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Abstract

A framework for unified analysis of small-signal and large-signal power system stabil-
ity based on static and dynamic eigenvalues is proposed in this paper. The presented
implementation is based on Gear’s method, which is a two-step integration method for
numerical simulation with self-adaptive time-step. Furthermore, it can be easily configured
for providing the state matrix as basis for calculating the system eigenvalues during simu-
lation. Thus, the presented framework allows for eigenvalue-based analysis of small-signal
dynamics and stability margin at any steady-state operating point during a time-domain
simulation. Furthermore, Linear Time-Varying system theory is utilized for modal analy-
sis during large-signal transients. For this purpose, dynamic eigenvalues and eigenvectors
are calculated by solving a Riccati equation to generalize the modal analysis during tran-
sient conditions. The stability is evaluated by calculating the Lyapunov exponent of the
mode-vector of the system. The results from numerical analysis of three case studies are
presented to evaluate and illustrate the characteristics of the presented approach for unified
small-signal and transient stability analysis.

1 INTRODUCTION

Large-scale introduction of converter-interfaced Renewable
Energy Sources (RESs), High Voltage Direct Current (HVDC)
transmission and Flexible AC Transmission Systems (FACTSs)
is increasing the complexity of power systems. Therefore, sta-
bility analysis will become more demanding [1, 2]. In particular,
power electronic components and their control loops can expe-
rience interactions with conventional power system elements,
which make the stability analysis more challenging than for con-
ventional systems dominated by synchronous machines[3]. In
this emerging context of modern AC/DC power systems, mul-
tiple components exhibit a wide range of time constants in their
dynamic response. Accordingly, improved techniques and new
tools should be adopted to accurately and efficiently analyze the
stability of modern power systems [4, 5].

In general terms, power system stability refers to the abil-
ity of an electric power system to recover an equilibrium point
with system variables bounded after being subjected to a dis-
turbance. Different categories of stability have been defined
and partly changed over time, but the definition of rotor angle
stability has been unaffected [6, 7]. It refers to the ability of
synchronous machines to remain in synchronism after being
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subjected to a disturbance. Rotor angle stability is categorized in
terms of two subcategories: Small-disturbance (or small-signal)
and large-disturbance (transient) rotor angle stability. Indeed,
many methods in the literature deal with stability analysis from
both point of views.

Small-signal stability analysis is based on linearizing the
nonlinear system around an operating point and subsequent
application of linear analysis [8]. The analysis can be based
on different methods such as: transfer function (closed/open
loop, single/multi-input and single/multi-output) [9], eigen-
value extraction from the state-space model of the system[10],
and impedance-based analysis using Nyquist theorem[10]. On
the other hand, large-signal stability analysis examines the power
system under nonlinear conditions. Lyapunov-based methods
are direct methods that examine the stability of a power system
without solving the differential equations [11–13]. However,
obtaining an appropriate Lyapunov function is very complicated
in a large-scale power system. Therefore, time-domain simu-
lation by numerical integration methods is currently the most
widely used approach for transient stability analysis. Differential
and algebraic equations of the power system are then solved by
a numerical method, and transient indices are derived from the
resulting time-domain response [14].
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FIGURE 1 Contribution of the proposed method in a stability analysis, a)
field of study of the proposed method, b) Switching between LTI and LTV in
the proposed method

Gear’s method as a second-order predictor-corrector method
is a stiff solver, which performs the integration operation
efficiently by adapting the step size automatically [15]. Imple-
menting variable-time step simulation of hybrid dq and phasor
models using Gear’s method has advantages compared to
methods implemented in the stationary frame. In this paper,
we are utilizing Gear’s method as a basis for developing a
numerical algorithm for power system simulation that can
simultaneously evaluate small and large-signal stability. The
background for the choice of numerical method is that: 1) It
is an adaptive step size algorithm, so it solves the challenge
of large and complex power systems.[16]; and 2) According
to the internal processes of the algorithm, it can be easily
adapted for calculating indices of both small- and large-signal
stability.

The main contribution of this paper is the introduction of a
framework for combining small- and large-signal stability anal-
ysis. This can avoid the need for evaluating non-linear and
linearized system models individually by using different tools
for the stability analysis. It is proposed to use the A-matrix as a
side-product of the Gear’s method in a procedure to detect new
information about the dynamic behavior of the simulated power
system. As shown in Figure 1a, the proposed method arises

from the connection of the numerical integration method and
modal analysis.

Consider as an example the generic time-domain response
of a generator shown in Figure 1b, in which the system is in
steady-state condition before time = 1 s. During steady-state
conditions, the method can extract the state matrix (A) of the
system, to evaluate the system’s stability margin by monitoring
the critical static eigenvalue (it is called “static” in this paper
because it is constant). However, the system is subjected to a dis-
turbance at time = 1 s and responds with a transient response.
During the transient condition (1 s < t < 4 s), the extracted A-
matrix of the stressed system will be time-varying, for which the
Linear Time-Varying (LTV) system theory is applicable. Finally,
after the transient behavior settles down (4 s < t < 6 s), the
small-signal dynamics can again be analyzed by tools for LTI
systems. In this paper, a unified method is proposed to perform
modal analysis both during steady-state and dynamic condi-
tions. It is worth noting that the assessment must be switched
from LTI to LTV and vice versa in Figure 1b. In the proposed
method, changes in he A-matrix is the indicator utilised for
switching between the two methods. If all elements of A-matrix
will be unchanged in successive time steps, the system is in a
steady-state condition, and LTI theory is applied. When one
array changes, the LTV theory will be applied.

