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Abstract—Second harmonic imaging relies on the 2nd har-
monic of the transmit frequency f0 generated by the waves
propagation in tissue. This method suffers from noise because
signal transmitting at the desired receive frequency 2f0. Trans-
mitted 2nd harmonic may be originated from both linear, e.g.
sidebands in the transmit spectrum, and/or nonlinear effects
in the transducer and transmitting electronics. In this paper,
an adaptive method, simulated annealing, was utilized to find
optimized electrical excitation waveforms to suppress the 2nd

harmonic components of the emitted ultrasound pulses. Experi-
mental results on two different kinds of transducer pulsers show
that the method can find excitation waveforms which generate
sufficient low 2nd harmonic (-30dB of the main lobe) at the output
for a successful 2nd harmonic imaging.

Index Terms—second harmonic imaging, optimization, excita-
tion waveforms, simulated annealing

I. INTRODUCTION

Second harmonic imaging is a preferred ultrasound
imaging modality, mainly due to its ability to suppress
reverberations[1]. The system transmits an ultrasound pulse
at center frequency f0. Nonlinear propagation creates the
2nd harmonic of this frequency in the tissue, and echoes at
frequency 2f0 are used to construct the image. This technique
requires good control of the transmit frequency, to prevent
components at 2f0 from being transmitted by the transducer
and interfering with the 2nd harmonic created in the tissue.

One method to suppress the transmitted 2nd harmonic
called alternate phasing was introduced by Krishnan et al.
[2]. Only simulation results were presented, and this method
causes grating lobes which may introduce artifacts into the
image. Another method is designing an optimized excitation
waveform for the transmit system to compensate for the
nonlinearity of the system. This method has been applied
to capacitive micro-machined ultrasonic transducers (cMUTs)
[3]. The compensation can be designed from knowledge of
the nonlinear properties of the transmit system. However, an
accurate mathematical description of the nonlinear system is
often difficult to achieve, especially since the detailed internal
structure can be difficult to access and model correctly. Alter-
natively, a more empirical adaptive method can be applied, by
measuring the input to output relationship. This paper presents
such an approach to minimize the transmitted 2nd harmonic
from a clinical ultrasound scanner. Simulated annealing was
selected as the optimization algorithm, and used to find the

optimal excitation waveform û that minimizes a cost function
C calculated from the emitted 2nd harmonic energy,

û = argmin
u

(C(u)) , (1)

where u = [u(0), u(1), ..., u(L)] is the waveform definition
vector, and L the total number of samples in the transmit
waveform. The cost function C is calculated from measured
transmitted ultrasound pulses, and mainly designed to depress
the transmitted 2nd harmonic while confining high energy
in the fundamental. The freedom to define the excitation
waveforms u is limited by the capabilities of the actual driving
electronics. In this study, 2 different pulsers were studied: One
3-level pulser with generating frequency fgen 200 MHz, and
one 31-level generator with fgen 50 MHz, respectively.

II. METHOD

A. Simulated Annealing

Simulated annealing (SA) is an optimization algorithm
designed to find a sufficiently good solution where the solution
space is huge. It was considered appropriate for the optimiza-
tion problem in this study, as there are mL possibilities for an
m-level waveform of L samples. The algorithm imitates the
annealing process used in metallurgic [4], and is controlled
by the acceptable rate and current temperate as its state [5].
In general, the SA algorithm requires two functions for a
particular problem: the neighbor function determining how the
inputs are perturbed, and the cost function evaluates the quality
of a solution based on defined criteria.

1) The neighbor function:
a) 3-level waveform: The 3-level waveform is modified

by changing the widths of the positive and negative pulses.
Two vectors are used to define the shape of the 3-level wave-
form, as illustrated in Fig. 1. The first vector s = [s1, s2, ..., sn]
stores the switching positions of the pulse as sample indices.
Notice that si−1 6 si 6 si+1 6 L where L is the number
of samples of the pulse. The second vector l = [l1, l2, ..., ln]
decides the level for each pulse segments, li ∈ {−1, 0, 1}. The
combination of the two vectors s and l defines a solution in the
SA algorithm. To reduce complexity, the length of the pulse
L, the number of switchings n, and the level vector l were
all fixed. The neighbor function generates a new waveform by
randomly changing the pulse widths s of the current waveform,



Fig. 1. Perturbation mechanism for the 3-level waveform. The new pulse
(solid line) is generated from the current pulse (dashed line) by changing the
switching times in the vector s.

