426
https://people.ucalgary.ca/~aknigh/electrical_machines/induction/im_trq_speed.html
https://people.ucalgary.ca/~aknigh/electrical_machines/induction/im_trq_speed.html
https://www.danfoss.com/en/about-danfoss/our-businesses/drives/what-is-a-variable-frequency-drive/
https://www.danfoss.com/en/about-danfoss/our-businesses/drives/what-is-a-variable-frequency-drive/
http://www.acdrive.org/ac-drives-basics.html
https://doi.org/10.1109/TPEL.2003.818871
https://doi.org/10.1109/61.517494
https://ieeexplore.ieee.org/document/517494
https://ieeexplore.ieee.org/document/517494


[23] S.-H. Kim, ‘Chapter 7 - Pulse width modulation inverters,’ in Electric Motor Con-
trol, S.-H. Kim, Ed., Elsevier, Jan. 2017, pp. 265–340, isbn: 978-0-12-812138-2.
doi: 10 . 1016 / B978 - 0 - 12 - 812138 - 2 . 00007 - 6. [Online]. Available: https :
//www.sciencedirect.com/science/article/pii/B9780128121382000076.

[24] J. Rodriguez, J. Dixon, J. Espinoza, J. Pontt and P. Lezana, ‘PWM regenerative
rectifiers: State of the art,’ IEEE Transactions on Industrial Electronics, vol. 52,
no. 1, pp. 5–22, Feb. 2005, Conference Name: IEEE Transactions on Industrial
Electronics, issn: 1557-9948. doi: 10.1109/TIE.2004.841149.

[25] K. Sharma, ‘6 - Automation Strategies,’ in Overview of Industrial Process Automa-
tion, K. Sharma, Ed., London: Elsevier, Jan. 2011, pp. 53–62, isbn: 978-0-12-415779-
8. doi: 10.1016/B978-0-12-415779-8.00006-1. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/B9780124157798000061.

[26] Rotasyn Standard Resolvers, en-US. [Online]. Available: http://https%253A%252F%
252Fwww.admotec.com%252Fresolver%252Fstandard-rotasyn-sensors%252F
(visited on 24/04/2022).

[27] Servomotors, Stepper Motors, and Actuators for Motion, Oct. 2010. [Online]. Avail-
able: https://uniquemachines.blogspot.com/2010/10/servomotors-stepper-
motorsand-actuators.html (visited on 23/04/2022).

[28] Lenze, 9400 HighLine servo inverter, Sep. 2018. [Online]. Available: https://www.
lenze.com/en-us/products/inverters/servo-inverters/9400-highline-
servo-inverter/ (visited on 24/04/2022).

[29] Lucas Nülle - Dynamic servo machine test system for 0.3kW machines incl. software
ActiveServo, May 2018. [Online]. Available: https://www.lucas-nuelle.us/
2776/pid/22637/apg/11298/Dynamic-servo-machine-test-system-for-03kW-
machines-incl-software-ActiveServo.htm (visited on 28/01/2022).

[30] B. Mehta and Y. Reddy, ‘Chapter 9 - Serial communications,’ in Industrial Pro-
cess Automation Systems, B. Mehta and Y. Reddy, Eds., Oxford: Butterworth-
Heinemann, Jan. 2015, pp. 307–339, isbn: 978-0-12-800939-0. doi: 10.1016/B978-
0-12-800939-0.00009-7. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/B9780128009390000097.

[31] D. Ibrahim, ‘Chapter 5 - Simple PIC18 Projects,’ en, in PIC Microcontroller Pro-
jects in C (Second Edition), D. Ibrahim, Ed., Oxford: Newnes, Jan. 2014, pp. 67–
171, isbn: 978-0-08-099924-1. doi: 10.1016/B978-0-08-099924-1.00005-8.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
B9780080999241000058 (visited on 05/05/2022).

[32] CSS Electronics, CAN Bus Explained - A Simple Intro [v2.0 | 2021] �, Oct. 2021.
[Online]. Available: https://www.youtube.com/watch?v=oYps7vT708E (visited on
05/05/2022).

81

https://doi.org/10.1016/B978-0-12-812138-2.00007-6
https://www.sciencedirect.com/science/article/pii/B9780128121382000076
https://www.sciencedirect.com/science/article/pii/B9780128121382000076
https://doi.org/10.1109/TIE.2004.841149
https://doi.org/10.1016/B978-0-12-415779-8.00006-1
https://www.sciencedirect.com/science/article/pii/B9780124157798000061
https://www.sciencedirect.com/science/article/pii/B9780124157798000061
http://https%253A%252F%252Fwww.admotec.com%252Fresolver%252Fstandard-rotasyn-sensors%252F
http://https%253A%252F%252Fwww.admotec.com%252Fresolver%252Fstandard-rotasyn-sensors%252F
https://uniquemachines.blogspot.com/2010/10/servomotors-stepper-motorsand-actuators.html
https://uniquemachines.blogspot.com/2010/10/servomotors-stepper-motorsand-actuators.html
https://www.lenze.com/en-us/products/inverters/servo-inverters/9400-highline-servo-inverter/
https://www.lenze.com/en-us/products/inverters/servo-inverters/9400-highline-servo-inverter/
https://www.lenze.com/en-us/products/inverters/servo-inverters/9400-highline-servo-inverter/
https://www.lucas-nuelle.us/2776/pid/22637/apg/11298/Dynamic-servo-machine-test-system-for-03kW-machines-incl-software-ActiveServo.htm
https://www.lucas-nuelle.us/2776/pid/22637/apg/11298/Dynamic-servo-machine-test-system-for-03kW-machines-incl-software-ActiveServo.htm
https://www.lucas-nuelle.us/2776/pid/22637/apg/11298/Dynamic-servo-machine-test-system-for-03kW-machines-incl-software-ActiveServo.htm
https://doi.org/10.1016/B978-0-12-800939-0.00009-7
https://doi.org/10.1016/B978-0-12-800939-0.00009-7
https://www.sciencedirect.com/science/article/pii/B9780128009390000097
https://www.sciencedirect.com/science/article/pii/B9780128009390000097
https://doi.org/10.1016/B978-0-08-099924-1.00005-8
https://www.sciencedirect.com/science/article/pii/B9780080999241000058
https://www.sciencedirect.com/science/article/pii/B9780080999241000058
https://www.youtube.com/watch?v=oYps7vT708E


[33] M. Falch, CAN Bus Explained - A Simple Intro [2022 | The #1 Tutorial], en, Apr.
2022. [Online]. Available: https://www.csselectronics.com/pages/can-bus-
simple-intro-tutorial (visited on 05/05/2022).

[34] Lenze L-Force 9400 Servo Drives Software Manual, 2006.
[35] USB 2.0 cable wiring pinout diagram @ pinoutguide.com, Apr. 2022. [Online]. Avail-

able: https://pinoutguide.com/SerialPortsCables/usb_cable_pinout.shtml
(visited on 06/05/2022).

[36] C. Peacock, USB in a NutShell - Chapter 3 - USB Protocols, Sep. 2010. [Online].
Available: https : / / beyondlogic . org / usbnutshell / usb3 . shtml (visited on
06/05/2022).

[37] About the USB Protocol, Common USB Bus Errors, and How to Troubleshoot Them,
en, Section: News, Jul. 2020. [Online]. Available: https://www.totalphase.com/
blog/2020/07/about-the-usb-protocol-common-usb-bus-errors-and-how-
to-troubleshoot-them/ (visited on 06/05/2022).

[38] Communication Protocols : Basics and Types with Functionality, en-US, Nov. 2013.
[Online]. Available: https://www.elprocus.com/communication-protocols/
(visited on 06/05/2022).

[39] Instrumentation Basics: 4 - 20mA and 3 - 15psi Control Signals ~ Learning In-
strumentation And Control Engineering, Oct. 2019. [Online]. Available: https :
/ / www . instrumentationtoolbox . com / 2011 / 01 / instrumentation - basics -
control-signals.html (visited on 06/05/2022).

[40] Y. Lee, Pulse-Width-Modulation Digital-to-Analog Converter vs. Stand-Alone DAC,
en, Feb. 2017. [Online]. Available: https://www.designnews.com/pulse-width-
modulation-digital-analog-converter-vs-stand-alone-dac-0 (visited on
07/05/2022).

[41] Eduvance, PSoC Lecture 5 PWM Basics, Aug. 2014. [Online]. Available: https:
//www.youtube.com/watch?v=1kET-moJ_Qw (visited on 07/05/2022).

[42] R. Aswinth, What is PWM: Pulse Width Modulation, en, Feb. 2022. [Online]. Avail-
able: https://circuitdigest.com/tutorial/what-is-pwm-pulse-width-
modulation (visited on 07/05/2022).

[43] Low Pass Filter - Passive RC Filter Tutorial, en, Aug. 2013. [Online]. Available:
https://www.electronics-tutorials.ws/filter/filter_2.html (visited on
07/05/2022).

[44] J. Wägenbach, CAN bus topology and bus termination, en-US, May 2021. [On-
line]. Available: https : / / support . maxongroup . com / hc / en - us / articles /
360009241840-CAN-bus-topology-and-bus-termination (visited on 08/05/2022).

[45] EMF2177IB Montageanleitung, Jul. 2010. [Online]. Available: https://download.
lenze.com/TD/EMF2177IB__CAN%20PC%20adapter%20USB__v3-1__DE_EN_FR.
pdf?msclkid=616102fece6111ec90469459060b2461 (visited on 08/05/2022).

82

https://www.csselectronics.com/pages/can-bus-simple-intro-tutorial
https://www.csselectronics.com/pages/can-bus-simple-intro-tutorial
https://pinoutguide.com/SerialPortsCables/usb_cable_pinout.shtml
https://beyondlogic.org/usbnutshell/usb3.shtml
https://www.totalphase.com/blog/2020/07/about-the-usb-protocol-common-usb-bus-errors-and-how-to-troubleshoot-them/
https://www.totalphase.com/blog/2020/07/about-the-usb-protocol-common-usb-bus-errors-and-how-to-troubleshoot-them/
https://www.totalphase.com/blog/2020/07/about-the-usb-protocol-common-usb-bus-errors-and-how-to-troubleshoot-them/
https://www.elprocus.com/communication-protocols/
https://www.instrumentationtoolbox.com/2011/01/instrumentation-basics-control-signals.html
https://www.instrumentationtoolbox.com/2011/01/instrumentation-basics-control-signals.html
https://www.instrumentationtoolbox.com/2011/01/instrumentation-basics-control-signals.html
https://www.designnews.com/pulse-width-modulation-digital-analog-converter-vs-stand-alone-dac-0
https://www.designnews.com/pulse-width-modulation-digital-analog-converter-vs-stand-alone-dac-0
https://www.youtube.com/watch?v=1kET-moJ_Qw
https://www.youtube.com/watch?v=1kET-moJ_Qw
https://circuitdigest.com/tutorial/what-is-pwm-pulse-width-modulation
https://circuitdigest.com/tutorial/what-is-pwm-pulse-width-modulation
https://www.electronics-tutorials.ws/filter/filter_2.html
https://support.maxongroup.com/hc/en-us/articles/360009241840-CAN-bus-topology-and-bus-termination
https://support.maxongroup.com/hc/en-us/articles/360009241840-CAN-bus-topology-and-bus-termination
https://download.lenze.com/TD/EMF2177IB__CAN%20PC%20adapter%20USB__v3-1__DE_EN_FR.pdf?msclkid=616102fece6111ec90469459060b2461
https://download.lenze.com/TD/EMF2177IB__CAN%20PC%20adapter%20USB__v3-1__DE_EN_FR.pdf?msclkid=616102fece6111ec90469459060b2461
https://download.lenze.com/TD/EMF2177IB__CAN%20PC%20adapter%20USB__v3-1__DE_EN_FR.pdf?msclkid=616102fece6111ec90469459060b2461


[46] Lenze, Reference manual E94AxHE Servo Drives 9400 HighLine (Firmware 01-
37), Mar. 2015. [Online]. Available: https://download.lenze.com/TD/E94AxHE_
_Servo%20Drives%209400%20HighLine%20(Firmware%2001-37)__v1-6__EN.pdf.

