

W I Z X
T H E U L T I M A T E I I O T G A T E W A Y

Product: low cost IIoT module

• Measuring, logging and presentation
of data

• Minimum Installation Cost

• Easy to configure

• Support large amount of sensor types
and communication protocols

• Based on Open Source Software

• Secure Communication Protocols

 I2C

 One Wire

 SPI

 0-10V

 4-20mA

 SCADA system

 IMS/MES systems

 ERP systems

Sensor Interface
support

Visualization and Integration

 Wifi

 Bluetooth Low Energy

 RF 868/434 MHz

 4G

 Modbus

 Canbus

 NB-IOT

 LoRa

 OPC UA

 ProfiBus

 ProfiNet

Communications

Product: low cost IIoT module

Appendix C: This appendix contains SQL syntax used in the local database and SQL script for
generating database tables used in Microsoft Azure for MySQL Server.

SQL syntax is used in the local database

The following SQL syntax is used to create a hypertable for the taghistory_data table and column
t_stamp in order to make storing and querying time-series data more efficient and efficient:

SELECT create_hypertable('taghistory_data', 't_stamp');

The taghistory_data table stores data only for one week. This is done by creating a data retention
policy for data that is older than one week:

SELECT add_retention_policy('taghistory_data', INTERVAL '1 week');

Database tables used in Microsoft Azure for MySQL Server

The SQL script is generated using MySQL Workbench, which gives an overview of the different
tables with columns and data types used in the Application for storing data in Microsoft Azure
for MySQL Server.

-- MySQL Workbench Forward Engineering

SET @OLD_UNIQUE_CHECKS=@@UNIQUE_CHECKS, UNIQUE_CHECKS=0;
SET @OLD_FOREIGN_KEY_CHECKS=@@FOREIGN_KEY_CHECKS, FOREIGN_KEY_CHECKS=0;
SET @OLD_SQL_MODE=@@SQL_MODE,
SQL_MODE='ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,NO_ZERO_IN_DATE,NO_ZERO_DATE,ER
ROR_FOR_DIVISION_BY_ZERO,NO_ENGINE_SUBSTITUTION';

-- ---
-- Schema packagingMachineApp
-- ---
CREATE SCHEMA IF NOT EXISTS `packagingMachineApp` DEFAULT CHARACTER SET utf8 ;
USE `packagingMachineApp` ;

-- ---
-- Table `packagingMachineApp`.`packaging_machine`
-- ---
CREATE TABLE IF NOT EXISTS `packagingMachineApp`.`packaging_machine` (
 `packagingMachine_Id` INT NOT NULL AUTO_INCREMENT,
 `packagingMachine_Tag` VARCHAR(45) NOT NULL,
 `description` VARCHAR(45) NULL,
 UNIQUE INDEX `packagingMachine_Tag_UNIQUE` (`packagingMachine_Tag` ASC) VISIBLE,
 PRIMARY KEY (`packagingMachine_Id`))
ENGINE = InnoDB;

-- ---
-- Table `packagingMachineApp`.`cylinders`

-- ---
CREATE TABLE IF NOT EXISTS `packagingMachineApp`.`cylinders` (
 `cylinder_Id` INT NOT NULL AUTO_INCREMENT,
 `cylinder_Tag` VARCHAR(45) NOT NULL,
 `Unit` VARCHAR(45) NULL,
 `description` VARCHAR(45) NULL,
 `packagingMachine_Id` INT NOT NULL,
 UNIQUE INDEX `cylinder_Tag_UNIQUE` (`cylinder_Tag` ASC) VISIBLE,
 PRIMARY KEY (`cylinder_Id`),
 INDEX `fk_cylinders_packaging_machine_idx` (`packagingMachine_Id` ASC) VISIBLE,
 CONSTRAINT `fk_cylinders_packaging_machine`
 FOREIGN KEY (`packagingMachine_Id`)
 REFERENCES `packagingMachineApp`.`packaging_machine` (`packagingMachine_Id`)
 ON DELETE NO ACTION
 ON UPDATE NO ACTION)
ENGINE = InnoDB;

