

University of South-Eastern Norway Faculty of Business School Institute of industry economics, Master's Thesis Study program: Innovation and Technology Management Spring 2022

Robin Færaas Importance of data analytics and innovation

A proof of concept how to tackle data analytics for business growth

Foreword

Denne masteroppgaven er det siste kapittelet i min 2-årige masterutdannelse i Innovasjon og teknologiledelse, i tilegg en bachelor i data ved universitett i Sør-øest Norge (USN). I løpet av masterstudiet har jeg vært igjennom metoder og verktøy for å gjennomføre innovasjon, digitale transformasjoner og etablere nye forretningsmodeller.

Med en spesialisering i entrepenørskap og et utveksling opphold og ønsket derfor å gå i dybden på digitalisering av forretningsaktiviteter som gjøre business hverdagen enklere.

De siste to årene har jeg blitt ekstra oppmerksom på hvordan bedrifter benytter seg av digitalisert data, både egen, men også kundenes. Dette har inspiret meg til å gå nærmenre på hvordan denne type data kan utvikle konkuranse fortrinn.

jeg ønsker å avslutte masterstudiet ved å koble sammen alle læringskomponentene i en avsluttende mastergradsoppgave. Prosessen har vært utrolig lærerik og jeg er veldig motivert til å ta med meg denne kunnskapen inn i arbeidslivet.

Universitet i Sør-Øst Norge

Kongsberg, Mai 2022

Forfatters navn her

Summary

The thesis concentrates on how data analytics can help innovation and business growth in the emerging times of industrial revolution 4.0. As a business grows, multiple internal and external factors can affect it.

The purpose was to determine the most influential factors for a digital transformation. The name says digital. Is the technology the most important or the organization?

To deal with this information, a home lab was created, with different datasets from open sources typically generated in a company. Then using data science framework techniques to gather new insight about existing data is not apparent by just looking at the data since the information is now digitized as rows and columns stored in a database.

The result tells us that in the first stage of a transformation, automation and digitization of a report are the most important and closely related to IT. The organization's culture and skills are much more significant in the other steps.

The recommendation provides a holistic view and a better understanding of the benefits of analytic data. During business growth, nothing lasts forever. In that case, businesses need to be acceptable to change, triggering a business idea about data analytics in business

Keywords – Data Analytic, Digital Transformation, Storytelling, Business growth, skills and roles.

Content

1	Intr	oduction 1
	1.1	Problem formulation, Data as a resource
	1.2	Motivation for the thesis
	1.3	SMEs
	1.4	Research questions
2	${ m Lit}\epsilon$	arature review 5
	2.1	Business perspective, innovation and trends
	2.2	Greiner's Growth model
		2.2.1 Phase 1 Creativity
		2.2.2 Phase 2 Direction
		2.2.3 Phase 3 Delegation
		2.2.4 Phase 4 Coordination
		2.2.5 Phase 5 Collaboration
		2.2.6 Considerations/ reflections
	2.3	External and internal environment
	2.4	Digital transformations
		2.4.1 5 stages road map for digital transformation success
		2.4.2 Considerations 13
	2.5	Technology skills, hybrid jobs and TW process
		2.5.1 Skills and roles
		2.5.2 Technology watch and audit
	2.6	Story telling with data
		2.6.1 Elements of a story
		2.6.2 Stories alliged with data
		2.6.3 The Manager that just/only want the facts
	2.7	Data Science perspective Datatypes, Tools, and workflow
		2.7.1 Data types and sources
		2.7.2 Data science work flow and data pyramid
		2.7.3 Different types of analytic
		2.7.4 Tools
	2.8	SME and benefits / literature gap, problem solving. $\dots \dots \dots$
3	Met	26 hology review
	3.1	Scope of the study
	3.2	Participants
	3.3	Equipment used
		3.3.1 Tools used
	3.4	How I did the analysis
		3.4.1 Internal Data Collection
		3.4.1.1 HR Dataset (structured) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots 29$
		3.4.1.2 Email Data (unstructured) $\ldots \ldots \ldots \ldots \ldots \ldots 30$
		$3.4.1.3$ Customer segmentation $\ldots \ldots \ldots \ldots \ldots 30$
		3.4.2 External data Collection
	3.5	A novel method? or other methodologies more suitable?

4	Res	ults	32
	4.1	Internal Data	32
		4.1.1 Structured	32
		4.1.2 Unstructured \ldots	34
	4.2	Customer segmentation	35
	4.3	External Data	36
		4.3.1 Patent	36
		4.3.2 Trends search	37
	4.4	Other findings	38
5	Disc	cussion	39
	5.1	Future of data analytic	39
	5.2	Anwsering Research questions and hypothesis	40
	5.3	Future improvements	40
	5.4	Emerging Business Idea	41
6	Con	clusion	43
Re	efere	nces	45
Aı	open	dix	47
-	A1	Burke and litwin organizational model	47
	A2	Search Trends	47
	A3	Customer segmentation	47
	A4	Email Notebook	58
	A5	HR Notebook	83
	A6		159

Figures

1.1	Old style and new style	4
2.1	Greiner's model of organizational growth	8
2.2	Transformanal factors, source: (Hayes, 2018)	10
2.3	Digital transformation	12
2.4	Technology develop skills matrix, Source: Pluralsight	14
2.5	Combining the story elements	16
2.6	Combining the story elements	16
2.7	story and automated data	17
2.8	Story telling zone	18
2.9	the distribution of structured and unstructured data source: (Inmon, 2015),	
	refined by me	19
2.10	what data type has most business value relevant (Inmon, 2015), refined by me	20
2.11	usefulness of new vs old data, Source: (Inmon, 2015)	21
2.12	what data type is most relevant (Inmon, 2015)	23
2.13	Similarity between data analytic types and awareness of innovation, source:	
	own elaboration	24
3.1	Server room, source: Own elaboration	26
3.2	Schematic overview, source: Own elaboration	28
3.3	Data Flow, Source : Own elaboration	29
4.1	Attrition based on age and gender, source: own elaboration	32
4.2	Attrition compared to role and income, source: own elaboration	33
4.3	Attrition compared to role and income, source: own elaboration	33
4.4	Show both clean and non clean data, source: own elaboration	34
4.5	Send most email and most mentions, source: own elaboration	35
4.6	Customer classification, source:(ayushsanghavi, 2022)	36
4.7	Transforming patents list to visual, source:(ostegm, 2022)	37
4.8	Attrition compared to role and income, source: own elaboration	37
A1.1	Burke and litwin organizational model, Source:	47

Tables

8	2.1	Growth 5 stages .			•					•		•	•		•			•		•								7
---	-----	-------------------	--	--	---	--	--	--	--	---	--	---	---	--	---	--	--	---	--	---	--	--	--	--	--	--	--	---

1 Introduction

1.1 Problem formulation, Data as a resource

In a fast-changing world with more information at our fingertips than ever before, it can easily be overwhelming to process it all. Today we are storing zettabytes of data, and it will continue to grow.(David Reinsel, John Gantz, John Rydning, 2018). Due to the digitalization that many companies do.

Today the adoption and effective use of ICT (Information Communication Technology) is not only a form of business innovation but also an important to stay competitive. Most of the tools used, such as Excel, Databases, ERP, CRM, Teams, or Python, can now be applied by everyone, not only a specialist.

Even though many organizations are working on the digitalization process this decade, it has created two types of organizations.

- Data Driven: A business that is using data to enhance decision making and support business intelligence. Together with data in the core of their business models and strategies.
- Non-Data Driven: Are companies that have not transitioned yet for different reasons or older organizations. Typically these companies use data as information.

To go from **Non-Data Driven** to **Data Driven** organization need a form for digital transformation. The HBR addressed this issue by looking at what gives the company value in the digital era and rethinking how you work. "Without more fundamental business transformation, digitalization on its own is a road to nowhere" (Paul Leinwand P. and Mahadeva M. Matt Mani , 2021).

Making people work in new ways in the same old organizational model can be changed into an idea to break up old structures, so new ideas and experiences in outcome-oriented teams collaborate across the organization

1.2 Motivation for the thesis

I want to do this kind of research because at the beginning of the fourth industrial revolution, also referred to as digital transformation. People talked about IoT, machine learning, data analytics, etc. They are thinking about how significant a digital transformation is. Data is trivial for new technology native companies, but for older businesses, this is not so trivial. The report will be a proof of concept of a small-scale business with the tools and techniques for data analytics, complemented by theory about data, digital transformation, and business growth.

Many of the data sources come in different forms and shapes, and over time they lose value(Inmon, 2015). Using data analytics techniques on quantitative data some essential hidden insight can be detected that usually not taught of. In addition there is valuable information lying outside the organization, typically stored in public records and APIs.

1.3 SMEs

Innovation helps productivity, long-term growth, and staying competitive. The study will mainly focus on SMEs, especially since SMEs can find this a challenging task due to their limited resources. The inadequate resource makes it challenging for SMEs to be as innovative as a larger company. (Srdjan Dragutinovic, 2021)

Giving SMEs a deeper insight into how to use data analytics to see what works and define why and how it worked. The demand for data analytics will continue to grow, so if SMEs want a competitive advantage, it is just to get started. It can be a daunting task if they have not done it before. However, better decision-making benefits such as better customer attraction, increased employee productivity, and systematic efficiency improvements are the way to go. Looking at data already available to shape the foundation (Srdjan Dragutinovic, 2021).

1.4 Research questions

That lead to these research question for the thesis

1. Is Data management and Innovation management more connected than before?

- 2. How vital is Business culture to digital transformation?
- 3. What kind of skills is needed to succeed in digital transformation? What are things people need to learn when they work with digital transformation?
- 4. Does IPR(Intellectual Property Rights) management have business value?

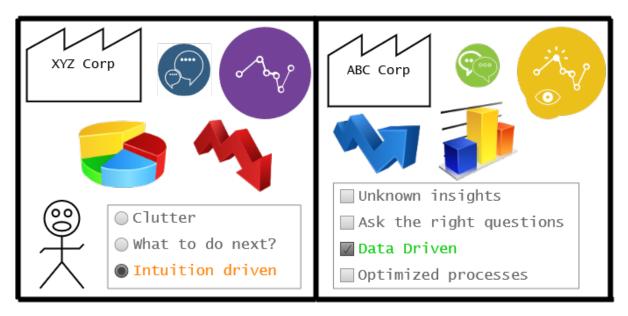
The idea behind the first research question is see if better data management, can contribute to better innovation management. Is it true that data analysis can give insight that were not thought of. This is relevant for making good decisions on innovation that bring a company forward.

Next is the business culture and skills. Will a digital transformation only concentrate on technology or do people need to change their mindset and learn new workflows. When employees and managers are changing their daily routines some resistance will happen. Talking about this problem is essential for having a healthy business. A healthy business will perform better, so finding the most significant skills for business growth is the main objective.

Finally, IPR. This is typical external data that tells us about companies / a country's innovation degree. which has got a considerable increase in the recant years about this data. Knowing what your competitor are doing puts you in a position to react to that. I will try to collect and extract useful information from these data.

Since this is a proof of concept, it will form into a possible business idea that can help SMEs know what to look for if they have not already started. To perform the proper analysis, they need to know which data might be more valuable and the appropriate knowledge for the team. This will not include how to set up infrastructure in a "safe" way, regarding backup of files, network configuration. Or any cloud configuration.

In this process, a gap is identified during the 4.0 industrial revolution. Figure 1.1 describes XYZ Corp. A typical SMEs created before the revolution is not aware of data as a resource, only as information. If they do not change their direction, it is possible to be outperformed by ABC Corp as a newly started business or a business that has already changed its direction. With the new ways of working.



Figur 1.1: Old style and new style

2 Literature review

2.1 Business perspective, innovation and trends

Consistency is essential for winning a championship, building a business, or losing weight. To close the gap and look for the next big thing, being good at innovation and making an excellent decision requires improvement over time. In James clear's book Atomic habit, he addressed this problem by looking at atomic habits. The slight change is not even noticeable at the moment, but over time getting 1 percent better every day at the end of the year results in a 37% increase. Being 1 percent worse, it will decline to almost zero. It points out not because the desire for change is bad, but having the wrong system for change(Clear, 2018).

Undoubtedly, digital technologies offer new opportunities for Small and mediumsized enterprises (SMEs). But it seems more difficult for SMEs to adopt than larger enterprises. "The new opportunities, called data analytics, a series of techniques used to effectively analyze large amounts of data from structured and unstructured sources, can become a crucial driver of enterprise competitiveness. Strengthen position in both local and global markets, through product or service innovation and improved production processes" (Bianchini og Michalkova, 2019). With more significant information about customers, competitors, and suppliers. Companies can make more strategic decisions based on data. Due to the Internet of things (IoT), data generation and collection have significantly increased. That means SMEs and entrepreneurs may have difficulties accessing and analyzing relevant data. In addition, they do not necessarily have the specialists needed or limited digital skills by managers and employees. That makes it harder to adopt.

Data analytics can help identify a pattern, relationships, and interactions. But raw data need to be cleaned, standardized, and organized before statical analysis can start. Enterprise information software such as ERP, CRM, and SCM have been implemented to complement data growth.

Not Having trust in the data coming from Big data sources is unlikely to bring change in the organization. With a lack of managerial awareness and skills, it can be hard to change traditional business practices, which have worked well in the past. If the understanding of a digitalization project is tied to the cost of implementing data infrastructure, then the benefits and the need for change lose their value. Going from an "intuition drivenbusiness to a data-drivenbusiness requires strong commitment and a good understanding of data(Saldanha, 2019).

An example of this could be an employee working with excel, being pretty good at using the tools, but after a while, with new tools and structures, excel is not so relevant anymore to use. Instead, the data is stored in a database, making it more convenient and reliable to use SQL to query. But this employee is not committed to the new workflow, so they copy the data from the database and paste it into excel to work with it.

- 1. The employee may create data redundancy, which can influence the important value.
- 2. the employee uses more time and is not productive.
- 3. The employee can run into tool limitations, such as too much data to handle.

With more available tools, employees can be trained to perform data analytics on business problems. Having that "in-house" can generate some advantages. Naturally, the employees better understand the data sources, such as production process, customer interaction, or supply chain. Comparing that to outsourcing, you could get an expert on the field but no relations to company data. Not only employees need training but also managers. Entrepreneurs and management often lack knowledge of emerging technology that can make or break important decisions (Bianchini og Michalkova, 2019).

2.2 Greiner's Growth model

Greiner wanted to create a model of the process of organizational development. At the time, most of the studies were empirical, but the factors influencing the growth were related to the organization's age and size, the growth rate of the industry, and the stages of evolution and revolution(Larry E. Greiner, 1998).

The evolution period is when the company maintains growth under the same management pattern. This means that some organizational practices will change throughout the organization's life span. More minor changes can be retained over an extended period, but increased employees, customers, and sales lead to coordination of management practices. Then a revolution occurs when the old patterns are not enough, and the organization needs something new to keep growing.

There will be a dominant management style for the evolutionary periods to achieve growth. Over time the management style will be a problem, so in the revolution periods, typical a crisis. The problem needed to be solved before the business continued to grow. In addition, will the industry growth rate determine how fast or slow these phases of evolution and revolution progresses.

	Dividir	ng the growth	into 5 Phases	
Creativity	Direction	Delegation	Co-ordination	Collaboration

Tabell 2.1: Growth 5 stages

2.2.1 Phase 1 Creativity

Creativity Is focusing on the beginning of organization or a company that are launching new products. With a high technical or entrepreneurial spirit for the product, management activities are overlooked. The communication is informal and long hours. To get started, these creative activities are important, but when the grows these become a problem. The increasing in financial responsibilities emerge. New employees, will fell as connected to product. So the crisis of leadership occurs. A strong manger with the necessary knowledge is needed to break up old business technique. Founders is often resisting stepping aside even though they are unsuited to the job. So finding a business manager that is acceptable for the founders is crucial for moving forward.

2.2.2 Phase 2 Direction

With a more defined frames the communication becomes more formal, but some might find it hard to deal with a centralized hierarchy, and feel torn between following procedures and systems. Due to more complexity the organization can have trouble with fast change, and employees taking initiative on their own, being limited by the system. This will lead towards a crisis in autonomy.Giving employees more choices can be challenging for top-level managers who previous were successful at the top.

2.2.3 Phase 3 Delegation

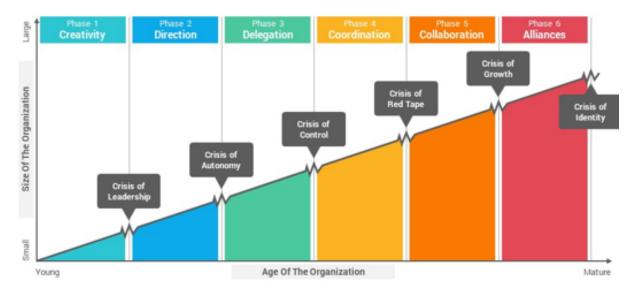
Top management can easily overworked during more important decision making, therefore decision are sent downwards in the organization, that means the lower management making decision for them self. This is able to create a more decentralized company structure, but you loose at bit of the holistic view over processes. Leading to a control crisis.

2.2.4 Phase 4 Coordination

Moving over to coordination phase, they might implementing new communication systems, there are a lot of paperwork and administration that can influence the business culture to be more bureaucratic for more documentation and control, in addition bureaucracy make it difficult to do innovation.

2.2.5 Phase 5 Collaboration

When the organization is growing organic, with increased sales and internal expansions. Assigning the right people to the job can give the organization a good direction, but it is easy to lose control over the organization.



Figur 2.1: Greiner's model of organizational growth

The growth model is shown in figure 2.1 where the age is represented by x-axis and size by y-axis. During the phase it is a steady growth until the crisis occur at the end. After some time new products and corporate venture happens so the *Alliances* phase is part of a new cycle of the growth model.

2.2.6 Considerations/ reflections

Figure 2.1 Above is a picture of how Greiner's model is represented. Even though this model is represented as linear, it can occur in a nonlinear fashion and different order of the phases, by reason of complex real-world problem are not seen in the same way as presented on paper. Some have criticized it for being hard to apply in practice since some organizations jump over crisis, that means that a company not necessarily did not have a crisis, but there are some external or internal environments that that influenced the business process. In worst case a business can fail the crisis and not move foreword.

The result of the previous phase and cause for the next. Some can also fail the crisis and not move foreword. Being able to identify where the organization lies and what is coming up in that face would, be easier to handle when it appears. Using historical data and live data

Using this model to identify where you Organization are / or headed, will give useful insight towards strategic planning and activities. Because this highlights that the growth just comes by it self. Growth is creating new problems to solve. Because is not possible to grow indefinitely without some sort of disruption. To continue to growth there is a need for change, and that is important to understand.

If it is a long time since an revolution, it may be tempted for managers to skip or avoid the revolution, but it brings with it tension, ideas awareness and choose the more comfortable decision you made earlier. but that make it hard for the new phase to evolve.

Hypotesis 1: Can data Analytic help Business Growth?

2.3 External and internal environment

Burke letwin External and internal environment is an simplification of 12 parts that influence an organization performance. With a vertical design the elements further up like leadership, culture, and strategy have an greater impact than lower elements such as tasks and motivation. Even though the model has a top down approach is not set in stone that you should always start at the top. due to a bi dirontional causal relationship between the different elements (Hayes, 2018).

To figure out which elements to start with is important to distinguishes between the 4 major parts in the bullet points. Because sum of these four will represent the organization performance.

- External Factors, like governments laws, competitors is often the reason for the need of change.
- Strategic Factors often referred to as Transformational is the hardest one to deal with and are key to success in change.
- Operating factors could also be called Transactional are easy to change, but do not have the power to sustain lasting change.
- Individual Factors focus on the individual, but these can be affected by a lot of different things.

Figur2.2:Transformanal factors,source: (Hayes, 2018)

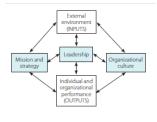


Figure 2.2 show the Transformational factors. When doing organizational diagnosis for improvements, this model is suited towards predictive and not prescriptive analysis with a holistic view over the different type of elements are influenced by change and keep attention to those. Because of a fast changing environment there is today with technology, wars, and supply and demand some of them can get misaligned. A complete picture of this model could be found in appendix A1.

Hypotesis 2: the transformational factors have biggest impact on performance?

2.4 Digital transformations

Digital transformation, is really a broad term and be associated the concept of the industrial revolutions.

• First industrial revolution with the introduction of industry and steam power

- Second industrial revolution with mass production, electrical energy.
- Third electronic technologies become more available such as PCs, internet and electronic equipment.
- Data governance and IoT, Machine learning, AI and data analytics.

The fourth industrial revolution, is closely connected to digital technology transformation. The pluming cost of computing capacity and stores going online. Going from the third to the forth will bring digital technology as the backbone for new product and services. At the same time creating new business's models based on data from various sources. Enabling workers to check for updated values instead for driving around and writing them down, making more time for higher value- added responsibilities. There are some crucial part to how this will affect us contra the prior industrial revolutions. The degree of good over the bad is still yet unknown, but we are improving it over time. Like the loss of privacy debate, earlier there were a lot less restriction compared to today.

Talking about digital transformation is to move from the third to forth industrial revolution. The transformation must help the organization to *Take Off* and *Stay Ahead*. "Therefore, the only logical end point of successful digital transformations must be to reach the stage of perpetual market leadership via innovation. This is Stage 5 digital transformation" (Saldanha, 2019).

2.4.1 5 stages road map for digital transformation success

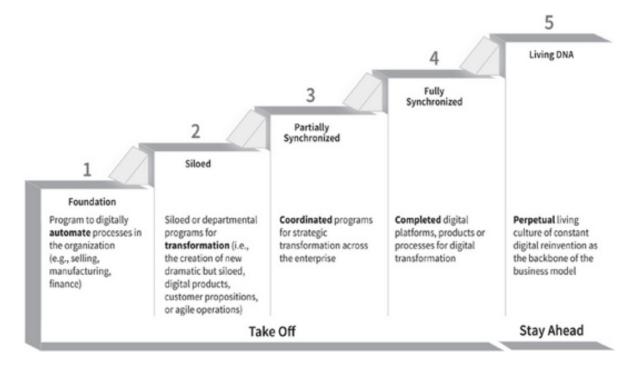
The road map model have some steps that can not be skipped, however there is a possibility for steps to be combined. Native digital companies have an advantage over traditional businesses, since they already have an synchronized digital platform. Make it easier to reach stage 5.

- Foundation: Enterprises are automating internal process, maybe starting using new systems like Customer Relation Management (CRM), Enterprise Resource Planning (ERP), Microsoft Teams or other. Digitization of reports. Maybe outsourcing is the way to go? But the main goal is make manual effort into data.
- 2. Siloed: The changed workflow have functions that allow new business model, such as a digital measurement device for temperature or gas, that are send into a database,

instead of driving out and writing the value down. The are no overall strategy in the company that's driving transformation.

- 3. **Partially Synchronized:** the management, leader has recognized the power of digital technologies, and there is a define future state. The organization have not completed the transformation for new business model and digital backbone in addition the innovative culture haven't become sustainable.
- 4. **Fully Synchronous:** A new business model have settle, but there is still a chance for this to be disruptive, to survive the treats against it is to make an agile innovative culture with digital capabilities a part of the organization.
- 5. Living DNA: The transformation has become perpetual, and data is really the backbone of the business models and daily activities. Only only being a market leader, but setting industry trends as an disciplined innovator.

Down below figure 2.3 gives an overview over the model described in the enumerated section.



Figur 2.3: Digital transformation

2.4.2 Considerations

Many organizations working on this, but it can be difficult to see the way ahead, and could be the lack of Data Literacy. And that is the ability to read, write and communicate with data.(Nehme, 2022)

Employees with expertise over a business area are going to be the ones that are best able to act on data insights to create results".

Earlier in stage 1 the main objective was to digitize something physical, like a report or automating a process. During this stage the view is looked through a lens of technology, altogether this was an IT job working as an enabler with operational support. Now businesses are created based on data and digital technology, like Uber and their app for ordering transport compared to traditional taxis. This have continued to expand(Saldanha, 2019).

Moving further to next stages is not about the technology, but the culture, habits and people skills. This will make the commitment and ownership harder from the transformational factors mentioned earlier. In addition making sure data is being part of the organization habits is important. As a consequence of this, everybody that works with data is a part of it.

2.5 Technology skills, hybrid jobs and TW process

2.5.1 Skills and roles

To complement the model of digital transformation, the employees also need new skills. Because skill evolution is a necessity for every function in an organization" (PLURALSIGHT (2021)(p.13)). By not evolving on organizational platforms, knowledge base and employee base, the platform may become obsolete and big cost for complacency.

By developing technology skills the organization to use it to their competitive advantage, being a strategy approach, rather than an investment. Have the ability to drive business outcomes, by having right people and the right skills. To deliver innovation. If the tech skill development is not implemented as a priority, the pace and complexity will out pace your ability to capitalize on it(PLURALSIGHT, 2021). When building a TSDS (tech skill development strategy) pluralsight PLURALSIGHT (2021) have made a matrix to help evaluate strategy stands shown in picture 2.4

Figur 2.4: Technology develop skills matrix, Source: Pluralsight

TEC MAT	H SK URIT	ILLS YM/	TRIX	ζ	
	UNSTRUCTURED	ONE-SIZE-FITS-ALL	REACTIVE	PROACTIVE	
WHO'S THE CHAMPION?	Individual technoigists	HR	Tech team managers	Tech VPs & directors	CIO ₄ /CTO ₅
WHO'S EXECUTING?	Individual technologists	A centralized L&D team	L&D aligned to the technology business unit	L&D embedded within technology business unit	A Director of Technology Skills Development
WHAT'S THE TOOL?	None	LMS	LMS + other tools	LMS + designated online learning library	Technology skills platform
WHAT'S MEASURED?	Nothing	Course completion	Course usage/view time	Skill proficiency	Skill and role proficiency
WHAT'S IT ALIGNED TO?	Skill gaps	Broad-based training	Technology training needs	Technology project goals	Strategic tech & business objectives
WHAT'S THE CHALLENGE?	"We need some organized training"	"Training isn't tailored to the needs of the tech arg"	"Do we have enough of the right skills?"	"We need more talent in these key roles"	"Are we preparing for what's next?"
WHAT'S THE MPACT?	There's no organized focus on tech skills	The unique needs of the tech org aren't being met	Tech skills aren't measured or aligned to objectives	Skills are quantified and developed with purpose	Tech skills are a competitive advantage and driver of business outcomes
L		75% of the market			

It explains that 75% of the market can be found in the first three section, making an opportunity to bring them to the last two. For this it may be an idea to start a data program for everybody in the organization.Nehme (2022)

2.5.2 Technology watch and audit

IF the business is unsure what to look for(Zabala-Iturriagagoitia, 2014) illustrated how we can organize roles and activities when working with TW process. The TW (technology watch) is a process where companies looking for new technology that can be useful for the future. This can be done both outside and inside the organization. depending of the size of the company, typically SMEs outsource this process, but by outsourcing the connection to the data can be misaligned. with limited resources, priorities need to be made.

The TW can be divided into 3 different roles,

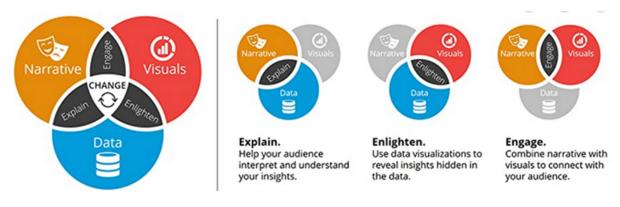
- The observer will look into new technologies that are emerging in a set scope of domain. It is important to have a good scope due to the amount of technology that can be created compared to business domains/other word?.
- The analyzer will analyze the observer's technology and evaluate more what could be used.
- The decision maker make the final word of what to focus on.

Involving both the observer and the analyst in the decision making process will give more fluid decision When a organization is In the role of observers, technology do when looking for new technology in TW, Selecting what to search for is vital part for the company, making them aliged with the corporate strategy. since the limited resources c.

It can create a domino effect on internal processes, all the roles are generating new ideas, concepts that can be used for internal learning for potential theaths or possibilites. 2.1.5 Hybrid jobs and roles and skills (datacamp podcast, Pluarsight pdf complete) When looking at a org chart typically a role does one thing with certain set of skills. One of the things mr man addresses in datacamp podcast about the new emerging work force. Hybrid jobs, this consist of looking at skills used across the organization. Connecting skill and job roles to objectives, the overall

2.6 Story telling with data

When telling a story with data, the data is the main building block. A story will share insights in a more memorable and persuasive than just giving the facts. that because it has a narrative. combining the narrative with data and visuals you get a more complete picture. even though the elements could be strong alone. with a good data story it can result in change(Dykes, 2020). Figure 2.5 showing all elements to a data story.



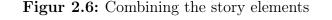
Figur 2.5: Combining the story elements

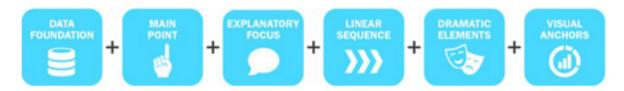
People react differently to facts and stories, with different activation parts of the brain.

- facts that are aligned with audience viewpoints are more accepting compared to facts they do not like. If the facts are visualized it is harder to reject them.
- A story has more unique connection between the storyteller and listener. Creating a less critical sphere and are more open to change.
- With visualizations it can reduce information deficits.
- Stories enhance our comprehension. Stories can help the audience to better comprehend difficult or complex concepts.

2.6.1 Elements of a story

what things should be included in a data story, figure 2.6 explain the elements

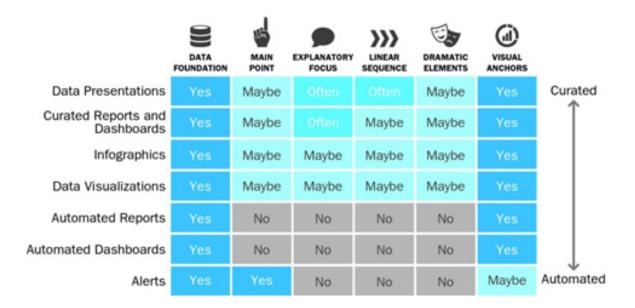


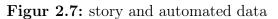


even though we have the elements for creating a good data story we need to look out for what we already have. Figure 2.7 show us how good story elements do not aligned good with automated data(Dykes, 2020).

2.6.2 Stories alliged with data

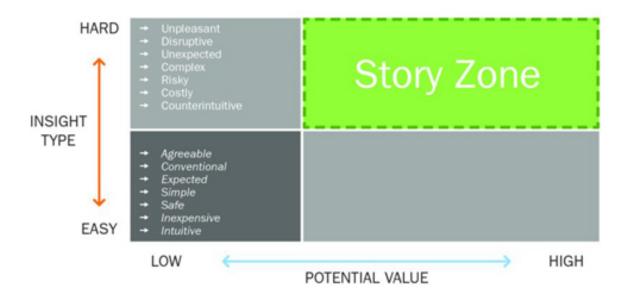
so where is a data story useful, it turn out





2.6.3 The Manager that just/only want the facts

this is for discussion With an environment that changes fast, there can be some managers in a hurry and only want the facts. but sometimes listen to what they have to say can bring great insights as figure 2.8 Figur 2.8: Story telling zone

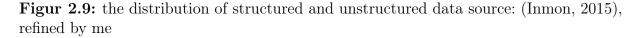


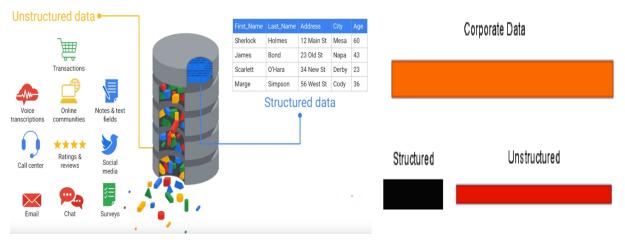
2.7 Data Science perspective Datatypes, Tools, and workflow

2.7.1 Data types and sources

As explained earlier, external and internal environments shape the business. The separate domains include corporate data inside the organization and cloud data outside. Both of these will create some data that can be used to enhance business performance. However, corporate data is the most essential.

The organization may produce a quantity of data so that the corporate data can be divided into structured and unstructured data. Usually, all the structured data is more predictable and have regularity. This is well-defined data and is stored in DBMS systems. The information can be retrieved quickly and effortlessly and is also suited for analytics. But not all data come in a structured form. Figure 2.9a shows the content view, and 2.13b shows a more flat distribution view. Around 80% of the data is unstructured. Yet are, the majority of decisions made by the minority structured data. The primary reason, it is easier to automate and analyze. Not taking advantage of the potential of unstructured data could lead to innovation failure(Inmon, 2015).





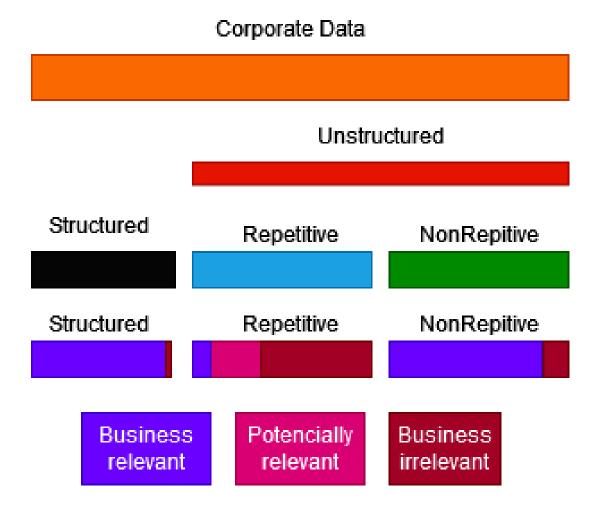
(a) Content based overview

(b) Distribution overview over data

Further, unstructured data is usually referred to as Big Data due to its significant size. It consists of two groups repetitive tasks and non-repetitive. They have different characteristics, but because executives and managers lack data literacy knowledge. They might think the difference is trivial. It is more like a split of how you deal with them. Being more informed about data literacy, you know it is essential to access, monitor, and display unstructured repetitive material. Still, time and effort to find something useful is time-consuming, so an option would be to detect anomalies.

On the other hand, for non-repetitive parts is highly common to find business value and comes in formats such as email, call center information, and marketing. It is Connected to textual disambiguation. By reformatting, contextualize it. For business growth and development, managers and executives need to understand the differences between the data. How can you make the right decisions if you do not know what data you are working with? Figure 2.12 shows a complete view of the corporate data, including the business relevancy for the different data types.

Figur 2.10: what data type has most business value relevant(Inmon, 2015), refined by me

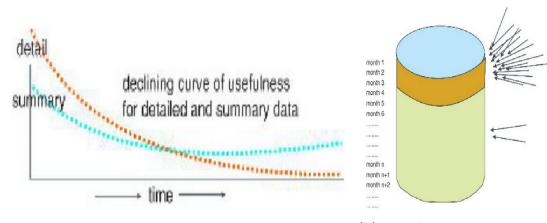


Structure data: Almost all structured business data is relevant Because the data is easy to analyze and gives business more meaning. During the project, an HR dataset was used to illustrate this data as applicable, more detailed information can be found in Appendix A

Unstructured Repetitive: Use the time to collect and sort out important values. Creating alerts about exceptions can help you to act when needed.

