

www.usn.no

Faculty of Technology, Natural sciences and Maritime Sciences
Campus Porsgrunn

FMH606 Master's Thesis 2022

Industrial IT and Automation

IoT based data logger system for NOMAD
sewage units with focus on efficiency and

performance

Edith Mari Flaten

www.usn.no

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this student report.

Course: FMH606 Master's Thesis, 2022

Title: IoT based data logger system for NOMAD sewage units with focus on efficiency and

performance

Number of pages: 52

Keywords: IoT, Vacuum unit, Azure, Cloud platform, SQL database, User interface,

Frontend, Backend, RevPi

Student: Edith Mari Flaten

Supervisor: Ru Yan, Saba Mylvaganam

External partner: Jets Vacuum AS – Tor Rønnestad

Summary:

NOMAD unit is a sanitary infrastructure released by JetsTM in 2022. The aim of this
thesis is to look at the feasibility of data logging from a mobile site of the NOMAD unit
to a cloud platform or external location.

This thesis is the preliminary work for looking at what possibilities there are in the world
today and starts by looking at existing hardware, software, data platforms, and
cybersecurity.

Got the RevPi setup and successfully communicated with the PLC.

In the backend solution, the RevPi succeeded in communicating with the PLC system
and got a database setup. In the front-end solution, it managed to connect the GUI and
the SQL database, which is at the backend. In addition, it was used integrated solutions
in a cloud platform on Azure. Cybersecurity needs to be taken into consideration in any
future solution.

The solution is technically viable. However, more work is needed to be taken out to
ensure cybersecurity.

Further, there is a need to discover if it is an option to take it further for JetsTM on an
economical and practical level.

 Preface

3

Preface
I am an online master student, at the University of South-Eastern Norway, studying Industrial
IT and Automation part time while working at Jets Vacuum AS. When the time came for
selecting a master thesis topic, I got the opportunity to do a work-related topic.

I have been a part of the creation of the NOMAD units which this thesis is built upon, as a
product manager for electro and being a part in the creation of the electrical drawings.

It is assumed that the reader has some technical knowledge, to get the most out of reading the
thesis.

I want to give thanks to Ru Yan and Saba Mylvaganam for their support during the semester,
to my good colleagues Ole Christian Marti, Alper Duran and Tor Rønnestad for technical
support, and to Jets Vacuum giving me the possibility of a work-related master topic.

Programs used in the thesis are: STARuml, Microsoft Word; Excel; Teams; SQL Server
Management Studio; Visio Professional; Azure SQL database; Power Apps and Project,
Zotero, erwin Data Modeler Academic Edition, Notepad++.

The image on the frontpage is from the NOMAD vacuum unit’s datasheet, and shows the
vacuum unit with pumps, piping and required components.

Ålesund, 18.05.2022

Edith Mari Flaten

 Contents

4

Contents

1 Introduction ... 6

1.1 Background ... 6
1.1.1 Problem Description ... 6
1.1.2 New Developments in the Project ... 6

1.2 Objectives .. 6
1.3 Report Structure ... 7

2 System Description – NOMAD Units ... 8

2.1 System diagram .. 8
2.2 Vacuum Unit Functionality .. 12
2.3 Communication System for NOMAD units ... 17
2.4 Data Collection from Vacuum Unit .. 17
2.5 Hardware and Software .. 17

3 Methods ... 18

3.1 Data collection and communication system .. 18
3.1.1 Hardware for data transformation and data transfer ... 18
3.1.2 Software for Backend and Frontend Solutions .. 20
3.1.3 Azure IoT hub .. 21

3.2 Cloud and Edge Service for IIoT Solutions .. 22
3.3 Feasibility of Having Wired and/or Wireless Communication.. 23
3.4 Categories/select process data to transfer .. 23
3.5 Database design ... 25
3.6 Cybersecurity Risk Analysis for IoT Systems ... 26

4 System configuration and Model Development ... 28

4.1 Implement hardware for data transformation and data transfer 28
4.1.1 Experimental/testing setup .. 28
4.1.2 Hardware/software setup RevPi .. 29

4.2 Develop a cloud-based platform ... 35
4.2.1 Database Setup and Implementation .. 35
4.2.2 Frontend for Data Visualization, using Graphical User Interface (GUI) 42

4.3 Cybersecurity for IoT systems .. 47
4.4 System Integration and Testing its Efficiency and Performance 47

5 Results and Discussion .. 48

5.1 Hardware Implementation .. 48
5.2 Developed platform .. 48
5.3 Cybersecurity .. 48
5.4 System Integration .. 48
5.5 Are results as expected? ... 48

6 Conclusion .. 49

6.1 Possible Future Work ... 49

 Nomenclature

5

Nomenclature
AI – Artificial Intelligence

bar – 𝑏𝑎𝑟, used here for relative pressure, 1 bar is 100𝑘𝑃𝑎

DTU – Database Transaction Unit

EEA – European Economic Area

GA – General Arrangement

GDPR – General Data Protection Regulation

GUI – Graphical User Interface

HMI – Human-Machine Interface

MQTT – MQ Telemetry Transport

IoT – Internet of Things

IIoT – Industrial IoT

NA – Not Applicable

OEM – Original Equipment Manufacturer

OOAD – Object Oriented Analysis and Design

OPC UA – Open Platform Communications United Architecture

PAN – Personal Area Network

Pascal – 𝑃𝑎, SI unit of pressure, newton per square meter 𝑁/𝑚 , 𝑃𝑎 = 𝑘𝑔 ∗ 𝑚 ∗ 𝑠

P&ID – Piping and Instrumentation Diagram

SCADA – Supervisory Control and Data Acquisition

SSMS – Microsoft SQL Server Management Studio

TCP – Transmission Control Protocol

UI – User Interface

UL – Underwriters’ Laboratories

USN – University of South-Eastern Norway

 1 Introduction

6

1 Introduction
The introduction looks at the background, the objectives, and the report structure of the thesis.

1.1 Background
This chapter looks at the problem description, literature survey, previous work, and new
developments in the project.

1.1.1 Problem Description
In February 2022, Jets Vacuum released JetsTM NOMAD units, a scalable mobile infrastructure
meant for events, festivals, and others.

Looking to the future, it can be relevant with an IoT solution for the transfer of process data
and alarms, for predictive maintenance and to lower the response time in case of alarms. This
can give customers the option of upgraded units with an IoT solution and a service package.
The thesis investigates the possibility of real-time data transmission from JetsTM NOMAD
units. Together these units create a scalable mobile sanitation system, that be quickly
established on any site [1].

For the thesis, the focus will be on the vacuum unit and what options lay there. The full task
description of the thesis can be found in Appendix A.

1.1.2 New Developments in the Project
This report is the beginning works of looking at connecting the NOMAD units to a remote
connection. The project can give the possibility of getting process data from a mobile structure
location (a site) to a centralized location.

1.2 Objectives
The project description has a general view of NOMAD units, and this report narrows it down
to focus on the vacuum unit.

Here are some of the main bullet points from the project description, found in Appendix A,
with a focus on the vacuum unit:

- Get an overview of the existing data collection and communication system in
the NOMAD units, with a focus on the vacuum unit
- Investigate the feasibility of having wired or wireless external/remote
communication with the vacuum unit
- Categories process data to be transferred and implement hardware for data
transformation and data transfer, including IoT solutions.

o Take a selection of variables from the vacuum unit for test/check of a
functioning dataflow/communication

- Develop an “on-premises” and/or cloud-based platform, including:
o Backend for data transfer, storage, and necessary processing

 1 Introduction

7

o Frontend for data visualization using a graphical user interface (GUI).

The objective of the thesis is to look at the feasibility, and any selected setup will reflect this.
For a final commercial product, the setup will need further optimization.

1.3 Report Structure
The report is structured as follows:

Chapter 1 introduces the background, objectives, and report structure.

Chapter 2 includes system diagram, functionality explanation and describes the existing
communication system, data collection, hardware, and software.

Chapter 3 evaluating and selecting suitable hardware, study the feasibility of wired/wireless
communication protocols, what data should be extracted from the NOMAD unit(s), database
design and security risk analysis for IoT systems.

Chapter 4 implementing/applying hardware for data transformation and transfer, development
of a cloud-based platform, cybersecurity for IoT systems, and system integration and testing
the system’s efficiency and performance

Chapter 5 present the outcome of hardware implementation, the developed platform (backend
and frontend/software), cybersecurity and system integration. It debates the results and if they
are as expected and discusses models and cybersecurity.

Chapter 6 is the conclusion of the report

After a list of references, the report has some documents of relevance related to programs
developed and the thesis description with the tasks assigned.

 2 System Description – NOMAD Units

8

2 System Description – NOMAD Units
This chapter gives a description of the NOMAD unit system, how it functions and the existing
hardware and software.

2.1 System diagram
The NOMAD water and wastewater infrastructure have a low water consumption, can connect
to the main sewage system, and lower the logistical cost [1].

Figure 2.1 shows the system overview diagram over the different NOMAD units, which are
numbered, showing possible connections. The water supply unit (1) supplies the system with
fresh water and gives protection against pollution of the water supply source, the catcher unit
(2) is to separate out foreign objects in the wastewater, and the vacuum unit (3) creates the
vacuum needed to transport the wastewater and macerates the sewage/wastewater. The flow
control unit (4) feeds the wastewater to local sewage line by gravity and has a vent to reduce
any excess pressure. A transfer unit (5) can be used in combination with a flow control unit
when there is an increased distance to a local sewage line connection point [1].

The units are connected by piping and have the possibility of connecting via hardwired cables
and/or ethernet.

Figure 2.2 illustrates a simplified piping and instrumentation diagram (P&ID) for the vacuum
unit, showing the relevant components. This unit is the focus of the thesis, and we will not look
at the connection options to other NOMAD units at this stage.

 2 System Description – NOMAD Units

9

Figure 2.1: System overview of the diverse types of NOMAD units. 1: Water supply unit; 2: Catcher unit; 3: Vacuum unit; 4: Flow control unit; 5: Transfer tank

unit

 2 System Description – NOMAD Units

10

Figure 2.2: P&ID diagram for NOMAD vacuum unit with details of electrical cabling and piping

 2 System Description – NOMAD Units

11

The relevant components in Figure 2.2, are vacuum transmitters, pumps, temperature sensors,
solenoid valves and the control cabinet. The symbols of other components, such as vacuum
switch, different gauges, and connections to other units, have been omitted on purpose.