[47] ABB ACS350 User’s Manual, 2007. [Online]. Available: https://library.e.abb.
com/public/2cf5b5aabb5777a9c125733d00407394/EN_ACS350%20UM_D.pdf.

[48] Lenze Servo Drives 9400 Highline Reference Manual, Apr. 2019. (visited on 09/05/2022).
[49] iCP12 - usbStick (USB DAQ, PC Oscilloscope, Data Logger, Frequency Gener-

ator, PIC18F2550 IO Board), en, Aug. 2011. [Online]. Available: https://www.
piccircuit.com/shop/pic-develop-board/119-160-icp12-usbstick-pic18f2550-
io-board.html?msclkid=89f13523cf3711ecabc7128a25f84729 (visited on 09/05/2022).

[50] Arduino - ArduinoBoardUno, Apr. 2017. [Online]. Available: https://www.arduino.
cc/en/Main/arduinoBoardUno&gt;?msclkid=047436d5cf3a11ec9773b7f04917bfe1
(visited on 09/05/2022).

[51] What is Arduino? en, May 2018. [Online]. Available: https://www.arduino.cc/
en/Guide/Introduction (visited on 09/05/2022).

[52] Playknowlogy Uno Rev. 3 Arduino-kompatibelt utviklingskort - Utviklingskort, nb,
Feb. 2022. [Online]. Available: https://www.kjell.com/no/produkter/elektro-
og-verktoy/arduino/utviklingskort/playknowlogy-uno-rev.-3-arduino-
kompatibelt-utviklingskort-p88860 (visited on 09/05/2022).

[53] Online circuit simulator & schematic editor - CircuitLab, Mar. 2020. [Online]. Avail-
able: https://www.circuitlab.com/ (visited on 11/05/2022).

[54] AutoCAD_programvare, no-NO. [Online]. Available: https://www.autodesk.no/
products/autocad/overview (visited on 11/05/2022).

[55] ACDC Switching Transformer Board, en-US, Mar. 2014. [Online]. Available: https:
//www.ebay.com/itm/322743968466 (visited on 13/05/2022).

[56] STMicroelectronics, LM324N datasheet, 1999. [Online]. Available: https://pdf1.
alldatasheet.com/datasheet-pdf/view/22756/STMICROELECTRONICS/LM324N.
html (visited on 13/05/2022).

[57] Operational Amplifier Basics, Types and Uses| Article | MPS, Sep. 2019. [Online].
Available: https://www.monolithicpower.com/en/operational-amplifiers
(visited on 13/05/2022).

[58] Kjetil Svendsen, SV: Op-amp konvertering, Mar. 2022. (visited on 16/03/2022).
[59] B. Carter, ‘Chapter 2 - review of op amp basics,’ in Op amps for everyone (fourth

edition), B. Carter, Ed., Fourth Edition, Boston: Newnes, 2013, pp. 7–17, isbn: 978-
0-12-391495-8. doi: https://doi.org/10.1016/B978-0-12-391495-8.00002-7.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
B9780123914958000027.

83

https://download.lenze.com/TD/E94AxHE__Servo%20Drives%209400%20HighLine%20(Firmware%2001-37)__v1-6__EN.pdf
https://download.lenze.com/TD/E94AxHE__Servo%20Drives%209400%20HighLine%20(Firmware%2001-37)__v1-6__EN.pdf
https://library.e.abb.com/public/2cf5b5aabb5777a9c125733d00407394/EN_ACS350%20UM_D.pdf
https://library.e.abb.com/public/2cf5b5aabb5777a9c125733d00407394/EN_ACS350%20UM_D.pdf
https://www.piccircuit.com/shop/pic-develop-board/119-160-icp12-usbstick-pic18f2550-io-board.html?msclkid=89f13523cf3711ecabc7128a25f84729
https://www.piccircuit.com/shop/pic-develop-board/119-160-icp12-usbstick-pic18f2550-io-board.html?msclkid=89f13523cf3711ecabc7128a25f84729
https://www.piccircuit.com/shop/pic-develop-board/119-160-icp12-usbstick-pic18f2550-io-board.html?msclkid=89f13523cf3711ecabc7128a25f84729
https://www.arduino.cc/en/Main/arduinoBoardUno&gt;?msclkid=047436d5cf3a11ec9773b7f04917bfe1
https://www.arduino.cc/en/Main/arduinoBoardUno&gt;?msclkid=047436d5cf3a11ec9773b7f04917bfe1
https://www.arduino.cc/en/Guide/Introduction
https://www.arduino.cc/en/Guide/Introduction
https://www.kjell.com/no/produkter/elektro-og-verktoy/arduino/utviklingskort/playknowlogy-uno-rev.-3-arduino-kompatibelt-utviklingskort-p88860
https://www.kjell.com/no/produkter/elektro-og-verktoy/arduino/utviklingskort/playknowlogy-uno-rev.-3-arduino-kompatibelt-utviklingskort-p88860
https://www.kjell.com/no/produkter/elektro-og-verktoy/arduino/utviklingskort/playknowlogy-uno-rev.-3-arduino-kompatibelt-utviklingskort-p88860
https://www.circuitlab.com/
https://www.autodesk.no/products/autocad/overview
https://www.autodesk.no/products/autocad/overview
https://www.ebay.com/itm/322743968466
https://www.ebay.com/itm/322743968466
https://pdf1.alldatasheet.com/datasheet-pdf/view/22756/STMICROELECTRONICS/LM324N.html
https://pdf1.alldatasheet.com/datasheet-pdf/view/22756/STMICROELECTRONICS/LM324N.html
https://pdf1.alldatasheet.com/datasheet-pdf/view/22756/STMICROELECTRONICS/LM324N.html
https://www.monolithicpower.com/en/operational-amplifiers
https://doi.org/https://doi.org/10.1016/B978-0-12-391495-8.00002-7
https://www.sciencedirect.com/science/article/pii/B9780123914958000027
https://www.sciencedirect.com/science/article/pii/B9780123914958000027


[60] Fujitsu A series miniature relay, Sep. 2008. (visited on 09/05/2022).
[61] ASCII Table - ASCII Character Codes, HTML, Octal, Hex, Decimal, Apr. 2022.

[Online]. Available: https://www.asciitable.com/ (visited on 14/05/2022).
[62] Kayla MAtthews, 6 Reasons Why Python Is Suddenly Super Popular, en-US, Sec-

tion: 2017 Jul Opinions, Interviews, Jul. 2017. [Online]. Available: https://www.
kdnuggets.com/6-reasons-why-python-is-suddenly-super-popular.html/
(visited on 15/05/2022).

[63] PySerial - Problem Solving with Python. [Online]. Available: https://problemsolvingwithpython.
com/11-Python-and-External-Hardware/11.01-PySerial/ (visited on 15/05/2022).

[64] Mateen Ulhaq, Answer to ”Asking the user for input until they give a valid response”,
Apr. 2014. [Online]. Available: https : / / stackoverflow . com / a / 23294659 /
18641112 (visited on 09/05/2022).

[65] J. Juviler, What is UTF-8 Encoding? A Guide for Non-Programmers, en, Oct. 2020.
[Online]. Available: https://blog.hubspot.com/website/what-is-utf-8 (visited
on 16/05/2022).

84

https://www.asciitable.com/
https://www.kdnuggets.com/6-reasons-why-python-is-suddenly-super-popular.html/
https://www.kdnuggets.com/6-reasons-why-python-is-suddenly-super-popular.html/
https://problemsolvingwithpython.com/11-Python-and-External-Hardware/11.01-PySerial/
https://problemsolvingwithpython.com/11-Python-and-External-Hardware/11.01-PySerial/
https://stackoverflow.com/a/23294659/18641112
https://stackoverflow.com/a/23294659/18641112
https://blog.hubspot.com/website/what-is-utf-8


Appendix A

Full resolution stripboard layouts

forconverters

This paper contains the drawings created for the voltage converters stripboard layout.
The drawings shows the normal, full layout front view in addition to the mirrored back-
side, created to ease the placement of wire breaks. Symbol descriptions are found in
Table A.1.

Table A.1: Stripboard circuits symbol description

Symbol Description

Control signal wire
Power supply wire
Ground wire
Wire break
Capacitor
Resistor

Potentiometer

Voltage Regulator

IC (size varies)

85



A.1 Tuning the converters

Instructions for finetuning the converters before first-time use.

Fine-tuning the 0−5V to 10V converter:

1. Set input voltage to 5V and adjust R6 to 10V out.

2. Use R3 for small adjustments.

Fine-tuning the 0−5V to ±10V converter:

1. Switch 15V on and adjust R7 to 3V on pin 3.

2. Set input voltage to 0V and adjust R6 to −10V out.

3. Set input voltage to 5V and adjust R3 to 10V out.

4. Repeat until stable.

Fine-tuning the ±10V to 0−5V converter:

1. Switch −15V on and adjust R7 to −10V on pin 1.

2. Set input voltage ±10V to −10V and adjust R3 to 0V out.

3. Set input voltage ±10V to +10V and adjust R6 to 5V out.

4. Repeat until stable.

Fine-tuning the 4−20mA to 0−5V converter:

1. Set input current to 20mA and adjust potentiometer to 5V out.

86















Appendix B

Python script for serial communication with

Arduino

This paper contains the full Python Script created for serial communication with the
Arduino, sketch in Appendix C. The script is created in Jupyter Notebook and contains
a brief explanation to each section.

93





Main_jpyLab

May 18, 2022

1 Python Code for IO controller

1.1 Part of Master’s Thesis 2022

Author: Anniken Semb Kvalsund
This file contains the python code used for communication with an Arduino microcontroller

configured as an IO-module. The python program communicates with the Arduino through serial
bus.

NOTE: Information sent to the Arduino must be bytewise, not as strings, as the Arduino con-
troller reads strings too slow. Capital letters, special symbols and lower case a,b,c and d are re-
served for ASCII byte representation of integer values between 0-100.

If access to port denied, close Arduino IDE and try again.

1.2 Main Code

Importing libraries etc:
[ ]: #%pylab notebook

import serial
import time
import numpy as np

Establishing communication with the serial port. Remember to change the ‘COM3’ to
whichever port is in use. The time.sleep(2) allows for some startup time for the Arduino.