Unstructured non-repetitive: It gives meaning right away, but after a while, the data lose its value. Historical data will have much more business value by contextualizing it using NLP technology.

Data analysis of the corporate data can be an important asset, but you need find a balance between new an old data. Figure ?? describe that detailed new information is accessed often, older information are accessed less, as the time goes summary data will be more essential.



Figur 2.11: usefulness of new vs old data, Source: (Inmon, 2015)

(a) Details is more important at the beginnig

(b) New data accessed more then older data

The data outside an organization can be valuable for businesses (e.g.) weather forecasts, power prices, public records, or patents. In recent years, patent data have been more popular. It shows the ability to extract knowledge and put it into economic gains(why collect patent data. This data can be accessible and easily downloaded or behind a paywall. The most common way to get the data into your organization is to use web scraping, an automated way to extract a large amount of information from a website or Application programming interface(API), a set of rules on how to systems talk to each other.

2.7.2 Data science work flow and data pyramid

Before data analytics and machine learning, gathering data as information was the primary goal. However, the emergence of machine learning that uses data as input played a more critical role. Without accurate input data, the output would be impractical. When working with data, there is created a hierarchy pyramid. This pyramid got extended with data but also roles for the different levels. The enumerated section explains levels 1-6, from data collection to machine learning in production.(Datacamp Course)

- Data acquisition: At the bottom is where data are generated or entered into the organization. This is the most crucial step for further data handling. garbage in = garbage out.
- 2. Data engineering: It is typically the data transformation phase. Data types will have different locations based on the required preprocessing steps, such as data

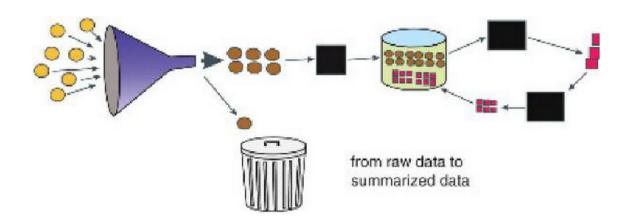
warehouse, data lake, or reporting.

- 3. Data analysis: Reporting an business intelligence: based on the data available, the analyst team creates automated reports and analyzes the data for new insights.
- 4. Data science: With clean and processed data, the next step would be to create machine learning models on the data.
- 5. ML: The machine learning models are running in production.

In addition, for the data science there is a framework called OSEMN this will be used during the study(Dr. Cher Han Lau, 2022).

- Obtaining: Get the right data from the right place, is the data available inside the business or is it outside.
- Scrubbing: Looking at the data format (rows and column) to if its clean, a lot of missing data? variables names? make sure the the data is clean and easy to work with.
- Extration: Going through the data with an EDA exploratory/explanatory data analysis creating some visuals, general statistics.
- Model: Predicting something about the data, is it possible to do an classification problem or regression analysis
- INnterpert: Analysing the result from the model and maybe do some adjustments.

On a lower level in the pyramid typically data engineer, we find ETL/ ELT extract, load and transform and is more related to when data enters the organization and need to be put into the correct database. Figure shows how the data go through a funnel process.



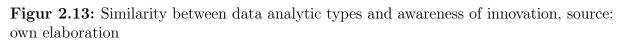
Figur 2.12: what data type is most relevant(Inmon, 2015)

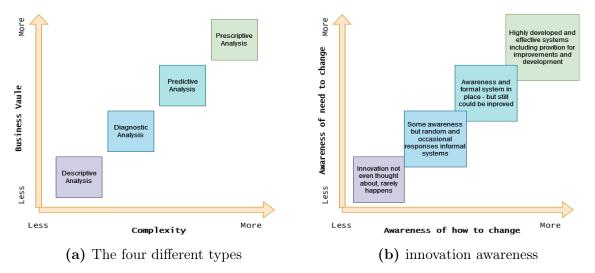
2.7.3 Different types of analytic

Data analytic can be divided into 4 separate types the part are explained in the bullet section (Catherine Cote, 2021)

- Descriptive Analytics: This is the foundation and easiest analysis to do, also referred to as reporting. Furthermore, answer the question "What happened" by looking at trends from raw data. (e.g.) What happened? A machine stopped.
- Diagnostic Analytic: When something important needs more investigation, to get to a business problem's root cause, compare different variables and relationships. The next step is to know "why did it happen"?(e.g.) Why did this machine stop? Power outage.
- Predictive Analytic: Considering future trends and "what might happen in the future" by comparing historical data with industry trends. (e.g.) What happens if more power outages are occurring? losing sales/ not having an operative business
- Prescriptive Analytic: "what should we do next" addressing actionable takeaways. What is the next step? Installing a UPS will run our systems while there is a power outage, and systems will still be online.

In some cases, descriptive can be enough. However, sometimes going further will provide more context to the problem. A weather subscription or SMS notification from the power operator can give helpful information about why the UPS is running. Figure 2.13 under how I interpret data analytics with innovation. As the analytics get more complex, the organization has more knowledge about how to change. More information will enhance the need for change by moving up the y-axis about creating business value.





2.7.4 Tools

When working with data analytic there are different tools that can be used with different purposes.

- Python: Python is an interpreted, object-oriented, high-level programming language with dynamic semantics. it includes libraries and packages, which encourages program modularity and code reuse for scalablilty.((Python, 2022))
- R: R is a language and environment for statistical computing and graphics. with a wide variety of statistical (linear and nonlinear modelling, classical statistical tests, time-series analysis, classification, clustering()
- Excel: A spreadsheet where users can format, organize and calculate data.
- Power BI: Used on database or spreadsheet to create visuals and reports.
- Jupyter Notebook: A data science environment where you can code and write text blocks independent of each other. Compared to a traditional workflow for only code or text.
- SQL: structured way to store data in a table format, with rows and columns.

2.8 SME and benefits / literature gap, problem solving.

Working with business strategies for SMEs can be a daunting task in the industrial revolution 4.0. Businesses with a solid and reasonable culture for data literacy, data analytics, and understanding of the business stages are building up a more substantial competitive industry that is more sustainable and easier to work with in the future.

For native digital companies, it is much easier to see the use of data than for non-native companies.

Further, the TW process can also be automated since the data generation, and collection can be a monumental task. With machine learning tools and data analytics, you have free intellectual capacity from employees, making it much more versatile in selecting your scope and the data roles in your team.

3 Methology review

3.1 Scope of the study

The study was created around a home lab scenario since the main idea is to make a proof of concept of how data analytics and information flow can give business value. This could either be done in the cloud from a cloud provider or with on-premises servers. We had on-prem equipment available, which was chosen because of our experience with those systems. When gathering valuable datasets, fictional/ dummy datasets were used to not worry about corporate data or regulations. In Figure 3.1 you can see the hardware with servers, networking and ups put in a custom made rack during building process. With possibility to expand upon in the future.

Figur 3.1: Server room, source: Own elaboration

Source: own elaboration

The datasets were found from open access, from places like Kaggle, Github, IBM and Microsoft, Some of the datacamp sources required an account. Most of the data had the CSV and Jupyter notebook format, except the database. With the homelab, it would be easier to take backup of the data and use ETL process.

3.2 Participants

In this study, the participants are my dad and me. Due to his experience as a system administrator, he knows organizational infrastructure and what considerations to make. He contributed with the hardware and installation of the operating system and hypervisor. I did the data collection and analysis. Being the owner of the equipment, it will be easy to scale up the home lab if that necessary without additional cost with an cloud solution.

3.3 Equipment used

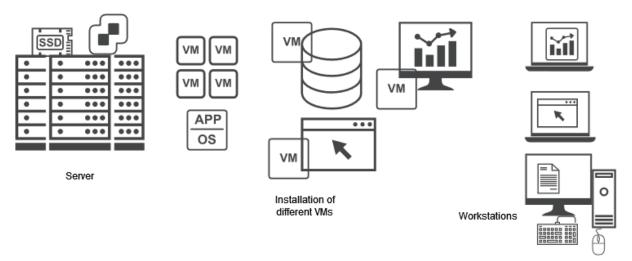
The necessary software was installed on one server to simplify the business environment. I will not go into the technical detail about the specs to the server, but I have replaced HDD (Hard disk drives) using magnetic platters and moving parts to store data with SSDs (solid state drives) using semiconductor chips to store data and have no moving parts. To increase the read and write speed, have higher capacity on storage, use less power, and have better performance.

Firstly the operating system and a visualization technology needed to be installed on the hardware. For this purpose, Windows and Vmware were chosen because of prior user knowledge. Since the main goal was to have a server with multiple VMs, then a hypervisor (A hypervisor is a virtual machine monitor that runs virtual machines, on a host computer/server, sharing resources such as memory and processors and are closest to the hardware), like Vmware ESXI is needed.

After installing the hypervisor the next step where to make some VMs(virtual machine), in this case, a database, file server, and application server that have Windowws Server 2022 as the operating system.

- Application server: On this all the tools working with data were installed such as Python, Power BI, and Jupyter Notebook
- Database server: containing a database.
- File server: All the dataset files that were in csv or txt format lived here.

Figure 3.2 describes a schematic of the study, where we have our server with a group of VMs on the left and illustrate that the different VMs have different purposes in the middle. Lastly, the standard computer accessing the VMs for installation, coding, or viewing results is on the right.



Figur 3.2: Schematic overview, source: Own elaboration

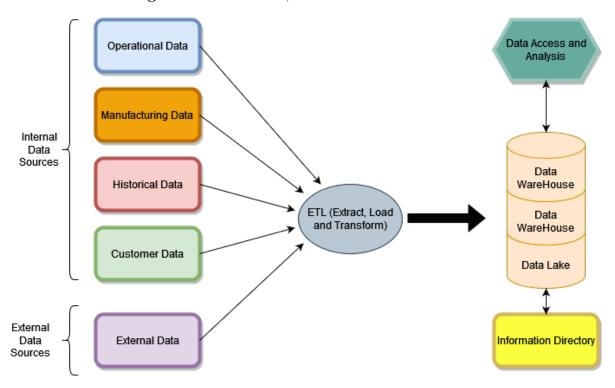
3.3.1 Tools used

For the most part Python were the go to programming language together with its libraries and packages such as matplotlib, pandas, networkx and sklearn. To create, format, manipulate and visualize graphs using the OSEMN framework describes earlier. Together with jupyter notebook this was a intuitive working environment. Also SQL was used to querry the database.

3.4 How I did the analysis

First the goal was to get different types of data, both structured and unstructured as well as internal and external sources. Then apply the data science framework on the gathered data to extract new information about the data that was not there before just looking at the data. I will have more focus on internal data than external data.

Figure 3.3 describes the idea i had in mind. Collecting different data, do some analysis on them, and lastly display result in a report or a dashboard to share the insights. My data data warehouse is small with only one file server and a database. There are some parts that are excluded from this simplified figure is things like backup, security concerns, networking and users.



Figur 3.3: Data Flow, Source: Own elaboration

In this study mainly the data where downloaded as csv format and loaded into jupyter notebook using python. the using python to manipulate the data. If there were time left to explore the SQL database adventureworks, that would be great.

3.4.1 Internal Data Collection

For the internal data collection the focus was to find structured and unstructured data, most of the data a company has is internal so that will be most important to analyze. For the structured data a HR dataset is suitable for its clean format, easy to analyse and not many missing values.

3.4.1.1 HR Dataset (structured)

HR analytics by IBM were retrieved by downloading the CSV. A HR data is a set of employees data, that are typical really structured and clean. and easy to do analytic. this dataset include a label if the the employee left of not. The main goal here is to start with an Exploratory data analysis (EDA) which is a part of extracting phase in the OSEMN framework. Try to find the job roles with most attrition, and use machine learning to predict if a employee is leaving or not.

3.4.1.2 Email Data (unstructured)

A dataset retrieved from Kaggle downloaded the CSV with compromised email from enron scandal. To get some more unstructured data to look at. The reason for including a Email dataset is because this type of data is typically not data companies give out. and here lies important information, in this case the emails here in part of and bankruptcy scandal in early 2000, so the goal was to find the most important persons, who send the most emails.

3.4.1.3 Customer segmentation

Was retrieved from github. a small dataset with age, income and spending score. Trying to classify the person based spending score.

3.4.2 External data Collection

I wanted to included some of external data that are easy to collect and gather information from. even though the focus is on internal data is essential to see some options.

Patents have seen a growth recently as a valuable resource. The idea here is to create a own list of patents to look for. Then the machine learning model could collect similar pattern to the input list and plot interesting patents. Due to patent data being open it can be downloaded or queried.

Google trends search is an easy way to find something new. the algorithm will favor popular searches. By making a list of words related to this study to see if they are popular.

3.5 A novel method? or other methodologies more suitable?

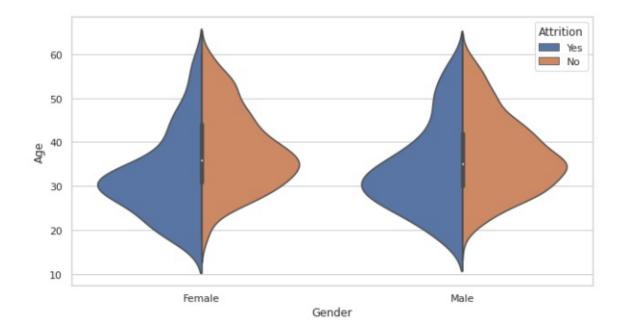
The reason for this approach was tied down taking ownership of the data, standing freely to do what you wanted and use the datasets that were applicable, they may be different in terms of labels and variables. So, if one was not good just replace it. This could be done working with a company and using their data, however it can create a problem with what can be published and what is secret corporate data. This could be a novel method because I identified a gap between working as a traditional business and the newer businesses. By looking at how to improve their situation to be better, if they not want to change the main business can be in danger. Learning new skills and take decision is something that is all day, so why do not make good ones.

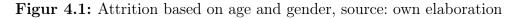
4 Results

4.1 Internal Data

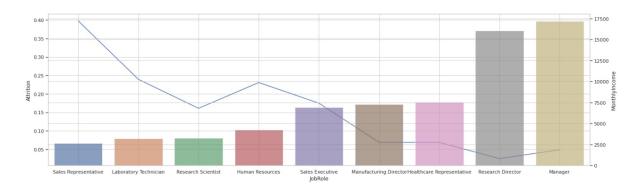
4.1.1 Structured

The HR dataset, due to its clean format it was easy to get started analyzing the data. With a exploratory mindset finding as much information about the dataset as possible. In this case it turned out that young single men were the ones who left as shown on figure 4.1 below.



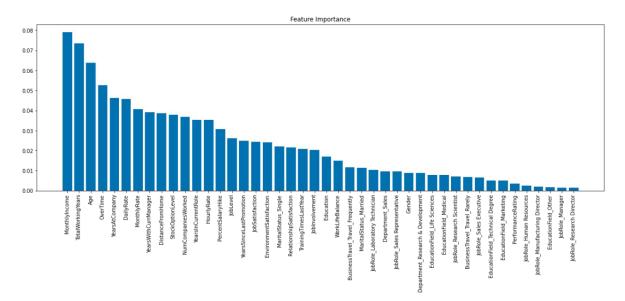


After exploring the some more it was possible to identify which job role had the highest attrition compared with monthly income shown in figure 4.2. With a more important role the person is less likely to leave.



Figur 4.2: Attrition compared to role and income, source: own elaboration

Going a little deeper into the data, Since this dataset included a label for attrition, this could be used to classify if an employee would leave of not. going through a machine learning model I could retrieve the most significant variables influencing attrition. Shown in figure 4.3. All the details about the HR dataset can be found in Appendix A5.



Figur 4.3: Attrition compared to role and income, source: own elaboration

For a company this is useful information due to their employee will be the most important asset, and keeping track of key employees. this will also work in a requiring phase when starting to develop a road map of a career path, this can then be updated when you need it in an interactive dashboard.

4.1.2 Unstructured

Moving over to the email data, this needed more work before it was usable. It contain all the elements in two columns, after splitting with this code

```
# With the function below, we can extract the information we want from the "message"
def get_field(field, messages):
    column = []
    for message in messages:
        e = emial.message_from_string(message)
        column.append(e.get(field))
    return column
```

Figure 4.4 show before and after cleaning.

Figur 4.4: Show both clean and non clean data, source: own elaboration

	file	message
0	allen-p/_sent_mail/1.	Message-ID: <18782981.1075855378110.JavaMail.e
1	allen-p/_sent_mail/10.	Message-ID: <15464986.1075855378456.JavaMail.e
2	allen-p/_sent_mail/100.	Message-ID: <24216240.1075855687451.JavaMail.e
3	allen-p/_sent_mail/1000.	Message-ID: <13505866.1075863688222.JavaMail.e
4	allen-p/_sent_mail/1001.	Message-ID: <30922949.1075863688243.JavaMail.e

(a) not clean dat

	index file message		date	subject	From	То			
0	0	allen- p/_sent_mail/1.	Message-ID: <18782981.1075855378110.JavaMail.e	Mon, 14 May 2001 16:39:00 -0700 (PDT)		phillip.allen@enron.com	tim.belden@enron.com	\Philli	
1	1	allen- p/_sent_mail/10.	Message-ID: <15464986.1075855378456.JavaMail.e	Fri, 4 May 2001 13:51:00 -0700 (PDT)	Re:	phillip.allen@enron.com	john.lavorato@enron.com	\Philli	
2	2	allen- p/_sent_mail/100.	Message-ID: <24216240.1075855687451.JavaMail.e	Wed, 18 Oct 2000 03:00:00 -0700 (PDT)	Re: test	phillip.allen@enron.com	leah.arsdall@enron.com	\Ph	
4				. = . ,				•	

(b) Clean data

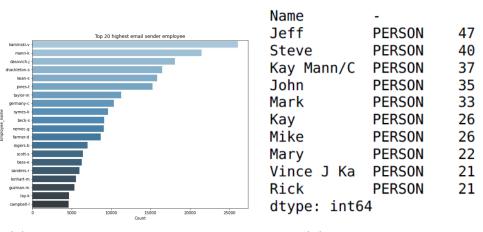
Starting with the data it looked something like figure 4.4a, difficult to work with and little to no information. Email contain a lot of headers and information that needed to be filtered out. After prepossessing 4.4b. After some pre processing. data looked like figurew

4.2.

now the data was more approachable, and since the data was unknown starting with an EDA(exploritory data anlysis) is an good option. from This EDA I retrived charlennght of the emails, to and also find the persons that send the amount of emails.

From figure 4.5 we can see the persons who have sent the most email. in a period of roughly one year the top person have 25000 emails. The persons with the most mentions was the top executives.

Figur 4.5: Send most email and most mentions, source: own elaboration



(a) persons who send the most email

(b) Mention the most in email

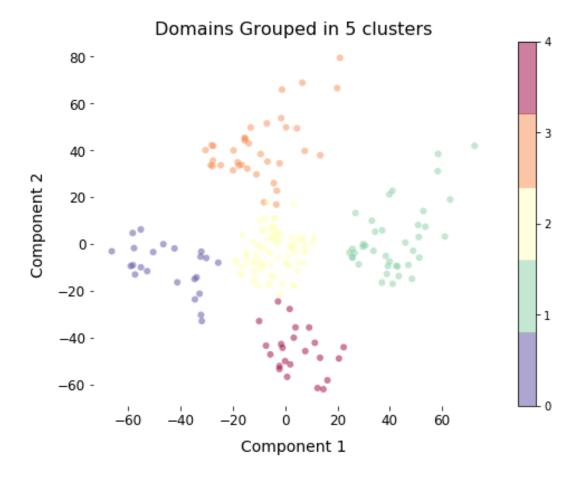
Most mentioned people in mails

Making a reference point once in a while, you could get a trend over who is talking to who. and if the connections change over time.

Furthermore this connections between the persons were put into a network diagram, to really who is talking. In a network diagram like that supplychain, shareholders and stake holders could also be included to give a picture of the important connections. The appendix A2 describes this in more detail.

4.2 Customer segmentation

This example was created by (ayushsanghavi, 2022) and he classified the customer on spending score. based on the age, income, gender he was able to classify into 5 different groups. All information about the dataset is in Appendix A3



Figur 4.6: Customer classification, source:(ayushsanghavi, 2022)

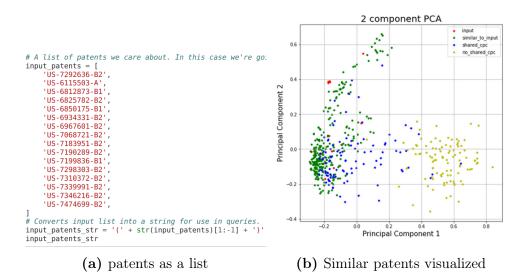
4.3 External Data

I have not worked on external that much, so online help was much appreciated. Usually, the amount of data is enormous and hard to work with if you do not know what to do. I discovered that my competence was insufficient to work with this data.

4.3.1 Patent

I have not worked with patent data before. All credit to (ostegm, 2022) for the example he provided. From his example, we can see that a list of exciting patents is transformed into a visual representation of the patents from the list in red. Similar patents colored blue and green. And patent with no relation in yellow. More information can be found in Appendix A6.

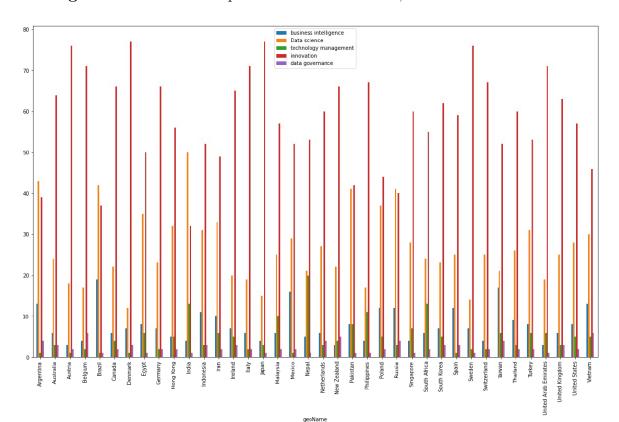
Analyzing like this will give a business a piece of crucial information about innovation and strategy. Putting them at the top of digital transformation.



Figur 4.7: Transforming patents list to visual, source:(ostegm, 2022)

4.3.2 Trends search

For the trend search I provided my own list with words related to this study and sorted by region to see how popular the search terms where. Figure **??** show the output.



Figur 4.8: Attrition compared to role and income, source: own elaboration

Normally a search trend can change fast, but keeping a eye out for interesting and useful information is a good idea. The Google search trends are limited to only five words, both research topics and ordinary search terms can be combined, but for best result use one type of search.

4.4 Other findings

Is not only the technology that is part of an digital transformation success, it also comes down to business commitment / ownership on transformational factors. without it is hard to keep innovating.

The management style is changing throughout a company's lifecycle, and this will play a role business performance. Newer data native companies are already thinking how to get the most out of the data available. To keep up the older businesses need to find out that data is not dangerous and everybody use it.

When to use which type of data analytics or the storytelling is not easy. Experimenting with different use cases to is essential to get a feel for what works and not. However, with continuous skills development for employees and managers about data literacy, is crucial for success.

these are connected to the roles and skills, because that is one of the crucial parts of succeeding, continuous development of employees and managers about what data to use, telling good data stories and know where to look for data with the most business relevance data both internal or external.

5 Discussion

5.1 Future of data analytic

When the business have a mutual understanding of concepts like data governacne, data literacy and data analytics. it will help make better decisions, from the HR dataset the analysis tell us that the biggest workforce with sales representatives, human resource and research scientist have average working time of 1 year and are the employees with the highest attrition. Typical there is high turnover on these roles, but there is a research director that is also leaving that have been there for 15 years. That is more critical, if events like this are addressed then the organization, measures against it.

Let's say you are replacing a flow computer every 5 years, on a factory and you have 50 in total. short while after replacing them, there is problems with 5 and they need to be changed. But after the change you still have problems. With no meta data is hard to find the cause and every flow computer need to checked. However, with meta data such a geolocation, cabinet type, production data, timestamps, and other equipment in the cabinet. You may find out that the new flow computer have a different cabinet, some of the cabinet are exposed to sun. the cabinet heats up during the main peak production hour. Because of the heat up the cabinet a signal processor malfunction cause the flow computer to fail.

Dealing with data have it roots in structured internal data that are accessed often. With new tools and knowledge all employees have the ability to extract useful information from different sources. Using NLP technology to contextualize internal processes or have an eye on the external environment. Have better teamwork across the organization and employees that want to learn more.

I think that many SMEs are in the phase 3-4 of the growth model and the 2 stage in digital transformation. There is a clear external pressure that influence the business performance, it is hard to keep up with the fast change, and most of the vendors just want to sell. The management not necessary have direction of phase 2 if its a long time since a big change like this, the management practices have spouted solid and is hard to change.

5.2 Anwsering Research questions and hypothesis

Research questions

- 1. Data management and innovation management are closely related, 2.13 managers and entrepreneurs can get knowledge that was earlier unknown. There is still a lot of unexplored data through NLP technology.
- 2. Business culture is strongly connected to digital transformation, in the start phase it does not feel like like due to operational IT tasks. After that everybody can use data tools and vital that all have the same mutual understanding.
- 3. The skills needed is related to data literacy, how to communicate with data. Data governance, is the quality of data good. And, data analytics, what tools should I use in different situations.
- 4. I can see the potential use of the data, but I need to do some more investigation about this type of data.

Hypothesis

• Data analytics can help business growth with collecting the right data to the right time, having automated process that accessible on the computer instead of driving around. Doing a decision you are unsure of the outcome can be difficult. If this were backup by data, the decision would have been more confident.

5.3 Future improvements

Future improvements could be to investigate more about the unexplored external data that can give business potential. Also, learn more about SQL structured data analysis. This included just a small sample of business data. But there is much more data that be useful to look at such as supply chain, marketing, finance to mention a few.

However, there is some literature that could be interesting to look at that can complement this study.

- Knowledge Management: Is essential to the process of organizing, sharing, create, utilize collective knowledge within an organization. because it
- Critical Thinking: Beacause it
- Dynamic Capabilities: is about an companys's ability to proactively shape change. integrate, and recon figure internal and external resources to address rapidly changing business environments. proactively shape change
- Absorptive Capacity: addresses the ability to apply knowledge for improving organizational learning. focusing on the outside of business learn

Now I am more aware need to check what I aquired if this is a real business problem that companies need help with.

5.4 Emerging Business Idea

To succeed in a digital transformation and stay at the top a business need culture, skills and technology. For a smaller business it can be beneficial to outsource some of this to get additional help, but for bigger businesses many processes should be integrated internally for better steadfast.

My idea is divided into three parts.

- 1. Firstly is to get started about is to have an internal audit about processes, competence, and skills to find the key employees. The main goal with this part is identify crucial employees that drive the business forward and classify them as vital assets.
- 2. Secondly developing a digital transformation strategy and stick to it. Explaining the different fundamentals of data literacy, governance, and analytics with benfits.
- 3. Finally, get some taught about useful external data like the patents, if applicable or power price, gas price.

If you have an employee in the upper quartile in competence and skill, but management always add new projects and the urgency is badly defined. Over time this will lead to resignation and under performing of the employee. Even if they say its to much, the only answer is why are you under performing? The real issue is management have not identified this as a issue.

Knowing what you are working with of competence you can then make strategic plans with data in its core. addressing the benefits and problems with a digital transformation.

Are the organization on top of the digital transformation, then some external data could bring in some challenges and new information.

Altogether people trumps technology, so that means if the culture, strategies and commitment is not in place, there is no need for advanced ELT, datawarehouses or data analytics. That said, when you automate tedious processes, you release intellectual capacity to employees, making them more robust to work with what matters. Let people be more loose about roles and structure, a finance person can help select the best new IT equipment with a spec list from IT. And IT can help with data analysis for HR until they get their own person.

6 Conclusion

From this study we can see that the 4 industrial revolution is here and will continue to be important. Getting more insights about your own business data will help to stay more competitive, have better internal processes, and information about what to do next. Even though good insights are helpful you also need new business culture and strategies to succeed in a digital transformation process.

With a business culture that have data in its core and continuous learning about how the data and business interact. This will benefit the organization in the long run. In, addition, the most significant data is inside the organization, so a solid data infrastructure is essential for good data analysis.

I think from my experience that many SMEs can be out of business if they not capture the opportunity to enhance data governance, data literacy, and data analytic. For the reason being that managers and executives in non-native businesses do not understand, the usefulness of the data and how proceed with strategies with data as a core. They do not have the same relationship to Agile method of working.

If I would give an estimate based on experience it would be stage 2 in digital transformation and and delegation phase for the business growth. There are no overall strategy for data oriented business models and lack of learning development for employees.

Being proactive about how you view data as a resource instead of just information, the business will gain great results. If you have the data in front of you, just get started doing some small analysis and tell about it with some good story telling techniques and review the feedback. Under are three takeaways I think is essential for success. Because there is a potential business idea to this.

- 1. Find out were the organization are. Mainly descriptive and diagnosis analysis on internal data. address key data, persons, and competence and align it in a skill map.
- 2. To get more commitment towards data as a resource create a data literacy program, that everybody can participate in, then everybody will feel connected and engaging using data.
- 3. Look externally to get more info, typically unknown extract data from patents, APIs

or other places that is relevant.

Finally this is just a proof of concept that show how data analytics could be used to find hidden insights, and how to relate it to business growth. In the real world other problems can occur like stress, unexpected perception or resistance from executives that can dismantle what is already build up.

References

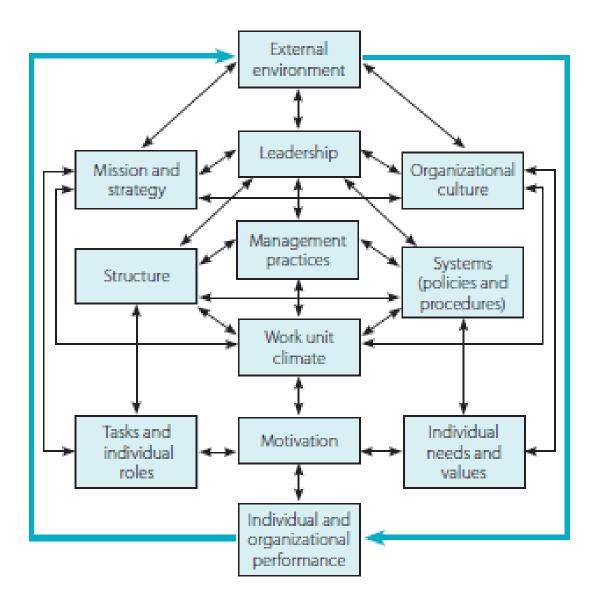
- ayushsanghavi (2022). customer segmentation. retrived 30. january 2022, from: https://github.com/ayushsanghavi/Customer-Segmentation-using-K-means.
- Besker, T., Martini, A., og Bosch, J. (2019). Software developer productivity loss due to technical debt—a replication and extension study examining developers' development work. *Journal of Systems and Software*, 156:41–61.
- Bianchini, M. og Michalkova, V. (2019). Data analytics in smes. (15).
- Blackburn, M., Alexander, J., Legan, J. D., og Klabjan, D. (2017). Big data and the future of rd management: The rise of big data and big data analytics will have significant implications for rd and innovation management in the next decade. *Research technology* management, 60(5):43–51.
- Burke W.W, Litwin, G.H (1992). A causual model of organizational performance and change. Journal of Management, 18(3), Vienna, Austria.
- Catherine Cote (2021). 4 types of data analytics to improve decision-making. Retrived 12. April 2022, from: https://online.hbs.edu/blog/post/types-of-data-analysis.
- Clear, J. (2018). Atomic habits: An easy & proven way to build good habits & break bad ones. Penguin.
- David Reinsel, John Gantz, John Rydning (2018). The digitization of the world. Retrived 12. April 2022, from: https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf.
- Dr. Cher Han Lau (2022).5steps of data science project а lifecycle. retrived 10. march 2022,fra: https://towardsdatascience.com/ 5-steps-of-a-data-science-project-lifecycle-26c50372b492.
- Dykes, B. (2020). Effective data storytelling : how to drive change with data, narrative, and visuals. Wiley, Hoboken, New Jersey, 1st edition. edition.
- Hayes, J. (2018). *The Theory and Practice of Change Management*. Bloomsbury Publishing Plc, London.
- Inmon, W. H. (2015). Data architecture : a primer for the data scientist : big data, data warehouse and data vault. Morgan Kaufmann, Amsterdam, Netherlands, 1st edition. edition.
- Knaflic, C. N. (2015). Storytelling with data : a data visualization guide for business professionals. Wiley, Hoboken, New Jersey, 1st edition. edition.
- Knaflic, C. N. (2020). *Storytelling with data : let's practice!* Wiley, Hoboken, New Jersey, 1st edition.
- Larry E. Greiner (1998). Evolution and revolution as organizations grow. Retrived 12. April 2022, from: https://hbr.org/1998/05/evolution-and-revolution-as-organizations-grow.

- LaValle, S., Lesser, E., Shockley, R., Hopkins, M. S., og Kruschwitz, N. (2011). Big data, analytics and the path from insights to value. *MIT sloan management review*, 52(2):21–32.
- Nehme, A. (2022). The rise of hybrid jobs the future of data skills[ep 80].
- ostegm (2022). plotting similar pattens. retrived 30. january 2022, from: https://www.kaggle.com/code/ostegm/plotting-similar-patents/notebook.
- Paul Leinwand P. and Mahadeva M. Matt Mani (2021). Digitizing isn't the same as digital transformation. Retrived 12. April 2022, from: https://hbr.org/2021/03/ digitizing-isnt-the-same-as-digital-transformation.
- PLURALSIGHT (2021). Perspective on technology skills development. Retrived 12. April 2022, from: https://www.pluralsight.com/resource-center/tech-anthology/ technology-skill-development.
- Python (2022). what is python.
- R (2022). what is r.
- R Core Team (2017). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
- Saldanha, T. (2019). Why Digital Transformations Fail. Berrett-Koehler Publishers, 1st edition.
- Srdjan Dragutinovic (2021). The role of data analytics in smes and why it shouldn't be dismissed. Retrived 12. April 2022, from: https://www.bit.com.au/guide/ the-role-of-data-analytics-in-smes-and-why-it-shouldnt-be-dismissed-563921.
- Zabala-Iturriagagoitia, J. M. (2014). Innovation management tools: implementing technology watch as a routine for adaptation. *Technology Analysis & Strategic Management*, 26(9):1073–1089.