with the difference from old to new pulse width limited by a
predefined maximum ∆smax > 0

s′ = s + ∆s , (2)

where ∆s are random integers, −∆smax 6 ∆si 6 ∆smax.
This modification scheme creates a new waveform as a slightly
modified version of the current waveform, a neighbor, as
required in the algorithm.

b) 31-level waveform: The 31-level pulser has a DAC
output stage that can set the output level to any integer value
from −15 to +15. The output levels at discrete time positions
are determined by a vector s = [s1, s2, ..., sL], where L is the
number of samples. Notice that the vector s in this case entirely
differs from the case of 3-level waveform, which identifies
the switching positions. Frequency components outside the
transducer bandwidth will not contribute to the acoustic pulse,
but dissipate as heat in the transducer. To reduce this, a digital
low-pass filter was applied to the waveform s, and this filtered
pulse was scaled to the maximum level ±15. The resulting
pulse u was then sent to the pulser.

Fig. 2 illustrates the perturbation method for the 31-level
waveform, used in the SA algorithm. As in the previous case,
the pulse length L was fixed. The LPF is a Chebyshev low-
pass filter with cutoff frequency 5 MHz, equal to the upper
frequency bound of the transducer. Based on the original trial
waveform s, the neighbor function generates a new candidate
waveform u′ by first perturbing s to s′ as described above in
(2), then filtering and scaling it.

2) The cost function: The quality of the transmitting acous-
tic pulses is described by a cost function, quantifying how
much the actual pulse suitable for 2nd harmonic imaging. The
cost function is defined in the frequency domain, based on the
power spectrum of the measured acoustic pulse yi resulting
from a pulse definition ui. Notice that the 2nd harmonic level
is not at a specific discrete spectral component but a band of
frequencies. The cost function definition associates a weight
to every discrete spectral component. Positive weights signify

Fig. 2. Perturbation mechanism for the 31-level waveform. The current output
waveform s is perturbed to the new neighbor waveform s′ = s + ∆s. These
waveforms are low-pass filtered and scaled to u or u′, then sent to the DAC
driving the transmit electronics.

a high cost, i.e. a negative property that should be avoided,
while negative cost function values are considered beneficial.

The weighting curve for the cost function is illustrated
in Fig. 3. High positive weights are assigned to frequency
components in the range of the 2nd harmonic of the transmit
frequency, as these shall be suppressed. In the transmit band
(f0 = 1.67 MHz), the weights are negative, as this is
where we want the transmit energy confined. Outside these
ranges, below the transmit band and above the 2nd harmonic,
a lower positive weight is assigned. These frequencies do not
contribute to the transmit pulse but dissipate as heat in the
transducer, and need to be suppressed, but at a lower priority
than frequencies around the 2nd harmonic.

The cost function is calculated from the measured ultra-
sound pulse y as

C(u) =

fs/2∑
f=0

w(f) ∗ PSD(f, y) (3)

where fs = 100MHz is the sampling frequency of the
recorded signal, and PSD(f, y) the power spectrum density
of the ultrasound pulse y.
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Fig. 3. Weight curve w(f) for the cost function. Positive values are
associated with a high cost and should be suppressed, while negative values
are considered beneficial.

B. Experimental setup

Transmitted ultrasound pulses from an ultrasound scanner
were measured in a water tank using a hydrophone (HGL0200,
ONDA Corp., Sunnyvale, CA). The pulses were measured



close to the transducer surface, at distance 3 mm, before
harmonics from nonlinear propagation had developed. The
hydrophone aperture is 200µm, and the hydrophone was cali-
brated from 1 to 20 MHz in magnitude. Phase calibration for
the hydrophone was estimated from the provided magnitude
values, using the Kramers-Kronig relation. A preamplifier
with gain 20 dB (AG-2010, Onda), designed to match the
hydrophone, was connected to the hydrophone. Its output was
digitized by an oscilloscope (PicoScope 5244A, PicoTech,
St Neots, UK) and sent to a computer via USB . The
Simulated Annealing algorithm was implemented in MATLAB
(The Mathworks, Natick, MA, USA). The cost function was
calculated from the recorded pulse y, and this was used to
modify the pulse definition, from u to u′. The modified pulse
definition u′ was then sent to the ultrasound scanner through an
network communication via Ethernet. The scanner used this
new waveform to generate and transmit a new output pulse
y′, which was again measured with the hydrophone, and this
procedure was repeated for a preset number of iterations. The
method was applied to optimize both types of probes, one
using a 3-level pulser, the other using a 31-level pulser.

