
Tittel—
 Fornavn Etternavn

University College of Southeast Norway
Faculty of Technology

—
Doctoral dissertation no. 6

2016

Magamage Anushka Sampath Perera

State Estimation and Optimal Control
of an Industrial Copper Electrowinning

Magamage Anushka Sampath Perera

A PhD dissertation in
Process, Energy and Automation Engineering

State Estimation and Optimal
Control of an Industrial Copper
Electrowinning

© Magamage Anushka Sampath Perera, 2016

Faculty of Technology
University College of Southeast Norway
Kongsberg, 2016

Doctoral dissertations at the University College of Southeast Norway no. 6

ISSN: 2464-2770 (print)
ISSN: 2464-2483 (online)
ISBN: 978-82-7206-417-3 (print)
ISBN: 978-82-7206-418-0 (online)

Publications are lincenced under Creative Commons. You may copy and redistribute the
material in any medium or format. You must give
appropriate credit, provide a link to the license,
and indicate if changes were made.
http://creativecommons.org/licenses/by-nc-
sa/4.0/deed.en

Print: University College of Southeast Norway

To my mother, Jenat Fernando

iii

iv

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

Preface

This dissertation is prepared for the degree of Philosophiae Doctor (PhD) offered by the Univer-
sity College of Southeast Norway. The research was partially founded by Glencore Nikkelverk,
Kristiansand. During the period of 2011-2014, professor Bernt Lie was my main supervisor.
From 2014, the main supervisor was professor Carlos Pfeiffer and the co-supervisor was pro-
fessor Bernt Lie. Both professors work in the Department of Process, Energy and Automation
at the University College of Southeast Norway. The research is related to the copper leaching
process, which is a subprocess at the Nikkelverk. Dr. Tor Anders Hauge has been my contact
person on behalf of the Nikkelverk, he works there as a senior control engineer.

This is an applied research work, where the research objectives were initially suggested by the
Nikkelverk, and have been modified and extended later on as the research progressed. In general,
my research domain lies within the areas of Applied State-Parameter-Disturbance Estimation
and Optimal Control of Large-Scale Complex Systems. The Copper leaching process is a large-
scale complex system, hence it is a good candidate to be used in the case study. Even though this
is a specific research problem, the research accomplishments can be extended to handle a much
broader class of problems appearing within systems and control engineering. Three research
papers have already been published (one in 55th International Conference on Simulation and
Modelling and the other two in the journal of Modeling, Identification and Control) and one will
be published in the International Journal of Modeling and Optimization (IJMO) Vol. 6, No. 5.
October 2016.

I have enjoyed the time I have spent with the research work, and I am happy to finally complete
my PhD. It is my hope that my contribution will be useful for others who work within the field
of systems and control engineering.

Magamage Anushka Sampath Perera

Porsgrunn, Norway
August 2016

v

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

vi

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

Acknowledgments

It is my pleasure to acknowledge those who have supported me throughout my PhD studies
in many ways. First of all, my heartfelt gratitude goes to my supervisors Professor Carlos F.
Pfeiffer and Professor Bernt Lie for their immense support. Professor Bernt Lie and Dr. P. G.
Rathnasiri were the ones who initially inspired me to pursue the subject Systems and Control
Engineering, and I am sincerely thankful to them both.

Thanks to Glencore Nikkelverk for partially funding my research. In particularly, I appreciate
Dr. Tor Anders Hauge’s contributions.

I am grateful to Randi Toreskås Holta, Eldrid Eilertsen and Inger Johanne Kristiansen for all
their support during the completion of my PhD. I would also like to thank my teachers at the
Dept. of Chemical and Process Engieering, University of Moratuwa, Sri Lanka as well as the
University College of Southeast Norway.

Special thanks to Robin Omlid Wold, who has always made his IT skills and resources freely
available for me and who’s help saved me in many occasions. I am also grateful to Dietmar
Winkler for helping me to handle many Linux-OS related installation hassles as well as providing
support related to Modelica.

Thanks to all of my loving and caring friends who have been around me during my stay in
Norway since 2009.

Ingrid Bokn Haugland assisted me with the proofreading of the thesis. It was a huge help for
me, her effort is very much appreciated ♥

Finally, my gratitude goes towards my beloved parents (Wilfred Perera - Jenat Fernando), brother
(Asanka), sister (Achala) and late grand father (Benedict Fernando) for all of their dedications.

vii

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

viii

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

Summary

This dissertation contains a solution for an industrial large-scale complex control problem. There
are several challenges to be faced when handling control problems. One such challenge is to be
able to handle the system’s scale. Developing mathematical models for large-scale complex
control systems have become easier with the emergence of object-oriented, declarative, multi-
domain modeling languages for component-oriented modeling, such as Modelica. However, the
analysis and synthesis of large-scale complex control systems are still highly demanding; new
tools and methodologies are needed to simplify the task. The need of making Modelica models
available for general use is emphasized. In order to stress the idea, a paper (Appendix A) is
published where we present a case study demonstrating how to combine Modelica models and
the Python Control Systems Library.

The central interest of this applied research is to implement optimal control strategies in relation
to large-scale complex systems. Generally, an optimal control problem poses a state-parameter-
disturbance estimation problem. Both these types of problems are challenging due to the scale
and the complexity of the systems of interest. Even for moderately small systems, the algebraic
analysis and synthesis may become complicated, tedious or even impractical. When investigat-
ing a system, several questions needs to be answered, such as if the system is controllable, if its
state is observable, if parameters and disturbances can be estimated, if there are any disturbances
which can be completely rejected via some state feedback and how to select appropriate models
for disturbance augmentation. It is difficult to answer these questions using analytical tools,
thus a new perspective is necessary. Interestingly, there are system properties which (almost)
do not depend on the actual values of model parameters. These properties are so-called generic
or structural properties, such as controllability and observability. The decisions (for example,
about algebraic controllability) which are made by means of the state-space theory are suscept-
ible to the uncertainties in the model. Therefore, a better approach is to structurally decompose
the system into smaller systems and then analyze these subsystems. In large-scale systems, the
state variables, inputs, disturbances and outputs are usually affecting each other. These depend-
encies often exhibit a nice sparsity pattern. Variable dependencies are captured by the system’s
structure. Generic properties can be investigated with the use of graph theory. This approach
constitutes a very powerful and simple-to-use tool for structural analysis. The structural invest-
igation in the analysis of large-scale complex nonlinear control systems is a significant portion
of this research. All proposed methodologies are tested using simulated data related to the cop-
per leaching process. A mechanistic model containing many state variables (more than 50),
unknown disturbances and uncertain parameters along with 4 output measurements is available.
The system in question is of large-scale and the process is highly coupled. Consequently, the
copper leaching process is an ideal candidate for testing the methodologies presented in the
dissertation. The following paragraphs discuss the main milestones of my research work.

Linearization of DAEs: In general, mechanistic models of real physical systems are systems
of High-Index Differential-Algebraic Equations (DAEs). The JModelica.org-CasADi interface
provides a way of making Modelica models available in Python as symbolic DAE systems.
Python is a powerful programming language for technical computing. This opens up a possibility

ix

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

of linearizing any Modelica model in Python. The procedure is demonstrated in [1].

Linear Analysis: Linear system theory is often used in nonlinear system analysis and design.
There has been a lack of a general control tool for Python until the Python Control Systems
Library (the python-control package) was developed. However, the Python Control Systems
Library is underdeveloped as compared to MATLAB’s Control System Toolbox. An article
is published showing a procedure of making Modelica models available for linear analysis in
Python [2].

Structural Observability/Controllability Analysis: Estimating the internal state of a given dy-
namic system based on input-output information is crucial for optimal control. However, for
some systems it may not be possible to uniquely estimate the state. Such systems are called
unobservable systems. It is possible to define algebraic conditions for observability. For linear
time invariant systems, we may for example check the rank of the observability matrix. For non-
linear systems, local observability should be checked. An observability rank condition is always
associated with the rank of a matrix. For large-scale complex systems, the rank test becomes im-
practical to implement. An algebraic test merely tells whether the system is observable or not.
Sometimes, the inverse observability problem could be more interesting, that is; defining the
(minimum number of) output measurements which is needed to make the system observable. A
rank test would not solve the inverse observability problem in an easy way, while the structural
observability test does. Although the system’s structure provides valuable information, it still
does not provide all we need — i.e., structural conditions always provide necessary, but not suffi-
cient, conditions. For example, if a system fails to achieve the structural observability condition,
then the system is (locally) unobservable. The converse is however not always true. Thus, struc-
tural observability/controllability analysis of a system should be conducted as follows: (1) Ana-
lyze the large system for structural observability; (2) as a consequence of structural observability
analysis, we can decompose the system into observable and unobservable subsystems; and (3)
these subsystems are analyzed algebraically as necessary. Structural observability analysis can
be done with the aid of a graph-theoretic analogy which makes the analysis much simpler. A
way of automating structural observability analysis using the NetwokX and PyGraphviz Python
packages, where the copper leaching process is used as an example, is presented in [3].

State-Parameter-Disturbance Estimation: In reality, it is impractical or impossible to measure
all the state variables. It is however often possible to reconstruct the system’s state based on a
finite set of input-output measurements, providing that the state is observable. The Extended
Kalman Filter, the Moving Horizon Estimate and the Unscented Kalman Filter are examples
of available nonlinear estimators. An implementation of several state estimators in Python is
presented in [4].

Optimal Control: The final objective of this research is to implement an optimal control strategy.
An optimal control strategy is always coupled with an appropriate state estimator. In order to
determine the control trajectory, the state information should be known. In this work, the Moving
Horizon Estimator is used as the nonlinear estimator. A complete implementation is presented
in [5], where two uncertain parameters and two unmeasured disturbances are estimated. [5] also
contain a discussion about the divergence issue of the Extended Kalman Filter. It is shown that
by some modifications to the Extended Kalman Filter algorithm, we can get comparable results
from both of the estimators.

The dissertation contains two parts: Part I and Part II. Part I explains theories and methodologies
used in Part II and additional information which is not presented in Part II. Part II consists of a
list of published and submitted articles.

x

Contents

Preface v

Acknowledgments vii

Summary ix

Contents xii
List of Figures . xiii
List of Tables . xv

Nomenclature xvii

I THEORY AND METHODOLOGY 1

1 Introduction 3
1.1 Process Description . 3
1.2 Mathematical model . 5
1.3 Problem Description . 12
1.4 Previous Work and New Contributions . 12

2 Large-Scale Complex Dynamic Systems 17
2.1 Observability and Controllability . 18
2.2 Structural Observability and Controllability 20
2.3 State-Parameter-Disturbance Estimation . 25

2.3.1 Linear Filtering . 25
2.3.2 Nonlinear Filtering . 27

2.4 Nonlinear Programming . 28
2.4.1 Nonlinear Programming: Fundamentals 28
2.4.2 Nonlinear Programming: Dynamic Optimization (Optimal Control) . . 30

3 Results and Discussion 33
3.1 Overview of Scientific Papers . 33

3.1.1 Publication A - Modelica models in linear analysis 33
3.1.2 Publication B - Structural Observability Analysis 34
3.1.3 Publication C - Parameter and State Estimation 34
3.1.4 Publication D - State Estimation and Optimal Control 35

3.2 Discussion, Conclusion and Future Work . 35

Bibliography 41

xi

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

II PUBLISHED AND SUBMITTED PAPERS 45

A Making Modelica Models Available for Analysis in Python Control Systems Library 47

B Structural Observability Analysis of Large Scale Systems Using Modelica and Py-
thon 61

C Parameter and State Estimation of Large-Scale Complex Systems Using Python
Tools 73

D A Case Study: State Estimation and Optimal Control of an Industrial Copper Elec-
trowinning Process 85

xii

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

List of Figures

1.1 Overall production process of Glencore Nikkelverk (taken from http://www.
xstratanickel.no). Note: labels are in Norwegian language. 4

1.2 A process flow diagram of the copper leaching process (provided by the Nikkelverk). 6
1.3 The process flow diagram of the copper leaching process which is used for the

modeling process (taken from [9]). 15

2.1 Go for the example in (2.20): y1→ x1→ x2→ x3 is the stem and there are no buds. 21
2.2 Gcx for the example in (2.20): u1→ x2→ x1 is the stem; x3→ x3 is the bud; x2

is the origin of the bud; and x2→ x3 is the distinguish edge. 22
2.3 Gcy for the example in (2.20): u1 → x2 → x1 → y1 is the stem; x3 → x3 is the

bud; x2 is the origin of the bud; and x2→ x3 is the distinguished edge. 22
2.4 A bud: u1 is the origin and u1→ x1 is the distinguished edge. 23
2.5 A stem: x1 is the root and xn is the top. 23
2.6 A cactus. 24

3.1 Implementation and execution of Modelica models (taken from the page 94 of
[48]). 34

3.2 A digraph given in Appendix B (Figure 9). 37
3.3 Symmetric structural distribution of eps1, eps2 and eps2. This figure is a part of

Figure 3.2. 38
3.4 This digraph is used to analyze for disturbance rejection. 40

xiii

http://www.xstratanickel.no
http://www.xstratanickel.no

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

xiv

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

List of Tables

1.1 State space model: ẋ = f (x,u,w1,w2, p) and y = h(x). 13

xv

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

xvi

Nomenclature

Superscript & Subscripts

µ(i)
j Reaction rate per unit volume connected to the tank i within the section j

ρ(i)
j,k Mass concentration of the component k connected to the tank i within the

section j [kg.m−3]/[g.l−3]

V (i)
j Volume of the tank i within the section j

Chemical Compounds

CuO Copper oxide

CuSO4 Copper sulfate

CuS Copper sulfide

H2O Water

H2SO4 Sulfuric acid

NiCl2 Nickel chloride

O2 Oxygen

SO2 Sulfur dioxide

Chemical Elements

Ag Silver

Au Gold

Bi Bismuth

Co Cobalt

Cu Copper

Ni Nickel

Pd Palladium

Pt Platinum

Se Selenium

S Sulfur

Te Tellurium

xvii

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

Greek Symbols

εi Void fraction of ith cementation tank

µ Reaction rate per unit volume [mol ·m−3 · s−1]

ρ Mass concentration [kg ·m−3]

ρi Mass concentration of chemical component i

τ Time constant or time delay [s]/[min]/[h]

τȧ Time delay connected to ȧ

Chemical Ions

Bi4+ Bismuth (IV)

Cu2+ Copper (II)

SO2−
4 Sulfate

Subscripts

(aq) Aqueous solution

(g) Gas phase

(l) Liquid phase

(s) Solid phase

V̇i2 j Volumetric flow rate from unit i to unit j

ci Molar concentration of chemical component i

Mi Molar mass of chemical component i

Other Symbols

e Electron

ȧ Mass/volume flow rate or time derivative of the property a [kg.s−1]/[m3.s−1]

V̇a Volumetric flow rate of the H2SO4 acid stream in to the first leaching tank

V̇l1o Volumetric flow through the leaching section

c Molar concentration [mol ·m−3]

k Reaction rate constant (units depend on the chemical reaction)

M Molar mass [g ·mol−1]

pb Denotes buffer tank

ps Denotes cementation tank

V Volume [m3]

xc,CuO CuO mass fraction of raw material

xviii

Part I

THEORY AND METHODOLOGY

1

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

Chapter 1

Introduction

The research base of this dissertation is connected with the two problems state-parameter-
disturbance estimation and optimal control with respect to the copper leaching process which
is a subprocess of the metal refinery Glencore Nikkelverk, Kristiansand. This chapter provides
a mathematical model. The structure of this chapter is as follows:

• Section 1.1 - the process description of the copper leaching process (with a brief overview
of the Glencore Nikkelverk);

• Section 1.2 - a mechanistic model for the copper leaching process; and

• Section 1.3 - the problem description.

1.1 Process Description

Glencore Nikkelverk is a metal refinery in Kristiansand, Norway. It is the largest nickel refinery
in the EU/EEA area. The Nikkelverk produces nickel (Ni), copper (Cu), cobalt (Co), sulfuric
acid (H2SO4) and other precious metals such as gold (Au), platinum (Pt), selenium (Se) and
palladium (Pd). An overview of the plant’s production process is given in Figure 1.1. The
raw material used in Glencore Nikkelverk is primarily a granulated matte which is produced
by smelters in Canada and Botswana. Further grinded matte (using ball mills) is transported
to the chlorine leaching plant. The grinded matte mostly contains Ni, Cu, and sulfur (S). In
the chlorine leaching plant, Ni is selectively leached by controlling the redox potential in the
medium — the leachate contains extracted Ni as nickel chloride (NiCl2). Most of the Cu in the
grinded matte goes to the leach residue, for example in the form of copper sulfide (CuS). Filter
presses are used to separate the leach residue and the leachate. The leachate is sent to the Ni
refining section. The leach residue is roasted in a roasting furnace (fluidized-bed roaster). The
roasting furnace produces copper oxide (CuO) and sulfur dioxide (SO2). SO2 is converted to
H2SO4. The Nikkelverk has its own H2SO4 production plant as H2SO4 is a necessary ingredient
to the copper leaching process. The roasting furnace provides the raw material (so called calcine)
containing CuO to the copper plant. Calcine is slurrified using H2SO4 to leach out Cu as copper
sulfate (CuSO4), and then the leachate is electrolyzed using a Cu cathode and Pb anode to
produce solid Cu. A detailed discussion in relation to the chemical process associated with the
production plant can be found in [6], [7] and [8].

The copper leaching process is considered as the case study of this research. See Figure 1.2 for
the process flow sheet. The process consists of four sections:

• The slurrification section, where the slurrification of calcine is done using recycled anolyte
flow (the anolyte flow is taken from the electrowinning section) which contains H2SO4;

3

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

Figure 1.1: Overall production process of Glencore Nikkelverk (taken from http://www.
xstratanickel.no). Note: labels are in Norwegian language.

• the leaching section, where H2SO4 is added to the slurry in order to leach out more Cu
into the leachate;

• the purification section, where the slurry is first filtered to extract the solution containing
CuSO4, followed by the cementation and fine filtering processes;

• and the electrowinning section, where the solution containing Cu2+ is electrolyzed to
release solid Cu at the cathode.

Calcine contains Ni (≈ 11.48 wt%), Co (≈ 2.17 wt%), Fe (≈ 0.99 wt%) in addition to Cu
(≈ 62.98 wt%) — the chemical composition analysis is done at the belt conveyor T5043 (in
Figure 1.2) a few times (usually 3 times) per week. Calcine mass flow rate is measured after the
second bucket elevator T5002 while it is controlled via the speed of the belt conveyor T5038.
There are two bucket elevators and several belt conveyors in between the calcine storage 5037
and the first slurrification tank, causing unavoidable transport delays.

In the slurrification section the leaching reaction (1.1) takes place. There are two slurrification
tanks 5045 and 5302 (Figure 1.2) connected in series. It is possible that some other metal oxides
than CuO also get leached into the solution, such as Ni, Co and Fe oxides.

4

http://www.xstratanickel.no
http://www.xstratanickel.no

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

CuO(s)+H2SO4(aq)
k−−→ CuSO4(aq)+H2O(l) (1.1)

There are four leaching tanks connected in series, H2SO4 is added to the first tank. The same
chemical reaction (1.1) occurs in all the leaching tanks. Water is added to the fourth leaching
tank to replenish liquid spillages throughout the process. The liquid levels of the two slurrifica-
tion and all four leaching tanks are always constant.

In the purification section, the leach residue and the leachate (containing CuSO4) are separated
by sending the output from the leaching section through five filter presses connected in parallel.
The leachate has metal ions, such as Ag, Te and Bi ions, contained in it. These metals are
removed using the cementation process — there are three scrap columns (5503A-C) where the
cementation takes place. For example, Bi4+ ions are cemented by sending the solution through
the scrap columns which contains pure Cu particles. The cementation reaction for Bi4+ ions
is (1.2). The cemented metals are filtered by means of downstream fine filters 5508A-D. Also,
there are three buffer tanks: 5501, 5506 and 5510.

Bi4+(s) +2Cu(s) −−→ Bi(s)+2Cu2+
(aq) (1.2)

The electrowinning section is the heart of the copper leaching process. There are ca. 430 elec-
trolysis tanks each with the volume ca. 5m3 connected in parallel. Cathode and anode half-cell
reactions are (1.3) and (1.4), respectively.

Cu2+
(aq)+2e− −−→ Cu(s)

SO2−
4(aq)+H2O(l) −−→ H2SO4(l)+

1
2

O2(g)+2e−

(1.3)

(1.4)

1.2 Mathematical model

The initial attempt of developing a mechanistic model for the copper leaching process is found
in [9], where steady state mass balances and dynamic specie balances are used to formulate
the model. This model consists of 39 state variables, 4 inputs, 4 outputs and several uncertain
parameters. [9] provides estimates for two parameters (by fixing other uncertain parameters
with given values) based on available process knowledge and the steady state model. Also,
step response analysis in outputs with respect to inputs are given. Most of the suggestions —
associated with state-parameter-estimation and model based controller design1 — given in [9]
for planned future work are covered in this dissertation.

The model presented in [9] is slightly extended in this research. The level dynamics in most of
the tanks (with the exception of slurrification, leaching, cementation and electrowinning tanks)
are included, in contrary to the steady state mass balances in the original model. Steady state
mass balances destroys the system structure. A new model is suggested for the rate of reaction
between CuO and H2SO4[11], which is different from the one used in [9]. The assumptions
in [9] are as follows: Liquid density is the same everywhere, perfect cementation of unwanted
metals, and perfect filters.

1A follow up publication [10] offers an overview about the Nikkelverk’s intentions moving towards implementing
optimal control strategies.

5

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

Figure 1.2: A process flow diagram of the copper leaching process (provided by the Nikkelverk).

The model development links to Figure 1.3 — the slurrification, leaching, purification and elec-
trowinning sections are highlighted. In the slurrification section, the heterogeneous reaction
(1.1) takes place and a model for the rate of reaction between CuO and H2SO4 is necessary.
From [11] it is seen that the shrinking core model is appropriate. The reaction kinetics µ is

6

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

given by (1.5), where cH2SO4
denotes molar concentration of H2SO4 and k is a temperature de-

pendent parameter which may be modeled using Arrhenius equation [12]. Molar concentrations
are replaced by mass concentrations — see (1.6), where MH2SO4

is the molar mass of H2SO4.

µ = k · cH2SO4

cH2SO4
=

ρH2SO4

MH2SO4

µ =
k

MH2SO4

·ρH2SO4

(1.5)

(1.6)

Species balances for slurrification tanks result in the equations (1.7)-(1.12). In a similar way,
dynamic equations from (1.13) to (1.27) for the leaching tanks are obtained. V (i)

s and V (j)
l are

constants. τṁc in (1.7) counts raw material (calcine) transportation delays — according to pro-
cess experience τṁc ≈ 20min. τV̇a

is the delay with respect to V̇a. (1.28) gives the reaction

kinetics µ(j)
i of the jth tank of the section i (i = s is for the slurrification section and so on).

Additional equations (1.29)-(1.31) are due to mass balances in the slurrification and leaching
sections.

d
dt

ρ(1)
s,CuO =

ṁc(t− τṁc) · xc,CuO−ρ(1)
s,CuO ·V̇s2l

V (1)
s

−MCuO ·µ(1)
s

d
dt

ρ(1)
s,CuSO4

=
ρem,CuSO4

·V̇e2s−ρ(1)
s,CuSO4

·V̇s2l

V (1)
s

+MCuSO4
·µ(1)

s

d
dt

ρ(1)
s,H2SO4

=
ρem,H2SO4

·V̇e2s−ρ(1)
s,H2SO4

·V̇s2l

V (1)
s

−MH2SO4
·µ(1)

s

(1.7)

(1.8)

(1.9)

d
dt

ρ(2)
s,CuO =

(
ρ(1)

s,CuO−ρ(2)
s,CuO

)
·V̇s2l

V (2)
s

−MCuO ·µ(2)
s

d
dt

ρ(2)
s,CuSO4

=

(
ρ(1)

s,CuSO4
−ρ(2)

s,CuSO4

)
·V̇s2l

V (2)
s

+MCuSO4
·µ(2)

s

d
dt

ρ(2)
s,H2SO4

=

(
ρ(1)

s,H2SO4
−ρ(2)

s,H2SO4

)
·V̇s2l

V (2)
s

−MH2SO4
·µ(2)

s

(1.10)

(1.11)

(1.12)

d
dt

ρ(1)
l,CuO =

ρ(2)
s,CuO ·V̇s2l−ρ(1)

l,CuO ·V̇l1o

V (1)
l

−MCuO ·µ(1)
l

d
dt

ρ(1)
l,CuSO4

=
ρ(2)

s,CuSO4
·V̇s2l−ρ(1)

l,CuSO4
·V̇l1o

V (1)
l

+MCuSO4
·µ(1)

l

d
dt

ρ(1)
l,H2SO4

=
ρa,H2SO4

·V̇a(t− τV̇a
)+ρ(2)

s,H2SO4
·V̇s2l−ρ(1)

l,H2SO4
·V̇l1o

V (1)
l

−MH2SO4
·µ(1)

l

(1.13)

(1.14)

(1.15)

7

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

dρl,CuO

dt

(2)
=

(
ρ(1)

l,CuO−ρ(2)
l,CuO

)
·V̇l1o

V (2)
l

−MCuO ·µ(2)
l

d
dt

ρ(2)
l,CuSO4

=
(ρ(1)

l,CuSO4
−ρ(2)

l,CuSO4
) ·V̇l1o

V (2)
l

+MCuSO4
·µ(2)

l

d
dt

ρ(2)
l,H2SO4

=
(ρ(1)

l,H2SO4
−ρ(2)

l,H2SO4
) ·V̇l1o

V (2)
l

−MH2SO4
·µ(2)

l

(1.16)

(1.17)

(1.18)

d
dt

ρ(3)
l,CuO =

(
ρ(2)

l,CuO−ρ(3)
l,CuO

)
·V̇l1o

V (3)
l

−MCuO ·µ(3)
l

d
dt

ρ(3)
l,CuSO4

=

(
ρ(2)

l,CuSO4
−ρ(3)

l,CuSO4

)
·V̇l1o

V (3)
l

+MCuSO4
·µ(3)

l

d
dt

ρ(3)
l,H2SO4

=

(
ρ(2)

l,H2SO4
−ρ(3)

l,H2SO4

)
·V̇l1o

V (3)
l

−MH2SO4
·µ(3)

l

(1.19)

(1.20)

(1.21)

d
dt

ρ(4)
l,CuO =

(
ρ(3)

l,CuO−ρ(4)
l,CuO

)
·V̇l1o

V (4)
l

−MCuO ·µ(4)
l

d
dt

ρ(4)
l,CuSO4

=

(
ρ(3)

l,CuSO4
−ρ(4)

l,CuSO4

)
·V̇l1o

V (4)
l

+MCuSO4
·µ(4)

l

d
dt

ρ(4)
l,H2SO4

=

(
ρ(3)

l,H2SO4
−ρ(4)

l,H2SO4

)
·V̇l1o

V (4)
l

−MH2SO4
·µ(4)

l

(1.22)

(1.23)

(1.24)

d
dt

ρ(5)
l,CuO =

(
ρ(4)

l,CuO ·V̇l1o−ρ(5)
l,CuO ·V̇l2p

)

V (5)
l

−MCuO ·µ(5)
l

d
dt

ρ(5)
l,CuSO4

=

(
ρ(4)

l,CuSO4
·V̇l1o−ρ(5)

l,CuSO4
V̇l2p

)

V (5)
l

+MCuSO4
·µ(5)

l

d
dt

ρ(5)
l,H2SO4

=

(
ρ(4)

l,H2SO4
·V̇l1o−ρ(5)

l,H2SO4
·V̇l2p

)

V (5)
l

−MH2SO4
·µ(5)

l

(1.25)

(1.26)

(1.27)

µ(j)
i =

k
MH2SO4

·ρ(j)
i,H2SO4

V̇e2s = V̇s2l

V̇s2l +V̇a = V̇l1o

V̇l1o +V̇w2l = V̇l2p

(1.28)

(1.29)
(1.30)
(1.31)

The purification section consists of three buffer tanks, three cementing tanks, filter presses and
fine filters. The filter presses and fine filters are assumed to be perfect — i.e. no liquid leak-
ages and complete liquid-solid separation. From (1.32) to (1.34) gives corresponding dynamic
equations. V (1)

pb is controlled.

8

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

d
dt

V (1)
pb = V̇l2p−V̇pb(1)2ps(1)

d
dt

ρ(1)
pb,CuSO4

=

(
ρ(5)

l,CuSO4
−ρ(1)

pb,CuSO4

)
·V̇l2p

V (1)
pb

d
dt

ρ(1)
pb,H2SO4

=

(
ρ(5)

l,H2SO4
−ρ(1)

pb,H2SO4

)
·V̇l2p

V (1)
pb

(1.32)

(1.33)

(1.34)

The cementation tanks are merely volumes filled with solid Cu particles and the liquid medium
flows through the voids between the Cu particles, see (1.35)-(1.43). ε1, ε2, and ε3 are void frac-
tions, which are uncertain parameters. Since there is a constant flow rate across the cementation
tanks, we have (1.44)-(1.46). V̇pb(1)2ps(1) in (1.44) is the volumetric flow rate between the output
of the first buffer to the input of the fist cementation tank. pb(i) denotes the buffer tank i and
ps(i) denotes the cementation tank i. Other flow rates in the equations (1.45)-(1.46) are defined in
accordingly. The buffer tank level control functions u

V (1)
pb

, u
V (2)

pb
and u

V (3)
pb

given in (1.53)-(1.55).