Appendix

A1 Burke and litwin organizational model

Figur A1.1: Burke and litwin organizational model, Source:



A2 Search Trends

Added as html file A2

A3 Customer segmentation

In [1]:

#Numpy and pandas easy-to-use data structures and data analysis tools for the Python prog ramming language. #It allows for fast analysis and data cleaning and preparation import numpy as np import pandas as pd # For visualizations import matplotlib.pyplot as plt *#* For regular expressions import re # For handling string import string # For performing mathematical operations import math #data visualization library based on matplotlib. import seaborn as sns import sklearn from sklearn.cluster import KMeans from sklearn.decomposition import PCA from sklearn.preprocessing import MinMaxScaler

In [2]:

```
# Importing dataset
customers=pd.read_csv('/Users/ayushsanghavi/Downloads/customer-segmentation-dataset/Mall_
Customers.csv')
print("Shape of data=>",customers.shape)
```

Shape of data=> (200, 5)

In [3]:

customers.head() #printing top 5 lines of the dataset

Out[3]:

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40

/Exploring the data

Now, we check the quality of the data and the distribution of the variables.

First, we check that if there is any missing value in the dataset. K-means algorithm is not able to deal with missing values.

In [4]:

```
print(f"Missing values in each variable: \n{customers.isnull().sum()}")
Missing values in each variable:
CustomerID 0
Gender 0
Age 0
Annual Income (k$) 0
Spending Score (1-100) 0
dtype: int64
```

We have no missing data. Next, we check if there is any duplicate rows or no.

We check the data type of each variable in the DataFrame. Categorical variables cannot be handled directly. Kmeans is based on distances. The approach for converting those variables depend on the type of categorical variables.

In [6]:

print(f"Variable:Type: \n{customers.dtypes}")Variable:Type:CustomerIDint64GenderobjectAgeint64Annual Income (k\$)int64Spending Score (1-100)int64dtype: object

Observing the distribution of variables. Define two functions. The first one will retrieve descriptive statistics of the variables. The second one will help us graph the variable distribution.

In [7]:

In [8]:

```
def graph histo(x):
   if x.dtype == "int64" or x.dtype == "float64":
        # Select size of bins by getting maximum and minimum and divide the substraction
by 10
       size bins = 10
        # Get the title by getting the name of the column
       title = x.name
        #Assign random colors to each graph
       color kde = list(map(float, np.random.rand(3,)))
       color bar = list(map(float, np.random.rand(3,)))
        # Plot the displot
        sns.distplot(x, bins=size bins, kde kws={"lw": 1.5, "alpha":0.8, "color":color k
de},
                       hist kws={"linewidth": 1.5, "edgecolor": "grey",
                                "alpha": 0.4, "color":color bar})
        # Customize ticks and labels
       plt.xticks(size=14)
       plt.yticks(size=14);
       plt.ylabel("Frequency", size=16, labelpad=15);
        # Customize title
       plt.title(title, size=18)
        # Customize grid and axes visibility
       plt.grid(False);
       plt.gca().spines["top"].set visible(False);
       plt.gca().spines["right"].set visible(False);
       plt.gca().spines["bottom"].set_visible(False);
       plt.gca().spines["left"].set visible(False);
   else:
```

```
x = pd.DataFrame(x)
# Plot
sns.catplot(x=x.columns[0], kind="count", palette="spring", data=x)
# Customize title
title = x.columns[0]
plt.title(title, size=18)
# Customize ticks and labels
plt.xticks(size=14)
plt.yticks(size=14);
plt.xlabel("")
plt.ylabel("Counts", size=16, labelpad=15);
# Customize grid and axes visibility
plt.gca().spines["top"].set_visible(False);
plt.gca().spines["right"].set visible(False);
plt.gca().spines["bottom"].set visible(False);
plt.gca().spines["left"].set visible(False);
```

In [9]:

```
spending = customers["Spending Score (1-100)"]
```

In [10]:

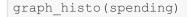
statistics(spending)

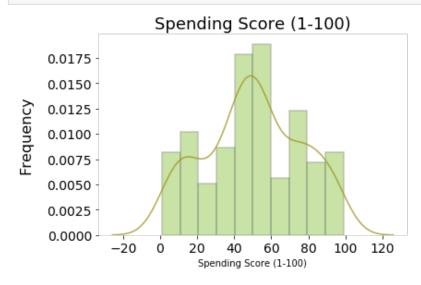
Out[10]:

	Mean	Standard Deviation	Median	Variance	
Variable					

Spending Score (1-100) 50.2 25.758882 50.0
--

In [11]:





Now lets check age

In [12]:

```
age = customers["Age"]
statistics(age)
```

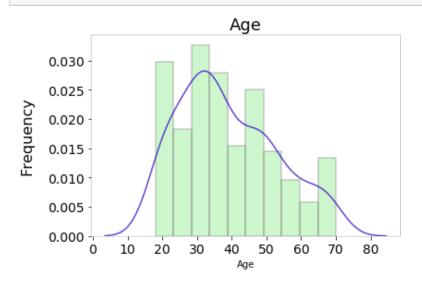
Out[12]:

Mean Standard Deviation Median Variance

Variable

```
ти стој.
```

graph_histo(age)



Let's explore annual income

In [14]:

```
income = customers["Annual Income (k$)"]
```

In [15]:

```
statistics(income)
```

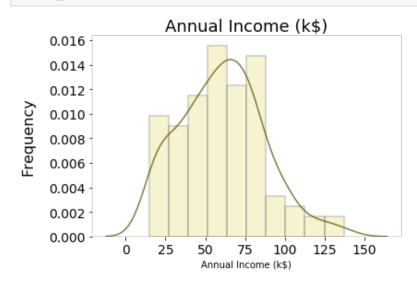
Out[15]:

Mean Standard Deviation Median Variance

Variable				
Annual Income (k\$)	60.56	26.198977	61.5	686.3864

In [16]:

graph_histo(income)



Gender now

In [17]:

gender = customers["Gender"]

In [18]:

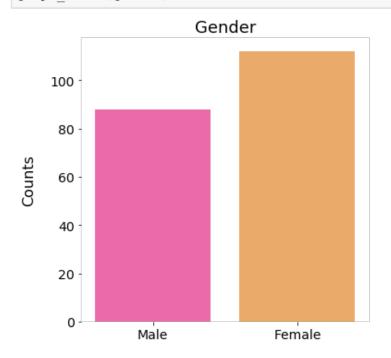
statistics(gender)

Out[18]:

	Gender
Female	112
Male	88

In [19]:

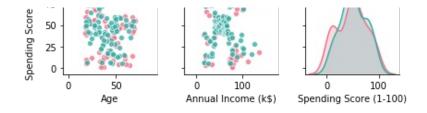
```
graph histo(gender)
```



Correlation between parameteres:

We will analyze the correlation between the numeric parameters. For that, we'll use the pairplot seaborn function. We want to see whether there is a difference between gender. So, we are going to set the hue parameter to get different colors for points belonging to female or customers.

In [20]:



In order to apply K-means, we need to meet the algorithm assumptions.

K-means assumes:

Cluster's shape: The variance of the distribution is spherical meaning that clusters have a spherical shape. In order for this to be true, all variables should be normally distributed and have the same variance. Clusters' Size: All clusters have the same number of observations. Relationship between variables: There is little or no correlation between the variables. In our dataset, our variables are normally distributed. Variances are quite close to each other. Except for age that has a lower variance that the rest of the variables. We could find a proper transformation to solve this issue. We could apply the logarithm or Box-Cox transformation. Box-Cox is a family of transformations which allows us to correct non-normal distributed variables or non-equal variances.

Dimensionality reduction After we checked that we can apply k-means, we can apply Principal Component Analysis (PCA) to discover which dimensions best maximize the variance of features involved.

Principal Component Analysis (PCA) First, we'll transform the categorical variable into two binary variables.

In [21]: customers["Male"] = customers.Gender.apply(lambda x: 0 if x == "Male" else 1) In [22]: customers["Female"] = customers.Gender.apply(lambda x: 0 if x == "Female" else 1) In [23]: X = customers.iloc[:, 2:]

In [24]:

X.head()

Out[24]:

	Age	Annual Income (k\$)	Spending Score (1-100)	Male	Female
0	19	15	39	0	1
1	21	15	81	0	1
2	20	16	6	1	0
3	23	16	77	1	0
4	31	17	40	1	0

In [25]:

```
# Apply PCA and fit the features selected
pca = PCA(n components=2).fit(X)
```

During the fitting process, the model learns some quantities from the data: the "components" and "explained variance".

```
In [26]:
```

```
print(pca.components_)

[[-1.88980385e-01 5.88604475e-01 7.86022241e-01 3.32880772e-04

-3.32880772e-04]

[ 1.30957602e-01 8.08400899e-01 -5.73875514e-01 -1.57927017e-03
```

1.57927017e-03]]

In [27]:

```
print(pca.explained_variance_)
```

```
[700.26450987 684.33354753]
```

The vectors represent the principal axes of the data. The length of the vector indicates the importance of that axis in describing the distribution of the data. The projection of each data point onto the principal axes are the principal components of the data.

In [28]:

```
# Transform samples using the PCA fit
pca 2d = pca.transform(X)
```

We can represent this using a type of scatter plot called biplot. Each point is represented by its score regarding the principal components. It is helpful to understand the reduced dimensions of the data. It also helps us discover relationships between the principal components and the original variables.

K-means clustering:

In order to cluster data, we need to determine how to tell if two data points are similar. A proximity measure characterizes the similarity or dissimilarity that exists between objects.

We can choose to determine if two points are similar. So if the value is large, the points are very similar. Or choose to determine if they are dissimilar. If the value is small, the points are similar. This is what we know as "distance".

There are various distances that a clustering algorithm can use: Manhattan distance, Minkowski distance, Euclidean distance, among others.

$$\sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$

K-means typically uses Euclidean distance to determine how similar (or dissimilar) two points are.

First, we need to fix the numbers of clusters to use.

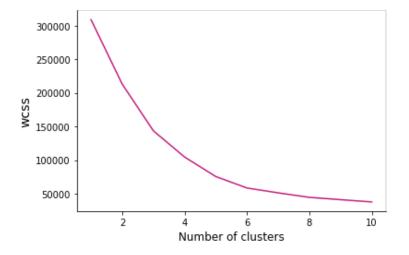
There are several direct methods to perform this. Among them, we find the elbow and silhouette methods.

We'll consider the total intra-cluster variation (or total within-cluster sum of square (WSS)). The goal is to minimize WSS.

The Elbow method looks at how the total WSS varies with the number of clusters. For that, we'll compute kmeans for a range of different values of k. Then, we calculate the total WSS. We plot the curve WSS vs. number of clusters. Finally, we locate the elbow or bend of the plot. This point is considered to be the appropriate number of clusters.

In [29]:

```
wcss = []
for i in range(1,11):
    km = KMeans(n_clusters=i,init='k-means++', max_iter=300, n_init=10, random_state=0)
    km.fit(X)
    wcss.append(km.inertia_)
plt.plot(range(1,11),wcss, c="#c51b7d")
plt.gca().spines["top"].set_visible(False)
plt.gca().spines["right"].set_visible(False)
plt.title('Elbow Method', size=14)
plt.xlabel('Number of clusters', size=12)
plt.ylabel('wcss', size=14)
plt.show()
```



How does k-means clustering works? The main idea is to select k centers, one for each cluster. There are several ways to initialize those centers. We can do it randomly, pass certain points that we believe are the center or place them in a smart way (e.g. as far away from each other as possible). Then, we calculate the Euclidean distance between each point and the cluster centers. We assign the points to the cluster center where the distance is minimum. After that, we recalculate the new cluster center. We select the point that is in the middle of each cluster as the new center. And we start again, calculate distance, assign to cluster, calculate new centers. When do we stop? When the centers do not move anymore.

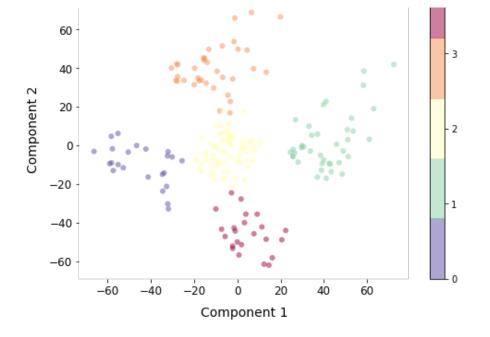
In [30]:

```
# Kmeans algorithm
# n_clusters: Number of clusters. In our case 5
# init: k-means++. Smart initialization
# max_iter: Maximum number of iterations of the k-means algorithm for a single run
# n_init: Number of time the k-means algorithm will be run with different centroid seeds.
# random_state: Determines random number generation for centroid initialization.
kmeans = KMeans(n_clusters=5, init='k-means++', max_iter=10, n_init=10, random_state=0)
# Fit and predict
y_means = kmeans.fit_predict(X)
```

In [31]:

80

```
fig, ax = plt.subplots(figsize = (8, 6))
plt.scatter(pca_2d[:, 0], pca_2d[:, 1],
            c=y_means,
            edgecolor="none",
            cmap=plt.cm.get cmap("Spectral r", 5),
            alpha=0.5)
plt.gca().spines["top"].set visible(False)
plt.gca().spines["right"].set visible(False)
plt.gca().spines["bottom"].set visible(False)
plt.gca().spines["left"].set visible(False)
plt.xticks(size=12)
plt.yticks(size=12)
plt.xlabel("Component 1", size = 14, labelpad=10)
plt.ylabel("Component 2", size = 14, labelpad=10)
plt.title('Domains Grouped in 5 clusters', size=16)
plt.colorbar(ticks=[0, 1, 2, 3, 4]);
plt.show()
             Domains Grouped in 5 clusters
```



In [32]:

```
centroids = pd.DataFrame(kmeans.cluster_centers_, columns = ["Age", "Annual Income", "Sp
ending", "Male", "Female"])
```

In [33]:

```
centroids.index_name = "ClusterID"
centroids["ClusterID"] = centroids.index
centroids = centroids.reset index(drop=True)
```

In [34]:

centroids

Out[34]:

	Age	Annual Income	Spending	Male	Female	ClusterID
0	45.217391	26.304348	20.913043	0.608696	0.391304	0
1	32.692308	86.538462	82.128205	0.538462	0.461538	1
2	43.088608	55.291139	49.569620	0.582278	0.417722	2
3	40.666667	87.750000	17.583333	0.472222	0.527778	3
4	25.521739	26.304348	78.565217	0.608696	0.391304	4

The most important features appear to be Annual Income and Spending score. We have people whose income is low but spend in the same range-segment 0. People whose earnings a high and spend a lot-segment 1. Customers whose income is middle range but also spend at the same level-segment 2. Then we have customers whose income is very high but they have most spendings-segment 3. And last, people whose earnings are little but they spend a lot-segment 4.

Imagine that tomorrow we have a new member. And we want to know which segment that person belongs. We can predict this.

In [35]:

```
X_new = np.array([[22,10,9,0,2]])
new_customer = kmeans.predict(X_new)
print(f"The new customer belongs to segment {new_customer[0]}")
```

```
The new customer belongs to segment \ensuremath{\mathsf{0}}
```

A4 Email Notebook

In [3]:

install kaggle package
! pip install -q kaggle

upload kaggle.json API key

In [4]:

make folder for api key
! mkdir ~/.kaggle

mkdir: cannot create directory '/root/.kaggle': File exists

In [5]:

copy key into folder
! cp kaggle.json ~/.kaggle/

In [6]:

change access permissions
! chmod 600 ~/.kaggle/kaggle.json

for getting data go to kaggle page and ... and copy API command

In [7]:

! kaggle datasets download -d wcukierski/enron-email-dataset

enron-email-dataset.zip: Skipping, found more recently modified local copy (use --force to force dow nload)

In [10]:

! unzip /content/enron-email-dataset.zip

Archive: /content/enron-email-dataset.zip
replace emails.csv? [y]es, [n]o, [A]ll, [N]one, [r]ename: n

In [9]:

!pip install datashader -q
!pip install -qq -U gensim

*

۵

-

*

×

import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt % matplotlib inline import email import datetime import nltk import re nltk.download('punkt') nltk.download('stopwords') from nltk.tokenize import word_tokenize from string import punctuation import spacy nlp = spacy.load("en_core_web_sm") import re import networkx as nx from os import path from PIL import Image from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator import holoviews as hv from holoviews import opts hv.extension('bokeh') from bokeh.plotting import show kwargs = dict(width=800, height=800, xaxis=None, yaxis=None) opts.defaults(opts.Nodes(**kwargs), opts.Graph(**kwargs)) from gensim.corpora.dictionary import Dictionary from gensim.models.tfidfmodel import TfidfModel from gensim.models.lsimodel import LsiModel from gensim.similarities import MatrixSimilarity from sklearn.decomposition import PCA from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy score from mlxtend.plotting import plot_confusion_matrix from sklearn.metrics import confusion matrix from sklearn.metrics import classification report

[nltk_data] Downloading package punkt to /root/nltk_data... [nltk_data] Package punkt is already up-to-date! [nltk_data] Downloading package stopwords to /root/nltk_data... [nltk_data] Package stopwords is already up-to-date!

₽0

In [12]:

#Loading the dataset.
df_emails = pd.read_csv("emails.csv")
#And inspects it:
df_emails.head()

Out[12]:

	file	message
0	allen-p/_sent_mail/1.	Message-ID: <18782981.1075855378110.JavaMail.e
1	allen-p/_sent_mail/10.	Message-ID: <15464986.1075855378456.JavaMail.e
2	allen-p/_sent_mail/100.	Message-ID: <24216240.1075855687451.JavaMail.e
3	allen-p/_sent_mail/1000.	Message-ID: <13505866.1075863688222.JavaMail.e
4	allen-p/_sent_mail/1001.	Message-ID: <30922949.1075863688243.JavaMail.e

In [13]:

```
# Drops rows containing messages without some specified value in the expected locations.
def standard_format(df, Series, string, slicer):
    rows = []
    for row, message in enumerate(Series):
        message_words = message.split('\n')
        if string not in message_words[slicer]:
            rows.append(row)
    df = df.drop(df.index[rows])
    return df
# Applying the cleansing.
x = len(df emails.index)
headers = ['Message-ID: ', 'Date: ', 'From: ', 'To: ', 'Subject: ']
for i, v in enumerate(headers):
    df emails = standard format(df emails, df emails.message, v, i)
df emails = df emails.reset index()
print("Got rid of {} useless emails! That's {}% of the total number of messages in this dataset.".format(x - len(
df_emails.index), np.round(((x - len(df_emails.index)) / x) * 100, decimals=2)))
```

Got rid of 111433 useless emails! That's 21.54% of the total number of messages in this dataset.

In [14]:

```
# With the function below, we can subtract the information we want from the "message" column.
def get_field(field, messages):
    column = []
    for message in messages:
        e = email.message_from_string(message)
        column.append(e.get(field))
    return column
```

In [15]:

```
# Now using the function above.
df_emails["date"] = get_field("Date", df_emails["message"])
df_emails["subject"] = get_field("Subject", df_emails["message"])
df_emails["From"] = get_field("From", df_emails["message"])
df_emails["To"] = get_field("To", df_emails["message"])
df_emails["X-Folder"] = get_field("X-Folder", df_emails["message"])
df_emails["X-From"] = get_field("X-From", df_emails["message"])
df_emails["X-To"] = get_field("X-To", df_emails["message"])
df_emails["X-To"] = get_field("X-To", df_emails["message"])
```

Out[15]:

in	dex	file	message	date	subject	From	То	
0	0	allen- p/_sent_mail/1.	Message-ID: <18782981.1075855378110.JavaMail.e	Mon, 14 May 2001 16:39:00 -0700 (PDT)		phillip.allen@enron.com	tim.belden@enron.com	\Philli
1	1	allen- p/_sent_mail/10.	Message-ID: <15464986.1075855378456.JavaMail.e	Fri, 4 May 2001 13:51:00 -0700 (PDT)	Re:	phillip.allen@enron.com	john.lavorato@enron.com	\Philli
2	2	allen- p/_sent_mail/100.	Message-ID: <24216240.1075855687451.JavaMail.e	Wed, 18 Oct 2000 03:00:00 -0700 (PDT)	Re: test	phillip.allen@enron.com	leah.arsdall@enron.com	\Ph
4								•

In [16]:

#Changes date column to datetime format, using the datetime package
df_emails['date'] = pd.to_datetime(df_emails['date'], infer_datetime_format=True, utc=True)

In [17]:

```
#The function below extracts the body/actual mail from the "message" column.
def body(messages):
    column = []
    for message in messages:
        e = email.message_from_string(message)
        column.append(e.get_payload())
    return column
df emails["body"] = body(df emails["message"])
```

In [18]:

```
#This function extracts the employee name of the sender.
```

```
def employee(file):
    column = []
    for string in file:
        column.append(string.split("/")[0])
    return column
```

```
df_emails["employee"] = employee(df_emails["file"])
df_emails.head(3)
```

Out[18]:

index		file	message	date	subject	From	То
0	0	allen- p/_sent_mail/1.	Message-ID: <18782981.1075855378110.JavaMail.e	2001-05-14 23:39:00+00:00		phillip.allen@enron.com	tim.belden@enron.com
1	1	allen- p/_sent_mail/10.	Message-ID: <15464986.1075855378456.JavaMail.e	2001-05-04 20:51:00+00:00	Re:	phillip.allen@enron.com	john.lavorato@enron.com
2	2	allen- p/_sent_mail/100.	Message-ID: <24216240.1075855687451.JavaMail.e	2000-10-18 10:00:00+00:00	Re: test	phillip.allen@enron.com	leah.arsdall@enron.com
4							+

EDA

In [19]:

#First, we take a look at the number of employees, thats included in the dataset.
print("Number of employees:",df_emails['employee'].nunique())

Number of employees: 150

We where interested in how many charcheter where used in the emails to get an understand, how there could be so many. By going through the email body we could find the lenght. the first graph show that the density all most of the emails contains few or no words, and the other scale some messages containing a lot for words.

In [20]:

```
#Maybe include
df_emails['Message Length'] = df_emails['body'].apply(lambda x: len(x))
```

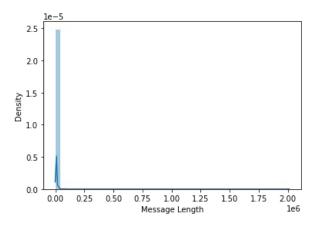
sns.distplot(df_emails['Message Length'])

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `d isplot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[20]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f95058cd7d0>

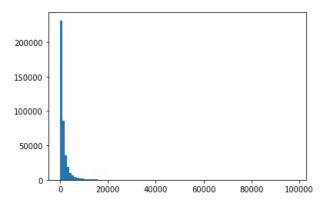


Then we wanted to see the distribution of different size of characters, by making a range for characters and set a bin size with 100 gave an good indication as the characters decreased

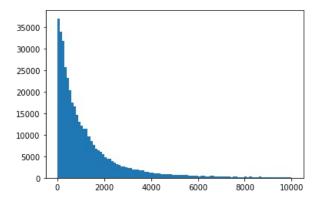
In [21]:

```
#The for loop below, plots and visualize the length of the emails in the dataset.
for order_of_magnitude in reversed(range(2,6)):
    max_ = 10**order_of_magnitude
    print("Messages not longer than %i characters:"%max_)
    plt.hist(df_emails.query('`Message Length`<@max_')['Message Length'], bins=100)
    #histplot(email_df.query('`Message Length`<@max_'), x='Message Length')
    plt.show()</pre>
```

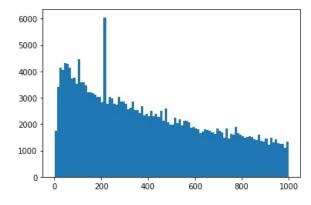
Messages not longer than 100000 characters:



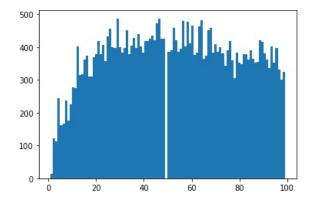
Messages not longer than 10000 characters:



Messages not longer than 1000 characters:



Messages not longer than 100 characters:

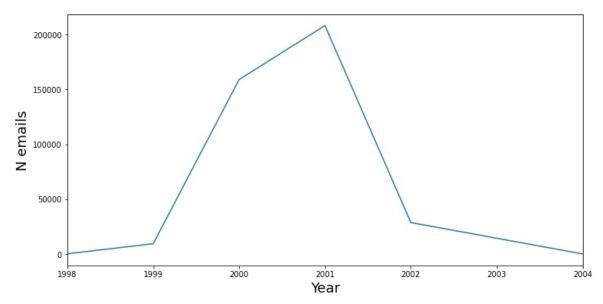


```
In [22]:
```

```
#The function below shows in which period the emails from the dataset have been sent.
plt.figure(figsize=(12,6))
ax = df_emails.groupby(df_emails['date'].dt.year)['body'].count().plot()
ax.set_xlabel('Year', fontsize=18)
ax.set_ylabel('N emails', fontsize=18)
ax.set_xlim(1998,2004)
```

Out[22]:

(1998.0, 2004.0)



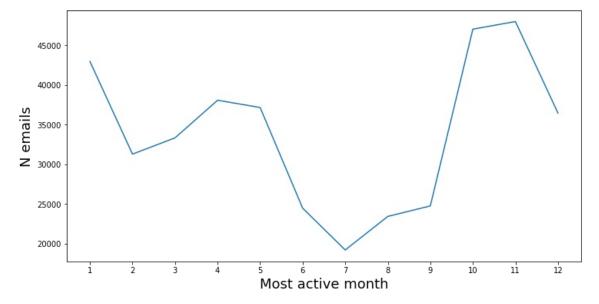
From the data set we have we can clearly see on the year email that there is a ramp up of send emails, for the month graph show the year with the most emails, year 2001. Enron changed their CEO, in february march time, so more emails where send, going of for summer vacation, the amount of emails dropped. During august and october there was a dicussion going on for the employees of enron to buy enron stock and the company was still doing fine. short after this, accorind to the stock price. Enron have lot a lost of money, resulting the decreaseing emails.

```
In [23]:
```

```
# Next, we illustrate the most active email-months.
# Clearly, theres less emails being send doing the summer.
plt.figure(figsize=(12,6))
ax = df_emails.groupby(df_emails['date'].dt.month)['body'].count().plot()
ax.set_xlabel('Most active month', fontsize=18)
ax.set_ylabel('N emails', fontsize=18)
ax.set_xticks(range(1,13))
```

Out[23]:

<pre>[<matplotlib.axis.xtick <matplotlib.axis.xtick<="" pre=""></matplotlib.axis.xtick></pre>		
<matplotlib.axis.xtick< td=""><td>at</td><td>0x7f94fbf8a2d0>,</td></matplotlib.axis.xtick<>	at	0x7f94fbf8a2d0>,
<matplotlib.axis.xtick <matplotlib.axis.xtick< td=""><td></td><td></td></matplotlib.axis.xtick<></matplotlib.axis.xtick 		
<matplotlib.axis.xtick< td=""><td></td><td></td></matplotlib.axis.xtick<>		
<matplotlib.axis.xtick< td=""><td></td><td></td></matplotlib.axis.xtick<>		
<matplotlib.axis.xtick <matplotlib.axis.xtick< td=""><td></td><td></td></matplotlib.axis.xtick<></matplotlib.axis.xtick 		
<matplotlib.axis.xtick< td=""><td></td><td></td></matplotlib.axis.xtick<>		
<matplotlib.axis.xtick< td=""><td>at</td><td>0x7f95060b2090>,</td></matplotlib.axis.xtick<>	at	0x7f95060b2090>,
<matplotlib.axis.xtick< td=""><td>at</td><td>0x7f9505ff8950>]</td></matplotlib.axis.xtick<>	at	0x7f9505ff8950>]

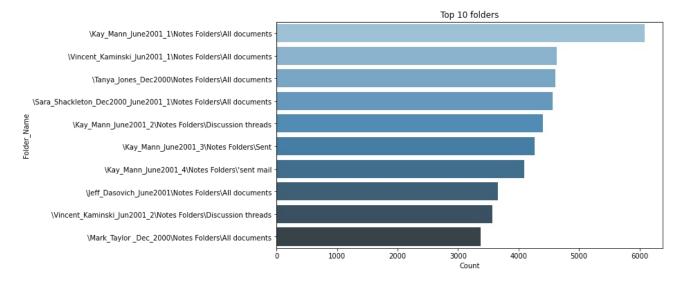


We wanted to see which of the folder where most used, and this turn out to be Kay Mann's folder this is a person in charge of the legal in Enron, so many of the emails contain information about legal issues.

In [24]:

```
unique_emails = pd.DataFrame(df_emails['X-Folder'].value_counts())
unique_emails.reset_index(inplace=True)
unique_emails.columns = ['folder_name', 'count']
# Top 20 folders
print(unique_emails.iloc[:10,:])
#Plots the figure
plt.figure(figsize=(10,6))
sns.barplot(x='count', y='folder_name', data=unique_emails.iloc[:10, :], palette="Blues_d")
plt.title("Top 10 folders")
plt.xlabel("Count")
plt.ylabel("Folder_Name")
plt.show()
```

```
folder name
                                                       count
0
    \Kay_Mann_June2001_1\Notes Folders\All documents
                                                        6081
1
   \Vincent_Kaminski_Jun2001_1\Notes Folders\All ...
                                                        4635
    \Tanya_Jones_Dec2000\Notes Folders\All documents
2
                                                        4606
3
   \Sara_Shackleton_Dec2000_June2001_1\Notes Fold...
                                                        4560
4
   \Kay_Mann_June2001_2\Notes Folders\Discussion ...
                                                        4405
             \Kay_Mann_June2001_3\Notes Folders\Sent
                                                        4269
5
       \Kay Mann June2001 4\Notes Folders\'sent mail
6
                                                        4089
7
   \Jeff Dasovich June2001\Notes Folders\All docu...
                                                        3657
8
   \Vincent_Kaminski_Jun2001_2\Notes Folders\Disc...
                                                        3567
   \Mark Taylor Dec 2000\Notes Folders\All docum...
9
                                                        3378
```



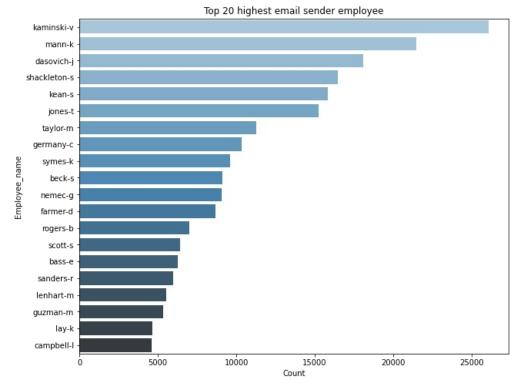
Then we wanted to find out who is person who send the most emails.

- · Kaminski was the director of reseach, so that's why he send a lot of emails
- · Dasovich was the governmental affairs executive Some of the others ware secretaies and traders

the CEO, Lay, is at only ranked as 20, so he was sending not so much emails

```
In [25]:
```

```
# The plot below shows the most frequent sender.
top_20 = pd.DataFrame(df_emails['employee'].value_counts()[:20])
top_20.reset_index(inplace=True)
top_20.columns = ["Employee_name", "Counts"]
#Plots the figure
plt.figure(figsize=(10,8))
sns.barplot(y="Employee_name", x="Counts", data=top_20, palette="Blues_d")
plt.title("Top 20 highest email sender employee")
plt.xlabel("Count")
plt.ylabel("Employee_name")
plt.show()
```



Network

In [26]:

```
#Setting up the edges
edges = df_emails[["From","To"]]
edges = edges[edges.From != edges.To]
edges.head()
```

Out[26]:

	From	То
0	phillip.allen@enron.com	tim.belden@enron.com
1	phillip.allen@enron.com	john.lavorato@enron.com
2	phillip.allen@enron.com	leah.arsdall@enron.com
3	phillip.allen@enron.com	randall.gay@enron.com
4	phillip.allen@enron.com	greg.piper@enron.com

In [27]:

```
# Grouping to aggregate multiple co-occurences and to generate a weight:
# Based on how many times one sender sends a mail to a reciever.
# Lastly, reset_index makes everytging from a multi-index-series into a dataframe
edges = edges.groupby(['From', 'To']).size().reset_index()
```

In [28]:

```
#Renaming the column 0 to weight.
edges.rename({0:'weight'}, axis = 1, inplace=True)
```

In [29]:

```
# Creates network object from pandas edgelist
G = nx.from_pandas_edgelist(edges, source='From', target='To', edge_attr='weight', create_using=nx.Graph())
```

In [30]:

#Then sets the node attributes.
nx.set_node_attributes(G, {G.degree(): 'degree'})

In [31]:

```
# Subset the graph keeping only nodes with degree > 1
G = nx.subgraph(G, [n for n,d in G.degree() if d > 1])
# Here we can calculate different centrality indicators.
centrality_dgr = nx.degree_centrality(G)
centrality_eig = nx.eigenvector_centrality_numpy(G)
degree = G.degree()
```

```
# All these indicators can now be set as attribute of the Graph
nx.set_node_attributes(G, centrality_dgr, 'dgr')
nx.set_node_attributes(G, centrality_eig, 'eig')
nx.set_node_attributes(G, dict(degree), 'degree_basic')
```

In [32]:

```
# Turns the Graph object (NetworkX) to a Dataframe
nodes_df = pd.DataFrame.from_dict(dict(G.nodes(data=True)), orient='index')
```

In [33]:

Since the dataset contains of 150 people, we'll find the top 25 most central people. top_10_eig = nodes_df.sort_values('eig', ascending=False)[:10]

In [34]:

```
#Creates nodes for plot
emails_eig = top_10_eig.eig.index
```

#Create subset graph
g_sub_emails = nx.subgraph(G,emails_eig)

Create and save a layout.
g_layout = nx.layout.spring_layout(g_sub_emails)
g_plot = hv.Graph.from_networkx(g_sub_emails, g_layout).opts(tools=['hover'], node_color='partition')
labels = hv.Labels(g_plot.nodes, ['x', 'y'])

```
# Makes the plot
from holoviews.operation.datashader import datashade, bundle_graph
bundled = bundle_graph(g_plot)
```

Show the plot
show(hv.render(bundled * labels.opts(text_font_size='6pt', text_color='white', bgcolor='lightblue')))

print(top_10_eig[:10])

bokeh.core.validation.check - ERROR - E-1001 (BAD_COLUMN_NAME): Glyph refers to nonexistent column n ame. This could either be due to a misspelling or typo, or due to an expected column being missing. : key "fill_color" value "partition" [renderer: GlyphRenderer(id='1218', ...)]

	dgr	eig	degree basic
tana.jones@enron.com	0.059611	0.206684	597
louise.kitchen@enron.com	0.044733	0.199194	448
<pre>sara.shackleton@enron.com</pre>	0.058612	0.191055	587
mark.taylor@enron.com	0.045931	0.177937	460
sally.beck@enron.com	0.043635	0.140461	437
mark.haedicke@enron.com	0.027659	0.139406	277
vince.kaminski@enron.com	0.060110	0.133938	602
john.lavorato@enron.com	0.029855	0.133050	299
elizabeth.sager@enron.com	0.028557	0.131349	286
richard.sanders@enron.com	0.032651	0.125268	327

NLP

Subject wordcloud

In [35]:

```
subject_text = " ".join(message for message in df_emails.subject)
print ("There are {} words in the subjects in combination of all mails.".format(len(subject_text)))
```

There are 11396608 words in the subjects in combination of all mails.