Fig. 4. The acoustic measurement system. An excitation waveform u was
defined in the ultrasound scanner to drive the probe. The resulting ultrasound
pulse y was measured by the hydrophone, digitized, and analyzed using
Matlab, by calculating a the cost function C(u). From this, a new waveform u’
was defined using the SA algorithm. It was again transferred to the ultrasound
scanner via Ethernet connection, to generate the new output pulse y’. This
process repeated a preset number of iterations.

III. RESULTS

The scanner was configured to transmit at full mechanical
index MI=1.3, assumed to maximize the harmonic distortion
in the transmit stage. The cooling scheme for the SA algorithm
was Tn = αnT0 with α = 0.95, and the optimization
procedure was run for 20 000 iterations. The initial acceptance
rate was chosen relative low (40%), and a quick cooling
schedule was used to avoid the solution waveform entering
inefficient shapes that are not allowed by ultrasound scanner.
For the 3-level waveform, the waveform length was fixed

to 1.2µs, corresponding to 2 periods of the fundamental
frequency 1.67 MHz, or L = 240 samples. The number
of switchings was fixed to n = 12 and the level vector
l to l = [1, 0, 1, 0,−1, 0, 1, 0,−1, 0,−1, 0]. For the 31-level
waveform, the length was fixed to 1.8µs, 1 cycle longer than
the 3-level waveform, to get a better result because the 31-level
probe showed a stronger nonlinearity in our test.

The optimized waveforms for the 3-level and 31-level
pulser are presented in Fig. 5 and Fig. 6 respectively. As
an illustration, these results are compared with 2 typical
excitations with the same length: a 2-cycle square wave for the
3-level and a Gaussian-modulated sinusoidal wave for the 31-
level waveform. Using the excitations found by this method,
the measured transmitted 2nd harmonic are 40dB and 30dB
lower than the fundamental for the 3-level and 31-level pulser
respectively, and about 15dB better than 2 typical excitations
at the 2nd harmonic .

IV. DISCUSSION

To limit the optimization time, the degrees of freedom of
the input waveforms were limited. Better results might have
been achieved if these constraints had been relaxed and the
waveforms allowed to change more freely. This would have
increased the solution space, but also convergence time. Effi-
cient convergence is critical in this study, since real ultrasound
pulses have to be generated, transmitted and measured for each
iteration. This requires a good initial guess and limiting the
solution space to a promising sub-space. This is the reason for
limiting the number of switchings in the 3-level waveform to
what might look like a low number, as many switchings will
increase energy at the high frequencies, dissipating as heat in
the transducer, while not reducing the emitted 2nd harmonic.

Both in Fig. 5b and Fig. 6b, the optimized excitation wave-
forms contain more energy at the 2nd harmonic band than the
reference waveforms do, while the resulting ultrasound output
pulses contain less 2nd harmonic, see Fig. 5d and Fig. 6d).
This illustrates how the optimization process works on the
measured ultrasound pulses: The transmitted 2nd harmonic is
reduced by adding some 2nd harmonic at a different phase
to the input pulses, counteracting non-ideal effects in the
whole system, e.g. quantization errors and nonlinearity in the
electronic and transducer.

Simulated annealing was chosen as the optimization algo-
rithm in this study, but other optimization algorithms might
also be tested, potentially improving the results by faster
convergence or finding more optimal waveforms. The opti-
mization method can be also adapted to meet other criteria than
reduction 2nd harmonics, by defining a different cost function
based on these criteria.

V. CONCLUSION

The described method was tested on 2 typical types of
pulser used in clinical ultrasound scanners, and it can find
optimized excitation waveforms suppressing the transmitted
2nd harmonic level to 30 dB below the main lobe in both
cases. This method is particularly suited to compensate for
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Fig. 5. Optimization results for the 3-level pulser. The optimized waveform (red) is compared with the 2 cycles square wave at the fundamental frequency
1.67 MHz (blue-dashed). The upper graphs show the pulse definitions (a) and their power spectra (b), while the lower graphs show the measured acoustic
pulses (c) and their power spectra (d).
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Fig. 6. Optimization results for the 31-level pulser. The optimized waveform (red) is compared with the 3 cycles sinusoidal wave at the fundamental frequency
1.67 MHz enclosed in a Gaussian envelope (blue-dashed). The upper graphs show the pulse definitions (a) and their power spectra (b), while the lower graphs
show the measured acoustic pulses (c) and their power spectra (d).

nonlinear effects in the probes and transmit electronics, i.e. to
compensate for phenomena not fully described by a linear
impulse response. The authors would like to point out that the
results presented here are on an experimental system, and have
no relation to the released scanner and its performance.
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