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Abstract: Predicting discharges in sewage systems play an essential role in reducing sewer overflows
and impacts on the environment and public health. Choosing a suitable model to predict discharges
in these systems is essential to realizing these aforementioned goals. Long Short-Term Memory
(LSTM) has been proposed as a robust technique for predicting discharges in wastewater networks.
This study explored the potential application of an LSTM model to predict discharges using 3-month
data set in a sewer network in Ålesund city, Norway. Different sequence-to-sequence LSTMs were
investigated using various input and output datasets. The impact of data aggregation (10-min and
30-min intervals) was examined and compared to original sensor data (5-min intervals) to evaluate
the performance of the LSTM model. The results show that 50-neuron LSTM architecture performed
better (MAPE = 0.09, RMSE = 0.0008, R2 = 0.8) in predicting discharges for the study area. The
study indicates that using the same sequence length for the prior and the forecast can improve
the effectiveness of the LSTM model. Based on the results, using a 10-min aggregated discharge
dataset reduces energy consumption, transmission bandwidth, and storage capacity. Additionally, it
improves prediction performance compared to an original 5-min interval data in Ålesund city.

Keywords: time-series forecasting; discharge prediction; sewer pipe; Long Short-Term Memory;
Ålesund; Norway

1. Introduction

Pipelines, manholes, and pumps mainly characterize wastewater and stormwater
drainage systems. Wastewater pipelines collect and transport wastewater from households
and industries, while stormwater pipes mainly collect and transport runoffs from rain-
fall and snowmelt [1]. In many European countries, there are combined sewer systems
(CSSs), designed and built for the collection and transport of wastewater and stormwater.
For instance, in Norway, sewers comprising of CSSs and stormwater drains account for
35,900 km and 15,700 km, respectively, of the entire sewer system [2]. Rapid urbanization
combined with increased precipitation due to climate change and low investments in the
rehabilitation of aging CSSs have resulted in the increased incidence of combined sewer
overflows (CSOs) in Norway [3–5]. A study by Nilsen et al. [5] revealed a significant
relationship between the volume of CSOs in the sewer network in Oslo and flood events.

A study has also shown the utility of forecasting in developing risk analysis models
for the optimal operations of a reservoir to reduce flood incidents [6]. According to the
International Committee for Weights and Measures, flows in wastewater pipes remain a

Water 2022, 14, 300. https://doi.org/10.3390/w14030300 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w14030300
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0003-0475-1365
https://orcid.org/0000-0001-5161-6479
https://orcid.org/0000-0002-3137-0915
https://doi.org/10.3390/w14030300
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w14030300?type=check_update&version=3


Water 2022, 14, 300 2 of 17

significant challenge [7], and increased sediment deposition with limited self-cleansing has
often led to the reduction of the capacity of wastewater pipes [8,9].

The occurrence of CSOs not only pollutes the natural environment but can also result
in deleterious public health impacts [10]. For instance, hazardous chemicals, such as
mercury, zinc, lead, and chromium, usually present in stormwater/wastewater can affect
fauna and flora when discharged untreated into the environment [1]. There are currently no
robust early warning systems in many cities in Europe in general, and Norway in particular,
designed to reduce the incidence of CSOs and mitigate the associated environmental and
public health risks. According to Hanssen-Bauer et al. [11], precipitation is expected to
increase by 20% in the next 80 years. This will result in further stresses on CSSs and major
CSOs if the current rate of investments in CSSs remains the same. In the last decade, there
has been a renewed interest in forecasting discharges in sewer and wastewater networks to
help utilities prepare for the adverse impact of overflows and develop measures to manage
these drainage systems more effectively. Wang et al. [12] highlighted the role of long-term
discharge forecast in environmental protection, effective management of drought, and the
optimization of hydraulic system operations. The result showed that Wastewater Treatment
Plants (WWTPs) operate more effectively when discharges in the networks are known with
some degree of certainty [13,14].

For forecasting discharges in stormwater/wastewater pipe systems, municipalities in
Norway are investing in sensors installations and IoT systems for the real-time collection
of discharge data from their wastewater/stormwater water pipe network. The aim is to
develop a real-time predictive discharge modeling framework using big data to mitigate
the incidence of CSOs, reduce impacts on the environment, and better plan investment pri-
oritization for their wastewater/stormwater pipe networks. For such a real-time predictive
discharge modeling framework to be useful, there is a need for an appropriate modeling
algorithm that (a) accounts for the variability and sensitivity in the discharge data from
installed sensors, (b) has a high predictive performance with a reasonable a-prior time lag,
and (c) is cost-effective through data aggregation.

Therefore, developing a real-time predictive modeling framework based on IoT and
big data to account for discharges in CSSs is critical. This will enable decision makers to
prepare in advance for possible CSOs and develop the necessary mitigation measures to
reduce any adverse impacts.