In [36]:

```
# Create stopword list:
stopwords = set(STOPWORDS)
stopwords.update(["RE", "FW","Fwd","Date","Hour","HourAhead","Reminder","PLEASEREAD"])
# Generate a word cloud image
wordcloud = WordCloud(stopwords=stopwords, background_color="white").generate(subject_text)
# Display the generated wordcloud:
plt.figure(figsize=(20,10))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis("off")
plt.show()
```


Full text

In [44]:

```
#Takes a sample of 10.000 emails
emails_nlp = nlp(df_emails.body.sample(n=10000,random_state=42).to_string())
```

```
In [45]:
```

```
# Most mentioned people in the e-mails
persons_entity = [(ent.text, ent.label_) for ent in emails_nlp.ents if ent.label_ == "PERSON" ]
persons_entity = pd.DataFrame(persons_entity, columns=["Name","-"])

print("Most mentioned people in mails")
print()
print(persons_entity.value_counts()[:10])
print()
print("Top 10 central people accoring to Network Analysis")
print(top_10_eig[:10])

Most mentioned people in mails
```

Name	-	
Jeff	PERSON	47
Steve	PERSON	40
Kay Mann/C	PERSON	37
John	PERSON	35
Mark	PERSON	33
Kay	PERSON	26
Mike	PERSON	26
Mary	PERSON	22
Vince J Ka	PERSON	21
Rick	PERSON	21
dtype: int64	ļ	

••			
Top 10 central people acco	ring to Ne	twork Anal	ysis
	dgr	eig	degree_basic
tana.jones@enron.com	0.059611	0.206684	597
louise.kitchen@enron.com	0.044733	0.199194	448
sara.shackleton@enron.com	0.058612	0.191055	587
mark.taylor@enron.com	0.045931	0.177937	460
sally.beck@enron.com	0.043635	0.140461	437
<pre>mark.haedicke@enron.com</pre>	0.027659	0.139406	277
vince.kaminski@enron.com	0.060110	0.133938	602
john.lavorato@enron.com	0.029855	0.133050	299
elizabeth.sager@enron.com	0.028557	0.131349	286
richard.sanders@enron.com	0.032651	0.125268	327
<pre>sara.shackleton@enron.com mark.taylor@enron.com sally.beck@enron.com mark.haedicke@enron.com vince.kaminski@enron.com john.lavorato@enron.com elizabeth.sager@enron.com</pre>	0.058612 0.045931 0.043635 0.027659 0.060110 0.029855 0.028557	0.191055 0.177937 0.140461 0.139406 0.133938 0.133050 0.131349	587 460 437 277 602 299 280

In [46]:

```
#Most used adjectives in the emails
adj_entity = [(token.lemma_, token.pos_) for token in emails_nlp if token.pos_ == "ADJ" and not token.is_stop]
adj_entity = pd.DataFrame(adj_entity,columns=["Adjective","-"])
print("Most used adjectives in mails")
print()
print(adj_entity.value_counts()[:10])
# Generate a word cloud image
wordcloud = WordCloud(stopwords=stopwords, background_color="white").generate(adj_entity.Adjective.to_string())
```

Display the generated image: # the matplotlib way: plt.figure(figsize=(20,10)) plt.imshow(wordcloud, interpolation='bilinear') plt.axis("off") plt.show()

Most used adjectives in mails

Adjecti	ive -	
good	ADJ	167
new	ADJ	90
dear	ADJ	86
great	ADJ	71
late	ADJ	57
sure	ADJ	52
fine	ADJ	48
sorry	ADJ	39
able	ADJ	32
glad	ADJ	27
dtype:	int64	


```
In [47]:
```

```
# The function below returns a string that is cleaned.
def clean_text(Series):
    result = []
    strings = Series.str.lower()
    for string in strings:
        new string = []
        words = string.split(" ")
        for word in words:
            word = word.strip(punctuation)
            if word in stopwords:
                continue
            if re.search(r'[\W\d]',word):
                continue
            new_string.append(word)
        new_string = " ".join(new_string)
        result.append(new string)
    return result
```

In [48]:

```
#Next, we'll generate a wordcloud on the "body" of every email.
#And firstly, we create a new dataframe.
enorn_person_email = df_emails[["employee","body"]]
```

```
#Then cleans the data
enorn_person_email['body'] = clean_text(enorn_person_email['body'])
```

#Grouping every word a person has mailed into one dataframe.
df grouped = enorn person email.groupby("employee")['body'].apply(' '.join).reset index()

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:6: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexi ng.html#returning-a-view-versus-a-copy

```
In [52]:
```

```
# Generate a word cloud image
stopwords.update(["CC","subject","forwarded","seeattached","please see","pleasefind","fyi"])
wordcloud = WordCloud(stopwords=stopwords, background_color="white").generate(enorn_person_email.body.to_string())
)
# Display the generated image:
# the matplotlib way:
plt.figure(figsize=(20,10))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis("off")
```

plt.show()

Unsupervised Machine Learning

In [53]:

```
#For the UML, we first take a sample, since our Collab cannot run the full dataset.
uml_emails = df_emails.sample(n=4000,random_state=42)
```

In [54]:

```
#We interested to see, if theres a certain pattern in terms of whether the sender is from Enron or not.
#Therefore, we firstly split the "From" emails by the "@", and afterwards we categorize this into a new column.
uml_emails["Enron_or_not"] = uml_emails.From.apply(lambda t: t.split("@")[1])
```

In [55]:

filter = uml_emails["Enron_or_not"] == "enron.com"

In [56]:

```
uml_emails["Enron_or_not"] = uml_emails["Enron_or_not"].replace("enron.com","Enron")
uml_emails["Enron_or_not"] = uml_emails.Enron_or_not.where(filter,"Not_Enron")
```

In [57]:

uml_emails[["Enron_or_not","From"]].head()

Out[57]:

	Enron_or_not	From
286099	Enron	joe.quenet@enron.com
328179	Enron	sara.shackleton@enron.com
1550	Enron	phillip.allen@enron.com
134351	Not_Enron	lofeco@ev1.net
377751	Enron	justin.boyd@enron.com

In [58]:

```
#After we've classified the different emails, we create a list of our tokens, called tokens.
#Here, we both use lemmatization and lower the tokens. Moreover, are we only interesseted in a certain types of w
ords.
tokens = []
for summary in nlp.pipe(uml_emails.body):
    proj_tok = [token.lemma_.lower() for token in summary if token.pos_ in ['NOUN', 'PROPN', 'ADJ', 'ADV'] and not
token.is_stop]
    tokens.append(proj_tok)
```

In [59]:

```
#The, we sets the index
uml_emails.index = range(len(uml_emails))
```

```
#And takes the tokens back into our sample of emails
uml_emails["tokens"] = tokens
```

In [60]:

```
# Create a Dictionary from the emails, called: dictionary
dictionary = Dictionary(uml_emails['tokens'])
```

```
# And based on our dictionary, we can construct our corpus.
corpus = [dictionary.doc2bow(doc) for doc in uml_emails['tokens']]
```

In [61]:

```
# We now sets up our Tfidf model, using our corpus from above.
# Create and fit a new TfidfModel using the corpus: tfidf
tfidf = TfidfModel(corpus)
# Now we can transform the whole corpus
tfidf corpus = tfidf[corpus]
```

In [62]:

```
#We then trains our model
lsi = LsiModel(tfidf_corpus, id2word=dictionary, num_topics=400)
```

```
# And our trained model can then be used to transform our corpus
lsi_corpus = lsi[tfidf_corpus]
```

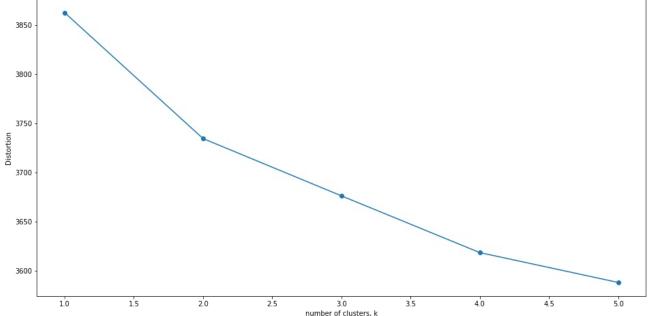
In [63]:

```
# Creates the email-topic-matrix
email_topic_matrix = MatrixSimilarity(lsi_corpus)
email_topic_matrix_ix = email_topic_matrix.index
```

```
In [64]:
```

```
from sklearn.cluster import KMeans
# Creates a "for loop", to determine number of clusters.
distortions = []
K = range(1,6)
for k in K:
    kmeanModel = KMeans(n_clusters=k)
    kmeanModel.fit(email_topic_matrix_ix)
    distortions.append(kmeanModel.inertia_)

plt.figure(figsize=(16,8))
plt.plot(K, distortions, 'o-')
plt.xlabel('number of clusters, k')
plt.ylabel('Distortion')
plt.title('The Elbow Method showing the optimal clusters')
plt.show()
```

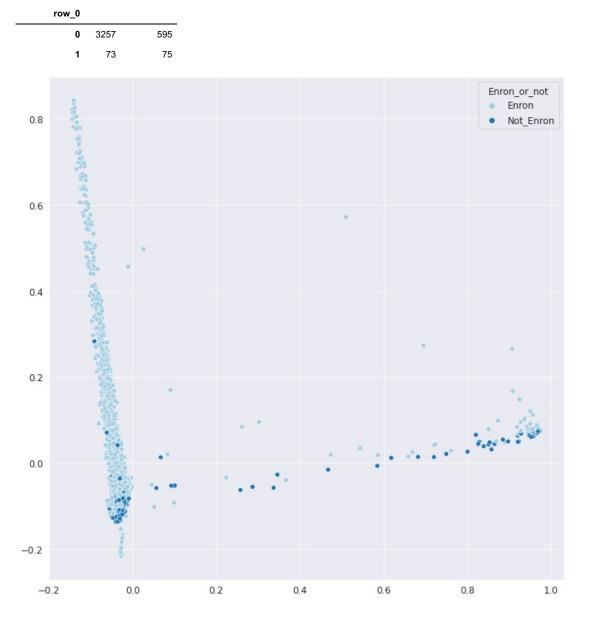
In [70]:

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variables as keyword args: x, y. From version 0.12, the only valid positional argument will be `data `, and passing other arguments without an explicit keyword will result in an error or misinterpretat ion.

FutureWarning

Out[70]:

Enron_or_not Enron Not_Enron



Supervised machine learning

```
In [78]:
```

```
#We import a set of fraudlent emails, to mix with our EnronEmails, to train our model
! unzip /content/fradulent_emails.txt.zip
#Reads fraudlent emails:
with open("fradulent emails.txt", 'r',encoding="latin1") as file:
    fraudlent mails = file.read()
#And inspects the dataset
print(fraudlent mails[:5000]) #Clearly, every mail starts with "From r",
# - this will therefore be used to split the emails into seperate strings.
Archive: /content/fradulent emails.txt.zip
replace fradulent_emails.txt? [y]es, [n]o, [A]ll, [N]one, [r]ename: n
From r Wed Oct 30 21:41:56 2002
Return-Path: <james ngola2002@maktoob.com>
X-Sieve: cmu-sieve 2.0
Return-Path: <james_ngola2002@maktoob.com>
Message-Id: <200210310241.g9V2fNm6028281@cs.CU>
From: "MR. JAMES NGOLA." <james_ngola2002@maktoob.com>
Reply-To: james_ngola2002@maktoob.com
To: webmaster@aclweb.org
```

Date: Thu, 31 Oct 2002 02:38:20 +0000 Subject: URGENT BUSINESS ASSISTANCE AND PARTNERSHIP X-Mailer: Microsoft Outlook Express 5.00.2919.6900 DM MIME-Version: 1.0 Content-Type: text/plain; charset="us-ascii" Content-Transfer-Encoding: 8bit X-MIME-Autoconverted: from quoted-printable to 8bit by sideshowmel.si.UM id g9V2foW24311 Status: 0

FROM:MR. JAMES NGOLA. CONFIDENTIAL TEL: 233-27-587908. E-MAIL: (james_ngola2002@maktoob.com).

URGENT BUSINESS ASSISTANCE AND PARTNERSHIP.

DEAR FRIEND,

I AM (DR.) JAMES NGOLA, THE PERSONAL ASSISTANCE TO THE LATE CONGOLESE (PRESIDENT LAURENT KABILA) WH O WAS ASSASSINATED BY HIS BODY GUARD ON 16TH JAN. 2001.

THE INCIDENT OCCURRED IN OUR PRESENCE WHILE WE WERE HOLDING MEETING WITH HIS EXCELLENCY OVER THE FIN ANCIAL RETURNS FROM THE DIAMOND SALES IN THE AREAS CONTROLLED BY (D.R.C.) DEMOCRATIC REPUBLIC OF CON GO FORCES AND THEIR FOREIGN ALLIES ANGOLA AND ZIMBABWE, HAVING RECEIVED THE PREVIOUS DAY (USD\$100M) ONE HUNDRED MILLION UNITED STATES DOLLARS, CASH IN THREE DIPLOMATIC BOXES ROUTED THROUGH ZIMBABWE.

MY PURPOSE OF WRITING YOU THIS LETTER IS TO SOLICIT FOR YOUR ASSISTANCE AS TO BE A COVER TO THE FUND AND ALSO COLLABORATION IN MOVING THE SAID FUND INTO YOUR BANK ACCOUNT THE SUM OF (USD\$25M) TWENTY FI VE MILLION UNITED STATES DOLLARS ONLY, WHICH I DEPOSITED WITH A SECURITY COMPANY IN GHANA, IN A DIPL OMATIC BOX AS GOLDS WORTH (USD\$25M) TWENTY FIVE MILLION UNITED STATES DOLLARS ONLY FOR SAFE KEEPING IN A SECURITY VAULT FOR ANY FURTHER INVESTMENT PERHAPS IN YOUR COUNTRY.

YOU WERE INTRODUCED TO ME BY A RELIABLE FRIEND OF MINE WHO IS A TRAVELLER, AND ALSO A MEMBER OF CHAMB ER OF COMMERCE AS A RELIABLE AND TRUSTWORTHY PERSON WHOM I CAN RELY ON AS FOREIGN PARTNER, EVEN THOU GH THE NATURE OF THE TRANSACTION WAS NOT REVEALED TO HIM FOR SECURITY REASONS.

THE (USD\$25M) WAS PART OF A PROCEEDS FROM DIAMOND TRADE MEANT FOR THE LATE PRESIDENT LAURENT KABILA WHICH WAS DELIVERED THROUGH ZIMBABWE IN DIPLOMATIC BOXES. THE BOXES WERE KEPT UNDER MY CUSTODY BEFOR E THE SAD EVENT THAT TOOK THE LIFE OF (MR. PRESIDENT).THE CONFUSION THAT ENSUED AFTER THE ASSASSINAT ION AND THE SPORADIC SHOOTING AMONG THE FACTIONS, I HAVE TO RUN AWAY FROM THE COUNTRY FOR MY DEAR LI FE AS I AM NOT A SOLDIER BUT A CIVIL SERVANT I CROSSED RIVER CONGO TO OTHER SIDE OF CONGO LIBREVILLE FROM THERE I MOVED TO THE THIRD COUNTRY GHANA WHERE I AM PRESENTLY TAKING REFUGE.

AS A MATTER OF FACT, WHAT I URGENTLY NEEDED FROM YOU IS YOUR ASSISTANCE IN MOVING THIS MONEY INTO YO UR ACCOUNT IN YOUR COUNTRY FOR INVESTMENT WITHOUT RAISING EYEBROW. FOR YOUR ASSISTANCE I WILL GIVE Y OU 20% OF THE TOTAL SUM AS YOUR OWN SHARE WHEN THE MONEY GETS TO YOUR ACCOUNT, WHILE 75% WILL BE FOR ME, OF WHICH WITH YOUR KIND ADVICE I HOPE TO INVEST IN PROFITABLE VENTURE IN YOUR COUNTRY IN OTHER T O SETTLE DOWN FOR MEANINGFUL LIFE, AS I AM TIRED OF LIVING IN A WAR ENVIRONMENT.

THE REMAINING 5% WILL BE USED TO OFFSET ANY COST INCURRED IN THE CAUSE OF MOVING THE MONEY TO YOUR A CCOUNT. IF THE PROPOSAL IS ACCEPTABLE TO YOU PLEASE CONTACT ME IMMEDIATELY THROUGH THE ABOVE TELEPHO NE AND E-MAIL, TO ENABLE ME ARRANGE FACE TO FACE MEETING WITH YOU IN GHANA FOR THE CLEARANCE OF THE FUNDS BEFORE TRANSFRING IT TO YOUR BANK ACCOUNT AS SEEING IS BELIEVING.

FINALLY, IT IS IMPORTANT ALSO THAT I LET YOU UNDERSTAND THAT THERE IS NO RISK INVOLVED WHATSOEVER AS THE MONEY HAD NO RECORD IN KINSHASA FOR IT WAS MEANT FOR THE PERSONAL USE OF (MR. PRESIDEND) BEFORE THE NEFARIOUS INCIDENT OCCURRED, AND ALSO I HAVE ALL THE NECESSARY DOCUMENTS AS REGARDS TO THE FUNDS INCLUDING THE (CERTIFICATE OF DEPOSIT), AS I AM THE DEPOSITOR OF THE CONSIGNMENT.

LOOKING FORWARD TO YOUR URGENT RESPONSE.

YOUR SINCERELY,

MR. JAMES NGOLA.

Date: Thu, 31 Oct 2002 05:10:00 To: R@M Subject: URGENT ASSISTANCE /RELATIONSHIP (P) MIME-Version: 1.0 Content-Type: text/plain;charset="iso-8859-1" Content-Transfer-Encoding: 7bit Status: 0

Dear Friend,

I am Mr. Ben Suleman a custom officer and work as Assistant controller of the Customs and Excise dep artment Of the Federal Ministry of Internal Affairs stationed at the Murtala Mohammed International Airport, Ikeja, Lagos-Nigeria.

After the sudden death of the former Head of state of Nigeria General Sanni Abacha on June 8th 1998 his aides and immediate members of his family were arrested while trying to escape from Nigeria in a Chartered jet to Saudi Arabia with 6 trunk boxes Marked "Diplomatic B

In [81]:

```
#Then, we use our body function, to extract the body of the emails.
fraudlent_mails_body = body(fraudlent_mails)
#And afterwards we put it into a new DataFrame.
```

```
fraudlent_mails_body = pd.DataFrame(fraudlent_mails_body,columns={"body"})
fraudlent_mails_body.drop([0,0],inplace=True)
fraudlent_mails_body.head()
```

Out[81]:

k	000	ly
---	-----	----

1 FROM:MR. JAMES NGOLA.\nCONFIDENTIAL TEL: 233	5-2
--	-----

2 Dear Friend,\n\nl am Mr. Ben Suleman a custom ...

3 FROM HIS ROYAL MAJESTY (HRM) CROWN RULER OF EL...

4 FROM HIS ROYAL MAJESTY (HRM) CROWN RULER OF EL...

5 Dear sir, \n \nlt is with a heart full of hope...

In [82]:

For the next cleaning part, we define a function to remove punctuation marks and other nonword characters using regex library.

```
def reg_expressions(row):
    tokens = []
    try:
        for token in row:
            token = token.lower()
            token = re.sub(r'[\W\d]', "", token)
            tokens.append(token)
    except:
        token = ""
        tokens.append(token)
    return tokens
```

In [83]:

```
def stop_word_removal(row):
    token = [token for token in row if token not in stopwords]
    return token
```

Bag-of-words model

For the computer to make inferences of the e-mails, it has to be able to interpret the text by making a numerical representation of it. One way to do this is by using something called a "bag-of-words" model. This model simply counts the frequency of word tokens for each email and thereby represents it as a vector of these counts.

In [84]:

```
#Firstly, we'll take out a random 10.000 sample of the Enron-emails body
EnronEmails = df_emails.body.sample(n=10000,random_state=42)
#Then uses word_tokenizer to tokenize the words
EnronEmails = EnronEmails.apply(lambda w: word_tokenize(w))
#Now, we remove stopwords from the mails
EnronEmails = EnronEmails.apply(lambda w: stop_word_removal(w))
#Then, we use our Reg_expres function to delete punctuation marks and other nonword characters
EnronEmails = EnronEmails.apply(reg_expressions)
```

Next, we do all the same steps on our "Fraud/spam" mails

if token in used_tokens: df.iloc[i][token] += 1

return df

```
In [85]:
SpamEmails = fraudlent mails body.body.sample(n=3977).astype(str)
SpamEmails = SpamEmails.apply(lambda w: word_tokenize(w))
SpamEmails = SpamEmails.apply(lambda w: stop word removal(w))
SpamEmails = SpamEmails.apply(reg_expressions)
In [86]:
#Lastly, we take a sample of 1000 mails from both Enrom and Spam
nsamples = 1000
SpamEmails = SpamEmails.sample(n=nsamples,random_state=42)
EnronEmails = EnronEmails.sample(n=nsamples,random state=42)
#Then we contat these, and name the columns: SpamEmails and EnronEmails
concat_mails = pd.concat([SpamEmails,EnronEmails], axis=0).values
#Checks the shape
concat_mails.shape #Which is correct, since 1000*2 = 4000 ;).
Out[86]:
(2000,)
In [87]:
#The function below assembles a new dataframe containing all the unique words found in the input.
# - it then counts the word frequency and then returns the new dataframe.
def assemble bag(data):
    used tokens = []
    all tokens = []
    for item in data:
        for token in item:
            if token in all_tokens:
                if token not in used tokens:
                    used_tokens.append(token)
            else:
                all tokens.append(token)
    df = pd.DataFrame(0, index = np.arange(len(data)), columns = used tokens)
    for i, item in enumerate(data):
        for token in item:
```

We then uses our funtion above, to create a bag-of-words model EnronSpamBag = assemble_bag(concat_mails) # This is the list of words in our bag-of-words model predictors = [column for column in EnronSpamBag.columns]

#And lastly shows the model EnronSpamBag

Out[88]:

		mr	zuma	barley	auditing	accounting	dept	african	development	bank	benin	adb	will	i	contact	fund	end	us	acco
0	75	3	3	3	3	2	2	2	2	6	6	2	16	9	2	9	4	7	
1	51	0	0	0	0	0	0	0	0	0	0	0	4	4	0	1	0	2	
2	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
3	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
4	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1995	13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1996	7	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	
1997	38	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1998	109	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1999	61	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	

2000 rows × 16508 columns

4

In [89]:

```
#Sets up the header, before we can shuffle and mix the data.
header = ([1]*nsamples)
header.extend(([0]*nsamples))
```

In [90]:

```
#This function mixes our data, so we can split it into a training and test set.
def shuffle_data(data, header):
    p = np.random.permutation(len(header))
    data = data[p,:]
    header = np.asarray(header)[p]
    return data, header
```

In [91]:

data, header = shuffle_data(EnronSpamBag.values, header)
print(header.shape)
print(data.shape)

(2000,) (2000, 16508)

In [92]:

```
# Splits into independent 70% training and 30% testing sets
idx = int(0.7*data.shape[0])
```

70% of data for training train_x = data[:idx,:] train_y = header[:idx] # Remaining 30% for testing test_x = data[idx:,:] test_y = header[idx:] logreg = LogisticRegression()
logreg.fit(train_x,train_y)

/usr/local/lib/python3.7/dist-packages/sklearn/linear_model/_logistic.py:940: ConvergenceWarning: lb
fgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or scale the data as shown in: https://scikit-learn.org/stable/modules/preprocessing.html Please also refer to the documentation for alternative solver options: https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression extra_warning_msg=_LOGISTIC_SOLVER_CONVERGENCE_MSG)

Out[93]:

In [94]:

#Uses the Logistic Regression to predict
y_pred = logreg.predict(test_x)

#Evaluates the score
print("The logistic regression accuracy score is:")
print(accuracy_score(test_y,y_pred))

The logistic regression accuracy score is: 0.99166666666666667

In []:

!jupyter nbconvert --to html ""

-

A5 HR Notebook

M4 PROJECT: What are the most influencing factors for employee attrition and whom are those leaveing.

In [1]: #Importing the libriaries needed # Ignore the warnings import warnings warnings.filterwarnings('always') warnings.filterwarnings('ignore') # data visualisation and manipulation import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib import style import seaborn as sns #import missingno as msno *#configure* # sets matplotlib to inline and displays graphs below the corressponding cell. %matplotlib inline style.use('fivethirtyeight') sns.set(style='whitegrid',color codes=True) #import the necessary modelling algos. #from sklearn.linear model import LogisticRegression #from sklearn.svm import LinearSVC #from sklearn.svm import SVC #from sklearn.neighbors import KNeighborsClassifier #from sklearn.ensemble import RandomForestClassifier #from sklearn.tree import DecisionTreeClassifier #from sklearn.ensemble import GradientBoostingClassifier #from sklearn.naive bayes import GaussianNB #model selection #from sklearn.model_selection import train_test_split #from sklearn.model_selection import KFold #from sklearn.metrics import accuracy_score,precision_score,recall_score,confusion_matrix,roc_curve,roc_auc_score #from sklearn.model selection import GridSearchCV #from imblearn.over_sampling import SMOTE #preprocess. #from sklearn.preprocessing import MinMaxScaler,StandardScaler,LabelEncoder,OneHotEncoder # Common sklearn Model Helpers #from sklearn import feature selection #from sklearn import model_selection #from sklearn import metrics # from sklearn.datasets import make_classification # sklearn modules for performance metrics #from sklearn.metrics import confusion matrix, classification report, precision recall curve #from sklearn.metrics import auc, roc auc score, roc curve, recall score, log loss #from sklearn.metrics import f1 score, accuracy score, roc auc score, make scorer #from sklearn.metrics import average_precision_score # ann and dl libraraies #from keras import backend as K #from keras.models import Sequential #from keras.layers import Dense #from keras.optimizers import Adam,SGD,Adagrad,Adadelta,RMSprop #from keras.utils import to_categorical *#import tensorflow as tf* import random as rn

1. Dataset Explaination

This dataset was a fictional dataset created by IBM to indentify important factors that may be influencing attrition for an employee. The dataset contains 1470 rows and 35 coulmns. Our project is focusing on to find the most importance metrics that influence attrition. Firstly we need to do some general statistics to get insight into the dataset, Second using machine learning to predict attrition. Maybe it will give findings that people do not usally think about regarding employee attrition.

Haveing a understanding of what make employees leave is important to know, if a person is leaving replacement cost could be high. Being aware of it will be easier to take action to improve to the employee attrition.

Some of the questions we want to cover during this project

- · What is the likelihood of an active employee leaving the company?
- What are the key indicators of an employee leaving the company?
- What policies or strategies can be adopted based on the results to improve employee retention?

Given that we have data on former employees, this is a standard supervised classification problem where the label is a binary variable, 0 (active employee), 1 (former employee). In this study, our target variable Y is the probability of an employee leaving the company.

Some important columns in the dataset with information about personal and employment details, explained in more:

Some important columns:

- 1. Attrition: Whether employees are still with the company or whether they've gone to work somewhere else.
- 2. Age: 18 to 60 years old
- 3. Gender: Female or Male
- 4. Department: Research & Development, Sales, Human Resources.
- 5. BusinessTravel: Travel_Rarely, Travel_Frequently, Non-Travel.
- 6. DistanceFromHome: Distance between the company and their home in miles.
- 7. MonthlyIncome: Employees' numeric monthly income.
- 8. MaritalStatus: Married, Single, Divorced.
- 9. Education: 1 'Below College' 2 'College' 3 'Bachelor' 4 'Master' 5 'Doctor'.
- 10. EducationField: Life Sciences, Medical, Marketing, Technical Degree, Other.
- 11. EnvironmentSatisfaction: 1 'Low' 2 'Medium' 3 'High' 4 'Very High'.
- 12. RelationshipSatisfaction: 1 'Low' 2 'Medium' 3 'High' 4 'Very High'.
- 13. JobInvolvement: 1 'Low' 2 'Medium' 3 'High' 4 'Very High'.
- 14. JobRole: Sales Executive, Research Science, Laboratory Tec, Manufacturing, Healthcare Rep, etc
- 15. JobSatisfaction: 1 'Low' 2 'Medium' 3 'High' 4 'Very High'.
- 16. OverTime: Whether they work overtime or not.
- 17. NumCompaniesWorked: Number of companies they worked for before joinging IBM.
- 18. PerformanceRating: 1 'Low' 2 'Good' 3 'Excellent' 4 'Outstanding'.
- 19. YearsAtCompany: Years they worked for IBM.
- 20. WorkLifeBalance: 1 'Bad' 2 'Good' 3 'Better' 4 'Best'.
- 21. YearsSinceLastPromotion: Years passed since their last promotion.

2. Data Preparation

In [2]:

df employee = pd.read csv('WA Fn-UseC -HR-Employee-Attrition.csv')

After loading the dataset into a dataframe, using the command under we can get a good understadning how dataset is put together. Some of functions used is listed under.

```
df_employee.head()
df_employee.columns
df_employee.decribe()
df_employee.shape()
df_employee.info()
```

From the those commands we can see that the dataset contains no missing values. It is several numerical and categorical variables. From a HR prepective, these type of data about empoyees is unlikely to feature huge amount of missing data

In [3]:

#Taking a look at the data set
df_employee.head()

Out[3]:

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount	EmployeeNun
0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	1	
1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	1	
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	1	
3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	1	
4	27	No	Travel_Rarely	591	Research & Development	2	1	Medical	1	
5 rc	ws ×	35 colum	ins							
4										•

In [4]:

df employee.columns

Out[4]:

```
Index(['Age', 'Attrition', 'BusinessTravel', 'DailyRate', 'Department',
    'DistanceFromHome', 'Education', 'EducationField', 'EmployeeCount',
    'EmployeeNumber', 'EnvironmentSatisfaction', 'Gender', 'HourlyRate',
    'JobInvolvement', 'JobLevel', 'JobRole', 'JobSatisfaction',
    'MaritalStatus', 'MonthlyIncome', 'MonthlyRate', 'NumCompaniesWorked',
    'Over18', 'OverTime', 'PercentSalaryHike', 'PerformanceRating',
    'RelationshipSatisfaction', 'StandardHours', 'StockOptionLevel',
    'TotalWorkingYears', 'TrainingTimesLastYear', 'WorkLifeBalance',
    'YearsAtCompany', 'YearsInCurrentRole', 'YearsSinceLastPromotion',
    'YearsWithCurrManager'],
    dtype='object')
```

In [5]:

df_employee.shape

Out[5]:

(1470, 35)

In [6]:

df_employee.describe()

Out[6]:

	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EmployeeNumber	EnvironmentSatisfaction	Hourly
count	1470.000000	1470.000000	1470.000000	1470.000000	1470.0	1470.000000	1470.000000	1470.00
mean	36.923810	802.485714	9.192517	2.912925	1.0	1024.865306	2.721769	65.89
std	9.135373	403.509100	8.106864	1.024165	0.0	602.024335	1.093082	20.32
min	18.000000	102.000000	1.000000	1.000000	1.0	1.000000	1.000000	30.00
25%	30.000000	465.000000	2.000000	2.000000	1.0	491.250000	2.000000	48.00
50%	36.000000	802.000000	7.000000	3.000000	1.0	1020.500000	3.000000	66.00
75%	43.000000	1157.000000	14.000000	4.000000	1.0	1555.750000	4.000000	83.75
max	60.000000	1499.000000	29.000000	5.000000	1.0	2068.000000	4.000000	100.00
0								
	x 26 columns	•						Þ

df_employee.info()

	F -) ()									
Range	<class 'pandas.core.frame.dataframe'=""> RangeIndex: 1470 entries, 0 to 1469 Data columns (total 35 columns):</class>									
#	Column	Non-Null Count								
Θ	Age	1470 non-null								
1	Attrition	1470 non-null								
2	BusinessTravel	1470 non-null								
3	DailyRate	1470 non-null								
4	Department	1470 non-null								
5	DistanceFromHome	1470 non-null								
6	Education	1470 non-null								
7	EducationField	1470 non-null								
8	EmployeeCount	1470 non-null								
9	EmployeeNumber	1470 non-null								
10	EnvironmentSatisfaction	1470 non-null								
11	Gender	1470 non-null								
	· · · · ·									

Dtype int64 object object int64 object int64 int64 object int64 int64 int64

		Environmencoucionaction	11/0	non nace	111001
	11	Gender	1470	non-null	object
	12	HourlyRate	1470	non-null	int64
	13	JobInvolvement	1470	non-null	int64
	14	JobLevel	1470	non-null	int64
	15	JobRole	1470	non-null	object
	16	JobSatisfaction	1470	non-null	int64
	17	MaritalStatus	1470	non-null	object
	18	MonthlyIncome	1470	non-null	int64
	19	MonthlyRate	1470	non-null	int64
	20	NumCompaniesWorked	1470	non-null	int64
	21	Over18	1470	non-null	object
	22	OverTime	1470	non-null	object
	23	PercentSalaryHike	1470	non-null	int64
	24	PerformanceRating	1470	non-null	int64
	25	RelationshipSatisfaction	1470	non-null	int64
	26	StandardHours	1470	non-null	int64
	27	StockOptionLevel	1470	non-null	int64
	28	TotalWorkingYears	1470	non-null	int64
	29	TrainingTimesLastYear	1470	non-null	int64
	30	WorkLifeBalance	1470	non-null	int64
	31	YearsAtCompany	1470	non-null	int64
	32	YearsInCurrentRole	1470	non-null	int64
	33	YearsSinceLastPromotion	1470	non-null	int64
	34	YearsWithCurrManager	1470	non-null	int64
_					

dtypes: int64(26), object(9) memory usage: 402.1+ KB

df_employee.isnull().sum()

Out[8]:

000[0]:	
Age	0
Attrition	Θ
BusinessTravel	0
DailyRate	0
Department	0
DistanceFromHome	0
Education	0
EducationField	0
EmployeeCount	0
EmployeeNumber	0
EnvironmentSatisfaction	0
Gender	0
HourlyRate	0
JobInvolvement	0
JobLevel	0
JobRole	0
JobSatisfaction	0
MaritalStatus	0
MonthlyIncome	0
MonthlyRate	0
NumCompaniesWorked	0
Over18	0
OverTime	0
PercentSalaryHike	0
PerformanceRating	0
RelationshipSatisfaction	0
StandardHours	0
StockOptionLevel	Θ
TotalWorkingYears	0
TrainingTimesLastYear	0
WorkLifeBalance	0
YearsAtCompany	0
YearsInCurrentRole	0
YearsSinceLastPromotion	0
YearsWithCurrManager	0
dtype: int64	

Now is time to check if all variables will give some useful insights or some of them could be deleted. To check this it is possible to loop thought and check if unique value is 1, and them drop the columns.