V (1)
pb,SP is the set point of V (1)

pb .

d
dt

ρ(1)
ps,CuSO4

=

(
ρ(1)

pb,CuSO4
−ρ(1)

ps,CuSO4

)
·V̇pb(1)2ps(1)

V (1)
ps · ε1

d
dt

ρ(1)
ps,H2SO4

=

(
ρ(1)

pb,H2SO4
−ρ(1)

ps,H2SO4

)
·V̇pb(1)2ps(1)

V (1)
ps · ε1

d
dt

ε1 = 0

(1.35)

(1.36)

(1.37)

d
dt

ρ(2)
ps,CuSO4

=

(
ρ(1)

ps,CuSO4
−ρ(2)

ps,CuSO4

)
·V̇ps(1)2ps(2)

V (2)
ps · ε2

d
dt

ρ(2)
ps,H2SO4

=

(
ρ(1)

ps,H2SO4
−ρ(2)

ps,H2SO4

)
·V̇ps(1)2ps(2)

V (2)
ps · ε2

d
dt

ε2 = 0

(1.38)

(1.39)

(1.40)

d
dt

ρ(3)
ps,CuSO4

=

(
ρ(2)

ps,CuSO4
−ρ(3)

ps,CuSO4

)
·V̇ps(2)2ps(3)

V (3)
ps · ε3

d
dt

ρ(3)
ps,H2SO4

=

(
ρ(2)

ps,H2SO4
−ρ(3)

ps,H2SO4

)
·V̇ps(2)2ps(3)

V (3)
ps · ε3

d
dt

ε3 = 0

(1.41)

(1.42)

(1.43)

V̇pb(1)2ps(1) = V̇ps(1)2ps(2)

V̇ps(1)2ps(2) = V̇ps(2)2ps(3)

V̇ps(2)2ps(3) = V̇ps(3)2pb(2)

(1.44)

(1.45)

(1.46)

9

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

d
dt

V (2)
pb = V̇ps(3)2pb(2) −V̇pb(2)2pb(3)

d
dt

ρ(2)
pb,CuSO4

=

(
ρ(3)

ps,CuSO4
−ρ(2)

pb,CuSO4

)
·V̇ps(3)2pb(2)

V (2)
pb

d
dt

ρ(2)
pb,H2SO4

=

(
ρ(3)

ps,H2SO4
−ρ(2)

pb,H2SO4

)
·V̇ps(3)2pb(2)

V (2)
pb

(1.47)

(1.48)

(1.49)

d
dt

V (3)
pb = V̇pb(2)2pb(3) −V̇p2e

d
dt

ρ(3)
pb,CuSO4

=

(
ρ(2)

pb,CuSO4
−ρ(3)

pb,CuSO4

)
·V̇pb(2)2pb(3)

V (3)
pb

d
dt

ρ(3)
pb,H2SO4

=

(
ρ(2)

pb,H2SO4
−ρ(3)

pb,H2SO4

)
·V̇pb(2)2pb(3)

V (3)
pb

(1.50)

(1.51)

(1.52)

V̇pb(1)2ps(1) = u
V (1)

pb

(
V (1)

pb,SP,V
(1)
pb

)

V̇pb(2)2pb(3) = u
V (2)

pb

(
V (2)

pb,SP,V
(2)
pb

)

V̇p2e = u
V (3)

pb

(
V (3)

pb,SP,V
(3)
pb

)

(1.53)

(1.54)

(1.55)

(1.47)-(1.55) are the dynamic equations for the second and the third buffer tanks and their levels
are controlled. Equations (1.56)-(1.65) represent the electrowinning section. (1.37), (1.40),
(1.43), (1.61) and (1.62) are due to parameter augmentations.

d
dt

Ved = V̇p2e +V̇em2d−V̇ed2m−V̇ed2w

d
dt

ρed,CuSO4
=

V̇p2e ·
(

ρ(3)
pb,CuSO4

−ρed,CuSO4

)

Ved
+

V̇em2d ·
(

ρem,CuSO4
−ρed,CuSO4

)

Ved

d
dt

ρed,H2SO4
=

V̇p2e ·
(

ρ(3)
pb,H2SO4

−ρed,H2SO4

)

Ved
+

V̇em2d ·
(

ρem,H2SO4
−ρed,H2SO4

)

Ved

(1.56)

(1.57)

(1.58)

10

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

d
dt

ρew,CuSO4
=

V̇ed2w · (ρed,CuSO4
−ρew,CuSO4

)

Vew
+

V̇vap ·ρew,CuSO4

Vew
−

MCuSO4
zCu·C · η̄ · Ī

Vew

dρew,H2SO4

dt
=

V̇ed2w · (ρed,H2SO4
−ρew,H2SO4

)

Vew
+

V̇vap ·ρew,H2SO4

Vew
+

MCuSO4
zCu·C · η̄ · Ī

Vew
dη̄
dt

= 0

dVew

dt
= 0

(1.59)

(1.60)

(1.61)

(1.62)

(1.66)-(1.68) are measurement equations. Three control inputs are defined in (1.69)-(1.71). All
the inputs act on the outputs with some time delays, in particular u1 and u3 have the most
influential delays.

d
dt

Vem = V̇ed2m +V̇ew2m +V̇w2em−
V̇e2s−V̇em2d−V̇em2bl

d
dt

ρem,CuSO4
=

V̇ed2m ·
(

ρed,CuSO4
−ρem,CuSO4

)

Vem
+

V̇ew2m ·
(

ρew,CuSO4
−ρem,CuSO4

)

Vem
−

V̇w2em ·ρem,CuSO4

Vem

d
dt

ρem,H2SO4
=

V̇ed2m ·
(

ρed,H2SO4
−ρem,H2SO4

)

Vem
+

V̇ew2m ·
(

ρew,H2SO4
−ρem,H2SO4

)

Vem
−

V̇w2em ·ρem,H2SO4

Vem

(1.63)

(1.64)

(1.65)

y1 = ρ(3)
pb,H2SO4

y2 =
MCu

MCuSO4

ρew,CuSO4

y3 = ρew,H2SO4
+

MH2SO4

MCuSO4

ρew,CuSO4

(1.66)

(1.67)

(1.68)

u1 = ṁc

u2 = V̇e2s

u3 = V̇a

(1.69)
(1.70)
(1.71)

11

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

ẋ = f (x,u,w1,w2, p)

y = h(x)

(1.72)
(1.73)

The model can be written in the state space form (1.72)-(1.73), where x, u, w1, w2, p and y
are state, input, known disturbance, unknown disturbance, parameter and output vectors — see
Table (1.1) for a detailed description. f and h are known functions.

1.3 Problem Description

Most of Glencore Nikkelverk’s control problems are satisfactorily solved via PID controllers
and the control structure is quite complicated — there are cascaded and split-range control-
lers [10]. Conventional control approaches gives poor results for the control problem connected
to the copper leaching process. The degree of fluctuation of the measured quality variables —
in equations (1.66)-(1.68) — are not within the expected bounds. The process model features
time delays, multivariable behavior and nonlinearities in addition to being large-scale and very
sluggish, causing the control problem to be quite challenging. Some other challenges are the
availability of few quality measurements, and there are many unknown disturbances and para-
meters. Thus, in the interest of the quality control within the copper leaching process, it is
proposed to consider advanced control strategies.

The control problem poses a state-parameter-disturbance estimation problem. It is desirable
that outputs carry complete information about the system state, parameters, and unknown dis-
turbances; in other words, reconstructing these variables via available outputs is expected. The
degree of interactions among the variables to be estimated and the outputs determines the success
of the estimation process. An analysis should be carried out to identify unobservable state vari-
ables, parameters and disturbances as well as to suggest additional measurements to be included
to achieve complete observability.

A suitable state estimator needs to be proposed. Mainly, the Extended Kalman Filter and Moving
Horizon Estimator are to be considered. Some other choices are the Unscented Kalman Filter
and Particle Filter. In particular, the stability properties of the estimators should be compared
and contrasted.

Often, large-scale control and estimation problems may be decomposed into small-scale sub-
problems. This can be done with the aid of structural controllability and observability analysis.
Also, the model reduction is an important aspect in controller design and synthesis. A possible
model reduction technique is proposed through a graph-theoretic approach.

Advanced control strategies are implemented for those subsystems which are observable with
respect to available measurements. Some suggestions should be made regarding the decentral-
ization of the control structure.2 The main goal of this work is to stabilize both Cu and H2SO4
concentrations within the copper electrowinning process, hence the copper electrowinning pro-
cess is given special attention.

1.4 Previous Work and New Contributions

[9] is the only previous modeling attempt on the copper leaching process. The model captures
most of the system’s structure. The tank level dynamics are neglected in the initial model. This

2“The sheer size (i.e., dimensionality) and complexity of these large-scale dynamical systems often necessitates
a hierarchical decentralized architecture for analyzing and controlling these systems.”[13]

12

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

Vector Description Vector Elements

x State ρ(1)
s,CuO, ρ(1)

s,CuSO4
, ρ(1)

s,H2SO4
,

ρ(2)
s,CuO, ρ(2)

s,CuSO4
, ρ(2)

s,H2SO4
,

ρ(1)
l,CuO, ρ(1)

l,CuSO4
, ρ(1)

l,H2SO4
,

ρ(2)
l,CuO, ρ(2)

l,CuSO4
, ρ(2)

l,H2SO4
,

ρ(3)
l,CuO, ρ(3)

l,CuSO4
, ρ(3)

l,H2SO4
,

ρ(4)
l,CuO, ρ(4)

l,CuSO4
, ρ(4)

l,H2SO4
,

ρ(5)
l,CuO, ρ(5)

l,CuSO4
, ρ(5)

l,H2SO4
,

V (1)
pb , ρ(1)

pb,CuSO4
, ρ(1)

pb,H2SO4
,

ρ(1)
ps,CuSO4

, ρ(1)
ps,H2SO4

,

ρ(2)
ps,CuSO4

, ρ(2)
ps,H2SO4

,

ρ(3)
ps,CuSO4

, ρ(3)
ps,H2SO4

,

V (2)
pb , ρ(2)

pb,CuSO4
, ρ(2)

pb,H2SO4
,

V (3)
pb , ρ(3)

pb,CuSO4
, ρ(3)

pb,H2SO4
,

Ved , ρed,CuSO4
, ρed,H2SO4

,
ρew,CuSO4

, ρew,H2SO4
,

Vem, ρem,CuSO4
, ρem,H2SO4

u Input ṁc, V̇e2s, V̇a,
V̇pb(1)2ps(1) ,
V̇pb(2)2pb(3)

w1 Known disturbance V̇w2l , V̇em2d , V̇ed2m, V̇em2bl , V̇w2em

w2 Unknown disturbance xc,CuO, ρa,H2SO4
, V̇ed2w, V̇ew2m

p Parameter ε1, ε2, ε3,
τṁc , τV̇a

, τV̇e2s
Vew, η̄ ,
k,
V (1)

s , V (2)
s ,

V (1)
l , V (2)

l , V (3)
l , V (4)

l , V (5)
l ,

V (1)
ps , V (2)

ps , V (3)
ps

y Output ρ(3)
pb,H2SO4

,
MCu

MCuSO4
ρew,CuSO4

,

ρew,H2SO4
+

MH2SO4
MCuSO4

ρew,CuSO4

Table 1.1: State space model: ẋ = f (x,u,w1,w2, p) and y = h(x).

13

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

is a realistic assumption as the chemical compositions have very slow dynamics. However, this
assumption destroys the actual system structure. Therefore, in this research an extended model
including level dynamics is used.

[14] introduced the two concepts structure and structural controllability for linear time invariant
systems; the paper also revealed the graph-theoretic analogy to structural controllability. Later,
the idea was extended to the concept of structural observability. For nonlinear systems, a linear-
ized model can be used to check local structural properties. In this dissertation it is demonstrated
that the structural analysis provides further useful information in addition to controllability and
observability. Part of the research shows how to best use structural analysis in relation to para-
meter, disturbance, and time delay augmentations in estimation and control applications.

14

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

Figure 1.3: The process flow diagram of the copper leaching process which is used for the
modeling process (taken from [9]).

15

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

16

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

Chapter 2

Large-Scale Complex Dynamic
Systems

This chapter provides necessary theoretical information to be used in this dissertation and Part II
of this dissertation. The following sections elucidate the terminologies observability/controllability,
structural observability/controllability, stochastic observability/controllability, state estimation
and optimal control.

The state space model for a given dynamic system (2.1)-(2.2) is considered, where x ≡ x(t),
u ≡ u(t), w(1) ≡ w(1)(t) and y ≡ y(t) denote state, input, known disturbance and output vectors
respectively. f (., ., .) and h(.) are known vector-valued functions. Generally, the system is of a
large-scale if the state space has high dimensionality [15]. The model complexity arises due to
the presence of highly interconnected subsystems, transport delays, etc.

ẋ = f
(

x,u,w(1)
)

f
(

x,u,w(1)
)
=
[

f1

(
x,u,w(1)

)
f2

(
x,u,w(1)

)
· · · fnx

(
x,u,w(1)

)]T

y = h(x)

x =
[
x1 x2 · · · xnx

]T

u =
[
u1 u2 · · · unu

]T

w(1) =
[
w(1)

1 w(1)
2 · · · w(1)

n
w(1)

]T

y =
[
y1 y2 · · · yny

]T

nx = dim(x)

nu = dim(u)

nw(1) = dim(w(1))

ny = dim(y)

(2.1)

(2.2)

System models are in general nonlinear implicit Differential Algebraic Equations (DAEs).1 A
system of implicit DAEs may be reformulated into a systems of explicit Ordinary Differential
Equations (ODEs) via some algebraic manipulations, either manually or algorithmically [16] —
index reduction should be done if necessary [17]. (2.1)-(2.2) represent a set of explicit ODEs.
A discrete time version of (2.1)-(2.2) is given by (2.3)-(2.4), where uk and w(1)

k are piecewise
constant functions and ∆t is the sample time. An appropriate integrator should be used here, for
instance [18].

1More precisely, Differential Algebraic Discrete Equations.

17

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

xk+1 = fk

(
xk,uk,w

(1)
k

)

yk = hk (xk)

k = 0,1, . . .
x0 is given.
xk = x(k∆t)

uk = u(k∆t)

w(1)
k = w(1)(k∆t)

yk = y(k∆t)

(2.3)

(2.4)

Note: Usually, physical system models involves parameter (p) and unknown disturbance (w(2))
vectors, i.e., ẋ = f

(
x,u,w(1)

)
in (2.1) would be on the form of ẋ = f

(
x,u,w(1),w(2), p

)
. How-

ever, by including ṗ = 0 and a dynamic model for w(2), it is possible to arrive to the form (2.1).
Similar arguments can be applied for augmenting time delays via dynamic models. Therefore,
without loss of generality, we consider the state space model (2.1)-(2.2) in the following discus-
sions.

2.1 Observability and Controllability

A dynamic system is observable if its internal states can be inferred based on available output-
input information — more precisely stated, observability measures the ability of estimating x0,
x1, . . . , and xk from y0, y1, . . . , and yk. Controllability can be defined with respect to the state and
the output of a system. State controllability characterizes the ability of moving from any initial
state to any other final state by applying some admissible input within a finite time span. Output
controllability can be defined similarly. Algebraic tests for observability and controllability
should be given. First, observability and controllability rank conditions for linear time invariant
and variant systems are given [19], followed by the conditions for nonlinear systems. If the rank
of the observability matrix On defined in (2.7) is equal to n, then the linear time invariant system
given by (2.5)-(2.6) satisfies the observability rank condition. The controllability rank condition
is defined similarly: rank (Cn) = n, where the controllability matrix Cn is given in (2.8). For the
linear time varying case, controllability and observability Gramians [20] are considered (2.11)-
(2.12).

xk+1 = fk

(
xk,uk,w

(1)
k

)
= A xk +B uk +L w(1)

k

yk = hk (xk) =C xk

A, B, L and C are constant matrices.

(2.5)

(2.6)

On =




C
CA
CA2

...
CAn−1




(2.7)

Cn =
[
B AB A2B · · · An−1B

]
(2.8)

xk+1 = fk

(
xk,uk,w

(1)
k

)
= Ak xk +Bk uk +Lk w(1)

k

yk = hk (xk) =Ck xk

Ak, Bk, Lk and Ck are time dependent matrices.

(2.9)

(2.10)

18

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

Go(k) =
k f

∑
i=k

ΦT (i,k)CT
i CiΦ(i,k)

k0 ≤ k ≤ k f

Φ(k,k) = I

Φ(k,k0) = Ak−1Ak−2 · · ·Ak0

If Go(k) is nonsingular, the system is observable.

(2.11)

Gc(k) =
k−1

∑
i=k0

Φ(k, i+1)BiBT
i ΦT (k, i+1)

k0 ≤ k ≤ k f

Φ(k,k) = I

Φ(k,k0) = Ak−1Ak−2 · · ·Ak0

If Gc(k) is nonsingular, the system is controllable.

(2.12)

Controllability and observability for general nonlinear systems are difficult to handle. One
simple possibility to deal with such systems is to consider rank tests for a linearized model.
However, full rank of the controllability (observability) matrix of the linearized system is not a
necessary condition for controllability (observability) [21]. For linear time invariant/varying sys-
tems, there is no distinction between global and local properties such as global and local control-
lability, while for nonlinear systems there is. Local controllability (observability) implies global
controllability (observability), while global properties do not necessarily imply local properties
— in other words, local controllability (observability) is a sufficient condition for global con-
trollability (observability).

With the help of the Lie derivatives, we can define a rank test for local observability [22][23][24]
in connection to (2.2). The Lie derivative of y with respect to f (i) (for a piecewise constant
u = ui and w(1)) is defined in (2.13). Higher order Lie derivatives can also be defined: e.g.
L f (j)(L f (i)h) ≡ (L f (j)L f (i))h, (L f (k)L f (j)L f (i))h. Consider Lie derivatives of order 0, 1, 2, . . . , for
all piecewise constant u: h(x), L f (1)h(x), L f (2)h(x), · · · , (L f (1)L f (2))h(x), · · · , (L f (1)L f (2)L f (3))h(x),
· · · . If it is possible to find n linearly independent rows among these Lie derivatives, then we
say the observability rank condition is satisfied locally at x. For linear systems, higher order Lie
derivatives are always taken up to order n−1, while this is not always true for general nonlinear
systems.

L f (i)h(x) =
∂
∂x

h(x) f
(

x,ui,w(1)
)

(2.13)

Also, the solvability of the system of nonlinear equations (2.14) can be connected to local ob-
servability of xk for given yi for i = k,k+1, . . . ,k+n−1 and ui and w(1)

i for i = k,k+1, . . . ,k+
n−2.

yk = hk (xk)

yk+1 = hk (xk+1)

yk+2 = hk (xk+2)

· · ·
yk+n−1 = hk (xk+n−1)

xk+i = fk+i−1

(
xk+i−1,uk+i−1,w

(1)
k+i−1

)
, i = 1,2, . . . ,n−1

(2.14)

19

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

State observability is related with state distinguishability.2 If two distinct initial states x(0)1 and
x(0)2 result in the same output trajectory, then x(0)1 and x(0)2 are said to be indistinguishable.
Loosely speaking, indistinguishability implies observability.

A local controllability rank condition is defined with the help of the Lie bracket which is
defined in (2.15). It is possible to define nested Lie brackets such as [f (1), [f (2), f (3)]] and
[f (1), [f (2), [f (3), f (4)]]]. If there exists n linearly dependent vectors, which are made up from
Lie brackets or nested Lie brackets for all possible admissible inputs, then we say that the local
controllability rank condition is satisfied. For more complete discussions on the topics nonlinear
observability and controllability [25] and [26] are refereed.

[
f (i), f (j)

]
=

∂ f (j)

∂x
f (i)− ∂ f (j)

∂x
f (i) (2.15)

2.2 Structural Observability and Controllability

In Section 2.1, the state space system characterization is used to discuss the concepts algebraic
controllability and observability. This section explains a different approach to describe control-
lability and observability based on the structure of the state space model. Several factors sup-
ports using such an approach [14][27][28]: (1) In particular, for large-scale nonlinear systems
the analysis involves searching for the rank of matrices with higher dimensions; (2) symbolic
manipulations of these matrices (even for linear time invariant systems) are tedious and may be
impractical; and (3) often, the model contains uncertain or unknown parameters — for example,
the elements of system matrices As, Bs, Ls and Cs of ẋ = Asx+Bsu+ Lsw(1) and y = Csx —
causing the conclusions drawn about controllability and observability susceptible for parameter
uncertainties [29]. In the following paragraph, we discuss the graph-theoretic approach for struc-
tural analysis starting with linear time invariant systems and extending to nonlinear systems.

Consider the linear time invariant system (2.16)-(2.17). ai j, bi j and ci j are < i, j >th elements
of the As, Bs and Cs matrices, respectively. ai j, bi j and ci j may vanish for some i and j; such
elements are called structural zeros. An example is given in (2.20). It is found that det(O3) =
c3

11a2
12a23 and det(C3) =−b21. rank(O3) = 3 and rank(C3) = 3 for almost all parameter values

except for some pathological situations, i.e., rank(O3)< 3 for c11 = 0 or a12 = 0 or a23 = 0 and
rank(C3)< 3 for b21 = 0. In structural analysis the term "almost all" is key.

ẋ = Asx+Bsu+Lsw(1)

y =Csx

As, Bs, Ls and Cs are constant matrices.

u and w(1) are scalars.

(2.16)
(2.17)

Pair(As,Cs) is observable if and only if

rank
[

λiI−As
Cs

]
= n

for all eigenvalues of As, λ1, λ2, · · · , and λn.

(2.18)

Pair(As,Bs) is controllable if and only if

rank
[
λiI−As Bs

]
= n

for all eigenvalues of As, λ1, λ2, · · · , and λn.

(2.19)

2Observability implies that the state estimation may be possible for some inputs, but not for all.

20

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

As =




0 a12 0
0 0 a23
0 a32 a33




Bs =




0
b21
0




Ls =




0
0
0




Cs =
[
c11 0 0

]

(2.20)

(2.21)

Three directed graphs (or digraphs) Go, Gcx and Gcy are created for structurally observability
and (output/state) controllability analysis. If vi and v j are nodes, then vi→ v j denotes a directed
edge emanating from vi and ending at v j. The digraphs are structured in the following way:

• Go: The nodes corresponds to state and output variables — i.e. x1, x2, · · · , xnx , y1, y2, · · · ,
and yny . If ai j 6= 0, then xi→ x j exists and if ci j 6= 0, then yi→ x j exists.

• Gcx : The nodes corresponds to state and input variables — i.e. x1, x2, · · · , xnx , u1, u2, · · · ,
and unu . If ai j 6= 0, then x j→ xi exists and if bi j 6= 0, then u j→ xi exists.

• Gcy : The nodes corresponds to state, input and output variables — i.e. x1, x2, · · · , xnx , u1,
u2, · · · , unu , y1, y2, · · · and yny . If ai j 6= 0, then x j→ xi exists, if bi j 6= 0, then u j→ xi exists
and if ci j 6= 0, then x j→ yi exists.

Go, Gcx and Gcy for the example (2.20) are given in Figures 2.1, 2.2 and 2.3, respectively. The
term "structure" [14] should be clarified. It is convenient to consider the example given above.
The structure matrices of As, Bs, Ls, and Cs are represented by [As], [Bs], [Ls], and [Cs]. For
example,

[As] =




0 ∗ 0
0 0 ∗
0 ∗ ∗


 .

Figure 2.1: Go for the example in (2.20): y1→ x1→ x2→ x3 is the stem and there are no buds.

In [As], ∗ replaces all nonzero elements. The idea is that the numerical values of matrix entities
are taken as indeterminate. By doing so, we let structural properties (so-called generic prop-
erties) to be held for almost all realizations of structure matrices — a realization of a structure
matrix is found by assigning numerical values to its indeterminate elements. Also, a generic
property always give a necessary condition for the property of interest — e.g., not structural
observable⇒ not observable.3 Pair([A,B]) is structurally controllable if we can find at least one
realization of the pair([A,B]) which is controllable. Structural observability is defined similarly.
A structural or generic property of interest can be mapped into a property of the related directed
graph.

3Controllability with respect to w(1) can also be considered in a similar fashion.

21

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

Figure 2.2: Gcx for the example in (2.20): u1→ x2→ x1 is the stem; x3→ x3 is the bud; x2 is the
origin of the bud; and x2→ x3 is the distinguish edge.

Figure 2.3: Gcy for the example in (2.20): u1→ x2→ x1→ y1 is the stem; x3→ x3 is the bud; x2
is the origin of the bud; and x2→ x3 is the distinguished edge.

Generic or structural rank ρ([M]) of the structure matrix [M] is defined to be the maximal rank
which can be found out of the ranks of all possible realizations of [M]. In the above example
(2.20), ρ([As,Bs]) = 3 and ρ([As,Cs]) = 3. In order to achieve structural state controllability,
two conditions must be met: (1) State-nodes are input-connected and (2) ρ([A,B]) = n. If there
is at least one directed path starting from any input-node to each state-node, then the state-nodes
are input connected. The conditions (1) and (2) can be combined to give a single, complete
graph-theoretic equivalent: If Gcx is spanned by a cactus, then the pair(A,B) is structurally state
controllable [14] — structural observability and output controllability are defined similarly for
Go and Gcy .

A cactus is a special graph structure which satisfies both requirements (1) and (2). First, consider
systems with a single input u1. A cactus is made out of a stem and one or more buds. Figures 2.4
and 2.5 show bud and stem structures. It is easy to prove that both of these digraphs represents
structurally controllable systems. Structural controllability is collapsed by removing at least one
of the edges of the stem and bud structures. Now, a way of constructing a cactus is given. Let
u1→ x1→ x2→ ·· · → xm be a stem S1, where m is a positive integer. If a bud B1 with its origin

22

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

xm+1 can be connected to any nodes of S1, then S1 ∪B1 is a cactus. Note that it is possible to
attach B1 either at the top (i.e. at xm) or the root (i.e. at u1) of the stem. We can add another bud
B2 to S1∪B1 with some constraints about location where the origin of B2 is placed: The origin
of B2 cannot be connected to the ending node of the distinguished edge of B1. The new digraph
is S1∪B1∪B2. We can keep on adding buds B3, B4, and so on. Figure 2.6 shows an example
of a cactus. Adding a bud at the top of the stem is equivalent to lengthening the stem. If we
reconsider the example (2.20), we can now see that the given system is structurally observable,
state controllable and output controllable. For multiple input systems, the digraphs should be
spanned by cacti.

Figure 2.4: A bud: u1 is the origin and u1→ x1 is the distinguished edge.

Figure 2.5: A stem: x1 is the root and xn is the top.

Structural analysis is extended to nonlinear systems. Consider the dynamic system given in
(2.1)-(2.2). Instead of applying systems matrices like in the linear time invariant case, sym-
bolic Jacobian matrices are used to generate digraphs. For example, consider structural output
controllability analysis. If

∂ fi

(
x,u,w(1)

)
/∂x j 6= 0,

— i.e., x j appears in fi
(
x,u,w(1)

)
— then there is an edge from x j to xi. Section 2.1 discusses

algebraic rank tests for observability and controllability. For example, if we can prove that a
system is not structurally controllable, then there exists no n linear independent vectors among
all possible Lie brackets. Consequently the system is not locally controllable. Similarly, other
structural tests can be linked to relevant algebraic tests.

So far we have considered f
(
x,u,w(1)

)
. In order to extend the discussion to include parameter

and disturbance estimation, we consider f
(
x,u,w(1),w(2), p

)
instead. w(2) and p are to be estim-

ated, hence they are augmented as state variables. The new dynamic model is called the augmen-
ted state space model. Observability/controllability should be checked on the augmented model,
see (2.22)-(2.25). Parameter and/or disturbance augmentation may degrade observability. Para-
meters must be augmented as given in (2.23) — the time derivative of a parameter is always

23

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

Figure 2.6: A cactus.

zero. However, there could be more possibilities to augment unknown disturbances. Models for
the augmentation should be picked in such a way that structural observability is maintained —
i.e. ψ(w(2)) in (2.24) should be carefully defined.

Due to ṗi = 0, edges emanating from a parameter is impossible. A parameter node may have
edges coming towards it from state and/or output nodes. Also, edges among parameter nodes
and pi cannot be a part of any cycle. These characteristics of parameter nodes make it harder to
achieve structural observability, especially when the state space dimension is large. The one and
only possibility for the parameter nodes to be included in Go, without collapsing the spanning
cacti of Go, is to attach them at the end of each stem (providing that the system equations permits
this). In this case, the upper bound of the number of parameters that can be estimated is equal
to the number of stems, which is of course less than the number of measurements. In the case
where the parameter nodes collapse the spanning cacti of the original digraph of Go, we have to
search for a new spanning cacti for the digraph of the augmented model. The success of such a
search is determined by the degree of dependency among state and output nodes. For the digraph
of the parameter-augmented system Go,p, the parameter nodes must satisfy several constraints in
order to have a spanning cacti covering all parameter and state nodes: (1) Each stem must ends
at a parameter node, (2) there cannot be any parameter that is only connected to one output node
which is not included in a cactus, and (3) if there are multiple parameter nodes connected to a
state node xi, then those parameters cannot just appear only in ẋi = fi(·). (3) implies that there
are too many parameters in the equation ẋi = fi(·) and one possibility to reduce this number
is to lump parameters. If Go is not structurally observable, then Go,p cannot be observable.
Nevertheless, if Go is structurally observable, Go,p may or may not be structurally observable.

On the other hand, ˙w(2) = ψ(w(2)) in (2.24) is less demanding as compared to ṗ = 0 in the sense
of preserving structural observability, unless w(2) is augmented as w(2) = 0 which is similar to
parameter augmentation. For example, ẇ(2)

i = −βiw
(2)
i adds a self-cycle (βi > 0). Adding a

cycle is similar to attaching a bud to Go, and consequently increase the chances of achieving
structural observability. Also, the number of output nodes restricts the number of parameters
that can be observed, although this may not be the case if disturbances are augmented with buds.
Another interesting fact is that for given augmented system it is possible to find a minimum set
of additional measurements, in the structural observability sense, to be able to estimate state
variable, augmented parameters and disturbances.

24

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

ẋ = f
(

x,u,w(1),w(2), p
)

ṗ = 0

ẇ(2) = ψ(w(2))

p =
[
p1, p2, · · · pnp

]

w(2) =
[
w(2)

1 ,w(2)
2 , · · ·w(2)

n
w(2)

]

np = dim(p)

nw(2) = dim(w(2))

(2.22)

(2.23)

(2.24)

2.3 State-Parameter-Disturbance Estimation

State observability implies that input-output information contain a complete description of a
system’s internal state. Sections 2.1 and 2.2 describes algebraic observability and controllability
where noise-free input-output information is assumed. For example, if (2.5)-(2.6) is observable
then xk can be estimated by algebraically solving yk =Cxk, yk+1 =Cxk+1, · · · and yk+n−1 =Cxk+n−1.
An estimator of this type does not consider noisy-data. The practical interest is to have a state
estimator which extracts state information buried in noisy measurements. For example, let the
noisy-system of (2.5)-(2.6) be yk =Cxk + vk and xk+1 = Ak xk +Bk uk +Lk w(1)

k + εk where vk and
εk are measurement and process noises, respecively. Now, the success of the estimation process
demands more than algebraic observability. In addition to algebraic observability, stochastic ob-
servability and controllability [30] should be checked. These concepts will be discussed within
this section.

Reconstruction of xk is needed for many applications. In the implementation of optimal control
strategies, an estimate of the current state xk is required to calculate the current control action uk.
If x is an augmented state, then an estimate of xk contains information about augmented variables
such as parameters and unknown disturbances. The majority of practical estimation problems are
nonlinear. Available linear estimation methods, such as the Extended Kalman Filter [31], may be
adapted to solve nonlinear estimation problems. The Nonlinear Moving Horizon Estimate [32]
is a nonlinear estimate. The following sections describes various estimators in detail considering
the noisy system (2.25)-(2.26) or (2.27)-(2.28), where x̂ is an estimate of x.

˙̂x = f
(

x̂,u,w(1)
)
+ ε

ŷ = h(x̂)+ v

(2.25)

(2.26)

x̂k+1 = fk

(
x̂k,uk,w

(1)
k

)
+ εk

ŷk = hk (x̂k)+ vk

(2.27)

(2.28)

2.3.1 Linear Filtering

Consider a discrete linear time-varying noisy-system of the form (2.29)-(2.30). x̂i|k (i ≤ k) is
the estimate of xi using measurements of y j for j ≤ k. When i = k, we have a filtering prob-
lem (i < k is for state smoothing and i > k is for state prediction problems [33]. These cases are
not considered). Let {y0,y1, · · · ,yN}, {u0,u1, · · · ,uN−1}, and {w(1)

0 ,w(1)
1 , · · · ,w(1)

N−1} be measure-
ment sets. We can formulate a least (weighted) squares problem as given in (2.31). By solving
(2.31), we obtain x̂0, x̂1, · · · , x̂N , v̂0, v̂1, · · · , v̂N , ε̂0, ε̂1, · · · , and ε̂N−1 at once — i.e. minimizing
N
∑

i=0

(
v2

i /ri
)
+

N−1
∑

i=0

(
ε2

i /qi
)

where ri and qi are given weights. However, a recursive method is prefer-

able. [34] shows a way of deriving a recursive estimate purely using linear algebraic techniques

25

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

starting from (2.31). If measurements are reliable then choose ri/qi � 1 and if measurements
are not so reliable then choose ri/qi� 1.

x̂k+1 = Akx̂k +Bkuk +Lkw(1)
k + εk

ŷk =Ckx̂k + vk

(2.29)
(2.30)




y0
0
y1
...
0

yN



= ζ




x0
x1
x2
...

xN−1
xN



+




0
BN−1u0 +LN−1w(1)

0
0

B1u1 +L1w(1)
1

...
BN−1uN−1 +LN−1w(1)

N−1
0




+




v0
ε0
v1
ε1
...

εN−1
vN




ζ =




C0
−A0 I

C1
−A1 I

. . .
−AN−1 I

CN




(2.31)

The Kalman Filter algorithm is given in (2.32) [33]. vi and εi are independent, zero mean, and
normally distributed random variables. Rk > 0 and Qk ≥ 0 are covariance matrices of vi and εi.
To initiate the Kalman Filter, x̂+0 and P+

0 ≥ 0 are given. Note that the equations in (2.32) can be
derived from (2.31) [34].

P−k = Ak−1P+
k−1AT

k−1 +Qk−1

Kk = P−k CT
k (CkP−k CT

k +Rk)
−1

x̂−k = Ak−1x̂+k−1 +Bk−1uk−1 +Lk−1w(1)
k−1

x̂+k = x̂−k +Kk
(
yk−Ckx̂−k

)

P+
k = (I−KkCk)P−k

(2.32)

The convergence characteristics needs to be discussed [35][36]. Loosely speaking, the conver-
gence means the convergence of covariance P+

k for k→ ∞. Linear time-invariant systems are
discussed first. The Riccati difference equation [35]

P+
k = AP+

k−1AT −AP+
k−1CT (CP+

k−1CT +R)−1CP+
k−1AT +Q,

is analyzed. By replacing A from I +A∆t and evaluating

Limit
∆t→0

P+
k −P+

k−1

∆t
,

we get,

Ṗ = AP+PAT −PCT R−1
c CP+Qc.