Traditionally, hydraulic models have been used to forecast discharges, and these mod-
els have achieved some appreciable performance [15–17]. However, most of these models
do not accurately forecast water levels compared to observations [15]. In addition, the
anticipated real-time capacity of hydraulic models has been limited to extreme flood events
because of uncertainties associated with input parameters [16]. Zhang et al. [14] showed
that hydraulic models are unsuitable for time-series discharge forecasts because of their
computational burden, numerous input parameters, and requirement for detailed informa-
tion about the system, which is most often non-existent. In general, good foreknowledge
of the sewer network is required to implement the hydraulic models. The calibration,
simulation, and operation of these models are manual and time consuming [13].

In an attempt to address some of the deficiencies of physical-based hydraulic models,
statistical models for time-series prediction have been adopted in previous studies. Box
et al. [18] introduced Auto Regressive Moving Average (ARMA) and Auto-Regressive Inte-
grated Moving Average (ARIMA) for time-series forecasting, which has become one of the
most utilized statistical methods in hydrological forecasting [19]. Valipour [20] presented
a comparative study of various statistical models, such as applied Auto-Regressive (AR),
Moving Average (MA), ARMA, and ARIMA, for time-series analysis and forecasting of
the monthly reservoir inflow of the Dez dam. A statistical method based on the canoni-
cal correlation analysis method was also presented by Uvo and Graham [21] to forecast
seasonal runoff in northern South America. In addition, some studies have used hybrid
statistical–hydrological approaches to forecast seasonal discharge streamflow [22], but
these approaches require significant efforts for the hydrological simulation [23]. Other
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hybrid methods based on the combination of ARIMA and different algorithms, such as
Genetic Programming (GP) [24,25], Artificial Neural Networks (ANNs) [26], Support Vector
Machine (SVM) [27], and Elman’s Recurrent Neural Networks (ERNN) [28], have been
used to improve time-series prediction performance. Even though statistical and statistical–
hydrological models have presented another frontier for discharge prediction, they are
most often plagued by substantial inefficiencies. Most statistical models fail to capture the
complex nonlinear dynamics of sewer discharges [24,29] and also require foreknowledge
of discharge distributions [30].

Deep learning algorithms based on Artificial Neural Networks (ANN) have been rec-
ommended for processing sequential data or time-series prediction [31–33]. Among them,
Recurrent Neural Networks (RNN) has been shown to be an effective model for time-series
forecasting since this model can “remember” prior information and has been effectively
applied for forecasting sequential and time-series data [34]. In time-series forecasting,
historical data for an extended period plays a vital role in accurate prediction because the
predicted values can be determined based on their patterns in the past [35]. However, one
limitation of RNN is that it is unable to accurately learn some exceptionally long period
dependencies [36,37]. The Long Short-Term Memory (LSTM) network was proposed to
deal with this problem [38]. LSTM was introduced by Hochreiter and Schmidhuber [39] as
a particular type of RNN [40]. This structure also helps the LSTM network “learn” long-
term dependencies in data [41]. LSTM has found application in finance and production
forecast [42,43] but not so much in hydrological time-series prediction of discharges in
wastewater and stormwater drainage systems. Therefore, the effectiveness of LSTM should
be further investigated to reach reasonable conclusions. For instance, Jenckel et al. [40]
showed that an inappropriate input sequence length would reduce LSTM’s understand-
ing/learning ability, as it often groups indistinguishable variables into clusters, and this
does not improve predicting performance. This study assessed the effects of input sequence
on the LSTM model’s predicting ability and proposed a sensitive LSTM architecture and
input sequence to predict discharges in a combined sewer pipeline.

Additionally, there is the need to explore data frequency or data aggregation and its
impact on predicting discharges in sewer networks using LSTM. Extremely high-frequency
data exhibit too much noise to the extent that there could be no clear pattern for the LSTM
models to learn. Too many or too few data are known to result in confusion, lack of clarity,
and misunderstanding [44]. Effective data aggregation could potentially reduce the cost of
operating Supervisory Control and Data Acquisition (SCADA) networks since energy usage,
data storage, and bandwidth would be reduced if it is established that aggregated data
provide similar or better forecast accuracy. Therefore, it is crucial to explore the capability
of LSTMs under these conditions and recommend appropriate architecture, sequence
length, and optimal data aggregation strategy to enhance the prediction of discharges in
drainage systems.

The overall aim of this study is to predict discharges in the sewer network using an
integrated LSTM and entropy-A-TOPSIS modeling framework. The specific objectives are
to (a) explore different LSTM architecture for predicting discharges in the sewer network
using the sequence-to-sequence approach, (b) determine the optimal LSTM architecture
using the entropy A-TOPSIS method, and (c) assess the effect of data aggregation on the
performance of the A-TOPSIS-inspired LSTM architecture.