[ ]: ser = serial.Serial('COM3', baudrate = 9600, timeout = 1) # Timeout unit =␣
↪→seconds

time.sleep(2)

Scaling function An allround useful function for scaling variables
[ ]: # Function to convert value to different scales

def scaleVal(invalue, in_min, in_max, out_min, out_max):
out = ((invalue - in_min)/(in_max-in_min))*(out_max-out_min)+out_min
return out

#print(ScaleVal(0,-10,10,-1000,1000))

Defining variables etc. numPoints defines how many data point one wants to collect in one
round (based on a for-loop). This will eventually be removed in a final stage of the program. The
dataList creates a list for said collected datapoints.

1



[ ]: numPoints = 20 # Number of data rows to be collected.␣
↪→Remove when program is continuously reading.

dataList = np.array([0]*numPoints) # Create list for data points.
#AIs = [None]*numPoints] # Analogue input matrix
whileLoop = True
Ch = ['0','1','2','3']

rounds = 0 # For counting round of AI read

AI_1_temp = [None]*numPoints
AI_2_temp = [None]*numPoints
AI_3_temp = [None]*numPoints

Sanitising input function Makes the user type in answers until they type in a valid one. Found
at: https://stackoverflow.com/questions/23294658/asking-the-user-for-input-until-they-give-a-
valid-response

[ ]: def clean_input(prompt, type_=None, min_=None, max_=None, range_=None):
if min_ is not None and max_ is not None and max_ < min_:

raise ValueError("min_ must be less than or equal to max_.")
while True:

ui = input(prompt)
if type_ is not None:

try:
ui = type_(ui)

except ValueError:
print("Input type must be {0}.".format(type_.__name__))
continue

if max_ is not None and ui > max_:
print("Input must be less than or equal to {0}.".format(max_))

elif min_ is not None and ui < min_:
print("Input must be greater than or equal to {0}.".format(min_))

elif range_ is not None and ui not in range_:
if isinstance(range_, range):

template = "Input must be between {0.start} and {0.stop}."
print(template.format(range_))

else:
template = "Input must be {0}."
if len(range_) == 1:

print(template.format(*range_))
else:

expected = " or ".join((
", ".join(str(x) for x in range_[:-1]),
str(range_[-1])

))
print(template.format(expected))

else:
return ui

2



1.2.1 Functions

Read analogue inputs The ‘AI_read’ function reads values from the analogue inputs (A0-A3). The
data is transmitted with 10bit resolution.

[ ]: # Function for reading analogue values
def AI_read():

#ser.write(b'e') # b signifies that␣
↪→we're writing a byte to the serial bus

arduinoData = ser.readline().decode().rstrip() # Reads the arduino␣
↪→point from the ser port specified above. Readline reads until the end of␣
↪→line character. ascii decode removes the information around data read (byte␣
↪→rn)

list_values = arduinoData.split('x') # Splits the multiple␣
↪→elements by x

# list_values_int = list(map(int, list_values)) # Converts lists of␣
↪→strings to list of integers

return list_values

Sort Collected Data in Matrix The function ‘sortData’ calls the ‘AI_read’ function, as described
above and sorts the arrays into a matrix-form.. Each column in the matrix represents the values
collected from one input.

[ ]: #Function to sort data in Matrix
def sortData(AI1, AI2, AI3):

for i in range(0,numPoints): # Limits number of data␣
↪→transferred. Can be removed later

ser.write(bytes('e', 'utf-8')) # calls for an analogue input␣
↪→reading

ser.write(bytes('~', 'utf-8'))
data = AI_read() # Call the Function that reads␣

↪→the Analogue values
#print(data) # Prints the recieved data

# Sorting data from the three different channels to their own array
AI_1_temp[i] = round(scaleVal(int(data[0]),0,1023,-10,10),3)
AI_2_temp[i] = round(scaleVal(int(data[1]),0,1023,-10,10),3)
AI_3_temp[i] = round(scaleVal(int(data[2]),205,1023,4,20),3)

AI1_return = AI1 + AI_1_temp
AI2_return = AI2 + AI_2_temp
AI3_return = AI3 + AI_3_temp

#print('\nAI 1 = ', AI1_return,'\nAI 2 = ', AI2_return,'\nAI 3 = ',␣
↪→AI3_return,)

#print('\nAI 1 = ', AI_1, '\nAI 2 = ', AI_2, '\nAI 3 = ', AI_3)

return AI1_return,AI2_return,AI3_return

Controlling built in Arduino LED The function can switch on and off the built in Arduino

3



LED. It is not a vital function, but comes in handy during troubleshooting plausible connectin
issues.

[ ]: # Function for controlling built in Arduino LED
def LEDonoff(LEDcontr):

if LEDcontr == 'on':
ser.write(bytes('h', 'utf-8'))
ser.write(bytes('~', 'utf-8'))

elif LEDcontr == 'off':
ser.write(bytes('i', 'utf-8'))
ser.write(bytes('~', 'utf-8'))

arduinoData = ser.readline().decode()
return arduinoData

Limit Function (utils) This function makes sure the number is within a specified range. De-
fault is 0-100

[ ]: #Limits input 'num' between minimum and maximum values
def limit(num, minimum=0, maximum=100):

limited = max(min(num, maximum), minimum)
return limited

Analog / Digital Out write This function formats the neccessary info and sends it bytewise to
the bus. The values are collected form an array separated by x’es and ended by a ‘~’ - The first
value in array chooses between digital or analogue channels. ‘o’ for analogue and ‘p’ for digital. -
The second value specifies the channel number - The third value specifies the value to be sent on
said channel. For analogue 0-100, for digital 0 or 1.

[ ]: # Function for sending an array of information to serial bus, separated by x'es␣
↪→and endedn with \n. UTILS

def byteWriteArray(AD,chNo,chVal): # Inputs must be characters

channelAD = bytes(AD, 'utf-8') # Convert AD (o/p) to byte
channelNo = bytes(chNo, 'utf-8') # Convert chNumber to byte
channelVal = bytes(chVal, 'utf-8') # Converts ch value to ASCII␣

↪→character to byte

fullArray = [channelAD, channelNo, channelVal] # Creates array of␣
↪→analog,chNumber and value

for i in range(0, (len(fullArray))): # Send values for the length og␣
↪→the array

ser.write(fullArray[i]) # Send value in array
#print(fullArray[i])
if i <= (len(fullArray)-2): # Goes to else at second last␣

↪→element
ser.write(bytes('x', 'utf-8')) # Separate by x between each␣

↪→element, exept for after the last
else:

4



ser.write(bytes('~', 'utf-8')) # End with new line char ␣
↪→

Print Results – NOT needed, useful when troubleshooting. – This function simply prints the
feedback and its type sent from the arduino.

[ ]: # This function is for testing purposes only
def printResults():

feedback = ser.readline().decode().rstrip() # Reads the arduino point from␣
↪→the ser port specified above. Readline reads until the end of line character.
↪→ ascii decode removes the information around data read (byte rn)

print('Recieved arduino Data: ',feedback)
print('Recieved data type: ',type(feedback),'\n\n')

Arduino max AO cal This functio is made for ard. AO calibration. The PWM AO should
ideally put out about 5V, but the real voltage is usually a bit higher. The function is based on
arduinos maximum out value being 255, and adjusts this down accordingly to create exactly 5V
out. To avoid too large numbers on the serial bus (should ideally be between 0 and 100, sent as
byte) the function finds the difference between the desired output(10V) and real output, multiplies
it by 100 to avoid decimals and sends this value to the arduino. The measured voltage should be
between 10 and 11. If outside this range, other measures must be take to correct it anyways. The
function is based on:

ArduinoAOmax,new =
Vmax,desired

Vmax,real
Arduinomax

=
10V
10.xV

255

[ ]: # This funtion is used to adjust the maximum output value for arduino PWM␣
↪→outputs

def arduinocal(Vmeas_max,Vmeas_min,Vdesired):
i = 0
Vclosetomin = False # Used to reset and try again is voltage is too low
Vreset = False # Used to reset max value
sendValue = 0 # Difference value to be sent to Arduino

AOchannels = ['AO_0','AO_1','AO_2','AO_3'] # Array of analogue output␣
↪→channels

print(' - Press enter to go to next channel. \n - Type reset to reset␣
↪→channel value.\n')

for i in range(0, (len(AOchannels))):
Vreset = False # Resets the Vreset variable for every channel.

while True: # Only accepts numbers as input, loops to avoid errors.
Vmeas_str = input('Measured output voltage channel {}: '.

↪→format(AOchannels[i]))

if not Vmeas_str: # If user presses "enter", then break loop and␣
↪→go to next channel

5



break
else:

if Vmeas_str == 'reset' or Vmeas_str == 'Reset': # Reset␣
↪→maximum value

Vreset = True
else:

try:
Vmeas_float = float(Vmeas_str) # Ensures the input␣

↪→is a number
except ValueError:

print('Not a valid number. Use . as decimal symbol.')
continue

if (not Vreset) and (Vmeas_float > Vmeas_max or Vmeas_float <␣
↪→(Vmeas_min-1)): # Checks if the number is (not) within the right range

print('Find other source of adjustment. Voltage deviance too␣
↪→high.')

break

else:
if (not Vreset) and (Vmeas_float > (Vmeas_min-1) and␣

↪→Vmeas_float < Vmeas_min): # If measured value is between 9-10, reset
Vreset = True
Vclosetomin = True
print('Channel ', AOchannels[i],' is too low. Max value␣

↪→reset to default.\nPlease try again.')

if Vreset == True:
sendValue = 'r'

else:
dev_val = int(round((Vmeas_float - Vdesired)*100)) #␣

↪→Calculates deviation between desired and actual value
#print("Deviation 0-100 = ",dev_val)
sendValue = str(chr(dev_val))

byteWriteArray('q', str(i), sendValue) # Change the max value
byteWriteArray('o', str(i), 'd') # Set said channel to max

if Vclosetomin == True: # Resets Vclosetomin variable and runs␣
↪→the loop once more if value between 9 and 10.

Vclosetomin = False
continue

else:
break

Main This is the main function of the program. The user is asked which function they would
like to run, and the if-statements calls the respective function. In a final version, the read functions

6



will run continuously, and the write will run when changed.
[ ]: #%% Main program

def application():

whileLoop = True

AI_0 = []
AI_1 = []
AI_2 = []

AI0tmp = [] # Placeholders for AI lists
AI1tmp = []
AI2tmp = []

modes = ['read','write','cal','on','off','q','Q'] # Modes/programs

#Whileloop:
while whileLoop == True:

print('\nGet Data? \n - ',modes[0],' = analogue input values \n -␣
↪→',modes[1],' = Write to analogue or digital out \n - ',modes[2],' =␣
↪→Calibrate arduino analogue outputs. \n - ',modes[3],' = LED on \n -␣
↪→',modes[4],' = LED off \n - ',modes[5],' = Close Port \n')

# Asking which function should be rund
chooseMode = clean_input('Please choose mode: ', range_=modes)

# Get datapoints from analogue inputs A0, A1, A2 and A3
if chooseMode == modes[0]: # If user press AI, get datapoints

AI0tmp = AI_0
AI1tmp = AI_1
AI2tmp = AI_2
AI_0, AI_1, AI_2 = sortData(AI0tmp, AI1tmp, AI2tmp)

print('\nAI 0: ',AI_0,'\nAI 1: ',AI_1,'\nAI 2: ',AI_2,'\n')

# Analogue/digital write
if chooseMode == modes[1]:

# Ask if write to analogue or digital out
ADInput = clean_input('Select A for analogue, or D for digital:␣

↪→',range_=('A','a','D','d')) # Choose between analogue and digital channels
chNumberInput = clean_input('Select channel number: ',range_=Ch) #␣

↪→Write desired channel number.