-- ---
-- Table `packagingMachineApp`.`vfds`
-- ---
CREATE TABLE IF NOT EXISTS `packagingMachineApp`.`vfds` (
 `vfd_Id` INT NOT NULL AUTO_INCREMENT,
 `vfd_Tag` VARCHAR(45) NOT NULL,
 `Unit` VARCHAR(45) NULL,
 `description` VARCHAR(45) NULL,
 `packagingMachine_Id` INT NOT NULL,
 UNIQUE INDEX `vfd_Tag_UNIQUE` (`vfd_Tag` ASC) VISIBLE,
 PRIMARY KEY (`vfd_Id`),
 INDEX `fk_vfds_packaging_machine1_idx` (`packagingMachine_Id` ASC) VISIBLE,
 CONSTRAINT `fk_vfds_packaging_machine1`
 FOREIGN KEY (`packagingMachine_Id`)
 REFERENCES `packagingMachineApp`.`packaging_machine` (`packagingMachine_Id`)
 ON DELETE NO ACTION
 ON UPDATE NO ACTION)
ENGINE = InnoDB;

-- ---
-- Table `packagingMachineApp`.`sensors`
-- ---
CREATE TABLE IF NOT EXISTS `packagingMachineApp`.`sensors` (
 `sensor_Id` INT NOT NULL AUTO_INCREMENT,
 `sensor_Tag` VARCHAR(45) NOT NULL,
 `Unit` VARCHAR(45) NULL,
 `description` VARCHAR(45) NULL,
 `packagingMachine_Id` INT NOT NULL,
 UNIQUE INDEX `sensor_Tag_UNIQUE` (`sensor_Tag` ASC) VISIBLE,

 PRIMARY KEY (`sensor_Id`),
 INDEX `fk_sensors_packaging_machine1_idx` (`packagingMachine_Id` ASC) VISIBLE,
 CONSTRAINT `fk_sensors_packaging_machine1`
 FOREIGN KEY (`packagingMachine_Id`)
 REFERENCES `packagingMachineApp`.`packaging_machine` (`packagingMachine_Id`)
 ON DELETE NO ACTION
 ON UPDATE NO ACTION)
ENGINE = InnoDB;

-- ---
-- Table `packagingMachineApp`.`log_data`
-- ---
CREATE TABLE IF NOT EXISTS `packagingMachineApp`.`log_data` (
 `logData_Id` INT NOT NULL AUTO_INCREMENT,
 `cylinder_Id` INT NOT NULL,
 `cylinder_value` FLOAT NOT NULL,
 `vfd_Id` INT NOT NULL,
 `vfd_value` FLOAT NOT NULL,
 `sensor_Id` INT NOT NULL,
 `sensor_value` FLOAT NOT NULL,
 `timeStamp` VARCHAR(45) NOT NULL,
 PRIMARY KEY (`logData_Id`),
 INDEX `fk_log_data_cylinders1_idx` (`cylinder_Id` ASC) VISIBLE,
 INDEX `fk_log_data_sensors1_idx` (`sensor_Id` ASC) VISIBLE,
 INDEX `fk_log_data_vfds1_idx` (`vfd_Id` ASC) VISIBLE,
 CONSTRAINT `fk_log_data_cylinders1`
 FOREIGN KEY (`cylinder_Id`)
 REFERENCES `packagingMachineApp`.`cylinders` (`cylinder_Id`)
 ON DELETE NO ACTION
 ON UPDATE NO ACTION,
 CONSTRAINT `fk_log_data_sensors1`
 FOREIGN KEY (`sensor_Id`)
 REFERENCES `packagingMachineApp`.`sensors` (`sensor_Id`)
 ON DELETE NO ACTION
 ON UPDATE NO ACTION,
 CONSTRAINT `fk_log_data_vfds1`
 FOREIGN KEY (`vfd_Id`)
 REFERENCES `packagingMachineApp`.`vfds` (`vfd_Id`)
 ON DELETE NO ACTION
 ON UPDATE NO ACTION)
ENGINE = InnoDB;