If unstable modes of A are (1) observable (detectability) and (2) controllable with respect to
process noise (stabilizability with respect to process noise), then there exists a unique positive
semidefinite solution for Ṗ = 0 and the solution is asymptotically stable [37][38]. Here we
assume Qc ≥ 0 and Rc > 0. In the case of parameter estimation, we use ṗi = 0 type of state
equations where it is, theoretically, not allowed to include a process noise variable. Therefore,

26

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

the stabilizability condition may need to be relaxed [35][39]. If the stabilizability condition is
removed, then additional constraints must be prevailed on the state transition matrix [39].

For linear time-varying system the conditions for the Kalman Filter’s convergence are given
in [30]. Sufficient conditions for uniformly completely controllability (corresponds to exciting
state variables by the process noise) and uniformly completely observability are given: (2.33)-
(2.34). By adding fictitious process noise variables, it may be possible to make sure the above
mentioned conditions are satisfied [36]. In practical situations it is not always necessary to
satisfy these two conditions [40].

If β1I ≤
k−1

∑
i=k−m

Φ(k, i+1)QiΦT (k, i+1)≤ β2, for some m > 0,

then the system is uniformly completely controllability, where β1,β2 ≥ 0.

(2.33)

If α1I ≤
k−1

∑
i=k−m

ΦT (i,k)CT
i R−1

i CΦ(i,k)≤ α2, for some m > 0,

then the system is uniformly completely controllability, where β1,β2 ≥ 0.

(2.34)

Another alternative is the Moving Horizon Approach. The Moving Horizon Estimate estimates
xk using the measurements within the time span [tk−Nh∆t, tk] (or y j for k−Nh ≤ j≤ k). The ob-
jective function Jmhe is minimized subjected to (2.29)-(2.30). The decision variables are xk−Nh ,
· · · , xk−1, xk, εk−Nh , · · · , εk−2, and εk−1. It is also possible to include additional constraints such as
equality and/or inequality constraints on decision variables.

[
(xk−Nh − x̂k−Nh)

T Q0(xk−Nh − x̂k−Nh)
]

is
the arrival cost which affects the estimate’s performance. By choosing a longer horizon, the ef-
fect of the arrival cost can be mitigated.

Jmhe =
k−1

∑
i=k−Nh

[
εT

i Qiεi
]
+

k

∑
i=k−Nh

[
(yi−Cixi)

T Ri(yi−Cixi)
]
+

[
(xk−Nh − x̂k−Nh)

T Q0(xk−Nh − x̂k−Nh)
]

(2.35)

2.3.2 Nonlinear Filtering

A straight forward approach is to implement nonlinear weighted least-squares estimation. That
means minimizing

k

∑
i=1

[
(yi−hi(x̂i))

T wi (yi−hi(x̂i))
]

,

subjected to x̂k+1 = fk

(
x̂k,uk,w

(1)
k

)
. In these situations, no statistical assumptions are made on

εi and vi. Usually, the Extended Kalman Filter seems to be the starting point of given nonlinear
estimation problem. The Extended Kalman Filter may cause diverge in some situations [36][41].
Ak−1 and Ck in 2.32 are replaced by

Ak−1 =
∂

∂xk−1
fk−1

(
xk−1,uk−1,w

(1)
k−1

)
|x̂+k−1

and

Ck =
∂

∂xk
hk(xk)|x̂−k .

The Extended Kalman Filter’s performance is susceptible to linearization errors. It can be

27

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

showed that even in simple system parameter estimation problems, the filter can fail. With
the inclusion of some instability term, we can restore the convergence [42].

In (2.27)-(2.28) additive process and measurement noises are considered. However, the more
general Nonlinear Moving Horizon Estimate [32] is used when more general nonlinear systems
are involved. There are a few advantages of moving horizon type approaches: The performance
is not affected by linearization errors and this option has better convergence characteristics. The
disadvantage is that the implementation requires more computer power. The following objective
function is minimized subjected to x̂k+1 = fk(x̂k,uk,w

(1)
k ,εk) , ŷk = hk(x̂k,vk) and other con-

straints. Some possible other nonlinear filters are the Unscented Kalman Filter and the Particle
Filter.

k−1

∑
i=k−Nh

[
εT

i Qiεi
]
+

k

∑
i=k−Nh

[
(yi−hi(xi))

T Ri(yi−hi(xi)xi)
]
+

[
(xk−Nh − x̂k−Nh)

T Q0(xk−Nh − x̂k−Nh)
]

(2.36)

2.4 Nonlinear Programming

In this section an overview is given for nonlinear programming within the context of solving
optimal control problems numerically. In nonlinear programming, the objective is to optimize
(minimize/maximize) a scalar objective/cost function J(x) which satisfies some given equality
and/or inequality constraints. The elements of x are called the decision variables or the degree
of freedom in the optimization process. An optimizer solves a nonlinear programming or op-
timization problem of interest. There are many optimizers available such as IPOPT, the Interior
Point OPTimizer [43][44][45]. An optimal control problem can be formulated into a nonlinear
programming/optimization problem as mentioned above. The first subsection discusses basics
of nonlinear programming, and the second one considers numerical solutions of optimal control
problems.

2.4.1 Nonlinear Programming: Fundamentals

Most of the subject material presented in this subsection is taken from [46]. The nonlinear
optimization problems is given as follows:

minimize
x∈Rn1

J(x)

subject to ci(x) = 0, i = 1,2, ...,n2,

ci(x)≥ 0, i = n2 +1,n2 +2, ...,n2 +n3.

(2.37)

where n1, n2 and n3 are positive integers. The feasibility region S is a set of all the points which
satisfy all equality and inequality constraints. We consider the case when the decision variables
are real numbers (i.e. to avoid mixed integer programming). If no constraints are present, then
it is an unconstrained optimization problem. If there exists an x∗, such that J(x) ≥ J(x∗), for
all x ∈ S then x∗ is a global minimum. If J(x) ≥ J(x∗) holds for some neighborhood of x∗, x∗

is a local minimum. A strict global/local minimum is defined when J(x)> J(x∗) for all x 6= x∗.
An interesting class of optimization problems arises when both J(x) and S possess the convex
property — i.e., if J (αx+(1−α)y)≤ αJ(x)+(1−α)J(y) for all x,y ∈ S and α ∈ [0,1]. Then
J is a convex function and similar definition is given for convex sets. Convexity of J(x) and
S implies any local minimum is a global minimum. Sufficient conditions for x∗ to be a strict
local minimum are that ∂J(x)/∂x|x∗ = 0 and that ∂ 2J(x)/∂x2|x∗ is positive definite. Solution
searching algorithms are iterative, they start with a given initial guess x0 and iterate until an x∗

28

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

is found such that | xk − x∗ |≤ ε , where ε is the tolerance and xk is the solution after the kth

iteration. First we consider the unconstrained optimization, followed by the constrained case.

Define ∂J(x)/∂x , F(x). The classical Newton’s solution is given by 2.38 to 2.40, where Gk
should be invertible. pk is the search direction at xk. Instead of xk+1 = xk + pk, xk+1 = xk +α pk
(α > 0) is used in line search and trust region methods.

xk+1 = xk + pk, (2.38)
Gk pk =−F(xk), (2.39)

Gk =

(
∂F
∂x

)∣∣∣∣
xk

=

(
∂ 2J
∂x2

)∣∣∣∣
xk

, (2.40)

In the line search method, α is calculated by minimizing F(xk +α pk). We may settle for the
very first minimum found when moving along pk. On the other hand, in trust region techniques,
an approximate function mk(p) ≈ F(xk + p) — e.g., using the first three element of the Taylor

series expansion of F(xk + p) ≈ F(xk)+ ∂F(x)/∂x
∣∣∣∣
xk

p+ 1
2 pT

[
∂ 2F(x)/∂x2

]∣∣∣∣
xk

p — is defined

within the trust region | p− xk |≤ r (r>0). Then, p∗ is found minimizing mk(p) and hence, the
new solution becomes xk+1 = xk + p∗.

Nonlinear conjugate gradient type of methods [43] can also be considered, but thisis not dis-

cussed further here. In quasi-Newton methods, the Hessian matrix ∂ 2F(x)/∂x2
∣∣∣∣
xk

in mk(p) =

F(xk) + ∂F(x)/∂x
∣∣∣∣
xk

p + 1
2 pT

[
∂ 2F(x)/∂x2

∣∣∣∣
xk

]
p is approximated. Different variants of this

method exists, for example the BFGS method. So far the methods which have been discussed
involved the evaluation of Jacobian (see [47] for algorithmic differentiation for the evaluation of
the derivative with high precision) and Hessian matrices, or at least a Jacobian matrix. However,
in the situations where the derivatives are not available, we can use derivative free optimization
where derivatives are numerically approximated. One immediate approximation procedure is
the finite difference method.

In order to solve the constrained optimization, the Lagrangian function L is defined, see (2.41).
By solving (2.42) and (2.43), we can find x∗ and λ ∗. Note that for equality constraints we
always have λi > 0. To handle inequality constraints, the complementary equations (2.44) are
used, where if c j(x∗) is active then λ j = 0 — see Karush-Kuhn-Tucker conditions in [46].

L (x,λ) = J(x)−
n2

∑
i=1

λici(x); i = 1,2, ...,n2 (2.41)

λ =
[
λ1,λ2, ...,λn2

]T

λi > 0
(

∂
∂x

L (x,λ)
)∣∣∣∣

x∗,λ ∗
= 0 =

(
∂
∂x

J(x)
)∣∣∣∣

x∗
−
(

n2

∑
i=1

λi
∂
∂x

ci(x)

)∣∣∣∣
x∗,λ ∗

(2.42)

(
∂

∂λi
L (x,λ)

)∣∣∣∣
x∗,λ ∗

= 0 = ci(x∗) (2.43)

λ jc j(x∗) = 0; j = n2 +1,n2 +2, ...,n2 +n3 (2.44)
λ j ≥ 0

29

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

Another practical way of handling constraints is to define a cost function with quadratic pen-
alties, see (2.45). J2(x,µ) is minimized and during each iteration µk is increased (e.g., µk+1 =
1.5µk [46]) which forces ci(x)→ 0 rapidly. Other methods on nonlinear programming such
as the sequential quadratic programming and interior-point methods are not discussed here, a
comprehensive discussion on related subject matters are found in [46] and [44].

J2(x,µ) = J(x)+
µ
2

n2

∑
i=1

c2
i (x); 1 = 1,2, ...,n2 (2.45)

µ > 0

2.4.2 Nonlinear Programming: Dynamic Optimization (Optimal Control)

An optimal control problem may be transcribed into a nonlinear programming problem; this
means formulating J(x), and ci(x) for i = 1,2, ...,n2,n2 + 1,n2 + 2, ...,n2 + n3. The following
discussion recalls the discrete system (2.3)-(2.4). To obtain (2.3)-(2.4), we need an ODE solver
(such as Runge-Kutta type methods) to integrate the continuous system (2.1)-(2.2). There are
various strategies of formulating a dynamic optimization problem. These are briefly discussed
in the following paragraphs , for a detailed discussion refer [44][45].

Consider an optimal control problem. The time span is t ∈ [t0, t f] and ∆t = (t f − t0)/Np. The
control sequence is {u0,u1, ...,uNp−1} ({w(1)

0 ,w(1)
1 , ...,w(1)

Np−1} is assumed to be known), where
ui = ui+1 for i ≥ Nu− 1. Nu is the control horizon and Nu ≤ Np. Np is the output horizon.
{x1,x2, ...,xNp} and {y1,y2, ...,yNp} are state and output sequences. The initial state x0 is given,
thereby, y0 is also known. The decision variables are {u0,u1, ...,uNp−1,x1,x2, ...,xNp ,y1,y2, ...,yNp};
Altogether there are 3Np number of variables. ysp is the set point of y. The objective function,

J(x) =
Np

∑
k=1

[
(yk− ysp)

T Qy(yk− ysp)
]
+

Nu−1

∑
k=1


(uk−uk−1)

T Qu(uk−uk−1︸ ︷︷ ︸
∆uk

)




x =




u0
u1
...

uNp−1
x1
x2
...

xNp

y1
y2
...

yNp




(2.46)

is considered. (2.47) gives equality constraints ci(x) for i = 1,2, ...,3Np−Nu. For example,
we can define the Lagrangian function and follow the procedure given in Subsection 2.4.1. See
(2.48). Notice that we could have included inequality constraints on decision variables as well.
The objective function may be expressed as function of controls only. To do so, {x1,x2, ...,xNp}
and {y1,y2, ...,yNp} are expressed in terms of controls {u0,u1, ...,uNp−1. The latter objective
function is involves fewer decision variables and the function’s complexity is higher. Also,
Np→∞ (equivalently, ∆t→ 0) makes the solution to above the optimal control problem reaches
to a limiting solution.

30

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

c1(x) = x1− f0

(
x0,u0,w

(1)
0

)
= 0

c2(x) = x2− f1

(
x1,u1,w

(1)
1

)
= 0

...

cNp(x) = xNp − fNp−1

(
xNp−1,uNp−1,w

(1)
Np−1

)
= 0

cNp+1(x) = y1−h1 (x1) = 0

cNp+2(x) = y2−h2 (x2) = 0

...

c2Np(x) = yNp −hNp

(
xNp

)
= 0

c2Np+1(x) = uNu−1−uNu = 0

c2Np+2(x) = uNu −uNu+1 = 0

...

c3Np−Nu(x) = uNu−2−uNp−1 = 0

(2.47)

L (x,λ) = J(x)−
3Np−Nu

∑
i=1

λici(x); (2.48)

Numerical approaches to solve optimal control problems are of kinds: indirect and direct meth-
ods [44]. The calculus of variations is used in indirect methods — optimize before discretize.
The example given above was handled by direct methods — discretize before optimize. Two
type variants were considered: (1) parameterization of u(t), x(t) and y(t); and parameterization
of only u(t).

31

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

32

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

Chapter 3

Results and Discussion

The main findings are presented in Part II of this dissertation. The following sections gives an
overview of scientific papers, discussion and future work.

3.1 Overview of Scientific Papers

In this section, the accomplishments of the research work will be summarized. There are four
research publications, three of them have already been published and the fourth one has been
peer-reviewed and accepted to be published in the International Journal of Modeling and Op-
timization Vol. 6, No. 5. October 2016. One of the main focuses in this work is to only
use free software tools. Throughout the research, Modelica as well as Modeling tools such as
JModelica.org and the scripting language Python has been used.

3.1.1 Publication A - Modelica models in linear analysis

The main focus of the Modelica simulation environments is the model simulation; see Fig-
ure. 3.1 for the general execution flow of Modelica models. A flat model is usually a system
of high index differential algebraic equations. The Modelica optimizer implements an index
reduction. Then lower index DAEs are compiled into a C code to be used in model simula-
tions. However, the model simulation is not the sole objective of the modeling process. Some of
the other objectives are linear system analysis, optimal controller design, parameter estimation,
etc. Therefore it may be useful to extract flat Modelica models into a scripting tool such as
Python — this corresponds to the point (2) in Figure. 3.1. The disadvantage of extracting the
model from point (1) (in Figure. 3.1) is that flat models are neither index reduced nor sorted.
However, it is always a possibility to implement index reduction, sorting algorithms etc. on
flat models in Python. If there is a mechanism to access the model from the point (4) or (5),
then it is the best option because this avoids re-programming (“reinventing the wheel”) already
implemented index reduction, sorting and other algorithms in Modelica compilers. The key
idea emphasized here is that the availability of Modelica models for general use is much more
important in practice than model simulations. The JModelica.org platform is a Python-based
Modelica simulation environment which provides the possibility of importing flattened Model-
ica models into Python via a JModelica.org-CasADi interface as symbolic DAEs. Though this
is a positive development, it has some limitations. For example, Modelica models containing the
function Modelica.ComplexMath.abs() is not supported. The Python control systems library
(python-control package) can be used for linear analysis which tries to follow the function-
ality within MATLAB’s control system toolbox. The article given in Appendix A discusses an
industrial case study which is considered to demonstrate the idea.

33

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

Figure 3.1: Implementation and execution of Modelica models (taken from the page 94 of [48]).

3.1.2 Publication B - Structural Observability Analysis

Consider a flat Modelica model referring to the Fig. 3.1. After reducing the index, we have
a zero index system — i.e. a system of ordinary differential equations. The index reduction
process may be automated in Python using the Pantelides algorithm. Now, the state observability
analysis can be done for reduced index systems.

Often, the state variables are not independent of each other. A finite subset of state variables
may contain some useful information about some other subset of the state variables or even a
complete description about the entire state space. Especially for large-scale complex dynamic
systems, it is advisable to make maximum use of structural observability analysis prior to imple-
menting, for example, state estimators. Structural observability analysis can be automated using
free computer-aided tools. There are several well-developed Python packages — networkx,
pygraphviz, pydot, etc. — for complex network analysis and visualization. These packages
can be used in structural observability analysis. By importing Modelica models into Python and
calculating necessary Jacobian matrices symbolically using the casadi package, it is possible
to construct the system digraph, and thereby analyze the system for structural observability. See
the article given in Appendix B for the implementation — the method is demonstrated with a
Modelica model created for the copper leaching process.

3.1.3 Publication C - Parameter and State Estimation

Publication C discusses the topics related to automating parameter, disturbance and state estim-
ation analysis of large-scale complex nonlinear dynamic systems using free programming tools.
Large-scale complex systems should be analyzed for structural observability before implement-
ing any state estimator. The structural observability analysis can be automated using Modelica
and Python. As a result of structural observability analysis, the system may be decomposed
into subsystems, some of which may be observable while some may not. The state estimation
process is carried out on observable subsystems and the optimum number of additional meas-
urements needed to make unobservable subsystems observable are prescribed. In this paper, an

34

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

industrial case study is considered: The copper leaching process. It is shown how to implement
various state estimators in Python and how to estimate parameters and disturbances as well as
state variables.

3.1.4 Publication D - State Estimation and Optimal Control

Publication D uses the results from both Publications B and C. One of the objectives of the
research presented in this paper is to better stabilize both CuSO4 and H2SO4 within the cop-
per leaching process, in particular within the electrowinning section. Since the electrowinning
section is the only observable part, an optimal control strategy is implemented for that section.
An optimal control algorithm is dependent on information about the system’s state to calcu-
late the optimal control trajectory. Since the complete state-disturbances are not available, they
are estimated instead and used in the the optimal control algorithm. See the article given in
Appendix D for the Python implementation.

3.2 Discussion, Conclusion and Future Work

It is beneficial to make Modelica models available for general usages within scripting languages
such as Python as it enables more extensive system analysis and synthesis. Currently, a few
interfaces capable of doing this exists — e.g., JModelica.org-CasADi. The goal is to combine the
modeling power of Modelica and the scripting power in Python (or a similar tool) for technical
computing. In order to achieve this, it is necessary to develop software tools which (1) optimize
Modelica models (index reduction, BLT transformation, etc.) and (2) represent optimized flat
Modelica models (index reduced and sorted ODE systems) as functions or methods within a
given programming language. Consider the example given below, where the Modelica model
fModelica.mo may be converted to a Python method f:1

model fModelica
parameter Real a0;
Real x0;
Real x1;
input Real u0;

equation
a0*der(x0) = x0 + x1 + u0;
a1*der(x1) = -x0;

end fModelica;

def f(dxdt,t,x,u,p):
res0 = p[0]*dxdt[0] - (x[0] + x[1] + u[0])
res1 = p[1]*dxdt[1] + x[0]
res = [res0,res1]
return res

Now f is accessible for any control engineering application. It is sometimes preferable that f is
a symbolic function. The JModelica.org-CasADi interface is a promising development, where
f provides a symbolic flat copy of a given Modelica model (without index reduction). Also,
Dymola models can be imported to Simulink as s-functions. Although this is a positive devel-
opment, Dymola and Simulink are commercial tools. The FMI (Functional Mock-up Interface)
standard provides support for model exchange (and co-simulation). A tool which supports FMI
model export can encode dynamic models into two files: An XML file (model variable informa-
tion) and a C-file (with optimized dynamic equations). Since we are interested in free, efficient
and powerful tools related to large-scale system modeling and applications, the Modelica-Python
(or Modelica-Octave or similar) combination is emphasized. JModelica.org comply with both
FMI import (pyFMI) and export (with some limitations). Therefore, in principle, JModelica.org
can import any Modelica model and map it into a compiled C-code. The C-code may then be
used in simulation and optimization problems (with the use of the XML file). There are nu-
merous different, free scripting languages that can be used in systems and control applications;

1Taken from http://book.xogeny.com.

35

http://book.xogeny.com

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

Python, C and Octave are some possible alternatives. Which language that should be selected
depends on many factors. Python has several features which makes it a suitable tool for systems
and control engineering applications. One of them is that there are many Python packages which
provide functionality in linear algebra (NumPy), nonlinear optimization (SciPy), DAEs integ-
ration (Assimulo), graph-theoretic analysis (NetworkX), plotting (matplotlib), graph layout and
visualization (PyGraphviz), etc. This is one of the reasons why Python has become increasingly
popular in academia. It is suggested to develop some tool to extract Modelica models from the
point (5) (referring to Figure 3.1) to Python as Python methods or objects in future work.

The initial copper leaching process model [9] contains 39 state variables. In the extension of the
model some additional state variables are included. A few output measurements are available.
These measurements gives enough information to reconstruct the system’s state, but not enough
to estimate all the parameters and the disturbances. It is possible to estimate the minimum
number of additional output measurements that should be added to make the parameters and
disturbances observable. However, the addition of extra sensors should be practically viable for
this to be a realistic option. Several important conclusions are made referring to Figure 3.2.
In Section 2.2 it is explained that in order to estimate the parameters, we should have at least
as many outputs as number of parameters. This is not the case in Figure 3.2. Augmenting
parameters as ṗi = εpi (εpi is a white noise) could be too strict in the structural sense; we may
relax it to ṗi = −βi pi + εpi , where βi > 0. It can be seen from the digraph that by augmenting
all the parameters via ṗi = −βi pi + εpi , we can achieve the structural observability. In reality,
parameters do change over time, and therefore it is not unrealistic to have ṗi =−βi pi + εpi . We
can do the same for disturbances. By merely tweaking parameter and disturbance augmentation
models, it is possible to reach the observability. It is recommended that augmentation models
always should be defined such that they add buds to the digraph — there are many possible ways
to augment disturbances [49] and it is a matter of picking the right ones in the structural sense.
In some situations, simplified/reduced models for large-scale systems are needed. Loosely
speaking, the idea is to have a sufficiently large and complex model to be able to capture the
necessary system dynamics, but at the same time the model should be small and simple enough
to be fit for the purpose of modeling; there is a tradeoff between the two objectives. The di-
mensions of the state space determines if the model is large or small. Model simplifications are
done during all possible phases of the modeling process (i.e., from creating the block diagrams
to creating the state space model) when having a simpler model is of interest. There are basic-
ally three concerns in the model simplification [50]: (1) Making assumptions such as constant
fluid density everywhere; (2) if there are different time scales (i.e., some variables have faster
dynamics while others are slower), then the focus should be on the time scale of interest;2 (3)
and lumping variables, parameters, and subsystems. Theoretically rigorous discussions of the
simplification of large-scale systems can be found in [51][52]. In qualitative terms, the key con-
cern of model reduction is to obtain a simpler and smaller model for which the error between the
old and new systems’ outputs lie within a given tolerance. It is proposed to perform a detailed
model reduction analysis on the copper leaching process model in future work.

This work presents a new perspective on the model simplification; model simplification in the
view of state-parameter-disturbance estimation and controllability.3 Maximum use of the struc-
tural system theory is made [54]. Closely studying Figure 3.2, it can be seen that all chemical
compositions are structurally observable if parameter-disturbance estimation is not in our in-
terest. The digraph in Figure 3.2 may be reduced by lumping eps1, eps2 and eps2 into one

2The ODE system d
dt x1 = f1(t,x1,x2,u) and ε d

dt x2 = f2(t,x1,x2,u) approaches a DAE system d
dt x1 =

f1(t,x1,x2,u) and 0 = f2(t,x1,x2,u) when ε→ 0. The latter model is of a lower dimensions than the former. By this
manner, we remove the dynamics of x2.

3[53] offers a discussion on model reduction with regards to model simulation.

36

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

Figure 3.2: A digraph given in Appendix B (Figure 9).

parameter. The parameters eps1, eps2 and eps2 appear in a symmetrical manner in the digraph.
Symmetries in the structure of the digraph indicates that it may be possible to reduce the model
in the structural sense. In Figure 3.3 an area from Figure 3.2 is enlarged, showing a symmetry
among three cementation tanks (referring to Figure 1.3) connected in series (the relevant equa-
tions are (1.35) to (1.43)). All three cementation tanks are lumped and considered as one unit.
Consequently, lumped quantities ρ̄ps,CuSO4

, ρ̄ps,H2SO4
and ε̄ps are defined:

ρ̄ps,CuSO4
=

ρ(1)
ps,CuSO4

V (1)
ps ε1 +ρ(2)

ps,CuSO4
V (2)

ps ε2 +ρ(3)
ps,CuSO4

V (3)
ps ε3

V (1)
ps ε1 +V (2)

ps ε2 +V (3)
ps ε3

ρ̄ps,H2SO4
=

ρ(1)
ps,H2SO4

V (1)
ps ε1 +ρ(2)

ps,H2SO4
V (2)

ps ε2 +ρ(3)
ps,H2SO4

V (3)
ps ε3

V (1)
ps ε1 +V (2)

ps ε2 +V (3)
ps ε3

ε̄ps =
V (1)

ps ε1 +V (2)
ps ε2 +V (3)

ps ε3

V (1)
ps +V (2)

ps +V (3)
ps

V̇pb(1)2ps(3) = V̇pb(1)2ps(1) = V̇ps(1)2ps(2) = V̇ps(2)2ps(3)

37

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

Assuming ρ̄ps,CuSO4
, ρ̄ps,H2SO4

and ε̄ps are uniformly distributed in all cementation tanks, we get
the simplified equations (3.1) to (3.3). These equations gives approximately first order ordinary
differential equations with time-varying time delays. We may relax the time-varying delay by
a constant delay. It is also possible to lump leaching as well as slurrification tanks in a similar
fashion.

d
dt

ρ̄ps,CuSO4
=

(
ρ(1)

pb,CuSO4
− ρ̄ps,CuSO4

)
·V̇pb(1)2ps(3)(

V (1)
ps +V (2)

ps +V (3)
ps

)
· ε̄ps

d
dt

ρ̄ps,H2SO4
=

(
ρ(1)

pb,H2SO4
− ρ̄ps,H2SO4

)
·V̇pb(1)2ps(3)(

V (1)
ps +V (2)

ps +V (3)
ps

)
· ε̄ps

d
dt

ε̄ps = 0

(3.1)

(3.2)

(3.3)

Figure 3.3: Symmetric structural distribution of eps1, eps2 and eps2. This figure is a part of
Figure 3.2.

As can be seen in Figure 3.2 there are no spanning cacti covering all the nodes in the digraph.
Consider the node sets S1 = {y1,Ved ,V̇ed2w}, S2 = {y2,Vem,V̇ew2m} and S3, where S3 contains
the nodes which are not in S1 and S2. The subgraphs corresponding to S1 and S2 are stems;
none of the stems have any outgoing edge starting any node belong to them. Hence, the state
variables in S1 and S2 can be estimated by formulating two independent estimation problems.
The same conclusion can be drawn easily by inspecting the two equations (1.56) and(1.63).
However, isolating completely independently solvable subproblems — e.g., S1 and S2 — by
manually inspecting the model equations are not trivial.4 A more formal description is given as
follows: Let S be a cactus (for which the root is an output node) and a subgraph (S ⊂ Go) of a
given digraph (for observability analysis) Go. We can prove that if there exists at least one node
v j such that v j /∈ S and the edges vi → v j ∈ S exists for any vi ∈ S, then we cannot define an
independent estimated problem for S.

The copper leaching process is affected by delay processes; estimation and control problems
including time delays are not covered within this dissertation. It is recommended to implement

4It is possible to automate the process for example using Kalman Decomposition [24]. This decomposition
convert variables with physical interpretations by new set of variables via some coordinate change.

38

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

an analysis including time delays in future work. However, the following discussion gives some
background information which may be needed for controllability and observability. The article
in Appendix D focus on controlling the chemical compositions in the electrowinning tanks and
liquid volumes (or thereby, levels) in the dilution and the mixing tanks. V̇a and ṁc are used to
influence the chemical compositions in the electrowinning sections; see equations (1.7)-(1.15).
The changes in V̇a and ṁc have to propagate through several processes, adding significant time
delays prior to affecting the chemical compositions in the third buffer tank. To keep the model
simple, we propose the dynamic models (3.4) and (3.5) to incorporate time delays. The trans-
fer function e−sτ may be approximated by 1

1+τs , where s is Laplace operator and τ > 0. This
simplifies ν̄(t) = ν(t − τ) into τ d

dt ν̄(t)+ ν̄(t) = ν(t). Consequently, V̇a(t − τV̇a
) ≈ ˜̇Va(t) and

ṁc(t− τṁc)≈ ˜̇mc(t).

τV̇a

d
dt

˜̇Va +
˜̇Va = V̇a (3.4)

τṁc

d
dt

˜̇mc + ˜̇mc = ṁc (3.5)

In the publication given in Appendix D, H2SO4 and CuSO4 compositions in the third buffer tank
are taken as control variables (neglecting time delays). In order to better comply with the reality,
ρ(3)

pb,H2SO4
, ˜̇Va and ρ(3)

pb,CuSO4
, ˜̇mc are taken. Also, V̇a and ṁc are expressed in terms of H2SO4

and CuSO4 equivalents: I.e.,

V̇a , ρV̇a
pb,H2SO4

and

ṁc , ρ ṁc
pb,CuSO4

.

If the outputs are structurally controllable by ˜̇Va and ˜̇mc, then it follows that they are also struc-
turally controllable by V̇a and ṁc. This fact is easy to prove. Also the above mentioned delay
models do not affect structural observability. We can even consider higher order delay models
with

e−sτ ≈ 1
(1+ τs

n)
n

for n = 2,3, ...,→ ∞, without affecting structural observability and controllability.

A tracking problem concerns finding an admissible control law such that the systems outputs
always follows their set points, while (1) bounding the state variables within given limits and
(2) mitigating or completely rejecting the effects from disturbances. More precisely saying,
the asymptotic output tracking is defined as follows: There exists umin ≤ u ≤ umax such that
y(t)− r(t)→ 0 when t → ∞ and xmin ≤ x ≤ xmax for given bounded disturbance. Instead of
xmin ≤ x ≤ xmax, it is desirable to stabilize x, of course within given bounds — i.e., the state
stabilization problem. For the linearized model d/dt∆x = A∆x+B∆u of a given nonlinear model
d/dtx = f (x,u), the (local) state stabilization can be achieved by the state feedback law ∆u =
−K∆x when the pair(A,B) is stabilizable and the eigenvalues of A−BK are strictly stable [22].
Disturbance rejection can be done in several ways. A control with integral action is one such
strategy, for example Proportional–Integral (PI) controllers. When disturbances are known or
are estimated, then the feedforward control actions can be used. For better set point tracking,
both feedback and feedforward strategies are needed [23]. It is also advisable to include integral
actions żi = ri−yi (see equation 26 in Appendix D) for offset-free reference tracking [55]. In the
essence, the control action is a combined result of the state feedback, disturbance feedforward

39

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

and integral action (equation 30 in Appendix D). Appendix D presents an implementation of a
regulator with state feedback, disturbance feedforward of some disturbances and integral actions
of all outputs (and rate control in u). See equations 29 and 30. A linearized model is used in
the implementation. The system state and the disturbance vector w(2), which are included in the
control action are not measured and therefore they are replaced by some estimates.