7



# Analogue write out
if (ADInput == 'A' or ADInput == 'a') and chNumberInput in Ch:

numberinput = clean_input('Insert value 0-100: ', type_=int,␣
↪→min_=0, max_=100) # Ask for value between 0-100 to send to ard

byteWriteArray('o', chNumberInput, str(chr(numberinput))) #␣
↪→chr=int to ASCII, then converted to string

# Digital write out
elif (ADInput == 'D' or ADInput == 'd') and chNumberInput in Ch:

onoffin = clean_input('True or False?',␣
↪→range_=('True','true','on','1','False','false','off','0')) # Ask if DO ␣
↪→should be high or low

if onoffin == 'True' or onoffin == 'true' or onoffin =='on' or␣
↪→onoffin == '1':# Checks if true

onoff = 60

elif onoffin == 'False' or onoffin == 'false' or onoffin␣
↪→=='off' or onoffin == '0':# Checks if false

onoff = 0

byteWriteArray('p', chNumberInput, str(chr(onoff)))

else:
print('Something is wrong\n')

else:
print('Invalid input. Channel must be A or D, and number␣

↪→between 0-3\n\n')

if chooseMode == modes[2]: # Calibration:

enterCalMode = clean_input('Entering calibration mode. Please make␣
↪→sure equipment is disconnected before continuing.\nDo you want to proceed? Y/
↪→N: ',range_=('Y','y','N','n'))

if enterCalMode == 'Y' or enterCalMode == 'y':
for k in range(0, 4):

byteWriteArray('o', str(k), 'd') # Setting all the AO to␣
↪→max

8



print('\nCalibration mode. Please measure the output analogue␣
↪→output one by one.')

arduinocal(11,10,10)

# Switch builtin LED on/off
if chooseMode == modes[3] or [4]:

LEDonoff(chooseMode)

if chooseMode == modes[5] or chooseMode == modes[6]:
print('Serial port closed.')
ser.close()
whileLoop = False

If name is main This runs the main function
[ ]: # %% Running

if __name__ == '__main__':
application()

9



104



Appendix C

Arduino sketch for serial communication

with Python

This paper contains the full Arduino sketch created for serial communication with the
Python script in Appendix B. The script is created in Arduino IDE and contains brief
explanations as comments.

105





Main .ino

May 18, 2022

[ ]: /* Sketch for ARDUINO communication with Python.
*
* Part of masters thesis spring 2022.
* Anniken Semb Kvalsund
* Electrical Power Engineering.
*
*/

// Constants
const int AI[3] = {A0, A1, A2}; // Creates an array of all the analog inputs
byte noAI = (sizeof(AI)/sizeof(AI[0])); // Finds the number of elements in AI␣

↪→array. To use in for loops etc

// Variables
int data1 = 0; // Input information. Initialise to zero.
int i = 0;

bool readAI = false;
bool writeADO = false;
bool calibrateAO = false;
bool LEDcontr = false;

int AIs[10]; // For "storing" collected analogue input values
char AIstring[16]; // For storing AI values converted to string

// Write data constants and variables
const byte numChars = 16;
char receivedChars[numChars]; // an array to store the received data
byte ndx = 0;
boolean newData = false;
char analogDigital;
int channel; // Converts the number recieved in channel number to an int
int chValConv; // Sends the char chVal to string toInt function, returned␣

↪→scaled and converted to int.
int outVal; // Output value to analogue PWM outputs.
bool LEDon = false; // LED controlling variable.

1



// Maxvalue to PWM outputs. Adjustable to ensure 5V, not more, is output at max.
int max_out_AO0 = 255;
int max_out_AO1 = 255;
int max_out_AO2 = 255;
int max_out_AO3 = 255;

// Declare outputs
const int DO0 = 2;
const int DO1 = 4;
const int DO2 = 7;
const int DO3 = 8;

const int AO0 = 3; // 0-10V
const int AO1 = 5; // 0-10V
const int AO2 = 6; // +-10V
const int AO3 = 9; // +-10V

void setup() {
// Setting up an initialise the serial communication
Serial.begin(9600);
pinMode(LED_BUILTIN, OUTPUT);
pinMode(DO0, OUTPUT);
pinMode(DO1, OUTPUT);
pinMode(DO2, OUTPUT);
pinMode(DO3, OUTPUT);
pinMode(AO0, OUTPUT);
pinMode(AO1, OUTPUT);
pinMode(AO2, OUTPUT);
pinMode(AO3, OUTPUT);

}

void loop() {
if(Serial.available()>0){ // Return the number of bytes available on␣

↪→serial. if <0, = no info on serial.

recvWithEndMarker();

if(readAI == true){
analoginputs();
readAI = false;

}

if(writeADO == true){

2



analogueOut();
writeADO = false;

}

if(calibrateAO == true){
calibrateAO_func();
calibrateAO = false;

}

if (LEDcontr == true){
LEDonoff();
LEDcontr = false;

}

else{/* Do nothing*/}
} // if serial available

} // Void loop

//
↪→_____________________________________________________________________________________________

// Read analogue inputs

void analoginputs(){
for ( i=0; i<=noAI; i++){

AIs[i] = analogRead(AI[i]);
} // for AI

// Converting the analog input values to a single string with x's separating␣
↪→each value.
sprintf(AIstring, "%dx%dx%d" , AIs[0],AIs[1],AIs[2]);
Serial.println(AIstring); // Writes data from AI to serial bus

} // void analoginputs

//
↪→_____________________________________________________________________________________________

// Reads from Serial port until endChar '~' is received.

void recvWithEndMarker() {
char endMarker = '~';
char rc;
boolean done = false;

while (Serial.available() && !done) {
rc = Serial.read();
if (rc == endMarker) {

done = true;

3



newData = true;
}
else {

receivedChars[ndx++] = rc;
if (ndx >= numChars)
done = true;

}
}

if (newData) {
if (!parseInput()) { // if we call parseData it fails there is no need to␣

↪→process that data further.
//Serial.println("String couldn't be parsed");
newData = false;

}
ndx = 0;

}
}

//
↪→_____________________________________________________________________________________________

// Splits the received string into its separate characters and stores them in␣
↪→globals

boolean parseInput() {
int secondX = -1;
String tempString;
String chValConvtemp;
char Buf[2]; // For converting string to char

for (int i = 0; i < ndx; i++)
//Serial.print(receivedChars[i]);
//Serial.println();

if (receivedChars[1] != 'x'){ // If no further values are read, ie not␣
↪→split by x'es

if (receivedChars[0] == 'e'){ readAI = true;} // The readAI value is set␣
↪→to true, causing readAI function to run

if (receivedChars[0] == 'h'){ LEDcontr = true; LEDon = true;}
if (receivedChars[0] == 'i'){ LEDcontr = true; LEDon = false;}

return false;}
else { // If more than one value is transmitted

if (receivedChars[0] == 'o' or receivedChars[0] == 'p'){ writeADO = true;␣
↪→analogDigital = receivedChars[0];} // Prepare to write values

4



if (receivedChars[0] == 'q'){ calibrateAO = true;} // Prepare to␣
↪→calibrate (using the same message system as writeADO

for (int i = 3; i < ndx && secondX == -1; i++)
if (receivedChars[i] == 'x')
secondX = i;

if (secondX == -1)
return false;

tempString = receivedChars;
channel = tempString.substring(2, secondX).toInt();

chValConvtemp = tempString.substring(secondX + 1, ndx);
chValConvtemp.toCharArray(Buf, 2);
chValConv = int(Buf[0]);

// Print for troubleshooting
Serial.print("analogDigital -> ");
Serial.println(analogDigital);
Serial.print("channel -> ");
Serial.println(channel);
Serial.print("chValConv -> ");
Serial.println(chValConv);

}
return true;

}

//
↪→_____________________________________________________________________________________________

// Write analogue and / or digital values

void analogueOut() { // Writes to analogue outputs

if (newData == true) {
// Result in an array with two elements. One A1/D2 etc and one Value/onoff

if (analogDigital == 'o') {
//Serial.println("Analogue");

switch (channel) {
case 0:

//Serial.println("AO0");
outVal = constrain((map(chValConv, 0, 100, 0, max_out_AO0)), 0,␣

↪→max_out_AO0);
analogWrite(AO0, outVal);
break;

5



case 1:
//Serial.println("AO1");
outVal = constrain((map(chValConv, 0, 100, 0, max_out_AO1)), 0,␣

↪→max_out_AO1);
analogWrite(AO1, outVal);
break;

case 2:
//Serial.println("AO2");
outVal = constrain((map(chValConv, 0, 100, 0, max_out_AO2)), 0,␣

↪→max_out_AO2);
analogWrite(AO2, outVal);
break;

case 3:
//Serial.println("AO3");
outVal = constrain((map(chValConv, 0, 100, 0, max_out_AO3)), 0,␣

↪→max_out_AO3);
analogWrite(AO3, outVal);
break;

default:
//Serial.println("NaN");
break;

} // Switch case channel

} // if recievedArray[0]=o

else if (analogDigital == 'p') {
//Serial.println("Digital");
bool dContr = false;

// Creating a "buffer"
if (chValConv < 50){dContr = LOW;}
else if (chValConv >= 50){dContr = HIGH;}
else {dContr = LOW;}

switch (channel) {
case 0:

//Serial.println("DO0");
digitalWrite(DO0, dContr);
break;

case 1:
//Serial.println("DO1");
digitalWrite(DO1, chValConv);
break;

case 2:
//Serial.println("DO2");
digitalWrite(DO2, chValConv);
break;

6



case 3:
//Serial.println("DO3");
digitalWrite(DO3, chValConv);
break;

default:
//Serial.println("NaN");
break;

} // Switch case channel

} // if recievedArray[0]=p

else {
//Serial.println("Channel not valid");

} // if recievedArray[0]=p

newData = false;
} // if newData True

} // void analogueOut

//
↪→_____________________________________________________________________________________________

// Function for converting the recieved value 0-100 to calibration values, or␣
↪→reset cal. vlaues.

int calEq(int range, int measVal, int maxOut){
int maxOut_tmp; // For storing the value temporary

if (measVal == 114){ // If measVal is 114, aka reset, the max \Out is set to␣
↪→default 255

maxOut_tmp = 255;
} // if measVal 114('r')

else { // If measVal is something else, the recieved value(measVal), scales␣
↪→it to measured voltage(10-11V), corrects the offset and scales the new value␣
↪→to out max

maxOut_tmp = int(round(range/((range+(float(measVal)/100))/maxOut)));
} // if measVal is not 114('r')

maxOut = maxOut_tmp;

return maxOut;
}

//
↪→_____________________________________________________________________________________________

void calibrateAO_func() { // Calibrate analogue PWM outs

7



int range = 0; // Range of values. Set to 10 or 20, depending on output␣
↪→channel
if (channel == 0 or channel == 1){range = 20;} // For AO_0 and AO_1 with -10␣

↪→to +10V range
else {range = 10;} // For AO_2 and AO_3 with 0-10V range.