The two vacuum transmitters, P1 and P2, give analog signals (4-20mA), where the raw value
of 4mA indicates 100% vacuum, 20mA indicates 0% vacuum, and it is assumed to be a linear
proportion between these two points [2]. Further, 0% vacuum is relative 0𝑏𝑎𝑟, and 100%
vacuum is relative -1𝑏𝑎𝑟. Figure 2.3 shows the symbol used in the P&ID diagram for vacuum
transmitters. Figure 2.4 shows the location of the vacuum transmitters on the manifold. A
vacuum transmitter is the same as a pressure transmitter, but vacuum is used to differentiate
between sensors measuring below (vacuum) and above (pressure) 0𝑏𝑎𝑟.

Figure 2.3: Vacuum transmitter symbol in the P&ID

Figure 2.4: The locations of the two vacuum

transmitters on the manifold is marked with yellow [2]

The VacuumaratorTM pumps create vacuum in the piping system and macerates the wastewater
and discharge [3]. Figure 2.5 shows the pump symbol used in the P&ID diagram. Figure 2.6
shows the large version of a VacuumaratorTM pump, where the inlet is on the top on the left
side and the outlet is on the top of the right/middle side, and the motor is on the far right.

Figure 2.5: Pump symbol in the P&ID

Figure 2.6: VacuumaratorTM Edge L pump [3]

Temperature sensors are PT100 elements and are connected to the programmable logic
controller (PLC) in the control cabinet. They are part of the system to avoid overheating the
pumps and allow for longer runtime on the pumps. The temperature sensor is represented by
the symbol shown in Figure 2.7.

 2 System Description – NOMAD Units

12

Figure 2.7: Temperature sensor symbol in the P&ID

The solenoid valves (flap cleaning valves) are connected to freshwater. They are there to flush
the inlet flap of the VacuumaratorTM pump of anything clogging it and to be able to cool down
the pump in case of temperatures above the threshold. Figure 2.8 shows the solenoid valve
symbol.

Figure 2.8: Solenoid valve in the P&ID

The control cabinet is manned via a Human-Machine Interface (HMI) panel and contains the
needed components for controlling the pumps. Figure 2.9 shows the symbol used in the P&ID
diagram, while Figure 2.10 shows the control cabinets outside look and the placement on the
vacuum unit.

Figure 2.9: Control cabinet symbol in the P&ID

Figure 2.10: Control cabinet placement on the

NOMAD vacuum unit, as shown in the general

arrangement (GA) drawing [2]

2.2 Vacuum Unit Functionality
A vacuum unit controls the pressure level in the piping system of a sanitary system, for removal
of sewage by vacuum, by using VacuumaratorTM pumps to create vacuum and macerate the
sewage. These pumps are normally set to start at 42/40% vacuum and stop at 50% vacuum.
The vacuum is read by vacuum transmitters, or vacuum switches depending on vacuum unit

 2 System Description – NOMAD Units

13

type, and should the vacuum level go below 25% for more than 10 seconds, an alarm is
sounded. A low vacuum alarm indicates an issue that needs fixing, be it a leak in the piping, a
pump not functioning as it should, etc.

For continued uptime of the system, the unit will start up automatically after a power loss or
similar and not need a manual restart. This is if the switches/buttons are set to auto.

The NOMAD vacuum unit is normally operated via an HMI panel. The pumps can be operated
manually in case of maintenance, emergency, or other needs. They can be manually operated
from the HMI or by bypassing the PLC. When the PLC is bypassed, the pumps are run parallel
and controlled by a vacuum switch and two potentiometers, one potentiometer per pump.

The HMI system has four (4) different access levels, OPERATOR, SUPERVISOR, SERVICE
ENGINEER and ADMINISTRATOR. This aids in avoiding “unauthorized” changes to
setpoint values, while still having the pumps properly operated. Actions are limited according
to the settings of the access level.

Access level 0 does not require any login information that the other three levels do. Each
subsequent level has access to the same functions as the one below and has some additional
functionality. OPERATOR is access level 0 and is for normal operation of pumps, and there is
no login required. Operators can access start/stop and manual/auto function for pumps and
manual flap clean. SUPERVISOR is access level 1 and can change set points and alarm levels
for the daily operation of pumps. SERVICE ENGINEER is access level 2 and has extensive
control of all alarm adjustments, etc. ADMINISTRATOR is access level 3 and can create new
users and passwords.

In Auto mode, the standard setup for the NOMAD vacuum unit is for the PLC to read the
vacuum level from a vacuum transmitter and start and stop pumps according to the vacuum
level in the system and, if needed, according to the master pump running time. Figure 2.11 for
the flow chart.

Listed below are the factory setting levels [2]:

- Vacuum setpoint: 50%
- Master Pump Start Point: 42%
- Standby Pump start point: 40%
- Master Pump Stop Offset: 2%
- Standby Pump Stop Offset: 2%

If the master pump is running after a certain time without reaching the vacuum setpoint, and
vacuum level does not go down below the start point of the standby pump, the standby pump
will start. This ensures that the master pump will not run endlessly.

If the vacuum gets below the low vacuum set point, factory setting 25%, for a set amount of
time, the factory setting is 10 seconds, then the low vacuum alarm is activated. No impact on
the operation of vacuum pumps. See Figure 2.12 for the flow chart of low vacuum alarm.

If a pump runs for a certain amount of time, or the temperature gets above 50°C, the flap
cleaning valve is activated. This is done to prevent any clogging and/or dry running. See Figure
2.13 for the temperature control flow chart for the flap cleaning valves.

 2 System Description – NOMAD Units

14

Figure 2.11: Pump control flow chart with sensors (vacuum transmitters) and actuators (pumps)

 2 System Description – NOMAD Units

15

Figure 2.12: Low vacuum alarm flowchart based on vacuum level measurements

 2 System Description – NOMAD Units

16

Figure 2.13: Flow chart for flap cleaning control based on temperature sensors

 2 System Description – NOMAD Units

17

2.3 Communication System for NOMAD units
In the existing setup, it is possible to connect units for local communication, and there is an
option for connection of an external system.

The units can be interconnected locally by hardwired cables, ethernet cables or both. This
allows for one unit to give an alarm for another unit, and/or stop depending on the alarm/signal.

There is an option for an external system to remotely connect to the vacuum unit. This is mainly
for reading data, but the units have been set up for the possibility of changing threshold values
in a future connection to a JetsTM supervisory control and data acquisition (SCADA) system
[2].

The water supply unit and the transfer unit have the option of connecting to the vacuum unit
with an ethernet cable and/or hardwired cable.

The water supply connection allows for an option for having the vacuum unit to give an alarm
about low pressure (below 1bar) on the outlet of the water supply unit. This is in addition to
the alarm on the water supply unit.

The transfer unit connection allows for an option for having the vacuum unit to give an alarm
signal for high high level in tank and a control signal to check if the cable is connected and
functioning. This is in addition to the alarm on the transfer unit.

The flow control units have an option for wired connections. The wired connection adds an
alarm signal for high high level in tank and a control signal to check if the cable is connected
and functioning.

2.4 Data Collection from Vacuum Unit
In the existing setup data can be collected manually when the unit is setup for it. This method
applies not only to the vacuum unit, but also the water supply unit and any transfer units. Each
day gets a separate/new log file for the occurring and disappearing events, with timestamps,
taking place for the day. Due to security risk, no more details will be given.

2.5 Hardware and Software
The NOMAD units are built using Schneider Electric hardware and software where possible.

The units use a combination of Modbus TCP, CANopen and TCP IP for communication
between the PLC, HMI, and frequency drives.

PLC’s, HMI’s, and frequency drives are all Schneider Electric components, and they are
programmed by JetsTM personnel using Schneider Electric software. The PLC program was
created using EcoStructure Machine Expert and the HMI program was created using Vijeo
Designer. The frequency drives get changes implemented by service engineers on the HMI.

 3 Methods

18

3 Methods
This chapter is about selecting software and hardware components, methods and related
background used for the different elements. In general, it is about what is needed to solve the
different tasks found in the thesis description.

3.1 Data collection and communication system
This chapter will first look at hardware components available at JetsTM and software programs
are available through JetsTM or USN or is a standard.

JetsTM have invested in RevPi Connect and bought Acksys Airbox Router for testing purposes
for other internal projects. The idea for another project was to see if MQ telemetry transport
(MQTT) can be used as the messaging protocol and Node-RED as the programming language
on the RevPi.

3.1.1 Hardware for data transformation and data transfer
The hardware that can be used to transform and transfer data, available at JetsTM, is RevPi
Connect and Acksys Airbox Router. Supplementary hardware that can be used for/during
testing is power supply, PLC, HMI, simple ethernet switch, personal computer, and necessary
cabling.

3.1.1.1 RevPi capabilities

The RevPi Connect is an industrial version of a Raspberry Pi, and has different types of
interfaces, including 2xRJ45 10/100 ethernet ports. These ethernet ports can be used in a
Modbus TCP network, as the RevPi have master/slave capabilities using Modbus network
protocol. The RevPi supports MQTT, open platform communications united architecture (OPC
UA), common Industrial Internet of Things (IIoT) protocols for direct transfer to the cloud, and
applications can be programmed in different ways, e.g. Node-RED and Python [4].

The RevPi Connect+ is an Azure certified product that ensures easy integration with the Azure
cloud platform [4]. Azure information can be seen in Figure 3.1, and Figure 3.2 shows the main
differences. The device available at JetsTM is the RevPi Connect. However, there should be a
possibility to connect to the Azure cloud platform relatively easily as the basis is the same for
both. This should be taken into consideration in future work.

 3 Methods

19

Figure 3.1: RevPi devices that are Azure certified [5]

Figure 3.2: The main differences between RevPi Connect and Connect+[4]

The PLC in the NOMAD vacuum has Modbus TCP network protocol enabled for a list of
parameters/variables.