-- ---
-- Table `packagingMachineApp`.`userdatabase`
-- ---
CREATE TABLE IF NOT EXISTS `packagingMachineApp`.`userdatabase` (

 `id` INT NOT NULL AUTO_INCREMENT,
 `username` VARCHAR(45) NOT NULL,
 `password` VARCHAR(250) NOT NULL,
 PRIMARY KEY (`id`),
 UNIQUE INDEX `username_UNIQUE` (`username` ASC) VISIBLE)
ENGINE = InnoDB;

SET SQL_MODE=@OLD_SQL_MODE;
SET FOREIGN_KEY_CHECKS=@OLD_FOREIGN_KEY_CHECKS;
SET UNIQUE_CHECKS=@OLD_UNIQUE_CHECKS;

Appendix D: Application Packaging Machine Sequences Diagrams.

Collect and Store Data Sequence diagram

Figure 1 illustrates the SD diagram for the Collect & Store Data use case. The startup sequence is
outside the Application PM, as it is assumed that external modules, The OPC UA server, the MQTT
broker, and the Azure cloud exist and run in Docker Containers when the application is running.

After the powring up of the system, the Docker Containers will start, and the Collect & Store Data will
start reading data from the PLC and the air pressure sensor every 60 seconds and defines them with
the tag name and data type. The collected data are checked for if the value changes, and then they are
stored as a global variable using global.Set() function. If not, the operation of storing data is stopped.
Using an MQTT Client, the collected data (metrics) are formatted and sent with a defined topic
namespace (Edge Nodes/WizX/Wizx01/PackgingMchine_id/device_id) to the MQTT Broker within the
same loop. The OPC UA Server integrated with the Sparkplug interface subscribes to the same topic in
the MQTT Broker, and then the Broker publishes the topic to the OPC UA Server. This operation is
executed as an external module of the Collect & Store Data program, which is why it is not illustrated
in the SD. Within the loop, there is a 7-second delay. This is to make sure that all the updated metrics
are within the OPC UA Server. An MQTT Client uses the browser function, browses the OPC UA Server
for all updated metrics, and stores them in the taghistory_te table using wizxCore Config updater Node
within Timescale DB. A new loop for storing data in the Azure cloud DB starts by first checking the
connection with the Azure cloud DB. If the Azure Cloud (MySQL Server) connection is false, the
program displayed Azure Cloud DB disconnected on the Node-RED UI. While if the connection is true,
the program will retrieve the stored and updated data as a global variable using global.Set() function
and store data associated with the timestamp in the cloud DB. The sampling time for this loop is 60
seconds.

Figure 1: SD for Collect and Store data use case.

Handle Alerts

As stated in the analysis phase, handling alerts are done in the Grafana. Thus creating alerts and
notifications channels are defined and configured in Grafana. The SD diagram for the Handle Alerts use
case presented in Figure 2 illustrates the program for handling alerts in Grafana. The admin user has
the administration role in the Grafana that creates and manages the alerts in the application. Alert
states are presented in the Alert list and Graph panel. The program defines and configures alert rules
and notifications for each air cylinder, VFD, and air pressure sensor in the graph panel. The alert rules
are then stored in the Rule Engine. After configuring the alert rules and email notification channel, the
program then gets real-time series data (LastData) in a loop every minute. The program is then getting
the configured alerting rules and a notification channel. The program evaluates the rules, in this case,
every 20s for executing the alert rules and conditions. If the LastData is less than the threshold value
for 10s, the retrieved data state will be set to the 'Ok' alert state in the Alert list and Graph panel. While
if the retrieved data is above the threshold value for 10s, then the state will be set to a 'Pending' alert
state in the Alert list. If the value of the lastData is still above its threshold for the 20s, the state will
change to the 'Alerting' alert state in the Alert list Graph panel. The program sends a notification alert
via email. In addition, if lastData has the value of null or if an error occurs in the evaluation rules, the
lastData state to set to the 'Alerting' alert state in the Alert list.