2. Materials and Methods
2.1. Study Area and Data Used
2.1.1. Description of the Study Area and Sensors Installation

The study was undertaken in Ålesund city, which is located along the West Coast of
Norway. The city has a population and an area of approximately 66,100 and 633.6 km2,
respectively [45]. Ålesund experiences high precipitation throughout the year, with an
annual average rainfall of 2100 mm [46]. In the driest month (May) of the year, the rainfall
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averages 104 mm, while the highest rainfall occurs in December, with an average of 230 mm.
This rainfall regime results in significant stress on sewer networks, with resultant CSOs.

The drainage network in Ålesund consists of about 37,088 pipes with a total length of
836 km. The total length of wastewater, stormwater, and combined pipes is approximately
417 km, 313 km, and 106 km, respectively. A part of the drainage network in the city
is shown in Figure 1. In the Spjelkavik area of the city, flow sensors were installed in
the stormwater/wastewater pipe networks for the real-time collection of discharge data.
In addition to the flow sensors, a total of two rain gauges were installed to account for
precipitation (Figure 1). In this study, a combined wastewater pipeline was selected based
on the available dataset. The combined sewer pipeline is located in an area with a great
deal of commercial centers and residential buildings with the potential of being affected by
combined sewer overflows.
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Figure 1. The overview of sample discharge and drainage network in the study area.

2.1.2. Data Collection and Transmission

Univariate time-series discharge data in the selected wastewater/stormwater pipe
were recorded at a time interval of 5-min by the installed flow sensor and transmitted to
a cloud-based platform (Regnbye.no) via an IoT system. The data were collected from
14:50:00 (8 September 2020) to 11:45:00 (14 December 2020), resulting in 27,900 distinct data
points. Data from the rain gauges in the area were also collected at an interval of 5-min and
transmitted to the same platform.

The platform deployed by Rosim AS has three different layers: sensing layer, network
layer, and application layer [47]. Sensors and rain gauges are situated in the sensing layer,
which continuously receives data (including level and velocity of water in pipes) and
transmits them through wireless communication protocols in the network layer. The
processing and visualization of the data take place in the application layer [13,47].

2.2. Proposed LSTM Architecture for Predicting Discharges in Sewer Pipes
2.2.1. Long Short-Term Memory

LSTM networks have a similar structure to traditional RNNs, a chain of repeating
modules of neural networks (Figure 2). However, instead of having a single neural network
layer as RNNs, LSTM architecture includes “gates”. The original LSTM model includes only
input and output gates. However, recent implementations of the LSTM cell architecture
include a forget gate [48].
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Information can get into, stay in, or be read from the cell by using the control gates
and memory cell, presented by the following equations:

Input gate:
it = σ(Wihht−1 + Uixxt + bi), (1)

Forget gate:
ft = σ

(
W f hht−1 + U f xxt + b f

)
, (2)

Cell state:
Ct = ft × Ct−1 + it × tanh(Wchht−1 + Ucxxt + bc), (3)

Output gate:
ot = σ(Wohht−1 + Uoxxt + bo), (4)

Output vector:
ht = ot × tanh(Ct), (5)

where σ is the sigmoid activation function, and the operator “× ” denotes the pointwise
multiplication of two vectors. Both the forget gate and the output gate play an important
role in improving the performance of the model, and removing any of these gates will
noticeably reduce the effectiveness of LSTM architecture [49]. In general, these gates
help LSTMS to “remember“ and “learn” previous information, which is essential for the
time-series prediction of discharges.

LSTM architectures can either be implemented using a single hidden layer or multiple
hidden layers. An LSTM network with several hidden layers may enhance forecasting
performance under certain conditions albeit more complex, difficult to track, and unex-
plainable [50]. There is no consensus that adding additional hidden layers will result in
an immediate boost in forecast performance. For this reason, some studies have argued
that single hidden layer LSTMs are sufficient for time-series prediction [51]. Therefore, a
single hidden layer network was utilized in this study. Determining the optimal number of
neurons in the hidden layer(s) is challenging because too many or too few neurons nega-
tively affects the model’s accuracy and performance [52]. The LSTM model would quickly
result in overfitting with too many neurons. Otherwise, the accuracy will be low due to a
too-simple model [52]. Therefore, selecting an appropriate architecture is critical for the
accuracy and performance of the LSTM. In this study, the ranking of the various LSTM
architectures was accomplished through A-TOPSIS, an Alternative Technique for Order
Preference by Similarity to Ideal Solution [53]. The A-TOPSIS algorithm has been used in
literature to compare the performance of several ML classification algorithms [54,55].