The presented methods are inspired from the general idea
of unified small- and large-signal analysis introduced in [17].
However, the concept is further enriched by introducing LTV
system analysis for assessing the transient stability by calculation
of dynamic eigenvalues, dynamic eigenvectors and a Lyapunov
exponent. The features of the proposed method are evaluated
by analysis of three examples including a multi-machine power
system with an HVDC interconnection. The proposed method
can provide the following advantages:

∙ Unified analysis of small-signal and large-signal stability by
providing the possibility for small-signal stability analysis as
a part of an algorithm for numerical time-domain simula-
tion. Therefore, it is not necessary to evaluate the linear and
nonlinear models individually by different tools for stability
analysis.

∙ Systematic extraction of the “A”-matrix during time-domain
simulation as a basis for conventional small-signal analysis by
methods for LTI systems during steady-state conditions, and
for analysis of LTV systems during transient conditions.

∙ Evaluation of the extracted LTV system and its correspond-
ing dynamic eigenvalues and dynamic eigenvectors. This
allows for large signal instability detection by analysis of
the Lyapunov exponent in a unified framework for stability
analysis.

The rest of the paper will first give an overview of the applied
method for numerical simulation before introducing the con-
cept of dynamic eigenvalues and eigenvectors and how this
may be used to detect stability issues along the simulation tra-
jectory. Discussion of implementation details are included to
document how the applied method handles discrete events like
disturbances and the nonlinearity imposed by limiters in control
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systems. Furthermore, results from three case studies of differ-
ent complexity are included to demonstrate the performance of
the proposed concept.

2 GEAR’S METHOD

Gear’s method is a second-order numerical integration method
that operates on prediction and correction stages. It can adjusts
the integration step size based on the equations’ instantaneous
stiffness to fulfill the desired accuracy. It uses second-order Tay-
lor expansion to predict the variables in the prediction stage and
applies the Newton-Raphson method to correct the predictions
in the correction stage[15, 18].

For defining the implementation of Gear’s method we
consider a general nonlinear Differential-Algebraic Equa-
tion (DAE) on the form of

y′ = f (y, x, t )

0 = g(y, x, t ) (1)

where y is state variable, x is algebraic variable, f and g are non-
linear functions and t is time. In the prediction stage of Gear’s
method, the next step solution (yP

n+1, xP
n+1) and the first and

second derivatives are predicted by the Taylor expansion as: [19]

yP
n+1 = yn + Hn+1 y′n + H 2

n+1 y′′n ∕2, (2)

y
′P
n+1 = y′n + Hn+1 y′′n , (3)

y
′′P
n+1 = y′′n , (4)

xP
n+1 = xn + Hn+1 x′n + H 2

n+1 x′′n ∕2, (5)

x
′P
n+1 = x′n + Hn+1 x′′n , (6)

x
′′P
n+1 = x′′n , (7)

where H is the integral step size, y′, x′, and y′′, x′′ are first and
second derivatives. In the correction stage of Gear’s method, the
predicted values are corrected as:

yn+1 = yP
n+1 + Δy, (8)

y
′

n+1 = y
′P
n+1 + Δy I1∕Hn+1, (9)

y
′′

n+1 = y
′′P
n+1 + 2Δy I2∕H 2

n+1, (10)

xn+1 = xP
n+1 + Δx, (11)

x
′

n+1 = x
′P
n+1 + Δx I1∕Hn+1, (12)

x
′′

n+1 = x
′′P
n+1 + 2Δx I2∕H 2

n+1, (13)

where Δy and Δx are the differences of the predicted and cor-
rected values, respectively. I1 and I2 are constant values, which
depend on the integral step size as:

I1 =
2Hn+1 + Hn

Hn+1 + Hn
, (14)

I2 =
Hn+1

Hn+1 + Hn
. (15)

To solve the differential equation represented in (1), Gear’s
method defines a new function U based on (1) and (3) as
a replacement of the function f presented in (1). Un+1 is
extracted from the main nonlinear differential equation pre-
sented in (1) and the corrected value of the first derivative (y

′

n+1)
presented in (3).

Un+1 = y
′

n+1 − f (yn+1, xn+1, tn+1) = 0

Un+1 = Hn+1 y′P
n+1 + I1 Δy − Hn+1 f

(
yP
n+1 + Δy, xP

n+1

+ Δx, t + Hn+1
)
= 0. (16)

U is a newly defined differential equation presented in (16), and
g is the algebraic equation presented in (1). The new DAE is
converted to a system of Ordinary Differential Equation (ODE)
by differentiating it with respect to the variables as:

ΔU = Un+1 −Un = Un+1

=
𝜕U

𝜕y
Δy +

𝜕U

𝜕x
Δx

= I1 − H
𝜕 f

𝜕y
− H

𝜕 f

𝜕x
, (17)

Δg = gn+1 − gn = gn+1 =
𝜕g

𝜕y
Δy +

𝜕g

𝜕x
Δx, (18)

and they are represented in a matrix form as:

[
Un+1

gn+1

]
=

⎡⎢⎢⎣
I1 − H

𝜕 f

𝜕y
−H

𝜕 f

𝜕x

𝜕g

𝜕y

𝜕g

𝜕x

⎤⎥⎥⎦
[
Δy

Δx

]
. (19)

The only unknown variables in (19) are Δy and Δx, which are
computed by finding the roots of the system (Un+1 = 0, gn+1 =

0). Newton-Raphson is a well-known method for finding the
roots of coupled nonlinear equations. Changes to variables (Δx

and Δy) to approximate the next step solution are calculated by
solving (19). However, in the updating stage of Gear’s method,
the integral step size is adjusted by an internal loop based on the
approximation error. The flowchart of Gear’s method is shown
in Figure 2. According to the flowchart, the accuracy of the
approximation is checked by the Truncation Error (TE) defined
by (20):

TE = |z (tn+1) − zn+1| = 2K2 I2 ||Δz||, (20)
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FIGURE 2 Flowchart of Gear’s method

where z = [y, x] is a global variable including both differential
and algebraic variables and K2 is:

K2 =
(Hn+1 + Hn )2

6Hn+1(2Hn+1 + Hn )
. (21)

Based on the calculated Truncation Error (TE), the integral
step size of the algorithm is adapted as [19]:

Hnew = Ksc

√
TEds

2K2 I2 ||Δz|| Hold , (22)

where TEds is the desired accuracy. Ksc is a scaling factor

smaller than one when decreasing the step size and is big-
ger than one when increasing the step size. The value Ksc

is changed in each iteration to increase the numerical stabil-
ity of the internal loop of the step size adaption in Gear’s
method.