Figure 2: Handle Alerts Sequence Diagram (SD).

Maintain Configuration of Azure Cloud database server

The maintain configuration use case aims to maintain the configuration of the dashboards in Grafana
and the cloud-based database in Microsoft Azure Server for MySQL DB. The SD for Maintain
Configuration use case is divided into two SDs; Maintain Configuration for cloud-based DB and
Maintain Configuration within Grafana.

The configuration of the cloud-based database is performed through the Node-RED dashboard
included in the Azure CloudDB flow. As illustrated in Figure 3, the SD of Maintain Configuration for a
cloud-based database is shown. Upon powering up the Docker Containers, the maintain configuration
program included in the Node-RED container runs the Azure Cloud DB and Dashboard flow. The
dashboard can be accessed using the same URL as the Node-RED administrator but with the addition
of /ui. After entering the path of the url in a web browser, the Node-RED UI interface appears on the
Registration page. For any configuration within the cloud database, a valid user name and password
must be entered. A user database table is included in the MySQL cloud database, where the user name
and hashed password are stored. The user database table contains admin and operator users, along
with their hashed passwords. After a user name and password (userInput) have been entered, the
program is able to verify them in the user database table with the registered user. In the event that
the username or password is incorrect, a message will appear on the status page of the registration
page indicating "Error! Username or password is incorrect". In the event that only the user name is
correct, but the password is incorrect, the program displays "Please try again!". Once both username
and password are correct, the program displays the status as "Login successful". Users with
administrator privileges have full control over the user interface and are able to modify the database
by creating, updating, or deleting packing machines, air cylinders, VFDs, and user tables, whereas an
operator user is only permitted to modify the packaging machine, air cylinder, VFD, and sensor tables.
In order to register a new user, the password must be repeated twice. If the repeated password is not
identical, the program displays the status "Password does not match!". The new user is provided with
UI control by updating the UI user control flow in the program. When updating a user's password both
the old and new passwords must be entered twice. In case the old password is incorrect, the program
displays "incorrect old password!" In case the repeated password is incorrect, the program displays
"new password does not match".

Figure 3: SD for Maintain Configuratin from Node-RED UI.

Maintain Configuration within Garfana

Figure 4 illustrates the SD for Maintaining Configuration within the Grafana. When the Docker
Container gets powered up, the Grafana container runs. Grafana can be accessed using any web
browser as a client using the IP address followed by port 3000. The log-in page will appear, where a
user name and a password must be typed in. If the user name or password is not correct, the
registration page displays an incorrect password or user name, while if the correct user name and
password are typed in the Home dashboard, it will appear. Currently, two users are registered; admin,
operator, and guest. Both the admin has the admin role, and the operator has the editor role, while
the guest user has only the viewer role. When it comes to the application configuration within the
Grafana, the admin user can configure both users in the Admin Server and the rest of the application
dashboards, while the operator can only configure the content within the dashboards. Thus, if the user
name is an admin user, it can create, update and delete a user. If the user input is either admin or
operator, the application dashboard content such as adding, updating, and deleting a dashboard, air
cylinder, VFD, or pressure sensor. In addition, the sampling time range and auto-refresh screen time
for the dashboard and panel can be set as default for all dashboards and panel

Figure 4: SD for Maintain Configuratin from Grafana dashboards.

Appendix E: Packaging Machine dashboard screenshots

Login page

Once the Docker Container that includes the Grafana server is up and running, one can navigate the
Grafana application dashboards using the IP address to the Raspberry Pi followed by the 3000 port
number using any web browser. Figure 1 illustrates the login page in Grafana using the Chrome web
browser.

Figure 1: Login to Grafana Packaging Machine Application dashboards.

Dashboards

The packaging machine application consists of three dashboards; Home Dashboard, Packaging Machine
01 Dashboard (Test Celle), and Packaging Machine 02 Dashboard (Simulation Packaging Machine).

Home Dashboard

Once the user logs in successfully, the Home dashboard will appear, as Figure 2 illustrates the Home
dashboard. The Home dashboard aims to present and visualize information regarding alerts from the
packaging machine dashboards.