2.2.2. Entropy A-TOPSIS for Optimal LSTM Architecture Selection

The core of the A-TOPSIS procedure is TOPSIS, a potent multi-criteria decision-making
tool that allows trade-offs amongst criteria. Thus, all criteria contribute their quota towards
the ideal solution where a weakness in one criterion is compensated for by the strength
of another criterion [53]. However, TOPSIS requires the priority ranking of criteria (im-
portance weight computation), which is not accounted for in the methodology. For this,
the entropy weight computation approach is employed [56,57] to objectively compute the
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importance/weight of each performance metric utilized in the ranking of the LSTM archi-
tectures. The performance metrics considered include the Mean Absolute Percentage Error
(MAPE), Root Mean Square Error (RMSE), and coefficient of determination (R2). MAPE
evaluation criterion is sensitive to relative errors and not perturbed by global scaling of the
target variable [58]. RMSE represents the difference between the observed and predicted
values; a good model will give the smallest RMSE value. R2 represents an indication of
goodness of fit and a measure of a predicted model, and the best possible score is 1.0.
However, it can be negative in cases where the model is worse. These performance criteria
were calculated by the following equations:

MAPE =
1
n

n

∑
i=1

∣∣∣yobs
i − ypred

i

∣∣∣
max

(
ε,
∣∣yobs

i

∣∣) , (6)

RMSE =

√
1
n

n

∑
i=1

(
yobs

i − ypred
i

)2
, (7)

R2 = 1−
∑n

i=1

(
yobs

i − ypred
i

)2

∑n
i=1
(
yobs

i − y
)2 , (8)

where n is the total of data points; yobs
i and ypred

i are the ith observed and predicted values,
respectively; and y is the mean value of the observed value. These aforementioned perfor-
mance metrics will be calculated using corresponding functions in the Scikit-Learn library.

The initializing of weights in LSTMs is stochastic [59], and this implies results can
differ from one training phase to another using the same model architecture and data.
The repeated calculation approach has been implemented in various studies to reduce the
effects of random weight initialization of the LSTM model [60]. Therefore, the training of
each LSTM architecture was repeated 20 times to make a comparison between different
LSTM models in this study.

The entropy A-TOPSIS framework ranks the LSTM architectures based on the mean
and standard deviations of the aforementioned performance metrics. The procedure for
the entropy A-TOPSIS framework is outlined in the following steps:

• Step 1: Determine the mean (M) and standard deviations (µ) metrics:

M =

MAPE RMSE R2

LSTM1
. . .

LSTM8

 x11 x12 x13
. . . . . . . . .

x81 x82 x83

 ; µ =

MAPE RMSE R2

LSTM1
. . .

LSTM8

 µ11 µ12 µ13
. . . . . . . . .
µ81 µ82 µ83

 , (9)

where LSTM1, LSTM2, . . . , LSTM8 are the eight LSTM architectures corresponding to 1, 5,
10, 20, 50, 100, 200, and 500, respectively (Figure 3); and xij and µij represent the mean and
standard deviation of the performance criteria, respectively.
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• Step 2: Normalize the mean (P)M and standard deviations (P)m metrics:
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(P)M =
(

pM
ij

)
M

; (P)m =
(

pm
ij

)
m

, (10)

pM
ij =

xij

∑8
j=1 xij

; pµ
ij =

µij

∑8
j=1 µij

(11)

• Step 3: Identify positive ideal solution (A+) and negative ideal solution A− of the
mean and standard deviation normalized metrics:

A+
k =

(
p+1 , p+2 , p+3

)
k; A−M =

(
p−1 , p−2 , p−3

)
k, (12)

p+j =

(
max

i
pij, j ∈ J1; min

i
pij, j ∈ J2

)
p−j =

(
min

i
pij, j ∈ J1; max

i
pij, j ∈ J2

) , (13)

where J1 and J2 represent the sets of benefit and cost criteria, respectively.

• Step 4: Determine the entropy values of the mean and standard deviation normalized
data matrices as follows:

(ei)k =

(
− 1

ln(8)

8

∑
j=1

pijln
(

pij
))

k

, (14)

• Step 5: Compute the weighted Euclidean distances for the mean and standard devia-
tion values:


(

d+j
)

k
=

(√
3
∑

i=1
wi

(
d+ji
)2
)

k(
d−j
)

k
=

(√
3
∑

i=1
wi

(
d−ji
)2
)

k

, (15)

where: 
(

d+ji
)

k
=
(

p+i − pji
)

k;
(

d−ji
)

k
=
(

p−i − pji
)

k

(wi)k =

(
1−ei

∑3
i=1(1−ei)

)
k

(16)

• Step 6: Compute the relative closeness coefficient of the mean (ξ∗1) and standard
deviation (ξ∗2):

(
ξ j
)

k =

(
d−j

d+j + d−j

)
k

(17)

In these formulas, i ∈ [1, 3], j ∈ [1, 8], and k = 1, 2.

• Step 7: The final relative closeness coefficient (ξ) is calculated by repeating steps 1 to
6. However, in this case, the input matrix is ξ(ij). The overview of the entire procedure
is shown in Figure 3.