There are altogether 7 disturbance variables in w(1) and w(2); the influence of these are analyzed
in the structural point of view. Since, w(1) known and w(2) can be estimated, these quantities
are available for feedforward control. See Figure 3.4 for the digraph. Consider the stem V̇p2e→
Ved → y1. The node Ved is directly affected by V̇em2d , V̇ed2w and V̇ed2m, hence V̇em2d , V̇ed2w and
V̇ed2m are used in feedforward control for the V̇p2e− y1 loop. In this case, there exists no state
feedback which rejects V̇em2d , V̇ed2w and V̇ed2m. The same apply for V̇e2s−y2 loop. Also consider,

ρ(3)
pb,CuSO4

→ ρed,CuSO4
→ ρew,CuSO4

→ y3,

where some of the disturbances influence y3 directly, while others have a remote influence
through other state-nodes. For example, V̇w2em acts on y3 in the following way: V̇w2em →
ρem,CuSO4

→ ρed,CuSO4
→ ρew,CuSO4

→ y3. Consequently, a state feedback can be defined so
that V̇w2em does not affect y3. On the other hand, I is directly connected to the path

ρ(3)
pb,CuSO4

→ ρed,CuSO4
→ ρew,CuSO4

→ y3,

making it impossible to reject it by a state feedback. More information on structural disturbance
rejection strategies are available in [56][27]. Noninteracting control [57] though state feedback
is another possible consideration. A noninteracting control strategy decouple control loops from
each other. The controller implemented in Appendix D involves neither disturbance rejection nor
noninteracting control. It is recommended to consider disturbance rejection and noninteracting
control strategies via state feedback as a future work.

Figure 3.4: This digraph is used to analyze for disturbance rejection.

It is also suggested to validate the results against experimental data in future work. An online
parameter-state-disturbance estimation process may be implemented for the electrowinning sec-
tion to validate the results in Appendix C. In this paper, the parameter η is estimated with several
of other disturbances. It is also possible to estimate Vew, by augmenting it as V̇ew = βewVew+εew.
Also, anomalous data is inevitable. Hence, it is necessary to clean the data before using them.
Usually, it is tedious to pick anomalous data points via manual inspections. Therefore, it is
recommended to use available automatic data cleaning strategies in parallel to estimators.

40

Bibliography

[1] Anushka Perera. “Using CasADi for Optimization and Symbolic Linearization/Extraction
of Causality Graphs of Modelica Models via JModelica. Org”. In: (2014).

[2] M Anushka S Perera et al. “Making modelica models available for analysis in python
control systems library”. In: Proceedings SIMS. 2014.

[3] M. Anushka S. Perera, Bernt Lie and Carlos F. Pfeiffer. “Structural Observability Analysis
of Large Scale Systems Using Modelica and Python”. In: Modeling, Identification and
Control 36.1 (2015), pp. 53–65. DOI: 10.4173/mic.2015.1.4.

[4] M. Anushka S. Perera, Tor A. Hauge and Carlos F. Pfeiffer. “Parameter and State Estima-
tion of Large-Scale Complex Systems Using Python Tools”. In: Modeling, Identification
and Control 36.1 (2015), pp. 53–65. DOI: 10.4173/mic.2015.1.4.

[5] Anushka Perera, Tor A. Hauge and Carlos F. Pfeiffer. “State Estimation and Optimal
Control an Industrial Copper Electrowinning Process”. In: Control Engineering Practice
36.1 (2015), pp. 53–65. DOI: 10.4173/mic.2015.1.4.

[6] E. O. Stensholt et al. “Development and practice of the Falconbridge chlorine leach pro-
cess”. In: CIM Bulletin 9.1051 (2001), pp. 101–104.

[7] E.O. Stensholt, H. Zachariasen and J.H. Lund. “Falconbridge chlorine leach process”. In:
Transactions of The Institution of Mining and Metallurgy (1986).

[8] E.O. Stensholt et al. “Recent improvements in the Falconbridge Nikkelverk nickel re-
finery, Extractive Metallurgy of Nickel and Cobalt”. In: The Metallurgical Society (1988),
pp. 403–413.

[9] Bernt Lie and Tor Anders Hauge. “Modeling of an industrial copper leaching and elec-
trowinning process, with validation against experimental data”. In: Proceedings SIMS.
2008, pp. 7–8.

[10] Tor Anders Hauge, Rune Løkling and Stanley Haga. “Past, Present and Future of Process
Control at Xstrata Nikkelverk”. In: Modeling, Identification and Control 30.3 (2009),
p. 157.

[11] N Habbache et al. “Leaching of copper oxide with different acid solutions”. In: Chemical
Engineering Journal 152.2 (2009), pp. 503–508.

[12] Octave Levenspiel. Chemical reaction engineering. 3rd ed. John Wiley & Sons, 1999.

[13] Wassim M Haddad and Sergey G Nersesov. Stability and control of large-scale dynamical
systems: A Vector Dissipative Systems Approach. Princeton University Press, 2011.

[14] Ching Tai Lin. “Structural controllability”. In: Automatic Control, IEEE Transactions on
19.3 (1974), pp. 201–208.

[15] Simon Haykin and Eric Moulines. “Large-scale dynamic systems”. In: PROCEEDINGS-
IEEE 95.5 (2007), p. 849.

[16] François E Cellier and Ernesto Kofman. Continuous system simulation. Springer Science
& Business Media, 2006.

41

http://dx.doi.org/10.4173/mic.2015.1.4
http://dx.doi.org/10.4173/mic.2015.1.4
http://dx.doi.org/10.4173/mic.2015.1.4

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

[17] Constantinos C Pantelides. “The consistent initialization of differential-algebraic sys-
tems”. In: SIAM Journal on Scientific and Statistical Computing 9.2 (1988), pp. 213–
231.

[18] Linda R Petzold et al. “A description of DASSL: A differential/algebraic system solver”.
In: Proc. IMACS World Congress. 1982, pp. 430–432.

[19] Panos J Antsaklis and Anthony N Michel. Linear systems. Springer Science & Business
Media, 2006.

[20] Younes Chahlaoui and Paul Van Dooren. “Estimating Gramians of large-scale time-varying
systems”. In: IFAC Proceedings Volumes 35.1 (2002), pp. 325–330.

[21] Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

[22] Hassan K Khalil and JW Grizzle. Nonlinear systems. Vol. 3. Prentice hall New Jersey,
1996.

[23] Jean-Jacques E Slotine, Weiping Li et al. Applied nonlinear control. Vol. 199. 1. Prentice-
hall Englewood Cliffs, NJ, 1991.

[24] Alberto Isidori. Nonlinear control systems. Springer Science & Business Media, 1995.

[25] Matthew R James. “Controllability and Observability of Nonlinear Systems.” In: (1987).

[26] Robert Hermann and Arthur J Krener. “Nonlinear controllability and observability”. In:
IEEE Transactions on automatic control 22.5 (1977), pp. 728–740.

[27] Kurt Johannes Reinschke. “Multivariable control: a graph theoretic approach”. In: (1988).

[28] Yang-Yu Liu, Jean-Jacques Slotine and Albert-László Barabási. “Observability of com-
plex systems”. In: Proceedings of the National Academy of Sciences 110.7 (2013), pp. 2460–
2465.

[29] Dragoslav D Siljak. Decentralized control of complex systems. Courier Corporation, 2011.

[30] J Deyst and C Price. “Conditions for asymptotic stability of the discrete minimum-variance
linear estimator”. In: IEEE Transactions on Automatic Control 13.6 (1968), pp. 702–705.

[31] Dan Simon. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches.
Wiley-Interscience, 2006. ISBN: 0471708585.

[32] Kenneth R. Muske and Thomas F. Edgar. “Nonlinear Process Control”. In: ed. by Michael
A. Henson and Dale E. Seborg. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1997.
Chap. Nonlinear State Estimation, pp. 311–370. ISBN: 0-13-625179-X. URL: http://
dl.acm.org/citation.cfm?id=248020.248026.

[33] Andrew H Jazwinski. Stochastic processes and filtering theory. Courier Corporation,
2007.

[34] Gilbert Strang and Kai Borre. Linear algebra, geodesy, and GPS. Siam, 1997.

[35] Siew Chan, GC Goodwin and Kwai Sin. “Convergence properties of the Riccati differ-
ence equation in optimal filtering of nonstabilizable systems”. In: IEEE Transactions on
Automatic Control 29.2 (1984), pp. 110–118.

[36] Yongkyu Song and Jessy W Grizzle. “The extended Kalman filter as a local asymptotic
observer for nonlinear discrete-time systems”. In: American Control Conference, 1992.
IEEE. 1992, pp. 3365–3369.

[37] James E Potter. A matrix equation arising in statistical filter theory. Vol. 270. National
Aeronautics and Space Administration, 1965.

[38] Robert J Fitzgerald. “Divergence of the Kalman filter”. In: Automatic Control, IEEE
Transactions on 16.6 (1971), pp. 736–747.

42

http://dl.acm.org/citation.cfm?id=248020.248026
http://dl.acm.org/citation.cfm?id=248020.248026

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

[39] C De Souza, M Gevers and G Goodwin. “Riccati equations in optimal filtering of non-
stabilizable systems having singular state transition matrices”. In: IEEE Transactions on
Automatic Control 31.9 (1986), pp. 831–838.

[40] A Gelb. Applied optimal estimation. The M.I.T. press, 2001.

[41] Lennart Ljung. “Asymptotic behavior of the extended Kalman filter as a parameter es-
timator for linear systems”. In: Automatic Control, IEEE Transactions on 24.1 (1979),
pp. 36–50.

[42] David F Bizup and Donald E Brown. “The over-extended Kalman filter-don’t use it!” In:
Proceedings of the Sixth International Conference of Information Fusion. Vol. 1. 2003,
pp. 40–46.

[43] Andreas Wächter and Lorenz T Biegler. “On the implementation of an interior-point fil-
ter line-search algorithm for large-scale nonlinear programming”. In: Mathematical pro-
gramming 106.1 (2006), pp. 25–57.

[44] Lorenz T Biegler. Nonlinear programming: concepts, algorithms, and applications to
chemical processes. Vol. 10. SIAM, 2010.

[45] John T Betts. Practical methods for optimal control and estimation using nonlinear pro-
gramming. Vol. 19. Siam, 2010.

[46] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science & Business
Media, 2006.

[47] Andreas Griewank and Andrea Walther. Evaluating derivatives: principles and tech-
niques of algorithmic differentiation. Siam, 2008.

[48] Peter Fritzson. Introduction to modeling and simulation of technical and physical systems
with Modelica. John Wiley & Sons, 2011.

[49] Urban Dominik Mäder. Augmented models in estimation and control. ETH, 2010.

[50] Lennart Ljung and Torkel Glad. Modeling of dynamic systems. PTR Prentice Hall Engle-
wood Cliffs, 1994.

[51] Athanasios C Antoulas. “An overview of approximation methods for large-scale dynam-
ical systems”. In: Annual reviews in Control 29.2 (2005), pp. 181–190.

[52] Athanasios C Antoulas. Approximation of large-scale dynamical systems. Vol. 6. Siam,
2005.

[53] James Anderson, Yo-Cheng Chang and Antonis Papachristodoulou. “Model decomposi-
tion and reduction tools for large-scale networks in systems biology”. In: Automatica 47.6
(2011), pp. 1165–1174.

[54] Dragoslav D Šiljak. Large-scale dynamic systems: stability and structure. Vol. 2. North
Holland, 1978.

[55] Peter Colin Young and JC Willems. “An approach to the linear multivariable servomech-
anism problem†”. In: International journal of control 15.5 (1972), pp. 961–979.

[56] Prodromos Daoutidis and Costas Kravaris. “Structural evaluation of control configur-
ations for multivariable nonlinear processes”. In: Chemical Engineering Science 47.5
(1992), pp. 1091–1107.

[57] Shean-lin Liu. “Noninteracting process control”. In: Industrial & Engineering Chemistry
Process Design and Development 6.4 (1967), pp. 460–468.

43

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

44

Part II

PUBLISHED AND SUBMITTED
PAPERS

45

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

Paper A

Making Modelica Models Available for
Analysis in Python Control Systems
Library

47

MAKING MODELICA MODELS AVAILABLE FOR ANALYSIS IN
PYTHON CONTROL SYSTEMS LIBRARY

Anushka Perera, Carlos Pfeiffer and Bernt Lie∗
Telemark University College
Kjølnes ring 56, P.O. Box 203

N-3901 Porsgrunn
Norway

Tor Anders Hauge
Glencore Nikkelverk

Kristiansand
Norway

ABSTRACT

Modelica-based simulation environments are primarily targeted on model simulation, therefore they
generally lack support for advanced analysis and synthesis needed for general control systems de-
sign and particularly for optimal control problems (OCPs), although a Modelica language extension
(Optimica) exists to support general optimization problems. On the other hand, MATLAB has a rich
set of control analysis and synthesis tools based on linear models. Similarly, Python has increasing
support for such tools e.g. the “Python Control System Library” developed in Caltech. In this paper,
we consider the possibility of automating the process of extracting linear approximations of Mod-
elica models, and exporting these models to a tool with good support for linear analysis and design.
The cost of software is an important aspect in our development. Two widly used free Modelica tools
are OpenModelica and JModelica.org. Python is also freely available, and is thus a suitable tool for
analysis and design in combination with the “Python Control System Library” package. In this work
we choose to use JModelica.org as the Modelica tool because of its better integration with Python
and CasADi, a CAS (Computer Algebra System) tool that can be used to linearize Modelica mod-
els. The methods that we discuss can in principle also be adapted for other Modelica tools. In this
paper we present methods for automatically extracting a linear approximation of a dynamic model
encoded in Modelica, evaluated at a given operating point, and making this linear approximation
available in Python. The developed methods are illustrated by linearizing the dynamic model of a
four tank level system, and showing examples of analysis and design based on the linear model. The
industrial application of these methods to the Copper production plant at Glencore Nikkelverk AS,
Kristiansand, Norway, is also discussed as current work.
Keywords: Modelica, JModelica.org, Python, CasADi, Symbolic/Numeric Linearization, Linear
Analysis, python-control

1 INTRODUCTION
Modelica is becoming a de facto standard for model-
ing of large-scale complex physical systems. Since
Modelica is object-oriented, declarative (acausal),
and equation-based, it allows to create reusable com-

∗Corresponding author: Phone: +47 41807744 E-
mail: bernt.lie@hit.no

ponents and to built efficient reconfigurable com-
ponent-models. A Modelica-based simulation en-
vironment (a Modelica tool) is needed to simulate
Modelica models.1 Modelica tools mainly focus
on model simulation. However, the model sim-

1A complete list of Modelica tools is available at https:
//www.modelica.org/tools.

Proceedings from The 55th Conference on Simulation and Modelling (SIMS 55),
21-22 October, 2014. Aalborg, Denmark

138

ulation is not the only objective of mathematical
modeling. Among others optimal control problems
(OCPs), control analysis and synthesis, and state es-
timations are several aspects that require dynamic
systems modeling. Optimica [1] extends Modelica
language specifications to handle OCPs and JMod-
elica.org provides Optimica compilers. OpenModel-
ica partially support Optimica extension at the mo-
ment.
In order to exploit Modelica, either a simulation en-
vironment should be equipped with necessary tools
for model analysis (e.g. good enough scripting fa-
cilities and/or GUI options) or Modelica should be
interfaced with other existing tools. Some comercial
Modelica tools provide interfaces to integrate toex-
ternal software, such as Dymola integrating with
MATLAB/Simulink. However, these tools are very
expensive. A free tool, the JModelica.org platform,
integrates completely with Python through two core
Python packages: pymodelica for compilers and
pyfmi/pyjmi for model import.2

Since we are mainly interested in free software tools
that easily interface with other tools, we selected
JModelica.org. The JModelica.org platform has also
an interface with CasADi [2] and hence, it is pos-
sible to make Modelica/Optimica models available
as symbolic model objects in Python. The casadi
Python package is used to linearize Modelica mod-
els symbolically/numerically (see [3] for a detailed
description.) and then the system matrices may be
used in linear system analysis and in algorithms, in
particular using the python-control package.3

This paper demonstrates usefulness of interfacing
Modelica with Python via CasADi. The method is
explained with a simple example (a four tanks sys-
tem). As a case study of a real process the Cop-
per production plant [4] at Glencore Nikkelverk AS,
Kristiansand, Norway is considered by showing how
to design a LQR (Linear Quadratic Regulator) opti-
mal state feedback controller using the python-
control package.

2See the JModelica.org user guide available at http://
www.jmodelica.org.

3http://www.cds.caltech.edu/~murray/
wiki/Control_Systems_Library_for_Python.

2 STRUCTURE OF LINEARIZATION
2.1 MODELICA AND DAES
The execution of a Modelica model is started with
a model flattening process that removes the hier-
archical structure (i.e. expansion of inherited base
classes, adding connector equations, etc.) of the
Modelica model into a flat model [5]. A flattened
model provides a set of acausal differential-alge-
braic-discrete equations, or so called hybrid DAEs
form, which is given by

F (t, ẋ,x,u,z,m, p) =




F1 (t, ẋ,x,u,z,m, p)
F2 (t, ẋ,x,u,z,m, p)

. . .
Fm (t, ẋ,x,u,z,m, p)


= 0,

(1)
where x, u, z, m, p, and t are respectively, the dy-
namic state vector, the input vector, the algebraic
state vector, the piece-wise constant vector, the pa-
rameter vector, and time. The keyword input
is used to define input variables and output4 for
defining output variables. Output variables are also
algebraic variables, hence they are included in z. An
output vector, y, may be expressed as:

y = H (t,x,u,z,m, p) . (2)

For simplicity and notational convenience, m and p
are neglected and thereby we have:

F (t, ẋ,x,u,z) =




F1 (t, ẋ,x,u,z)
F2 (t, ẋ,x,u,z)

. . .
Fm (t, ẋ,x,u,z)


= 0. (3)

Where, m = dim(x)+dim(y). A flattened Modelica
model is not yet ready to be solved for ẋ and z. A
complicated set of manipulations are done on flat-
tened models: sorting equations (F1,F2, . . . ,Fm), in-
dex reduction, common subexpression elimination,
etc. prior to solving the equation 3 [5][7].

2.2 CONVERSION TO EXPLICIT STATE
SPACE FORM

Consider the DAEs in the equation 3. Converting
DAEs into explicit ODEs may be required in many

4The variables which are prefixed with input/output
keywords within the Modelica components at the highest hier-
archy of a component-model are appeared as input/output vari-
ables after flattening.

Proceedings from The 55th Conference on Simulation and Modelling (SIMS 55),
21-22 October, 2014. Aalborg, Denmark

139

applications or to use most standard ODE solvers. If
∂F

∂ [ẋ,z]T
is not singular (a necessary condition for im-

plicit to explicit transformation), then [ẋ,z]T can be
written as continuous functions of t, x, and u.5 On
the other hand, if ∂F

∂ [ẋ,z]T
is singular, then implicit to

explicit transformation may not be possible. Alge-
braic constraint among t, x, z and u can make ∂F

∂ [ẋ,z]T

singular and in such situations, the constraint equa-
tions are differentiated with respect to time, t.

Theorem 1 The index of a DAE, F (t, ẋ,x,u,z) = 0,
is the minimum number of times that all or part of
the DAE must be differentiated with respect to t in
order to determine [ẋ, ż]T as a continuous function
of x, z, u, and t [8].

The definition to the index of a system of DAEs
is given in theorem 1. Higher index (i.e. index >
1) problems may be reduced into at most index 1
problems systematically using the Pantelides algo-
rithm [9]. For simplicity, the DAEs

f (t, ẋ,x,u,z) = 0 (4)

and
g(t,x,u,z) = 0 (5)

are considered in the following discussion (a special
case of the equation 3). Sometimes, it may be possi-
ble to express algebraic state variables (∈ z), explic-
itly in terms of t, x and u and in such cases the index
of the problem is said to be 0. By differentiating the
equation 5, we get:

∂g
∂ t

+
∂g
∂x
· ẋ+ ∂g

∂u
· u̇+ ∂g

∂ z
· ż = 0. (6)

If ∂g
∂ z is not singular, then the equation 6 is used to

find ż and hence, the initial problem (equations 4
and 5) is said to be an index 1 problem and equa-
tions 4 and 6 gives an index 0 problem. The equa-
tion 4, in the general case, gives implicit ODEs,
however often they appear as explicit ODEs (i.e.
ẋ = f (t,x,u,z)). If ∂g

∂ z is singular, it means there are
algebraic dependencies among t, x, and u. In this
case the algebraic constraints in equation 6 are dif-
ferentiated once more and if this gives a possibility
to find ż, then the initial system of DAEs is an index
2 problem. Constraint equations are differentiated,
as many times as the index of the initial problem,

5The implicit function theorem.

until an index 0 problem is obtained. Note that a
reduced index 0 (or 1) problem may not necessarily
give the solution to the initial high index problem,
unless consistent initial conditions are given [10].
After reducing the index and BLT sorting6, we have
a causal system of DAEs,

f̃
(
t, ˙̃x, x̃, ũ, z̃

)
= 0, (7)

and
g̃(t, x̃, ũ, z̃) = 0 (8)

with index 1. ˙̃x is the new dynamic state vector of
the reduced problem and ũ =

[
u, du

dt ,
d2u
dt2 , . . .

]
. The

index reduction process may result in adding addi-
tional variables and those variables are stacked in z̃.
For examples, the dummy derivatives, the state vari-
ables which has become algebraic, etc [11]. As ∂ g̃

∂ z̃
is not singular and thereby, it is thus possible to ex-
plicitly find ˙̃z (if needed) by:

˙̃z =−
(

∂ g̃
∂ z̃

)−1

·
[

∂ g̃
∂ t̃

+
∂ g̃
∂ x̃
· ˙̃x+ ∂ g̃

∂ ũ
· ˙̃u
]
. (9)

Consistent initialization gives the solution to the
equations 7 and 9 identical to the initial higher in-
dex problem in the equations 4 and 5.

2.3 LINEARIZATION
Suppose that

(
t0, ˙̃x0, x̃0, ũ0, z̃0

)
exists such that

f̃
(
t0, ˙̃x0, x̃0, ũ0, z̃0

)
= 0 and g̃(t0, x̃0, ũ0, z̃0) = 0, then(

t0, ˙̃x0, x̃0, ũ0, z̃0
)

is an operating point. In many
cases, it is required to find the linear approximation
for given nonlinear model with respect to an operat-
ing point. The linear approximation to equations 7
and 8 are given by:

∂ f̃
∂ t̃

+
∂ f̃
∂ ˙̃x
·δ ˙̃X +

∂ f̃
∂ x̃
·δ X̃ +

∂ f̃
∂ ũ
·δ ˙̃U +

∂ f̃
∂ z̃
·δ ˙̃Z = 0

(10)
and

∂ g̃
∂ t̃

+
∂ g̃
∂ x̃
·δ X̃ +

∂ g̃
∂ ũ
·δ ˙̃U +

∂ g̃
∂ z̃
·δ ˙̃Z = 0. (11)

Jacobian matrices are evaluated at
(
t0, ˙̃x0, x̃0, ũ0, z̃0

)
.

∂ f̃
∂ ˙̃x and ∂ g̃

∂ z̃ are not singular and as a result equa-
tions 10 and 11 can be transformed into a state space
form.
The usual procedure to obtain numerical Jacobian

6BLT stands for Block-Lower-Triangular.
Proceedings from The 55th Conference on Simulation and Modelling (SIMS 55),
21-22 October, 2014. Aalborg, Denmark

140

matrices is to use finite difference methods. For ex-
ample, a finite difference approximation to ∂ f̃

∂ ˙̃x using
the central difference method is

f̃
(
t, ˙̃x+ Idim(x) ·h, x̃, ũ, z̃

)
− f̃

(
t, ˙̃x− Idim(x) ·h, x̃, ũ, z̃

)

2 ·h2 .

(12)
Where h is a small-enough positive number and
Idim(x) is a dim(x)-by-dim(x) unit matrix. There are
several drawbacks in finite difference methods: trun-
cation errors, choosing h is harder, and the results
depends on h. In order to avoid such problems, au-
tomatic/algorithmic differentiation (AD) techniques
can be used, where derivatives are calculated as ac-
curate as up to the working precision of a given com-
puter. AD techniques are used to evaluate deriva-
tives of functions defined by means of a high-level
programming language such as Python/C++/etc.7

The AD is implemented with the help of a com-
puter algebra system (CAS) tool, which provides
symbolic manipulations over mathematical expres-
sions. A CAS tool is used to create symbolic vari-
ables, matrices, expressions, functions and do sym-
bolic mathematical manipulations on them such as
symbolic differentiation8, integration, etc. There are
many CAS tools available such as Maple, Mathe-
matica, SymPy, CasADi, Maxima, etc.9 A CAS
tool may or many not support AD. For example the

7Consider a function f̄ such that ȳ = f̄ (x̄), where x̄ =
[x̄1, x̄2, . . . , x̄n] and ȳ = [ȳ1, ȳ2, . . . , ȳm]. x̄ and ȳ are the inde-
pendent and the dependent variable vectors respectively. Often,
it is possible to represent yi-x j relationships using elementary
unary/binary operations (+, -, etc.) and elementary functions
(sin, cos, etc.). Let ȳ1 = x̄1 · ex̄1·x̄2 . ȳ1 can be expressed in
terms of basic functions and unary/binary operators using a set
of intermediate variables (z̄k’s): z̄0 = x̄1, z̄−1 = x̄2, z̄1 = z̄0 · z̄−1,
z̄2 = ez̄1 , z̄3 = z̄0 · z̄2, z̄4 = z̄3, and ȳ1 = z̄4. z̄k can be written as

z̄k = f̄ k
e (z̄i), (13)

where i < k and f̄ k
e contains elementary functions and opera-

tions. Now, for example ∂ ȳ1
∂ x̄1

= ∂ z̄4
∂ z̄0

=
∂ f̄ 4

e
∂ z̄0

is given, by applying
chain-rule, by

∂ z̄4

∂ z̄0
= Σ4−1

i=1
f̄ 4
e (z̄i)

∂ z̄i
· ∂ z̄i

∂ z̄0
. (14)

f̄ 4
e (z̄i)
∂ z̄i

is known as f̄ 4
e contains known elementary functions. In

order to find ∂ z̄i
∂ z̄0

, the equation 14 is applied again and so on.
The derivative evaluation may be done in one of two modes:
forward and reverse. The method just mentioned above is the
forward mode. For further details, refer [12].

8Note that symbolic differentiation is not AD.
9http://www.autodiff.org/ gives a list of available

AD tools.

sympy python package doesn’t support AD while
Maple does. If f̃ and g̃ in equations 7 and 8 can be
symbolically expressed using a CAS tool which sup-
port AD, then the Jacobian matrices in equations 10
and 11 can be evaluated efficiently using AD tech-
niques.

2.4 JMODELICA.ORG OPTIONS
There are several ways of creating Model-
ica/Optimica model objects, so called model export,
in JModelica.org: FMU, JMU, and FMUX.10 FMUs
are based on FMI (Functional Mock-up Interface)
standards11 and all others are JModelica.org plat-
form specific. The pymodelica package contains
compilers for compiling Modelica/Optimica models
into FMUs, JMUs, and FMUXes. But FMU-ex-
port doesn’t support Optimica. FMUXes are cru-
cial here because in order to work with symbolic
DAEs, FMUX model units should be used and the
relevant compiler is compile_fmux. A com-
piled model is stuffed in a zip file (with the file
extension ’.fmux’) and the modelDescription.xml
file is contained in it. modelDescription.xml file
gives a flat model description of Modelica/Optimica
models. JMUs closely follow FMI standards. zip
files of both FMUs/JMUs provide a compiled C-
codes and binaries besides modelDescription.xml
files while in FMUXes only the modelDescrip-
tion.xml file is given. The model import (load-
ing FMU/JMU/FMUX model objects into Python)
may be done via two Python packages: PyFMI
and PyJMI. PyFMI is for FMUs while PyJMI for
JMUs/FMUXes.
CasADi is a symbolic framework for AD and
non-linear optimization as well as it is a CAS
tool. CasADi can import Modelica/Optimica
models, where those models have been trans-
formed into compatible XML-files (modelDe-
scription.xml) [13][14] and generates symbolic
DAEs/OCPs. the parseFMI() method which is
defined within the CasADi class SymbolicOCP
is used to import XML-based Modelica/Optimica
models. See [15] for more details. CasADi integra-

10The latest JModelica.org version 1.14 has introduced
a new model class using the compiler transfer_-
optimization_problem, which is available in pyjmi
package. See the user guide for further details. In this paper
JModelica.org version 1.12 is considered.

11https://www.fmi-standard.org/.
Proceedings from The 55th Conference on Simulation and Modelling (SIMS 55),
21-22 October, 2014. Aalborg, Denmark

141

tion with JModelica.org [16] opens up a provision to
use Modelica/Optimica models with complete flex-
ibility within Python, and making it possible to ex-
ploit modeling power in Modelica as well as script-
ing power in Python.

3 A PYTHON IMPLEMENTATION WITH
AN EXAMPLE

3.1 STRUCTURE OF PYTHON SCRIPT
A simple four-tank system is considered (taken
from [17]). See Figure 1 for the schematic model
of the system. The mathematical model is given
by equations 15 - 20. The table 1 contains pa-
rameters. The Optimica model is stored in a text
file named TankSystems with the file extension
.mop (in this case, the file extension may have
been used to be .mo). TankSystems.mop con-
tains TankSystems package and this package
contained two Modelica models: FourTanks for
the dynamic model and FourTanks_init for the
steady state model in order to find steady state. See
appendix A for the Optimica code.

Figure 1: A schematic diagram for the four tank sys-
tems.

dh1(t)
dt

=−c1 ·
√

h1(t)
A1

+
c3 ·
√

h3(t)
A1

+
γ1 ·q1(t)

A1
(15)

dh2(t)
dt

=−c2 ·
√

h2(t)
A2

+
c4 ·
√

h4(t)
A2

+
γ2 ·q2(t)

A2
(16)

dh3(t)
dt

=−c3 ·
√

h3(t)
A3

+
(1− γ2) ·q2(t)

A3
(17)

dh4(t)
dt

=−c4 ·
√

h4(t)
A4

+
(1− γ1) ·q1(t)

A4
(18)

dq2(t)
dt

=− 1
τ2
·q2(t)+

k2

τ2
· v2(t) (19)

dq1(t)
dt

=− 1
τ1
·q1(t)+

k1

τ1
· v1(t) (20)

Variable Value Units
A1 12.57 cm2

A2 12.57 cm2

A3 12.57 cm2

A4 12.57 cm2

c1 9.82 c ·m5/2/s
c2 5.76 c ·m5/2/s
c3 9.02 c ·m5/2/s
c4 8.71 c ·m5/2/s
K1 6.94 c ·m3/V
K2 8.72 c ·m3/V
τ1 6.15 s
τ2 13.2 s

Table 1: Four-Tanks System Model Parameters.

The Python code used to compile the Model-
ica/Optimica Four Tanks is given below.

Import compiler compile_fmux
from pymodelica import compile_fmux
Compile Modelica/Optimica models
file_name = ’TankSystems.mop’
model_name = ’FourTanks’
compile_fmux(model_name,file_name)
Note: name of the ’.zip’ file created is
\’FourTanks.fmux’

Now, the FMUX model object is imported as a
CasadiModel object. See below:

from pyjmi import CasadiModel
casadiModelObject = CasadiModel(’FourTanks.fmux’)
Get flat ocp representation
ocp = casadiModelObject.ocp

ocp gives a flat representation of Model-
ica/Optimica models based on the modelDe-
scription.xml. ocp.ode and ocp.alg represent
symbolic expressions for ordinary differential
equations (ODEs) and algebraic equations respec-
tively. Use Python commands print ocp and
help(ocp) to get help. Now, the symbolic DAEs
are available for general use in Python,12 hence
Modelica/Optimica models can be used in various

12For example, it is possible to implement Pantelides algo-
rithm with symbolic DAEs.