// Converted new maximum values for all four channels
int new_max_AO0;
int new_max_AO1;
int new_max_AO2;
int new_max_AO3;

if (newData == true) {
switch (channel) {

case 0:
new_max_AO0 = calEq(range, chValConv, max_out_AO0);
max_out_AO0 = new_max_AO0;
break;

case 1:
new_max_AO1 = calEq(range, chValConv, max_out_AO1);
max_out_AO1 = new_max_AO1;
break;

case 2:
new_max_AO2 = calEq(range, chValConv, max_out_AO2);
max_out_AO2 = new_max_AO2;
break;

case 3:
new_max_AO3 = calEq(range, chValConv, max_out_AO3);
max_out_AO3 = new_max_AO3;
break;

default:
//Serial.println("NaN");
break;

} // Switch case channel

newData = false;
} // if newData True

}

void LEDonoff(){
if (LEDon == true) {digitalWrite(LED_BUILTIN, HIGH);} // switch the LED on}
//else {digitalWrite(LED_BUILTIN, LOW);} // turn the LED off}

} // Woid LEDonoff

8



Appendix D

Current, voltage and DAC/ADC converter

results

This paper includes the measured results from the four analogue converters and DAC/ADC:

• Voltage Doubler : 0−5V to 0−10V ,

• Voltage Quadrupler : 0−5V to ±10V

• Voltage Quarter : ±10V to 0−5V

• Current to Voltage converter : 4−20mA to 0−5V

• Analogue to Digital Converter : 0−5V to 10−bit

• Digital to Analogue Converter : 8−bit to 0−5VPWM

The paper shoes the full, raw data collected from the converter tests, after calibration.
The input voltage or current was provided by a generic DC supply connected to their input
terminals, where they would later be connected to the Arduino. The output voltage was
measured using a handheld multimeter connected to the converters’ output terminals.

115



Table D.1: 0−5V to 0−10V converter results

Channel 1 Channel 2
In [V] Out[V] In [V] Out[V]

0.00 0.00 0.00 0.00
0.25 0.51 0.25 0.50
0.50 1.01 0.50 1.00
0.75 1.50 0.75 1.50
1.00 1.98 1.00 1.99
1.25 2.46 1.25 2.49
1.50 2.94 1.50 2.99
1.75 3.43 1.75 3.49
2.00 3.93 2.00 3.99
2.25 4.43 2.25 4.49
2.50 4.93 2.50 4.98
2.75 5.44 2.75 5.48
3.00 5.94 3.00 5.98
3.25 6.45 3.25 6.48
3.50 6.95 3.50 6.98
3.75 7.46 3.75 7.49
4.00 7.97 4.00 7.99
4.25 8.47 4.25 8.49
4.50 8.97 4.50 8.99
4.75 9.48 4.75 9.49
5.00 9.99 5.00 9.99

0 1 2 3 4 5
Input voltage [V]

0

2

4

6

8

10

O
ut

pu
t v

ol
ta

ge
 [V

]

0-5V to 0-10V

Channel 1 - AO 0
Channel 2 - AO 1

Voltage doubler result

Figure D.1: Analogue voltage doubler output

116



Table D.2: 0−5V to ±10V converter results

Channel 1 Channel 2
In [V] Out[V] In [V] Out[V]

0.00 -10.00 0.00 -10.00
0.25 -9.00 0.25 -9.00
0.50 -7.99 0.50 -8.00
0.75 -6.98 0.75 -7.00
1.00 -5.97 1.00 -6.00
1.25 -4.97 1.25 -5.00
1.50 -3.96 1.50 -4.00
1.75 -2.96 1.75 -3.00
2.00 -1.96 2.00 -2.00
2.25 -0.95 2.25 -1.00
2.50 0.02 2.50 0.00
2.75 1.03 2.75 1.00
3.00 2.03 3.00 2.00
3.25 3.03 3.25 3.00
3.50 4.03 3.50 3.99
3.75 5.02 3.75 4.99
4.00 6.03 4.00 5.99
4.25 7.03 4.25 7.00
4.50 8.02 4.50 7.99
4.75 9.01 4.75 8.99
5.00 10.00 5.00 10.00

0 1 2 3 4 5
Input voltage [V]

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

O
ut

pu
t v

ol
ta

ge
 [V

]

0-5V to ±10V

Channel 1 - AO 2
Channel 2 - AO 3

Voltage quadrupler result

Figure D.2: Analogue voltage quadrupler output

117



Table D.3: ±10V to 0−5V converter results

Channel 1 Channel 2
In [V] Out[V] In [V] Out[V]
-10.00 0.01 -10.00 0.03
-9.00 0.26 -9.00 0.27
-8.00 0.51 -8.00 0.40
-7.00 0.76 -7.00 0.76
-6.00 1.01 -6.00 1.01
-5.00 1.25 -5.00 1.26
-4.00 1.50 -4.00 1.50
-3.00 1.75 -3.00 1.75
-2.00 2.00 -2.00 2.00
-1.00 2.25 -1.00 2.24
0.00 2.50 0.00 2.49
1.00 2.74 1.00 2.74
2.00 2.99 2.00 2.98
3.00 3.24 3.00 3.23
4.00 3.48 4.00 3.46
5.00 3.73 5.00 3.71
6.00 3.97 6.00 3.96
7.00 4.22 7.00 4.20
8.00 4.47 8.00 4.45
9.00 4.72 9.00 4.70
10.00 4.97 10.00 4.95

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Input voltage [V]

0

1

2

3

4

5

O
ut

pu
t v

ol
ta

ge
 [V

]

±10V to 0-5V

Channel 1 - AI 0
Channel 2 - AI 1

Voltage reducer result

Figure D.3: Analogue voltage quarter output

118



Table D.4: 4−20mA to 1−5V converter results

Channel 1
In [V] Out[V]

4.00 1.01
5.00 1.26
6.00 1.50
7.00 1.74
8.00 2.01
9.00 2.24
10.00 2.49
11.00 2.74
12.00 2.99
13.00 3.24
14.00 3.49
15.00 3.76
16.00 4.01
17.00 4.25
18.00 4.51
19.00 4.76
20.00 5.01

4 6 8 10 12 14 16 18 20
Input current [A]

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

O
ut

pu
t v

ol
ta

ge
[V

]

4-20mA to 1-5V

Channel 3 - AI 2

Current to voltage results

Figure D.4: Analogue current to voltage converter results

119



Table D.5: 0−5V to 10bit Arduino converter results

Channel 1 Channel 2
In [V] Received [10bit] In [V] Received [10bit]

0 0 0 0
0.01 1 0.03 4
0.26 51 0.27 53
0.51 100 0.40 102
0.76 150 0.76 152
1.01 199 1.01 201
1.25 250 1.26 250
1.50 299 1.50 300
1.75 349 1.75 349
2.00 399 2.00 399
2.25 449 2.24 449
2.50 498 2.49 499
2.74 549 2.74 548
2.99 599 2.98 597
3.24 649 3.23 647
3.48 699 3.46 696
3.73 748 3.71 746
3.97 798 3.96 795
4.22 848 4.20 844
4.47 897 4.45 893
4.72 947 4.70 943
4.97 998 4.95 992
5.01 1004 5.00 1002

0 1 2 3 4 5
Input voltage [V]

0

200

400

600

800

1000

A
rd

ui
no

 1
0b

it 
va

lu
e

0-5V to 10-bit values

Channel 1 - AI 0
Channel 2 - AI 1
Channel 3 - AI 2

Analogue input result

Figure D.5: 0−5V to Arduino 10bit converter

120



Table D.6: 8bit Arduino to 0−5V converter results

Analogue PWM output [V]
Command (8bit) AO0 AO1 AO2 AO3

0 0.00 0.00 0.00 0.00
10 0.20 0.22 0.22 0.20
20 0.40 0.42 0.42 0.42
30 0.61 0.62 0.62 0.60
40 0.81 0.82 0.82 0.80
50 1.01 1.02 1.02 1.01
60 1.21 1.22 1.22 1.21
70 1.41 1.42 1.42 1.41
80 1.60 1.62 1.62 1.61
90 1.81 1.82 1.82 1.81
100 2.01 2.02 2.02 2.01
110 2.21 2.22 2.22 2.21
120 2.41 2.42 2.42 2.41
130 2.61 2.62 2.62 2.61
140 2.81 2.82 2.82 2.81
150 3.01 3.02 3.02 3.01
160 3.20 3.20 3.20 3.21
170 3.40 3.40 3.40 3.41
180 3.60 3.60 3.60 3.61
190 3.80 3.80 3.80 3.81
200 4.00 4.00 4.00 4.01
210 4.20 4.20 4.20 4.21
220 4.40 4.40 4.40 4.41
230 4.60 4.60 4.60 4.61
240 4.80 4.80 4.80 4.81
250 5.00 5.00 5.00 5.01
255 5.11 5.11 5.11 5.11

121



0 50 100 150 200 250
Arduino 8-bit output value

0

1

2

3

4

5

PW
M

 o
ut

pu
t v

ol
ta

ge
 [V

]

8-bit to 0-5V

AO 0
AO 1
AO 2
AO 3

PWM output voltage

Figure D.6: Arduino 8bit to 0−5V converter

122



Appendix E

Lenze 9400 Servo Drive complete function

block diagram

This paper contains the complete function block diagram implemented in the Lenze High-
line 9400 Servo Drive when integrated to the Lucas Nülle Test Stand interface. The
diagram is exported form the drive using the software Lenze Engineer. [28]

123





08.05.2022   Stellantrieb - Drehzahl

Applikation P8 in User Task

P8: Positionieren

P7: Kalander
( lineare Kennlinie)

P6: Wickelantrieb

P5: Pumpe
( quadratische Kennlinie )