2.2.3. Model Design and Implementation

In this study, the number of neurons in the hidden layer was investigated using the
A-TOPSIS-inspired optimal LSTM architecture selection. To investigate how different input
datasets affect the multi-step forecasting accuracy of the LSTM architecture, we utilized
a prior sequence length of 1-h, 2-h, and 3-h to forecast the next 1-h, 2-h, and 3-h using
three different input datasets: the original 5-min interval data, aggregated 10-min, and
aggregated 30-min interval data, respectively. The 10-min and 30-min aggregated datasets
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were obtained by accumulating discharges at the corresponding times from the original
dataset. The procedure for data processing is shown in Figure 4.
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In this study, the sequence-to-sequence technique has been used to ascertain how the
change in sequence input data affects forecasting accuracy for fixed sequence output. For
each of the 1-h, 2-h, and 3-h forecasts, we utilized all prior sequence lengths. The effect of
the number of neurons in the hidden layer was also investigated in this study.

The LSTM was implemented using the Keras library. This open-source software
library is developed for artificial neural networks and deep learning [47], which provides
a python interface and supports multiple backends, including TensorFlow, Theano, and
Microsoft Cognitive Toolkit [61]. Keras with TensorFlow backend, an open-source software
developed by Google for deep learning, was used in this study. The learning rate was
set to 0.001, an Adam optimizer was used as an optimization function, and the batch size
was set to 128. These values were used based on previous studies [13,62–64]. There is
no universal guidance for choosing ratio split of training/testing data set, and this scale
depends on particular studies. For example, Zhang et al. [13] used 75% and 25% of the
data set for training and testing the LSTM model, and the ratio of 80/20 or 70/30 was
chosen to train LSTMs in other studies [50,65]. Next, the ratio of 90% and 10% of data was
implemented for training and testing of the LSTM model in the study by Cao et al. [42].
To estimate the forecasting performance of the LSTM model, the data were divided into a
training set, validation set, and testing sets with a ratio of 50%, 20%, and 30%, respectively
(Figure 5). Before being trained, the data were scaled in the range (0, 1), and the final
results were rescaled to get the real values. Normalizing the data while training generally
speeds up learning and leads to faster convergence [66]. To avoid overfitting while training
the LSTM models, an early-stopping technique [67] was employed. The early-stopping
method automatically stops the training process when the model performance does not
improve anymore.
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3. Results
3.1. Forecasting the Next 1-h Sequence

The next 1-h sequence of discharges in the combined sewer system was predicted
using the 1-h, 2-h, and 3-h previous sequences. Table 1 presents the mean and standard
deviation of MAPE, RMSE, and R2 performance metrics after 20 runs to fully capture the
performance of the LSTM architectures. In addition, the relative closeness coefficient (ξ)
and rank of each LSTM architecture based on the entropy A-TOPSIS method are shown in
Table 1.

Table 1. Results of forecasting the next 12 steps.

Step Back–Step Ahead Neurons MAPE RMSE (×10−3) R2 ξ Rank

12–12

1 0.216 ± 0.126 1.820 ± 1.005 −0.401 ± 1.184 - -
5 0.104 ± 0.083 0.903 ± 0.660 0.597 ± 0.763 0 7

10 0.090 ± 0.060 0.796 ± 0.480 0.721 ± 0.554 0.374 6
20 0.076 ± 0.001 0.680 ± 0.004 0.848 ± 0.002 0.994 3
50 0.076 ± 0.001 0.677 ± 0.004 0.850 ± 0.002 0.999 2
100 0.076 ± 0.001 0.677 ± 0.004 0.850 ± 0.002 0.999 1
200 0.076 ± 0.001 0.678 ± 0.007 0.849 ± 0.003 0.987 4
500 0.078 ± 0.003 0.691 ± 0.024 0.843 ± 0.011 0.949 5

24–12

1 0.243 ± 0.130 2.014 ± 1.036 −0.666 ± 1.222 - -
5 0.090 ± 0.060 0.795 ± 0.481 0.720 ± 0.556 0.153 6

10 0.077 ± 0.001 0.691 ± 0.010 0.843 ± 0.005 0.972 3
20 0.076 ± 0.001 0.686 ± 0.010 0.846 ± 0.004 0.993 2
50 0.076 ± 0.001 0.684 ± 0.010 0.846 ± 0.003 1.000 1
100 0.087 ± 0.045 0.774 ± 0.380 0.758 ± 0.383 0.340 5
200 0.096 ± 0.055 0.841 ± 0.453 0.704 ± 0.458 0.094 7
500 0.079 ± 0.003 0.700 ± 0.020 0.839 ± 0.009 0.916 4

36–12

1 0.260 ± 0.123 2.149 ± 0.975 −0.815 ± 1.173 - -
5 0.118 ± 0.098 1.016 ± 0.786 0.468 ± 0.913 0.372 6

10 0.078 ± 0.001 0.695 ± 0.010 0.841 ± 0.005 0.996 2
20 0.085 ± 0.036 0.755 ± 0.286 0.787 ± 0.250 0.834 4
50 0.077 ± 0.001 0.693 ± 0.010 0.842 ± 0.003 1.000 1
100 0.089 ± 0.049 0.790 ± 0.392 0.747 ± 0.404 0.755 5
200 0.137 ± 0.138 1.154 ± 1.032 0.230 ± 1.697 0 7
500 0.083 ± 0.018 0.733 ± 0.122 0.819 ± 0.078 0.926 3

Note: Bold figures represent the optimal LSTM architecture under each step back–step ahead sequence.