3 STATIC AND DYNAMIC
EIGENVALUES IN UNIFIED STABILITY
ANALYSIS

In addition to the numerical properties (accuracy and efficiency)
of Gear’s method, it can extract more information from the
system, which can be utilized to analyze the system further
and enrich our perception of its dynamic behavior. According
to section 2, the linearization procedure inside Gear’s method
calculates the partial derivatives of differential and algebraic
functions with respect to the variables. The partial derivatives
form the state matrix (A) during both steady-state and dynamic
conditions. The extracted A-matrix during steady-state will
result in a static eigenvalue calculation according to the LTI
system theory. However, transient conditions will result in a
time-varying A-matrix that can be used to calculate dynamic
eigenvalues and eigenvectors by LTV system theory [20]. Eval-
uating both concepts (static and dynamic eigenvalue) within
the same framework is proposed in this paper to unify the
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stability study of a power system. Differentiation of the
algebraic equation presented in (1) gives:

0 =
𝜕g

𝜕y
y′ +

𝜕g

𝜕x
x′. (23)

Therefore, (23) yields the derivative of the algebraic variable as:

x′ = −

(
𝜕g

𝜕x

)−1
𝜕g

𝜕y
f (y, x, t ). (24)

On the other hand, differentiation of the differential equa-
tion presented in (1) gives:

y′′ =
𝜕 f

𝜕y
y′ +

𝜕 f

𝜕x
x′. (25)

After substitution of (24) for x′, equation (25) yields:

y′′ =

(
𝜕 f

𝜕y
−

(
𝜕 f

𝜕x

(
𝜕g

𝜕x

)−1
𝜕g

𝜕y

))
y′. (26)

Equation (26) is the linearized form of the nonlinear DAE
presented in (1) and can be updated continuously during the
simulation. Thus, the linearized representation implies [18]:

A =
𝜕 f

𝜕y
−

(
𝜕 f

𝜕x

(
𝜕g

𝜕x

)−1
𝜕g

𝜕y

)
, (27)

where A is the state matrix of the system and is constant
during steady-state conditions. Hence, static eigenvalues (𝜆)
can be calculated from the extracted A-matrix for assess-
ing the small-signal stability at any steady-state point during
the simulation.

Access to the A-matrix of a power system during dynamic
conditions enriches the large-signal stability analysis of a power
system. During transient conditions, the extracted A-matrix of
the stressed system will be time-varying, and at each step, we
have:

Y ′(t ) = A(t ) Y (t ). (28)

According to the LTV system theory, 𝜆d (t ) is a dynamic
eigenvalue of the system if there is a dynamic eigenvector (ed (t ))
that satisfies the following equation:

A(t ) ed (t ) = 𝜆d (t ) ed (t ) + e′
d

(t ), (29)

where e′
d

(t ) is the derivative of the dynamic eigenvector. Con-
trary to the LTI system, the eigenvector derivative is also
presented in the equation since it is not constant and changes
over time. The correct dynamic eigenvector extracted for every
dynamic eigenvalue forms a dynamic similarity matrix (Sd (t ) =
[ed 1(t ), ed 2(t ), … , edn(t )]) by which the time-varying transient
matrix (A(t)) can be transformed to the diagonal matrix as:

Λ = S−1(t )A(t )S (t ) − S−1(t )S ′(t ), (30)

where S ′
d

(t ) is derivative of the dynamic similarity matrix.
Therefore, the dynamic eigenvalues will be on the transformed

A-matrix’s diagonal by applying the dynamic similarity trans-
formation. To calculate the dynamic similarity transformation
in the LTV system, we have to look for a function that sat-
isfies equation (29). The control engineering literature states
that a solution of the differential Riccati equation satisfies (29)
[20–22].

Generally, for an A-matrix with dimension n, the n-order
differential Riccati equation should be solved numerically
[23]. For a second-order LTV system with state matrix (A =

[a11(t ), a12(t ); a21(t ), a22(t )]), the following equation (second
order differential Riccati equation) should be solved [21]:

L′(t ) = − a12L2(t ) − (a11 − a22)L(t ) + a21, (31)

where L(t ) is the Riccati function. The Riccati function’s solu-
tion and derivative are used in the dynamic eigenvalue and
eigenvector calculation procedure. Accordingly, eigenvalues and
eigenvectors during transient conditions will be calculated by
equation (29). However, the stability of an LTV system cannot
be evaluated just by monitoring the real-part of dynamic eigen-
values since the dynamic eigenvector also impacts the system’s
stability. Therefore, the impacts of both dynamic eigenvalues
and eigenvectors are counted in the stability analysis by defining
a Mode-Vector (MV) variable as [20]:

MV (t ) = exp
∫ t

t0
𝜆d (𝜏)d𝜏

ed (t ). (32)

The excursion of the MV shows the stability of each
mode individually. According to the LTV system theory, a
LTV system is stable if each MV norm is bounded. Being
bounded or unbounded in this paper is determined by the
Lyapunov Exponent (LE). LE is a stability certificate for
the trajectory instead of the equilibrium point and provides
information about the divergence and convergence of the
system trajectory. The LE for excursion of the MV is
calculated as:

LE = lim
t→∞

Re

[
1
t

ln||ed (t )|| + 1
t ∫

t

t0

𝜆d (𝜏)d𝜏

]
. (33)

In this index, the growth rate of the excursion of the MV

is studied and compared with the exponential function. Mean-
while, for the real-time application, the time-window LE of the
MV is calculated as [24, 25]:

LE (kΔt ) =
1

NkΔt

×

N∑
m=1

log
||MV ((k + m)Δt ) − MV ((k + m − 1)Δt )||||MV ((mΔt )) − MV (((m − 1)Δt ))|| , (34)

where samples from m = 1 to m = N are in the window of anal-
ysis, kΔt is the start of the window, and Δt is the step size. Since
LE shows whether the excursion of a state is bounded or not,
it is concluded that the LTV System is stable if the MV has a
negative LE . Therefore, the stable and unstable modes during
transient conditions are differentiated by the sign of the LE .
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FIGURE 3 Summary of whole proposed method in this paper to analyze the stability of the system

The whole procedure of the power system stability analysis
using the proposed method is shown in Figure 3. The LTV
system analysis approach generalizes the LTI system analysis
approach by involving both dynamic eigenvalues and dynamic
eigenvectors in the stability analysis [20]. Dynamic eigenvalues
and eigenvectors are calculated by solving a Riccati equation (as
a general characteristic equation of a system). The MV is
formed in the LTV system, and an excursion of MV shows the
stability of the system. If MV is bounded, the LTV system is sta-
ble, and it is unstable if MV is unbounded. The LE is used to
evaluate each MV of the state’s excursion. If the LE of an MV

is negative, the excursion is bounded, and it is unbounded when
LE is positive. Therefore, a power system’s stable or unstable
behavior subjected to a severe disturbance is detected rapidly by
the LTV system theory. [20].

The proposed method is conducted by four steps (Figure 3):

∙ A-matrix extraction
∙ Solve Riccati equation
∙ Mode-vector calculation
∙ Lyapunov exponent calculation

Finally, the sign of the LE shows the stability of the power
system. The LE detects the stability of the system based on the
trajectory of system states. If the LE is positive, the system is
unstable and it is stable if the LE is negative.

4 IMPLEMENTATION OF THE
PROPOSED METHOD DURING
LARGE-SIGNAL STABILITY ANALYSIS

Two issues are raised when dealing with large-signal disturbance
analysis in the proposed method. The first is related to large-
signal disturbance, and the second is related to saturation of
limiters of control parts, which will be explained and solutions
proposed in the following sections.

4.1 Large-signal disturbances

The introduction of disturbances creates discontinuities in
the integration process of Gear’s method that a corrective
approach should solve. According to the step size adaption
technique, the solver tries to improve the estimate’s accuracy
by decreasing the step size at the instance of disturbance.
However, due to the discontinuity, the Newton-Raphson’s iter-
ation loop cannot converge to the true value. In the proposed
solver, a buffer matrix (matrix Mat presented in (35) ) at the
end of each step is stored temporarily in an external matrix
and is updated at every step. When there is a disturbance
(a fault occurs or a fault clears), a sub-function raises a flag
and notifies the Newton-Raphson sub-function to replace the
Mat matrix with the stored matrix from the previous step
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FIGURE 4 System with limiter

(Matpre) as:

Matpre =

⎡⎢⎢⎢⎢⎣
I1 − Hn−1

𝜕 fn−1

𝜕y
−Hn−1

𝜕 fn−1

𝜕x

𝜕gn−1

𝜕y

𝜕gn−1

𝜕x

⎤⎥⎥⎥⎥⎦
. (35)

According to the proposed strategy, the Newton-Raphson
method will be run with the recorded matrix (Matpre) only at
the instance of the disturbance. Additionally, changing the refer-
ence of control of power electronic-based technologies creates
some discontinuities in the integration process that is solved by
replacing the previously stored matrix (Matpre) at the instance of
change of reference.

4.2 Limiters

Large-signal stability analysis is executed by simulating the
whole power system. In large-signal stability analysis, limiters
of control parts must be modeled when the system is exposed
to severe disturbances. An extra algebraic equation is defined in
the system to model a limiter in the solver. For example, con-
sider the system with a limiter shown in Figure 4. The left part
of the system is modeled by the following differential equation:

dy2

dt
=

y1 − y2

T
. (36)

The model of the right part of the system in Figure 4
depends on whether the limiter is saturated or not. The follow-
ing algebraic equation is valid in a normal condition (without
saturation):

y3 = y2. (37)

However, if y3 is bigger than Y3−max or smaller than Y3−min,
the last equation (equation (37)) is not valid. y2 and y3 will be
disconnected and y3 adapts a constant value without reflect-
ing variation of y2. The constant value of the algebraic variable
(y3) creates zero value (zero first- and second-derivatives) in
the corresponding row and column of the matrix of the partial
derivatives, so the matrix is singular. The saturation time step
should be detected first to prevent the problem. This is done by
continuously monitoring the output of the limiters. Whenever
an output of a limiter passes the threshold (up or down lim-
its), the corresponding row and column in the derivative matrix

are detected and are removed from the matrix. In this way, the
dimension of the corresponding matrices is decreased by one
for every saturated limiter in both the prediction and the correc-
tion stages. By changing the dimension of the derivative matrix
(Mat ) in a saturation condition, the stored matrix (Matpre) should
also be reproduced by a new dimension so that it can be used in
the solver when it is necessary (instant of a disturbance).

5 SIMULATION RESULTS

Three cases are studied in this section. First, a synthesised sys-
tem to evaluate the performance of Gear’s method is explored.
Second, a single machine to an infinite bus (SMIB) is ana-
lyzed from small- and large-signal stability viewpoints. Finally,
the performance of unified stability analysis is evaluated for a
multi-machine power system with HVDC.