Proceedings from The 55th Conference on Simulation and Modelling (SIMS 55),
21-22 October, 2014. Aalborg, Denmark

142

algorithms and in analysis using CasADi function-
alities, numpy13, matplotlib14, scipy15 and
python-control like Python packages. Use
the following Python code to import CasADi and
CasADi tools.

from casadi import *
from casadi.tools import *

If necessary, ocp.makeExplicit() method can
be used to transform ODEs from implicit to explicit
form.16 Derivatives (∈ ẋ), dynamic states (∈ x), al-
gebraic states (∈ z), independent parameters (∈ pi),
dependent parameters (∈ pd), free parameters (∈
p f), time (t), and control signals (∈ u) are given by
respectively casadiModelObject.dx, ocp.x,
ocp.z, ocp.pi, ocp.pd, ocp.pf, ocp.t, and
ocp.u. For example, ocp.x[i] gives xi+1 (0 ≤
i ≤ dim(x)− 1). ocp.x[i] is in variable data
type, and it has to be converted into SX data type be-
fore creating SXFunction instances. This is done
by ocp.x[i].var()[3]. Then all the states vari-
ables (in SX type) are stuffed in a Python list.
The same procedure is applied to other variables
as well. Using ocp.eliminateDependent(),
dependent parameters are eliminated. ocp.ode
can be taken as a function of t, ẋ, x, z, and u and
let it be 0 = f (t, ẋ,x,u,z). Now, f is defined as an
SXFunction class instance. Say, ffun. See be-
low for the Python code to create it (see appendix B
for the complete Python script):

Define DAEs
f = ocp.ode
g = ocp.alg
Create an SXFunction for f and g
ffun = SXFunction([t,vertcat(xDot),vertcat(x),\
vertcat(u),vertcat(z)],[f])
gfun= SXFunction([vertcat(x),vertcat(u),
vertcat(z)],[g])
ffun.init()
gfun.init()

Note that as explained in subsection 2.2, index re-
duction should be done on f and g, if the problem is
higher index, to obtain lower index problems before
creating ffun and gfun. Anyway, the four-tank
system model has the index equal to 0. For an exam-
ple, ∂ f

∂u is given by ffun.jac(2). See the result
(by entering ffun.jac(2) in the command line)
given below.

13http://www.numpy.org/.
14http://matplotlib.org/.
15http://www.scipy.org/.
16This is possible only if ODEs are linear w.r.t. ẋ.

Matrix<SX>(
[[00, 00]
[00, 00]
[00, 00]
[00, 00]
[-1.12846, 00]
[00, -0.660606]]
)

Numerical Jacobian matrices are then found for
given (t0, ẋ0,x0,u0,z0). See the code given below.

f_u_fun.setInput(t0,0)
f_u_fun.setInput(dx0,1)
f_u_fun.setInput(x0,2)
f_u_fun.setInput(u0,3)
f_u_fun.setInput(z0,4)
f_u_fun.evaluate()

f_u_num = f_u_fun.getOutput()

Operating points are usually choosen at steady
states. A steady state, x0 is calculated by: (1)
compiling the static Modelica model TankSys-
tems.FourTanks_Init into a JMU, (2) loading the
JMU model, (3) setting the input vector u0,
and (4) finally, initializing the JMU model using
initialize() method.17 Hence, it is possible
to find system matrices A, B, C, and D based on the
Jacobian matrices just evaluated.
As the system matrices are available, the python-
control package can be used in control analysis
and synthesis. In order to import the python-
control use:

import control

or

from control import *

As a summery to this section, the following points
are made: (1) an Optimica package is created with
two Modelica models (dynamic and static) in it, (2)
use the static model to find the steady state using a
JMU model object, (3) import the dynamic model as
a CasadiModel object model and use casadi to lin-
earization of symbolic DAEs (after reducing the in-
dex if needed), and (4) use the linearized model with
the python-control package. See TankSys-
tem.mop and TankSystem.py in the appendices A
and B.

17Initialization is done by formulating DAEs and equations
given within initial equation clause in residual form
and minimizing sum of square error using the Ipopt solver.
See JModelica.org user guide.

Proceedings from The 55th Conference on Simulation and Modelling (SIMS 55),
21-22 October, 2014. Aalborg, Denmark

143

4 INDUSTRIAL CASE STUDY
We consider the chlorine leaching and electro-win-
ning process which is a part of the nickel refinery
of Glencore Nikkelverk in Kristiansand, Norway. A
mechanistic models is presented in [4] and it is a
MIMO system with 3 inputs (u1, u2, u3), 11 distur-
bances (w1, w2, . . . , w11), 3 outputs (y1, y2, y3) and
39 states (x1, x2, . . . , x39). The process is in large-
scale and it is complex (multi variable nature, non-
linearities, etc.). Hence, Modelica and Optimica are
ideal for the modeling and optimization. Also the
process is a good candidate for model based control.
In this section, what is explained in subsection 3.1
will be applied to the copper plant model.
The following demonstrations shows how to use
the python-control tool to design a (infinite-
horizon, continuous-time) LQR state feedback con-
troller18 for the linearized Copper plant model. The
linearized model is given by

δ̇x = A ·δx+B ·δu, (21)

and
δy =C ·δx+D ·δu, (22)

where δ̇x, δx, δu, and δy are deviation variables
with respect to a steady state point, x0. Thus, δ̇x0 =
0, δx0 = 0, δu0 = 0 and δy0 = 0. The procedure to
find A, B, C and D as well as x0 is already given (see
subsection 3.1). Use the following script to create a
state space model (sys) object and optionally, the
state space model may be transformed into transfer
function form (sys2).

#Import python-control package
import control as ctrl
#Create state space model
sys = ctrl.ss(A,B,C,D)
#If needed, state space==>transfer function
sys2 = ctrl.ss2tf(sys)

The ctrl.lqr() method calculates the optimal
feedback controller, δu = −K · δx, such that mini-
mizing the cost function J:

J =
∫ ∞

0

(
δxT ·Q ·δx+δuT ·R ·δu+2 ·δxT ·N ·δu

)
·dt.

(23)

18This paper mainly focus on demonstrating the idea of mak-
ing Modelica models available in Python in general and in par-
ticular using the python-control package. Therefore, a
detailed theoretical discussion about LQR state feedback con-
trollers is not given here. For more details about LQR state
feedback controllers refer [6].

Let, N is a zero matrix. K is the state feedback gain
matrix and it is given by K = R−1 ·BT ·S. S is found
by solving the algebraic Riccati equation (ARE)

AT ·S+S ·AT −S ·B ·R−1 ·BT ·S+Q = 0. (24)

Use K,S,E=ctrl.lqr(sys,Q,R,N) finds K,
S, and E. E gives Eigenvalues of the closed loop
system. Now, the closed loop system is given by

δ̇x = (A−B ·K) ·δx, (25)

and
δy = (C−D ·K) ·δx. (26)

The closed loop system is simulated for a small per-
turbation in δx, say 0.01. Q and R are positive defi-
nite matrices and are used as the tunning parameters.
A possibility is to set Q to be a unit matrix while R
is a diagonal matrix and its elements are used in tun-
ning. See the code given below and the results are
given in figure 2.

Q = 1.0*np.eye(n_x,n_x)
R = 0.001*np.eye(n_u,n_u)
N = np.eye(n_x,n_u)
K,S,E=ctrl.lqr(sys,Q,R,N)

A1 = A - np.dot(B,K)
B1 = np.zeros((n_x,n_u))
C1 = C - np.dot(D,K)
D1 = np.zeros((n_y,n_u))
sys3 = ctrl.ss(A1,B1,C1,D1)

t0 = 0.
tf = 20.
X0 = 0.1*np.ones((n_x,1))
N = 500
T = np.linspace(t0,tf,N)

plt.figure(0)
plt.hold(False)
for i in range(n_y):

Y,T=ctrl.step(sys3,T,x0,0,i)
plt.plot(T,Y,label = ’y_{0}’.format(i+1))
plt.hold(True)
plt.xlabel(’Time’)
plt.title(’Outputs’)
plt.legend(loc=’upper right’, numpoints = 1)
plt.grid(True)
plt.show()

Note that both disturbances and control inputs are
stacked in δu such that 12th, 6th and 5th elements are
δu1, δu2, and δu3 respectively.19 When designing
the LQR state feedback controller above, δu is con-
sidered to contain only control variables. However,
this is not realistic. δu should have been decom-
posed as δu := [δu,δw]T and handled disturbances

19Check print ocp.u.
Proceedings from The 55th Conference on Simulation and Modelling (SIMS 55),
21-22 October, 2014. Aalborg, Denmark

144

Figure 2: The δy1−δy2−δy3 vs. t plot.

accordingly. Since, this paper is mainly concen-
trated on demonstrating the possibility of analyzing
Modelica models in Python, in detail discussions on
controller syntheis is not given here.

5 CONCLUSIONS
The features of Modelica language, in particular the
notion of acausal modeling, have made it a powerful
tool for modeling physical systems. However, the
Modelica standards target primarily on model sim-
ulation, which is just one of the aspects of model-
ing. It is important that Modelica models are avail-
able for general use, but not just for the simula-
tion. CasADi has an interface to Modelica/Optimica
and JModelica.org is linked with CasADi. There-
fore, Modelica-CasADi-JModelica.org combination
provides a useful way to access Modelica/Optimica
models in Python. Although, CasADi and JMod-
elica.org has some limitations, they have provided a
starting point. In this paper, it was explained the use-
fulness of interfacing Modelica models with Python.
Special emphasis was given on the Python control
system library as an up coming Python control tool,
which could be an alternative to MATLAB control
system toolbox.
Finally, couple of suggestions are made. CasADi-
Modelica interface (via XML representation of
Modelica models) may be further developed to sup-
port Modelica specification as much as possible. At
the moment CasADi-Modelica interface is under-
developed. The idea pointed out in this paper, in
principal, for example may also be implemented
within MATLAB environment. MathWorks pro-

vides the Simscape language and the Symbolic Math
Toolbox (a CAS tool). The Simscape language is
similar to Modelica. Therefore, Simscape-Symbolic
Math Toolbox-MATLAB core may be designed to
do the same as what Modelica-CasADi-Python does.

REFERENCES
[1] Åkesson J. Optimica — An Extension of Mod-

elica Supporting Dynamic Optimization. 6th

International Modelica Conference 2008.

[2] Andersson J. A General-Purpose Software
Framework for Dynamic Optimization. PhD
thesis. Arenberg Doctoral School, KU Leu-
ven: Department of Electrical Engineering
(ESAT/SCD) and Optimization in Engineer-
ing Center, Kasteelpark Arenberg 10, 3001-
Heverlee, Belgium, 2013.

[3] Perera A. Using CasADi for Optimization and
Symbolic Linearization/Extraction of Causal-
ity Graphs of Modelica Models via JModel-
ica.Org. HiT Report No. 5. Porsgrunn: Tele-
mark University College. https://teora.
hit.no/handle/2282/2175. ISBN 978-
82-7206-380-0. 2014.

[4] Lie B, Hauge TA. Modeling of an industrial
copper leaching and electrowinning process,
with validation against experimental data. Pro-
ceedings SIMS 2008, 49th Scandinavian Con-
ference on Simulation and Modeling. Oslo
University college. Oct 7-8, 2008.

[5] Fritzson P. Introduction to Modeling and Sim-
ulation of Technical and Physical Systems with
Modelica. Wiley, 2011.

[6] Åström KJ, Murray RM. Feedback Systems:
An Introduction for Scientists and Engineers.
Princeton University Press, 2008.

[7] Cellier FE, Kofman E. Continuous System Sim-
ulation. Springer, 2006.

[8] Brenan KE, Campbell SL, Petzold LR. Numer-
ical Solution of Initial-Value Problems in Dif-
ferential-Algebraic Equations. SIAM, 1996.

[9] Pantelides CC. The Consistent Initialization of
Differential-Algebraic Systems. SIAM Journal
Scientific Statistical Computation, 1988.

Proceedings from The 55th Conference on Simulation and Modelling (SIMS 55),
21-22 October, 2014. Aalborg, Denmark

145

[10] Bendtsen C., Thomsen PG. Numerical
Solution of Differential Algebraic Equa-
tions. TECHNICAL Report No. 5. Pors-
grunn: Department of Mathematical
Modelling, Technical University of Den-
mark. http://www2.imm.dtu.dk/
documents/ftp/tr99/tr08_99.pdf.
1999.

[11] Mattsson SE, Söderlind G. Index Reduc-
tion in Differential-Algebraic Equations Using
Dummy Derivatives. SIAM Journal Scientific
Statistical Computation, 1993.

[12] Griewank A, Walther A. Evaluating Deriva-
tives: Principles and Techniques of Algorith-
mic Differentiation. SIAM, 2008.

[13] Pop A, Fritzson P. ModelicaXML: A Modelica
XML Representation with Applications. Pro-
ceedings 3rd International Modelica Confer-
ence 2003.

[14] Casella F, Donida F., Åkesson J. An XML
Representation of DAE Systems Obtained from
Modelica Models. Proceedings 7th Interna-
tional Modelica Conference 2009.

[15] Andersson J, Gillis J, Diehl M. User Documen-
tation for CasADi, 2014.

[16] Andersson J, Åkesson J, Casella F, Diehl
M. Integration of CasADi and JModelica.org.
8th International Modelica Conference 2011.

[17] Pfeiffer CF. Modeling, Simulation and Control
for an Experimental Four Tanks Systems using
ScicosLab. 52nd Scandinavian Simulation and
Modeling Society Conference 2011.

APPENDIX
A TANKSYSETEMS.MOP
package TankSystems

//=====Dynamic model=====
model FourTanks
//Parameters
parameter Real h1_init = 7.0;
parameter Real h2_init = 7.0;
parameter Real h3_init = 8.3;
parameter Real h4_init = 3.1;
parameter Real q1_init = 1;
parameter Real q2_init = 1;
parameter Real c1 = 9.82;
parameter Real c2 = 5.76;
parameter Real c3 = 9.02;
parameter Real c4 = 8.71;
parameter Real A1 = 12.57;
parameter Real A2 = 12.57;
parameter Real A3 = 12.57;
parameter Real A4 = 12.57;
parameter Real gama1 = 0;
parameter Real gama2 = 0;
parameter Real tau1 = 6.15;
parameter Real tau2 = 13.2;
parameter Real k1 = 6.94;
parameter Real k2 = 8.72;
//Dynamic variables
Real h1(start=h1_init,fixed=true);
Real h2(start=h2_init,fixed=true);
Real h3(start=h3_init,fixed=true);
Real h4(start=h4_init,fixed=true);
Real q1(start=q1_init,fixed=true);
Real q2(start=q2_init,fixed=true);
//Output variables
Real z1 = sqrt(h1)^2;
Real z2 = sqrt(h2)^2;
//Note: if we use z1 = h1, & z2 = h2 instead, then
//z1 & z2 would not be+9 considered as algebraic
//variables when the model is imported to CasADi.
//The reason is that in the modelDescription.xml
//file, both z1 & h1 would have the same
//valueReference. The same applied for z2. However,
//there could be a better way of handling this!
//Input variables
input Real v1;
input Real v2;
equation
der(h1) = ((-c1 * sqrt(h1)) +
c3 * sqrt(h3) + gama1 * q1) / A1;
der(h2) = ((-c2 * sqrt(h2)) +
c4 * sqrt(h4) + gama2 * q2) / A2;
der(h3) = ((-c3 * sqrt(h3)) +
(1 - gama2) * q2) / A3;
der(h4) = ((-c4 * sqrt(h4)) +
(1 - gama1) * q1) / A4;
der(q1) = ((-q1) + k1 * v1) / tau1;
der(q2) = ((-q2) + k2 * v2) / tau2;
end FourTanks;
//=====Dynamic model=====
//=====Static model=====
model FourTanks_Init
extends FourTanks(h1(fixed=false),
h2(fixed=false), h3(fixed=false),
h4(fixed=false),q1(fixed=false),
q2(fixed=false));
initial equation
der(h1) = 0;
der(h2) = 0;
der(h3) = 0;
der(h4) = 0;

Proceedings from The 55th Conference on Simulation and Modelling (SIMS 55),
21-22 October, 2014. Aalborg, Denmark

146

der(q1) = 0;
der(q2) = 0;
end FourTanks_Init;
//=====Static model=====

end TankSystems;

B TANKSYSTEMS.PY
Let, 0 = f (ẋ,x,u,z) and 0 = g(x,u,z). The lin-
earized model is given by, 0 = α · δ ẋ+ β · δx+ γ ·
δu+ δ · δ z and 0 = ζ · δx+η · δu+σ · δ z, where
α = ∂ f

∂ ẋ , β = ∂ f
∂x ,..., and σ = ∂g

∂ z . δy is taken as
δy = [κx κu κz] · [δx δu δu]T , where κx, κu, and κz

should be given.

#Importing necessary packages.
import numpy as np
import matplotlib.pyplot as plt
import control as ctrl
from casadi import *
from casadi.tools import *
from pymodelica import compile_jmu
from pymodelica import compile_fmux
from pyjmi import JMUModel
from pyjmi import CasadiModel

#Compiling (to a JMU)/loading
#steady state model.
jmu_init = compile_jmu \
("TankSystems.FourTanks_Init", \
"TankSystems.mop")
init_model = JMUModel(jmu_init)

#Set inputs
v1_0 = 1.
v2_0 = 2.
u_0 = [v1_0, v2_0]
u = [’v1’,’v2’]
init_model.set(u,u_0)

#DAE initialization with Ipopt
init_result = init_model.initialize()

#Store steady state
h1_0 = init_result[’h1’][0]
h2_0 = init_result[’h2’][0]
h3_0 = init_result[’h3’][0]
h4_0 = init_result[’h4’][0]
q1_0 = init_result[’q1’][0]
q2_0 = init_result[’q2’][0]

#Compiling (to a FMUX)/loading dynamic model
fmux_name = compile_fmux \
("TankSystems.FourTanks", \
"TankSystems.mop")
model = CasadiModel(fmux_name)

#Get access to OCP
ocp = model.ocp

Get differential state
n_x = len(ocp.x)
x = list()
for i in range(n_x):

x.append(ocp.x[i].var())

#Get derivatives

xDot = list()
for i in range(n_x):

xDot.append(model.dx[i])

Get input
n_u = len(ocp.u)
u = list()
for i in range(n_u):

u.append(ocp.u[i].var())

#Get algebraic states
n_z = len(ocp.z)
z = list()
for i in range(n_z):

z.append(ocp.z[i].var())

#Eliminating dependent parameters
ocp.eliminateDependent()

#Define DAEs
f = ocp.ode
g = ocp.alg

#Create SXFunction instances for f and g
ffun = SXFunction([vertcat(xDot),vertcat(x), \
vertcat(u),vertcat(z)],[f])
gfun= SXFunction([vertcat(x),vertcat(u), \
vertcat(z)],[g])
ffun.init()
gfun.init()

#Define x0, u0, and z0
x0 = [h1_0,h2_0,h3_0,h4_0,q1_0,q2_0]
xDoto0 = [0.,0,0,0,0,0]
u0 = [v1_0,v2_0]
z0 = [h1_0,h2_0]

#Find symbolic/numeric Jacobian matrices
f_xDot = ffun.jac(0)
f_xDot_fun = SXFunction([vertcat(xDot),vertcat(x), \
vertcat(u),vertcat(z)],[f_xDot])
f_xDot_fun.init()

f_xDot_fun.setInput(xDoto0,0)
f_xDot_fun.setInput(x0,1)
f_xDot_fun.setInput(u0,2)
f_xDot_fun.setInput(z0,3)
f_xDot_fun.evaluate()

f_xDot_num = f_xDot_fun.getOutput()

alpha = np.array(f_xDot_num)
#
f_x = ffun.jac(1)
f_x_fun = SXFunction([vertcat(x),vertcat(u),\
vertcat(z)],[f_x])
f_x_fun.init()

f_x_fun.setInput(x0,0)
f_x_fun.setInput(u0,1)
f_x_fun.setInput(z0,2)
f_x_fun.evaluate()

f_x_num = f_x_fun.getOutput()

beta = np.array(f_x_num)
#
f_u = ffun.jac(2)
f_u_fun = SXFunction([vertcat(x),vertcat(u),\
vertcat(z)],[f_u])

Proceedings from The 55th Conference on Simulation and Modelling (SIMS 55),
21-22 October, 2014. Aalborg, Denmark

147

f_u_fun.init()

f_u_fun.setInput(x0,0)
f_u_fun.setInput(u0,1)
f_u_fun.setInput(z0,2)
f_u_fun.evaluate()

f_u_num = f_u_fun.getOutput()

gamma = np.array(f_u_num)
#
f_z = ffun.jac(3)
f_z_fun = SXFunction([vertcat(x),vertcat(u), \
vertcat(z)],[f_z])
f_z_fun.init()

f_z_fun.setInput(x0,0)
f_z_fun.setInput(u0,1)
f_z_fun.setInput(z0,2)
f_z_fun.evaluate()

f_z_num = f_z_fun.getOutput()

delta = np.array(f_z_num)
#
g_x = gfun.jac(0)
g_x_fun = SXFunction([vertcat(x),vertcat(u), \
vertcat(z)],[g_x])
g_x_fun.init()

g_x_fun.setInput(x0,0)
g_x_fun.setInput(u0,1)
g_x_fun.setInput(z0,2)
g_x_fun.evaluate()

g_z_num = g_x_fun.getOutput()

zeta = np.array(g_z_num)
#
g_u = gfun.jac(1)
g_u_fun = SXFunction([vertcat(x),vertcat(u),\
vertcat(z)],[g_u])
g_u_fun.init()

g_u_fun.setInput(x0,0)
g_u_fun.setInput(u0,1)
g_u_fun.setInput(z0,2)
g_u_fun.evaluate()

g_u_num = g_u_fun.getOutput()

eta = np.array(g_u_num)
#
g_z = gfun.jac(2)
g_z_fun = SXFunction([vertcat(x),vertcat(u), \
vertcat(z)],[g_z])
g_z_fun.init()

g_z_fun.setInput(x0,0)
g_z_fun.setInput(u0,1)
g_z_fun.setInput(z0,2)
g_z_fun.evaluate()

g_z_num = g_z_fun.getOutput()

sigma = np.array(g_z_num)

Define A, B, C, and D matrices
n_y = 2
kappa_x = np.eye(n_y,n_x)

kappa_u = np.zeros((n_y,n_u))
kappa_z = np.zeros((n_y,n_z))
if np.allclose(np.linalg.det(alpha),0.) != True:

if np.allclose(np.linalg.det(sigma),0.) \
!= True:

A = np.dot(np.linalg.inv(alpha),(-beta+\
np.dot(delta,np.dot(np.linalg.inv(sigma),\
zeta))))
B = np.dot(np.linalg.inv(alpha),(-gamma+\
np.dot(delta,np.dot(np.linalg.inv(sigma),\
eta))))
C = kappa_x - np.dot(kappa_z,\
np.dot(np.linalg.inv(sigma),zeta))
D = kappa_u - np.dot(kappa_z,\
np.dot(np.linalg.inv(sigma),eta))

#Use python-control
#Create state space model object

sys = ctrl.ss(A,B,C,D)
print sys

#State space to transfer function model object
sys2 = ctrl.ss2tf(sys)
print sys2

Simulate the system given input
t0 = 0.
tf = 120.
N = 1000
T = np.linspace(t0,tf,N)
U = np.dot(np.diag([v1_0,v2_0]),np.ones((n_u,N)))
t, yout, xout = ctrl.forced_response(sys,T,U,x0)

plt.figure(0)
plt.hold(False)
for i in range(n_y):

plt.plot(t,yout[i],’.’,label = \
’y_{0}’.format(i+1))
plt.hold(True)

plt.xlabel(’Time’)
plt.title(’Outputs’)
plt.legend(loc=’upper right’, numpoints = 1)
plt.show()
plt.figure(1)
plt.hold(False)
for i in range(n_x):

plt.plot(t,xout[i],’.’,label = \
’x_{0}’.format(i+1))
plt.hold(True)

plt.xlabel(’Time’)
plt.title(’States’)
plt.legend(loc=’upper right’, numpoints = 1)
plt.show()
plt.figure(2)
plt.hold(False)
for i in range(n_u):

plt.plot(t,U[i,:],’.’,label = \
’u_{0}’.format(i+1))
plt.hold(True)

plt.xlabel(’Time’)
plt.title(’Inputs’)
plt.legend(loc=’upper right’, numpoints = 1)
plt.show()

else:
print ’sigma is singular. This case is \
not considered.==>check Pantelides algorithm.’

else:
print ’Alpha is singular. This case is \
not considered.==>check Pantelides algorithm.’

Proceedings from The 55th Conference on Simulation and Modelling (SIMS 55),
21-22 October, 2014. Aalborg, Denmark

148

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

60

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

Paper B

Structural Observability Analysis of
Large Scale Systems Using Modelica
and Python

61

Modeling, Identification and Control, Vol. 31, No. 1, 2010, pp. 1–9, ISSN 1890–1328

Structural Observability Analysis of Large Scale
Systems Using Modelica and Python

M. Anushka S. Perera Bernt Lie Carlos Fernando Pfeiffer

Telemark University College, Kjølnes ring 56, P.O. Box 203, N-3901 Porsgrunn, Norway. E-mail:
{from,Bernt.Lie,Carlos.Pfeiffer}@hit.no

Abstract

State observability of dynamic systems is a notion which determines how well the states can be inferred
from input-output data. For small-scale systems, observability analysis can be done manually, while for
large-scale systems an automated systematic approach is advantageous. Here we present an approach based
on the concept of structural observability analysis, using graph theory. This approach can be automated
and applied to large-scale, complex dynamic systems modeled using Modelica. Modelica models are
imported into Python via the JModelica.org-CasADi interface, and the Python packages NetworkX (for
graph-theoretic analysis) and PyGraphviz (for graph layout and visualization) are used to analyze the
structural observability of the systems. The method is demonstrated with a Modelica model created for
the Copper production plant at Glencore Nikkelverk, Kristiansand, Norway. The Copper plant model has
39 states, 11 disturbances and 5 uncertain parameters. The possibility of estimating disturbances and
parameters in addition to estimating the states are also discussed from the graph-theory point of view.
All the software tools used on the analysis are freely available.

Keywords: structural observability, Modelica, large-scale systems, CasADi, Python, graph-theory, JMod-
elica.org, NetworkX, PyGraphviz

1 Introduction

Knowing the internal state of a dynamic system is im-
portant in many applications such as state feedback.
However, measuring all state variables is usually im-
possible or impractical. What is more realistic is to
estimate the state variables based on a finite set of
measurements. The notion of observability character-
izes whether a given set of measurements is adequate
to estimate the state of the system. For linear time
invariant systems, if the rank of the observability ma-
trix is equal to the dimension of the state space, then
the system is observable Simon (2006). For nonlin-
ear dynamic systems diverse local observability defini-
tions can be considered, for example using Lie deriva-
tives Liu et al. (2012). In addition to analyzing ob-
servability for a given set of measurements, it would

also be useful (especially for large-scale complex sys-
tems) to systematically find the minimum set of mea-
surements which makes the system observable. By ex-
ploiting the model structure (algebraic dependencies
among state and output variables), we can infer the
minimum number of measurements and the possible
choices to select from. Structural (or algebraic) observ-
ability is a fundamental property that provides a neces-
sary condition for observability, and often it may also
be sufficient for many systems Reinschke (1988), Liu
et al. (2012). Structural observability analysis can be
done using graph-theoretic techniques. Under some as-
sumptions, unknown disturbances/parameters can be
estimated (for example using Kalman filtering tech-
niques Simon (2006)) by augmenting the system with
them as state variables, making it necessary to check
the observability of the augmented system. Struc-

doi:10.4173/mic.2010.1.1 c© 2010 Norwegian Society of Automatic Control

Modeling, Identification and Control

tural observability analysis via graph theory offers a
visual means to pinpoint measurements needed to es-
timate states/disturbances/parameters, or to detect
which cannot be estimated at all in the augmented sys-
tem.
JModelica.org is a Modelica-based simulation tool that
makes possible to make Modelica models available as
symbolic model objects in Python with the help of the
JModelica.org-CasADi interface. The symbolic models
can then be used in structural analysis using Networkx,
Pygraphviz, and Python packages.1

This paper demonstrates the usefulness of using
Python and relevant Python packages in analyzing
structural observability for large-scale systems via
graph theory. As a case study, the Copper production
plant at Glencore Nikkelverk AS, Kristiansand, Nor-
way is considered. The Copper plant model contains
39 states, 11 disturbances, and 5 uncertain parameters.
The possibility of estimating disturbances and param-
eters additionally to the states will be discussed in a
graph-theocratic point of view.
Section 2 gives a basic description about graph-theo-
retic concepts which are needed in the subsequent sec-
tions. Section 3 discusses structural observability in
graph-theoretic point of view. A way of automating
structural observability analysis in Python is given in
Section 4. A demonstration of our development is done
based on a real process and it is given in Section 5.

2 Graph-theoretic concepts

A graph G is denoted by G = (V,E) where V is a set
of nodes (or vertices) and E is a set of edges.2 An
edge connects two nodes vi and vj (where vi, vj ∈ V)
and denoted by (vi, vj). The node vi and vj are in-
cident to (vi, vj) and vi and vj are said to be adja-
cent nodes. A graph may be directed or undirected.
In undirected graphs, edges are marked with directed
lines while in undirected graphs it is not. For undi-
rected graphs, (vi, vj) and (vj , vi) are identical. A
directed/undirected graph may allow multiple edges
among nodes. In short, digraph stands for directed
graph. Let an edge ei = (vi, vj) ∈ E, then vi is the ini-
tial-vertex and vj is the final-vertex. As a shorthand
notation for a directed edge, let (vi, vj) ≡ vi → vj .
A path is a sequence of edges connected one after an-
other. A path has an initial node and a final node.

1Alternatively, it is possible to create symbolic mathematical
models using the Python package SymPy which is a CAS
— CAS stands for Computer Algebra System — tool and
then use Networkx and PyGrapViz. However, this method
is more limited since it does not support the modeling power
available in Modelica.

2Refer Bondy and Murty (2008) for graph theory.

Figure 1: (a) Undirected and without self-cycles/loops
and multiple edges. (b) Undirected and with
self-cylcles/loops and multiple edges. (c) Di-
rected and without self-cycles/loops and mul-
tiple edges. (d) A directed and with self-cy-
cles/loops and multiple edges.

Number of edges in a path is called the length of it.
If a path contains no node appearing more than once,
then it is a simple path. A path with initial and fi-
nal nodes are identical, then it is a closed path. A
cycle is a closed path with no node appearing more
than once except the initial and the final nodes. Cy-
cles with length 1 are self-cycles/loops. A set of cycles
such that no two cycles have at least once common
nodes are called a cycle family. A cycle family which
covers all the nodes in a graph is called a spanning cy-
cle family. vi and vj are strongly connected if paths
from vi to vj and from vj to vi exist. A strongly con-
nected component (SSC) is a sub-graph (of a directed
graph) where each vertex in SCC is strongly connected
with all other vertices in SCC. A digraph is said to be
strongly connected if any two nodes in it are strongly
connected. See figures 1 for several examples. Con-
sider figure 1-d. {(v1, v2), (v2, v4), (v4, v4)} is a path
and its length is 3. {(v1, v2), (v2, v3)} is a simple path.
{(v2, v3), (v3, v2)} is a closed path and it is a cycle as
well. {(v2, v2)} and {(v4, v4)} are self-cycles. Nodes v2
and v3 are strongly connected. {{(v2, v2)} , {(v4, v4)}}
and {{(v4, v4)} , {(v2, v3), (v3, v2)}} are two cycle fam-
ilies.
Instead of using the term “simple path”, we use “ele-

2

Perera et.al., “Structural Observability Analysis of Large Scale Systems Using Modelica and Python”

mentary path” for digraphs. Similarly, instead of “sim-
ple cycle”, “elementary cycle” is used. A stem is an
elementary path. The initial and final nodes are re-
spectively called the “root” and the “top” of the stem.
A root is also called a driver nodes. A bud is an ele-
mentary cycle with an additional directed edge where
its final node is one of the nodes in the cycle. This
additional edge is called the distinguished edge of the
bud. A directed cactus is made out of a stem and buds
connected in a special way. The initial node of the
distinguished edge of a bud is connected to any node
in the stem except the top or it may be connected to
a node of another bud. See figure 2. A cactus has a
driver node which is the root of the stem in the catus.
If there are vertex disjoint cacti covering all nodes in a
given digraph, then they are called spanning cacti and
cacti have more than one driver nodes.3 See supple-
mentary information to Liu et al. (2011)) for further
details.
Consider a subset of edges M in an undirected graph
where no two edges share common nodes. Nodes in M
are said to be matched. M is a maximum matching
if there exist no edge set M ′ such that |M ′| > |M |.4
M is perfect if each node in the graph is in M . See
figure 3 and note that thick color lines are matched
edges. A path with edges alternating between E \M5

and M is an M -alternating path. M -alternating path
is M -alternating path with odd number of edges where
the starting and the final edges are not in M . Accord-
ing figure 3, {(v4, v3), (v3, v8), (v8, v1), (v1, v7), (v7, v6)}
is an M -augmenting path. For digraphs, a matching
is a subset of edges where no two edges share common
nodes and a node is said to be matched if that node is
the ending node of a matched edge Liu et al. (2011).
See figure 4 where M = {(v6, v7), (v1, v8), (v3, v4)} and
v7, v8, and v4 are matched nodes.