The result in Table 1 indicates that: (1) in all cases, the LSTM model with one neuron
in the hidden layer gave the worst prediction. The LSTM architecture, in this case, was
too simple and could not represent the characteristics of discharges; (2) in general, when
the number of neurons in the hidden layer is increased, the performance of the LSTM
model also increased but plateaued at some point, and after that, performance worsened.
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Specifically, as more neurons are added from 1 to 50 neurons, MAPE and RMSE decrease,
while R2 increased, which is an indication of performance accuracy improvement. From
100 neurons, performance worsens significantly, and in most cases, MAPE and RMSE
increase, while R2 decreases.

Across all prior sequence lengths for 1-h ahead discharge prediction, LSTM archi-
tecture with 50 neurons seems to present the best forecast accuracy with regards to the
performance criteria specified. Even though it is the second best in the 12–12 sequence
prediction, a critical look at the individual metrics reveals a very negligible lead of 0.0002
by the LSTM architecture of 100 neurons in the entropy A-TOPSIS ranking. It is always
recommended to choose less complicated models for implementation. From Table 1, it is
evident that the best prior sequence length to utilize for forecasting the next 1-h is 12 steps
back ahead, which is equivalent to the previous hour. Prediction accuracy of the next 1-h
ahead deteriorates when the input sequence is increased to include the previous 2-h and
3-h. Based on the results presented in Table 1, LSTM architecture with 50 neurons utilizing
the previous 1-h data as input sequence was most appropriate for 1-h ahead prediction of
discharges in the sewer network under study.

3.2. Forecasting the Next 2-h Sequence

The next 2-h sequences were forecasted using the 1-h, 2-h, and 3-h previous input
data. The results are shown in Table 2. Similar results to that of a 1-h ahead forecast can be
seen. In this case, the performance of the LSTM model increased as the number of neurons
increased but plateaued at some point, and after that, the performance worsened.

Table 2. Results of forecasting the next 24 steps.

Step Back–Step Ahead Neurons MAPE RMSE (×10−3) R2 ξ Rank

12–24

1 0.233 ± 0.119 1.953 ± 0.96 −0.536 ± 1.189 - -
5 0.148 ± 0.104 1.255 ± 0.84 0.265 ± 1.025 0 7

10 0.109 ± 0.057 0.946 ± 0.46 0.642 ± 0.559 0.575 6
20 0.096 ± 0.004 0.842 ± 0.03 0.767 ± 0.019 0.980 4
50 0.095 ± 0.001 0.837 ± 0.01 0.770 ± 0.003 0.996 1
100 0.094 ± 0.002 0.832 ± 0.02 0.773 ± 0.008 0.994 2
200 0.096 ± 0.002 0.844 ± 0.02 0.766 ± 0.013 0.984 3
500 0.100 ± 0.009 0.874 ± 0.08 0.748 ± 0.047 0.933 5

24–24

1 0.240 ± 0.127 1.993 ± 1.02 −0.628 ± 1.265 - -
5 0.120 ± 0.080 1.034 ± 0.64 0.523 ± 0.775 0.323 6

10 0.091 ± 0.002 0.812 ± 0.02 0.784 ± 0.008 0.989 3
20 0.091 ± 0.002 0.811 ± 0.01 0.784 ± 0.007 0.994 2
50 0.091 ± 0.001 0.808 ± 0.01 0.786 ± 0.003 1.000 1
100 0.096 ± 0.019 0.855 ± 0.19 0.749 ± 0.153 0.868 5
200 0.093 ± 0.004 0.826 ± 0.03 0.776 ± 0.016 0.967 4
500 0.123 ± 0.118 1.034 ± 0.86 0.421 ± 1.539 0 7

36–24

1 0.258 ± 0.120 2.142 ± 0.96 −0.796 ± 1.207 - -
5 0.098 ± 0.006 0.857 ± 0.04 0.758 ± 0.021 0.991 2

10 0.104 ± 0.045 0.918 ± 0.36 0.683 ± 0.383 0.823 4
20 0.097 ± 0.003 0.860 ± 0.03 0.757 ± 0.014 1.000 1
50 0.100 ± 0.010 0.899 ± 0.11 0.731 ± 0.074 0.958 3
100 0.131 ± 0.082 1.137 ± 0.65 0.443 ± 0.757 0.554 6
200 0.149 ± 0.161 1.237 ± 1.17 0.071 ± 2.157 0 7
500 0.111 ± 0.061 0.975 ± 0.49 0.614 ± 0.622 0.722 5

Note: Bold figures represent the optimal LSTM architecture under each step back–step ahead sequence.