In [9]:

```
#this fuction is not test out yet. but will be
notneeded = []
for col in df_employee.columns:
    if len(df_employee[col].unique()) == 1:
        notneeded.append(col)
        df_employee.drop(col,inplace=True,axis=1)
```

In [10]:

print(notneeded)

['EmployeeCount', 'Over18', 'StandardHours']

In [11]:

df_employee.drop(['EmployeeNumber'], axis = 1, inplace = True)

In [12]:

print(df_employee.shape)
df_employee.head()

(1470, 31)

Out[12]:

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EnvironmentSatisfaction	Gend
0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	2	Fema
1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	3	Με
2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	4	Ma
3	33	No	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	4	Fema
4	27	No	Travel_Rarely	591	Research & Development	2	1	Medical	1	Με
5 ro	ows ×	31 colum	ins							•

After running this loop, the columns dropped where EmployeeCount, Over18 and StandardHours Also the EmployeeNumber is just a number increaseing so that column is dropped. The Next step would be to look at how the different variables are correlated.

In [13]:

Out[13]:

<AxesSubplot:>

Age	1	0.011	-0.0017	0.21	0.01	0.024	0.03	0.51	0.0049	0.5	0.028	0.3	0.0036 (0.0019	0.054	0.038	0.68	-0.02	-0.021	0.31	0.21	0.22	0.2	
DailyRate				-0.017				0.003		0.0077		0.038								-0.034	0.0099	-0.033	-0.026	
DistanceFromHome																							0.014	
Education	0.21											0.13					0.15						0.069	
EnvironmentSatisfaction																							-0.005	
HourlyRate																							-0.02	
Jobinvolvement																							0.026	
JobLevel	0.51											0.14								0.53	0.39	0.35	0.38	
JobSatisfaction	-0.0049							-0.0019		-0.0072	0.00064									-0.0038	3-0.0023	-0.018	-0.028	
MonthlyIncome	0.5											0.15								0.51	0.36	0.34	0.34	
MonthlyRate	0.028								0.00064														-0.037	
NumCompaniesWorked	0.3			0.13				0.14		0.15			-0.01 ·				0.24			-0.12			-0.11	
PercentSalaryHike											-0.0064		1	0.77									-0.012	
PerformanceRating													0.77										0.023	
RelationshipSatisfaction																							0.0008	
StockOptionLevel																				0.015	0.051	0.014	0.025	
TotalWorkingYears	0.68			0.15	-0.0027							0.24								0.63	0.46	0.4	0.46	
TrainingTimesLastYear																							-0.0041	
WorkLifeBalance	-0.021							0.038		0.031		-0.0084					0.001					0.0089	0.0028	
YearsAtCompany	0.31							0.53	0.0038	0.51		-0.12	-0.036 (0.63			1	0.76	0.62	0.77	
YearsInCurrentRole	0.21							0.39	0.0023	0.36							0.46				1	0.55	0.71	
YearsSinceLastPromotion	0.22							0.35		0.34							0.4	-0.0021		0.62	0.55	1	0.51	
YearsWithCurrManager	0.2	-0.026	0.014	0.069	-0.005	-0.02	0.026	0.38	-0.028	0.34	-0.037	-0.11	-0.012	0.023-0	0.00087	0.025	0.46	-0.0041	.0.0028	0.77	0.71	0.51	1	
	Age	DailyRate	DistanceFromHome	Education	EnvironmentSatisfaction	HourlyRate	Jobinvolvement	JobLevel	JobSatisfaction	MonthlyIncome	MonthlyRate	NumCompaniesWorked	PercentSalaryHike	PerformanceRating	RelationshipSatisfaction	StockOptionLevel	lotalWorkingYears	Training Times Last Year	WorkLifeBalance	fearsAtCompany	fearsInCurrentRole	fearsSinceLastPromotion	Years With Curr Manager	

1.0

Conclutions from Data preparing:

- · Several numerical and categorical columns with information about employee's personal and employment details
- There are no missing values in this dataset, hence HR do not tend to have huge amout of missing data
- Dropped the not useful cloumns
- Important correlations:
 - Age TotalworkingYears
 - Age JobLevel
 - JobLevel MonthlyIncome
 - JobLevel TotalWorkingYears
 - YearsAtCompany -YearsInCurrentRole
 - MonthlyIncome TotalWorkingYears

3. EDA (Exploratory Data Analysis)

3.1 General feature statistics

Starting the EDA of with some histograms of the for numerical features.

In [14]:

```
df_hrs = df_employee.copy()
df_hr_cat_name = df_employee.copy()
df_Anumber = df_employee.copy()
```

df_employee.hist(figsize=(20,20)) plt.show()

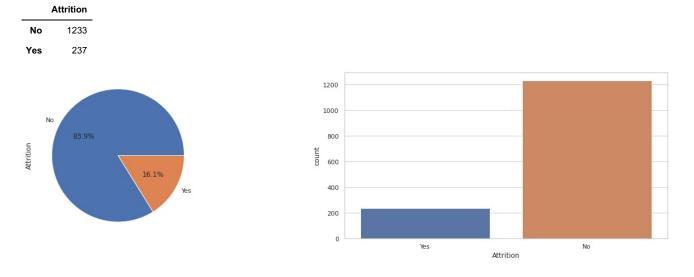
- What we can see from the histograms is that many of them is right skwed
- Age distribution is more towards the younger genration between 25 and 45 years old
- A lot of people are in the compnay less than 10 years

Attrtion Rate

```
In [16]:
```

```
plt.figure(figsize=(20,5))
plt.subplot(1,2,1)
df_employee['Attrition'].value_counts().plot.pie(autopct='%1.1f%%')
plt.subplot(1,2,2)
sns.countplot(df_employee['Attrition'])
df_employee['Attrition'].value_counts().to_frame()
```

Out[16]:



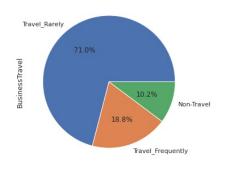
From the attrition rate graphs we can see that the majority is still there. Important mention, piechart and bar chart interpert the colors differently.

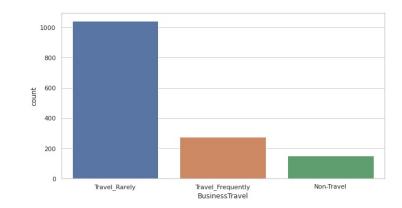
Travelling

In [17]:

```
plt.figure(figsize=(20,5))
plt.subplot(1,2,1)
df_employee['BusinessTravel'].value_counts().plot.pie(autopct='%1.1f%%')
plt.subplot(1,2,2)
sns.countplot(df_employee['BusinessTravel'])
#df_employee['BusinessTravel'].value_counts().to_frame()
print(df_employee.groupby('BusinessTravel')['Attrition'].value_counts())
#df_employee.groupby('BusinessTravel')['Attrition'].value_counts())
#df_employee.groupby('Attrition')['BusinessTravel'].value_counts(df_employee.Attrition.all()).plot.pie(autopct='%
1.1f%%',figsize=(11,6))
#print(df_employee.groupby(['BusinessTravel', 'Gender'])['Attrition'].value_counts(100. * df_employee.Attrition.va
lue_counts() / len(df_employee.Attrition))
```

BusinessTravel	Attrition	
Non-Travel	No	138
	Yes	12
Travel_Frequently	' No	208
	Yes	69
Travel_Rarely	No	887
	Yes	156
Name: Attrition,	dtype: int64	





The business travels have a clear amount that travel rarely, the person travel frequently or do not travel is small

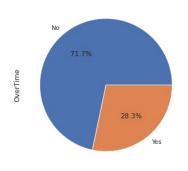
OverTime

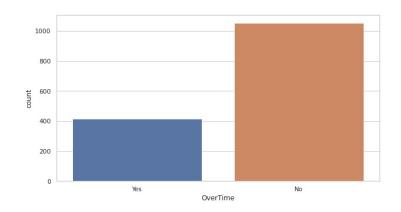
In [18]:

```
plt.figure(figsize=(20,5))
plt.subplot(1,2,1)
df_employee['OverTime'].value_counts().plot.pie(autopct='%1.1f%%')
plt.subplot(1,2,2)
sns.countplot(df_employee['OverTime'])
#df_employee['OverTime'].value_counts().to_frame()
df_employee.groupby('OverTime')['Attrition'].value_counts()
```

Out[18]:

0verT	ime Attrit:	ion	
No	No	9	44
	Yes	1	.10
Yes	No	2	89
	Yes	1	.27
Name:	Attrition,	dtype:	int64





1/3 of the people tend to have overtime

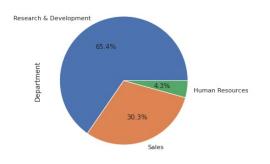
Department

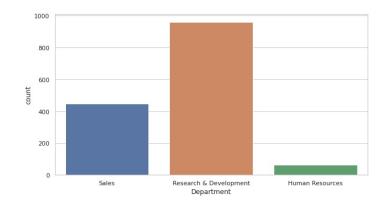
In [19]:

```
plt.figure(figsize=(20,5))
plt.subplot(1,2,1)
df_employee['Department'].value_counts().plot.pie(autopct='%1.1f%%')
plt.subplot(1,2,2)
sns.countplot(df_employee['Department'])
#print(df_employee.groupby('Department')['Attrition'].value_counts())
df_employee.groupby('Department')['Attrition'].value_counts()
#pd.pivot_table(df_employee, values = 'Department', index='Attrition').reset_index()
#sns.countplot(df_employee.groupby('Department',)['Attrition'])
#df_employee['Department'].value_counts().to_frame()
```

Out[19]:

Department	Attrition	
Human Resources	No	51
	Yes	12
Research & Development	No	828
	Yes	133
Sales	No	354
	Yes	92
Name: Attrition, dtype:	int64	





The majority of the people are part of the research & Development department with 65%, also sales department are big with 30%

Education Level

In [20]:

```
#need to change the value to the column to get a better understanding of what the graph says
df_employee.Education.replace({1: 'High School', 2:'College', 3:'Bachelor', 4:'Master', 5:'Doctorate'},inplace=True)
df_hrs.Education.replace({1: 'High School', 2:'College', 3:'Bachelor', 4:'Master', 5:'Doctorate'},inplace=True)
#df_employee.Education.replace({'High School':1, 'Undergrad':2,'Graduate':3, 'Post Graduate':4, 'Doctorate':5},in
place=True)
```

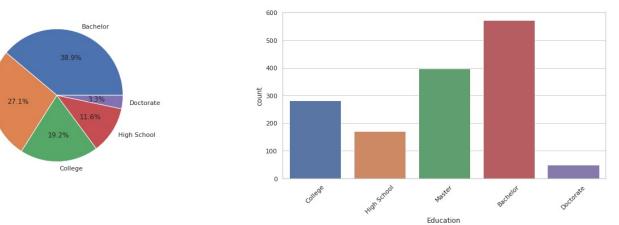
In [21]:

plt.figure(figsize=(20,5))
plt.subplot(1,2,1)
df_employee['Education'].value_counts().plot.pie(autopct='%1.1f%%')
plt.subplot(1,2,2)
sns.countplot(df_employee['Education'])
plt.xticks(rotation=45)
#df_employee['Education'].value_counts().to_frame()
df_employee.groupby('Education')['Attrition'].value_counts()

Out[21]:

Eddication ster

Education	Attı	rition	
Bachelor	No		473
	Yes		99
College	No		238
	Yes		44
Doctorate	No		43
	Yes		5
High School	No		139
	Yes		31
Master	No		340
	Yes		58
Name: Attrit	ion,	dtype:	int64



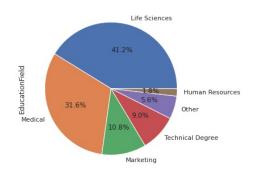
in the education level is a clear for persons having bacheolor andmaster degree

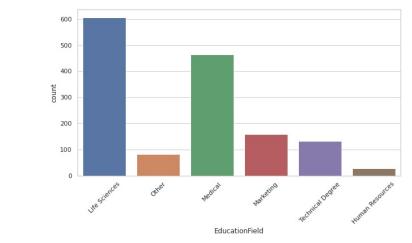
Education Field

In [22]:

```
plt.figure(figsize=(20,5))
plt.subplot(1,2,1)
df_employee['EducationField'].value_counts().plot.pie(autopct='%1.1f%%')
plt.subplot(1,2,2)
sns.countplot(df_employee['EducationField'])
plt.xticks(rotation=45)
#df_employee['EducationField'].value_counts().to_frame()
print(df_employee.groupby('EducationField')['Attrition'].value_counts().to_frame())
Attrition
```

		ATTRITION
EducationField	Attrition	
Human Resources	No	20
	Yes	7
Life Sciences	No	517
	Yes	89
Marketing	No	124
	Yes	35
Medical	No	401
	Yes	63
Other	No	71
	Yes	11
Technical Degree	No	100
	Yes	32





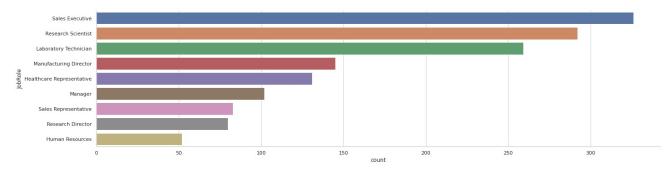
There are two field that are dominant both medical and life science is

JobrRole

```
plt.figure(figsize=(20,10))
sns.catplot(y='JobRole', kind='count', aspect=4, data=df_employee)
print(df_employee['JobRole'].value_counts())
print(df_employee.groupby('JobRole')['Attrition'].value_counts())
Sales Executive 326
Research Scientist 292
Laboratory Technician 259
```

Laboratory Technician	259	
Manufacturing Director	145	
Healthcare Representative	131	
Manager	102	
Sales Representative	83	
Research Director	80	
Human Resources	52	
Name: JobRole, dtype: int6	4	
JobRole	Attrition	
Healthcare Representative	No	122
	Yes	9
Human Resources	No	40
	Yes	12
Laboratory Technician	No	197
	Yes	62
Manager	No	97
	Yes	5
Manufacturing Director	No	135
	Yes	10
Research Director	No	78
	Yes	2
Research Scientist	No	245
	Yes	47
Sales Executive	No	269
	Yes	57
Sales Representative	No	50
	Yes	33
Name: Attrition, dtype: in	t64	

<Figure size 1440x720 with 0 Axes>



We can see the divition of different job roles, there are most sales excutive and least working in human resources.

In [24]:

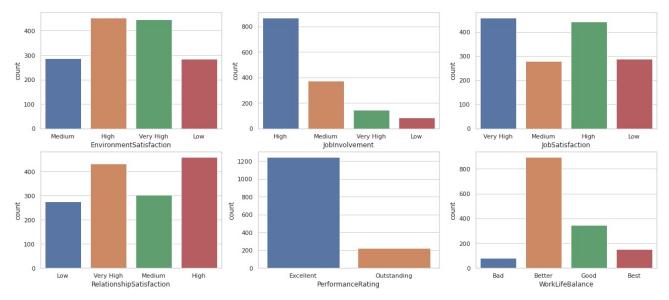
```
# Changing numeric values to corresponding categorical values
df_employee['EnvironmentSatisfaction'] = df_employee['EnvironmentSatisfaction'].map({1: 'Low', 2: 'Medium', 3: 'H
igh', 4: 'Very High'})
df_employee['JobInvolvement'] = df_employee['JobInvolvement'].map({1: 'Low', 2: 'Medium', 3: 'High', 4: 'Very Hig
h'})
df_employee['JobSatisfaction'] = df_employee['JobSatisfaction'].map({1: 'Low', 2: 'Medium', 3: 'High', 4: 'Very H
igh'})
df_employee['RelationshipSatisfaction'] = df_employee['RelationshipSatisfaction'].map({1: 'Low', 2: 'Medium', 3:
'High', 4: 'Very High'})
df_employee['PerformanceRating'] = df_employee['PerformanceRating'].map({1: 'Low', 2: 'Good', 3: 'Excellent', 4:
'Outstanding'})
df_employee['WorkLifeBalance'] = df_employee['WorkLifeBalance'].map({1: 'Bad', 2: 'Good', 3: 'Better', 4: 'Best'})
```

In [25]:

```
plt.figure(figsize=(18,8))
plt.subplot(2,3,1)
sns.countplot(df_employee['EnvironmentSatisfaction'])
plt.subplot(2,3,2)
sns.countplot(df_employee['JobInvolvement'])
plt.subplot(2,3,3)
sns.countplot(df_employee['JobSatisfaction'])
plt.subplot(2,3,4)
sns.countplot(df_employee['RelationshipSatisfaction'])
plt.subplot(2,3,5)
sns.countplot(df_employee['PerformanceRating'])
plt.subplot(2,3,6)
sns.countplot(df_employee['WorkLifeBalance'])
```

Out[25]:

<AxesSubplot:xlabel='WorkLifeBalance', ylabel='count'>



- EnvironmentSatisfaction: 1 'Low' 2 'Medium' 3 'High' 4 'Very High'.
- RelationshipSatisfaction: 1 'Low' 2 'Medium' 3 'High' 4 'Very High'.
- JobInvolvement: 1 'Low' 2 'Medium' 3 'High' 4 'Very High'.
- JobSatisfaction: 1 'Low' 2 'Medium' 3 'High' 4 'Very High'.
- PerformanceRating: 1 'Low' 2 'Good' 3 'Excellent' 4 'Outstanding'.
- WorkLifeBalance: 1 'Bad' 2 'Good' 3 'Better' 4 'Best'.

Overall is the metrics, mostly from maybe surveys show that people are happy and scoring high on the metrics.

Wonder why the perfomance rating is only 3 and 4. More people are overall more satified with their situation.

We can see the divition of different job roles, there are most sales excutive and least working in human resources.

3.2 Attrition effected by Age and MaritalStatus?

1. Hypothesis: Single people tend to leave more often than married people?

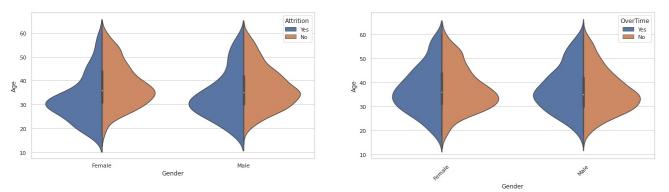
2. Hypothesis: Male are more active leavers?

In [26]:

```
plt.figure(figsize=(20,5))
plt.subplot(1,2,1)
sns.violinplot(x ="Gender", y ="Age", hue ="Attrition",
data = df_hrs, split = True)
plt.subplot(1,2,2)
sns.violinplot(x ="Gender", y ="Age", hue ="OverTime",
data = df_hrs, split = True)
plt.xticks(rotation=45)
#df_employee['OverTime'].value_counts()
```

Out[26]:

(array([0, 1]), [Text(0, 0, 'Female'), Text(1, 0, 'Male')])



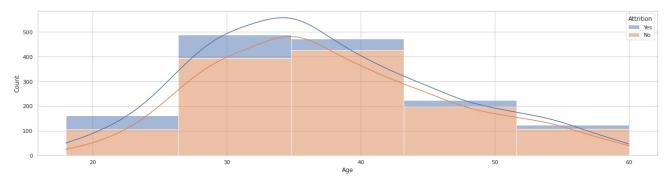
In [27]:

plt.subplots(figsize=(20,5))
sns.histplot(data=df_employee, x="Age", hue="Attrition", multiple="stack",bins=5,kde=True)
#df_employee['Gender'].value_counts(normalize=True)
df_employee.groupby('Gender')['Attrition'].value_counts()

Out[27]:

Gender	Attrition	
Female	No	501
	Yes	87
Male	No	732
	Yes	150

Name: Attrition, dtype: int64

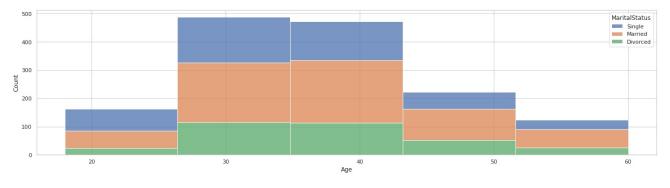


In [28]:

```
plt.subplots(figsize=(20,5))
sns.histplot(data=df_employee, x="Age", hue="MaritalStatus", multiple="stack",bins=5)
print(df_employee['MaritalStatus'].value_counts(normalize=True))
print(df_employee.groupby(['MaritalStatus','Gender'])['Attrition'].value_counts())
```

Married	0.457823		
Single	0.319728		
Divorced	0.222449		
Name: Marit	alStatus, d	type: float64	
MaritalStat	us Gender	Attrition	
Divorced	Female	No	108
		Yes	9
	Male	No	186
		Yes	24
Married	Female	No	241
		Yes	31
	Male	No	348
		Yes	53
Single	Female	No	152
		Yes	47
	Male	No	198
		Yes	73

Name: Attrition, dtype: int64

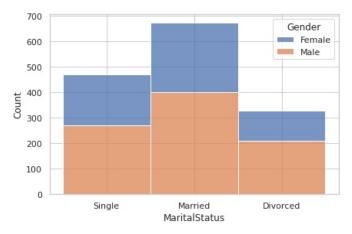


In [29]:

sns.histplot(data=df_employee, x="MaritalStatus", hue="Gender", multiple="stack",bins=5)

Out[29]:

<AxesSubplot:xlabel='MaritalStatus', ylabel='Count'>



From the part 3.2 we can see:

- that there are more men (150) leaving than women (87): Hypothesis 2 confirmed
- 45% Married Workers, 22% Singles and 31% Divorced.
- More single leave more Married: Hypothesis 1 confirmed
- Divorced women are stayers only 9 people leaving.

In [30]:

```
df_Anumber['Attrition'] = df_Anumber['Attrition'].map({'Yes': 1, 'No': 0})
#df_hr_cat_name['Attrition'] = df_hr_cat_name['Attrition'].map({'Yes': 1, 'No': 0})
```

3.3 Education, EducationField, JobRole and JobLevel

In this Chapther we are taking a look at the different JobRoles and Joblevels and connect that to Education and Education Field. And see who are more likely to leave **3. Hypothesis**: Workers in lower JobLevel are morelikely to leave

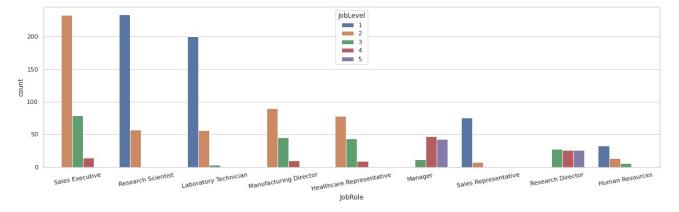
4. Hypothesis: Lower Education get more training

In [31]:

```
plt.subplots(figsize=(18,5))
sns.countplot(df_employee.JobRole, hue=df_employee.JobLevel)
plt.xticks(rotation=10)
```

Out[31]:

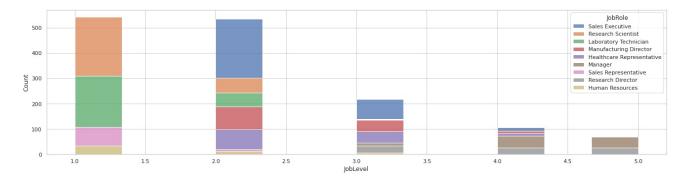
```
(array([0, 1, 2, 3, 4, 5, 6, 7, 8]),
[Text(0, 0, 'Sales Executive'),
Text(1, 0, 'Research Scientist'),
Text(2, 0, 'Laboratory Technician'),
Text(3, 0, 'Manufacturing Director'),
Text(4, 0, 'Healthcare Representative'),
Text(5, 0, 'Manager'),
Text(5, 0, 'Sales Representative'),
Text(7, 0, 'Research Director'),
Text(8, 0, 'Human Resources')])
```



In [32]:

```
plt.subplots(figsize=(20,5))
sns.histplot(data=df_employee, x="JobLevel" ,hue="JobRole", multiple="stack")
print(df_employee.groupby('JobLevel',)['JobRole'].value_counts(normalize=True))
print(df_employee.groupby(['JobLevel', 'JobRole'])['Attrition'].value_counts().sort_index())
```

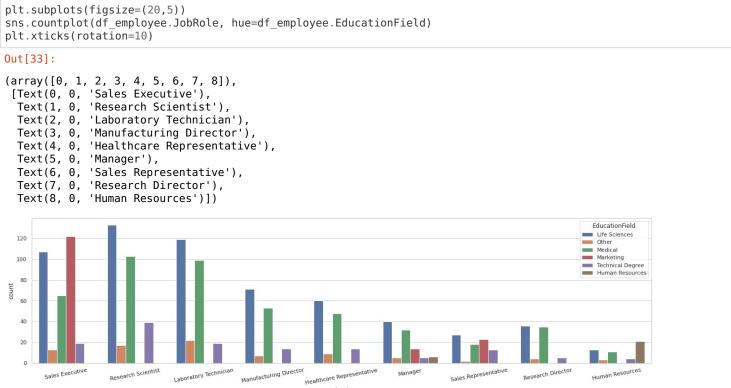
JobLevel 1	JobRole Research Scientist	0.430939	
	Laboratory Technician Sales Representative	0.368324 0.139963	
2	Human Resources Sales Executive	0.060773 0.436330	
2	Manufacturing Director	0.168539	
	Healthcare Representative	0.146067	
	Research Scientist Laboratory Technician	0.106742 0.104869	
	Human Resources	0.024345	
3	Sales Representative Sales Executive	0.013109 0.362385	
5	Manufacturing Director	0.206422	
	Healthcare Representative Research Director	0.201835 0.128440	
	Manager	0.055046	
	Human Resources	0.027523	
	Laboratory Technician Research Scientist	0.013761 0.004587	
4	Manager	0.443396	
	Research Director	0.245283	
	Sales Executive Manufacturing Director	0.132075 0.094340	
_	Healthcare Representative	0.084906	
5	Manager Research Director	0.623188 0.376812	
Name: Job	Role, dtype: float64	0.570012	
JobLevel		Attrition	22
1	Human Resources	No Yes	23 10
	Laboratory Technician	No	144
	Research Scientist	Yes No Yes	56 189 45
	Sales Representative	No Yes	44 32
2	Healthcare Representative	No Yes	75 3
	Human Resources	No	13
	Laboratory Technician	No Yes	51 5
	Manufacturing Director	No Yes	85 5
	Research Scientist	No Yes	55 2
	Sales Executive	No Yes	197 36
	Sales Representative	No Yes	6 1
3	Healthcare Representative	No	39
	Human Resources	Yes No	5 4
		Yes	2
	Laboratory Technician	No Yes	2 1
	Manager	No	10
	Manufacturing Director	Yes No	2 40
	-	Yes	5
	Research Director Research Scientist	No No	28 1
	Sales Executive	No	62
4	Hoalthcaro Poprosontativo	Yes No	17 8
4	Healthcare Representative	Yes	8 1
	Manager Manufacturing Director	No	47
	Manufacturing Director Research Director	No No	10 26
	Sales Executive	No	10
5	Manager	Yes No	4 40
-	5	Yes	3
	Research Director	No Yes	24 2
Name: Att	rition, dtype: int64		



From JobLevel and JobRole we can see that:

- 1. There are only Managers and Research Directors at level 5
- 2. The majority of people in Level 1 are only are low level workers
- 3. Only 2 roles Total Nr: 69, Roles: 62% Manager, 38% Resea

In [33]:



JobRole

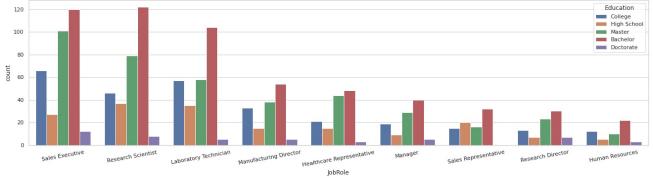
The dominant Education field are Life science and medical. for sales executives marking are important

In [34]:

plt.subplots(figsize=(20,5))
sns.countplot(df_employee.JobRole, hue=df_employee.Education)
plt.xticks(rotation=10)

Out[34]:

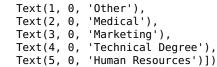
(array([0,	1, 2, 3, 4, 5, 6, 7, 8]),	
[Text(0, 0	, 'Sales Executive'),	
Text(1, 0	, 'Research Scientist'),	
Text(2, 0	, 'Laboratory Technician'),	
Text(3, 0	, 'Manufacturing Director'),	
	, 'Healthcare Representative'),	
Text(5, 0	, 'Manager'),	
Text(6, 0	, 'Sales Representative'),	
	, 'Research Director'),	
	, 'Human Resources')])	
- (-)	,	

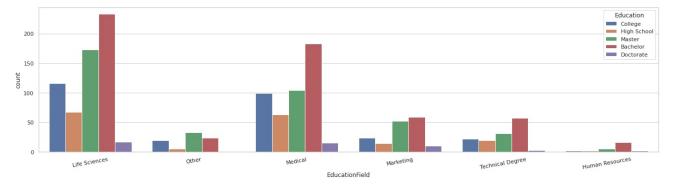


more people have bachelors ad masters degree

In [35]:

```
plt.subplots(figsize=(20,5))
sns.countplot(df_employee.EducationField, hue=df_employee.Education)
plt.xticks(rotation=10)
Out[35]:
(array([0, 1, 2, 3, 4, 5]),
[Text(0, 0, 'Life Sciences'),
Text(1, 0, 'Other'),
Text(1, 0, 'Other'),
Text(1, 0, 'Uther')
```





Moving over to Traing for the employees

In [36]:

```
print(df_employee['TrainingTimesLastYear'].value_counts(['JobRole']))
print(df_employee.groupby(['TrainingTimesLastYear'])['Attrition'].value_counts(normalize=True).sort_index())
print(df_employee['TrainingTimesLastYear'].value_counts(['Attrition']))
plt.subplots(figsize=(20,5))
sns.countplot(df_employee.JobRole, hue=df_employee.TrainingTimesLastYear)
#print(df employee['TrainingTimesLastYear'].value counts(['JobRole']))
2
     0.372109
3
     0.334014
4
     0.083673
5
     0.080952
     0.048299
1
6
     0.044218
     0.036735
0
Name: TrainingTimesLastYear, dtype: float64
TrainingTimesLastYear Attrition
0
                       No
                                     0.722222
                                     0.277778
                        Yes
1
                        No
                                     0.873239
                        Yes
                                     0.126761
2
                        No
                                     0.820841
                        Yes
                                     0.179159
З
                        No
                                     0.859470
                        Yes
                                     0.140530
4
                        No
                                     0.788618
                                     0.211382
                        Yes
5
                        No
                                     0.882353
                        Yes
                                     0.117647
```

6 No Name: Attrition, dtype: float64 0.372109 2 3 0.334014 4 0.083673

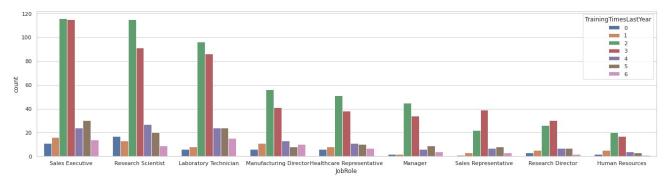
- 5 0.080952 0.048299 1 6 0.044218
- 0 0.036735

Name: TrainingTimesLastYear, dtype: float64

Yes

Out[36]:

<AxesSubplot:xlabel='JobRole', ylabel='count'>

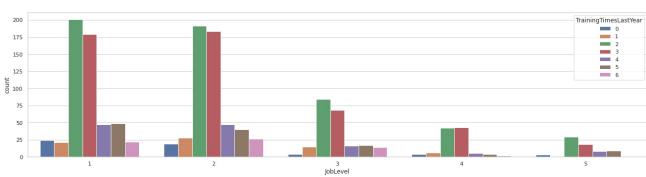


0.907692 0.092308

In [37]:

plt.subplots(figsize=(20,5)) sns.countplot(df_employee.JobLevel, hue=df_employee.TrainingTimesLastYear)

Out[37]:



<AxesSubplot:xlabel='JobLevel', ylabel='count'>

In [38]:

```
#df_employee.groupby(["JobRole"]).count().sort_values(["TrainingTimesLastYear"]==0)
#df1 = df_employee.melt(var_name='JobRole', value_name='TrainingTimesLastYear')
#df1
#df1 = df.melt(var_name='columns', value_name='index')
#df.apply(lambda x: x.value_counts())
print(df_employee['TrainingTimesLastYear'].value_counts()[0])
#df2
print(df_employee.JobRole[df_employee.TrainingTimesLastYear == 0].count())
#print(df_employee.groupby('JobLevel')['TrainingTimesLastYear'].value_counts()[0])
```

54

54

Training the employees have avarage on 2,3 times per year, indepentent on the JobLevel and JobRole

In [39]:

```
def highlight_max(s):
    is_max = s == s.max()
    return ['background-color: lightgreen' if v else '' for v in is_max]
#df.style.apply(highlight_max)
def highlight_min(s):
    is_min = s == s.min()
    return ['background-color: lightblue' if v else '' for v in is_min]
```

#df.style.apply(highlight_max)

In [40]:

TrainAtWork = df_hrs.groupby(['JobRole','Attrition'],as_index=False)[['JobInvolvement','JobSatisfaction','Trainin
gTimesLastYear','YearsInCurrentRole']].mean().sort_values(by=['TrainingTimesLastYear','JobSatisfaction'])
TrainAtWork.style.apply(highlight_max).apply(highlight_min)

Out[40]:

	JobRole	Attrition	JobInvolvement	JobSatisfaction	TrainingTimesLastYear	YearsInCurrentRole
11	Research Director	Yes	3.000000	2.500000	1.000000	15.000000
3	Human Resources	Yes	2.500000	2.166667	2.083333	2.000000
7	Manager	Yes	2.200000	2.400000	2.200000	7.800000
1	Healthcare Representative	Yes	2.666667	2.777778	2.222222	5.000000
9	Manufacturing Director	Yes	2.600000	2.600000	2.600000	3.500000
15	Sales Executive	Yes	2.526316	2.526316	2.649123	4.192982
13	Research Scientist	Yes	2.510638	2.425532	2.659574	2.191489
5	Laboratory Technician	Yes	2.532258	2.435484	2.661290	2.129032
12	Research Scientist	No	2.853061	2.840816	2.665306	3.481633
2	Human Resources	No	2.775000	2.675000	2.700000	3.475000
8	Manufacturing Director	No	2.688889	2.688889	2.755556	5.081481
0	Healthcare Representative	No	2.737705	2.786885	2.786885	4.852459
10	Research Director	No	2.769231	2.705128	2.820513	6.064103
6	Manager	No	2.804124	2.721649	2.845361	6.381443
14	Sales Executive	No	2.754647	2.802974	2.869888	4.996283
17	Sales Representative	Yes	2.454545	2.484848	2.939394	1.242424
4	Laboratory Technician	No	2.746193	2.771574	3.040609	3.538071
16	Sales Representative	No	2.780000	2.900000	3.060000	2.520000