Figure 2: A cactus with two buds.

By formulating a bipartite graph (in short a bigraph)

3The plural of “cactus” is “cacti”.
4|M | is the cardinality of M .
5E \M = {e|e ∈ E & e /∈M}.

Figure 3: To the left - a maximum matching (M =
{(v4, v3), (v8, v1), (v6, v7)}). To the right - a
perfect matching.

Figure 4: A matching for a digraph.

appropriately, a maximum matching for digraphs can
be efficiently found. In a bipartite, there are two dis-
joint sets of nodes VA and VB such that edges only exist
between VA and VB . See figure 5.

3 Structural observability

Consider the linear time invariant (LTI) state space
model

ẋ = A · x + B · u, (1)

y = C · x + D · u,
where A ∈ Rnx×nx , B ∈ Rnx×nu , C ∈ Rny×nx , D ∈
Rny×nu , x = [x1, x2, . . . , xnx]

T
, u = [u1, u2, . . . , unu]

T
,

and y =
[
y1, y2, . . . , yny

]T
. Once the output vector

y ∈ Rny and the input vector u ∈ Rnu are known,
then the state vector x ∈ Rnx can be estimated if the
system is observable. Analyzing observability based
on the system structure is called structural (algebraic)
observability analysis. Note that structural observabil-
ity gives a necessary condition for observability, which
means that if a system is not structural observable then
it is not observable. A detailed discussion on structural
observability analysis of linear systems is given in Rein-
schke (1988). The system structure can be represented

3

Modeling, Identification and Control

Figure 5: A bigraph. There are two sets of disjoint
vertices (white and black colored). No edges
among white nodes as well as black nodes.

graphically (using diagraph) and hence, graph-theo-
retic techniques can be used to analyze structural ob-
servability.
The system diagraph G is created in the following way.
There are nx + ny number of nodes representing state
and output variables. If < i, j >-th element of A is not
zero then there exists a directed edge from xi to xj .
Similarly, the edges (xi, yj) are created by consider-
ing non-zero elements in C. The definition 1 gives the
condition for output connectivity and the definition 2
defines the conditions to be satisfied for structural ob-
servability.

Definition 1 A class of systems is said to be output-
connectable6 (or reachable) if in the digraph G there is
a path from at least one of the output-vertices to every
state-vertex. Reinschke (1988)

Definition 2 A class of systems is s-observable if and
only if the digraph G meets the following condition:

• G is spanned by cacti. Lin (1974)7, Reinschke
(1988)

Violation in the definition 2 will make the system is
not s-observable, hence not observable. To find the
minimum number of driver nodes to achieve s-observ-
ability, the minimum input theorem is used Liu et al.

6Also called Y-topped Boukhobza and Hemlin (2007).
7Though Lin (1974) considered s-controllability, the concepts

can be easily adapted to s-observability.

(2011). The first step is to create the corresponding bi-
partite graph of the digraph. Let G(V,E) is a digraph
where V = {v1, v2, . . . , vnv} and E = {e1, e2, . . . , ene}.
Define two disjoint sets of nodes such that V + =
{v+1 , v+2 , . . . , v+nv

} and V − = {v−1 , v−2 , . . . , v−nv
}. Then

create a bigraph with V + and V −. If (vi, vj) ∈ E, then
(v+i , v

−
j) is an edge of the bigraph. A maximum (or per-

fect) matching in the bigraph is also give a maximum
(or perfect) matching in the digraph. The minimum
number of driver nodes needed to achieve the s-observ-
ability is equal to the number of unmatched v+i ’s in the
bigraph and the driver nodes are corresponding vi’s.
Note that if there is a perfect matching then there is
single driver node. Matching algorithms for bipartite
graphs are already implemented in NetworkX so that
the minimum input theorem can be easily implemented
in Python. Also refer the supplementary section to Liu
et al. (2011) for more details.
Practical systems are often nonlinear, but interestingly
it is possibly to apply the graph-theoretic approach
discussed above for LTI systems directly to nonlin-
ear systems Reinschke (1988), Daoutidis and Kravaris
(1992), Liu et al. (2012), Boukhobza and Hemlin (2007)
and Liu et al. (2011). Consider the nonlinear state
space model

ẋ = f (t, x, u) , (2)

y = g (t, x, u) ,

where f = [f1, f2, . . . , fnx
]
T

, and g =[
g1, g2, . . . , gny

]T
. The digraph (G) containing

nx + ny number of nodes. If ∂fi
∂xj
6= 0 then xi → xj

exists and similarly, if ∂gi
∂xj

6= 0 then yi → xj ex-

ists. Note that partial derivatives should be found
symbolically Perera (2014), Perera et al. (2014), not
numerically. The reason is that, for example even
though xj occurs in fi, still it is possible to have

numerically ∂fi
∂xj

= 0.

State estimation techniques — for example extended
Kalman filtering — may be used to estimate unknown
disturbances and unknown/uncertain parameters Si-
mon (2006), Jazwinski (2007), Åström (2006). Let the
nonlinear state space model

ẋ = f (t, x, u, w, p) , (3)

y = g (t, x, u, w, p) ,

where w = [w1, w2, . . . , wnw]
T

is the disturbance vector

and p =
[
p1, p2, . . . , pnp

]T
is the parameter vector. As-

sume w and p are unknown disturbances and uncertain
parameters to estimated. One possibility is to write

ẇ = 0, (4)

ṗ = 0,

4

Perera et.al., “Structural Observability Analysis of Large Scale Systems Using Modelica and Python”

and then to augment w and p to the current state x.
I.e. x̃ = [x,w, p]

T
. Now the augmented state space

model is

˙̃x = f̃ (t, x̃, u) , (5)

y = g̃ (t, x̃, u) .

f̃ and g̃ are then used in s-observability analysis as
already explained using graph-theoretic techniques.

4 Python implementation

4.1 Modelica, JModelica.org and CasADi
options

Modelica is becoming a standard tool for modeling
large-scale complex physical systems. CasADi is a
symbolic framework — a CAS tool — for numerical
optimization and it is available to use it within
Python. Modelica models — which result in differ-
ential algebraic equations, DAEs — can be imported
to Python via CasADi and make symbolic DAEs
available for general use in Python. See Perera et al.
(2014) and Perera (2014). CasADi comes with JMod-
elica.org and it may be the easiest way of accessing
CasADi in Python.
JModelica.org provides three Python packages:
pymodelica, pyfmi and pyjmi. pymodelica is for
compiling (or model export) Modelica models while
other two packages are for model import. pyfmi is for
creating model objects according to FMI (Functional
Mock-Up Interface) standards which is not at our
interest here in this paper. pyjmi is for JModelica.org
platform specific model importing. The relevant
choices for exporting and importing are: the compiler
compile fmux (from pymodelica) for compiling and
CasadiModel (from pyjmi) for importing.8

4.2 Structure of the Python script

The skeleton of the Python script is depicted in fig-
ure 6. First, the system model is encoded as a Model-
ica model. The Modelica model is then compiled and
imported back to Python as a CasadiModel model ob-
ject. The imported model is a symbolic flat represen-
tation of the Modelica model. Now using the CasADi

8Often index of DAEs is greater than one (i.e. higher index
problems.). In such cases, index should be reduced zero using
Pantelides algorithm before applying the concept discussed
in this paper. See Pantelides (1988) and Cellier and Kofman
(2006).

Python package, necessary symbolic Jacobian matri-
ces — which appeared in section 3 — are found. Once
the Jacobian matrices are available, corresponding di-
graphs can be easily generated by means of NetworkX
and PyGraphViz Python packages.9 NetworkX sup-
ports to create four types of graph objects: Graph,
DiGraph, MultiGraph, and MultiDiGraph.10 In Net-
workX, Graph and DiGraph graph objects are used
only for graphs without multiple edges. To create
graphs with multiple edges MultiGraph/MultiDiGraph
graph objects should be used. It is clear that for s-ob-
servability analysis MultiDiGraph graph objects must
be used. NetworkX provides many network algorithms
related to: matching, bipartite graph related, strongly
connectivity, cycles, tree, etc. The PyGraphviz Python
package can be used as the layout tool.11 The Mat-
plotpib Python package may also be used for network
drawing. The NetworkX and PyGraphviz network ob-
jects are convertible each other.

Figure 6: Structure of the Python script.

Let the Modelica model is stored in the file “My-
Model.mo” and the model name is “mymodel”. The
compilation is done using the Python code given be-
low:12

Import compiler compile_fmux

from pymodelica import compile_fmux

Compile Modelica model

file_name = ’MyModel.mo’

model_name = ’mymodel’

compile_fmux(model_name,file_name)

The compiled model object is a “.fmux” file with the
name “mymodel” and the model object is imported as
a CasadiModel object. The code is given below:

9See in http://networkx.github.io/ and http://pygraphviz.

github.io/.
10“Multi” indicates that the graph object support multiple

edges.
11See in http://pygraphviz.github.io/.
12The complete Python code will be available on request.

5

Modeling, Identification and Control

from pyjmi import CasadiModel

casadiModelObject = \

CasadiModel(’mymodel.fmux’)

Get flat ocp representation

ocp = casadiModelObject.ocp

Also, in order to use the CasADi package, it is imported
as given below:

from casadi import *

from casadi.tools import *

ocp contains the information about the flattened sym-
bolic model. For example ocp.x, ocp.z, ocp.pi,
ocp.pd, ocp.pf, ocp.t, ocp.u, ocp.ode, and ocp.alg

give respectively dynamic vector, algebraic state, inde-
pendent parameter vector, dependent parameter vec-
tor, free parameter vector, time, input vector, vec-
tor of ODEs and vector of algebraic equations. Also
casadiModelObject.dx gives dynamic state derivative
vector. The main ingredient for generating a MultiDi-
Graph object is to have functions f and g which are
given in equation 3 or f̃ and g̃ in equation 5. f is de-
fined as an SXFunction class instance, say ffun. See
below for the Python code:

Define ODEs

f = ocp.ode

Create an SXFunction for f

ffun = SXFunction([t,vertcat(xDot),vertcat(x),\

vertcat(u)],[f])

ffun.init()

Now, consider how to create a MultiDiGraph. The Ja-
cobian matrix ∂f

∂x , which is given by ffun.jac(1), con-
tains the information about the dependencies among
state variables. In a similar way, g is defined as an
SXFunction. Then ∂g

∂x gives information to construct
the dependencies among state and output variables.
the NetworkX and PyGraphViz packages are imported
in the following way:

import networkx as nx

import pygraphviz as pgv

G = nx.MultiDiGraph() creates the MultiDiaGraph
object with no edges and nodes. In order to add nodes
for state, input and output variables use the following
code:

G = nx.MultiDiGraph()

Create state vertices

for i in x:

G.add_node(’{0}’.format(x[i]))

Create input vertices

for j in u:

G.add_node(’{0}’.format(u[j]))

Create output vertices

for k in y:

G.add_node(’{0}’.format(y[k]))

In order to add edges we can use the following code:

Create edges among states

for i in range(n_x):

for j in range(n_x):

if isEqual(A[i,j],SX(’0’)) == False:

G.add_edge(’{0}’.format(x[j]),\

’’.format(x[i])

Create edges among states and inputs

for i in range(n_x):

for j in range(n_u):

if isEqual(B[i,j],SX(’0’)) == False:

G.add_edge(’{0}’.format(x[j]),\

’{0}’.format(u[i])

Create edges among states \

and inputs

for i in range(n_y):

for j in range(n_x):

if isEqual(C[i,j],SX(’0’)) == False:

G.add_edge(’{0}’.format(y[j]),\

’{0}’.format(x[i])

Additionally, it is useful to do some formatting on
nodes/edges. For example, states, input and output
nodes are in different colors and shapes. NetworkX
graph object can be converted to PyGraphViz AGraph
objects using Gp = nx.to agraph(G). See the code be-
low:

Gp = nx.to_agraph(G)

Gp.write("file.dot")

Gp.layout()

Gp.layout(prog=’dot’)

G.draw(’file.png’)

In order to have a better structured code, sev-
eral new functions may be defined within the
CasadiModel class: symbolicLinearization(), sym-
bolicDAEs(), createNodes(), createEdges(), gener-
ateGraph(), decomposeGraph(), Y Topped(), Max -
Matching(), etc. Now these functions can be called
as for instance casadiModelObject.createNodes().
symbolicDAEs() creates symbolic functions for ODEs
and algebraic equations. Symbolic Jacobian matri-
ces are found by symbolicLinearization(). Based on
Jacobian matrices the nodes and the edges of the

6

Perera et.al., “Structural Observability Analysis of Large Scale Systems Using Modelica and Python”

digraph are generated using createNodes() and cre-
ateEdges(). generateGraph() creates a NetworkX and
a PyGraphViz graph objects as well as it creates a
’dot’13 file. decomposeGraph() decomposes the di-
graph into strongly connected components. To check
the conditions given in the definition 2, Y Topped()
and Max Matching() are used.
As a summary to this section, the following points are
made: (1) a Modelica model is created, (2) import the
dynamic model as a CasadiModel object model and use
casadi to find symbolic Jacobian matrices of symbolic
DAEs (after reducing the index if needed), (3) generate
a digraph using networkx and pygrapviz, (4) use graph
theories to analyze the digraph.

5 Industrial Application Case

The Copper electro-winning process at Glencore
Nikkelverk, Kristiansand, Norway is considered. A
mechanistic model for the process is given in Lie and
Hauge (2008). The system model is in the form of
equation 3 while the augmented model — by taking
ṗ = 0 and w as slowly varying (i.e. ẇ ≈ 0) — is in
the form of equation 5. The nodes for p and w always
have directed edges coming towards them starting from
either output/state nodes. I.e. possible edges ending
at parameter/disturbance nodes: xi → pj , yi → pj ,
xi → wj and yi → wj . The following script is used to
generate a digraph for structural observability analysis:

#from pyjmi import CasadiModel

from casadi_interface12 import CasadiModel

from pymodelica import compile_fmux

fmux = compile_fmux\

(’CopperPlantPackage.CopperPlant’,\

’CopperPlant.mo’)

model = CasadiModel(fmux)

model.symbolicDAEs()

model.symbolicLinearization()

model.createNodes()

model.createEdges()

model.generateGraph()

The above code creates the digraph G, which is de-
picted in figure 7. G can be decomposed into SCCs
using the function decomposeGraph(). See figure
8. Note that there are two SCCs with more than
one node. Each SCC is colored with different col-
ors. It is possible to check whether G is output con-
nected using Y Topped() (see definition 1). Here we
use networkx.all simple paths() and this function

13See in http://www.graphviz.org/.

gives all possible paths starting from a given node and
ending at a given node. See the script given below for
the definition of Y Topped():

Figure 7: The graph, G.

def Y_Topped(self):

Gnx = self.Gnx

x = self.x

for i in [’y1’,’y2’,’y3’]:

k = ’Y-topped!’

for j in x:

if list(ntwx.all_simple_paths\

(Gnx,source=str(j),target=i))==[]:

k = ’Not Y-topped!’

break

print k

By implementing the minimum input theorem — the
function Max Matching BP() —, we get the stems in
the digraph and hence we can deduce the driver nodes
(the minimum number of measurements) needed to
achieve s-observability. The matched nodes are in red
color while unmatched are in white. Unmatched nodes
must be measured. See figures 9 and 10.

7

Modeling, Identification and Control

Figure 8: SCCs of the graph, G decomp.

6 Conclusion

We have demonstrated how to implement structural
observability analysis in the view of graph-theoretic
approach for large scale complex dynamic system in
Python by using NetworkX, PyGraphViz Python pack-
ages as well as CasADi’s Python front-end. The main
result is how to find the spanning cacti for a given di-
graph in order to find the minimum number of driver
nodes. Modelica is used for modeling and it is a stan-
dard tool for modeling large scale complex dynamic
system. CasADi supports to import Modelica mod-
els into Python as flattened symbolic DAEs making it
possible to use Modelica models in general use. Im-
portantly, all the software tools which are used in our
development are free.

References

Bondy, A. and Murty, U. S. R. Graph theory. Graduate
texts in mathematics. Springer, 2008.

Boukhobza, T. and Hemlin, F. Observability analy-

Figure 9: The stems of G.

sis for structured bilinear systems: a graph-theoretic
approach. Automatica, 2007. 43(11).

Cellier, F. E. and Kofman, E. Continuous System Sim-
ulation. Springer, 2006.

Daoutidis, P. and Kravaris, C. Structural evaluation
of control configurations for multivariable nonlin-
ear processes. Chemical Engineering Science, 1992.
47:1091–1107.

Jazwinski, A. H. Stochastic Processes and Filtering
Theory. Dove Publications, Inc., Mineola, New York,
2007.

Lie, B. and Hauge, T. A. Modeling of an industrial cop-
per leaching and electrowinning process, with vali-
dation against experimental data. Proceedings SIMS
2008, 49th Scandinavian Conference on Simulation
and Modeling, 2008.

Lin, C. T. Structural controllability. IEEE Transac-
tions on Automatic Control, 1974. 19(3).

Liu, Y.-Y., Slotine, J.-J., and Barabàsi, A.-L. Control-
lability of complex networks. Nature, 2011. 473:167–
173. doi:doi:10.1038/nature10011.

8

Perera et.al., “Structural Observability Analysis of Large Scale Systems Using Modelica and Python”

Figure 10: Minimum number of driver nodes and un-
observable nodes.

Liu, Y.-Y., Slotine, J.-J., and Barabàsi, A.-L. Ob-
servability of complex systems. Proceedings of
the National Academy of Sciences of the United
States of America, 2012. 110(7):2460–2465.
doi:10.1073/pnas.1215508110.

Pantelides, C. C. The consistent initialization of
differential-algebraic systems. SIAM Journal on Sci-
entific Computing, 1988. 9(2). doi:10.1137/0909014.

Perera, A. Using casadi for optimization and sym-
bolic linearization/extraction of causality graphs
of modelica models via jmodelica.org. Technical
Report HiT rapport 5, Telemark University Col-
lege, Kjølnes ring 56, P.O. Box 203, N-3901 Pors-
grunn, Norway., 2014. URL https://teora.hit.

no/handle/2282/2175.

Perera, A., Pfeiffer, C., Hauge, T. A., and Lie, B. Mak-
ing modelica models available for analysis in python
control systems library. Proceedings SIMS 2014, 55th

Scandinavian Conference on Simulation and Model-
ing, 2014.

Åström, K. J. Introduction to Stochastic Control The-
ory. Dove Publications, Inc., Mineola, New York,
2006.

Reinschke, K. J. Multivariable control: a graph the-
oretic approach. Lecture notes in control and in-
formation sciences. Springer-Verlag, Berlin, New
York, 1988. URL http://opac.inria.fr/record=

b1086834.

Simon, D. Optimal State Estimation: Kalman, H Infin-
ity, and Nonlinear Approaches. John Wiley & Sons,
Inc., Hoboken, New Jersey, 2006.

9

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

72

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

Paper C

Parameter and State Estimation of
Large-Scale Complex Systems Using
Python Tools

73

Modeling, Identification and Control, Vol. 31, No. 1, 2015, pp. 1–10, ISSN 1890–1328

Parameter and State Estimation of Large-Scale
Complex Systems Using Python Tools

M. Anushka S. Perera 1 Tor Anders Hauge 2 Carlos F. Pfeiffer 1

1Telemark University College, Kjlnes ring 56, P.O. Box 203, N-3901 Porsgrunn, Norway. E-mail: car-
los.pfeiffer@hit.no

2Glencore Nikkelverk, Kristiansand, Norway.

Abstract

This paper discusses the topics related to automating parameter, disturbance and state estimation analysis
of large-scale complex nonlinear dynamic systems using free programming tools. For large-scale complex
systems, before implementing any state estimator, the system should be analyzed for structural observabil-
ity and the structural observability analysis can be automated using Modelica and Python. As a result of
structural observability analysis, the system may be decomposed into subsystems where some of them may
be observable — with respect to parameter, disturbances, and states — while some may not. The state
estimation process is carried out for those observable subsystems and the optimum number of additional
measurements are prescribed for unobservable subsystems to make them observable. In this paper, an
industrial case study is considered: the copper production process at Glencore Nikkelverk, Kristiansand,
Norway. The copper production process is a large-scale complex system. It is shown that how to imple-
ment various state estimators, in Python, to estimate parameters and disturbances, in addition to states,
based on available measurements.

Keywords: Kalman filter, Modelica, Observability, Python, state and parameter estimation

1 Introduction

Consider a class of nonlinear deterministic systems
given by Equation 1, where x ∈ Rnx , u ∈ Rnu ,
w ∈ Rnw , p ∈ Rnp , and y ∈ Rny are respectively state,
input, process noise, parameter, and output vectors
and C ∈ Rny×nx is a constant matrix and f(.) and g(.)
are known vector functions.1

ẋ = f (x, u, w, p)

ṗ = 0

y = h (x) = C · x (1)

u and y are known as well as their time derivatives.
x, w, and p are unknowns and the objective is to esti-

1x ≡ x(t), u ≡ u(t), etc.

mate them based on u-y information. The state space
is augmented with p via ṗ = 0. However, it is not
obvious how to augment w, since w is completely un-
known. One possibility is to assume w is a random
variable with a given probability characteristic. An
example Gelb (2001) is given in Equation 2, where wi
— wi is an element of w = [w1, w2, . . . , wnw

]
T

— is
a stationary random process with the autocorrelation
function γi(τ) =

(
σ2
i δi/2

)
· e−δi|τ |, εi is a given white

Gaussian process and δi, σi > 0.2

ẇi = −δiwi + σiδi · εi (2)

There are other alternatives for disturbance augmen-
tation Bona and Smay (1966) and the choice may de-
pends on whether the augmented system is observable

2σiδi · εi, in Equation 2, may be replaced by εi.

doi:10.4173/mic.2015.1.1 c© 2015 Norwegian Society of Automatic Control

Modeling, Identification and Control

or not — there is no point of augmenting parameters
and disturbances if the augmented system becomes un-
observable. The complete augmented system is given in
Equation 3 and corresponding state space representa-
tion is in Equation 4, where g(.) is chosen appropriately
by augmenting disturbances.3

ẋ = f (x, u, w, p)

ẇ = g (w) + ε

ṗ = 0

y = C · x+ v (3)



ẋ
ẇ
ṗ




︸︷︷︸
˙̂x

=



f (x, u, w, p)

g (w)
0




︸ ︷︷ ︸
f̂(x̂,u)

+




0
1
0




︸︷︷︸
Γ

ε

ŷ =
[
C 0 0

]
·



x
w
p




︸︷︷︸
x̂︸ ︷︷ ︸

ĥ(x̂)

+v (4)

The noise model related to Equation 1 is given by
the stochastic nonlinear system 5, where ε and v (mea-
surement noise) are vectors of white Gaussian pro-
cesses such that E{w} = 0 ∈ Rnw , E{v} = 0 ∈ Rny ,
E{wwT } = Q ∈ Rnw×nw , E{vvT } = R ∈ Rny×ny ,
E{wvT } = S ∈ Rnw×ny (S is a zero matrix if w and
v are independent), Γ ∈ Rnx×nw is a constant matrix,
and x0 is independent from w and v. Associated dis-
crete time version of 5 is 6.

˙̂x = f̂ (x̂, u) + Γ · ε
ŷ = ĥ(x̂) + v, (5)

x̂k+1 = f̂k (x̂k, uk) + Γ · wk+1; k = 0, 1, . . .

ŷk = ĥk(x̂k) + vk; k = 1, 2, . . . (6)

Where,

f̂k (x̂k, uk) = x̂k +

∫ tk+1

tk

[
f̂ (x̂(θ), u(θ))

]
dθ

and

wk+1 = Γ

∫ β(tk+1)

β(tk)

dβ.

3Note that the number of states of the augmented system could
be larger than nx+np+nw. For example, if wi is augmented
by ẅi = 0. Also 0’s and 1’s, in Equations 3 and 4, represent
zero and unit matrices with appropriate dimensions.

β is a Brownian motion process such that ε·dt = dβ.4

Now, the system in Equation 1 is simulated for given p,
{wk} (wk with some added noise), {uk}, and x0. {xk}
and {yk} (a fictitious noise is added to yk) are stored for
k = 1, 2, 3, . . . , n.5 Then, based on the simulated data
{uk} and {yk}, {x̂k} is estimated, for k = 1, 2, . . . , n,
to verify the stability properties of state estimators.

Structure of the paper as follows. Section 2: a brief
discussion on nonlinear observability, in particular giv-
ing more attention on structural observability. Sec-
tion 3: the process model. Section 4: Observability
analysis. Section 5: a brief introduction to filtering
theory. Section 6: structure of the Python code and
results. Section 7: conclusions and future work.

2 Nonlinear observability

In order to achieve the state observability of the
stochastic system 5, it is a must that the corresponding
noise-free system is observable Margaria et al. (2004).
Hence, consider the noise-free version of equation 5:6

˙̂x = f̂ (x̂, u)

ŷ = ĥ(x̂) (7)

For nonlinear systems, local observability should be
concerned which is often tedious to handle for large-
scale complex systems. Let an initial state x̂i0, then
for a given bounded input trajectory u(t), assume

there exists a solution trajectory ŷi(t) = ĥ
(
x̂i(t)

)
for

t ∈ [0, T] and T < ∞, satisfying Equation 7. If the
points lie within the neighborhood of x̂i(0), satisfying

ĥ
(
x̂i(t)

)
6= ĥ

(
x̂j(t)

)
such that x̂i0 6= x̂j0, then x̂i0 and

x̂j0 are said to be (locally) distinguishable. Moreover,
the local distinguishability property has a one-to-one
correspondence with the local observability: local ob-
servability ⇔ local distinguishable. Loosely speaking,
different state trajectories starting from distinct ini-
tial states x̂i0 and x̂j0, will always generate distinct out-
put trajectories. If not local distinguishable, then it
is not possible to uniquely (locally) deduce xi(0) from
yi(t)-ui(t) information. A criteria for local observabil-
ity/distinguishability or algebraic observability is given
using Lie derivatives and brackets Isidori (1995), how-
ever algebraic observability analysis is not easy to use

4There are many possibilities of approximating stochastic inte-

gral Γ
∫ β(tk+1)

β(tk)
dβ. See in Kloeden et al. (2012).

5{ak} ≡ {a1, a2, . . . , an} for k = 1, 2, 3, . . . , n. ak ≡ a(tk). a(.)
is a function of time.

6Margaria et al. (2004) considers affine systems. For more
general treatment, refer Hermann and Krener (1977), Isidori
(1995), Slotine et al. (1991).

2

Perera et.al., “Parameter and State Estimation of Large-Scale Complex Systems Using Python Tools”

for large-scale complex systems because the test related
to searching for the rank of a matrix with higher di-
mensions and algebraic variables. The best solution is
to use structural observability instead, preferably its
the graph-theoretic associate, where structural depen-
dencies among output and state variables are used to
define a necessary condition for observability. Observ-
ability is a structural property and by exploiting the
system structure, it is possible to extract much more
information than the rank test for the algebraic ob-
servability check. The structural dependencies of the
system 7 are mapped into a directed graph, so called
the system digraph. The system digraph G is created
as follows Reinschke (1988):

1. define nodes (or vertices) x1, x2, . . . ,xnx̂
, y1, y2,

. . . , ynŷ
,

2. there is a directed edge from xi to xj (xi → xj) if
∂f̂i
∂x̂j
6= 0, and

3. there is a directed edge from yj to xi (yj → xi) if
∂ĥj

∂x̂i
6= 0.

The system digraph may be decomposed into
strongly connected components (SCCs): a SCC is a
largest subgraph where there exists a directed path
from each node to every other node in it. A root SCC
is subgraph such that there are no incoming edges to
its nodes. In order to achieve structural observability,
at least one node of each root SCC should be mea-
sured. Hence, number of sensor nodes must not be
less than number root SCCs Liu et al. (2013). On the
hand, suppose that sensor nodes are given. Then, the
system is structurally observable if the system digraph
is spanned by cacti (the plural of cactus is cacti) cov-
ering all nodes Lin (1974). Figure 1 shows a cactus.
A cactus consists of a stem and possibly one or more
buds attach to the stem. Stem is a directed path where
starting node is the root and end is the top. A root
node is always a measurement. A bud is an elementary
closed path, which connect to the stem via the distin-
guished edge. Bud should not be connected either to
the root or to the top node and no two distinguished
edges share the same node.

3 Process model

See Figure 2 for the process flow sheet. The process
consists of four sections: (i) the slurrification section
where powdered raw material containing mostly copper
oxide (CuO) is slurrified using recycled anolyte flow,
which containing sulfuric acid (H2SO4), taken from the
electrowinning section, (ii) the leaching section where

Figure 1: A cactus.

sulfuric acid is added to the slurry in order to leach
more copper (Cu) into the solution, (iii) the purifica-
tion section where the slurry is first filtered to extract
the solution, which contains copper sulphate (CuSO4),
followed by the cementation and fine filtering processes,
and (iv) the electrowinning section where the solution
containing (Cu2+) is electrolyzed to release solid cop-
per at the cathode.

Figure 2: Process flow sheet for the Copper electrowin-
ning process (electrowinning section is high-
lighted in red).

In the initial model Lie and Hauge (2008),7 tank-
level dynamics are neglected (i.e. static mass bal-
ances). However, level dynamics of several tanks are
included in the modified model. It is assumed that
the tanks in the slurrification and leaching sections as
well as the electrowinning tank have no level variations.
Level dynamics in the following tanks are included:
buffer tank 1, buffer tank 2, buffer tank 3, dilution
tank and mixing tank. System digraph is given in Fig-
ure 3 and it is seen that it is not possible to isolate
a spanning cacti covering all nodes, then the system
is not structurally observable and thereby, not observ-
able Perera et al. (2015). Since, it is already proved
in that the system is not structurally observable, only
a (structurally) observable subsystem — which is the

7In order to save space, the complete model is not given in this
paper. Refer Lie and Hauge (2008) for the detailed model.

3

Modeling, Identification and Control

electrowinning section — is considered in the following
discussion.

Figure 3: System digraph.

Electrowinning section consists of three subsystems:
dilution tank, electrowinning tank, and mixing tank.
Model equations are given below, where ṁCu,o =
MCu

zCu·C · η̄ · Ī · 3600.

dVed
dt

= V̇p2e + V̇em2d − V̇ed2m − V̇ed2w (8)

dρed,CuSO4

dt
=
V̇p2e ·

(
ρ

(3)
pb,CuSO4

− ρed,CuSO4

)

Ved
+

V̇em2d ·
(
ρem,CuSO4

− ρed,CuSO4

)

Ved
(9)

dρed,H2SO4

dt
=
V̇p2e ·

(
ρ

(3)
pb,H2SO4

− ρed,H2SO4

)

Ved
+

V̇em2d ·
(
ρem,H2SO4

− ρed,H2SO4

)

Ved
(10)

dρew,CuSO4

dt
=
V̇ed2w ·

(
ρed,CuSO4

− ρew,CuSO4

)

Vew
+

V̇vap · ρew,CuSO4
− MCuSO4

MCu
· ṁCu,o

Vew
(11)

dρew,H2SO4

dt
=
V̇ed2w ·

(
ρed,H2SO4

− ρew,H2SO4

)

Vew
+

V̇vap · ρew,H2SO4
+

MH2SO4

MCu
· ṁCu,o

Vew
(12)

V̇ed2w = V̇ew2m + V̇vap (13)

dVem
dt

= V̇ed2m + V̇ew2m + V̇w2em−
(
V̇e2s + V̇em2d + V̇em2bl

)
(14)

dρem,CuSO4

dt
=
V̇ed2m ·

(
ρed,CuSO4

− ρem,CuSO4

)

Vem
+

V̇ew2m ·
(
ρew,CuSO4

− ρem,CuSO4

)

Vem
−

V̇w2em · ρem,CuSO4

Vem
(15)

dρem,H2SO4

dt
=
V̇ed2m ·

(
ρed,H2SO4

− ρem,H2SO4

)

Vem
+

V̇ew2m ·
(
ρew,H2SO4

− ρem,H2SO4

)

Vem
−

V̇w2em · ρem,H2SO4

Vem
(16)

d

dt
η̄(t) = 0 (17)

d

dt
V̇ed2w = εV̇ed2w

(18)

d

dt
ρ

(3)
pb,CuSO4

= −β · ρ(3)
pb,CuSO4

+ ε
ρ
(3)
pb,CuSO4

(19)

d

dt
V̇ew2m = εV̇ew2m

(20)

Where β is a positive constant which should be spec-
ified. The last 4 equations are due to parameter-
disturbance augmentation. There are 4 measurements:

• y1 = Ved,

• y2 = Vem,

• y3 = MCu

MCuSO4

· ρew,CuSO4
, and

• y4 = ρew,H2SO4
+

MH2SO4

MCuSO4

· ρew,CuSO4
.