The 50-neuron LSTM model seems to work well with the prior 1-h and 2-h interval data.
However, when the previous sequences’ input data were larger than the 2-h interval, the
model became unstable as evident in the significantly larger standard deviations recorded
by all performance metrics.
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Summarily, the results in Tables 1 and 2 indicate LSTM architecture with 50 neurons
is the best for forecasting the next 1-h and 2-h discharges in sewer networks using a prior
sequence of 1-h and 2-h, respectively. Moreover, the optimal number of neurons in the
hidden layer depends on the prior sequence and the subsequent sequence inputs. To
predict future discharges with some degree of certainty, the input sequence length must not
be greater than the number of prediction steps. Based on the results presented in this work,
using equal input and output sequence presents the best results in forecasting discharges
in sewer networks using LSTM (see Table 1, 12–12 and Table 2, 24–24). However, it should
be noted that predicting long periods of discharge results in a noticeable decrease in model
performance. Comparing the performance metrics of predicting 1-h and 2-h discharge
using the prior sequence of 1-h and 2-h, respectively, the short-term prediction of 1-h
discharges results in a more robust and stable performance.

Additionally, increasing the number of previous input steps had adverse effects on
the performance of the LSTM model even with an optimal neuron count. Using LSTMs
with large neurons does not automatically increase performance. It most often just adds
unnecessary complexity and increases the training time for the training model. Attempts to
forecast the subsequent 3-h discharge proved futile, as the LSTM models became unstable
across multiple runs. Based on the results of this study, and supported by the studies
of Salas et al. [68] and Brian Cosgrove [69], LSTMs are most appropriate for short-term
forecasting of discharges.

3.3. Forecasting Discharges Using Aggregated Time Intervals

With the most appropriate LSTM architecture, input, and output sequence dynamics
realized from the previous section, we sought to ascertain the impact of data aggregation
on predicting discharges. The 50-neuron LSTM architecture was used to forecast discharges
for the next 1-h using the previous sequence of 1-h on the 10-min and 30-min aggregated
dataset. The aggregated intervals were obtained by aggregating the original interval with
frequencies of 10-min and 30-min. The results are compared with the original 5-min data
and presented in Figure 6. Calculations of MAPE, RMSE, and R2 of different intervals are
shown in Table 3.
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Table 3. Comparison of differences between original and aggregated intervals.

Aggregation MAPE RMSE (×10−3) R2

5-min Interval 0.118 0.996 0.674
10-min Interval 0.069 1.265 0.866
30-min Interval 0.072 3.835 0.859

As expected, the results show that the RMSE increases with increasing data aggregation
intervals. Specifically, RMSE increases from 0.996 to 1.265 when the aggregation interval
increases from 5-min to 10-min. However, this value increases by almost nine times when
the aggregation interval changes from 10-min to 30-min. The predictions from the 5-min
and 30-min interval data had a lower performance than the 10-min interval. This is reflected
by a decreasing trend of MAPE (from 0.118 to 0.069) and an increasing trend of R2 (0.674 to
0.866) from 5-min to 10-min intervals and corresponding opposite changes of these values
when the aggregation interval increases from 10-min to 30-min. Even though the original
(5-min interval) data have a very high temporal resolution, they do not contain more
information about the pattern of the discharges than the aggregated data. We presume
that the high-intensity data fluctuate a great deal and therefore have no general pattern for
ML or deep learning algorithms to learn. The aggregated data lessen the impact of these
fluctuations and present a more tractable pattern for ML and deep learning algorithms to
learn. Comparatively, the 10-min data aggregations presented better results.

4. Discussion

The results in this study agree with a previous study by Tran et al. [70], where it was
shown that a deep neural network with fewer hidden neurons could perform better than
complex architecture in time-series prediction. Likewise, Thi Kieu Tran et al. [71] showed
that a single hidden layer neural network (including ANN, RNN, and LSTM) had better
performance compared to two or three hidden layers in forecasting temperature. Moreover,
the study by Lee et al. [72] achieved better performance in forecasting rainfall when the
number of independent variables, and the number of neurons in the hidden layer decreased
from 11 to 5 and from 4 to 2, respectively. This could be explained by an excessively complex
neural network architecture (too many hidden layers and/or neurons in the hidden layer(s))
might lead to time-consuming, useless processes [73] and over-fitting [74]. In contrast, an
excessively simple neural network obviously cannot learn much useful information from
input patterns and results in increased errors and under-fitting [70,75].

The study by Ke and Liu [73] proposed a formula for calculating optimum neurons
in the hidden layer of the neural network model, and several rules-of-thumb criteria for
choosing appropriate hidden layer neurons were introduced in the research of Gaurang
et al. [75]. In general, these studies discover the relationship between the number of hidden
neurons and the number of input/outputs. Furthermore, they concluded that these rules
were not always valid for all cases. The results in this study strengthen these conclusions. In
particular, when input sequences changed (24–36 steps in Table 1 or 12–24 steps in Table 2),
the optimal neurons in the hidden layer remained at 50. This could be explained by the
noise degree in the sample dataset [73]. If the degree of the noise of the input sample does
not change significantly, increasing input sequence length cannot affect hidden neurons
remarkably. Therefore, preprocessing data to decrease noise or eliminate outliers should be
considered before building ANN to improve prediction performance and accuracy.