P4: Träge Masse

P3: Kolbenkompressor

P2: Drehzahl- Momenten- Regelung

Applikation P8 in USER TASK

-

-

-

-

-

-

-
P1: Windkraft

Allgemeine Grundfunktionen

Aktivierung Positionierung

-

MCK PositionFollower

MCK Positioner

MCK

MCK SpeedFollower

Aktivierung PositionFollower

-

-

Auswahlbereich

Aktivierung SpeedFollower

-

-

-

OUTPUT
INPUT

---

QSP_bActive
---

QSP_bActivate1

---

QSP_bActivate2

---

QSP_bActivate3

---

QSP_bActivateDCBrake

LS_Quickstop

---

DIGIN_bCInh

---

DIGIN_bIn1

---

DIGIN_bIn2

---

DIGIN_bIn3

---

DIGIN_bIn4

---

DIGIN_bIn5

---

DIGIN_bIn6

---

DIGIN_bIn7

---

DIGIN_bIn8

---

DIGIN_bStateBusIn

LS_DigitalInput

---

PF_bEnabled
---

PF_bEnable

--- inc

PF_dnPositionSet_p

--- rpm

PF_dnSpeedAdd1_s

LS_PositionFollower

---

SF_bEnabled
---

SF_bEnable

--- %

SF_dnSpeedSet_n

LS_SpeedFollower

---

DIGOUT_bOut1

---

DIGOUT_bOut2

---

DIGOUT_bOut3

---

DIGOUT_bOut4

---

DIGOUT_bStateBusOut

---

DIGOUT_bUserLED

LS_DigitalOutput

---

MI_bMotorOrientationInverse

---

MI_dwReferenceTorque

---

MI_bLimitationActive

--- %

MI_dnSpeedSetpoint_n

--- %

MI_dnTorqueSetpoint_n

---

MI_bMotorOverloadWarning

---

MI_bSpeedBelowThresholdC19

--- %

MI_dnActualMotorCurrent_n

--- %

MI_dnActualMotorTorque_n

--- %

MI_dnActualMotorSpeed_n

--- rpm

MI_dnActualMotorSpeed_s

--- inc

MI_dnActualMotorPos_p

---

MI_bResetSpeedCtrlIntegrator

--- %

MI_dnTorqueHighLimit_n

--- %

MI_dnTorqueLowLimit_n

--- %

MI_dnFluxSetpoint_n

--- %

MI_dnInertiaAdapt_n

--- %

MI_dnBoostSet_n

---

MI_bFlyingSyncBlocked

--- rpm

MI_dnActualMotorFreq_s

--- %

MI_dnActualFlux_n

---

MI_bFlyingSyncBusy

---

MI_bClampIsActive

---

MI_bMagnetisationFinished

--- %

MI_dnTorqueAdd_n

LS_MotorInterface

--- %

AOUT1_dnOut_n

--- %

AOUT2_dnOut_n

LS_AnalogOutput

---

DI_bReady

---

DI_bFailActive

---

DI_bImpActive

---

DI_bCInhActive

---

DI_bWarningActive

---

DI_bOperationEnabled

---

DI_dwErrorCode

---

DI_AxisData

---

DI_bSetCInh

---

DI_bResetError1

---

DI_bResetError2

---

DI_bResetError3

---

DI_bSetExternError

LS_DriveInterface

---

MAN_bEnabled
---

MAN_bEnable

---

MAN_bJogPositive

---

MAN_bJogNegative
---

MAN_bActive

---

MAN_bStepMode

---

MAN_bIntermediateStopMode

--- %

MAN_dnSpeedOverride_n

---

MAN_FBData

LS_ManualJog

---

HM_bEnabled

---

HM_bActive

---

HM_bDone

---

HM_bHomePosAvailable

---

HM_bEnable

---

HM_bActivateHoming

---

HM_bHomingMark

---

HM_bLoadHomePos

--- inc

HM_dnHomePos_p

---

HM_bResetHomePos

--- %

HM_dnSpeedOverride_n

LS_Homing

--- inc

FDB_dnActualPos_p

--- rpm

FDB_dnActualSpeed_s

--- inc

FDB_dnPosFollowingError_p

--- rpm

FDB_dnSetSpeed_s

--- rpm/s

FDB_dnSetAcc_x

---

FDB_bResetPosFollowingError
LS_Feedback

---

POS_dnState

---

POS_bEnabled

---

POS_bActive

---

POS_bDone

---

POS_bInTarget

---

POS_bActPosInTarget

---

POS_bDriveInTarget

--- inc

POS_dnSetPos_p

--- inc

POS_dnProfileTarget_p

---

POS_dwActualProfileNumber

--- inc

POS_dnSetPosRelative_p

--- inc

POS_dnActPosRelative_p

---

POS_bEnable

---

POS_bStart

---

POS_bAbort

---

POS_bRestart

---

POS_ProfileData

--- %

POS_dnDecOverride_n

LS_Positioner

---

w_Steuerwort

---

n_nSoll

---

n_MLim

---

nReserve

LPortInPLC_1
---

w_Statuswort

---

n_nact

---

n_Mact

---

n_Reserve

LPortOutPLC_1

---

n_SetPos

---

n_ActPos

---

n_ActSpeed

---

n_Schleppfehler

LPortOutPLC_2

---

n_SetPos

---

n_SetSpeed

---

n_SetAcc

---

n_Reserve

LPortInPLC_2

--- %

dnMinus100Pct_n

--- %
C3040S0_n [P4 CONV Num]

--- %
C3041S0_n [P4 CONV Den]

--- %

dn0Pct_n

--- %

C3050S0_n [P5 CONV Num]

--- %

C3051S0_n [P5 CONV Den]

--- %

C3060S0_n [P6 CONV1 Num]

--- %
C3061S0_n [P6 CONV1 Den]

--- %

C3070S0_n [P7 CONV Num]

--- %
C3071S0_n [P7 CONV Den]

--- %

C3001S0_n [Vergl. nact=0]

---

C3006S0 [Appl_Umschalt]

--- %

dnPlus100Pct_n

--- %

C3030S0_n [P3 Vergleich Mot.-Umdr.]

--- %

C3031S0_n [P3 Faktor Mul]

--- %

C3032S0_n [P3 Divisor DIV1]
--- %

C3033S0_n [P3 ADD3]

---

TorqueDen

---

Var65536

---

C3066S0 [P6 ADD3]

---

TRUE_b

---

C3035S0 [P3_Vergl_Mot_Neg]

--- %

C3034S0_n [P3_Vergleich_nact/s]

--- %

C3002S0_n [TORQUE_NUM]

---

nOutDen
---

nOutNum

---

MOutNum

---
MOutDen

---

TourqueOutDen

--- %
C3003S0_n [LoadReset]

---
TorqueNum

---

DF_Umschalt_P4

---

Pos_Umschalt_P8

---
C3010S0 [P1 Windgeschwindigkeit v]

---

C3012S0 [P1 Konstante Flügeprofil]

--- %

C3014S0_n [P1 max Drehzahl]

--- %
C3011S0_n [P1 Pitchverstellung]

---

C3015S0 [P1 Motor nmax]

--- %

C3018S0_n [Fix 100%]

---

C3043S0 [P4 CONV  Den]
---

C3042S0 [P4 CONV Num1]

---

e4

---
C3100S0 [SetPos]

---
C3101S0 [SetSpeed]

---

C3102S0 [SetAcc]

---

ProfilData

---
e3

---

C3024S0 [Pos_Ref.-Pos]

--- %

C3052S0_n [P5 Druck_Offset]

---

C3025S0_b [Umschaltung]

---
C3027S0 [Massenträgheit]

---

C3013S0 [P1 Konstante Mechanik]