The dashboard has the following section for presenting information regarding alerts:

- Displays the application the dashboard's name in the text panel (1).
- The Grafana menu bar (2).
- Dashboard list (3).
- The last change table panelist. It shows the last change on the dashboards' alerts listed in

descending order by timestamp. As it can be seen in the figure, at this moment, A3/Air
Cylinder/Packaging machine 02 is in the alerting state with a 'breaking heart' Symbole, which is
followed by the pending state of the same cylinder (4).

- Display the 'Ok' alert list panel in descending order by timestamp that is symboled with a green
heart symbol (5).

- Present No data list panel. In case of some reason, no data are retrieved (6).
- Paused panel list shows the alerts that are paused. This functionality is useful, especially during

maintenance, where an alarm can be paused after maintenance (7).
- Executing error panelists present information during the rule engine evaluation error or

timeout errors (8).
- Alerting panelists will contain air cylinders, VFDs, or air pressure sensors in alerting state (9).

Figure 2: Home Dashboard.

- Time and data (10).
- Screen refresh time (11)
- Time picker dropdown (12)

Packaging Machine 01 (Test Celle) Dashboard

Figure 3 shows the screenshot of the dashboard taken under testing the application in the Goodtech
department Moss. It displays the real-time data from pneumatic air cylinders, VFDs, and simulated air
pressure sensors that simulates the pressure level for central compressed air within the Test Celle
machine.

Figure 4 shows the actual photo of the machine taken during the testing of the application.

Figure 3: Screenshot of the Packaging Machine 01 (Test Celle) taken under the testing of the applciation in Moss.

Figure 4: Test Celle machine.

 Query real-time data

Once the data source for PostgreSQL is added to the dashboard, the real-time series data must be fetched
from the TimescaleDB database tables and visualized in panels. This is done using For SQL syntax query
as shown in Figure 5 shows the edit panel window for air cylinder A508. At the bottom of the figure is
where the SQL query is written for querying data from the PostgreSQL data source that queries the metrics
from the taghistory_te and taghistory_data within the theTimescaleDB. The air cylinders' data type is
defined as a real data type from PLC. Thus, the float data type is used within the application, and the
approximately operating life service for the air cylinder is set to be 10,000 km stroke distance. To visualize
the value to in percentage, the value is divided by 0,10, as can be seen in the query syntax. The tag path
Edge Nodes/Wizx/Wizx01/PM02/A508 for the air cylinder is used that fetch metrics from the database.

Alerting Configuration on Graph panels

Figure 4 shows the alert configuration for the A508 air cylinder on the packaging machine 02. In the Alert
tab (1) of the graph panel for A508, alerts are configured by first giving a name to the alert rule (Rule
Engine) Name field (2) displayed in the Home dashboard. The second field (3) in the alert rule is Evaluate
every, which in this case is every 20s. This means that the Rule Engine should evaluate the alert rule every
20s. The following configuration field that must be defined is For (4). This means for how long the Rule

Figure 5: Graph panel for A508 air cylinder shows the query tab window
that fetchs real-time data from data source.

Engine should evaluate the rule for the query, which in this case is set to be 20sound. The following
configuration part that must be set up is the conditions of the alert (5). This condition specifies the
threshold for an alert. The threshold in the case of the A508 cylinder is the following; When the last value
of the query data from the cylinder is above the threshold (95 %) of its operating service life for 10 seconds
for the first time, then the alert state changes from the 'OK' to 'Pending' alert state in the Rule Engine.
Suppose the value is still above the threshold for 20 sounds. In that case, the alert changes to the 'Alerting'
state and triggers its notifications to the graph panel, alert list in the Home Dashboard, and the email
notification channel; Alerts from Grafana (8).

Furthermore, if there is a scenario where the query in the graph panel gets a NULL value or no data value
from the data source (PostgreSQL), an alert will arise on the graph panel and the Home dashboard.
Likewise, if an execution error or timeout occurs during the Rule Engine evaluation of the alert, an alert
will be generated (6) (7). The orange dashed vertical line on the graph panel illustrates the 'Pending' alert
state (9), while the red line presents the 'Alerting' alert state (10).