Choosing optimal sampling intervals to improve modeling performance significantly
depends on the kind of dataset and research purposes. For example, high sampling
resolutions of 10-s to 1-min outperformed 5-min to 15-min resolution in quickly detecting
small leakages in a water-use simulation [76]. On the other hand, in a water distribution
network, Kirstein et al. [77] showed that sampling intervals below 30-min could not further
improve model calibration accuracy and applicability. The above examples indicate that
sampling intervals should be considered to improve discharge’s predicted performance in
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the sewer network. This study reveals that the 10-min aggregation data from the original
5-min interval can improve predicting performance in the study area.

An advantage of data aggregation is that it does not only help with clear pattern(s)
recognition in the data, but it also reduces the cost of SCADA operation. Power consump-
tion, transmission bandwidth, and storage space are reduced while significantly achieving
better accuracy on future prediction of discharges. Saving energy, enhancing storage capa-
bility, and improving prediction accuracy are highly critical to networks, which use wireless
sensors to monitor and transfer data. For example, the lifetime of a Wireless Sensor Network
(WSN) was impressively improved from only a few days to 418 days by implementing
data aggregation [78]. Data aggregation was proven to be a helpful technique in reducing
power consumption and enhancing the lifetime of WSN [79,80]. Based on results in this
study, utilizing the 10-min aggregated data, a potential cost saving of 50% could be realized
if the frequency of the data acquisition system deployed by Regnbyge.no is increased from
5-min to 10-min. This study has shown that it is possible to achieve better performance
on discharge prediction using low-frequency data, which better represents the inherent
trend in the data. However, the study is not without limitations. The LSTM algorithms
take much time to execute, as it takes a significant amount of time for the hyperparameters
of the network to be optimized. Secondly, the LSTM architectures obtained in this study
were based on only one discharge location in the sewer network and may therefore not be
applicable to other locations with different discharge patterns.

5. Conclusions

This study explores the potential application of an LSTM model for forecasting dis-
charges in a combined sewer pipe using the sequence-to-sequence technique. Different
LSTM architectures were implemented and ranked using entropy A-TOPSIS. The results
showed that an LSTM model with very few neurons in the hidden layer did not effectively
predict discharges. Increasing neurons in the hidden layer can help the LSTM model learn
the dataset’s characteristics effectively and produce reliable predictions. However, the
LSTM model with excessive neurons in the hidden layer performed poorly. Using about
50 neurons in the hidden layer produced very good predictions. Various sequence input
data have been investigated to forecast discharges. It was shown that using excessive
data input can make the LSTM model operate in an unstable state, and the accuracy of
forecasted values becomes unpredictable. Different prior and subsequent inputs affect the
optimal number of neurons in the hidden layer, resulting in reduced model prediction per-
formance. Equal input and output sequences present the best results in terms of discharge
forecast accuracy.

This study also showed that increasing the signal receiving frequency can improve
the accuracy of discharge prediction. However, using high-frequency data will reduce
the forecasting accuracy in the LSTM model and consume more storage, transmission
bandwidth, and energy resources. This study showed that using a 10-min interval as an
input sequence for the LSTM model performed better than a 5-min or 30-min interval for
this particular study. Managers of sewer systems should consider setting up reasonably
low signal-receiving frequency to capture the inherent trends in discharge data without
excessive fluctuations.

The optimal entropy A-TOPSIS inspired LSTM will be implemented in a real-time
stormwater-control strategy in collaboration with the Ålesund Municipality as a part of a
Smart Water Project. The implementation will be based on long-term flow data, which are
currently being collected in the sewer network using a network of flow sensors.
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Abbreviations

Abbreviation Meaning
LSTM Long Short-Term Memory
CSSs Combined Sewer Systems
CSOs Combined Sewer Overflows
WWTPs Wastewater Treatment Plants
IoT Internet of Things
ARMA Auto-Regressive Moving Average
ARIMA Auto-Regressive Integrated Moving Average
AR Auto-Regressive
MA Moving Average
GP Genetic Programming
ANNs Artificial Neural Networks
SVM Support Vector Machine
ERNN Elman’s Recurrent Neural Networks
RNN Recurrent Neural Networks
SCADA Supervisory Control And Data Acquisition
TOPSIS The Technique for Order Preference by Similarity to Ideal Solution
WSN Wireless Sensor Network
σ The sigmoid activation function
W, U The weights
b The bias
MAPE Mean Absolute Percentage Error
RMSE Root Mean Square Error
R2 Coefficient of determination
yobs

i The ith observed value
ypred

i The ith predicted value
y The mean value of the observed value
ξ The relative closeness coefficient
xij The component in a row ith and column jth of the mean metric
µij The component in a row ith and column jth of the standard deviation metric
d The weighted Euclidean distance
e The entropy value
pij The component in a row ith and column jth of the normalized metric
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