5.1 Simulation results of performance of
Gear’s method applied to a synthesized system

A synthesized system (presented by (38)) is studied in this
section to reveal the internal procedure of the implemented
method.

d

dt
y1 = y2,

d

dt
y2 = 1000

(
1 − y2

1

)
y2 − y1, (38)

where y1 and y2 are two differential variables with initial con-
ditions: y1(0) = 2 and y2(0) = 0. Gear’s method is applied to
(38) to evaluate the movements of the state variables throughout
the time. Variation of y1, step size, and Truncation Error (TE )
are shown in Figure 5. It reveals that the solution y1 has rapid
changes around time = 800 s and time = 1600 s. The method
identifies these conditions by monitoring the TE and compar-
ing it with a threshold range. According to Figure 5, the step size
decreases considerably when the rate of change is high (time =
800 s and time = 1600 s), while the step size increases when the
rate of change is lower. Using adaptive time steps while keeping
the numerical integration accurate even under rapid changes are
two properties of Gear’s method, making it a promising solver
for AC/DC power systems with different time constants.

5.2 Single machine to infinite bus (SMIB)

In this section, performance of Gear’s method is evaluated by
simulating a SMIB during steady state and dynamic conditions.
This system is presented in [26], with small-signal analysis done
in chapter 12 and large-signal analysis in chapter 13, respectively.
The generator (G1) shown in Figure 6 produces an apparent
power SBus1 = 0.9 + j0.436 (in per-unit) at Bus1 with volt-
age VBus1 = 1.0∠28.340 during steady state. The generator is
presented by a second-order model with an internal voltage
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FIGURE 5 Simulation results of synthesized system

FIGURE 6 Single machine to infinite bus (SMIB)

(E ′∠𝛿) behind a transient reactance X ′
d
= 0.3p.u., inertia con-

stant Hint = 3.5 s and damping factor KD = 25. It is connected
to an infinite bus (VBus3 = 0.90081∠0) through the network,
which is shown in Figure 6. A classical generator model is ini-
tially used in this section to facilitate the explanation of the
method and illustrate its key properties. A higher order model
of the generator will be used in the next section.

5.2.1 Small-signal stability analysis

The method simulates the SMIB numerically based on the
predictor-corrector and adaptive step size strategies to show
an efficient and accurate performance. The method can extract
the linearized equations continuously and therefore, the state
matrix in each integration step is available. The state matrix (A),
extracted by Gear’s method, has for the steady state (0 < t <

FIGURE 7 Rotor angle responses for different values of TFC in SMIB

2 s) eigenvalues (𝜆) :

A =

[
−3.5714 −0.1439

376.9911 0

]
, 𝜆 = −1.7857 ± 7.1468i. (39)

The small-signal analysis shows that there are two complex
eigenvalues with negative real-part associated with the dynamics
of the rotor. Therefore, it is anticipated that the system will show
a damped oscillatory time response when subjected to a non-
severe disturbance. The same results are obtained in chapter 12
in [26].

5.2.2 Large-signal stability analysis

As the primary duty of a numerical method, transient stability
analysis of a SMIB is done using Gear’s method in this part.
Different fault conditions are applied to the simulated power
system for evaluating the large-signal stability via a numerical
integration. The power system is simulated for three differ-
ent fault clearing times (TFC = 0.07, 0.12, 0.17 s). A three-phase
fault occurred at Bus 2 at time = 2 s and is cleared by remov-
ing the transmission line with impedance j0.93, and the results
are shown in Figure 7. The results indicate that the system is
stable with TFC = 0.07 s and TFC = 0.12 s, and is unstable with
TFC = 0.17 s.

5.2.3 Detection of instability

Dynamic eigenvalues and eigenvectors are proposed in this
paper to detect the instability and stop the numerical simulation.
The differentiation between stable and unstable trajectories is
done by solving a Riccati equation. The performance of the
proposed method in the SMIB system is shown in this section.
A three-phase fault occurred in the power system (shown in
Figure 6) at Bus 2 at time = 2 s and is cleared by removing
the transmission line with impedance j0.93. Two cases will be
evaluated here: stable and unstable conditions. Firstly, the fault
duration is selected to 0.07, and the simulation results are shown
in Figure 8. According to the proposed method, the excursion
of the MV (dynamic eigenvalues and eigenvector) are calcu-
lated (Figure 8), which indicates that MV is bounded. The LEs
of the MV are also presented in Figure 8, which has negative
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FIGURE 8 Stable condition, mode-vector (MV) and Lyapunov exponent
(LE)

FIGURE 9 Unstable condition, mode-vector (MV) and Lyapunov
exponent (LE)

values after removing the fault, and accordingly, the system is
stable. A simulation is run when the fault lasts 0.17 s, and the
results are shown in Figure 9. According to Figure 9, the system
is unstable since the calculated LEs are positive after removing
the fault. Therefore, it is possible to detect the unstable condi-
tion by applying the proposed method, allowing us to stop the
simulation earlier.

5.2.4 Unified stability analysis

The proposed method allows for unified stability analysis,
which combines the small- and large-signal analysis into one
procedure. It is illustrated in Figure 10, which shows the
performance of the SMIB during successive events. In the
proposed framework, it is possible to switch from small- signal
to large-signal and from large-signal to small-signal analysis,
as shown in Figure 10. Six different successive conditions are
considered (three steady-state and three transient conditions)
in this section. From time=0 s to time=2 s, the system is in the
steady-state condition (steady-state 1). The method evaluates
the system’s small-signal stability by extracting the A-matrix and
then calculating the static eigenvalues (static 𝜆). At time = 2 s,
a three-phase fault occurs at Bus 2 and is removed at 0.07 s by
disconnecting the line with impedance j0.93. The severe fault
forces the power system into a transient condition (Transient 1)
during which the classical eigenvalue is not applicable. However,

FIGURE 10 Unified stability analysis in SMIB with six different
conditions

according to the proposed method, the negative sign of LE

shows that the system is stable. When the system’s trajectory
settles to a new steady-state condition (steady-state 2), the small-
signal analysis is run again, and the static eigenvalues move due
to a change of structure of the power system (removing the line).
At time = 6 s, another severe disturbance occurs by re-closing
the line (impedance j0.93), and the system goes into a transient
condition (Transient 2). Again the Riccati equation is calculated
based on the extracted A-matrix, and the results show that LE

is negative and therefore, the system is stable under this tran-
sient condition. The next condition (steady-state 3) is when the
oscillation is damped, and the method extracts the A-matrix and
detects the stable condition by negative static eigenvalue. The
third transient event is a step increase in the generator’s mechan-
ical power at time= 0 s from 0.9 to 1.4 p.u. The calculated LE is
positive, which shows that the system is unstable. The explained
procedure demonstrates that the small- and large-signal analysis
can be done in sequence with just one procedure. Therefore,
the proposed method provides a unified stability analysis in
addition to an efficient and numerically accurate integration
operation.