A possible expansion, should the RevPi be able to use the Schneider DataTransferTool
command line from Vijeo Data Manager, is to extract the data logs stored on a unit and transfer
them to the cloud. The data log files can then be used, e.g., as a backup option or for further
data analysis if units have been out of reach for continuous transmissions.

3.1.1.2 Acksys AirBox router capabilities

The technology in the Acksys Airbox router means that it can be used worldwide, either by use
of Wi-Fi and/or SIM card [6]. Figure 3.3 presents most of the communication options. This
does not take into consideration different requirements in various regions and countries. For
example, UL certification that may be needed for use of routers on the North American market
has not been found. Should be investigated if it is needed.

 3 Methods

20

Figure 3.3: Communication options for Acksys Airbox router [6]

The Acksys Airbox router [6] is an industrial cellular router (2G/3G/4G) + WiFi (802.11n) that
is an option for transmission of data from the RevPi and to the cloud.

3.1.2 Software for Backend and Frontend Solutions
A definition of backend and frontend [7]:

“Front-end development focuses on the visual aspects of a
website - the part that users see and interact with. Back-end
development comprises a site's structure, system, data, and
logic. Together, front-end and back-end development combine
to create interactive, visually pleasing websites.”

A combined backend and frontend solution should be able to handle storage, scaling, different
geographical locations and be secure.

Elements that are a part of the backend solution is RevPi software, data transformation and
transfer, and storage. The programs in the PLC and HMI will not be touched, and these are
only to be read from to get data/variables and check if the communication is working with
successful reading of data. A solution should also have the possibility, in the future, to add data
analysis to the solution, e.g., machine learning or AI (Artificial Intelligence).

The frontend solution should also be relatively easy to use, as it can be used by people all over
the globe. It should include the interface to the backend and the UI solution for people to
interact with the system.

The backend solution in this thesis is all parts regarding gathering data from the PLC using
RevPi, and the transfer from the RevPi and to storage. The frontend solution is the
application/GUI displaying the stored data and any results from data analysis. Figure 3.4 shows
the split between the backend solution elements and the frontend solution elements.

Figure 3.4: The separation between backend solution and the frontend solution

 3 Methods

21

Starting with backend solution and the RevPi. The RevPi comes with different programming
methods ready to use, e.g. Node-RED, Python or directly in C [4].

In this work, the Node-Red is selected. Node-RED is a browser-based flow editor that can be
used for event-driven applications, where one does not have to understand every line of code.
It gives a visual representation of the code and is accessible to a wider range of users [8]. The
Node-RED program should be able to read data from the PLC, transform it to the required
messaging protocol and transfer it to the cloud via a router

MQTT is a messaging protocol that can be used to transfer data from the RevPi to the cloud.
Some of its advantages are that it does not use hardware identification and has low
energy/lightweight needs for data transfer [9].

For cloud options, one can select to use a proprietary setup for complete control or a “standard”
setup by, e.g., option for a cloud platform provider such as Azure. A proprietary setup has not
been chosen due to looking at the feasibility of the project.

Azure is an established cloud platform provider with learning material available, can be scaled
to need, got analytics possibility, has inbuild security features and RevPi Connect+ is an Azure
certified product for easier connection/setup.

One storage option is the use of a structured query language (SQL) database with relationship
connections, which Azure has support for and works when looking at feasibility. Future work
will need to involve checking what option is best suited for the company and a final product

For a frontend solution, there is a need an interface to access data stored in the backend. The
interface needs to be able to display data based on user login and data stored in a database. A
quick connection to the database is advantageous, and the frontend software should also be
able to cover security requirements.

For the frontend solution one can also look at Azure which was selected for part of the backend
solution, and at Visual Studio. Azure has integrated options for creating apps/solutions that can
utilize backend elements/setup, and Visual Studio can be integrated into Azure.

Microsoft Visual Studio is an option if there is a need to create from scratch and/or have a need
for more complex programming needs.

Under the Microsoft umbrella, alongside with Azure and Visual Studio, we also find Power
Apps where everyone can create low-code apps to share [10]. Power Apps is set up to easily
connect to different data sources, e.g., Azure SQL database and Excel.

3.1.3 Azure IoT hub
The IoT Hub is included in the free trial with some restrictions, a max of 8000 messages per
day and a max message size of 0.5kB, see Figure 3.5. Based on this, it can be possible to set
up the RevPi to send messages five times per minute (or every 12 seconds) without getting into
trouble. If data is sent continuously for 24 hours the limit of 8000 messages per day results in
333.33 messages per hour or 5.556 per minute.

Figure 3.6 shows that the RevPi connect+ is Azure qualified and ensures an easy as possible
linking between RevPi and Azure.

 3 Methods

22

Figure 3.5: IoT Hub limits for free trial version [11]

Figure 3.6: Azure certified device [4]

3.2 Cloud and Edge Service for IIoT Solutions
The RevPi and the Acksys router are industrial components and can be used, in a IIoT solution,
for transmission of data variables selected in chapter 3.4

Advantages to cloud and edge services according to Lea [12]:

“The cloud layer provides the services of ingestion, long-term
data storage, stream analytics, and patient-monitoring
dashboards. It provides the interface to the healthcare providers
to manage hundreds of edge systems securely through a common
interface. It also is the method to quickly provide alerts to health
situations, error conditions, and system failures, and provide
device upgrades securely. The partitioning of cloud services
versus edge services are as follows:

- Cloud services
o Data ingestion and management for multiple edge

patients and systems
o Almost unlimited storage capacity
o A controlled software deployment and updates to edge

- Edge services
o Low-latency and real-time reactions to events
o PAN communication to sensors
o Minimum connectivity requirements”

According to this the vacuum unit can be seen as an edge device should it get connected to e.g.,
a cloud. It operates without the need for external control in order to ensure swift response time
to changes in the NOMAD setup/system. A cloud connection can give the benefit of long-time
storage of data and the possibility of analyzing the historic data to look for deviating trends
e.g., a pump is heating up faster than the other pump or in relation to earlier data. Then this
pump gets checked in a downtime period and avoid having a failure in a period with high load.

 3 Methods

23

3.3 Feasibility of Having Wired and/or Wireless
Communication

Looking at chapter 3.1 it seems feasible to have wired and/or wireless communication from a
NOMAD vacuum unit and to a cloud.

By connecting RevPi to the internet, one can get access to its data from a remote site. The
internet connection can be wired (via an ethernet switch) or wireless (also via an ethernet switch
but most likely with SIM card).

By the fact that the NOMAD units are to be mobile and not placed in a fixed location, the better
solution is to go the wireless route. A solution should be able to handle disruptions such as
offline status (planned or unplanned), or poor cell phone coverage. Other matters to be handled
are security topics and being able to handle national and international rules. For example,
Norway is following the European Economic Area (EEA) regulations for production,
importing and/or selling equipment [13].

With components available today it should be quite possible to send data off into the
cloud/remote location using wireless communication. It is more of having suitable hardware
and software to handle the communication.

Wired communication is not an ideal solution, as the NOMAD units are made to be movable
and used on different sites. One cannot rely upon there being wired connections available at all
possible locations, as sites will be subject to demand.

Figure 3.7 shows a possible dataflow with available hardware. The data (analog and digital
signals) goes from the sensors and actuators to (and from) the PLC in the control cabinet. From
the PLC a selection of data variables can go to a RevPi and, through the Acksys router, into a
cloud/remote storage location. A frontend solution can give access to the data variables to those
requesting it from the storage location.

Chapter 4 will check if the theory can function in practice.

Figure 3.7: Dataflow from the field, sensors and actuators, and to the frontend solution. The dashed

line is the transmission medium which can be, e.g., wireless communication

3.4 Categories/select process data to transfer
The focus will be on selecting data variables from the vacuum unit, for this stage of the project.

What variables are selected are a view of what variables can be more important to get
transferred, such as the low vacuum alarm as the system is not operational without vacuum in
the pipes. Similar with actual vacuum data, working hours, and temperature, this data can be

 3 Methods

24

made into a trend/graph. Operators/monitoring models/others can look for anomalies that
indicate the beginnings of a vacuum leak and/or other possible troubles.

Key data to be transferred from the vacuum unit are listed below [2]:

- Actual vacuum:
o Vacuum level read on the transmitter and scaled according to the service setting

[2]
- Working hours for pumps

o Relevant to see that motors/pumps have a similar length of running time. It
could also be used to look for abnormalities not otherwise detected, e.g., by
using a trending graph and looking at the history of the working hours for a
pump.

- Alarms
o Frequency drive faults

 Check if frequency drives are OK and if related motor protection works
 If this fault appears, the pumps will not run
 Does not send error codes, but gives information on where to look for

faults
o Alarm low vacuum

 Possible leakage in the piping system
 If there is no vacuum, the toilets/flushing will not function properly

- System OK
o Indicating that the PLC has power and that there are no active alarms

- Pump temperatures
o Temperature read at the pumps

In addition to the listed key data, other measures can be created in RevPi and forwarded to the
cloud. This can be reading the time the pump starts, calculating the number of pump starts, and
counting the times the solenoid valves are opened.

The selection of a transmission frequency depends on different variables, such as cell phone
coverage, price of transmission and storage, how often a transmission is needed, and the size
of a data package. Some reasons that the cost may fluctuate due to data transfer are:

- Global site location and network operator
- The selected plan with Azure or other platform operators
- The transmission frequency
- The size of the data package

In this work, a transmission needs at least 12 seconds as a sending interval due to the limitation
in the Azure trial version. The selected sending interval is based on the information gathered
in chapter 3.1.3. However, in the future, the minimum sending interval can be set pending on
the user subscription and needs in the production environment. Table 1 shows a signal list of
selected data variables based on the previously listed key data, and how often they can be sent.

 3 Methods

25

Table 1: Signal list for the selected data variables for vacuum units and the signals generated at the RevPi

Signal name/type Tag number Data source Sending interval

Actual vacuum AV1 PLC, Modbus In every transmission

Pump 1 Running Hours HP1 PLC, Modbus Every hour

Pump 2 Running Hours HP2 PLC, Modbus Every hour

Pump 1 Temperature TP1 PLC, Modbus In every transmission

Pump 2 Temperature TP2 PLC, Modbus In every transmission

System ok SOK PLC, Modbus In every transmission

Alarm Low Vacuum ALV PLC, Modbus In every transmission

Drive 1 Fault FD1 PLC, Modbus In every transmission

Drive 2 Fault FD2 PLC, Modbus In every transmission

Number of starts for pump 1 SP1 RevPi In every transmission

Number of starts for pump 2 SP2 RevPi In every transmission

Number of flap cleaning

valve 1 opening

NC1 RevPi In every transmission

Number of flap cleaning

valve 2 opening

NC2 RevPi In every transmission

3.5 Database design
When designing a database, one should look at what needs to be included in the database and
what does not need to be included.