Figure 6: Alert configuration window for A508 air cylinder.

Figure 7 shows the configuration of notification channels implemented for the application.

Configuration of Organization and

User Authorization within dashboards

Figure 8 shows the Server Admin page, showing the created organization groups. The main organization
is owned by Goodtech, while the customer owns the Customer organization.

Figure 8: Screenshot of the Server Admin page in Grafana shows the Mian Org. with created users (gjest, operator and admin)
and their roles. The test user was created durring the testing in Moss.

Figure 7: Configuration of Email Notification channel.

Figure 9 illustrates the main organization (Main Org.) and customer for packaging machine applications.

Figure 9: Main org. and Custumer organization created users and their roles.

Appendix F: Node-RED flows.

In Data flow implementation

Figure 1 shows the nodes used in a simulation of a packaging machine within In Data flow, demonstrating
nodes for a pressure sensor with the tag name P02, two VFDs with the tag names A3 and A4, and two air
cylinders with the tags A506 and A508, which use inject nodes to define tag names and trigger data every
minute. A random node simulates the pressure sensor, generating a value between 70.1 and 80.2 when
triggered by the trigger node. VFD inject nodes generate integer values from 0 to 30000 and 40000, which
simulate the running hours for VFDs. For cylinder simulation, the inject nodes (A506 and A508) simulate
float values between 0 and 10 km. This means that those two cylinders have a service life of 10 km. The
random node and inject node are connected to the sub-flow PM02 (Packaging Machine 02), where the
devices (P02, A3, A4, A506, and A508) are prepared and formatted before being sent to the MQTT broker.

Sub-flow is then connected to the Sparkplug node using the MQTT client for the purposes of sending
metrics from devices associated with the timestamp of the MQTT broker. The link node transfers metrics
to the (admin) Wizxcore flow.

Data from the PLC and air pressure sensor simulator are simultaneously filtered, with changing data
passing only if it changes, and stored as global variables using function nodes. At this point, the data is
ready to be retrieved by Azure DB flow to be stored within the cloud database.

Figure 2 shows the implemented nodes for collecting data from the PLC and simulated air pressure sensor.
For reading data from PLC, the S7-comm node is used. The first step is to define the communication
between the PLC and Node-RED (S7-comm node). The S7-comm node uses the RFC 1006 communication
protocol to read and write data from the PLC. For this application, only the read node is used. To establish
the connection between the S7-comm node and the PLC, the IP address of the PLC and default port, which
is 102, must be typed in during the configuration of the S7-comm node. The next step is to define the tag
from the PLC (Test Celle machine) that must be read. The tag name for cylinders are A502 and A504 with

Figure 1: Simulatiuon Packaging machine 02 flow.

float data types, and the tag names for VFDs are A1 and A2 with integers as the data types. The S7-comm
is connected to the switch node to switch the metric of the PLC to payload signal into the sub-flow (PL01).
Within the sub-flow, they are prepared and formatted before being sent to the MQTT broker.

At the same time, data from the PLC and air pressure sensor simulator are filtered with passing data only
if it changes and stored as global variables using function nodes. At this point are prepared to be retrieved
by Azure DB flow to be stored within the cloud database.

Figure 2: Node-RED flow for collecting data from the PLC, air pressure sensor simulator and sends to MQTT Broker and at the
same time stored a global variables.

(admin) wizxcore flow

Figure 3 shows the three separated flows within the (admin) wizxcore flow. In the first flow, where the
OPC UA server asks for rebirth from all device metrics, and there is 7s a delay, the OPC UA server gets all
the device metrics. Once the OPC UA server has all the device metrics, in the second flow, the OPC UA
client scan the OPC UA server, and the wizxCore-Config-updater node updates the local database
(TimescaleDB). The third flow deletes all subscriptions for metrics that the OPC UA client has subscribed
to before and commands to subscribe to metrics that are history enabled. And then injects the database
with metrics history enabled using the WizxCore-inserter node.