5.3 Multi-machine power system with
HVDC

Consider the WSCC power system shown in Figure 11. A three-
generator power system (Figure 11a) is simulated numerically in
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FIGURE 11 Three-generator and nine-bus power system (WSCC), HVDC link between Bus 7 and 8, AVR-PSS

this section to evaluate the performance of Gear’s method in
a multi-machine AC/DC power system (details of HVDC link
is shown in Figure 11b). The system represents an approxima-
tion of the Western System Coordinating Council (WSCC), and
its data are presented in [27]. The multi-machine power system
is modeled by the current injection method presented in [28,
29]. The AC transmission lines and the loads are also considered
using the phasor models in the admittance matrix. Since there is
no infinite bus in the system, the rotor angle of machine-1 (G1)
is considered as reference, and generator’s angles are calculated
with respect to the G1. In steady-state condition, G1 as a slack
generator produces an apparent power SBus1 = 0.716 + j0.270,

G2 produces SBus2 = 1.63 + j0.665, and G3 produces SBus3 =

0.85 − j0.108.

5.3.1 AVR and PSS

A generator is equipped with an automatic voltage regulator
(AVR) and a power system stabilizer (PSS) to enhance the oscil-
lation damping in dynamic conditions. Detailed presentation of
the AVR and the PSS systems are shown in Figure 11c [26]. In
addition to the two equations corresponding to the mechan-
ical part of the generator, four complementary equations are
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added to the DAE’s system to represent the generator+AVR+
PSS.

E fd is the exciter output voltage, KA is the gain of exciter,
Tr is the delay time of the controller of the AVR, E fmin and
E fmax are thresholds of limiting the output from the PSS,
Tw is coefficient of washout filter, Kstab is the gain of PSS,
T1 and T2 are coefficients of the controller of PSS, and vsmin

and vsmax are the thresholds of limiter in the output of the
PSS.

In addition to the swing equation of the SMIB, four com-
plementary equations are added to the system of the DAE to
simulate the power system of this section. The four differential
equations are:

d

dt
𝜓 fd =

𝜔0 R fd

Lads
E fd − 𝜔0 R fd i fd , (40)

d

dt
v1 =

1
Tr

(Et − v1), (41)

d

dt
v2 =

Kstab

2Hint
(Tm − Te − KDΔ𝜔r )

⏟⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⏟
SE

−
1

Tw
v2, (42)

d

dt
vs =

1
T2

(v2 − vs + T1(SE ) −
1

Tw
v2), (43)

where the excitation system is modeled by (40), equation (41)
represents the AVR, and equations (42) and (43) are related to
the PSS. R fd = 6 × 10−4 and Lads = 1.3726 are resistance and
inductance of the field circuit, E fd is the exciter output volt-
age, i fd is the field current, KA = 200 is the gain of exciter,
Tr = 0.015 is the coefficient of controller of AVR, and E fmin =

−6.4 and E fmax = +7 are the thresholds of the limiter’s out-
put from the PSS. Tw = 1.4 is the coefficient of washout filter,
Kstab = 9.5 is the gain of PSS, and T1 = 0.1540 and T2 = 0.033
are the coefficients of controller of PSS, while vsmin = −0.1
and vsmax = +0.1 are the thresholds of limiter in output of
the PSS.

5.3.2 HVDC link

The HVDC link between Bus 7 and Bus 8 consists of electrical
(AC and DC) and control parts, in which the dynamic models
presented in [30] are used in this paper. The electrical part of
the HVDC is shown in Figure 11b. The rectifier-side (Conv1)
of HVDC controls the DC voltage (vdc1) and reactive power
(Q1), and inverter-side (Conv2) controls the active (P2) and the
reactive power (Q2) at the associated buses (Bus7 and Bus8).
In steady-state condition, reference values of the HVDC are:
vdc1 = 1, Qre f 1 = −0.0704, Pre f 2 = 0.7590, and Qre f 2 = 0.0302
(all are per unit).

The stability of the system with a HVDC link is also included
in this paper. In this paper, the converter model includes both
fast and slower transients. Thus, both the electrical and con-
trol parts of converters in the HVDC link are represented by
dynamic models. Consider a full HVDC link in Figure 11b.
According to Figure 11b, the right-side converter is a PQ

FIGURE 12 Phase locked loop

converter used to control active and reactive power at PCC
in an HVDC link. Different internal parts of a PQ con-
verter (electrical and control parts) will be explained in the
following subsections.

VSC (voltage source converter) of the converter is modeled
by the following equations:

d

dt
iLd =

𝜔g𝜔b

Lc
vLd −

𝜔g𝜔b

Lc
vod −

𝜔g𝜔bRc

Lc
iLd + 𝜔g𝜔biLq,

d

dt
iLq =

𝜔g𝜔b

Lc
vLq −

𝜔g𝜔b

Lc
voq −

𝜔g𝜔bRc

Lc
iLq − 𝜔g𝜔biLd , (44)

where parameters and variables presented in (44) are in the per-
unit system and are shown in Figure 11b. All parameters and
variables of rectifier-side (PQ converter) are labeled by ’1’, and
inverter-side (QV converter) are marked by ’2’ in Figure 11b.
𝜔g and 𝜔b are grid and base angular frequencies, respectively.
Additionally, the shunt branch in the PQ converter (Figure 11b)
is modeled as:

d

dt
vod = 𝜔g𝜔bC f iLd − 𝜔g𝜔bC f iod + 𝜔g𝜔bvoq,

d

dt
voq = 𝜔g𝜔bC f iLq − 𝜔g𝜔bC f ioq − 𝜔g𝜔bvod . (45)

Moreover, there are three control loops in the control part of
a PQ converter: phase lock loop (PLL), outer and inner loops
to achieve the control goals.