The database should handle the storage of received signals, signal types, timestamps, relevant
unit data, and perhaps some way to connect units to owners/operators (so that owners/operators
can get information about their units). In addition, it also should save the information about the
firmware and software versions used on the hardware components, such as PLC, HMI, RevPi,
router, and frequency drives.

Security should be taken into consideration, and requirements may differ depending on site
location and content, e.g., general data protection regulation (GDPR) in Europe, for the
protection of personal data [14].

 3 Methods

26

Information that one should be more careful with is customer data. Should it be included an
assessment is needed to see if a higher security is required. It may not be necessary in the
existing NOMAD database, as JetsTM already has a setup for storing customer data. A second
storage location can give a duplication of data, another location that needs upkeep and it can
be an extra security risk.

What may be included is some way of linking NOMAD units that have a remote connection
option, to customer data in JetsTM by using the unit identification numbers

Some elements are future work-related. Such has for situations where the user of NOMAD
units is not a direct customer of JetsTM, but has bought NOMAD units from a JetsTM customer,
e.g., an original equipment manufacturer (OEM) supplier. A future work element is a need to
look at whether the existing setup used by JetsTM can function for that the situation, or if an
update needs to be implemented. There is a need for procedures for how to handle changes,
and for analyses to see how units are being handled. The system should be able to take into
consideration that units can have a change of ownership.

The database design was created using erwin Data Modeler (academic edition) [15] and the
design is presented in Figure 3.8.

Figure 3.8: Database design showing tables and the relationships between tables

3.6 Cybersecurity Risk Analysis for IoT Systems
Possible security risk elements:

- Transmission of data
- Storage of data
- Interruptions at events

 3 Methods

27

Any hardware and software selected for transmission of data needs to have security
incorporated.

The use of Azure as a cloud platform allows continuous security updates on cloud software.

The use of cloud storage can be seen as a security buffer for JetsTM, if set up properly. As
NOMAD units can be used worldwide and Jets TM have little to no control over who has access
to the units.

The Acksys router has the possibility of remote monitoring, either directly via a web browser
or via software, WaveManager, provided by ACKSYS [6]. WaveManager can use GPS for
geolocation and has inbuilt security, such as user management and password access, and
HTTPS certificate management [16]. Remote monitoring can be a security risk should
unauthorized people get access to the data.

A new IoT system for NOMAD units needs to take into consideration that interruptions can
happen at events, and it could be internet connection issues or somebody with malicious intent.

 4 System configuration and Model Development

28

4 System configuration and Model
Development

This chapter is about implementing hardware to transform and transfer data collected from the
PLC, the development of the cloud-based platform, cybersecurity configuration(s), and system
integration and testing.

4.1 Implement hardware for data transformation and data
transfer

This chapter deals with the test setup, software and hardware configuration of the RevPi.

4.1.1 Experimental/testing setup
The first step involved was being able to make the RevPi read data from the PLC. The RevPi,
PLC, and HMI needed to be connected for this to happen. The HMI was connected so that we
could change a variable and see if the change registered on the RevPi. The change could be
seen by connecting a computer to the RevPi, via ethernet. This also made it possible to
control/check if the communication was working.

Figure 4.1 shows the data transformation and transfer test setup, including the main equipment
with the ethernet and power connection. Figure 4.2 is a picture of the corresponding physical
test setup.

Figure 4.1: Test setup with ethernet switch, power supply, RevPi Connect, PLC, HMI, and computer (the solid

lines indicate electrical wiring, the dashed lines indicate data flow)

 4 System configuration and Model Development

29

Figure 4.2: Test setup in the office

4.1.2 Hardware/software setup RevPi
When power has been connected to the RevPi, the work for setting up the software
configuration, and the programming of the RevPi can start.

An internal JetsTM document was used for software configuration, together with
documentation found on RevPi [4]. One of the ethernet ports on the RevPi was set to a static
IP address, so that a functioning communication connection could be established with the PLC.

Object Oriented Analysis and Design (OOAD) was used for planning and documenting the
programming work. Chapter 4.1.2.1 illustrates the specification, chapter 4.1.2.2 the
requirement document in the form of FURPS+, chapter 4.1.2.3 shows the use case document
and chapter 0 shows one use case analysis in the form of Fully Dressed Use Case Document
(FDUCD).

4.1.2.1 Specification:

The aim is to get data transferred from the NOMAD vacuum unit, from PLC via RevPi to
Azure cloud storage, and to make the data available in a Power BI application.

The PLC uses Modbus TCP for the communication of data.

The RevPi is to read and send data using MQTT messaging protocol and Node-RED
programming. A sending frequency needs to be determined

Data is to be stored in Azure cloud using SQL database, and trending, values, alarms, etc., is
to be displayed in a frontend solution.

Data variables from PLC:

- Actual vacuum level

 4 System configuration and Model Development

30

- Working hours for pumps, 2 variables
- 3 alarm variables: two drive faults and low vacuum alarm
- System ok
- Pump temperature, 2 variables

Data variables calculated in RevPi:

- Number of pump starts, 2 variables
o Pump running signals to be read from the PLC every 10 seconds

 Frequency drives have 5 seconds ramp-up time and 5 seconds ramp
downtime

- Number of solenoid valves opening, 2 variables
o Solenoid valve opening signals need to be read from the PLC

In total 13 variables to transfer and store in the cloud.

4.1.2.2 Requirements

Using FURPS+ setup to make a set of requirements that is testable.

F: Functional

To read data from PLC, the RevPi needs to create new variables and calculate, send the data
via the internet, store the data in an SQL database in Azure and display the data in the frontend
solution.

Read data:

- RevPi needs to be able to read at least 9 variables from the PLC

New variables and calculation:

- The RevPi needs to create 4 new variables
- The new variables are based on data from the PLC

o Pump start: count the number of positive flank (changes from 0/negative to
1/positive) of pump running signal

o Valve opening: count the number of positive flanks of valve opening

Send data:

- The data needs to be sent from the RevPi to Azure Cloud
- Using Acksys Airbox router

Store data:

- Data is to be stored in Azure cloud SQL database

Display:

- See data in the frontend solution
- Create trends
- 13 variables

U: Usability

- Able to display the 13 variables

 4 System configuration and Model Development

31

R: Reliability

To run when vacuum unit is in use, no information on when vacuum unit is in use

P: Performance

S: Supportability

Node-RED programming, Azure cloud, SQL database.

Use of MQTT protocol

+: design challenges/limitations

- Legal
- Cybersecurity

4.1.2.3 Use Case Document

Figure 4.3 shows the use case diagram for the datalogging system.

Figure 4.3: Use case diagram for datalogging system for NOMAD vacuum unit. Contains two actors, PLC and

Display, and four use cases, ReadData, CalculateVariable, SendData and StoreData

 4 System configuration and Model Development

32

4.1.2.4 Use Case Analysis

Table 4.1 is based on Figure 4.3 and the use case ReadData from this figure. This use case is
selected because without the ability to read data, there is no data available to send, calculate or
store.

Table 4.1: FDUCD for the use case ReadData, for reading variables from PLC

1 Use Case Name ReadData

2 Scope Read data from PLC with the use of RevPi Connect

3 Level

4 Primary Actor

5 Stakeholders

6 Precondition Unit is on

7 Success Gar.

8 Main Success

Scenario

1. Startup of unit/RevPi

2. Connect to PLC/check if connection is ok

3. Read values on Modbus addresses

a. Check System ok variable

4. Repeat 2-3 until shut down of unit

9 Extensions 2a: no connection to PLC

2b: send connection error information

3a: error while reading data

3b: error, time limit expired

10 Special Req.

11 Technology List RevPi, Node-RED programming

12 Frequency Every 10 seconds

13 Misc

Figure 4.4 shows the first successful communication between the RevPi and the PLC.

 4 System configuration and Model Development

33

Figure 4.4: First successful reading from the PLC

Figure 4.5 illustrates the flow layout for successfully reading data from the PLC in different
ways for the selected Modbus addresses. Data is being read every second. Figure 4.6 shows an
example of values for when no action is being taken on the HMI.

A simple user interface (UI), see Figure 4.7, was created to check if data gets updated when
buttons are used on the HMI. Time and date support in indicating a functioning communication
to the RevPi and the three other values are indicating communication with the PLC. Different
data values have been selected to see how the data looks when read, is reading data in different
ways and any changes in data. When a button is pressed and a value on the UI changes, it
indicates a functioning communication with the PLC. See Figure 4.7 for value indicating that
flap clean for “pump 1" is being active and Figure 4.8 for value indicating that flap clean for
“pump 2” is active.

The final flow can be found in Appendix B, it is in formatted text format and has sensitive
information replaced with asterisks.

Figure 4.5: The flow setup in NodeRED using a browser

 4 System configuration and Model Development

34

Figure 4.6: An example of reading information on the UI when there is no executed action done on the HMI

Figure 4.7: An example of action when flap clean for “pump 1” is being pressed on screen, notifying the PLC to

open the solenoid valve. The marked values are the values changing when the button is pressed.

Figure 4.8: An example of values for when flap clean for “pump 2” is being pressed on the HMI

 4 System configuration and Model Development

35

4.2 Develop a cloud-based platform
This chapter is about creating an SQL database as a part of the backend solution, and the
creation of a GUI for the frontend solution.

4.2.1 Database Setup and Implementation
The SQL database is created by using Azure services, as illustrated in Figure 4.9. Figure 4.10
demonstrates the database configuration, while Figure 4.11 explains the setup for creating the
database server, and Figure 4.12 is about the storage setup.