4

Perera et.al., “Parameter and State Estimation of Large-Scale Complex Systems Using Python Tools”

4 Observability analysis

Including augmented parameter η̄ and disturbances

V̇ed2w, V̇ew2m, and ρ
(3)
pb,H2SO4

, altogether there are 12

(nx = 12) states. This makes it harder to analyze for
algebraic observability. See Figure 4 for the system di-
graph. According to the digraph, it is always possible
to estimate V̇ed2w and V̇ew2m using y1 and y2. The rea-
son is that y1 → Ved → V̇ed2w and y2 → Vem → V̇ew2m

are two cacti (just two stems without buds). There
exists a spanning cacti covering all nodes, hence the
system is structurally observable. The spanning cacti
is as follows:

• y1 → Ved → V̇ed2w,

• y2 → Vem → V̇ew2m,

• y3 → ρew,CuSO4
→ ρed,CuSO4

→ ρem,CuSO4
with

the bud ρ
(3)
pb,CuSO4

→ ρ
(3)
pb,CuSO4

, and

• y4 → ρew,H2SO4
→ η with the bud ρem,H2SO4

↔
ρed,H2SO4

.

Consider Equation 19. If β = 0, then the self-loop

ρ
(3)
pb,CuSO4

→ ρ
(3)
pb,CuSO4

in the digraph, in Figure 4, will

disappear. Consequently, it is failed to have a span-

ning cacti. Therefore, dρ
(3)
pb,CuSO4

/dt = 0 is not a use-

ful augmentation. Similarly, it can also be shown that

d2ρ
(3)
pb,CuSO4

/dt2 = 0 fails to keep structural observabil-

ity. See the formulation below:

d

dt
ρ

(3)
pb,CuSO4

= ρ
(3)
pb,CuSO4

(21)

d

dt
ρ

(3)
pb,CuSO4

= ε
ρ
(3)
pb,CuSO4

(22)

Figure 4: System digraph for the electrowinning
section.

5 Filtering theory for discrete
systems

The objective of filtering/estimation is to estimate sys-
tem sate from available noisy data Jazwinski (2007).
Consider the discrete stochastic dynamical system 6.
Assume that system is observable.8 {wk, k = 1, 2, 3, ...}
is a random sequence with given probability distribu-
tions. Probability density function of x̂0 is also given.
The famous assumptions are {wk} is white Gaussian se-
quence, wk ∼ N(0, Qk), and independent of x̂0. Also,
{vk, k = 1, 2, 3, ...} is a random sequence with given
probability distributions such as vk ∼ N(0, Rk). A
solution to the equation 6 is the probability density
function of xk. {wk} and {vk} may be dependent. We
may write:

E{
[
wk
vk

] [
wTl v

T
l

]
} =

[
Qk Sk
STk Rk

]
δkl (23)

Where δkl = 1 when k = l, else δkl = 0. Sk = 0
if {wk} and {vk} are independent. The two sequences
YN = {y1, y2, . . . , yN} and UN = {u0, u1, . . . , uN−1}
contain input-output data and {x̂1, x̂2, . . . , x̂N−1} to
be estimated for given YN and UN . There are several
ways to handle nonlinear filtering problems: extended
Kalman filtering (EKF) Strang and Borre (1997), un-
scented Kalman filtering (UKF) Simon (2006), particle
filtering (PF) Doucet et al. (2000), etc. Figure 5 gives a
comparison about different state estimation techniques
with respect to accuracy and computational effort.

Often, EKF could be the starting point for a non-
linear estimation problem, where linear Kalman filter-
ing theory is adapted based on first-order lineariza-
tion. The extended Kalman filter9 is as follows for
k = 1, . . . , n:

Figure 5: State estimation trade-offs (a scanned page
from Simon (2006)).

8If the continuous system is observable, the discrete system is
also observable Moraal and Grizzle (1995).

9For convergence characteristics of EKF, refer Ljung (1979) Cox
(1964) Fitzgerald (1971).

5

Modeling, Identification and Control

• Qk−1, Rk−1, Sk−1 = 0, P+
k−1 and x̂+

k−1 are given;

• Ak−1 = ∂f̂(x̂,u)
∂x̂

∣∣∣∣
x̂+
k−1

, Ak−1 is invertible and

pair (Ak−1, Ck−1) is observable Song and Grizzle
(1992);

• P−k = Ak−1P
+
k−1A

T
k−1 + ΓQk−1ΓT ;

• x̂−k = f(x̂+
k−1, uk−1);

• Ck = ∂h(x̂)
∂x̂

∣∣∣∣
x̂−
k

;

• Kk = P−k C
T
k

(
CkP

−
k C

T
k +Rk

)−1
;

• x̂+
k = x̂−k +Kk

[
yk − Ckx̂−k

]
, and

• P+
k = (I −KkCk)P−k .

Where x̂+
k is the best estimate for xk. The main rea-

son for the divergence of EKF is the model fidelity.
This can be demonstrated easily using even a sim-
ple scalar system Fitzgerald (1971) Simon (2006). In
Equation 5, Γ ∈ Rnx×nw and nw ≤ nx. If nw < nx,
then there is at least one differential equation where
a process noise term does not appear. However, by
including a fictitious process noise to such equations,
it may be possible to compensate model inaccuracies
to some extent. For a constant parameter, ideally,
pk+1 = pk follows without a process noise term and
but, even for this case, a small fictitious noise is in-
cluded — i.e pk+1 = pk + εp. Now, we have a stochas-
tic system given in Equation 24, where Γx,Γw,Γp 6= 0

and [Γx,Γw,Γp]
T ∈ Rnx+nw+np×nx+nw+np and wk ∈

Rnx+nw+np . Also, in order to increase the stability-
convergence characteristics, fading-memory filters may
be used Simon (2006). Actually, it is not necessary
to include fictitious noises to all differential equations,
but it enough to include for some of them. Fictitious
noises are inserted such that the stochastic system be-
comes state stabilizable with respect to process noise
vector Potter (1965).



xk+1

wk+1

pk+1


 =



f (xk, pk, uk)
gk(wk)
pk




+




Γx
Γw
Γp


wk+1; k = 0, 1, . . . , n (24)

EKF is susceptible to linearization errors and if the
model is highly nonlinear then the trust on EKF is
too low. The unscented Kalman filter Julier et al.
(1995) Doucet et al. (2000) is a possible candidate to
try with, if the EKF fails. Importantly, UKF doesn’t

require to calculate Jacobian matrices. The following
steps are followed in UKF algorithm:

• Qk−1, Rk−1, P+
k−1 and x+

k−1 are given;

• Find sigma points x̂
(i)
k−1 such that x̂

(i)
k−1 = x+

k−1 +

x(i) and x(i) = (−1)i ·
(√

n · P+
k−1

)T
i

for i =

1, 2, . . . , 2 · nx.
(√

n · P+
k−1

)
i

is the < i >th row

of
√
n · P+

k−1;

• x−k = 1
2·nx

Σ2·nx
i=1 x̂

(i)
k , where x̂

(i)
k = f(x̂

(i)
k−1, uk−1);

• P−k = 1
2·nx

Σ2·nx
i=1

[(
x̂

(i)
k − x−k

)(
x̂

(i)
k − x−k

)T]
+

ΓQk−1ΓT ;

• Find new set of sigma points x̂
(i)
k such that x̂

(i)
k =

x−k + x(i) and x(i) = (−1)i ·
(√

n · P−k
)T

i

for i =

1, 2, . . . , 2 · nx.

(√
n · P−k

)

i

is the < i >th row of
√
n · P−k ;

• y−k = 1
2·nx

Σ2·nx
i=1 ŷ

(i)
k , where ŷ

(i)
k = C · x̂(i)

k ;

• Py = 1
2·nx

Σ2·nx
i=1

[(
ŷ

(i)
k − y−k

)(
ŷ

(i)
k − y−k

)T]
+Rk

• Pxy = 1
2·nx

Σ2·nx
i=1

[(
x̂

(i)
k − x−k

)(
ŷ

(i)
k − y−k

)T]
+Rk

• Kk = PxyP
−1
y ;

• x+
k = x−k +Kk

[
yk − y−k

]
, and

• P+
k = P+

k −KkPyK
T
k .

6 Structure of the Python code
and results

Perera et al. (2015) discusses a procedure for automat-
ing structural observability analysis in Python using
JModelica.org-Casadi interface. Figure 3 and 4 are
generated based on above mentioned article. There are
several Python packages for state estimation: pyda,
filterpy, pykalman, KF, etc.10 First simulated noisy
data is created. See the Python script given below.
model(x,t,u,w,p) represents from Equation 8 to 16
and f(x,dt,u,w,p) is the discrete system. Simulate

10Pyda, filterpy, pykalman, and KF packages are available at the
Python package index. See in https://pypi.python.org/

pypi.

6

Perera et.al., “Parameter and State Estimation of Large-Scale Complex Systems Using Python Tools”

data is obtained with known variations — see the for
loop below — in disturbances and inputs.

Import packages
import numpy as np
from numpy import random
from numpy.random import randn
from scipy.integrate import odeint
import matplotlib.pyplot as plt
import scipy.io as sio
< define necessary parameters >
def model(x,t,u,w,p):

"""
Continuous dynamic model:
dx/dt = model(x,t,u,w,p)
"""
< enter code here >
return np.array(dxdt)

def f(x,dt,u,w,p):
"""
State transition function:
x(t+dt) = f(x(t),dt,u(t))
"""
res = odeint(lambda X,T:\

model(X,T,u,w,p),x,np.linspace(0.0,dt,2))
return res[-1,:]

def h(x,v):
"""
Observation function:
y(t) = h(x(t))
"""
z0 = x[0] + v[0]
z1 = x[1] + v[1]
z2 = (M_Cu/M_CuSO4)*x[2] + v[2]
z3 = x[5] + (M_H2SO4/M_CuSO4)*x[2] + v[3]
z = [z0,z1,z2,z3]
return np.array(z)

Define initial x,u,w and p
w = w0
x = x0
p = p0
u = u0
Start simulation
for k in np.arange(1,N+1):

calculate x and z using discrete model
x = f(x,dt,u,w,p)
z = h(x,v)
log x and z
< enter code here >
change disturbances
change inputs
< enter code here >

Save data
sio.savemat(’data.mat’,{’t’:t,< enter code here >)

Now state estimators are considered. First,
model(x,t,u,w,p) is updated as model(x,t,u,w)

with augmented from Equation 17 to 20. In or-
der to implement EKF algorithm in Section 5, it
is necessary to calculate Jacobian matrices of f

and h: see methods ABL(x,u,w,dx = 1.e-5,du =

1.e-5,dw = 1.e-5) and CM(x,v,dx = 1.e-5,dv =

1.e-5) below. Finally, two more methods are cre-
ated: predict(x,u,P,Q) and update(x,z,P,R) and
then EKF is simulated in a for loop. Fading-memory
EKF can be easily implemented in a similar way.

def model(x,t,u,w):
"""
Continuous augmented dynamic model:
dx/dt = model(x,t,u,w,p)
"""

< enter code here >
deta_ew_dt = 0. + w_eta_ew
dVd_ed2w_dt = 0. + w_Vd_ed2w
drho_pb3CuSO4_dt = -beta*rho_pb3CuSO4 + w_rho_pb3CuSO4
dVd_ew2m_dt = 0. + w_Vd_ew2m
return np.array(dxdt)

def ABL(x,u,w,dx = 1.e-5,du = 1.e-5,dw = 1.e-5):
"""
Calculate A = df/dx, B = df/du, and L = df/dw,
using finite (central) difference method.
"""
< enter code here >
return A,B,L

def CM(x,v,dx = 1.e-5,dv = 1.e-5):
"""
Calculate C = dh/dx and M = dh/dv,
using finite (central) difference method.
"""
< enter code here >
return C, M

def predict(x,u,P,Q):
< enter code here>
return x,P

def update(x,z,P,R):
< enter code here>
return x,P

Simulate
for k in np.arange(1,N+1):

predict state
x,P = predict(x,u,P,Q)
update state
z = np.array([z0[k],z1[k],z2[k],z3[k]])
x,P = update(x,z,P,R)

log data

For UKF estimation, filterpy Python is used. Use
following script to create UKP object:

from filterpy.kalman import UnscentedKalmanFilter as UKF
ukf = UKF(<enter code here>)
Initialize UKF
ukf.x = x0
ukf.R = np.diag([0.01, 0.01,0.01, 0.01])
ukf.Q = 5*np.eye(dim_x)
ukf.P = 1.*np.eye(dim_x)
Simulate
for k in np.arange(1,N+1):

predict state
ukf.predict()
measurment update
z = np.array([z0[k],z1[k],z2[k],z3[k]])
ukf.update(z)
x = ukf.x
data logging

7 Conclusions and future work

We have demonstrated a way of automating parameter-
disturbance-state estimation process for large-scale
complex dynamic systems completely using free soft-
ware tools such as Modelica, Python, Casadi, etc.
A real world case study is considered and managed
to estimate 1 parameter, 3 disturbances and 8 states
with 4 measurements using extended Kalman filter
and unscented Kalman filter algorithms. Extended
Kalman filter, fading-memory Kalman filter and un-
scented Kalman filter have shown more or less similar
results. All three estimators converge. Note that in

7

Modeling, Identification and Control

Figure 6: Estimation of Ved and Vem.

Figure 7: Estimation of V̇ed2w and V̇ew2m.

Figure 8: Estimation of ρew,CuSO4
, ρed,CuSO4

and

ρem,CuSO4
.

Figure 9: Estimation of ρew,H2SO4
, ρed,H2SO4

and

ρem,H2SO4
.

Figure 10: Estimation of ρpb3,CuSO4
.

Figure 11: Estimation of ηew.

8

Perera et.al., “Parameter and State Estimation of Large-Scale Complex Systems Using Python Tools”

Figure 12: Estimation of z0 and z1.

Figure 13: Estimation of z2 and z3.

this paper, only Gaussian process noises are concerned,
often which is not the case in reality. Therefore, in or-
der to test the capabilities of various estimators, those
estimators should be applied with real process data
where process noises may not be Gaussian and there-
fore, parameter-disturbance-state estimation with real
process data is set as a future work. In particular,
it is expected to implement particle filter algorithms
with real process data, since particle filters can handle
non-Gaussian process noise as well as it works better
compared to EKF/UKF algorithms when the system
model is highly nonlinear.

Filtering parameters, such as Q, R, P , etc., are tun-
ing parameters, but filter tuning is not considered in
this paper. Those parameters directly link with filter-
response-time and filter sensitivity (propagation of the
error covariance matrix P), therefor sensitivity analy-
sis and filter tuning should be done as a future work.
As the full state of the electrowinning system can be re-
constructed from measurement data, it opens up many
possibilities, among others, implementing an optimal
control strategy. Also, estimating disturbances along-
side the states will help to improve control performance
— disturbance compensation. Finally, comparing the
performances among PID and Optimal control strate-
gies would be an interesting future work.

References

Bona, B. and Smay, R. J. Optimum reset of ship’s
inertial navigation system. Aerospace and Electronic
Systems, IEEE Transactions on, 1966. (4):409–414.

Cox, H. On the estimation of state variables and pa-
rameters for noisy dynamic systems. Automatic Con-
trol, IEEE Transactions on, 1964. 9(1):5–12.

Doucet, A., Godsill, S., and Andrieu, C. On sequential
monte carlo sampling methods for bayesian filtering.
Statistics and computing, 2000. 10(3):197–208.

Fitzgerald, R. J. Divergence of the kalman filter.
Automatic Control, IEEE Transactions on, 1971.
16(6):736–747.

Gelb, A. Applied optimal estimation. The M.I.T. press,
2001.

Hermann, R. and Krener, A. J. Nonlinear controlla-
bility and observability. IEEE Transactions on au-
tomatic control, 1977. 22(5):728–740.

Isidori, A. Nonlinear control systems. Springer Science
& Business Media, 1995.

9

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

84

Perera: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

Paper D

A Case Study: State Estimation and
Optimal Control of an Industrial
Copper Electrowinning Process

85

Abstract—This paper discusses an industrial case study

related to the topics mathematical modeling, state-parameter-
disturbance estimation, optimal control of large-scale complex
control systems and technical computing. The case study
involves the copper electrowinning process, which is a part of
the copper leaching plant at Glencore Nikkelverk, Kristiansand,
Norway. Improved control of chemical compositions within the
electrowinning process through an optimal control strategy is
one of our objectives. We present a way to solve this particular
control problem, and in principal, the same procedure can be
adapted to handle any large-scale complex control problem.
State-parameter-disturbance estimation is a sub-problem, and
two state estimators --- a modified version of the Extended
Kalman Filter (EKF) and the Moving Horizon Estimate (MHE)
--- are used to reconstruct the system state using simulated
input-output data. It is shown that the EKF fails to estimate one
of the parameters unless the algorithm is modified by adding an
instability term. The MHE offers promising results in estimating
parameters as compared to the classical EKF. Furthermore, the
MHE explicitly handle constraints, which is an advantage. We
use Modelica (as a systematic and efficient modeling approach
for large-scale systems), Python (as a free and powerful tool for
technical computing), structural analysis and graph-theory as
main ingredients in the development and this combination
significantly ease the analysis and synthesis of large-scale
control systems. In the essence, our aim is twofold: (1) to
demonstrate a simple, but a useful procedure of automating
large-scale complex (optimal) controller design and synthesis
and parameter estimation using available analytical and free
computer-aided tools; and (2) to highlight the need of developing
interfaces between Modelica/Simscape or similar modeling
standards with a powerful programming language for technical
computing, for example Python/MATLAB.

Index Terms—Controllability and observability, large-scale
control systems, state and parameter estimation, technical
computing.

I. INTRODUCTION

We present a solution to an Optimal Control Problem
(OCP) [1] related to a real chemical process which is a part
of the copper leaching plant at Glencore Nikkelverk,
Kristiansand, Norway. The paper has two main
considerations: (1) deploying available analytical tools in the
analysis of large-scale complex control systems and (2) the
software implementation.

It is beneficial to make use of a modeling language such as
Modelica [4] or Simscape or similar for modeling of large-
scale complex physical systems. The Simscape language is

Manuscript received May 1, 2016.
M. Anushka S. Perera is with the University College of Southeast Norway

(e-mail: anushka_mrt@yahoo.com / anushka.perera@hit.no).
Tor Anders Hauge is with Glencore Nikkelverk, Kristiansand, Norway

(e-mail: tor.hauge@glencore.no).

based on the MATLAB which is a commercial software. We
consider only non-commercial tools in this paper. Modelica
is free and is an object-oriented, declarative, multi-domain
modeling language for component oriented modeling. These
features makes Modelica a systematic and efficient modeling
tool. A system model encoded in Modelica is translated via
Modelica based simulation tools such as Dymola,
OpenModelica and JModelica.org (or CasADi [5]) to a set of
differential, algebraic and discrete equations (so-called flat
hybrid DAEs). If possible, it is useful to make flat hybrid
DAEs available for general use without merely limiting to
model simulations, optimizations, etc. One such attempt is
CasADi where Modelica models can be imported to Python
as flat hybrid DAEs. We emphasis the importance of
developing interfaces between Modelica (or similar) and
software tools for technical computing such as Python,
MATLAB (has its own symbolic core and provides the
Simscape language which supports object-oriented,
declarative, multi-domain and component based modeling),
Maple (inherently a symbolic framework) or similar.

Scale and complexity of nonlinear control systems
determines the viability of implementing any theoretical
analysis considering the entire system as a whole. Hence, as
a first step it is often necessary to exploit the system structure
[6] of a given large-scale complex control system prior to
implementing any algebraic analysis such as algebraic
observability analysis. Structurally decomposing a given
large-scale complex system into subsystems, and then using
those subsystems in the analysis and synthesis is one
possibility. We demonstrate the usage of structural analysis
by considering an electrowinning process.

Improved control of chemical compositions within the
electrowinning process through an optimal control strategy is
the control objective. Classical PID controllers may perform
poorly on nonlinear Multiple-Input and Multiple-Output
(MIMO) systems and they do not explicitly handle input,
output and state constraints. Also, controller tuning in the
presence of many PID controllers can be tricky. In order to
avoid such drawbacks in classical controllers, an optimal
control [7][8] strategy, such as Nonlinear Model Predictive
Control (NMPC) [9], can be considered. An OCP consists of
two main subproblems: (1) observability analysis with
respect to state-parameter-disturbance estimation [10], and
(2) controllability analysis. These subproblems are dealt with
in detail by exploiting the structural properties of the model.
We consider two state estimators: the Extended Kalman Filter

Carlos Fernando Pfeiffer is with the University College of Southeast

Norway (e-mail: carlos.pfeiffer@hit.no).

A Case Study: State Estimation and Optimal Control of an
Industrial Copper Electrowinning Process

M. Anushka S. Perera, Tor Anders Hauge, and Carlos Fernando Pfeiffer

(EKF) [10][11][12][13] and the Moving Horizon Estimate
[14]. In our case study, it is found that the EKF is unable to
estimate one of the parameters whilst the Moving Horizon
Estimate provides accurate estimates for all state variables,
parameters and disturbance variables. Inclusion of an
instability [15] term to the EKF completely solve the
divergence problem. More details about the divergence
properties of the EKF can be found in [16][17]. The structure
of the paper is as follows:

• Section II presents a mechanistic model for the

copper electrowinning process.
• Section III discusses state estimation and optimal

control.
• Section IV explains a software implementation.
• Section V shows the results.
• Section VI is for conclusion and future work.

II. MATHEMATICAL MODEL

A mechanistic model for the copper leaching process is
available in [2]. See Fig. 1 for the process flow sheet. The
model is given by Eqs. 1 to 12. There are four measurements: �� , �� , �� and �� (see Eq. 20). In order to control the
chemical compositions in the electrowinning sections,
sulfuric acid (sulfuric acid flow rate is ���) and powdered raw
material which contains copper oxide (mass flow rate is 	�
)
are added in the slurrification and leaching sections
respectively. There are time delays — according to process
experience time delays vary around 2 hours — before ��� and 	�
 affect the chemical compositions in the third buffer tank ���(�). In this paper, H2SO4 and CuSO4 compositions in the

third buffer tank are taken as two control variables �� and ��
(i.e. delays are not considered.) Tank volumes (or levels) are
controlled by �� and �� (see Eq. 16). �(�) is the unknown
disturbance vector (see Eq. 17) and �(�) is the known
disturbance vector (see Eq. 18). The volume of the
electrowinning tank ��� and � are unknown parameters and
these parameters are augmented as state variables — see Eqs.
11 and 12. � is the parameter vector given in Eq. 19.

wedVmedVdemVepVedV
dt

d

2222= &&&& −−+ (1)

()
edV

CuSOedCuSOemdemV

edV

CuSOedCuSOpbepV

CuSOed
dt

d

4,4,2

4,
(3)

4,2
=4,

ρρ

ρρ
ρ

−⋅
+








 −⋅

&

&

 (2)

()
edV

SOHedSOHemdemV

edV

SOHedSOHpbepV

SOHed
dt

d

42,42,2

42,
(3)

42,2
=42,

ρρ

ρρ
ρ

−⋅
+








 −⋅

&

&

 (3)

()

ewV

CuM
oCumCuSOM

CuSOewvapV

ewV

CuSOewCuSOedwedV
CuSOew

dt

d














⋅













−⋅

+

−⋅

,
310

4
4,

4,4,2
=4,

&

&

&

ρ

ρρ
ρ

 (4)

()

ewV

CuM

oCumSOHM
SOHewvapV

ewV

SOHewSOHedwedV
SOHew

dt

d














⋅













+⋅

+

−⋅

,
310

42
42,

42,42,2
=42,

&

&

&

ρ

ρρ
ρ

 (5)

vapVmewVwedV &&& +2=2 (6)

I
CCuzCuM

oCum
⋅

⋅
⋅

43421

&

η

η3600
=

, (7)

()blemVdemVseVemwVmewVmedVemV
dt

d
222222= &&&&&& ++−++ (8)

()

()

emV

CuSOememwV

emV

CuSOemCuSOewmewV

emV

CuSOemCuSOedmedV
CuSOem

dt

d

4,2

4,4,2

4,4,2
=4,

ρ

ρρ

ρρ
ρ

⋅
−

−⋅
+

−⋅

&

&

&

 (9)

()

()

emV

SOHememwV

emV

SOHemSOHewmewV

emV

SOHemSOHedmedV
SOHem

dt

d

42,2

42,42,2

42,42,2
=42,

ρ

ρρ

ρρ
ρ

⋅
−

−⋅
+

−⋅

&

&

&

 (10)

0=η
dt

d (11)

0=ewV
dt

d (12)

Figure 1: A part of the flow sheet for the copper leaching

process (taken from [16]).

 Corresponding noisy system is given in Eq. 21, where � is
the measurement noise. The state vector � is given in Eq. 15. � and ℎ are given functions while � is usually not known.
Unknown disturbance may be modeled as
 �� (�) = ���(�), �� +

where � is given parameter vector and is a given white
noise process (see Eqs. 13 and14). See [18] for one possible
disturbance model.1 Eqs. 13 and 14 give possible disturbance
models for ���!�� and �����" . Eq. 22 gives the discrete
version of Eq. 21 — where, � ≡ �($), �% ≡ �($%) and $% =&. Δ$ for & ∈ ℤ+�. $ is discretized with the time step Δ$. �%, �% and ℎ% are some functions. �($) and �(�)($) are taken to
be piecewise constant functions — i.e., �($) = �% and �(�)($) = �%(�) are constants for $ ∈ -&. Δ$, (& + 1). Δ$/.

wedVwed
wedVwed VV

dt

d

2
2

0

2
2 =

&

43421

&

&& εβ +−

≥

 (13)

mewVmew
mewVmew VV

dt

d

2
2

0

2
2 =

&

43421

&

&& εβ +−

≥

 (14)

0>=

42,

42,

42,

4,

4,

4,

min

SOHem

SOHew

SOHed

CuSOem

CuSOew

CuSOed

em

ed

max x

V

V

xx ≥

































≥

ρ
ρ
ρ
ρ
ρ
ρ

 (15)

0>=

(3)
42,

(3)
4,

2

2

min

SOHpb

CuSOpb

se

ep

max u
V

V

uu ≥























≥

ρ

ρ

&

&

 (16)

0>=

2

2

2

2

(1)























blem

emw

med

dem

V

V

I

V

V

w

&

&

&

&

 (17)

0>=
2

2(2)













mew

wed

V

V
w

&

&

 (18)

0>= 








ewV
p

η
 (19)

0>=

4,
4

42
42,

4,
4

























⋅+

⋅

CuSOew
CuSO

SOH
SOHew

CuSOew
CuSO

Cu
em

ed

M

M
M

M
V

V

y

ρρ

ρ (20)

()
()
()












+
+

Σ

vxhy

ww

p

pwwuxfx

=

,=

0=

,,,,=

:
(2)(2)

(2)(1)

εβψ&

&

&

 (21)

1 A notation: 0� gives the number of elements of the vector 1.

()












+

+











∆

Σ
+

+

+

K

K

K

K

0,1,=;=

0,1,=;,=

0,1,=;=

0,1,=;,,,,,=

:
(2)(2)

1

1

(2)(1)
1

kvxhy

kww

kpp

kpwwuxtfx

kkkk

kkkk

kk

kkkkkkk

k
εβψ

 (22)

{


















+






















+

































∆

Σ








∆

+

K

K

444444 3444444 21

0,1,=;=

0,1,=;

1

0

0

,

,,,,,

=

:

(1),,,

(2)

(2)(1)

1

kvxhy

k

w

p

pwwuxtf

x

k
Aug
k

Aug
kk

k

kL

kwkuAug
kxtAug

kf

kk

k

kkkkkk
Aug
k

Aug
k

ε
βψ

 (23)

 The elements of �, �, �(�), �(�), �(�), �, and � are scaled
with respect to their nominal values. For example, 2�!,34567 = 2�!,34567� . 2�!,345678

where 2�!,34567� is the nominal value of 2�!,34567 and such
scaling makes 2�!,345678
 varies close to 1. It is advisable to
use scaling if the variables vary in vastly different scales.
Table 1 gives variables’ units.

Variable Units Description $ -ℎ/ Time

� -	�/ Volume

�� -	�/ℎ/ Volumetric flow rate

2 -:/;/ Mass concentration

< -:/	=;/ Molecular mass

> -−/ Number of valence electrons

@ -A/ Electric current

�̅ -−/ Currency efficiency

Table 1: Variables’ units used in this paper.

III. STATE ESTIMATION AND OPTIMAL CONTROL

Consider the discrete stochastic system [13] in Eq. 22. The
augmented state,

�%CDE = F �%�%(�)�%
G

may be estimated from available measurements (if the

augmented system is observable) �H for I ≤ &; �H(�) for I ≤& − 1 ; and �H for I ≤ & − 1 . Various nonlinear state
estimators are available, such as the Extended Kalman Filter
(EKF), the Unscented Kalman Filter (UKF) [10], the Particle
Filter (PF) [19][20][21], and the Moving Horizon Estimate
(MHE). A combination of the MHE and the EKF (MHE-EKF
combo) is used in this paper — EKF may be replaced by, for
example, PF (i.e., MHE-PF combo). The success of a state

estimation process demands three things: (1) state
observability, (2) state stochastic observability, (3) and
stochastic controllability. Stochastic controllability
associates with the excitation of state variables by process
noises variables — more precisely, unstable state variables
should be controllable with respect to process noise variables
to achieve stochastic controllability. Note that some choices
of � may cause the augmented system unobservable, hence it
should be defined carefully. The augmented noisy system
which is used in state-parameter-disturbance estimation is
given in Eq. 23.2
 Fig. 2 gives an EKF implementation. >%CDEK is an estimate

for �%CDE . A%L� matrix is adjusted by an instability term M@
(M ≥ 0) and this improves the stability of EKF [22][25]. If M = 0, then we have the conventional EKF. It is seen that M ≠ 0 is advisable especially for parameter estimation.
 Notice that excites the system state � via �(�) . Even
though the unstable modes of the augmented system is
controllable with respect to , it is still appropriate to add
additional fictitious noise [10] variables to every state
equation in the augmented system. Fictitious noise variables
improve the stability of EKF — i.e., Eq. 21 becomes �� =���, �, �(�), �(�), �� + Q and �� = � , where Q and � are
fictitious noise vectors.

Figure 2: An EKF implementation.

 Consider �($) for $% − R ≤ $ ≤ $% , where R is a time
horizon to the past — R = S"T� . ∆$ and S"T� is a positive
integer. �($%) and �(�)($%) are estimated such that V"T� (in
Eq. 24) is minimized subjected to Eq. 23 and constraints
given in Eqs. 15, 18 and 19. >̂%LXYZ[should be known and it
can be estimated using EKF or PF or other estimator. At the
end of each sample time, the horizon is shifted one time step
forward — i.e., $ ∈ -$% + ∆$ − T, $% + ∆$/ — V"T� is
optimized again and continue. Weighting matrices]�H ,]�H ,
and]�H are given. See Fig. 2.

2 0 and 1 are used both as scalars and (zero and unit) matrices where
necessary and reader is advised to pick the correct one.

)ˆ()ˆ(

)()(

=

3

2
=

1

1

=

mhemhemhemhe

mhe

mhe

NiNi
iT

NiNi

i
Aug
ii

i
T

i
Aug
ii

k

Nki

i
iT

i

k

Nki

mhe

zzQzz

zhyQzhy

QJ

−−−−

−

−

−

−−

+




 −





 −

+

∑

∑ εε

 (24)

Figure 3: MHE implementation with EKF/PF/etc.