5.3.2.A. Phase lock loop (PLL)

To synchronize the output of VSC with the voltage at PCC, a
Phase Locked Loop (PLL) is used (Figure 8) with the following
dynamic model:

d

dt
𝜖pll = voq,

d

dt
𝛿𝜃pll = 𝜔b(kp−pll voq + ki−pll 𝜖pll ), (46)

where variables presented in (46) are shown in Figure 12. The
phase-locked loop (PLL) block is a feedback control system that
automatically adjusts a locally generated signal phase to match
the phase of an input signal.

5.3.2.B. Outer controller

The outer loop controller (Figure 13) used in a PQ converter
to control the active and reactive power at Point of Common
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FIGURE 13 Outer controller of a PQ converter

Coupling (PCC) as:

d

dt
𝛾P = Pre f − Po,

d

dt
𝛾Q = Qre f − Qo,

iLd−re f = +1(kpp(Pre f − Po) + kip𝛾P ),

iLq−re f = −1(kpp(Qre f − Qo) + kip𝛾Q ),

Po = vod iod + voqioq,

Qo = voqiod − vod ioq, (47)

where 𝛾P and 𝛾Q are the integrator states of the PI con-
trollers, while other parameters and variables presented in (47)
are shown in Figure 13. Additionally, two limiters are located at
the end of PI controllers that are modeled with two algebraic
equations as:

0 = i′
Ld−re f

− (kpp(Pre f − Po) + kip𝛾P ),

0 = i′
Lq−re f

− (kpp(Qre f − Qo) + kip𝛾Q ), (48)

where these two equations keep the output of PI controller
inside two limit values (up and down limits).

5.3.2.C. Inner controller

The output signals from the outer controllers (i′
Ld−re f

and

i′
Lq−re f

) are sent to the inner loop current controller which
provide the references of voltage (vLd−re f and vLq−re f ). The
inner loop (shown in Figure 14) is modelled dynamically by two
equations as:

d

dt
𝛾id = iLd−re f − iLd

d

dt
𝛾iq = iLq−re f − iLq

vLd−re f = kpc (i
′
Ld−re f

− iLd ) + kic𝛾id + vod − 𝜔pll Lc iLq

vLq−re f = kpc (i
′
Lq−re f

− iLq ) + kic𝛾iq + voq + 𝜔pll Lc iLd , (49)

where 𝛾id and 𝛾iq are the integrator states of the PI controllers.
Other parameters and variables presented in (49) are shown in
Figure 14.

FIGURE 14 Inner controller of a PQ converter

Modeling the QV converter of a complete HVDC system is
similar, but the difference is in the outer control. QV converter
is used to control reactive power at PCC and DC voltage of DC
link. Since the models of the VSC internal control, filters, and
PLL of QV converter are the same as for the PQ converter,
they will not be repeated here.

Since there are many state variables in the electrical and con-
trol parts of the AC/DC system, an automatic procedure is
employed in this paper to obtain the appropriate initial condi-
tion for the start of the numerical simulation. Time is set to
zero and the results of the power flow are sent to the initial-
ization stage. In the initialization stage, the prediction stage and
step size adaption technique of the method are bypassed, and
only the correction stage is used. Therefore, the initial values of
all states are calculated by iterations of the Newton-Raphson
method and then they are taken into account to generate an
accurate starting point of the simulation.

According to the calculated initial values, the method sim-
ulates the whole AC/DC system numerically and extracts the
A-matrix of the power system during simulation, by which
small-signal stability analysis is conducted during the steady
state condition. Gear’s method is applied to the DAE system
(multi-machine AC/DC system), and the extracted eigenvalues,
state (participation factor), and associated parts (EL(AC)= AC
electrical parts, EL(DC)= DC electrical parts, GN=Generators
, CONT= Control parts, EXC= Excitation of generator, AVR
and PSS) are tabulated in Table 1. 𝛾id , 𝛾iq , 𝛾P , 𝛾Q , and 𝛾dc

are mathematical variables defined in the dynamic model of
an HVDC interconnection [30], but the other variables pre-
sented in Table 1 are shown in Figure 11. Table 1 presents
a wide range of time constants due to the different types of
elements in the power system. It is worth noting that the pre-
sented results (small-signal analysis) in this section were usually
extracted in the literature by running the individual simulation
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TABLE 1 Eigenvalues of WSCC with HVDC

Number Eigenvalue State (PF) Part

1,2 104 × (-0.1018 ± 1.1060i) io2 (0.3075) EL(AC)

3,4 104 × (-0.0266 ± 1.0015i) io1 (0.2792) EL(AC)

5,6 104 × (-0.0164 ± 0.7057i) vo1 (0.2785) EL(AC)

7,8 104 × (-0.0556 ± 0.6239i) vo2 (0.3092) EL(AC)

9 104 × (-0.4254) vdc1 (0.5015) EL(DC)

10 104 × (-0.0310) iLq2 (0.7363) EL(AC)

11 104 × (-0.0276) iLq1 (1.1757) EL(AC)

12 104 × (-0.0273) iLd 2 (0.8033) EL(AC)

13 104 × (-0.0228) 𝛿𝜃pll 1 (1.0324) CONT

14 104 × (-0.0218) 𝛿𝜃pll 2 (1.0419) CONT

15 104 × (-0.0214) iLd 1 (1.2467) EL(AC)