---

InterateDIV

---
SetSpeed

---
SetPos

---

SetAcc

---
AxisData

---

dnIn

---

dnMaxLimit

---

dnMinLimit

---

dnOut

---

bLimitActive

L_TbLimit1 86

bLimitActive
---

dnOut
---

dnMinLimit
---

dnMaxLimit
---

dnIn
---

---

dnIn1

---

dnIn2

---

bSelectIn2

---

dnOut
P3_TbSelect1 39

dnOut
---

bSelectIn2
---

dnIn2
---

dnIn1
---

---

bIn1

---

bIn2
---

bOut
P4_OR1 50

bOut
---

bIn2
---

bIn1
---

--- rpm

dnSpeedIn_s

---

bLoadStartPos

--- inc

dnStartPos_p

---

AxisData

--- inc

dnPosOut_p

---

bError

P6_Integrate1 57

---

dnIn

---

dnNumerator

---

dnDenominator

---

bNegOutput

---

dnOut

---

bLimit

P4_CONV_L_SdFactor 42

--- %

dnIn_n

---

bLoadStartValue

--- %

dnStartValue_n

--- %

dnOut_n

--- %

dnDeltaOut_n

P4_SdRampGenerator1 45

---

dnIn1

---

dnIn2
---

dnOut
P3_Add1 31

dnOut
---

dnIn2
---

dnIn1
---

---

dnIn
---

dnOut
L_TbNeg3 90

dnOut
---

dnIn
---

---

dnIn

---

dnNumerator

---

dnDenominator

---

bNegOutput

---

dnOut

---

bLimit

P3_Factor1 34

---

bIn
---

bOut
DF_Not2 73

bOut
---

bIn
---

---

wInput
---

bBit0

---

bBit1

---

bBit2

---

bBit3

---

bBit4

---

bBit5

---

bBit6

---

bBit7

---

bBit8

---

bBit9

---

bBit10

---

bBit11

---

bBit12

---

bBit13

---

bBit14

---

bBit15

L_Drive_Steuer 1

bBit15
---

bBit14
---

bBit13
---

bBit12
---

bBit11
---

bBit10
---

bBit9
---

bBit8
---

bBit7
---

bBit6
---

bBit5
---

bBit4
---

bBit3
---

bBit2
---

bBit1
---

bBit0
---

wInput
---

---

dnIn1

---

dnIn2

---

dnTolerance

---

dnHysteresis

---

bOut
P3_TbCompare3 22

bOut
---

dnHysteresis
---

dnTolerance
---

dnIn2
---

dnIn1
---

---

dnIn

---

dnNumerator

---

dnDenominator

---

bNegOutput

---

dnOut

---

bLimit

P7_CONV 63

---

bIn
---

bOut
L_LoadReset_Not1 93

bOut
---

bIn
---

--- %

dnIn_n
--- %

dnOut_n

---

bLimitActive

P3_Deadband_n2 26

---

dnIn1

---

dnIn2
---

dnOut
P6_Add3 59

dnOut
---

dnIn2
---

dnIn1
---

--- %

dnIn_n
--- %

dnOut_n

---

bLimitActive

P3_Deadband_n3 27

---

dnSetValue

---

dnActValue

---

bLoadIntValue

---

dnIntValue

---

bReset

---

dnOut

---

bLimitActive

P4_TbPIController1 46

---

bIn1

---

bIn2
---

bOut
L_Or_DFaktiv 82

bOut
---

bIn2
---

bIn1
---

--- %

nIn_a
--- %

dnOut_n
L_NSoll_Norm_aToNorm_n 2

dnOut_n
--- %

nIn_a
--- %

---

bIn1

---

bIn2

---

bIn3

---

bIn4

---

bIn5

---

bOut
P3_5Or2 19

bOut
---

bIn5
---

bIn4
---

bIn3
---

bIn2
---

bIn1
---

---

dnIn

---

dnNumerator

---

dnDenominator

---

bNegOutput

---

dnOut

---

bLimit

L_MLimFactor 79 ---

dnIn
---

dnOut
L_TbAbs1 89

dnOut
---

dnIn
---

---

bIn1

---

bIn2

---

bIn3

---

bIn4

---

bIn5

---

bOut
P6_5Or 61

bOut
---

bIn5
---

bIn4
---

bIn3
---

bIn2
---

bIn1
---

---

bIn1

---

bIn2

---

bIn3

---

bIn4

---

bIn5

---

bOut
P3_5Or1 18

bOut
---

bIn5
---

bIn4
---

bIn3
---

bIn2
---

bIn1
---

--- %

dnIn_n
--- %

dnOut_n

---

bLimitActive

P3_Limit_n3 30

bLimitActive
---

dnOut_n
--- %

dnIn_n
--- %

---

bError1

---

bError2

---

bError3

---

bError4

---

bError5

---

bError6

---

bError7

---

bError8

---

dnState

---

dnLastErrorNo

L_DevApplErr1 77

---

dnIn1

---

dnIn2
---

dnOut
P3_Add4 36

dnOut
---

dnIn2
---

dnIn1
---

--- %

dnIn_n
--- %

nOut_a
L_Mact_Norm_nToNorm_a 100

nOut_a
--- %

dnIn_n
--- %

---

dnIn

---

dnNumerator

---

dnDenominator

---

bNegOutput

---

dnOut

---

bLimit

P7_CONV2 64

---

dnIn1

---

dnIn2

---

dnTolerance

---

dnHysteresis

---

bOut
L_Comp_Pos 83

bOut
---

dnHysteresis
---

dnTolerance
---

dnIn2
---

dnIn1
---

---

bBit0

---

bBit1

---

bBit2

---

bBit3

---

bBit4

---

bBit5

---

bBit6

---

bBit7

---

bBit8

---

bBit9

---

bBit10

---

bBit11

---

bBit12

---

bBit13

---

bBit14

---

bBit15

---

wOutput
L_Drive_Status 102

wOutput
---

bBit15
---

bBit14
---

bBit13
---

bBit12
---

bBit11
---

bBit10
---

bBit9
---

bBit8
---

bBit7
---

bBit6
---

bBit5
---

bBit4
---

bBit3
---

bBit2
---

bBit1
---

bBit0
---

---

dnIn1

--- %

dnIn2_n
---

dnOut

---

bLimitActive

P3_Mul_n 24

bLimitActive
---

dnOut
---

dnIn2_n
--- %

dnIn1
---

---

dnIn

---

dnNumerator

---

dnDenominator

---

bNegOutput

---

dnOut

---

bLimit

L_MactFactor 80

---

dnIn
---

dwOut
L_DcDIntToDWord1 87

dwOut
---

dnIn
---

---

dnIn1

---

dnIn2
---

dnOut
P3_Mul1 23

dnOut
---

dnIn2
---

dnIn1
---

---

dnIn1

--- %

dnIn2_n
---

dnOut

---

bLimitActive

P5_Mul_n 54

bLimitActive
---

dnOut
---

dnIn2_n
--- %

dnIn1
---

---

dnIn

---

dnNumerator

---

dnDenominator

---

dnOut

---

bLimitActive

P1_MulDivLimIn 7

---

dnIn1

---

dnIn2
---

dnOut
P4_Add1 48

dnOut
---

dnIn2
---

dnIn1
---

--- %

dnIn_n
--- %

dnOut_n

---

bLimitActive

P3_Deadband_n1 25

--- %

nIn_a
--- %

dnOut_n
L_MGrenz_Norm_aToNorm_n 3

dnOut_n
--- %

nIn_a
--- %

---

dnIn
---

dnOut
L_PT_nact 96

---

dnIn1

---

dnIn2

---

dnTolerance

---

dnHysteresis

---

bOut
L_Comp_DF4 81

bOut
---

dnHysteresis
---

dnTolerance
---

dnIn2
---

dnIn1
---

---

dnIn

---

dnNumerator

---

dnDenominator

---

bNegOutput

---

dnOut

---

bLimit

P5_CONV 53

---

dnIn1

---

dnIn2
---

dnOut
P3_Add3 35

dnOut
---

dnIn2
---

dnIn1
---

---

dnIn

---

dnNumerator

---

dnDenominator

---

bNegOutput

---

dnOut

---

bLimit

L_nOutFaktor 98

---

dnIn
---

dnOut
L_Neg_nact 97

dnOut
---

dnIn
---

---

dnIn1

---

dnIn2
---

dnOut
P3_Add2 32

dnOut
---

dnIn2
---

dnIn1
---

--- %

dnIn_n
--- %

dnOut_n

---

bLimitActive

P5_Limit_n 52

bLimitActive
---

dnOut_n
--- %

dnIn_n
--- %

--- %

dnIn_n
--- %

dnOut_n

---

bLimitActive

P3_Limit_n4 37

bLimitActive
---

dnOut_n
--- %

dnIn_n
--- %

--- %

dnIn_n

---

AxisData
--- rpm

dnOut_s
DF_DcNorm_nToSpeed_s 69

dnOut_s
--- rpm

AxisData
---

dnIn_n
--- %

---

dnIn1

---

dnIn2

---

dnIn3

---

dnIn4

---

dnIn5

---

dnIn6

---

dnIn7

---

dnIn8

---

dwSelect

---

dnOut
N_8Select1 65

dnOut
---

dwSelect
---

dnIn8
---

dnIn7
---

dnIn6
---

dnIn5
---

dnIn4
---

dnIn3
---

dnIn2
---

dnIn1
---

---

dnIn

---

dnNumerator

---

dnDenominator

---

bNegOutput

---

dnOut

---

bLimit

L_MOutFactor 95

--- rpm

dnSpeedIn_s

---

bLoadStartPos

--- inc

dnStartPos_p

---

AxisData

--- inc

dnPosOut_p

---

bError

P3_Integrate1 20

---

bIn1

---

bIn2
---

bOut
L_QSP 78

bOut
---

bIn2
---

bIn1
---

---

dnIn1

---

dnIn2
---

dnOut
P4_Add2 49

dnOut
---

dnIn2
---

dnIn1
---

---

dnIn1

---

dnIn2
---

dnOut
P4_Add 43

dnOut
---

dnIn2
---

dnIn1
---

---

bIn1

---

bIn2
---

bOut
N_And1 67

bOut
---

bIn2
---

bIn1
------

bIn
---

bOut
N_Not1 66

bOut
---

bIn
---

---

bIn1

---

bIn2
---

bOut
DF_OR1 71

bOut
---

bIn2
---

bIn1
---

---

bIn1

---

bIn2
---

bOut
DF_Or2 72

bOut
---

bIn2
---

bIn1
---

--- %

dnIn_n

---

bLoadStartValue

--- %

dnStartValue_n

--- %

dnOut_n

--- %

dnDeltaOut_n

P4_SdRampGenerator2 51

---

dnIn

---

dnNumerator

---

dnDenominator

---

bNegOutput

---

dnOut

---

bLimit

P6_CONV1 58

---

dnIn1

---

dnIn2

---

dnTolerance

---

dnHysteresis

---

bOut
L_TbCompare1 92

bOut
---

dnHysteresis
---

dnTolerance
---

dnIn2
---

dnIn1
---

---

bIn
---

bOut
L_Not_Posnichtaktiv 84

bOut
---

bIn
---

---

bIn1

---

bIn2
---

bOut
DF_And1 74

bOut
---

bIn2
---

bIn1
---

---

bIn1

---

bIn2

---

bIn3

---

bIn4

---

bIn5

---

bOut
L_Reset_Error 76

bOut
---

bIn5
---

bIn4
---

bIn3
---

bIn2
---

bIn1
---

---

dnIn

---

dnNumerator

---

dnDenominator

---

bNegOutput

---

dnOut

---

bLimit

P4_CONV 44

--- %

dnIn1_n

--- %

dnIn2_n
---

bOut
L_Comp_n0 103

bOut
---

dnIn2_n
--- %

dnIn1_n
--- %

---

dnIn1

--- %

dnIn2_n
---

dnOut

---

bLimitActive

P4_Mul_n 47

bLimitActive
---

dnOut
---

dnIn2_n
--- %

dnIn1
---

---

bIn1

---

bIn2
---

bOut
L_Drive_Enabled 101

bOut
---

bIn2
---

bIn1
---

---

dnIn
---

dnOut
P2_TbNeg1 14

dnOut
---

dnIn
---

--- rpm

dnSpeedIn_s

---

bLoadStartPos

--- inc

dnStartPos_p

---

AxisData

--- inc

dnPosOut_p

---

bError

P3_Integrate2 33

---

dnIn1

---

dnIn2

---

dnIn3

---

dnIn4

---

dnIn5

---

dnIn6

---

dnIn7

---

dnIn8

---

dwSelect

---

dnOut
L_8Select1 88

dnOut
---

dwSelect
---

dnIn8
---

dnIn7
---

dnIn6
---

dnIn5
---

dnIn4
---

dnIn3
---

dnIn2
---

dnIn1
---

--- %

dnIn_n
--- %

dnOut_n

---

bLimitActive

P4_Limit_n 41

bLimitActive
---

dnOut_n
--- %

dnIn_n
--- %

---

bIn
---

bOut
DF_Not1 70

bOut
---

bIn
---

--- %

dnIn_n
--- %

dnOut_n
P1_Curve_CP 10

---

dnIn

---

dnNumerator

---

dnDenominator

---

bNegOutput

---

dnOut

---

bLimit

P5_CON2 56

--- %

dnIn_n
--- %

dnOut_n

---