Figure 3: admin wizxcore flow.

Azure DB flow/Node-RED Dashboard

The Azure DB Flow/Node-RED dashboard is divided into the following sub-flows different subflow.

Figure 4 illustrates the flow that checks the connection with the Microsoft Azure cloud every minute. If
the database server is not running, a dialog on the screen will pop up with information, and, at the same
time, the color of the led will change from green to red. I

Store data in the Azure for MySQL DB

Figure 5 illustrates the flow of writing data to logdata tables within the packaging machine cloud database.
The inject node (sampling time) is used for triggering the function node every minute. Within the function
node, javaScript programming code is used for retrieving the global variables using global.Get() function.
Data are then stored in the log data table using SQL syntax script. The function node is connected to the
MySQL node (packgingmachineapp) where the connection with the database in the Azure cloud is created.

Figure 5: : Storing data in the cloud-based database for the application.

Figure 4: Flow that checks the connection with the database server in Azure.

Node-RED dashboard flows

Figure 6 shows the flow for registering a user.

Figure 7 shows the flow that verifies the user name and hashed password with the database table.

Figure 8 shows the flow for updating a user password.

Figure 7: User loging verfication

Figure 6: User registreation flow..

Figure 8: Update user password.

Figure 9 shows the flow for controlling the Node-RED UI for the admin and operator users.

Figure 10 illustrates the flow for database configuration.

Figure 9: UI control flow.

Figure 10: Node-RED flow application packging machine configuration.

Appendix G: Test Case document

Appendix H: Screenshots from the Application PM during the testing.

Figure 1 illustrates the Node-RED flow for Test Celle, and the new simulated packaging machine 03 (PM03)
consists of a VFD (A5).

Figure 2 displays the SQL query in the graph panel created for A5, used for fetching real-time data from
the PostgreSQL data source.

Figure 1: Node-RED flow for Test Celle machine and simulated Packaging Machine 03 (PM03).

Figure 2: SQL syntax query for fetching real time data from PostgreSQL data source for A5.

To test the alert on the created dashboard, an alert rule with the condition if the last value of A5 is above
20 for 20s seconds, an alert should arise. Figure 3 shows the time-series graph panel for A5 where an alert
has arisen.

Figure 4 illustrates the Home dashboard where the alert on A5 has appeared in both the Last Change
and Alerting table.

Figure 4: Home dashbord illustatting A5 in alerting state.

Figure 3: A5 in Aletring alert state.

Figure 5 illustrates the MySQL Workbench screenshot where the packaging machine (PM03) is added to
the packaging machine table within the cloud-based database.

Figure 6 illustrates the VFD table where A5 is added to the table.

Figure 6: Select SQL query for packaging machine table MySQL Workbench is used.

Figure 5: Select SQL query for VFD table MySQL Workbech is used.

Figure 7 illustrates the Node-RED UI when the operator user is logged in. From the figure, it can be seen
that only the registration and database setting tabs are available on the UI.

Figure 8 shows the Node-RED UI when the admin user is logged in. All the tabs appear on the dashboard
when the admin user is logged in.

Figure 8: Node-RED UI when the admin user is logged in

Figure 7: Node-RED UI when operator user is logged in.

Figure 9 shows the screenshot of the User Settings page.

Figure 10 shows the screenshot of the Database Settings page.

Figure 9: Node-RED UI User Settings window.

Figure 10: Database Settings Node-RED UI page.

Figure 11 shows when the database server on the Azure is not running, the green led becomes red, and
a message window with Azure MySQL Connection is Disconnected pops up on the UI.

Figure 12 shows when the database server on Azure is running, and a notification appears on the Node-
RED UI with Azure MySQL Connection connected.

Figure 11: Notification on the Node-RED UI that notifyes that the Azure MySQL Connection status is disconnected.

Figure 12: Notification on the Node-RED UI that notifyes that the Azure MySQL Connection status is connected.