16,17 104 × (-0.0002 ± 0.0018i) 𝛾Q2 (0.6403) CONT

18 104 × (-0.00254) 𝛾id 2 (0.8115) CONT

19 104 × (-0.00250) 𝛾iq1 (0.8464) CONT

20 104 × (-0.0022) 𝛾id 1 (1.1184) CONT

21,22 -1.8595 ± 13.1914i 𝛿3 (0.4549) GN3

23,24 -0.8639 ± 8.6159i 𝛿2 (0.3904) GN2

25 -14.4503 𝛾P2 (0.6618) CONT

26 -14.0136 𝛾Q1 (0.7006) CONT

27,28 -2.0120 ± 2.9074i 𝛾dc1 (0.5901) CONT

29 -2.3562 𝜖pll 1 (1.4907) CONT

30 -2.3583 𝜖pll 2 (1.4932) CONT

31 -50.6599 𝜓 fd (0.402) EXC

32 -0.7392 v1 (1.01) AVR

32,33 -21.97 ± 15.31i v3 (0.82) PSS

based on the linear models, but this method extracts them when
the non-linear numerical integration is running.

Gear’s method also allows for analysing the dynamic perfor-
mance of a power system under severe disturbances (large-signal
stability analysis). It is done by simulating the whole system
with different fault clearing times. However, contrary to the
small-signal analysis, limiters of the control parts of HVDC,
AVR, and PSS must be modeled when the system is exposed
to severe disturbances. Limiters introduce upper and lower
limits of the variables. Under transient conditions, the control
variable reaches the limit values, and there will be a constant
value with zero first- and second-order derivatives. The method
is also applied to the DAE system corresponding to the WSCC
system with HVDC, and it is evaluated from a large-signal
stability analysis viewpoint. A three-phase fault occurs at Bus
7 at time = 1 s and is cleared by different clearing times
(Tfc = 0.10, 0.26, 0.27). Variation of the rotor angle responses
of the generators (G2 and G3 with respected to G1) subjected
to the three-phase fault are shown in Figure 15 (Tfc = 0.10
(Figure 11a), 0.26 (Figure 11b),0.27 (Figure 11c)). According to
Figure 15, the system is stable when the fault lasts between 0.10
s and 0.26 s. However, if fault lasts 0.27 s, the system will lose
its synchronization. Therefore, the critical clearing time is 0.26s.

FIGURE 15 Rotor angle responses and step size variation for stable
condition in WSCC-HVDC

FIGURE 16 Stable condition, mode-vector (MV) and Lyapunov
exponent (LE)

FIGURE 17 Unstable condition, mode-vector (MV) and Lyapunov
exponent (LE)

The proposed method based on dynamic eigenvalues and the
LE is also applied in this section by solving the matrix Riccati
equation. The power system shown in Figure 11 is evaluated
under two fault conditions: A three-phase fault occurs at Bus 7
at time = 1 s and is cleared by two clearing times Tfc = 0.1 and
Tfc = 0.27. The results (MVs and LEs) of two cases are shown
in Figures 16 and 17. Figure 16 depicts a stable condition in
which MV s of G2 and G3 are bounded. Therefore, the LE of
both mode vectors are negative after removing the fault at time
= 1.1 s. On the other hand, Figure 17 shows a power system
with an unstable excursion of states. The MV s of generators
are unbounded after a long lasting fault (Tfc = 0.17), which
is determined quantitatively by a positive sign of the LEs.
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Therefore, the byproduct of Gear’s method (A-matrix) can
shed more light on the transient performance of a power
system with LTV system theory.

6 CONCLUSION

A framework for unified analysis of large-signal and small-signal
stability is proposed in this paper on basis of Gear’s method for
numerical simulation. The use of Gear’s method allows for time-
domain simulation of DAE systems by self-adaptive step size
while extracting the A-matrix of the linearized system model
at any point during the simulation. Thus, this work presents a
step towards a potential alternative to the classical approaches
for power system stability analysis by conducting small- and
large-signal analyses separately by different tools. Instead, the
small-signal dynamics can be studied by applying established
techniques for LTI system analysis to the A-matrix obtained
at any steady-state operating point during the simulation. Fur-
thermore, the calculation of the A-matrix during numerical
simulation of large-signal transients also enables analysis of the
studied power system configuration as a LTV system where
dynamic eigenvalues and dynamic eigenvectors can be evalu-
ated. The presented approach evaluates the excursion of the
MV variable, which consists of both dynamic eigenvalues and
dynamic eigenvectors. Then the LE method is applied to each
MV to evaluate if it is bounded or not. If all calculated LEs
of the system are negative, all MV s will be bounded, imply-
ing that the system is stable. On the other hand, an unstable
mode is detected by a positive LE value during time-varying
conditions. Therefore, the proposed framework can utilize the
properties of Gear’s method to monitor and then distinguish
the power system stability conditions during both steady-state
conditions and large-signal transients. To validate the contri-
butions of the method in stability analysis, three examples of
systems were evaluated as test cases and the results show that
Gear’s method can be used as an efficient and unified solver for
comprehensive stability analysis of a power system. It should
be noted that the proposed approach for analysis of static and
dynamic eigenvalues during time-domain simulation also could
be adapted to any other numerical method that can provide
continuous access to the A-matrix of the system. However,
Gear’s method is utilized as a framework in this paper since it is
conveniently configured for providing the required information
while enabling self-adaptive time-step simulation of numerically
stiff systems. Although explicit analysis of the A-matrix will
increase the computational requirements for the time-domain
simulation, it does not have to be conducted in each time step.
Thus, further work could include development of criteria for
identifying when the static or dynamic eigenvalues should be
evaluated to ensure that critical information on the stability
properties of the studied system is extracted while minimizing
the computational requirements.
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