In [41]:

```
pd.pivot_table(TrainAtWork, values = 'TrainingTimesLastYear', index='Attrition', columns = 'JobRole').reset_index
()
```

Out[41]:

JobRole	Attrition	Healthcare Representative	Human Resources	Laboratory Technician	Manager	Manufacturing Director	Research Director	Research Scientist	Sales Executive	Sales Representative
0	No	2.786885	2.700000	3.040609	2.845361	2.755556	2.820513	2.665306	2.869888	3.060000
1	Yes	2.222222	2.083333	2.661290	2.200000	2.600000	1.000000	2.659574	2.649123	2.939394

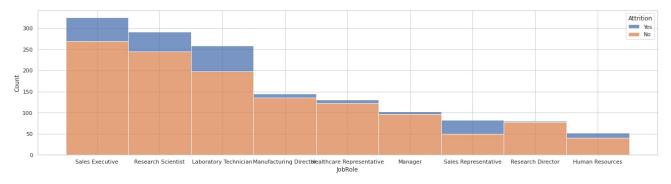
In [42]:

plt.subplots(figsize=(20,5))

sns.histplot(data=df employee, x="JobRole", hue="Attrition", multiple="stack")

Out[42]:

<AxesSubplot:xlabel='JobRole', ylabel='Count'>



In [43]:

print(df_employee.groupby('Attrition')['JobRole'].value_counts(normalize=True).sort_index())
print(df_employee.groupby('Attrition')['JobLevel'].value_counts(normalize=True).sort_index())
print(df_employee.groupby(['Attrition','JobLevel'])['Education'].value_counts().sort_index().sort_values())
print(df_employee.groupby('Attrition')['EducationField'].value_counts(normalize=True).sort_index())

Attrition	JobRole			
No	Healthcare	Representative		0.098946
	Human Reso	urces		0.032441
	Laboratory	Technician		0.159773
	Manager			0.078670
	Manufactur	ing Director		0.109489
	Research D	irector		0.063260
	Research S	cientist		0.198702
	Sales Exec	utive		0.218167
	Sales Repr	esentative		0.040552
Yes		Representative		0.037975
	Human Reso	urces		0.050633
	Laboratory	Technician		0.261603
	Manager			0.021097
		ing Director		0.042194
	Research D			0.008439
	Research S			0.198312
	Sales Exec			0.240506
	Sales Repr			0.139241
	ole, dtype:	float64		
Attrition	JobLevel			
No	1	0.324412		
	2 3	0.390916		
		0.150852		
	4	0.081914		
V .	5	0.051906		
Yes	1	0.603376		
	2	0.219409		
	3 4	0.135021		
	4 5	0.021097		
Nama, Jahl	-	0.021097		
Attrition	evel, dtype			
Yes		Education Master	1	
res		Master	1	
		Doctorate	1	
		High School	1	
		Doctorate	2	
		Doctorate	2	
No		Doctorate	2 2	
110	5		~	

Yes	2	High Schoo	ol 3
105	5	Bachelor	3
	4	Bachelor	4
	3	College	4
		High Schoo	
No	5	High Schoo	
	1	Doctorate	6
	3	Doctorate	7
	4	High Schoo	ol 8
Yes	3	Master	9
No	4	Doctorate	9
	5	College	13
Yes	3	Bachelor	13
	2	Bachelor	14
		College	15
No	3	High Schoo	ol 16
	4	College	17
Yes	2	Master	19
No	5	Master	19
	2	Doctorate	19
Yes	1	High Schoo	ol 23
No	5	Bachelor	25
Yes	1	College	25
No	4	Master	27
Yes	1	Master	28
No	3	College	29
	4	Bachelor	40
	2	High Schoo	ol 44
	3	Master	49
Yes	1	Bachelor	65
No	1	High Schoo	
		College	69
	3	Bachelor	85
	1	Master	93
	2	College	110
		Master	152
	-	Bachelor	157
	1	Bachelor	166
	ation, dty	pe: int64	
Attrition			0 016221
No	Human Res		0.016221
	Life Scie Marketing	nces	0.419303 0.100568
	Medical		0.325223
	Other		0.057583
	Technical	Dogroo	0.081103
Yes	Human Res	-	0.029536
165	Life Scie		0.375527
	Marketing	11005	0.147679
	Medical		0.265823
	Other		0.046414
	Technical	Degree	0.135021
Name: Educ	ationField		loat64
Euuc		, «сурсі і	

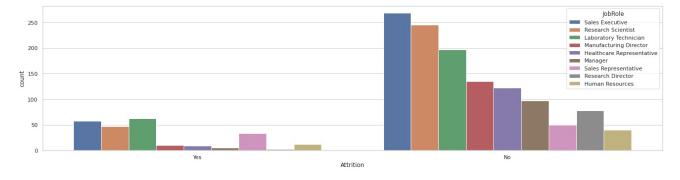
In [44]:

```
plt.subplots(figsize=(20,5))
sns.countplot(df_employee.Attrition, hue=df_employee.JobRole)
df_employee.groupby('Attrition')['JobRole'].value_counts(normalize=True).sort_index()
```

Out[44]:

Attrition	JobRole	
No	Healthcare Representative	0.098946
	Human Resources	0.032441
	Laboratory Technician	0.159773
	Manager	0.078670
	Manufacturing Director	0.109489
	Research Director	0.063260
	Research Scientist	0.198702
	Sales Executive	0.218167
	Sales Representative	0.040552
Yes	Healthcare Representative	0.037975
	Human Resources	0.050633
	Laboratory Technician	0.261603
	Manager	0.021097
	Manufacturing Director	0.042194
	Research Director	0.008439
	Research Scientist	0.198312
	Sales Executive	0.240506
	Sales Representative	0.139241
Names John	ala dtura, flast64	

Name: JobRole, dtype: float64

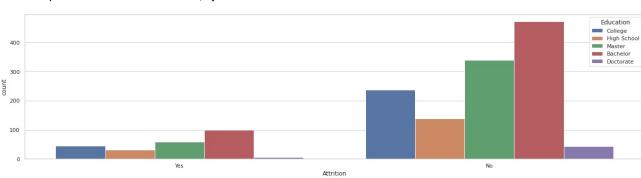


In [45]:

```
plt.subplots(figsize=(20,5))
```

```
\verb|sns.countplot(df\_employee.Attrition, hue=df\_employee.Education)||
```

Out[45]:



<AxesSubplot:xlabel='Attrition', ylabel='count'>

In [46]:

```
#plt.subplots(figsize=(20,5))
```

```
#sns.countplot(df_employee.Attrition, hue=df_employee.EducationField)
```

In [47]:

```
#plt.subplots(figsize=(20,5))
#sns.countplot(df_employee.MaritalStatus, hue=df_employee.JobRole)
```

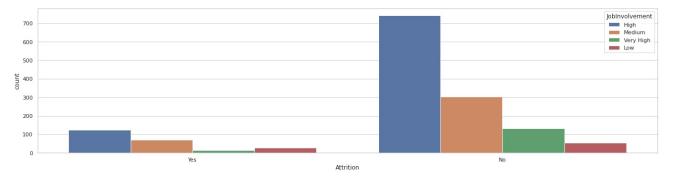
3.4 JobSatisfaction and Commitment

In [48]:

```
plt.subplots(figsize=(20,5))
sns.countplot(df_employee.Attrition, hue=df_employee.JobInvolvement)
```

Out[48]:

<AxesSubplot:xlabel='Attrition', ylabel='count'>



In [49]:

plt.subplots(figsize=(20,5))

sns.histplot(data=df_employee, x="JobRole", hue="JobInvolvement", multiple="stack",bins=5, kde=True)
Out[49]:

<AxesSubplot:xlabel='JobRole', ylabel='Count'>

In [50]:

df_employee.groupby('JobLevel')['Age'].value_counts(bins=6).sort_index()

Out[50]:

JobLevel		
1	(17.958, 24.833]	87
-	(24.833, 31.667]	192
	(31.667, 38.5]	157
	(38.5, 45.333]	68
	(45.333, 52.167]	24
	(52.167, 59.0]	15
2	(21.961, 28.333]	65
	(28.333, 34.667]	172
	(34.667, 41.0]	174
	(41.0, 47.333]	75
	(47.333, 53.667]	28
	(53.667, 60.0]	20
3	(26.96599999999998, 32.5]	40
	(32.5, 38.0]	72
	(38.0, 43.5]	34
	(43.5, 49.0]	38
	(49.0, 54.5]	22
	(54.5, 60.0]	12
4	(28.96899999999998, 34.0]	5
	(34.0, 39.0]	6
	(39.0, 44.0]	23
	(44.0, 49.0]	25
	(49.0, 54.0]	31
	(54.0, 59.0]	16
5	(38.978, 42.5]	18
	(42.5, 46.0]	14
	(46.0, 49.5]	8
	(49.5, 53.0]	15
	(53.0, 56.5]	10
	(56.5, 60.0]	4
Name: Age	. dtvpe: int64	

Name: Age, dtype: int64

In [51]:

```
workForce =df_hrs.groupby(['JobRole','Attrition'], as_index=False)[['PerformanceRating','JobSatisfaction','Enviro
nmentSatisfaction','WorkLifeBalance']].mean().sort_values(by=['JobRole'])
workForce.style.apply(highlight_max).apply(highlight_min)
```

Out[51]:

	JobRole	Attrition	PerformanceRating	JobSatisfaction	EnvironmentSatisfaction	WorkLifeBalance
0	Healthcare Representative	No	3.155738	2.786885	2.819672	2.704918
1	Healthcare Representative	Yes	3.111111	2.777778	2.111111	2.666667
2	Human Resources	No	3.150000	2.675000	2.675000	2.925000
3	Human Resources	Yes	3.083333	2.166667	2.333333	2.916667
4	Laboratory Technician	No	3.147208	2.771574	2.822335	2.817259
5	Laboratory Technician	Yes	3.209677	2.435484	2.387097	2.403226
6	Manager	No	3.206186	2.721649	2.814433	2.762887
7	Manager	Yes	3.000000	2.400000	1.800000	3.000000
9	Manufacturing Director	Yes	3.000000	2.600000	2.600000	2.700000
8	Manufacturing Director	No	3.200000	2.688889	2.940741	2.770370
10	Research Director	No	3.102564	2.705128	2.487179	2.858974
11	Research Director	Yes	3.000000	2.500000	3.000000	3.000000
12	Research Scientist	No	3.151020	2.840816	2.746939	2.669388
13	Research Scientist	Yes	3.255319	2.425532	2.617021	2.723404
14	Sales Executive	No	3.130112	2.802974	2.732342	2.858736
15	Sales Executive	Yes	3.105263	2.526316	2.385965	2.543860
16	Sales Representative	No	3.160000	2.900000	2.760000	2.780000
17	Sales Representative	Yes	3.121212	2.484848	2.696970	3.060606
14 15 16	Sales Executive Sales Executive Sales Representative	No Yes No	3.130112 3.105263 3.160000	2.802974 2.526316 2.900000	2.732342 2.385965 2.760000	2.8587 2.5438 2.7800

In [52]:

workForceD =df_hrs.groupby(['Department','Attrition'], as_index=False)[['PerformanceRating','JobSatisfaction','En
vironmentSatisfaction','WorkLifeBalance']].mean().sort_values(by=['Department'])
workForceD.style.apply(highlight_max).apply(highlight_min)

Out[52]:

	Department	Attrition	PerformanceRating	JobSatisfaction	EnvironmentSatisfaction	WorkLifeBalance
0	Human Resources	No	3.156863	2.705882	2.764706	2.921569
1	Human Resources	Yes	3.083333	2.166667	2.333333	2.916667
2	Research & Development	No	3.157005	2.769324	2.787440	2.748792
3	Research & Development	Yes	3.195489	2.458647	2.473684	2.578947
4	Sales	No	3.144068	2.810734	2.734463	2.836158
5	Sales	Yes	3.108696	2.521739	2.467391	2.739130

In [53]:

workForceG =df_hrs.groupby(['Gender','Attrition'], as_index=False)[['PerformanceRating','JobSatisfaction','Enviro
nmentSatisfaction','WorkLifeBalance']].mean().sort_values(by=['Gender'])
workForceG.style.apply(highlight_max).apply(highlight_min)

Out[53]:

	Gender	Attrition	PerformanceRating	JobSatisfaction	EnvironmentSatisfaction	WorkLifeBalance
0	Female	No	3.157685	2.728543	2.782435	2.760479
1	Female	Yes	3.172414	2.425287	2.367816	2.781609
2	Male	No	3.150273	2.812842	2.763661	2.795082
3	Male	Yes	3.146667	2.493333	2.520000	2.586667

In [54]:

workForceE =df_hrs.groupby(['Education','Attrition'], as_index=False)[['PerformanceRating','JobSatisfaction','Env ironmentSatisfaction','WorkLifeBalance']].mean().sort_values(by=['Education']) workForceE.style.apply(highlight_max).apply(highlight_min)

Out[54]:

	Education	Attrition	PerformanceRating	JobSatisfaction	EnvironmentSatisfaction	WorkLifeBalance
0	Bachelor	No	3.135307	2.701903	2.864693	2.737844
1	Bachelor	Yes	3.181818	2.414141	2.353535	2.686869
2	College	No	3.172269	2.823529	2.785714	2.785714
3	College	Yes	3.159091	2.477273	2.340909	2.659091
4	Doctorate	No	3.209302	2.744186	2.604651	2.767442
5	Doctorate	Yes	3.000000	2.000000	3.000000	3.200000
6	High School	No	3.187050	2.820144	2.726619	2.755396
7	High School	Yes	3.129032	2.709677	2.838710	2.870968
8	Master	No	3.144118	2.841176	2.670588	2.850000
9	Master	Yes	3.137931	2.465517	2.500000	2.448276

In [55]:

#workForcelevel =df_hrs.groupby(['JobLevel','Education','Attrition'], as_index=False)[['PerformanceRating','JobSa
tisfaction','EnvironmentSatisfaction','WorkLifeBalance']].mean().sort_values(by=['JobLevel'])
#workForcelevel

3.5 Enpowerment at Work

In [56]:

enpowerments =df_hrs.groupby(['JobRole','Attrition'], as_index=False)[['PerformanceRating','StockOptionLevel','Jo
bInvolvement','MonthlyIncome','YearsSinceLastPromotion','YearsAtCompany']].mean().sort_values(by=['JobRole'])
enpowerments.style.apply(highlight_max).apply(highlight_min)

	JobRole	Attrition	PerformanceRating	StockOptionLevel	Jobinvolvement	MonthlyIncome	YearsSinceLastPromotion	YearsAtCon
0	Healthcare Representative	No	3.155738	0.844262	2.737705	7453.557377	2.885246	8.1
1	Healthcare Representative	Yes	3.111111	0.666667	2.666667	8548.222222	4.111111	10.8
2	Human Resources	No	3.150000	0.725000	2.775000	4391.750000	1.400000	5.6
3	Human Resources	Yes	3.083333	0.833333	2.500000	3715.750000	0.833333	4.10
4	Laboratory Technician	No	3.147208	0.913706	2.746193	3337.223350	1.548223	5.6
5	Laboratory Technician	Yes	3.209677	0.516129	2.532258	2919.258065	1.016129	3.10
6	Manager	No	3.206186	0.752577	2.804124	17201.484536	4.835052	14.3
7	Manager	Yes	3.000000	0.600000	2.200000	16797.400000	4.800000	15.6
9	Manufacturing Director	Yes	3.000000	0.800000	2.600000	7365.500000	1.700000	8.7
8	Manufacturing Director	No	3.200000	0.814815	2.688889	7289.925926	2.148148	7.5
10	Research Director	No	3.102564	0.871795	2.769231	15947.346154	2.910256	10.5
11	Research Director	Yes	3.000000	0.000000	3.000000	19395.500000	14.000000	26.5
12	Research Scientist	No	3.151020	0.836735	2.853061	3328.122449	1.440816	5.20
13	Research Scientist	Yes	3.255319	0.446809	2.510638	2780.468085	1.851064	4.3
14	Sales Executive	No	3.130112	0.881041	2.754647	6804.617100	2.360595	7.6
15	Sales Executive	Yes	3.105263	0.526316	2.526316	7489.000000	3.070175	6.7
16	Sales Representative	No	3.160000	0.740000	2.780000	2798.440000	1.360000	3.4
17	Sales Representative	Yes	3.121212	0.454545	2.454545	2364.727273	0.606061	2.0!
4								

In [57]:

enpowermentsD =df_hrs.groupby(['Department','Attrition'], as_index=False)[['PerformanceRating','JobInvolvement','
MonthlyIncome','YearsSinceLastPromotion','YearsAtCompany']].mean().sort_values(by=['Department'])
enpowermentsD.style.apply(highlight_max).apply(highlight_min)

Out[57]:

rtment	Attrition	PerformanceRating	JobInvolvement	MonthlyIncome	YearsSinceLastPromotion	YearsAtCompany
ources	No	3.156863	2.803922	7345.980392	2.000000	7.960784
ources	Yes	3.083333	2.500000	3715.750000	0.833333	4.166667
pment	No	3.157005	2.771739	6630.326087	2.179952	7.171498
pment	Yes	3.195489	2.556391	4108.075188	1.872180	4.954887
Sales	No	3.144068	2.762712	7232.240113	2.395480	7.745763
Sales	Yes	3.108696	2.467391	5908.456522	2.195652	5.510870
	ources ources opment opment Sales	ources No ources Yes opment No opment Yes Sales No	ources No 3.156863 ources Yes 3.083333 opment No 3.157005 opment Yes 3.195489 Sales No 3.144068	ources No 3.156863 2.803922 ources Yes 3.083333 2.500000 opment No 3.157005 2.771739 opment Yes 3.195489 2.556391 Sales No 3.144068 2.762712	ources No 3.156863 2.803922 7345.980392 ources Yes 3.083333 2.500000 3715.750000 opment No 3.157005 2.771739 6630.326087 opment Yes 3.195489 2.556391 4108.075188 Sales No 3.144068 2.762712 7232.240113	No 3.157005 2.771739 6630.326087 2.179952 opment Yes 3.195489 2.556391 4108.075188 1.872180 Sales No 3.144068 2.762712 7232.240113 2.395480

In [58]:

enpowermentsG =df_hrs.groupby(['Gender','Attrition'], as_index=False)[['PerformanceRating','JobInvolvement','Mont hlyIncome','YearsSinceLastPromotion','YearsAtCompany']].mean().sort_values(by=['Gender']) enpowermentsG.style.apply(highlight_max).apply(highlight_min)

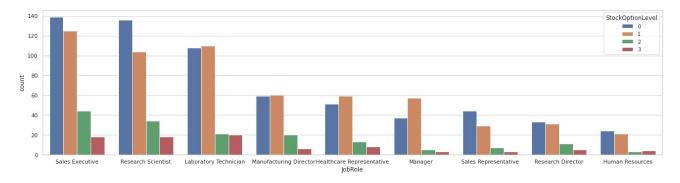
Out[58]:

	Gender	Attrition	PerformanceRating	JobInvolvement	MonthlyIncome	YearsSinceLastPromotion	YearsAtCompany
0	Female	No	3.157685	2.746507	7019.429142	2.339321	7.459082
1	Female	Yes	3.172414	2.528736	4769.735632	2.034483	5.919540
2	Male	No	3.150273	2.786885	6704.964481	2.162568	7.307377
3	Male	Yes	3.146667	2.513333	4797.160000	1.893333	4.673333

In [59]:

1	.n [59]:		
s p	olt.subplots(figsize=(20,5)) sns.countplot(df_employee.JobRole, hue=df_emp print(df_employee['JobRole'].value_counts(['S print(df_employee.groupby('StockOptionLevel')	tock0p	
S	Gales Executive 0.221769		
R	Research Scientist 0.198639		
L	aboratory Technician 0.176190		
	lanufacturing Director 0.098639		
	lealthcare Representative 0.089116		
	lanager 0.069388		
S	Sales Representative 0.056463		
	Research Director 0.054422		
Н	luman Resources 0.035374		
Ν	lame: JobRole, dtype: float64		
S	StockOptionLevel JobRole		
0	Healthcare Representative	51	
	Human Resources	24	
	Laboratory Technician	108	
	Manager	37	
	Manufacturing Director	59	
	Research Director	33	
	Research Scientist	136	
	Sales Executive	139	
	Sales Representative	44	
1		59	
	Human Resources	21	
	Laboratory Technician	110	
	Manager Manufacturing Director	57	
	Manufacturing Director Research Director	60 31	
	Research Scientist	104	
	Sales Executive	125	
	Sales Representative	29	
2		13	
-	Human Resources	3	
	Laboratory Technician	21	
	Manager	5	
	Manufacturing Director	20	
	Research Director	11	
	Research Scientist	34	
	Sales Executive	44	
	Sales Representative	7	
3	B Healthcare Representative	8	
	Human Resources	4	
	Laboratory Technician	20	
	Manager	3	
	Manufacturing Director	6	
	Research Director	5	
	Research Scientist	18	
	Sales Executive	18	
	Sales Representative	2	

Name: JobRole, dtype: int64



3

In [60]:

1

Yes

pd.pivot_table(df_employee, values = 'StockOptionLevel', index='Attrition', columns = 'JobRole').reset_index() Out[60]:

JobRole	Attrition	Healthcare Representative	Human Resources	Laboratory Technician	Manager	Manufacturing Director
0	No	0.844262	0.725000	0.913706	0.752577	0.814815

Sales Representative

Healthcare Representative	Human Resources	Laboratory Technician	Manager	Manufacturing Director	Research Director		Sales Executive	Sales Representative
0.844262	0.725000	0.913706	0.752577	0.814815	0.871795	0.836735	0.881041	0.740000
0.666667	0.833333	0.516129	0.600000	0.800000	0.000000	0.446809	0.526316	0.454545

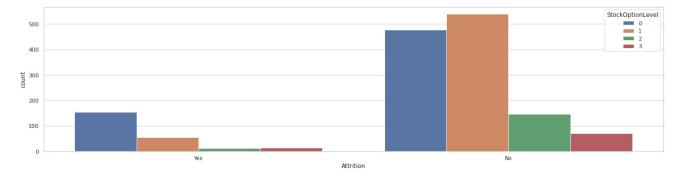
In [61]:

```
plt.subplots(figsize=(20,5))
sns.countplot(df_employee.Attrition, hue=df_employee.StockOptionLevel)
df_employee.groupby('Attrition',)['StockOptionLevel'].value_counts(normalize=True).sort_index()
```

Out[61]:

Attritic	on StockOption	ILevel	
No	0		0.386861
	1		0.437956
	2		0.118410
	3		0.056772
Yes	0		0.649789
	1		0.236287
	2		0.050633
	3		0.063291
Nome C+	ockOntionlovo]	d+vno.	floot64

Name: StockOptionLevel, dtype: float64



Have you reached Stock OptionLevel 2 then the chance for attirion is much lower

In [62]:

	<pre>as_index=False)[['JobSatisfaction']].mean().sort_values(by=['Job</pre>
Satisfaction'])	

Out[62]:

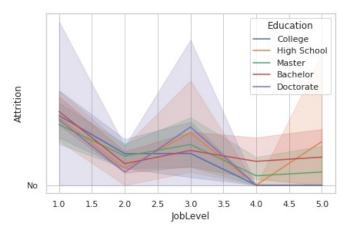
	Education	JobSatisfaction
2	Doctorate	2.333333
4	Master	2.655172
0	Bachelor	2.663265
1	College	2.787879
3	High School	2.800000

In [63]:

```
#need to change the value to the column to get a better understanding of what the graph says
#df_employee.Education.replace({1: 'High School', 2:'Undergrad', 3:'Graduate', 4:'Post Graduate', 5:'Doctorate'},
inplace=True)
sns.lineplot(x = 'JobLevel', y = 'Attrition', data=df_employee, hue='Education')
```

Out[63]:

<AxesSubplot:xlabel='JobLevel', ylabel='Attrition'>



In [64]:

Out[64]:

StockOptionLevel

STOCKOPTIONLEVEL		
Θ	(17.956999999999997, 25.0]	74
	(25.0, 32.0]	169
	(32.0, 39.0]	187
	(39.0, 46.0]	102
	(46.0, 53.0]	66
	(53.0, 60.0]	33
1		
1	(21.961, 28.333]	84
	(28.333, 34.667]	145
	(34.667, 41.0]	169
	(41.0, 47.333]	101
	(47.333, 53.667]	53
	(53.667, 60.0]	44
2	(21.962999999999997, 28.0]	25
	(28.0, 34.0]	47
	(34.0, 40.0]	44
	(40.0, 46.0]	21
	(46.0, 52.0]	15
	(52.0, 58.0]	6
3	(23.964, 29.833]	20
5	(29.833, 35.667]	20
	(35.667, 41.5]	20
	(41.5, 47.333]	11
	(47.333, 53.167]	6
	(53.167, 59.0]	5
Name: Age, dtype:	int64	

Looking at which age tend to have different joblevels is really clear that young people start in level 1 most, of them is in this level for 10 years. If you show some encouagement you will get to an other level faster. most of the people for level 3 are in their late 30s. from 40 years old, both level 4 and 5 are more dominant.

From the two graph above we can see that the youngest people working are single and are morlelylike to leave the company. there are also more people around 30 years old leave but the their relation ship tend to be married, but people then are seeking a new direction or a new job after working a few years at one place.

In [65]:

```
# Need to Have Numeric Values for Attrition
```

In [66]:

```
happy_job = df_Anumber.groupby('JobRole', as_index=False)[['JobSatisfaction','EnvironmentSatisfaction','JobInvolv
ement']].mean().sort_values(by=['JobInvolvement'])
happy_job.style.apply(highlight_max).apply(highlight_min)
```

Out[66]:

	JobRole	JobSatisfaction	EnvironmentSatisfaction	JobInvolvement
8	Sales Representative	2.734940	2.734940	2.650602
4	Manufacturing Director	2.682759	2.917241	2.682759
2	Laboratory Technician	2.691120	2.718147	2.694981
1	Human Resources	2.557692	2.596154	2.711538
7	Sales Executive	2.754601	2.671779	2.714724
0	Healthcare Representative	2.786260	2.770992	2.732824
3	Manager	2.705882	2.764706	2.774510
5	Research Director	2.700000	2.500000	2.775000
6	Research Scientist	2.773973	2.726027	2.797945

In [67]:

df_Anumber['OverTime'] = df_Anumber['OverTime'].map({'Yes': 1, 'No': 0})

In [68]:

Out[68]:

	JobRole	Age
8	Sales Representative	30.361446
2	Laboratory Technician	34.096525
6	Research Scientist	34.236301
1	Human Resources	35.500000
7	Sales Executive	36.889571
4	Manufacturing Director	38.296552
0	Healthcare Representative	39.809160
5	Research Director	44.000000
3	Manager	46.764706

In [69]:

df_Anumber[df_Anumber.JobLevel ==3].groupby('Education', as_index=False)[['JobSatisfaction']].mean().sort_values(
by=['JobSatisfaction'])

Out[69]:

Education JobSatisfaction

4	5	2.333333
3	4	2.655172
2	3	2.663265
1	2	2.787879
0	1	2.800000

In [70]:

```
df_employee['Attrition'] = df_employee['Attrition'].map({'Yes': 1, 'No': 0})
df_Anumber.Education.replace({'High School':1, 'Collage':2,'Bachelor':3, 'Master':4, 'Doctorate':5},inplace=True)
```

In [71]:

Out[71]:

	JobRole	MonthlyIncome	Attrition
8	Sales Representative	2626.000000	0.397590
2	Laboratory Technician	3237.169884	0.239382
6	Research Scientist	3239.972603	0.160959
1	Human Resources	4235.750000	0.230769
7	Sales Executive	6924.279141	0.174847
4	Manufacturing Director	7295.137931	0.068966
0	Healthcare Representative	7528.763359	0.068702
5	Research Director	16033.550000	0.025000
3	Manager	17181.676471	0.049020

People eith doctor degree on level 3 have lower overall job satifacation than other education levels

In [72]:

df_Anumber[df_Anumber.JobLevel ==4].groupby('Education', as_index=False)[['YearsSinceLastPromotion','TrainingTime
sLastYear','JobSatisfaction']].mean().sort_values(by=['YearsSinceLastPromotion'])

Out[72]:

	Education	YearsSinceLastPromotion	TrainingTimesLastYear	JobSatisfaction
3	4	3.821429	2.714286	2.571429
1	2	4.823529	2.352941	3.176471
2	3	4.863636	2.431818	2.636364
4	5	5.555556	2.777778	2.888889
0	1	7.500000	2.875000	2.625000

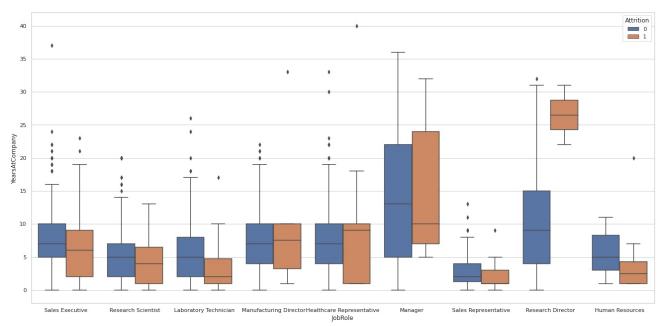
In [73]:

plt.figure(figsize=(20,10))

sns.boxplot(data=df_employee, x='JobRole', y='YearsAtCompany',hue='Attrition')

Out[73]:

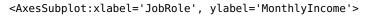
<AxesSubplot:xlabel='JobRole', ylabel='YearsAtCompany'>

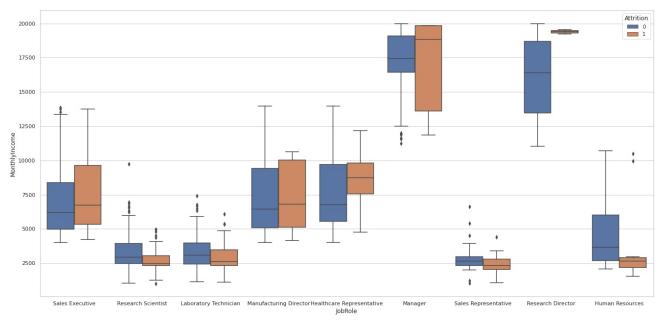


In [74]:

```
plt.figure(figsize=(20,10))
sns.boxplot(data=df_employee, x='JobRole', y='MonthlyIncome',hue='Attrition')
```

Out[74]:





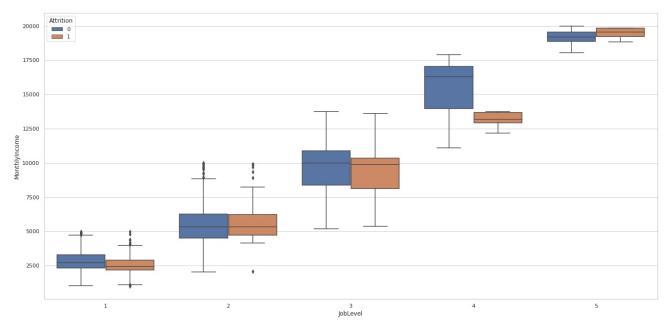
It takes time for people with doctor degree to reach level 4 among people with higher education

In [75]:

```
plt.figure(figsize=(20,10))
sns.boxplot(data=df_employee, x='JobLevel', y='MonthlyIncome',hue='Attrition')
```

Out[75]:

<AxesSubplot:xlabel='JobLevel', ylabel='MonthlyIncome'>



People in level 4 that leave has much less income than those who stay

3.7 Surprisng/Unique Findings

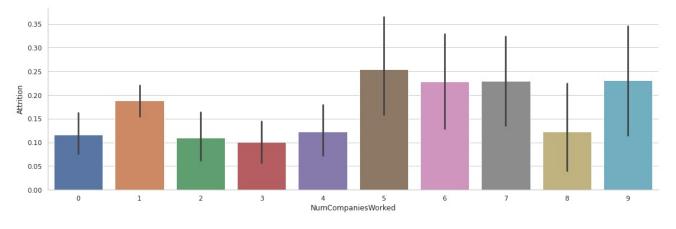
These plots need Attrition as a numeric feature.

In [76]:

```
sns.catplot(x = 'NumCompaniesWorked', y = 'Attrition', data=df_employee, aspect= 3, kind = 'bar')
```

Out[76]:

<seaborn.axisgrid.FacetGrid at 0x7f1918b51310>



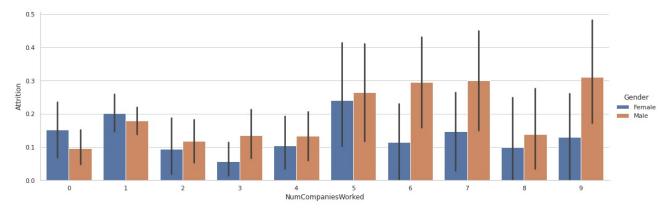
Have you worked for 2-4 companiesyou are less likely to leave.

In [77]:

sns.factorplot(x = 'NumCompaniesWorked', y = 'Attrition', hue = 'Gender', data=df_employee, aspect= 3, kind = 'ba
r')

Out[77]:

<seaborn.axisgrid.FacetGrid at 0x7f1918bfa610>

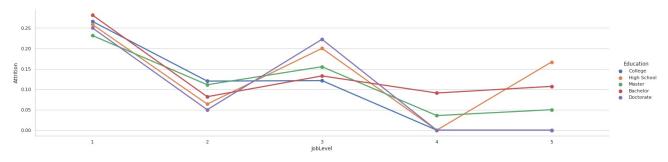


Splitting on gender, we can clearly see that the attrtion rate stays up for male working for many companies, but woman are lower

In [78]:

<pre>sns.factorplot(x = 'JobLevel', y</pre>	/ =	'Attrition',	hue =	'Education',	data=df	_employee,	aspect= 4,	ci=None)	

<seaborn.axisgrid.FacetGrid at 0x7f1914b60550>

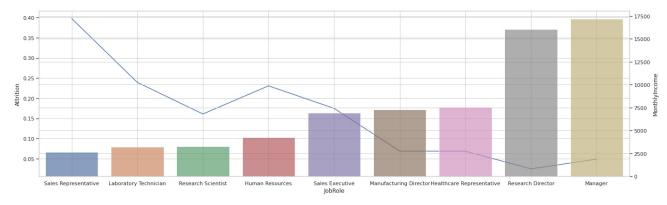


A high education at job level 3 is increasing the attrition rate.

In [79]: fig, ax1 = plt.subplots(figsize=(20,6)) sns.lineplot(data = role_income, x='JobRole',y='Attrition', sort = False, ax=ax1) ax2 = ax1.twinx() sns.barplot(data = role_income, x='JobRole', y='MonthlyIncome', alpha=0.7, ax=ax2)

Out[79]:

<AxesSubplot:xlabel='JobRole', ylabel='MonthlyIncome'>



Sales have highest attrition and lower income, attrition increase for HR, due to higher income and good jobsatifaction, least attrition for those with most income

From the EDA we obtained some interesting findings.