Figure 4.13 presents the page Configure database, where we can select what type and
computation and storage, we want the database to have. The recommendation is to use the
vCore-based purchasing model, which works for customers who want a flexible solution with
control and transparency. The database transaction unit (DTU)-based version got selected for
this thesis, using the free trial version. It gives pre-configured options and simplicity[17].

Pressing 𝑅𝑒𝑣𝑖𝑒𝑤 + 𝐶𝑟𝑒𝑎𝑡𝑒 finishes the configuration of the database and creates the database.
After the database has been created, the firewall settings need to be adjusted. The firewall
settings were used to add the IP address used by the personal computer, by using “Add client
IP”, see Figure 4.14. IP addresses can also be added manually. This makes it possible to login
from Microsoft SQL Server Management Studio (SSMS) [18], for the implementation of the
database design that can be found in chapter 3.5, using Admin login user and password. Figure
4.15 presents the look of the database in Azure portal per 19 April 2022.

Figure 4.9: SQL database creation

 4 System configuration and Model Development

36

Figure 4.10: Database configuration: type of subscription (Free Trial), resource group, database name, and server with an available location (Norway East). (The specified

information is highlighted in the screenshot)

 4 System configuration and Model Development

37

Figure 4.11: Creating database server, including naming a server, selecting a location/region (Norway East), and creating a server admin login account

 4 System configuration and Model Development

38

Figure 4.12: Configuration of backup storage redundancy and storage (see Figure 4.13 for the content in Configuration database)

 4 System configuration and Model Development

39

Figure 4.13: The selected setup is based on thesis needs. For the final commercial product, the setup should be optimized further.

 4 System configuration and Model Development

40

Figure 4.14: Adding IP addresses in firewall settings

 4 System configuration and Model Development

41

Figure 4.15: The database shown in Azure portal per April 19, 2022

 4 System configuration and Model Development

42

Now that the database is created in the Azure portal, the database design from chapter 3.5 can
be implemented. The design can be exported from Erwin Data Modeler by using Forward
Engineer Schema Generation and selecting/deselecting relevant options. Appendix C shows
the result of the export, and which can be imported into the database. This data is used to create
the tables and the relationships in the SQL database by running the SQL script in SSMS.

Figure 4.16 shows the login needed to connect to the database server from SSMS. After a
successful login, the exported data was imported by running the exported SQL script in a query.

Another script was created to add data into one row in each table. This was done for a more
effective fill in, and because of encountering errors when trying to add data in tables with
relationship to another table that was empty. Appendix D shows the script created, and it starts
with tables that are not depending on other tables being filled in and goes on to tables depending
on other tables.

Figure 4.16: Connection to the database in the cloud from a personal computer using SSMS

Future work can be to do a market analysis to see where NOMAD units will be sold and used,
what units are needed, and how many units need to be connected remotely to a database. It can
also look at how much control JetsTM wants to have and manage. This is some of the elements
impacting a database solution and cost.

4.2.2 Frontend for Data Visualization, using Graphical User Interface (GUI)
One solution of what a frontend solution can look like is shown in Figure 4.17, Figure 4.18,
Figure 4.19, Figure 4.20, Figure 4.21, Figure 4.22, and Figure 4.24. Figure 4.23 is the
background image used in the frontend solution and is from Appendix E. This appendix is a
quick guide sample for NOMAD units [1].

The example was made in Power Apps as a canvas app for a tablet, and was connected to a
SQL database and got dummy data imported from excel documents. See Appendix F for
temperature and solenoid valve activation, and Appendix G for vacuum data and motor
activation.

 4 System configuration and Model Development

43

The front page, exemplified by Figure 4.17, is set up as the place to login, to get access to
settings and have contact information for JetsTM without needing to login. Figure 4.18 shows
the settings page where it is possible to change temperature designations and pressure
designations. Figure 4.24 shows the alternative designations, Fahrenheit, and PSI.

The information page, shown in Figure 4.19, is available from multiple pages and is for easy
contact to JetsTM for service requirements.

The overview page, Figure 4.20, is the place to see available units and any active alarms in
relation to the available units. By selecting a unit, one can then press on one of the trending
buttons so see the trend of the selected unit.

Examples of trending are shown in Figure 4.21 and Figure 4.22.

Figure 4.17: Frontpage of the tablet application

 4 System configuration and Model Development

44

Figure 4.18: Settings page where it's possible to change between temperature and pressure

Figure 4.19: Contact information page

 4 System configuration and Model Development

45

Figure 4.20: Overview page after login screen

Figure 4.21: Trending page for temperature and solenoid valve

 4 System configuration and Model Development

46

Figure 4.22: Trending page for motor and high and low vacuum alarms

Figure 4.23: Background image in application copied from Appendix E, found here [1], and cropped

 4 System configuration and Model Development

47

Figure 4.24: Shows the other options in Figure 4.18 for temperature and pressure

4.3 Cybersecurity for IoT systems
The existing setup uses built-in security measures available at Azure, and hardware testing has
been done on a closed system.

As no transfer of data has been done between the RevPi and the SQL database, no cybersecurity
work has been implemented for remote transmission.

4.4 System Integration and Testing its Efficiency and
Performance

Integration has been done between the RevPi and the PLC, and between the SQL database and
the frontend application. The frontend application is not yet working outside of the testing and
editing environment.

 5 Results and Discussion

48

5 Results and Discussion

5.1 Hardware Implementation
Got the RevPi set up and successfully communicating with the PLC.

5.2 Developed platform
The solutions selected for backend and frontend development were impacted by ease of use,
time limitations and by looking at feasibility and not a finished, commercial product.

The backend solution the RevPi succeeded in communicating with the PLC, and got a database
setup, and the frontend solution managed to get connection between the GUI and to the SQL
database in the backend.

5.3 Cybersecurity
In this thesis integrated solutions in Azure, and a closed setup for hardware testing, were used.
Cybersecurity needs to be taken into consideration in any future solution.

5.4 System Integration
Not much done, but it is important to do more in depth work and analysis in the future.

5.5 Are results as expected?
Yes, by being able to get communication between different components, and no, in the sense
that I thought more would get done. This was partly due to scope, time limitations and focus
points.

Elements that had a bigger, or was unexpected, scope than expected:

- Market analysis:
o Defining what may be required on an IoT system based on if, and how, units

may change hands.
- Selection of appropriate storage solution:

o What is best for a possible IoT solution and a good option for JetsTM
- Cybersecurity expertise:

o Inhouse or outsource

A solution looks technically practical, but more work is needed to make sure that cybersecurity.

Even if a solution is possible, there is a need to discover if it is an option to take it further for
JetsTM, on an economical and practical level.

 6 Conclusion

49

6 Conclusion
This thesis gives a start on what work one should expect to do should the project be continued
in the future.

More study needs to be done, but a remote solution looks viable. On the technical side, a
solution is possible, but on the security side more research needs to be performed.

6.1 Possible Future Work
The suggestions for the future work are listed below, which should be investigated and
implemented further:

- Connect the RevPi to Azure using Azure IoT hub
- Connect RevPi to database
- Try using MQTT as the communication protocol and check if it can function as
intended.
- Selecting which software, hardware, and platform to use for a commercial
product
- Use of data analysis
- Market analyzations

 References

50

References
[1] “Jets NOMAD - the sanitation infrastructure for all types of events - JetsTM,” JetsTM

Group. https://jetsgroup.com/jets-nomad (accessed Feb. 01, 2022).

[2] “Jets.DS.VUL201-NOM.Vacuum Unit Jets L duo NOMAD.Level 3-Post-Sales Data
Sheet.” JetsTM Group, Jan. 24, 2022.

[3] “The most compact and reliable vacuum generator available. Jets Vacuumarator pump -
JetsTM,” JetsTM Group. https://jetsgroup.com/vacuumarator (accessed Feb. 17, 2022).

[4] “RevPi Connect base module - Industrial Raspberry Pi,” Revolution Pi, May 24, 2018.
https://revolutionpi.com/revpi-connect/ (accessed Jan. 28, 2022).

[5] “Buy IoT Devices & IoT Hardware | Azure Certified Device Catalog,” Azure Certified
Device catalog. https://devicecatalog.azure.com/devices/81670f07-48df-4ca0-9802-
3e99a0504753 (accessed Apr. 20, 2022).

[6] “Acksys - AirBox LTE,” Acksys. https://www.acksys.fr/en/product/55-airbox-lte/
(accessed Jan. 26, 2022).

[7] L. Simmons, “The Difference Between Front-End vs. Back-End |
ComputerScience.org,” ComputerScience.org, Jan. 07, 2022.
https://www.computerscience.org/bootcamps/resources/frontend-vs-backend/ (accessed
May 15, 2022).

[8] OpenJS Foundation & Contributors, “Node-RED,” Node-RED. https://nodered.org/
(accessed Apr. 28, 2022).

[9] “MQTT - The Standard for IoT Messaging,” MQTT. https://mqtt.org/ (accessed Apr. 21,
2022).

[10] “Business Apps | Microsoft Power Apps,” Microsoft | Power Apps.
https://powerapps.microsoft.com/en-us/ (accessed May 02, 2022).

[11] “Create Your Azure Free Account Today | Microsoft Azure,” Azure.
https://azure.microsoft.com/en-us/free/ (accessed Apr. 20, 2022).

[12] P. Lea, IoT and Edge Computing for Architects, 2nd ed. Packt Publishing, 2020.
Accessed: Jan. 18, 2022. [Online]. Available:
https://learning.oreilly.com/library/view/iot-and-edge/9781839214806/

[13] “Produksjon, import og salg av utstyr,” Nkom. https://www.nkom.no/frekvenser-og-
elektronisk-utstyr/import/produksjon-import-og-salg-av-utstyr (accessed May 16, 2022).

[14] “General Data Protection Regulation (GDPR) – Official Legal Text,” General Data
Protection Regulation (GDPR). https://gdpr-info.eu/ (accessed May 13, 2022).

[15] “erwin Data Modeler | Industry-Leading Data Modeling Tool | erwin, Inc.,” erwin by
Quest. https://www.erwin.com/products/erwin-data-modeler/ (accessed May 13, 2022).

[16] “Acksys - WaveManager : Network Administration tool for WaveOS-based products,”
Acksys. https://www.acksys.fr/en/products/softwares/wavemanager-waveos-products/
(accessed May 06, 2022).