bLimitActive

P3_Limit_n1 28

bLimitActive
---

dnOut_n
--- %

dnIn_n
--- %

--- %

dnIn_n
--- %

dnOut_n

---

bLimitActive

P3_Limit_n2 29

bLimitActive
---

dnOut_n
--- %

dnIn_n
--- %

---

dnIn
---

dnOut
P4_TbNeg1 40

dnOut
---

dnIn
---

--- %

dnIn_n
--- %

nOut_a
L_nact_Norm_nToNorm_a 99

nOut_a
--- %

dnIn_n
--- %

---

dnIn1

---

dnIn2

---

dnTolerance

---

dnHysteresis

---

bOut
P6_Compare 60

bOut
---

dnHysteresis
---

dnTolerance
---

dnIn2
---

dnIn1
---

---

dnIn
---

dnOut
L_PT1_Mact 94

--- inc

dnCycleLength_p

---

AxisData

L_SdSetAxisData1 75

---

dnIn
---

dnOut
L_TbNeg1 91

dnOut
---

dnIn
---

--- %

dnIn_n
--- %

dnOut_n

---

bLimitActive

P7_Limit_n 62

bLimitActive
---

dnOut_n
--- %

dnIn_n
--- %

---

dnIn1

---

dnIn2

---

dnTolerance

---

dnHysteresis

---

bOut
P3_TbCompare2 38

bOut
---

dnHysteresis
---

dnTolerance
---

dnIn2
---

dnIn1
---

--- %

dnSpeedSetpointIn_n

---

bLoadExtSpeedSetpoint

--- %

dnExtSpeedSetpoint_n

---

bLoadActualMotorSpeed

--- %

dnActualMotorSpeed_n

---

dwRampMode

---

AxisData

--- %

dnSpeedSetpointOut_n

--- %

dnTargetSetpoint_n

---

bSetpointOutInTarget

---

bStoppingActive

P2_SpeedSet 15

---

dnIn1

---

dnIn2

---

dnIn3

---

dnIn4

---

dnIn5

---

dnIn6

---

dnIn7

---

dnIn8

---

dwSelect

---

dnOut
DF_8Select5 68

dnOut
---

dwSelect
---

dnIn8
---

dnIn7
---

dnIn6
---

dnIn5
---

dnIn4
---

dnIn3
---

dnIn2
---

dnIn1
---

---

dnIn1

---

dnIn2

---

dnTolerance

---

dnHysteresis

---

bOut
P3_TbCompare1 21

bOut
---

dnHysteresis
---

dnTolerance
---

dnIn2
---

dnIn1
---

---

dnIn1

---

dnIn2
---

dnOut
P1_TbAdd1 8

dnOut
---

dnIn2
---

dnIn1
---

---

dnIn1

---

dnIn2
---

dnOut
P1_TbMul1 13

dnOut
---

dnIn2
---

dnIn1
---

--- %

dnIn_n
--- %

dnOut_n

---

bLimitActive

P1_TbLimit_n1 9

bLimitActive
---

dnOut_n
--- %

dnIn_n
--- %

---

dnIn

---

dnNumerator

---

dnDenominator

---

dnOut

---

bLimitActive

P1_TbMulDivMotor 4

---

dnIn
---

dnOut
P1_TbPT1Filter1 6

--- %

dnIn_n
--- %

dnOut_n
P1_Curve_Pitch 11

---

dnIn1

--- %

dnIn2_n
---

dnOut

---

bLimitActive

P1_TbMul_Pitch 12

bLimitActive
---

dnOut
---

dnIn2_n
--- %

dnIn1
---

---

dnIn
---

dnOut
P1_TbAbs2 5

dnOut
---

dnIn
---

---

bIn1

---

bIn2
---

bOut
Pos_And_MAN 104

bOut
---

bIn2
---

bIn1
---

---

dnState
---

bActive

---

bDone

---

bAccDec

---

bCcw

---

bInTarget

---

bActPosInTarget

---

bZeroPos

---

bRestartFailed

---

bErrActive

---

bAbort

---

bRev

---

bMinSpeedOverride

---

bMinAccOverride

---

bLimPos

---

bLimProfile

---

bLimDir

---

bLimAbort

---

bStoppingActive

---

bErrNoHomePos

---

bErrNoCycleLength

---

bErrMode

---

bErrModeChange

---

bErrProfileData

---

bErrPG

---

bDriveInTarget

Pos_PositionerStateDecoder 107

--- inc

dnPosIn_p

---

AxisData
---

dnPosOut_e4

---

bLimit

POS_SetPosToUnit 108

--- inc

dnPosIn_p

---

AxisData
---

dnPosOut_e4

---

bLimit

Pos_ActPosToUnit 109

--- rpm

dnSpeedIn_s

---

AxisData
---

dnSpeedOut_e4

---

bLimit

Pos_SetSpeedToUnit 110

---

dnIn
---

nOut
Pos_ActPosDIntToInt 111

nOut
---

dnIn
------

dnNumerator

---

dnDenominator
---

dnOut

---

dnResidualValue

Pos_ActPosDiv 112

dnResidualValue
---

dnOut
---

dnDenominator
---

dnNumerator
---

---

dnNumerator

---

dnDenominator
---

dnOut

---

dnResidualValue

Pos_SetPosDiv 113

dnResidualValue
---

dnOut
---

dnDenominator
---

dnNumerator
---

---

dnNumerator

---

dnDenominator
---

dnOut

---

dnResidualValue

Pos_SetSpeedDiv 114

dnResidualValue
---

dnOut
---

dnDenominator
---

dnNumerator
---

---

dnIn
---

nOut
Pos_SetPosDIntToInt 115

nOut
---

dnIn
---

---

dnIn
---

nOut
Pos_SetSpeedDIntToInt 116

nOut
---

dnIn
---

---

bIn1

---

bIn2
---

bOut
L_Or_Posaktiv 85

bOut
---

bIn2
---

bIn1
---

---

dnIn1

---

dnIn2
---

dnOut
P5_Add1 55

dnOut
---

dnIn2
---

dnIn1
---

---

bIn1

---

bIn2
---

bOut
Pos_And_HM 105

bOut
---

bIn2
---

bIn1
---

---

bIn1

---

bIn2
---

bOut
Pos_And_POS 106

bOut
---

bIn2
---

bIn1
---

---

dnIn1

---

dnIn2

---

bSelectIn2

---

dnOut
P2_Select1 17

dnOut
---

bSelectIn2
---

dnIn2
---

dnIn1
---

--- %

dnIn_n
--- %

dnOut_n
P2_Curve1 16

---

dnIn
---

dnOut
L_PT1_nAct 117

---

dnIn

---

bLoadStartValue

---

dnStartValue

---

dnOut

---

bLimitActive

L_TbIntegrate1 122

bLimitActive
---

dnOut
---

dnStartValue
---

bLoadStartValue
---

dnIn
---

---

dnIn

---

dnNumerator

---

dnDenominator

---

dnOut

---

bLimitActive

L_TbMulDivLim1 118

---

dnIn1

---

dnIn2
---

dnOut

---

bLimitActive

L_TbMulLim1 120

bLimitActive
---

dnOut
---

dnIn2
---

dnIn1
---

--- %

dnIn_n
--- %

dnOut_n

---

bLimitActive

L_TbLimit_n1 123

bLimitActive
---

dnOut_n
--- %

dnIn_n
--- %

---

dnIn1

---

dnIn2
---

dnOut
L_TbAdd1 119

dnOut
---

dnIn2
---

dnIn1
---

---

dnNumerator

---

dnDenominator
---

dnOut

---

dnResidualValue

L_TbDiv1 121

dnResidualValue
---

dnOut
---

dnDenominator
---

dnNumerator
---

MI_dnActualMotorTorque_n

...

L_TbLimit_n1.dnOut_n

N_8Select1.dnIn1

L_Drive_Steuer.bBit8

...

FDB_dnActualSpeed_s

Pos_SetSpeedToUnit.dnSpeedIn_s

P2_Select1.dnOut

L_MLimFactor.dnIn

L_PT_nact.dnOut

...

L_MGrenz_Norm_aToNorm_n.dnOut_n

P2_Select1.dnIn1

MAN_bActive

L_Drive_Status.bBit14

MAN_bEnabled

L_Drive_Status.bBit13

HM_bHomePosAvailable

L_Drive_Status.bBit12

POS_bActPosInTarget

L_Drive_Status.bBit11

POS_bActive

L_Drive_Status.bBit10

POS_bEnabled

L_Drive_Status.bBit9

MI_bLimitationActive

L_Drive_Status.bBit15

L_Drive_Steuer.bBit15

MAN_bJogNegative

L_Drive_Steuer.bBit14

MAN_bJogPositive

Pos_And_HM.bOut

...

L_Drive_Steuer.bBit11

POS_bAbort

L_Drive_Steuer.bBit10

POS_bStart

L_Drive_Steuer.bBit13

Pos_And_MAN.bIn2

L_Drive_Steuer.bBit12

Pos_And_HM.bIn2

L_Drive_Steuer.bBit9

Pos_And_POS.bIn2

Pos_And_POS.bOut

POS_bEnable

Pos_And_HM.bOut

L_Or_Posaktiv.bOut

...

L_Or_Posaktiv.bOut

DI_AxisData

...

DI_AxisData

DI_AxisData

L_Or_Posaktiv.bOut

FDB_dnActualPos_p

Pos_ActPosToUnit.dnPosIn_p

POS_dnSetPos_p

POS_SetPosToUnit.dnPosIn_p

Pos_And_MAN.bOut

MAN_bEnable

P1_TbPT1Filter1.dnOut

P1_MulDivLimIn.dnNumeratorMI_dnActualMotorSpeed_n

...

L_SdSetAxisData1.AxisData

...

L_SdSetAxisData1.AxisData

L_SdSetAxisData1.AxisData

L_SdSetAxisData1.AxisData

L_SdSetAxisData1.AxisData

L_Not_Posnichtaktiv.bOut

...

L_Not_Posnichtaktiv.bOut

QSP_bActive

...

DI_bCInhActive

...

L_TbNeg1.dnOut

...

P5_CON2.dnOut

L_8Select1.dnIn5

L_TbNeg1.dnOut

L_TbNeg1.dnOut

P7_CONV2.dnOut

L_8Select1.dnIn7

MI_dnActualMotorSpeed_n

L_Drive_Steuer.bBit8

MI_dnActualMotorSpeed_n

L_PT1_Mact.dnOut

...

L_NSoll_Norm_aToNorm_n.dnOut_n

P2_TbNeg1.dnIn

L_LoadReset_Not1.bOut

...

L_LoadReset_Not1.bOut

L_MactFactor.dnOut

...

DI_bWarningActive

L_Drive_Status.bBit7

DI_bCInhActive

DI_bCInhActive

DI_bCInhActive

DI_bCInhActive

DI_bFailActive

...

DI_bFailActive

DI_bReady

L_Drive_Status.bBit0L_Drive_Steuer.bBit8

MI_dnActualMotorSpeed_n

MI_dnActualMotorSpeed_n

MI_dnActualMotorSpeed_n

MI_dnActualMotorSpeed_n

MI_dnActualMotorSpeed_n

MI_dnActualMotorSpeed_n

MI_dnSpeedSetpoint_n

P2_SpeedSet.dnExtSpeedSetpoint_n

QSP_bActive

QSP_bActive

QSP_bActive

QSP_bActive

QSP_bActive

QSP_bActive

P4_SdRampGenerator2.dnOut_n

DF_8Select5.dnIn4

P3_5Or2.bOut

P3_Integrate1.bLoadStartPos

P3_TbCompare1.bOut

P3_5Or2.bIn2

P3_5Or1.bOut

...

P3_TbCompare3.bOut

P3_5Or1.bIn2

L_Or_DFaktiv.bOut

...

L_Or_DFaktiv.bOut

P6_Add3.dnOut

L_8Select1.dnIn6

P3_TbSelect1.dnOut

L_8Select1.dnIn3

L_MactFactor.dnOut

P6_5Or.bOut

P6_Integrate1.bLoadStartPos

P2_SpeedSet.dnSpeedSetpointOut_n

N_8Select1.dnIn2

L_Drive_Steuer.bBit7

L_Reset_Error.bIn2

--- %

AIN1_dnIn_n

--- %

AIN2_dnIn_n

---

AIN1_bCurrentError

LS_AnalogInput

---

AI_SpeedSP

---

AI_TorqueSP


	Development of an open control interface for a servo machine test stand 
	Summary

	Preface
	Contents
	List of Figures
	List of Tables

	Introduction
	Concept
	Induction motors
	Variable Frequency Drive
	Servo Drive

	System
	Hardware Description
	Control interface and software
	User panel
	ActiveServo

	Communication Paths
	Serial Communication
	Analogue Communication


	Implementation
	Servo Drive serial communication
	I/O Modules
	Existing setup
	National Instruments DAQ
	PicCircuit microcontroller
	Arduino
	Analogue signal converters

	Interface programming
	USB transmission structure
	Arduino
	Python
	Lenze Engineer


	Analogue results
	Converters
	Calibration

	Discussion
	Conclusion
	Bibliography
	Stripboard layouts
	Tuning the converters

	Python Script
	Arduino Sketch
	Converter results
	Servo Drive FB Diagram