From the EDA we can some interesting things

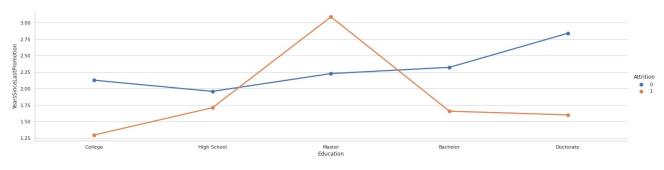
- 1. SAles representatives tend to be promoted pretty fast, but most of them have low income and are more likely to quite due to to their relative high job satisfation. and worklife balance, but their education size they are undergradeuated so that why they leave.
- 2. Many doctors are left on the level 3, for them to reach 4 it take a really long time compared to other people with higher education
- 3. have you worked for some companies, you are less likely to leave

END Part 1

In [80]:

Out[80]:

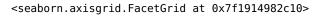
<seaborn.axisgrid.FacetGrid at 0x7f19148f8d90>

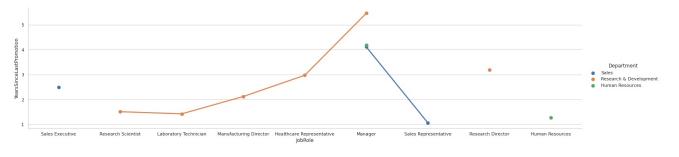


In [81]:

sns.factorplot(x = 'JobRole', y = 'YearsSinceLastPromotion', hue = 'Department', data=df_employee, aspect= 4, ci=
None)

Out[81]:

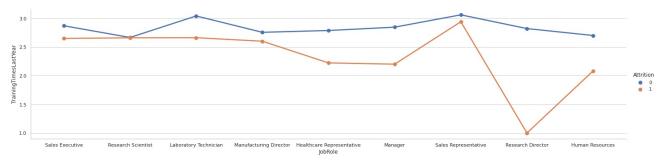




In [82]:

sns.factorplot(x = 'JobRole', y = 'TrainingTimesLastYear', hue = 'Attrition', data=df_employee, aspect= 4, ci=Non
e)

Out[82]:

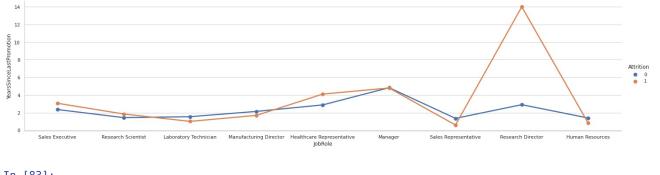


In [83]:

sns.factorplot(x = 'JobRole', y = 'YearsSinceLastPromotion', hue = 'Attrition', data=df_employee, aspect= 4, ci=N
one)

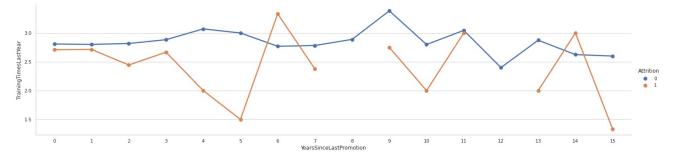
Out[83]:

<seaborn.axisgrid.FacetGrid at 0x7f1914756f50>




```
sns.factorplot(x = 'YearsSinceLastPromotion', y = 'TrainingTimesLastYear', hue = 'Attrition', data=df_employee, a
spect= 4, ci=None)
```

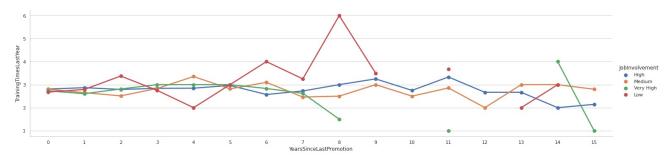
Out[84]:



In [85]:

sns.factorplot(x = 'YearsSinceLastPromotion', y = 'TrainingTimesLastYear', hue = 'JobInvolvement', data=df_employ
ee, aspect= 4, ci=None)

Out[85]:

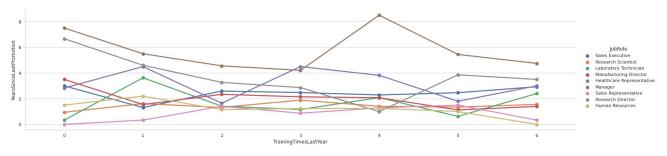


In [86]:

```
sns.factorplot(x = 'TrainingTimesLastYear', y = 'YearsSinceLastPromotion', hue = 'JobRole', data=df_employee, asp
ect= 4, ci=None)
#sns.factorplot(x = 'TrainingTimesLastYear', y = 'YearsSinceLastPromotion', hue = 'Education', data=df_employee,
aspect= 4, ci=None)
```

Out[86]:

<seaborn.axisgrid.FacetGrid at 0x7f191450df10>

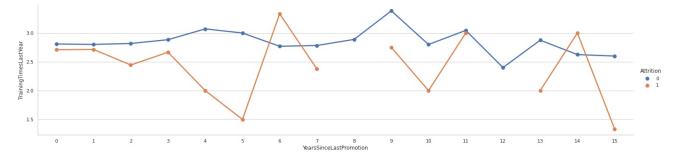


In [87]:

```
sns.factorplot(x = 'YearsSinceLastPromotion', y = 'TrainingTimesLastYear', hue = 'Attrition', data=df_Anumber, as
pect= 4, ci=None)
```

Out[87]:



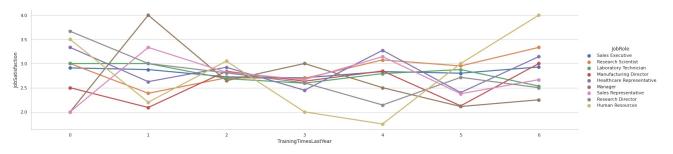


In [88]:

sns.factorplot(x = 'TrainingTimesLastYear', y = 'JobSatisfaction', hue = 'JobRole', data=df_Anumber, aspect= 4, c
i=None)

Out[88]:

<seaborn.axisgrid.FacetGrid at 0x7f1914449c90>



🍃 Created in Deepnote(https://deepnote.com?utm_source=created-in-deepnote-cell&projectId=a46d7bb2-0613-4265-b1ed-cb3246ba2e8c)

M4 Part 2

In []: import pandas as pd import numpy as np import matplotlib.pyplot as plt %matplotlib inline import seaborn as sns from IPython.display import display from scipy import stats import warnings %matplotlib inline np.random.seed(42) warnings.filterwarnings('always') warnings.filterwarnings("ignore") from sklearn.model_selection import train test split from sklearn.preprocessing import StandardScaler from sklearn.metrics import auc, roc_curve, roc_auc_score, classification_report, confusion_matrix, precision_rec all fscore support ! pip install xgboost -qq #Baseline algoritms from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import GradientBoostingClassifier from xgboost import XGBClassifier from sklearn.model_selection import GridSearchCV from sklearn.svm import LinearSVC from sklearn.svm import SVC from sklearn.naive_bayes import GaussianNB from sklearn.model selection import KFold from sklearn import feature selection from sklearn import model selection from sklearn import metrics from sklearn.neural_network import MLPClassifier from sklearn.metrics import precision score, recall score #Lifeline survival imports !pip install lifelines -qq from lifelines import KaplanMeierFitter

In []:

hr_df = pd.read_csv('/work/WA_Fn-UseC_-HR-Employee-Attrition.csv')

#do not need this
hr_df.info()

<pre><class 'pandas.core.frame.dataframe'=""> RangeIndex: 1470 entries, 0 to 1469</class></pre>								

In []:

hr_df = hr_df.drop(['EmployeeCount', 'StandardHours', 'EmployeeNumber', 'Over18'], axis = 1)

In []:

hr_df['Attrition'] = hr_df['Attrition'].map({'Yes': 1, 'No': 0})

hr_df.info()

<class 'pandas.core.frame.dataframe'=""> RangeIndex: 1470 entries, 0 to 1469</class>								
	columns (total 31 columns	•						
#	Column	Non-Null Count	Dtype					
0	Age	1470 non-null	int64					
1	Attrition	1470 non-null	int64					
2	BusinessTravel	1470 non-null	object					
3	DailyRate	1470 non-null	int64					
4	Department	1470 non-null	object					
5	DistanceFromHome	1470 non-null	int64					
6	Education	1470 non-null	int64					
7	EducationField	1470 non-null	object					
8	EnvironmentSatisfaction	1470 non-null	int64					
9	Gender	1470 non-null	object					
10	HourlyRate	1470 non-null	int64					
11	JobInvolvement	1470 non-null	int64					
12	JobLevel	1470 non-null	int64					
13	JobRole	1470 non-null	object					
14	JobSatisfaction	1470 non-null	int64					
15	MaritalStatus	1470 non-null	object					
16	MonthlyIncome	1470 non-null	int64					
17	MonthlyRate	1470 non-null	int64					
18	NumCompaniesWorked	1470 non-null	int64					
19	OverTime	1470 non-null	object					
20	PercentSalaryHike	1470 non-null	int64					
21	PerformanceRating	1470 non-null	int64					
22	RelationshipSatisfaction	1470 non-null	int64					
23	StockOptionLevel	1470 non-null	int64					
24	TotalWorkingYears	1470 non-null	int64					
25	TrainingTimesLastYear	1470 non-null	int64					
26	WorkLifeBalance	1470 non-null	int64					
27	YearsAtCompany	1470 non-null	int64					
28	YearsInCurrentRole	1470 non-null	int64					
29	YearsSinceLastPromotion	1470 non-null	int64					
30	YearsWithCurrManager	1470 non-null	int64					
dtyp	es: int64(24), object(7)							
memo	ry usage: 356.1+ KB							

In []:

hr_survi = hr_df.copy()

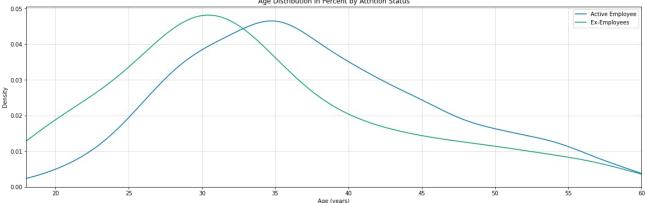
4. KDE plots between Active and Ex-employees

By creating some Kernal Density Estimation plot, we can color it by value of the target. To get a better understanding of our data

4.0.1 Age

```
In [ ]:
```

```
plt.figure(figsize=(20,6))
plt.style.use('seaborn-colorblind')
plt.grid(True, alpha=0.5)
sns.kdeplot(hr_df.loc[hr_df['Attrition'] == 0, 'Age'], label = 'Active Employee')
sns.kdeplot(hr_df.loc[hr_df['Attrition'] == 1, 'Age'], label = 'Ex-Employees')
plt.xlim(left=18, right=60)
plt.xlabel('Age (years)')
plt.ylabel('Density')
plt.title('Age Distribution in Percent by Attrition Status')
plt.legend();
```



Lower avrage age on people who left vs people who stayed

4.0.2 Distance from home

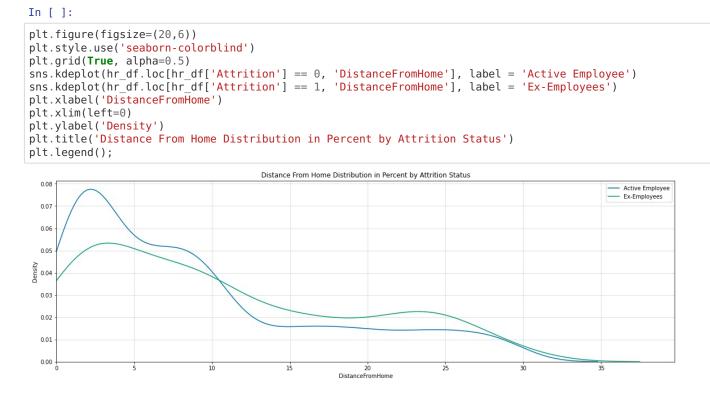
In []:

Distance from home for employees to get to work is from 1 to 29 miles.

In []:

```
#difference between left or stayed
print('Average distance from home for currently active employees: {:.2f} miles and ex-employees: {:.2f} miles'.fo
rmat(
            hr_df[hr_df['Attrition'] == 0]['DistanceFromHome'].mean(), hr_df[hr_df['Attrition'] == 1]['DistanceFromHome']
.mean()))
```

Average distance from home for currently active employees: 8.92 miles and ex-employees: 10.63 miles



Persons that are still working at the company have more people living closer to work.

4.0.3 Years at company

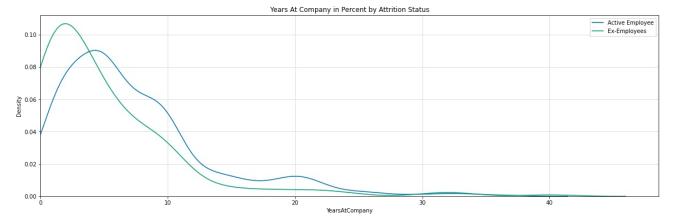
In []:

```
print("Number of Years at the company varies from {} to {} years.".format(
    hr_df['YearsAtCompany'].min(), hr_df['YearsAtCompany'].max()))
```

Number of Years at the company varies from 0 to 40 years.

In []:

```
plt.figure(figsize=(20,6))
plt.style.use('seaborn-colorblind')
plt.grid(True, alpha=0.5)
sns.kdeplot(hr_df.loc[hr_df['Attrition'] == 0, 'YearsAtCompany'], label = 'Active Employee')
sns.kdeplot(hr_df.loc[hr_df['Attrition'] == 1, 'YearsAtCompany'], label = 'Ex-Employees')
plt.xlabel('YearsAtCompany')
plt.xlim(left=0)
plt.ylabel('Density')
plt.title('Years At Company in Percent by Attrition Status')
plt.legend();
```



many of the people leaving tend to be there for a year or two, where its biggest density. most of the persons staying many have been there for 5 years. there a few more people still working that have been there for 20 years than people leaving.

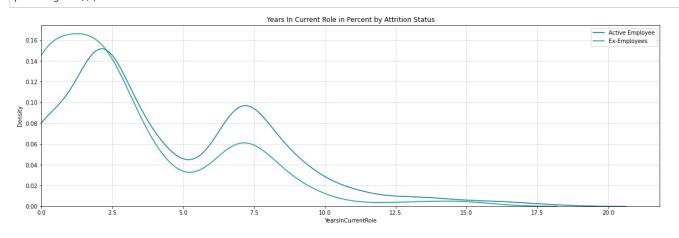
4.0.4 Years in current Role

```
In [ ]:
```

Number of Years in the current role varies from 0 to 18 years.

In []:

```
plt.figure(figsize=(20,6))
plt.style.use('seaborn-colorblind')
plt.grid(True, alpha=0.5)
sns.kdeplot(hr_df.loc[hr_df['Attrition'] == 0, 'YearsInCurrentRole'], label = 'Active Employee')
sns.kdeplot(hr_df.loc[hr_df['Attrition'] == 1, 'YearsInCurrentRole'], label = 'Ex-Employees')
plt.xlabel('YearsInCurrentRole')
plt.xlim(left=0)
plt.ylabel('Density')
plt.title('Years In Current Role in Percent by Attrition Status')
plt.legend();
```



active employee is in there role for longer, there is also a lot of workers that have there same role for around 7 years.

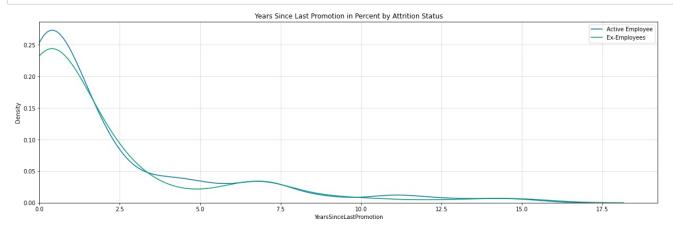
4.0.5 Years since promotion

In []:

Number of Years since last promotion varies from 0 to 15 years.

In []:

```
plt.figure(figsize=(20,6))
plt.style.use('seaborn-colorblind')
plt.grid(True, alpha=0.5)
sns.kdeplot(hr_df.loc[hr_df['Attrition'] == 0, 'YearsSinceLastPromotion'], label = 'Active Employee')
sns.kdeplot(hr_df.loc[hr_df['Attrition'] == 1, 'YearsSinceLastPromotion'], label = 'Ex-Employees')
plt.xlabel('YearsSinceLastPromotion')
plt.xlim(left=0)
plt.ylabel('Density')
plt.title('Years Since Last Promotion in Percent by Attrition Status')
plt.legend();
```



there is almost no difference in promotion between the 2 groups. most of the people get a promotion after a year, also after 6-7 years.

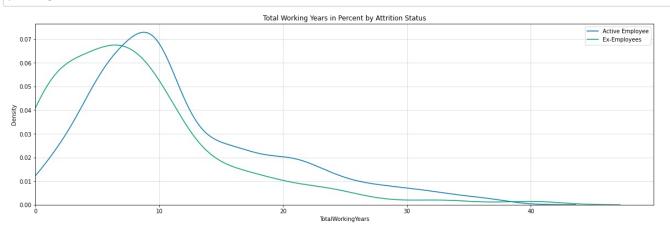
4.0.6 Total working years

In []:

Total working years varies from 0 to 40 years.

In []:

```
plt.figure(figsize=(20,6))
plt.style.use('seaborn-colorblind')
plt.grid(True, alpha=0.5)
sns.kdeplot(hr_df.loc[hr_df['Attrition'] == 0, 'TotalWorkingYears'], label = 'Active Employee')
sns.kdeplot(hr_df.loc[hr_df['Attrition'] == 1, 'TotalWorkingYears'], label = 'Ex-Employees')
plt.xlabel('TotalWorkingYears')
plt.xlim(left=0)
plt.ylabel('Density')
plt.title('Total Working Years in Percent by Attrition Status')
plt.legend();
```



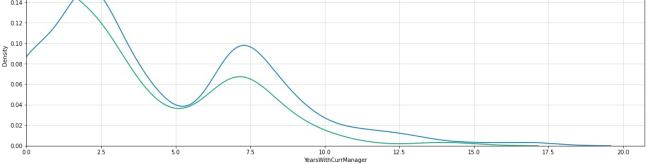
People that are leaving have the majority of the people working less than 10 years and few work longer 20 years.

4.0.7 Years with current manager

In []:

Number of Years wit current manager varies from 0 to 17 years.


```
plt.figure(figsize=(20,6))
plt.style.use('seaborn-colorblind')
plt.grid(True, alpha=0.5)
sns.kdeplot(hr_df.loc[hr_df['Attrition'] == 0, 'YearsWithCurrManager'], label = 'Active Employee')
sns.kdeplot(hr_df.loc[hr_df['Attrition'] == 1, 'YearsWithCurrManager'], label = 'Ex-Employees')
plt.xlabel('YearsWithCurrManager')
plt.xlim(left=0)
plt.ylabel('Density')
plt.title('Years With Curr Manager in Percent by Attrition Status')
plt.legend();
```



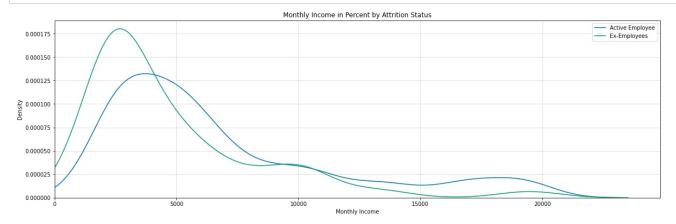
4.0.8 Monthly Income

In []:

Employee Monthly Income varies from \$1009 to \$19999.

In []:

```
plt.figure(figsize=(20,6))
plt.style.use('seaborn-colorblind')
plt.grid(True, alpha=0.5)
sns.kdeplot(hr_df.loc[hr_df['Attrition'] == 0, 'MonthlyIncome'], label = 'Active Employee')
sns.kdeplot(hr_df.loc[hr_df['Attrition'] == 1, 'MonthlyIncome'], label = 'Ex-Employees')
plt.xlabel('Monthly Income')
plt.xlim(left=0)
plt.ylabel('Density')
plt.title('Monthly Income in Percent by Attrition Status')
plt.legend();
```



Many of the leavers, have a salary around 2500\$

5. Machine Learning models

5.1 What to predict

We want to predict our target variable Attrition

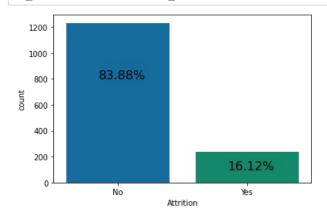
Our Hypotehsis for the most important features that influence this is *OverTime*, *MonthlyIncome*, *Age*, *MaritalStatus* and *JobSatisfaction*. Metrics to consider : Accuracy and False Negative Rate

The False Negative Rate tells us if we predict no attrition when there is one, and this is most costly for the company. Benchmark Accuracy score: Accuracy = 83,88% (predicting every employee as leaving) Benchmark Score plotted under.

- Get dummy variables
- Feature and target Varible
- Scaling the data
- Train test split the data
- Classfication models

In []:

```
sns.countplot(hr_df['Attrition'])
plt.text(x = -.15, y = 800, s = str(np.round(1233/1470.0, 4) * 100) + '%', fontsize = 16)
plt.text(x = .85, y = 100, s = str(np.round(237/1470.0, 4) * 100) + '%', fontsize = 16)
plt.xticks(np.arange(2),('No', 'Yes'))
plt.show()
hf df['Attrition'].value counts()
```



In []:

print(hr_	df.shape)
hr_df.hea	d()

(1470, 31)

Out[]:

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EnvironmentSatisfaction	Ge
0	41	1	Travel_Rarely	1102	Sales	1	2	Life Sciences	2	Fe
1	49	0	Travel_Frequently	279	Research & Development	8	1	Life Sciences	3	
2	37	1	Travel_Rarely	1373	Research & Development	2	2	Other	4	
3	33	0	Travel_Frequently	1392	Research & Development	3	4	Life Sciences	4	Fe
4	27	0	Travel_Rarely	591	Research & Development	2	1	Medical	1	
5 r	א פיאור X	31 colum	ine							ŀ

In []:

In []:

2 columns were label encoded.

In []:

hr_df = pd.get_dummies(hr_df, drop_first = True) #to avoid multicolinearity

Multicollinearity will occur when features are highly correlated with other features in the dataset. this can affect performance of regession and classification models

In []:

print(hr_df.shape)

(1470, 45)

In []:

```
X = hr_df.drop('Attrition', axis = 1)
y = hr_df['Attrition']
```

In []:

```
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 42)
```

```
#scale the data
scaler = StandardScaler()
# Fit_transform
X_train_scaled = scaler.fit_transform(X_train)
# transform
X test scaled = scaler.transform(X test)
```

In []:

```
print(X_train.shape)
print(y_train.shape)
print(X_test.shape)
print(y_test.shape)
```

(1102, 44) (1102,) (368, 44) (368,)

5.2 Building Models

First just using a range of baseline algoritms using with a set of parmeters, and then fine tuning them afterwards Algoritms used

- Logistic Regression
- Random Forest Classifier
- SVM
- KNN
- Decision Tree Classifier
- Gaussian NB
- XGB
- MLPClassifier

In []:

In []:

```
acc_results = []
auc results = []
names = []
# set table to table to populate with performance results
col = ['Algorithm', 'ROC AUC Mean', 'ROC AUC STD',
       'Accuracy Mean', 'Accuracy STD']
df results = pd.DataFrame(columns=col)
i = 0
# evaluate each model using cross-validation
for name, model in models:
    kfold = model selection.KFold(
        n splits=10, random state=42, shuffle=True) # 10-fold cross-validation
    cv_acc_results = model_selection.cross_val_score( # accuracy scoring
        model, X_train, y_train, cv=kfold, scoring='accuracy')
   cv_auc_results = model_selection.cross_val_score( # roc_auc scoring
        model, X_train, y_train, cv=kfold, scoring='roc_auc')
   acc results.append(cv acc results)
   auc results.append(cv auc results)
   names.append(name)
   df results.loc[i] = [name,
                         round(cv auc results.mean()*100, 2),
                         round(cv_auc_results.std()*100, 2),
                         round(cv_acc_results.mean()*100, 2),
                         round(cv_acc_results.std()*100, 2)
                         ]
   i += 1
df results.sort values(by=['ROC AUC Mean'], ascending=False)
```

[23:36:51] WARNING: ../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval _metric if you'd like to restore the old behavior. [23:36:57] WARNING: ../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval metric if you'd like to restore the old behavior. [23:37:01] WARNING: ../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval metric if you'd like to restore the old behavior. [23:37:06] WARNING: ../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval metric if you'd like to restore the old behavior. [23:37:11] WARNING: ../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval metric if you'd like to restore the old behavior. [23:37:16] WARNING: ../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval metric if you'd like to restore the old behavior. [23:37:20] WARNING: ../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval _metric if you'd like to restore the old behavior. [23:37:25] WARNING: ../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval metric if you'd like to restore the old behavior. [23:37:30] WARNING: ../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval metric if you'd like to restore the old behavior. [23:37:35] WARNING: ../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval metric if you'd like to restore the old behavior. [23:37:40] WARNING: ../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval _metric if you'd like to restore the old behavior. [23:37:45] WARNING: ../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval metric if you'd like to restore the old behavior. [23:37:50] WARNING: ../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval metric if you'd like to restore the old behavior. [23:37:55] WARNING: ../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval metric if you'd like to restore the old behavior. [23:37:59] WARNING: ../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval metric if you'd like to restore the old behavior. [23:38:04] WARNING: ../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval metric if you'd like to restore the old behavior. [23:38:09] WARNING: ../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval metric if you'd like to restore the old behavior. [23:38:13] WARNING: ../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval metric if you'd like to restore the old behavior. [23:38:18] WARNING: ../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval metric if you'd like to restore the old behavior. [23:38:21] WARNING: ../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval _metric if you'd like to restore the old behavior.

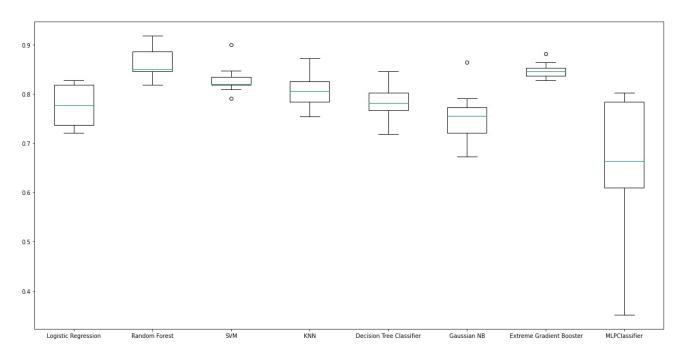
Out[]:

	Algorithm	ROC AUC Mean	ROC AUC STD	Accuracy Mean	Accuracy STD
0	Logistic Regression	83.56	4.82	77.59	4.29
1	Random Forest	82.15	5.67	86.03	3.09
6	Extreme Gradient Booster	80.02	5.45	84.66	1.60
5	Gaussian NB	77.35	4.66	75.41	4.97
7	MLPClassifier	63.57	4.53	64.44	15.50
3	KNN	63.34	6.40	80.85	3.31
4	Decision Tree Classifier	62.21	3.14	78.23	3.42
2	SVM	50.00	0.00	82.85	2.77

In []:

```
fig = plt.figure(figsize=(20, 10))
fig.suptitle('Algorithm Accuracy Comparison')
ax = fig.add_subplot(111)
plt.boxplot(acc_results)
ax.set_xticklabels(names)
plt.show()
```

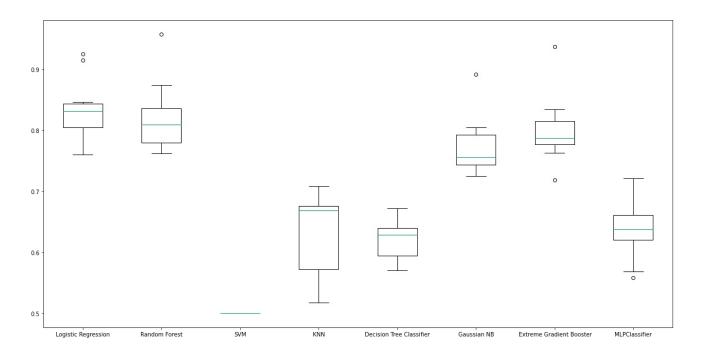
Algorithm Accuracy Comparison



In []:

fig = plt.figure(figsize=(20,10))
fig.suptitle('Algorithm ROC AUC Comparison')
ax = fig.add_subplot(111)
plt.boxplot(auc_results)
ax.set_xticklabels(names)
plt.show()

Algorithm ROC AUC Comparison



5.3 Finetuning Models

5.3.1 Logistic Regresssion

```
# define evaluation
# define search space
logr_params = {
    'solver': ['newton-cg','lbfgs', 'liblinear'],
    'penalty': ['none','l1','l2', 'elasticnet'],
    'C': [1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1, 10, 100]
}
```

define search

```
logr_gs = GridSearchCV(LogisticRegression(), param_grid=logr_params, scoring='accuracy',cv=5, n_jobs=-1,verbose=1
)
logr_gs.fit(X_train_scaled, y_train)
logr_gs.best_params
```

Fitting 5 folds for each of 96 candidates, totalling 480 fits

Out[]:

{'C': 0.1, 'penalty': 'l2', 'solver': 'newton-cg'}

In []:

```
print('Train acc =', logr_gs.score(X_train_scaled, y_train))
print('Test acc = ', logr_gs.score(X_test_scaled, y_test))
```

Train acc = 0.8929219600725953 Test acc = 0.907608695652174

In []:

```
y_pred = logr_gs.predict(X_test_scaled)
cm = confusion_matrix(y_test, y_pred)
print(cm)
print(classification report(y test, y pred))
[[313
       71
 [ 27 21]]
                            recall f1-score
              precision
                                                support
                    0.92
           0
                              0.98
                                         0.95
                                                    320
                    0.75
                              0.44
                                         0.55
                                                     48
           1
                                         0.91
                                                    368
    accuracy
   macro avg
                    0.84
                              0.71
                                         0.75
                                                    368
weighted avg
                    0.90
                              0.91
                                         0.90
                                                    368
```

5.3.2 Random Forrest Classification

```
In [ ]:
#Create the parameter grid based on the results of random search
rf_params = {
    'bootstrap': [True],
    'max_depth': [80, 90, 100],
    'max_features': [2, 3],
    'min_samples_leaf': [3, 4, 5],
    'min_samples_split': [8, 10],
    'n_estimators': [100, 200, 300]
}# Create a based model
rf_gs = GridSearchCV(RandomForestClassifier(),param_grid= rf_params, cv= 3, n_jobs=-1,verbose=1)# Instantiate the
grid search model
rf_gs.fit(X_train_scaled, y_train)
rf gs.best params
```

Fitting 3 folds for each of 108 candidates, totalling 324 fits

Out[]:

{'bootstrap': True, 'max_depth': 90, 'max_features': 3, 'min_samples_leaf': 3, 'min_samples_split': 8, 'n_estimators': 200}

```
In [ ]:
```

```
print('Train acc =', rf_gs.score(X_train_scaled, y_train))
print('Test acc = ', rf_gs.score(X_test_scaled, y_test))
```

Train acc = 0.8974591651542649 Test acc = 0.875

```
In [ ]:
```

cm = co print(o	onfusic cm)	<pre>js.predict(X_ on_matrix(y_t ication_repo</pre>	est, y_pr	ed)	
[[318 [44	2] 4]]			£1	
		precision	recall	f1-score	support
	0	0.88	0.99	0.93	320
	1	0.67	0.08	0.15	48

accuracy			0.88	368
macro avg	0.77	0.54	0.54	368
weighted avg	0.85	0.88	0.83	368

5.3.3 XGradientBooster

In []:

```
xgbparams = {
    'max depth':[1,3,5],
    'learning_rate':[.1,.5,.7,.8],
    'n_estimators':[25,50,100]
}
xgb_gs = GridSearchCV(XGBClassifier(), param_grid = xgbparams, cv=5, n_jobs=-1, verbose = 1)
xgb_gs.fit(X_train_scaled, y_train)
xgb_gs.best_params_
```

Fitting 5 folds for each of 36 candidates, totalling 180 fits [23:58:02] WARNING: ../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval _metric if you'd like to restore the old behavior.

Out[]:

{'learning_rate': 0.5, 'max_depth': 1, 'n_estimators': 100}

In []:

```
print('Train acc =', xgb_gs.score(X_train_scaled, y_train))
print('Test acc = ', xgb_gs.score(X_test_scaled, y_test))
```

Train acc = 0.9165154264972777 Test acc = 0.8831521739130435

In []:

```
y_pred = xgb_gs.predict(X_test_scaled)
cm = confusion_matrix(y_test, y_pred)
print(cm)
print(classification_report(y_test, y_pred))
```

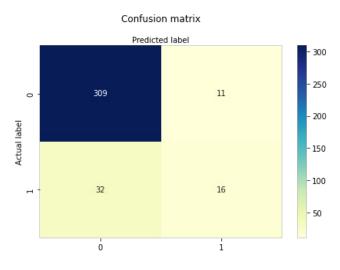
[[309 11]

[32 16]]	precision	recall	f1-score	support
0 1	0.91 0.59	0.97 0.33	0.93 0.43	320 48
accuracy macro avg weighted avg	0.75 0.87	0.65 0.88	0.88 0.68 0.87	368 368 368

```
fig, ax = plt.subplots()
sns.heatmap(pd.DataFrame(cm), annot=True, cmap="YlGnBu" ,fmt='g')
ax.xaxis.set_label_position("top")
plt.tight_layout()
plt.title('Confusion matrix', y=1.1)
plt.ylabel('Actual label')
plt.xlabel('Predicted label')
```

Out[]:

Text(0.5, 257.44, 'Predicted label')



5.3.4 MLPClassifier

In []:

```
#from sklearn.neural_network import MLPClassifier
```

```
In [ ]:
```

```
mlpparams = {
    'learning_rate': ["constant", "invscaling", "adaptive"],
        'hidden_layer_sizes': [(30,), (60,), (50,), (40,)],
        'alpha': [.1],
        'activation': ["logistic", "relu", "tanh"]
      }
mlp_gs = GridSearchCV(MLPClassifier(), param_grid = mlpparams, cv = 5, verbose = 1)
mlp_gs.fit(X_train_scaled, y_train)
```

mlp_gs.best_params_

```
Fitting 5 folds for each of 36 candidates, totalling 180 fits
```

Out[]:

{'activation': 'logistic', 'alpha': 0.1, 'hidden_layer_sizes': (30,), 'learning_rate': 'adaptive'}

In []:

```
print('Train acc =', mlp_gs.score(X_train_scaled, y_train))
print('Test acc =', mlp_gs.score(X_test_scaled, y_test))
```

Train acc = 0.8929219600725953 Test acc = 0.9021739130434783

```
y_pred = mlp_gs.predict(X_test_scaled)
cm = confusion_matrix(y_test, y_pred)
print(cm)
print(classification_report(y_test, y_pred))
```

[[309 11] [25 23]]

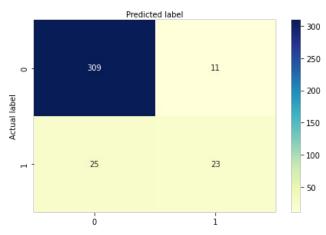
[25 23]]	precision	recall	f1-score	support
0 1	0.93 0.68	0.97 0.48	0.94 0.56	320 48
accuracy macro avg weighted avg	0.80 0.89	0.72 0.90	0.90 0.75 0.89	368 368 368

In []:

```
fig, ax = plt.subplots()
sns.heatmap(pd.DataFrame(cm), annot=True, cmap="YlGnBu" ,fmt='g')
ax.xaxis.set_label_position("top")
plt.tight_layout()
plt.title('Confusion matrix', y=1.1)
plt.ylabel('Actual label')
plt.xlabel('Predicted label')
```

Out[]:

Text(0.5, 257.44, 'Predicted label')



5.3.5 Making Tuned models

Making models

In []:

```
logreg = LogisticRegression()
logreg.fit(X_train_scaled, y_train)
#'C': 0.1, 'penalty': 'l2', 'solver': 'liblinear'}
```

Out[]:

```
LogisticRegression()
```

```
xgb = XGBClassifier(max_depth = 1, learning_rate = .8, n_estimators = 50)
xgb.fit(X_train_scaled, y_train)
```

[00:07:50] WARNING: ../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval _metric if you'd like to restore the old behavior.