 References

51

[17] “Purchasing models - Azure SQL Database,” Microsoft | Docs.
https://docs.microsoft.com/en-us/azure/azure-sql/database/purchasing-models (accessed
Apr. 19, 2022).

[18] “SQL Server Management Studio (SSMS) - SQL Server Management Studio (SSMS),”
Microsoft | Docs. https://docs.microsoft.com/en-us/sql/ssms/sql-server-management-
studio-ssms (accessed Apr. 19, 2022).

 Appendices

52

Appendices

Appendix A – Signed Project Description

Appendix B – NOMAD Formatted Flow

Appendix C – SQL Script NOMAD

Appendix D – Dummy Starting Data

Appendix E – Jets Quick Guide NOMAD Short Version

Appendix F – Dummy Data NOMAD Temperature

Appendix G – Dummy Data NOMAD Vacuum

Appendix A

28/01/2022

1 [
2 {
3 "id": "70ca3376.d22b5c",
4 "type": "tab",
5 "label": "Flow NOMAD Modbus Read",
6 "disabled": false,
7 "info": ""
8 },
9 {

10 "id": "d947b46e.fa1418",
11 "type": "ui_text",
12 "z": "70ca3376.d22b5c",
13 "group": "91fe9b8a.7f27e8",
14 "order": 0,
15 "width": 0,
16 "height": 0,
17 "name": "",
18 "label": "modbusgetter: data",
19 "format": "{{msg.payload}}",
20 "layout": "row-left",
21 "className": "",
22 "x": 770,
23 "y": 180,
24 "wires": []
25 },
26 {
27 "id": "b2b9e8ed.fd6088",
28 "type": "ui_text",
29 "z": "70ca3376.d22b5c",
30 "group": "91fe9b8a.7f27e8",
31 "order": 1,
32 "width": 0,
33 "height": 0,
34 "name": "",
35 "label": "Time and date",
36 "format": "{{msg.payload}}",
37 "layout": "row-left",
38 "className": "",
39 "x": 760,
40 "y": 240,
41 "wires": []
42 },
43 {
44 "id": "3904a0a6.bc8f4",
45 "type": "inject",
46 "z": "70ca3376.d22b5c",
47 "name": "",
48 "props": [
49 {
50 "p": "payload"
51 }
52],
53 "repeat": "1",
54 "crontab": "",
55 "once": true,
56 "onceDelay": 0.1,
57 "topic": "",
58 "payload": "",
59 "payloadType": "date",
60 "x": 170,
61 "y": 220,
62 "wires": [
63 [
64 "15c7a7ca.2cc3c8",
65 "38883b67.31e5b4"
66]
67]
68 },
69 {

Appendix B

70 "id": "38883b67.31e5b4",
71 "type": "modbus-getter",
72 "z": "70ca3376.d22b5c",
73 "name": "PLC_modbus_getter",
74 "showStatusActivities": false,
75 "showErrors": true,
76 "logIOActivities": false,
77 "unitid": "",
78 "dataType": "HoldingRegister",
79 "adr": "**",
80 "quantity": "15",
81 "server": "76a416fb.bd8888",
82 "useIOFile": false,
83 "ioFile": "",
84 "useIOForPayload": false,
85 "emptyMsgOnFail": false,
86 "keepMsgProperties": false,
87 "x": 500,
88 "y": 160,
89 "wires": [
90 [],
91 [
92 "ede691cc.771e4",
93 "d947b46e.fa1418"
94]
95]
96 },
97 {
98 "id": "c9eea190.fa869",
99 "type": "modbus-read",

100 "z": "70ca3376.d22b5c",
101 "name": "Modbus read address 19",
102 "topic": "",
103 "showStatusActivities": false,
104 "logIOActivities": false,
105 "showErrors": true,
106 "unitid": "",
107 "dataType": "HoldingRegister",
108 "adr": "**",
109 "quantity": "1",
110 "rate": "1",
111 "rateUnit": "s",
112 "delayOnStart": false,
113 "startDelayTime": "",
114 "server": "76a416fb.bd8888",
115 "useIOFile": false,
116 "ioFile": "",
117 "useIOForPayload": false,
118 "emptyMsgOnFail": false,
119 "x": 210,
120 "y": 340,
121 "wires": [
122 [],
123 [
124 "1c7808ba.558b77",
125 "afd0391.412cdc8"
126]
127]
128 },
129 {
130 "id": "15c7a7ca.2cc3c8",
131 "type": "function",
132 "z": "70ca3376.d22b5c",
133 "name": "",
134 "func": "// Copied from https://nodered.org/docs/tutorials/first-flow on April 6

2022\n// Create a Date object from the payload\nvar date = new
Date(msg.payload);\n// Change the payload to be a formatted Date
string\nmsg.payload = date.toString();\n// Return the message so it can be sent
on\nreturn msg;",

135 "outputs": 1,
136 "noerr": 0,
137 "initialize": "",
138 "finalize": "",
139 "libs": [],
140 "x": 460,
141 "y": 240,
142 "wires": [
143 [
144 "b2b9e8ed.fd6088"
145]
146]
147 },
148 {
149 "id": "ede691cc.771e4",
150 "type": "debug",
151 "z": "70ca3376.d22b5c",
152 "name": "",
153 "active": false,
154 "tosidebar": true,
155 "console": false,
156 "tostatus": false,
157 "complete": "false",
158 "statusVal": "",
159 "statusType": "auto",
160 "x": 750,
161 "y": 120,
162 "wires": []
163 },
164 {
165 "id": "1c7808ba.558b77",
166 "type": "ui_text",
167 "z": "70ca3376.d22b5c",
168 "group": "91fe9b8a.7f27e8",
169 "order": 0,
170 "width": "0",
171 "height": "0",
172 "name": "",
173 "label": "modbus-read: set address",
174 "format": "{{msg.payload}}",
175 "layout": "row-left",
176 "className": "2",
177 "x": 510,
178 "y": 320,
179 "wires": []
180 },
181 {
182 "id": "afd0391.412cdc8",
183 "type": "debug",
184 "z": "70ca3376.d22b5c",
185 "name": "",
186 "active": false,
187 "tosidebar": true,
188 "console": false,
189 "tostatus": false,
190 "complete": "false",
191 "statusVal": "",
192 "statusType": "auto",
193 "x": 470,
194 "y": 380,
195 "wires": []
196 },
197 {
198 "id": "85f85b13.9e6f88",
199 "type": "modbus-read",
200 "z": "70ca3376.d22b5c",
201 "name": "",
202 "topic": "",
203 "showStatusActivities": false,

204 "logIOActivities": false,
205 "showErrors": true,
206 "unitid": "",
207 "dataType": "HoldingRegister",
208 "adr": "**",
209 "quantity": "15",
210 "rate": "1",
211 "rateUnit": "s",
212 "delayOnStart": false,
213 "startDelayTime": "",
214 "server": "76a416fb.bd8888",
215 "useIOFile": false,
216 "ioFile": "",
217 "useIOForPayload": false,
218 "emptyMsgOnFail": false,
219 "x": 170,
220 "y": 480,
221 "wires": [
222 [],
223 [
224 "94908d68.6abb4",
225 "b31e035.a74bc"
226]
227]
228 },
229 {
230 "id": "94908d68.6abb4",
231 "type": "ui_text",
232 "z": "70ca3376.d22b5c",
233 "group": "91fe9b8a.7f27e8",
234 "order": 0,
235 "width": "0",
236 "height": "0",
237 "name": "",
238 "label": "modbus-read: all data",
239 "format": "{{msg.payload}}",
240 "layout": "row-left",
241 "className": "2",
242 "x": 500,
243 "y": 460,
244 "wires": []
245 },
246 {
247 "id": "b31e035.a74bc",
248 "type": "debug",
249 "z": "70ca3376.d22b5c",
250 "name": "",
251 "active": false,
252 "tosidebar": true,
253 "console": false,
254 "tostatus": false,
255 "complete": "false",
256 "statusVal": "",
257 "statusType": "auto",
258 "x": 470,
259 "y": 520,
260 "wires": []
261 },
262 {
263 "id": "91fe9b8a.7f27e8",
264 "type": "ui_group",
265 "name": "RevPi NOMAD",
266 "tab": "ba074780.869718",
267 "order": 1,
268 "disp": true,
269 "width": "14",
270 "collapse": false,
271 "className": ""
272 },

273 {
274 "id": "76a416fb.bd8888",
275 "type": "modbus-client",
276 "name": "PLC",
277 "clienttype": "tcp",
278 "bufferCommands": true,
279 "stateLogEnabled": false,
280 "queueLogEnabled": false,
281 "tcpHost": "***.***.***.**",
282 "tcpPort": "***",
283 "tcpType": "DEFAULT",
284 "serialPort": "/dev/******",
285 "serialType": "RTU-BUFFERD",
286 "serialBaudrate": "9600",
287 "serialDatabits": "8",
288 "serialStopbits": "1",
289 "serialParity": "none",
290 "serialConnectionDelay": "100",
291 "serialAsciiResponseStartDelimiter": "0x3A",
292 "unit_id": 1,
293 "commandDelay": 1,
294 "clientTimeout": 1000,
295 "reconnectOnTimeout": true,
296 "reconnectTimeout": 2000,
297 "parallelUnitIdsAllowed": true
298 },
299 {
300 "id": "ba074780.869718",
301 "type": "ui_tab",
302 "name": "Time",
303 "icon": "dashboard",
304 "disabled": false,
305 "hidden": false
306 }
307]

1
2 CREATE TABLE [CUSTOMER_INFO]
3 (
4 [CustomerId] int NOT NULL ,
5 [CustomerCode] integer NULL ,
6 [UnitTypeId] int NOT NULL
7)
8 go
9