 Assume the system given Eq. 21 is output controllable and
there exists an equilibrium point such that �� =����, ��, �(�),�, �(�),�, ��� = 0 and �� = ℎ(��) + 0 , ∀$ ≥0 . Eq. 25 gives the linear model in deviation form. One
possibility is to use the linear model to design an optimal
controller.





































−∆
−∆

−∆
−∆

−∆
−∆

∂

∂
∂

∂
∂
∂

∂
∂

∂
∂

∆+∆∆

∆+∆+∆+∆∆

Σ









































0=

=

=

=

=

=

|=

|=

|=

|=

|=

=

=

:

0

(2),0(2)(2)

(1),0(1)(1)

0

0

0,(2),0,(1),0,0,0(2)2

0,(2),0,(1),0,0,0(1)1

0

0,(2),0,(1),0,0,0

0,(2),0,(1),0,0,0

(2)
2

(1)
1

vv

yyy

www

www

uuu

xxx

f
w

L

f
w

L

h
x

C

f
u

B

f
x

A

vxCy

wLwLuBxAx
dt

d

pwwux

pwwux

x

pwwux

pwwux

Linear (25)





















−∆

−∆

∆−∆

yn

i
filt

ii

iii

yiii

z

z

z

z

yyy

rrr

nkyrz
dt

d

K

K

1

0

0

0

=

=

=

,0,1,=;=

 (26)

 It is necessary to include integral actions in order to achieve
an offset-free reference tracking (the Magic of Integral
Control [23]) and better disturbance rejection. See Eq. 26,
where _H is the reference of �H and �H̀ Hab is the (lowpass)
filtered signal of �H . Refer [24] and [25] for more details. ∆�(�) is augmented appropriately — see Eq. 28. ∆�(�) is not
controllable by ∆�, hence a model for ∆�(�) is defined such
that ∆�(�) is stable. Also some rate control is included (see
Eq. 27).

uu
dt

d ~=∆ (27)

{

{

(2)

11<0
0

10<0
0

(2)
0

0

= ww
dt

d
∆



















−

−

∆

<

<

β

β
β

β

 (28)

 Now, the cost function given in Eq. 29 is minimized
subjected to Eqs. 25, 26, 27 and 28.]∆�(4) could be set to
zero since it may not be necessary to optimize ∆�(�).

dttJJ
ft

limit

ft)(=
0∫∞→∞

T
u

T
x uQuxQxtJ ~~~~=)(~~ +





















∆

∆
∆

u

z

w

x

x
(2)

=~





















∆

∆

∆

u

z
w

x

x

Q

Q

Q

Q

Q

000

000

000

000

=
(2)~ (29)

0=~1

~ x
T

u
T QRBRBQRARA +−+ −

RBQK T
u

1
~= −

∞

[]

uKzKwKxK

u

z

w

x

KKKKxKu

∆−−∆−∆−





















∆

∆
∆

−−

∞∞∞∞

∞∞∞∞∞

43(2)21

(2)
4321

=

=~=~

ττ duu
t

)(~=
0∫∆ (30)

 The analytical solution to unconstrained OCP is given by
Eq. 30. On the other hand, it is possible to consider a finite
horizon OCP — i.e.,

 dttJJ ft

ft)(=
<

0∫
∞

.

 Unconstrained infinite horizon problem is much faster to
implement.]Qc and]∆D are carefully tuned. ∆� and ∆�(�)
are replaced by their estimates. Alternatively, linear or
nonlinear Model Predictive Controller (LMPC/NMPC) can
be considered. Assume the current state �% is known (or
estimated). Let, it be necessary to steer output from �% to

�%Kde (<f < ∞ is the prediction horizon and it is a positive

integer) in finite time by manipulating a sequence of control
variables i�%, �%K�, ⋯ , �%KdkL�l , where <D is control
horizon (<D ≤ <f). ∆�H = �H − �HL� for I = &, & +1, ⋯ , & + <D − 1 , ∆�H = 0 for I ≥ & + <D and �L� is
given. There could be many possibilities of choosing a
control sequence to achieve the same output transition. In
order to pick one of the input trajectories, additional
constraints can be imposed on input variables. This is the
basic idea in optimal control, where a cost function is defined

and minimized with respect to �($) for $ ∈ m$%, $%Kden. The

cost function can be defined in many flavors. Eq. 31 gives an
example.
 �(�) and �(�) affect the performance of the controller. One
way to tackle the problem is to assume �(�) is a random

process and �(�)($) = �%(�) for $ ∈ o$%, $% + <f . ∆$p. This
makes Vq"�
 random. We may, among other options,
optimize the expected value of the cost function — i.e., riVq"�
l. Stochastic optimal control strategies are discussed

in [7]. Instead, we consider some estimate of �%(�) — say �s%(�) — and �(�)($) = �%(�) for $ ∈ o$%, $% + <f . ∆$p , in
order to obtain a deterministic cost function. Once the OCP is
solved (for given �% or an estimate of it �%), the optimal
control sequence i�%∗ , �%K�∗ , ⋯ , �%KdkL�∗ l as well as u�%K�∗ , �%K�∗ , ⋯ , �%Kde∗ v are found. We set the current control

action to be �% = �%∗ for $ ∈ -$%, $% + ∆$/. An estimate of �% used in the OCP implementation as well.

1,0,1,=;

,1,2,=;0

1,1,,=;0=

1,0,1,=;=

,1,2,=;0=ˆ,ˆ,,,,

=

1

(2)(1)
2111

1=

0=

1111

1=

0=

−≤≤

≥

−+∆

−+∆






 +∆∆

−

∆∆+






 −





 −

+++

+

+

−+++

−+−+−+−+

+

−

++++

−

∑

∑

y
max

ikik
min

ik

yik

yuuik

yikikik

ykkkikikikik

ik

k
uT

k

uMk

k

ref
kk

y
Tref

kk

yMk

k

nmpc

Miuuu

Mix

MMMiu

Miuuu

Mipwwuuxtf

x

uWu

yyWyyJ

K

K

K

K

K

 (31)

 Analysis and synthesis of OCPs involves controllability and
observability analysis. In this paper, we will not discuss
algebraic observability and controllability [26][27], instead
we exploit the structural observability and controllability
[28][29][6]. Observability of the noise-free system must be
fulfilled first. Consider the noise-free form of Eq. 21 (by
setting = � = 0) given in Eq. 35.

()


























Σ

nfnf

nfnf

nf

nfnfnfnf

nf

xhy

ww

p

pwwuxfx

=

,=

0=

,,,,=

:
(2)(2)

(2)(1)

βψ&

&

&

 (32)

 The augmented state �qC̀DE($) moves on its state space,

starting at �qC̀DE($ = 0). The trajectory of �qC̀DE($) is shaped

by �($) and �(�)($) . The output trajectory is given by �q`($) = ℎ w�q`($)x . If (locally) no two distinct initial

conditions give identical output trajectories for any

admissible �q`($) and �q`(�)($), then we say that the state are
(locally) distinguishable. In other words:
 ℎ��q`� � ≠ ℎ��q`� � ⇒ �q`� ≠ �q`� , �q`(�),� ≠ �q`(�),�, �q`� ≠ �q`�

 State distinguishability property implies state observability.

Note that �q`($) and �q`(�)($) affect observability. If there

exists an admissible control �q`($) such that the state
transition from any �q`� to any state �q`� is possible, then we

say that the state is controllable (�q`(�)($) and �q`(�)($) affect
controllability). The reader is refereed to [27][30] for a
detailed discussion on nonlinear observability and
controllability. Often, implementing algebraic tests for
observability and controllability analysis on large-scale
complex systems are tedious or even practically impossible.
A practical solution is first to analyze large-scale systems for
structural observability and controllability, followed by
algebraic tests for structurally decomposed subsystems as
necessary. Structural observability (controllability) gives a
necessary condition for observability (controllability).
Interestingly, there is a graph-theoretic analogy for structural
analysis [6].3
 Structural observable analysis involves structural
dependencies among state and measurement variables and
those dependencies are encoded into a directed graph z{
(directed graph = digraph). Nodes are the elements of the

vectors �q`, �q`(�), �q` and �q`. E.g., �q`,H is the i-th element
of �q` and �q`,H is a node. Edges are defined in the following
way:

• �q`,H → �q`,} exists if ~�H ~�q`,}⁄ ≠ 0;

• �q`,H → �q`,}(�) exists if ~�H �q`,}(�)� ≠ 0;

• �q`,H → �q`,} exists if ~�H ~�q`,}⁄ ≠ 0;
• �q`,H → �q`,} exists if ~�H ~�q`,}⁄ ≠ 0;

• �q`,H(�) → �q`,}(�) exists if ~�H ~�q`,}(�) � ≠ 0;

• �q`,H → �q`,} exists if ~ℎH ~�q`,}⁄ ≠ 0.

 Note that 1 → � denotes a directed edge from 1 to �. Once
the digraph is created, we can analyze for structural
observability. It is a must that all state variables are reachable
from outputs (output connectivity) – i.e. if there is at least one
state variable such that there is no directed path from any of
the output variables to that state’s node, then the system is not
structurally observable. However, this is a necessary
condition for structural observability. A necessary and
sufficient condition is that iff z{ is spanned by cacti [28], then
the system is structurally observable. A cactus contains a
directed path, called a stem, starting from an output the root
and ends at a state variable the top and cycles, called buds,
which are attached to the stem and/or to other buds. See Fig.
4 for an example.

3 A way of automating structural analysis in Python, using Modelica-
JModelica.org-CasADi, is given in [31].

Figure 4: A cactus with two buds.

 Digraphs for structural controllability (with respect to
control variables) analysis are created in a similar fashion.
Nodes are the elements of the vectors �q`, � and �q`. Let z

be the digraph for structural controllability analysis. The
edges are defined in the following way:

• �q`,} → �q`,H exists if ~�H ~�q`,}⁄ ≠ 0;
• �} → �q`,H exists if ~�H �}⁄ ≠ 0;
• �q`,H → �q`,} exists if ~ℎ} ~�q`,H⁄ ≠ 0.

 Iff z
 is spanned by cacti, then the system is structurally
output controllable. Similarly, state controllability can be
defined. It is also possible to define structural controllability

with respect to process noise �q`(�) for stochastic
controllability. Stochastic controllability affects convergence
characteristic of the state estimation process [16][32]. In
some cases, structural observability (controllability) is
sufficient for algebraic observability (controllability). For
example, the system we consider in this paper is structurally
observability and controllability and also structural properties
provides sufficiency.

IV. SOFTWARE IMPLEMENTATION

 In this paper, usage of free software tools are emphasized.
Python which is a powerful tool for technical computing is
used as the scripting language. There are many Python
packages which support, among others, various aspects
systems and control engineering applications such as scipy,
numpy, matplotlib, assimulo, casadi, pygraphviz, networkx,
etc. For modeling of large-scale complex dynamic systems,
Modelica specifications provide a better systematic approach.
Several tools offer interfaces between Modelica and Python,
for examples OpenModelica and JModelica.org. Modelica
standards mainly focuses on modeling and simulation,
however there exist an extension to Modelica, Optimica [33],
which can handle OCPs. OpenModelica and JModelica.org
support Optimica standards as well. CasADi — available as
a Python package — is a symbolic framework for numerical
optimization and it is conveniently possible to cast a general
OCP using CasADi. Also, it is always possible to solve a
general OCP via SciPy.
 First, a Modelica4 package is created which contains the
copper leaching process model EW and EW_Init (the steady

4 See more about Modelica http://book.xogeny.com/.

state model) which extends EW.5 The key point here is that
we can encode large-scale complex systems systematically
using Modelica standards — in other words exploiting the
modeling power in Modelica. To calculate a steady state,
EW_Init is compiled using JModelica.org — the pymodelica
package is used for compiling — and the compiled model is
imported back, as a JMUModel object and called it
init_model, to Python through pyjmi. Calling the method
initialize() initializes EW_Init and thereby, a steady state is
found. The method initialize() uses IPOPT solver [34]. There
are many other alternatives which can be used in steady state
calculation for instances CasADi and SciPy. EW is also used
to generate necessary digraphs for structural observability
and controllability analysis. This is done via CasADi by
importing Modelica model into Python as symbolic DAEs,
processing them (e.g. index reduction, etc.), generating and
analyzing digraphs using networkx package.
 The module scipy.optimize is used in the implementations
of optimal control and moving horizon estimate. For
example, scipy.optimize.fmin_cobyla() is a nonlinear
optimizer which can be used for constrained optimization. An
alternatively is IPOPT optimizer (through CasADi). IPOPT-
CasADi combination needs lesser computational time as
compared to fmin_cobyla()-Python. The EKF is straight
forward to automate.

V. RESULTS

 The volume of electrowinning tanks ��� determines the
rate of change of the chemical compositions in
electrowinning tanks. ��� is not precisely known. However,
the experience shows that the time constant is around 2 hours,
hence ��� is chosen accordingly. Note that variables are
scaled with respect to an equilibrium point, thereby scaled
variables have their nominal values equal to ones. The entire
analysis is based on scaled variables.
 Two of the eigenvalues of matrix A are zeros and others are
complex with real negative parts. Zero eigenvalues
corresponds to ��! and ��" . Due to the presence of zero
eigenvalues, it is necessary to have shorter sampling time.
∆$ � 0.25	-	I0/ is selected.

A. Structural analysis

 Based on available measurements (0f � 4) it is expected to
estimate all state variables (0Q � 8) and additionally, if
possible, disturbance variables (0�
4� � 2) and parameters
(0� � 2). Fig. 5 depicts the digraph for structural
observability analysis. There exists a spanning cacti covering
all vertices, hence the system is structurally observable. There
could be more than one spanning cacti. Note that even though
���[�4Y

� ���[�4�
� 0 (in Eqs. 13 and 14), the augmented

model maintains structural observability.

5 In EW, variable are scaled with respect to their nominal values and
consequently, scaled variables vary around 1.

Figure 5: Structural observability analysis: digraph is

spanned by cacti covering all nodes.

Figure 6: Structural controllability analysis w.r.t. process

noise variables. Nodes related to parameters are colored in
yellow.

 The digraph given in Fig. 6 is used to analyze for the
controllability of state variables with respect to process noise
variables. The objective is to check whether unstable modes
are excited enough by process noise variables ��[�4Y

 and
 ��[�4�. It is seen that augmented state variables, except the
state variables related to parameters, are controllable by
process noise variables. If there is any unstable mode which
is not controllable by process noise, then it is necessary to add
some fictitious noise to it. It is always advisable to add
fictitious noise processes to all state equations including Eqs.
11 and 12 (these equations links with model parameters).
According to Fig. 7, it is clear that the system is structurally
output controllable. In this case, the digraph can be divided
into two sets �� and ��:

�� � ��� , ��, ��! , ��" , ��, ���

�� � ���, ��, 2�!,�D567
, 2��,�D567

, 2�",�D567
,

								2�!,34567
, 2��,34567

, 2�",34567
, ��, ���

Figure 7: Structural (output) controllability analysis w.r.t.

input variables.

 There are no directed edges starting from �� and ending at
��, which means the OCP problem can be considered as two

sub-OCPs, say OCP1 and OCP2, and such partitioning of
state variables is not always possible. The OCP1 related to
�� ? �� control using �� ? �� and OCP1 can be solved
completely independent from OCP2. Since there are directed
edges from �� to ��, OCP2 depends on OCP1. The subsystem
which corresponds to OCP1 is a linear time invariant system
with has two zero eigenvalues. On the other hand, OCP2
deals with a sluggish system of ODEs as compared to OCP1.

B. State estimation and optimal control

 The model (Eq. 21) is simulated for given �
�� (see Fig. 22),
�
��, and � with the optimal controller given in Eq. 29. EKF
and MHE is implemented for simulated data. Figs. 8 and 9
show estimates for � and ��� using a shorter moving horizon
S"T� � 2.

Figure 8: Estimation of scaled η with 2=mheN .

Figure 9: Estimation of scaled ewV with 2=mheN .

 Note that a modified EKF with a stability correction is used
here. Estimates for chemical compositions and dilution and
mixing tanks’ volumes are given in Figs. 11, 12, 13, 14, 15,
16, and 17 while Figs. 18 and 19 are for the estimation of
disturbance variables. The controller makes outputs to follow
the reference trajectories in the presence of both known and
unknown disturbances — see Figs. 20 and 21.
 In general, initial state estimate is unknown. However, we
know that all state variables must be positive. It is important
to check the stability characteristic of the estimates with
respect to initial state estimate. A Monte Carlo simulation is
done by choosing initial state randomly by means of uniform
probability distributions. It is observed from Monte Carlo
simulations — by picking initial state estimates within �50%

of their nominal values —, the estimates always converging
for true values. See Figs. 24 and 25. Similar Monte Carlo
simulation is done to check the effect of M. See Figs. 26 and
27. In Fig. 27, all curves converge to true value except one
which corresponds to M � 0 . This is an important
observation. The conventional EKF fails (i.e. M � 0) even
though the augmented state is observable. A properly tuned
Moving Horizon Estimate gives comparatively better stable
estimates. One of the disadvantage with the Moving Horizon
Estimate is that it demand more computer resources. For
S"T� � 2, the time taken per each sample time is around
1	-	I0/ while 20	-	I0/ for S"T� � 20. See Figs. 30 and 31
for the results when S"T� � 20.

VI. CONCLUSION AND FUTURE WORK

 We have demonstrated how to use available free software
and analytical tools in automating control and estimation
problems related to large-scale complex dynamic systems by
considering the copper leaching process at Glencore
Nikkelverk, Kristiansand as a case study. The case study is a
success story of exploiting structural analysis, graph-theory,
Modelica and Python in handling large-scale complex control
systems. The case study mainly concern optimal control and
state-parameter-disturbance estimation problems and these
problems connect with controllability and observability
analysis. By mapping system structure appropriately into
directed graphs (so-called digraphs) makes easy to analyze
for structural controllability/observability. We have
suggested a simple way of creating system digraphs and
structural analysis using Modelica and Python.
 The electrowinning process is a subsystem of the copper
leaching process. A mechanistic model for the electrowinning
process is available and it is considered in our analysis. The
model has 8 state variables, 2 unknown disturbances and 2
unknown parameters and all of them are estimated based on
available 2 level and 2 composition measurements. Two state
estimators are used: the Extended Kalman Filter and the
Moving Horizon Estimate. The Moving Horizon Estimator
can handle constraints (e.g. chemical composition is always
positive) while the Extended Kalman Filter cannot. Also, the
Extended Kalman Filter may give poor stability properties.
We implemented a modified Extended Kalman Filter, by
replacing system matrix A by A � M@ where M is small
positive number, which gives improved results as the Moving
Horizon Estimate’s results. We have shown that the Moving
Horizon Estimate gives better results in sense of estimator’s
stability and robustness proving that the estimator is tuned
properly as compared to conventional Extended Kalman
Filter without including stability correction.
 Before implementing any state estimator in order to estimate
disturbance variables, it is essential to define dynamic models
for them. There could be many possibilities of doing so.
Disturbance models should be defined in such way that
augmented model is structurally observable. We have shown
an easy and efficient procedure to pick suitable disturbance
models using a graph-theocratic approach. On the other hand,
to solve the control problem, an optimal controller with
integral action is implemented. The model used in controller
analysis and synthesis is an augmented model and its state
variables consists of both state variables in the original
system and unknown disturbance variables. Here, disturbance
models are defined such that unstable modes of the
augmented system is controllable with respect to input

variables and again, we have used the help of structural
controllability analysis.
 In the software implementation, we only concerned free
software tools. Modeling is done in Modelica and Modelica
models are used in structural observability and controllability
analysis by importing Modelica models into Python via the
JModelica.org-CasADi interface. Python packages
NetworkX and PyGraphviz are used for graph-theocratic
analysis and visualization respectively. To solve nonlinear
optimization problems — which encounter in optimal control
and state estimation using the Moving Horizon Estimate —
constrained optimizers available in SciPy, such as
fmin_cobyla, can be used. Alternatively, Ipopt (Interior Point
OPTimizer) optimizer may be used and for instance, it can be
accessed through CasADi.
 Several suggestions are made for possible future work. An
immediate extension to our work is to validate the results
based on real process data. For example, state-parameter-
disturbance estimation using real process data should be
done. It is seen that chemical compositions in electrowinning
tanks and the mixing tank are more or less equal according to
model simulations, hence it is possible to consider some
reduced order model in the analysis. We have considered the
chemical compositions in the dilution tank as two of the
control signals to control chemical compositions in the
electrowinning tanks. In reality, chemical compositions in the
dilution tank are manipulated by adding copper oxide and
sulfuric acid at two remote locations within the copper plant
and this adds imminent delays in the control action. It is
necessary to include delays in the analysis. Finally, it is of
interest to integrate an optimal controller to the real process
and to implement an online state-parameter-disturbance
estimator.

Figure 10: Estimation of scaled emV with 2=mheN .

Figure 11: Estimation of scaled 4,CuSOedρ with 2=mheN .

Figure 12: Estimation of scaled 4,CuSOewρ with 2=mheN .

Figure 13: Estimation of scaled 4,CuSOemρ with 2=mheN .

Figure 14: Estimation of scaled edV with 2=mheN .

Figure 15: Estimation of scaled 42, SOHedρ with 2=mheN

.

Figure 16: Estimation of scaled 42, SOHewρ with 2=mheN

.

Figure 17: Estimation of scaled 42, SOHemρ with

2=mheN .

Figure 18: Estimation of scaled wedV 2

& with 2=mheN .

Figure 19: Estimation of scaled mewV 2

& with 2=mheN .

Figure 20: Inputs.

Figure 21: Outputs.

Figure 22: Known disturbances.

Figure 23: Integral actions.

Figure 24: Sensitivity of initial state estimates for scaled η

estimation using EKF.

Figure 25: Sensitivity of initial state estimates for scaled

ewV estimation using EKF.

Figure 26: Sensitivity of α for scaled η estimation using

EKF.

Figure 27: Sensitivity of α for scaled ewV estimation

using EKF.

Figure 28: Sensitivity of β for scaled wedV 2

& estimation

using EKF.

Figure 29: Sensitivity of β for scaled mewV 2

& estimation

using EKF.

Figure 30: Estimation of η with 20=mheN .

Figure 31: Estimation of ewV with 20=mheN .

REFERENCES

[1] A. E. Bryson, Applied optimal control: optimization,
estimation and control, CRC Press, 1975.

[2] B. Lie, T. A. Hauge, Modeling of an industrial copper
leaching and electrowinning process, with validation
against experimental data, in: Proceedings SIMS,
2008, pp. 7–8.

[3] F. Allgöwer, R. Findeisen, C. Ebenbauer, Nonlinear
model predictive control (2000).
http://ifatwww.et.uni-
magdeburg.de/syst/about_us/people/findeisen/papers/
EOLSS.pdf

[4] P. Fritzson, Introduction to modeling and simulation
of technical and physical systems with Modelica, John
Wiley & Sons, 2011.

[5] J. Andersson, J. Åkesson, M. Diehl, Casadi: a
symbolic package for automatic differentiation and
optimal control, in: Recent Advances in Algorithmic
Differentiation, Springer, 2012, pp. 297–307.

[6] K. J. Reinschke, Multivariable control: a graph
theoretic approach, Springer-Verlag, 1988.

[7] D. P. Bertsekas, Dynamic programming and optimal
control, Vol. 1, Athena Scientific Belmont,
Massachusetts, 1996.

[8] L. T. Biegler, Nonlinear programming: concepts,
algorithms, and applications to chemical processes,
Vol. 10, SIAM, 2010.

[9] L. Magni, D. M. Raimondo, F. Allgöwer, Nonlinear
model predictive control, Springer, 2009.

[10] D. Simon, Optimal State Estimation: Kalman, H
Infinity, and Nonlinear Approaches, Wiley-
Interscience, 2006.

[11] R. Brown, P. Hwang, Introduction to Random Signals
and Applied Kalman Filtering – with MATLAB
exercises and solutions, John Wiley and Sons, 1997.

[12] A. Gelb, Applied optimal estimation, The M.I.T.
press, 2001.

[13] A. H. Jazwinski, Stochastic processes and filtering
theory, Courier Corporation, 2007.

[14] A. Jazwinski, Limited memory optimal filtering,
IEEE Transactions on Automatic Control 13 (5)
(1968) 558–563.

[15] K. Reif, F. Sonnemann, R. Unbehauen, Modification
of the extended kalman filter with an additive term of
instability, in: Decision and Control, 1996.,
Proceedings of the 35th IEEE Conference on, Vol. 4,
IEEE, 1996, pp. 4058–4059.

[16] R. J. Fitzgerald, Divergence of the kalman filter,
Automatic Control, IEEE Transactions on 16 (6)
(1971) 736–747.

[17] L. Ljung, Asymptotic behavior of the extended
kalman filter as a parameter estimator for linear

systems, Automatic Control, IEEE Transactions on
24 (1) (1979) 36–50.

[18] B. Bona, R. J. Smay, Optimum reset of ship’s inertial
navigation system, Aerospace and Electronic
Systems, IEEE Transactions on AES-2 (4) (1966)
409–414.

[19] A. Doucet, S. Godsill, C. Andrieu, On sequential
monte carlo sampling methods for bayesian filtering,
Statistics and computing 10 (3) (2000) 197–208.

[20] N. Gordon, B. Ristic, S. Arulampalam, Beyond the
kalman filter: Particle filters for tracking applications,
Artech House, London.

[21] A. Smith, A. Doucet, N. de Freitas, N. Gordon,
Sequential Monte Carlo methods in practice, Springer
Science & Business Media, 2013.

[22] D. F. Bizup, D. E. Brown, The over-extended kalman
filter-don’t use it!, in: Proceedings of the Sixth
International Conference of Information Fusion,
Vol. 1, 2003, pp. 40–46.

[23] K. J. Åström, Introduction to Control, Department of
automatic control, Lund Institute of Technology,
2004.

[24] P. C. Young, J. Willems, An approach to the linear
multivariable servomechanism problemâ€ ,
International journal of control 15 (5) (1972) 961–
979.

[25] Y.-P. Shih, Integral action in the optimal control of
linear systems with quadratic performance index,
Industrial & Engineering Chemistry Fundamentals
9 (1) (1970) 35–37.

[26] A. Isidori, Nonlinear control systems, Springer
Science & Business Media, 1995.

[27] R. Hermann, A. J. Krener, Nonlinear controllability
and observability, IEEE Transactions on automatic
control 22 (5) (1977) 728–740.

[28] C. T. Lin, Structural controllability, Automatic
Control, IEEE Transactions on 19 (3) (1974) 201–
208.

[29] Y.-Y. Liu, J.-J. Slotine, A.-L. Barabási, Observability
of complex systems, Proceedings of the National
Academy of Sciences 110 (7) (2013) 2460–2465.

[30] M. R. James, Controllability and observability of
nonlinear systems., Tech. rep., Mathematics
Department and Systems Research Center, University
of Maryland (1987).

[31] M. A. S. Perera, B. Lie, C. F. Pfeiffer, Structural
Observability Analysis of Large Scale Systems Using
Modelica and Python, Modeling, Identification and
Control 36 (1) (2015) 53–65.
doi:10.4173/mic.2015.1.4.

[32] J. E. Potter, A matrix equation arising in statistical
filter theory, Tech. rep., National Aeronautics and
Space Administration (1965).

[33] J. Åkesson, K.-E. Årzén, M. Gäfvert, T. Bergdahl,
H. Tummescheit, Modeling and optimization with
optimica and jmodelica.Org languages and tools for
solving large-scale dynamic optimization problems,
Computers & Chemical Engineering 34 (11) (2010)
1737–1749.

[34] A. Wächter, L. T. Biegler, On the implementation of
an interior-point filter line-search algorithm for large-
scale nonlinear programming, Mathematical
programming 106 (1) (2006) 25–57.

M. Anushka S. Perera was born in 1982 in
Negombo, Sri Lanka. He received his bachelor’s
degree in Chemical and Process Engineering from
University of Moratuwa, Sri Lanka in 2007 and
master’s degree in Systems and Control Engineering
from Telemark University College, Porsgrunn,
Norway (at time it was called Telemark University
College) in 2012. He is currently a PhD candidate at
the University College of Southeast Norway,
Porsgrunn. His main research interests are estimation

and control of large-scale complex control systems.

Tor Anders Hauge obtained his PhD from Telemark
University College, Porsgrunn, Norway in 2003. He
has worked as adjunct Professor at University of
Agder’s mechatronics group during the course of
2008-2011. He has been working as a control
engineer from 2003 at Glencore Nikkelverk,
Kristiansand, Norway and his current position is
senior control engineer.

Carlos Fernando Pfeiffer obtained his bachelor’s
degree in Chemical and Systems Engineering from
ITESM, Monterrey, Mexico in 1987, master’s degree
in Control Engineering degree from the same
institution in 1993 and the PhD from the University of
Texas at Austin in 1999. The topic of his dissertation
was heterogeneous control laws for nonlinear systems.
He worked as a Process Engineering at the Advanced
Process Research and Development Center at
Motorola, Austin, from 1998 to 2001, implementing

advanced control and monitoring for the lithography process, etch process
and chemical mechanical planarization (CMP). Carlos F. Pfeiffer was a
Professor at the Computer Science Department at ITESM, Monterry, Mexico
from 2001 to 2010. From 2011 to date, he is faculty at Telemark University
College, now University College of Southeast Norway. His current fields of
teaching and research are Advanced Process Control, Process Modeling and
Optimization, Thermodynamics, Computer Vision, Pattern recognition.
Present research projects: Human Behavior modeling for Smart House and
Welfare technology, thermodynamic Characterization of CO2 in polymer
solutions, nonlinear process control.

Doctoral dissertation no. 6
2016

—
State Estimation and Optimal

Control of an Industrial Copper
Electrowinning

Dissertation for the degree of Ph.D
—

Magamage Anushka Sampath Perera
—

ISBN: 978-82-7206-417-3 (print)
ISBN: 978-82-7206-418-0 (online)

Tittel—
 Fornavn Etternavn

usn.no

	Titlepage
	Dedication
	Preface
	Acknowledgments
	Summary
	Contents
	List of Figures
	List of Tables

	Nomenclature
	I Theory and Methodology
	Introduction
	Process Description
	Mathematical model
	Problem Description
	Previous Work and New Contributions

	Large-Scale Complex Dynamic Systems
	Observability and Controllability
	Structural Observability and Controllability
	State-Parameter-Disturbance Estimation
	Linear Filtering
	Nonlinear Filtering

	Nonlinear Programming
	Nonlinear Programming: Fundamentals
	Nonlinear Programming: Dynamic Optimization (Optimal Control)

	Results and Discussion
	Overview of Scientific Papers
	Publication A - Modelica models in linear analysis
	Publication B - Structural Observability Analysis
	Publication C - Parameter and State Estimation
	Publication D - State Estimation and Optimal Control

	Discussion, Conclusion and Future Work

	Bibliography

	II Published and Submitted Papers
	Making Modelica Models Available for Analysis in Python Control Systems Library
	Structural Observability Analysis of Large Scale Systems Using Modelica and Python
	Parameter and State Estimation of Large-Scale Complex Systems Using Python Tools
	A Case Study: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

	Perera_Tittelblad_og_kolofon.pdf
	Titlepage
	Dedication
	Preface
	Acknowledgments
	Summary
	Contents
	List of Figures
	List of Tables

	Nomenclature
	I Theory and Methodology
	Introduction
	Process Description
	Mathematical model
	Problem Description
	Previous Work and New Contributions

	Large-Scale Complex Dynamic Systems
	Observability and Controllability
	Structural Observability and Controllability
	State-Parameter-Disturbance Estimation
	Linear Filtering
	Nonlinear Filtering

	Nonlinear Programming
	Nonlinear Programming: Fundamentals
	Nonlinear Programming: Dynamic Optimization (Optimal Control)

	Results and Discussion
	Overview of Scientific Papers
	Publication A - Modelica models in linear analysis
	Publication B - Structural Observability Analysis
	Publication C - Parameter and State Estimation
	Publication D - State Estimation and Optimal Control

	Discussion, Conclusion and Future Work

	Bibliography

	II Published and Submitted Papers
	Making Modelica Models Available for Analysis in Python Control Systems Library
	Structural Observability Analysis of Large Scale Systems Using Modelica and Python
	Parameter and State Estimation of Large-Scale Complex Systems Using Python Tools
	A Case Study: State Estimation and Optimal Control of an Industrial Copper Electrowinning Process