Out[]:

In []:

Out[]:

In []:

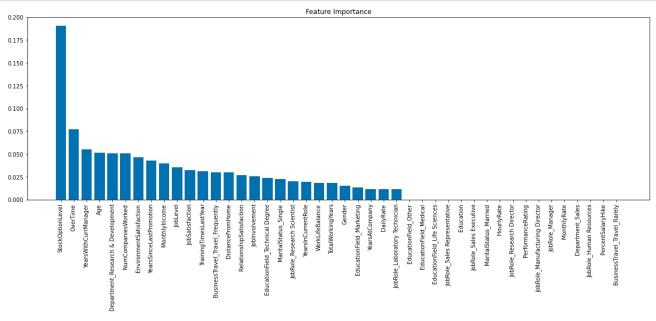
```
rf = RandomForestClassifier(min_samples_leaf =3, min_samples_split =8, max_features =3, max_depth = 90,random_sta
te =42)
rf.fit(X_train_scaled, y_train)
```

Out[]:

5.4 Most Important Features

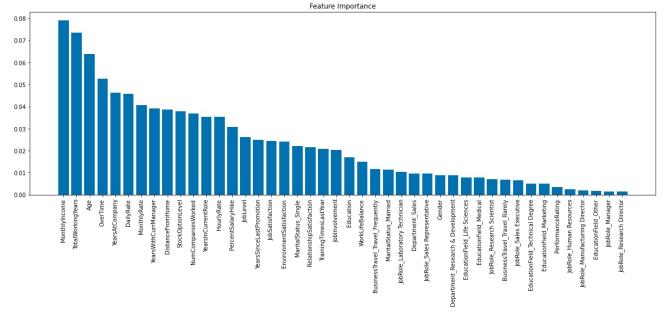
In []:

```
importances = xgb.feature_importances_
indices = np.argsort(importances)[::-1] # Sort feature importances in descending order
names = [X_train.columns[i] for i in indices] # Rearrange feature names so they match the sorted feature importan
ces
plt.figure(figsize=(20, 6)) # Create plot
plt.title("Feature Importance") # Create plot title
plt.bar(range(X_train_scaled.shape[1]), importances[indices]) # Add bars
plt.xticks(range(X_train_scaled.shape[1]), names, rotation=90) # Add feature names as x-axis labels
plt.show() # Show plot
```



```
In [ ]:
```

```
importances = rf.feature_importances_
indices = np.argsort(importances)[::-1] # Sort feature importances in descending order
names = [X_train.columns[i] for i in indices] # Rearrange feature names so they match the sorted feature importan
ces
plt.figure(figsize=(20, 6)) # Create plot
plt.title("Feature Importance") # Create plot title
plt.bar(range(X_train_scaled.shape[1]), importances[indices]) # Add bars
plt.xticks(range(X_train_scaled.shape[1]), names, rotation=90) # Add feature names as x-axis labels
plt.show() # Show plot
```



5.5 ROC and AUC Scores

In []:

```
mlp_gs.best_params_
probs = mlp_gs.predict_proba(X_test_scaled) # predict probabilities
probs = probs[:, 1] # we will only keep probabilities associated with the employee leaving
mlp_roc_auc = roc_auc_score(y_test, probs) # calculate AUC score using test dataset
print('AUC score: %.3f' % mlp_roc_auc)
```

AUC score: 0.819

In []:

```
xgb_gs.best_params_ # fit optimised model to the training data
probs = xgb_gs.predict_proba(X_test_scaled) # predict probabilities
probs = probs[:, 1] # we will only keep probabilities associated with the employee leaving
xgb_roc_auc = roc_auc_score(y_test, probs) # calculate AUC score using test dataset
print('AUC score: %.3f' % xgb_roc_auc)
```

AUC score: 0.814

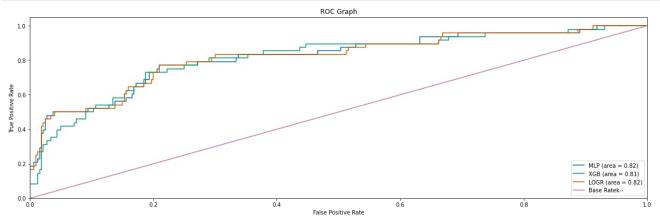
In []:

```
logr_gs.best_params_ # fit optimised model to the training data
probs = logr_gs.predict_proba(X_test_scaled) # predict probabilities
probs = probs[:, 1] # we will only keep probabilities associated with the employee leaving
logr_roc_auc = roc_auc_score(y_test, probs) # calculate AUC score using test dataset
print('AUC score: %.3f' % logr_roc_auc)
```

AUC score: 0.818

```
In [ ]:
```

```
# Create ROC Graph
from sklearn.metrics import roc_curve
fpr, tpr, thresholds = roc_curve(y_test, mlp_gs.predict_proba(X_test_scaled)[:,1])
xgb_fpr, xgb_tpr, xgb_thresholds = roc_curve(y_test, xgb_gs.predict_proba(X_test_scaled)[:,1])
logr_fpr, logr_tpr, logr_thresholds = roc_curve(y_test, logr_gs.predict_proba(X_test_scaled)[:,1])
plt.figure(figsize=(20, 6))
# Plot MLP ROC
plt.plot(fpr, tpr, label='MLP (area = %0.2f)' % mlp_roc_auc)
# Plot XGB ROC
plt.plot(xgb_fpr, xgb_tpr, label='XGB (area = %0.2f)' % xgb_roc_auc)
# Plot LogR ROC
plt.plot(logr_fpr, logr_tpr, label='LOGR (area = %0.2f)' % logr_roc_auc)
# Plot Base Rate ROC
plt.plot([0,1], [0,1],label='Base Rate' 'k--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Graph')
plt.legend(loc="lower right")
plt.show()
```



6. Cost Function

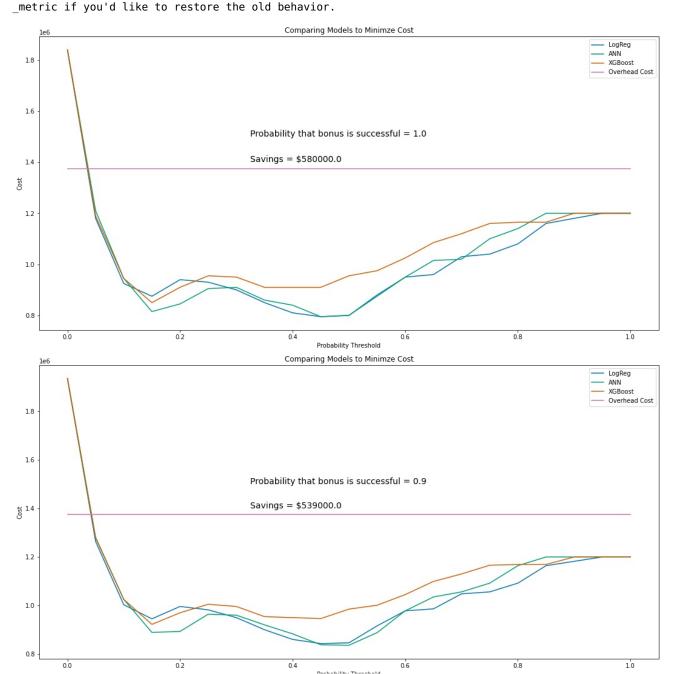
```
def best_threshold (model, steps, X, y, p):
   salary = 50000.0
   bonus = 5000.0
   TN_cost = 0
   TP_cost = p*bonus + (1-p)*.5*salary
   FP cost = bonus
   FN cost = .5*salary
   cost = []
   threshold = 0
   m = model
   #train test split
   X_train, X_test, y_train, y_test = train_test_split(X, y, random_state = 42)
   #scale the data
   scaler = StandardScaler()
   # Fit transform
   X_train_scaled = scaler.fit_transform(X_train)
   # transform
   X_test_scaled = scaler.transform(X_test)
   m.fit(X_train_scaled, y_train)
   for i in range(steps + 1):
        y pred train = (model.predict proba(X train scaled)[:,1] > threshold)
       y pred test = (model.predict proba(X test scaled)[:,1] > threshold)
        cm = confusion_matrix(y_test, y_pred_test)
       TN = cm[0,0]
       TP = cm[1,1]
       FP = cm[0,1]
       FN = cm[1,0]
       total cost = TN cost*TN + TP cost*TP + FP cost*FP + FN cost*FN
        results_dict = {
                'threshold' : threshold,
                'cost' : total_cost,
                'precision score test': precision score(y test, y pred test),
                'recall score test': recall score(y test, y pred test),
                'TN': TN,
                'FP': FP,
                'FN': FN,
                'TP': TP,
        cost.append(results dict)
        threshold += (1.0/steps)
   thresh results = pd.DataFrame(cost, columns=['cost', 'threshold', 'precision score test', \
                        'recall_score_test', 'FN', 'FP', 'TN', 'TP'])
```

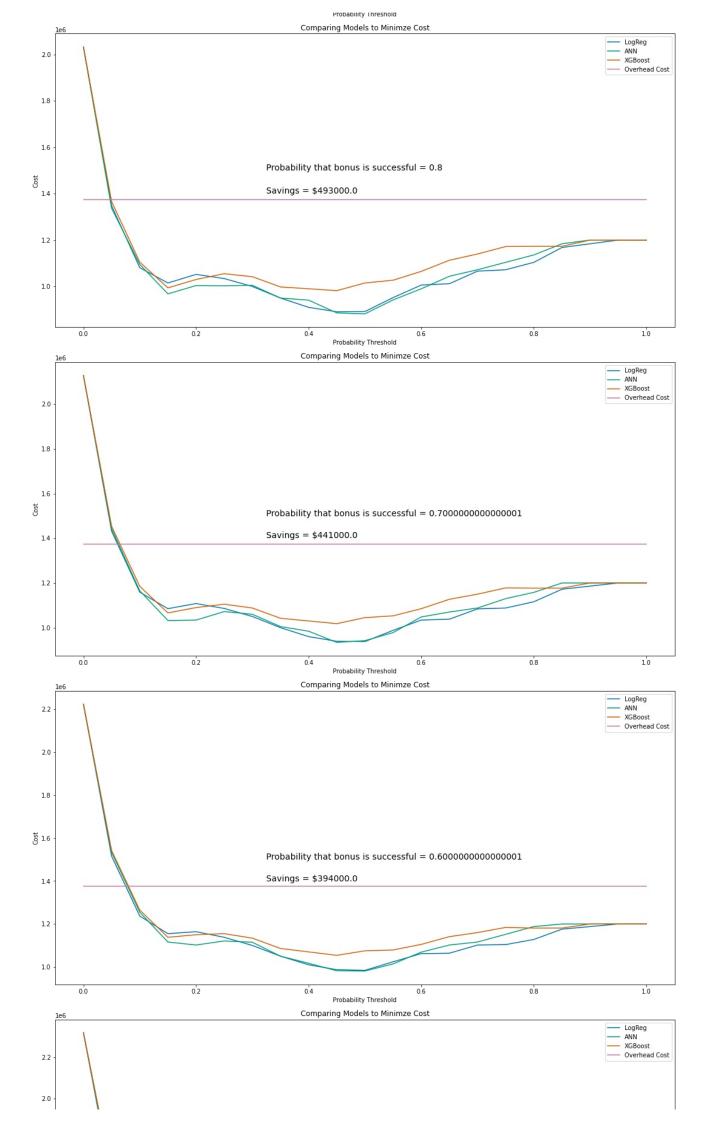
In []:

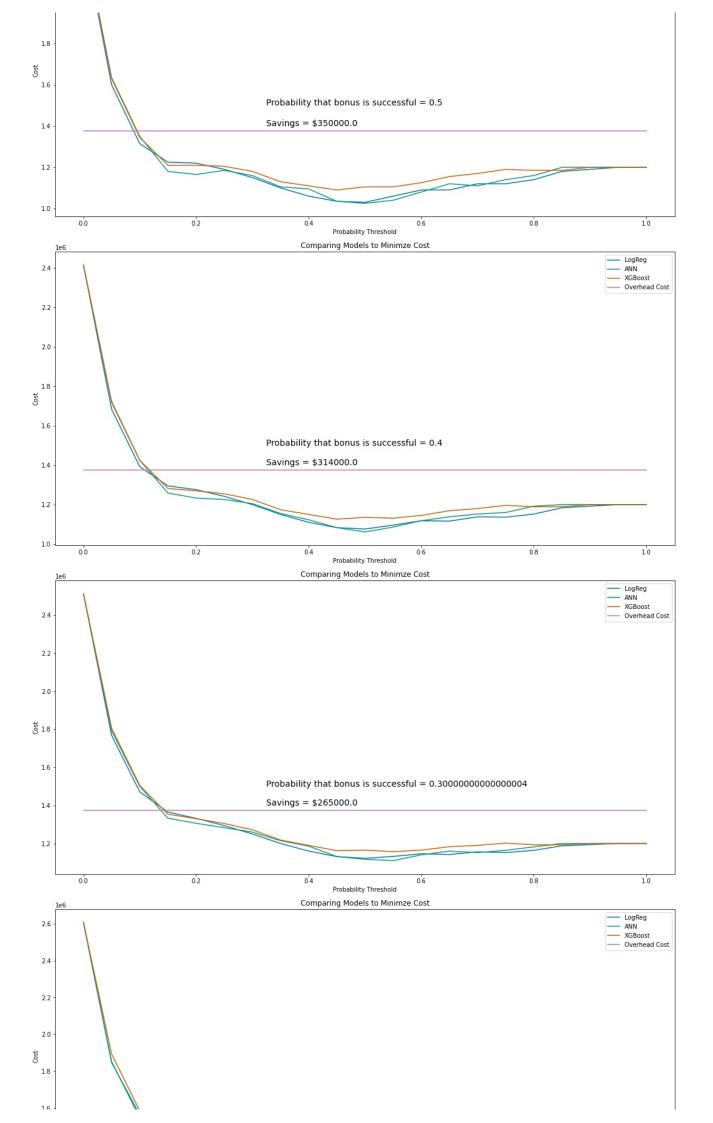
return thresh_results

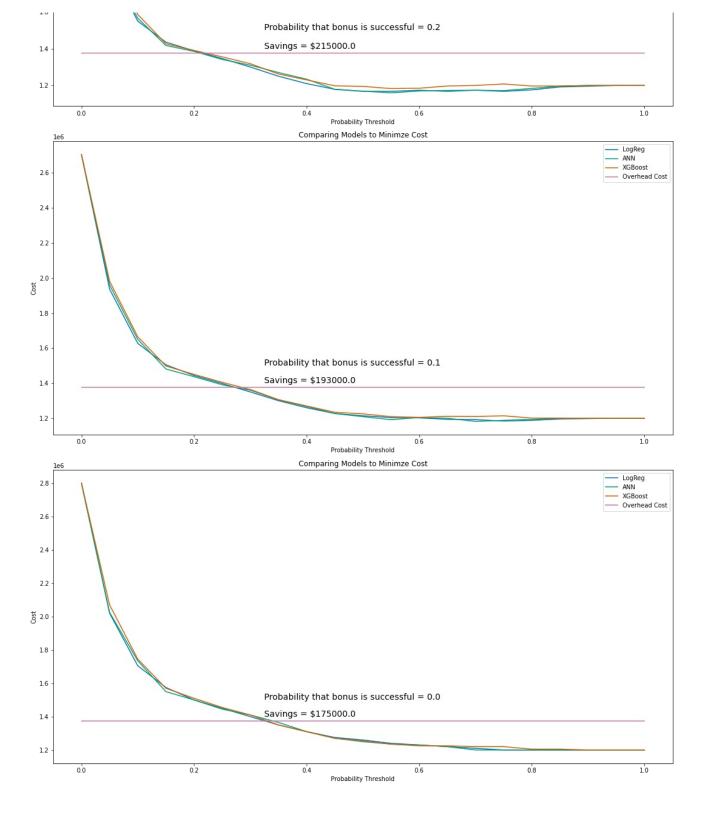
```
fig = plt.figure(figsize = (15,90))
j = 0
probabilities = -(np.sort(-np.linspace(0,1,11)))
for i in probabilities:
   df1 = best threshold(xgb,20,X,y, i)
   df2 = best_threshold(mlp,20,X,y, i)
   df3 = best_threshold(logreg,20,X,y, i)
   j += 1
   fig.add_subplot(12,1,j)
   plt.plot(df3['threshold'], df3['cost'], label = 'LogReg')
   plt.plot(df2['threshold'], df2['cost'], label = 'ANN')
   plt.plot(df1['threshold'], df1['cost'], label = 'XGBoost')
   plt.plot(np.linspace(0,1,9), 1375000*np.ones(9), label = 'Overhead Cost')
   plt.ylabel('Cost')
   plt.xlabel('Probability Threshold')
   plt.title('Comparing Models to Minimze Cost')
   plt.text(x = .325, y = 1500000, s = 'Probability that bonus is successful = ' + str(i), fontsize = 14)
   m = df2['cost'].min()
   profit = 1375000 - m
    plt.text(x = .325, y = 1400000, s = 'Savings = $' + str(profit), fontsize = 14)
    plt.legend()
plt.tight layout()
```

[00:08:00] WARNING: ../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval _metric if you'd like to restore the old behavior. [00:08:07] WARNING: ../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval metric if you'd like to restore the old behavior. [00:08:15] WARNING: ../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval _metric if you'd like to restore the old behavior. [00:08:22] WARNING: ../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval metric if you'd like to restore the old behavior. [00:08:28] WARNING: ../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval metric if you'd like to restore the old behavior. [00:08:37] WARNING: ../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval metric if you'd like to restore the old behavior. [00:08:46] WARNING: ../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval metric if you'd like to restore the old behavior. [00:08:54] WARNING: ../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval metric if you'd like to restore the old behavior. [00:09:02] WARNING: ../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval _metric if you'd like to restore the old behavior. [00:09:11] WARNING: ../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval metric if you'd like to restore the old behavior. [00:09:19] WARNING: ../src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval









7. Survival Analysis

The Kaplan-Meier survival curve is defined as the probability of surviving in a given lenght of time while considering time in many small intervals. in this case using *YearsAtCompany* as our time frame and *Attrition* as the survival condition. By then estimating conditional probabilities at each time point, we can get an estimate survival rate at each point in time.

The YearsAtCompany coulmn have 25 values above 3 STD above MEAN This values are 1.7% of the data and will be dropped for the survival analysis

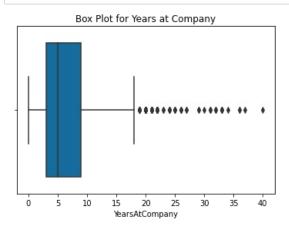
hr_survi['YearsAtCompany'].describe() #mean = 7 years, std = 6 years

Out[]:

count mean	1470.000000 7.008163		
std	6.126525		
min	0.00000		
25%	3.000000		
50%	5.000000		
75%	9.00000		
max	40.000000		
Name:	YearsAtCompany,	dtype:	float64

In []:

sns.boxplot(hr_survi['YearsAtCompany'])
plt.title('Box Plot for Years at Company')
plt.show()



In []:

```
threshold = np.std(hr_survi['YearsAtCompany']) * 3 # 3 std above mean
len(hr_survi[hr_survi['YearsAtCompany'] > np.mean(hr_survi['YearsAtCompany']) + threshold])
```

Out[]:

25

In []:

hr_survi = hr_survi[hr_survi['YearsAtCompany'] < np.mean(hr_survi['YearsAtCompany']) + threshold]</pre>

In []:

```
hr_survi[hr_survi['YearsAtCompany'] < 1].describe()</pre>
```

Out[]:

	Age	Attrition	DailyRate	DistanceFromHome	Education	EnvironmentSatisfaction	HourlyRate	JobInvolvement	JobLe
count	44.000000	44.000000	44.000000	44.000000	44.000000	44.000000	44.000000	44.000000	44.0000
mean	31.227273	0.363636	770.659091	8.477273	2.840909	2.795455	68.886364	2.704545	1.5227
std	10.924399	0.486607	437.970687	7.659888	1.140036	1.069222	20.000251	0.667503	0.8209
min	18.000000	0.000000	111.000000	1.000000	1.000000	1.000000	32.000000	1.000000	1.0000
25%	21.750000	0.000000	388.500000	2.000000	2.000000	2.000000	51.750000	2.000000	1.0000
50%	29.500000	0.000000	649.500000	6.000000	3.000000	3.000000	71.500000	3.000000	1.0000
75%	40.500000	1.000000	1190.500000	12.250000	4.000000	4.000000	84.000000	3.000000	2.0000
max	56.000000	1.000000	1495.000000	29.000000	5.000000	4.000000	100.000000	4.000000	5.0000
0 -	x 24 colum	-							
4	* // collim	ne							Þ

```
kmf = KaplanMeierFitter()
kmf.event_table
```

0u[.]

Out[]:					
	removed	observed	censored	entrance	at_risk
event_at					
0	44	16	28	1445	1445
1	171	59	112	0	1401
2	127	27	100	0	1230
3	128	20	108	0	1103
4	110	19	91	0	975
5	196	21	175	0	865
6	76	9	67	0	669
7	90	11	79	0	593
8	80	9	71	0	503
9	82	8	74	0	423
10	120	18	102	0	341
11	32	2	30	0	221
12	14	0	14	0	189
13	24	2	22	0	175
14	18	2	16	0	151
15	20	1	19	0	133
16	12	1	11	0	113
17	9	1	8	0	101
18	13	1	12	0	92

hr survi.info()

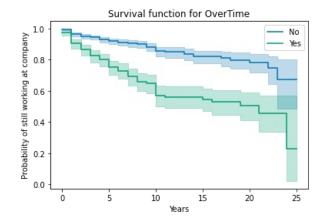
hr_s	urvi.info()		
Int6 Data	ss 'pandas.core.frame.Data 4Index: 1445 entries, 0 tc columns (total 31 columns	5):	
#	Column	Non-Null Count	Dtype
 0		1445 non-null	int64
1	Age Attrition	1445 non-null	int64
2	BusinessTravel	1445 non-null	object
3	DailyRate	1445 non-null	int64
4	Department	1445 non-null	object
5	DistanceFromHome	1445 non-null	int64
6	Education	1445 non-null	int64
7	EducationField	1445 non-null	object
8	EnvironmentSatisfaction	1445 non-null	int64
9	Gender	1445 non-null	object
10	HourlyRate	1445 non-null	int64
11	JobInvolvement	1445 non-null	int64
12	JobLevel	1445 non-null	int64
13	JobRole	1445 non-null	object
14	JobSatisfaction	1445 non-null	int64
15	MaritalStatus	1445 non-null	object
16	MonthlyIncome	1445 non-null	int64
17	MonthlyRate	1445 non-null	int64
18	NumCompaniesWorked	1445 non-null	int64
19	OverTime	1445 non-null	object
20	PercentSalaryHike	1445 non-null	int64
21	PerformanceRating	1445 non-null	int64
22	RelationshipSatisfaction	1445 non-null	int64
23	StockOptionLevel	1445 non-null 1445 non-null	int64
24 25	TotalWorkingYears	1445 non-null	int64 int64
25 26	TrainingTimesLastYear WorkLifeBalance	1445 non-null	int64
20	YearsAtCompany	1445 non-null	int64
28	YearsInCurrentRole	1445 non-null	int64
29	YearsSinceLastPromotion	1445 non-null	int64
30	YearsWithCurrManager	1445 non-null	int64
	es: int64(24), object(7)	1 io non natt	11104
	ry usage: 361.2+ KB		
	· ,		

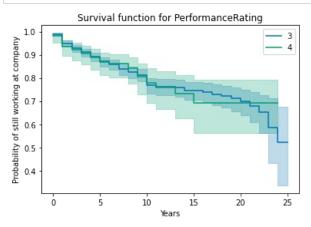
In []:

```
def build_survival_plot(column, split1, split2):
    df_1 = hr_survi[hr_survi[column] == split1]
    df_2 = hr_survi[hr_survi[column] == split2]
    ax = plt.subplot(111)
    kmf.fit(durations = df_1['YearsAtCompany'],
        event_observed = df_1['Attrition'], label = split1)
    kmf.plot(ax = ax)
    kmf.fit(durations = df_2['YearsAtCompany'],
        event_observed = df_2['Attrition'], label = split2)
    kmf.plot(ax = ax)
    plt.title('Survival function for ' + column)
    plt.xlabel('Years')
    plt.ylabel('Probability of still working at company')
```

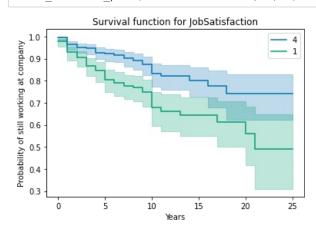
In []:

build_survival_plot('OverTime', 'No', 'Yes')



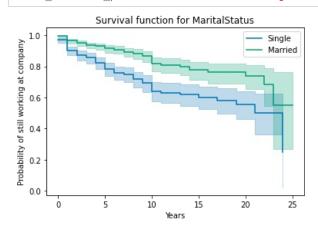


build_survival_plot('JobSatisfaction', 4, 1)



In []:

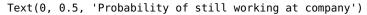
build_survival_plot('MaritalStatus', 'Single', 'Married')

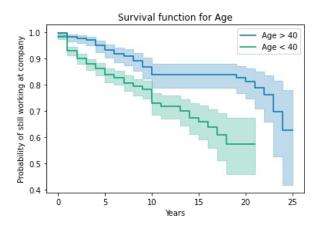


df_old = hr_survi[hr_survi['Age'] >= 40]
df_young = hr_survi[hr_survi['Age'] < 40]

```
ax = plt.subplot(111)
kmf.fit(durations = df_old['YearsAtCompany'],
        event_observed = df_old['Attrition'], label = 'Age > 40')
kmf.plot(ax = ax)
kmf.fit(durations = df_young['YearsAtCompany'],
        event_observed = df_young['Attrition'], label = 'Age < 40')
kmf.plot(ax = ax)
plt.title('Survival function for Age')
plt.xlabel('Years')
plt.ylabel('Probability of still working at company')
</pre>
```

Out[]:





In []:

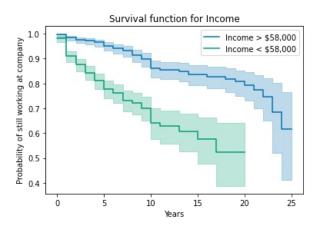
```
df_rich = hr_survi[hr_survi['MonthlyIncome'] >= 4833]
df_poor = hr_survi[hr_survi['MonthlyIncome'] < 4833]</pre>
```

In []:

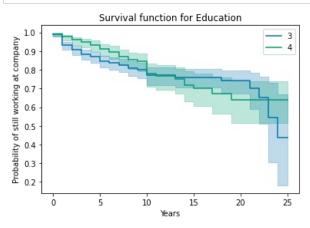
```
ax = plt.subplot(111)
kmf.fit(durations = df_rich['YearsAtCompany'],
        event_observed = df_rich['Attrition'], label = 'Income > $58,000')
kmf.plot(ax = ax)
kmf.fit(durations = df_poor['YearsAtCompany'],
        event_observed = df_poor['Attrition'], label = 'Income < $58,000')
kmf.plot(ax = ax)
plt.title('Survival function for Income')
plt.xlabel('Years')
plt.ylabel('Probability of still working at company')</pre>
```

Out[]:

```
Text(0, 0.5, 'Probability of still working at company')
```

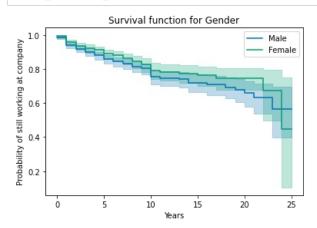


build_survival_plot('Education', 3, 4)



Gender

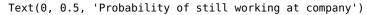
In []:

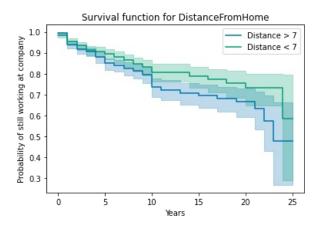


df_far = hr_survi[hr_survi['DistanceFromHome'] >= 7]
df_close = hr_survi[hr_survi['DistanceFromHome'] < 7]</pre>

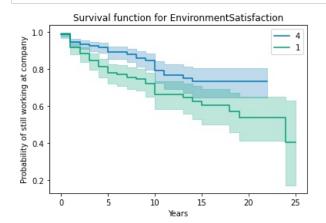
```
ax = plt.subplot(111)
kmf.fit(durations = df_far['YearsAtCompany'],
            event_observed = df_far['Attrition'], label = 'Distance > 7')
kmf.plot(ax = ax)
kmf.fit(durations = df_close['YearsAtCompany'],
            event_observed = df_close['Attrition'], label = 'Distance < 7')
kmf.plot(ax = ax)
plt.title('Survival function for DistanceFromHome')
plt.xlabel('Years')
plt.ylabel('Probability of still working at company')
</pre>
```

Out[]:





build_survival_plot('EnvironmentSatisfaction', 4, 1)

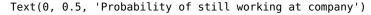


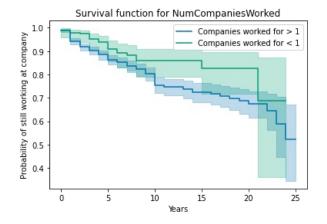
In []:

<pre>df_b = hr_survi[hr_survi['NumCompaniesWorked'] >= 1]</pre>	
<pre>df_s = hr_survi[hr_survi['NumCompaniesWorked'] < 1]</pre>	

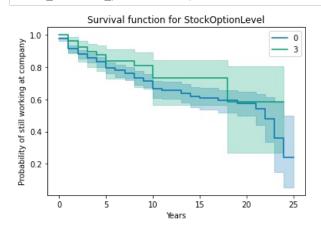
```
ax = plt.subplot(111)
kmf.fit(durations = df_b['YearsAtCompany'],
        event_observed = df_b['Attrition'], label = 'Companies worked for > 1')
kmf.plot(ax = ax)
kmf.fit(durations = df_s['YearsAtCompany'],
        event_observed = df_s['Attrition'], label = 'Companies worked for < 1')
kmf.plot(ax = ax)
plt.title('Survival function for NumCompaniesWorked')
plt.xlabel('Years')
plt.ylabel('Probability of still working at company')</pre>
```

Out[]:



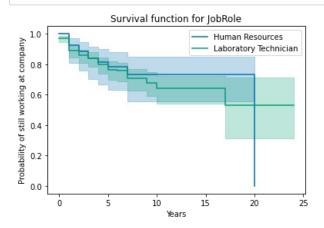


build_survival_plot('StockOptionLevel', 0, 3)

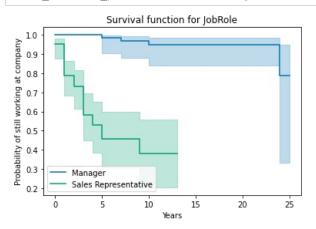


In []:

build_survival_plot('JobRole', 'Human Resources','Laboratory Technician')

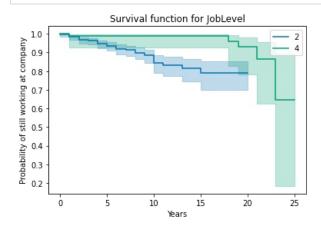


build_survival_plot('JobRole', 'Manager', 'Sales Representative')



In []:

build_survival_plot('JobLevel', 2, 4)



8. Summary

Despite this dataset being fictional, most of the metrics are record by companies and would not be to obtain this data. From our benchmark score of 83.88 we where able to predict with 90 percent accuracy.

The most important attributes influencing attrition is:

- MonthlyIncome: People with higher wages are less likely to leave. Maybe get some industry benchmarks to provide competitive wages.
- OverTime: with more overtime will more people leave. looking at project scope and ensure the is qualified manpower so the overtime is reduced.
- Age: Younger people between 25-35 are more likely to leave. Having a long-term strategy for the company where young employee fits in would be the best. Also a clear path for promotions.
- DistanceFromHome:Employees with a long distance from work are more likely to leave.
- TotalWorkingYears: More experienced workers will be there longer. people with 5-8 years of experience can have a higher risk of leaving.
- YearsAtCompany: Are employees about to hit 2 year anniversary, then there is high-risk of leaving. Being a loyal company you will keep people longer.
- YearsWithCurrentManager:

A way further would be to use models that deals with class inbalance better.

Cost funtion

From the cost function we can see if we should do nothing about our employee turnover or try to fix it. Using a more accurate estimate for how much it will cost to replace an employee.

A bonus program could solve some problems, but eve

Survival function

example: The survival curves show how employees without Overtime have less probability of attrition at each time point.

Retetion plan

When a company generate more data on employees, both new joins and recent leavers. It is possible to retrain to get a more accurate predictions for **high-risk employees**. they could be assigned a *risk category* based on the predicted label.

- Low-risk Label < 0.6
- Medium-risk Label 0.6 >=<= 0.8
- High-risk Label > 0.8

Having a plan for each group is important, discussing the work environment with manager to indentify steps to improve the situation.

End Project

a Created in Deepnote(https://deepnote.com?utm_source=created-in-deepnote-cell&projectId=b048325a-8a20-4a84-a12b-a1cbf86f9889)

A6 Plotting similar pattens

Added as html file A6