10 CREATE TABLE [FIRMWARE_VERSION]
11 (
12 [FirmwareId] int NOT NULL ,
13 [FirmwareVersion] char(18) NULL
14)
15 go
16
17 CREATE TABLE [MODBUS_ADDRESS]
18 (
19 [ModbusId] int NOT NULL ,
20 [ModbusAddress] char(18) NULL
21)
22 go
23
24 CREATE TABLE [REVPI_TYPE]
25 (
26 [RevPiTypeId] int NOT NULL ,
27 [RouterName] char(18) NULL ,
28 [MACAddress] char(18) NULL ,
29 [FirmwareId] int NOT NULL ,
30 [SoftwareId] int NOT NULL
31)
32 go
33
34 CREATE TABLE [ROUTER_CONNECT]
35 (
36 [ConnectId] int NOT NULL ,
37 [TimeSignature] timestamp NULL ,
38 [RouterTypeId] int NOT NULL
39)
40 go
41
42 CREATE TABLE [ROUTER_TYPE]
43 (
44 [RouterTypeId] int NOT NULL ,
45 [RouterName] varchar(50) NULL ,
46 [MACAddress] varchar(50) NULL ,
47 [FirmwareId] int NOT NULL ,
48 [SoftwareId] int NOT NULL
49)
50 go
51
52 CREATE TABLE [SIGNAL_INFO]
53 (
54 [SignalId] int NOT NULL ,
55 [SignalContent] varchar(50) NULL ,
56 [TimeSignature] timestamp NULL ,
57 [SignalTypeId] int NOT NULL ,
58 [ModbusId] int NOT NULL ,
59 [UnitTypeId] int NOT NULL ,
60 [SignalNameId] int NOT NULL
61)
62 go
63
64 CREATE TABLE [SIGNAL_NAME]
65 (
66 [SignalNameId] int NOT NULL ,
67 [SignalName] varchar(50) NULL
68)
69 go
70
71 CREATE TABLE [SIGNAL_TYPE]
72 (
73 [SignalTypeId] int NOT NULL ,

Appendix C

74 [SignalType] varchar(50) NULL
75)
76 go
77
78 CREATE TABLE [SOFTWARE_VERSION]
79 (
80 [SoftwareId] int NOT NULL ,
81 [SoftwareVersion] varchar(50) NULL
82)
83 go
84
85 CREATE TABLE [UNIT_INFO]
86 (
87 [UnitTypeId] int NOT NULL ,
88 [UnitSerialNumber] varchar(50) NULL ,
89 [RouterTypeId] int NOT NULL ,
90 [RevPiTypeId] int NOT NULL ,
91 [UnitNameId] int NOT NULL
92)
93 go
94
95 CREATE TABLE [UNIT_NAME]
96 (
97 [UnitNameId] int NOT NULL ,
98 [UnitName] varchar(50) NULL
99)

100 go
101
102 ALTER TABLE [CUSTOMER_INFO]
103 ADD CONSTRAINT [XPKCUSTOMER_INFO] PRIMARY KEY CLUSTERED ([CustomerId] ASC)
104 go
105
106 ALTER TABLE [FIRMWARE_VERSION]
107 ADD CONSTRAINT [XPKFIRMWARE_VERSION] PRIMARY KEY CLUSTERED ([FirmwareId] ASC)
108 go
109
110 ALTER TABLE [MODBUS_ADDRESS]
111 ADD CONSTRAINT [XPKMODBUS_ADDRESS] PRIMARY KEY CLUSTERED ([ModbusId] ASC)
112 go
113
114 ALTER TABLE [REVPI_TYPE]
115 ADD CONSTRAINT [XPKREVPI_TYPE] PRIMARY KEY CLUSTERED ([RevPiTypeId] ASC)
116 go
117
118 ALTER TABLE [ROUTER_CONNECT]
119 ADD CONSTRAINT [XPKROUTER_CONNECT] PRIMARY KEY CLUSTERED ([ConnectId] ASC)
120 go
121
122 ALTER TABLE [ROUTER_TYPE]
123 ADD CONSTRAINT [XPKROUTER_TYPE] PRIMARY KEY CLUSTERED ([RouterTypeId] ASC)
124 go
125
126 ALTER TABLE [SIGNAL_INFO]
127 ADD CONSTRAINT [XPKSIGNAL_INFO] PRIMARY KEY CLUSTERED ([SignalId] ASC)
128 go
129
130 ALTER TABLE [SIGNAL_NAME]
131 ADD CONSTRAINT [XPKSIGNAL_NAME] PRIMARY KEY CLUSTERED ([SignalNameId] ASC)
132 go
133
134 ALTER TABLE [SIGNAL_TYPE]
135 ADD CONSTRAINT [XPKSIGNAL_TYPE] PRIMARY KEY CLUSTERED ([SignalTypeId] ASC)
136 go
137
138 ALTER TABLE [SOFTWARE_VERSION]
139 ADD CONSTRAINT [XPKSOFTWARE_VERSION] PRIMARY KEY CLUSTERED ([SoftwareId] ASC)
140 go
141
142 ALTER TABLE [UNIT_INFO]
143 ADD CONSTRAINT [XPKUNIT_INFO] PRIMARY KEY CLUSTERED ([UnitTypeId] ASC)
144 go
145
146 ALTER TABLE [UNIT_NAME]

147 ADD CONSTRAINT [XPKUNIT_NAME] PRIMARY KEY CLUSTERED ([UnitNameId] ASC)
148 go
149
150
151 ALTER TABLE [CUSTOMER_INFO]
152 ADD CONSTRAINT [R_18] FOREIGN KEY ([UnitTypeId]) REFERENCES [UNIT_INFO]([

UnitTypeId])
153 ON DELETE NO ACTION
154 ON UPDATE NO ACTION
155 go
156
157
158 ALTER TABLE [REVPI_TYPE]
159 ADD CONSTRAINT [R_5] FOREIGN KEY ([FirmwareId]) REFERENCES [FIRMWARE_VERSION]([

FirmwareId])
160 ON DELETE NO ACTION
161 ON UPDATE NO ACTION
162 go
163
164 ALTER TABLE [REVPI_TYPE]
165 ADD CONSTRAINT [R_7] FOREIGN KEY ([SoftwareId]) REFERENCES [SOFTWARE_VERSION]([

SoftwareId])
166 ON DELETE NO ACTION
167 ON UPDATE NO ACTION
168 go
169
170
171 ALTER TABLE [ROUTER_CONNECT]
172 ADD CONSTRAINT [R_15] FOREIGN KEY ([RouterTypeId]) REFERENCES [ROUTER_TYPE]([

RouterTypeId])
173 ON DELETE NO ACTION
174 ON UPDATE NO ACTION
175 go
176
177
178 ALTER TABLE [ROUTER_TYPE]
179 ADD CONSTRAINT [R_11] FOREIGN KEY ([FirmwareId]) REFERENCES [FIRMWARE_VERSION]([

FirmwareId])
180 ON DELETE NO ACTION
181 ON UPDATE NO ACTION
182 go
183
184 ALTER TABLE [ROUTER_TYPE]
185 ADD CONSTRAINT [R_12] FOREIGN KEY ([SoftwareId]) REFERENCES [SOFTWARE_VERSION]([

SoftwareId])
186 ON DELETE NO ACTION
187 ON UPDATE NO ACTION
188 go
189
190
191 ALTER TABLE [SIGNAL_INFO]
192 ADD CONSTRAINT [R_8] FOREIGN KEY ([SignalTypeId]) REFERENCES [SIGNAL_TYPE]([

SignalTypeId])
193 ON DELETE NO ACTION
194 ON UPDATE NO ACTION
195 go
196
197 ALTER TABLE [SIGNAL_INFO]
198 ADD CONSTRAINT [R_9] FOREIGN KEY ([ModbusId]) REFERENCES [MODBUS_ADDRESS]([

ModbusId])
199 ON DELETE NO ACTION
200 ON UPDATE NO ACTION
201 go
202
203 ALTER TABLE [SIGNAL_INFO]
204 ADD CONSTRAINT [R_10] FOREIGN KEY ([UnitTypeId]) REFERENCES [UNIT_INFO]([

UnitTypeId])
205 ON DELETE NO ACTION
206 ON UPDATE NO ACTION
207 go
208
209 ALTER TABLE [SIGNAL_INFO]
210 ADD CONSTRAINT [R_16] FOREIGN KEY ([SignalNameId]) REFERENCES [SIGNAL_NAME]([

SignalNameId])
211 ON DELETE NO ACTION
212 ON UPDATE NO ACTION
213 go
214
215
216 ALTER TABLE [UNIT_INFO]
217 ADD CONSTRAINT [R_13] FOREIGN KEY ([RouterTypeId]) REFERENCES [ROUTER_TYPE]([

RouterTypeId])
218 ON DELETE NO ACTION
219 ON UPDATE NO ACTION
220 go
221
222 ALTER TABLE [UNIT_INFO]
223 ADD CONSTRAINT [R_14] FOREIGN KEY ([RevPiTypeId]) REFERENCES [REVPI_TYPE]([

RevPiTypeId])
224 ON DELETE NO ACTION
225 ON UPDATE NO ACTION
226 go
227
228 ALTER TABLE [UNIT_INFO]
229 ADD CONSTRAINT [R_17] FOREIGN KEY ([UnitNameId]) REFERENCES [UNIT_NAME]([

UnitNameId])
230 ON DELETE NO ACTION
231 ON UPDATE NO ACTION
232 go
233

1
2 /* query for inserting dummy data into database tables*/
3 insert into SOFTWARE_VERSION(SoftwareId,SoftwareVersion)
4 values (1,'123abc456')
5
6 insert into FIRMWARE_VERSION(FirmwareId,FirmwareVersion)
7 values (1,'abc123def')
8
9 insert into REVPI_TYPE(RevPiTypeId,RouterName,MACAddress,FirmwareId,SoftwareId)

10 values(1,'RevPi','HEX123',1,1)
11
12 insert into ROUTER_TYPE(RouterTypeId,RouterName,MACAddress,FirmwareId,SoftwareId)
13 values (1,'Router','123HEX',1,1)
14
15 insert into ROUTER_CONNECT(ConnectId,RouterTypeId)
16 values (1,1)
17
18 insert into UNIT_NAME(UnitNameId,UnitName)
19 values (1,'Vacuum')
20
21 insert into UNIT_INFO(UnitTypeId,UnitNameId,UnitSerialNumber,RevPiTypeId,RouterTypeId)
22 values(1,1,'987321',1,1)
23
24 insert into SIGNAL_NAME(SignalNameId,SignalName)
25 values (1,'Solenoid activation')
26
27 insert into MODBUS_ADDRESS(ModbusId,ModbusAddress)
28 values (1,77)
29
30 insert into SIGNAL_TYPE(SignalTypeId,SignalType)
31 values (1,'Binary')
32
33 insert into SIGNAL_INFO(SignalId,SignalContent,SignalTypeId,ModbusId,UnitTypeId,

SignalNameId)
34 values (1,0,1,1,1,1)
35
36 insert into CUSTOMER_INFO(CustomerId,CustomerCode,UnitTypeId)
37 values (1,123,1)

Appendix D

JETS NOMAD
The mobile sanitation infrastructure

Quick guide

TM

Appendix E

From a category 5
water supply system to
the discharge point, the
Nomad system covers
all your needs when it
comes to temporary in-
frastructure.

This scalable system
may be connected to any

type of trailer, container
or pod solution utilizing
CVSTM toilets.

Combine modules to your
specific needs at any site
anywhere, with a dis-
charge distance to mains
sewer or collecting point
up to 1,6 km / 1 mile!

Vacuum Unit
80 x 120 x 130 cm

Catcher Unit
60 x 80 x 130 cm

Transfer Tank Unit
60 x 80 x 130 cm

Flow Control Unit
60 x 80 x 130 cm

Water Supply Unit
60 x 80 x 130 cm

Catcher from JETSTM

removes items not sup-
posed to be flushed down
the toilets with minimal
disturbance to the opera-
tion of the system.

All this in a system ensuring
an even flow at 3,75 L / sec
or 1 Gall / sec) by gravity to
mains sewer.

Quick introduction to the JETS NOMADTM

The new JETSTM NOMAD handles the entire infrastructure
of water and waste water throughout the event site.

1

1

2

2

3

3

4

4

5

5

6

6

A A

B B

C C

D D

Catcher Unit NOMAD

WWW.JETS.NO

™

Format:

Date: Approved by:Checked by:

Sheet:

A
Rev:

Jets Vacuum AS
Myravegen 1

N-6060 HAREID
Tel. +47 70 03 91 00

post@jets.no

Not to be reproduced and/or made available to a third party, without our written consent. Sheet issue
2020A

Right SideView line drawing
Drawing no.:

A3 /1 1

Product Group:

Part No:

CATU-NOM
Type of Drawing:

Date:

09.12.21
Designer:

jhs

State:

Pim Group:

Work in Progress
Tolerance:

DIN ISO 2768 mk

Material: Weight:

N/A

Drawing Category:

996
Project: Title:

Description:

Pr
el
im
in
ar
y

A
Rev Description DATE APPROVED

(scale:1:7)

6 x 3/4’’ SnapLock
1 x 1/2’’ Snaplock

Up to 1,6 km / 1 mile

Up to
 100 m

A
LT

 A

TO DRAIN

TO DRAIN

A
LT B

VACUUM HOSE (2 x 1,95 meters included)

WATER PIPE 50 mm 3/4”

PIPE TO DRAIN 50 mm

PRESSURE HOSE 2 1/2” (2 x 10 meters included)

1 Water Supply

2 Toilets

3 Catcher

4 Vacuum Unit

5 Transfer Tank

6 Flow Control

1

3 4

6

2

5 6

JETS NOMAD
System overview

H2O
TM

Jets Vacuum AS, Myravegen 1, N-6060 Hareid, Norway

 Tel.: +47 70 03 91 00 – E-mail: post@jets.no

www.jetsgroup.com

Timestamp to use Temperature Solenoid Activation
12:24 PM 34.32 0
12:24 PM 63.79 1
12:24 PM 52.05 1
12:24 PM 43.36 0
12:24 PM 53.55 1
12:24 PM 38.30 0
12:24 PM 20.24 0
12:24 PM 48.64 0
12:24 PM 42.53 0
12:24 PM 27.13 0
12:24 PM 38.57 0
12:24 PM 36.08 0
12:25 PM 38.03 0
12:25 PM 52.45 1
12:25 PM 57.08 1
12:25 PM 40.21 0
12:25 PM 15.65 0
12:25 PM 68.81 1
12:25 PM 39.78 0
12:25 PM 39.82 0
12:25 PM 36.94 0
12:25 PM 49.46 0
12:25 PM 36.48 0
12:25 PM 22.35 0
12:26 PM 48.16 0
12:26 PM 46.93 0
12:26 PM 38.55 0
12:26 PM 31.15 0
12:26 PM 42.34 0
12:26 PM 34.45 0
12:26 PM 35.62 0
12:26 PM 54.91 1
12:26 PM 45.76 0
12:26 PM 33.29 0
12:26 PM 31.64 0
12:26 PM 51.44 1
12:27 PM 36.30 0
12:27 PM 78.98 1
12:27 PM 32.89 0
12:27 PM 31.20 0
12:27 PM 46.19 0
12:27 PM 43.07 0
12:27 PM 10.72 0
12:27 PM 38.14 0
12:27 PM 59.95 1
12:27 PM 52.86 1
12:27 PM 30.31 0
12:27 PM 29.54 0
12:28 PM 47.68 0
12:28 PM 54.45 1
12:28 PM 17.54 0

1 of 2

Appendix F

12:28 PM 14.75 0
12:28 PM 48.08 0
12:28 PM 37.57 0
12:28 PM 23.10 0
12:28 PM 44.62 0
12:28 PM 15.78 0
12:28 PM 32.42 0
12:28 PM 23.49 0
12:28 PM 33.55 0
12:29 PM 36.02 0
12:29 PM 43.07 0
12:29 PM 48.68 0
12:29 PM 47.54 0
12:29 PM 22.88 0
12:29 PM 43.39 0
12:29 PM 30.64 0
12:29 PM 10.10 0
12:29 PM 55.44 1
12:29 PM 24.33 0
12:29 PM 48.75 0
12:29 PM 54.20 1
12:30 PM 11.90 0
12:30 PM 23.80 0
12:30 PM 41.88 0
12:30 PM 44.38 0
12:30 PM 46.68 0
12:30 PM 10.16 0
12:30 PM 25.73 0
12:30 PM 40.66 0
12:30 PM 31.87 0
12:30 PM 13.71 0
12:30 PM 42.82 0
12:30 PM 37.77 0
12:31 PM 21.86 0
12:31 PM 33.61 0
12:31 PM 18.99 0
12:31 PM 35.52 0
12:31 PM 19.82 0
12:31 PM 49.59 0
12:31 PM 42.57 0
12:31 PM 49.47 0
12:31 PM 47.32 0
12:31 PM 32.27 0
12:31 PM 87.39 1
12:31 PM 39.10 0
12:32 PM 25.07 0
12:32 PM 54.87 1
12:32 PM 49.27 0
12:32 PM 59.34 1

2 of 2

Timestamp to use Vacuum Pump activated Low vacuum alarm High vacuum alarm

12:24 PM 0.97 0 0 1
12:24 PM 0.21 1 1 0
12:24 PM 0.48 0 0 0
12:24 PM 0.31 1 0 0
12:24 PM 0.89 0 0 1
12:24 PM 0.74 0 0 0
12:24 PM 0.87 0 0 1
12:24 PM 0.58 0 0 0
12:24 PM 0.97 0 0 1
12:24 PM 0.35 1 0 0
12:24 PM 0.20 1 1 0
12:24 PM 0.45 0 0 0
12:25 PM 0.13 1 1 0
12:25 PM 0.89 0 0 1
12:25 PM 0.09 1 1 0
12:25 PM 0.21 1 1 0
12:25 PM 0.14 1 1 0
12:25 PM 0.16 1 1 0
12:25 PM 0.41 1 0 0
12:25 PM 0.16 1 1 0
12:25 PM 0.18 1 1 0
12:25 PM 0.73 0 0 0
12:25 PM 0.59 0 0 0
12:25 PM 0.16 1 1 0
12:26 PM 0.80 0 0 1
12:26 PM 0.54 0 0 0
12:26 PM 0.15 1 1 0
12:26 PM 0.95 0 0 1
12:26 PM 0.87 0 0 1
12:26 PM 0.16 1 1 0
12:26 PM 0.15 1 1 0
12:26 PM 0.37 1 0 0
12:26 PM 0.23 1 1 0
12:26 PM 0.80 0 0 1
12:26 PM 0.22 1 1 0
12:26 PM 0.00 1 1 0
12:27 PM 0.20 1 1 0
12:27 PM 0.09 1 1 0
12:27 PM 0.39 1 0 0
12:27 PM 0.93 0 0 1
12:27 PM 0.00 1 1 0
12:27 PM 0.38 1 0 0
12:27 PM 0.44 0 0 0
12:27 PM 0.14 1 1 0
12:27 PM 0.48 0 0 0
12:27 PM 0.24 1 1 0
12:27 PM 0.40 1 0 0
12:27 PM 0.83 0 0 1
12:28 PM 0.83 0 0 1
12:28 PM 0.59 0 0 0
12:28 PM 0.55 0 0 0
12:28 PM 0.62 0 0 0
12:28 PM 0.99 0 0 1
12:28 PM 0.49 0 0 0

1 of 2

Appendix G

12:28 PM 0.78 0 0 1
12:28 PM 0.28 1 0 0
12:28 PM 0.19 1 1 0
12:28 PM 0.81 0 0 1
12:28 PM 0.19 1 1 0
12:28 PM 0.48 0 0 0
12:29 PM 0.73 0 0 0
12:29 PM 0.88 0 0 1
12:29 PM 1.00 0 0 1
12:29 PM 0.60 0 0 0
12:29 PM 0.15 1 1 0
12:29 PM 0.46 0 0 0
12:29 PM 0.85 0 0 1
12:29 PM 0.44 0 0 0
12:29 PM 0.95 0 0 1
12:29 PM 0.75 0 0 0
12:29 PM 0.75 0 0 0
12:29 PM 0.07 1 1 0
12:30 PM 0.59 0 0 0
12:30 PM 0.97 0 0 1
12:30 PM 0.26 1 0 0
12:30 PM 0.13 1 1 0
12:30 PM 0.38 1 0 0
12:30 PM 0.02 1 1 0
12:30 PM 0.04 1 1 0
12:30 PM 0.48 0 0 0
12:30 PM 0.59 0 0 0
12:30 PM 0.71 0 0 0
12:30 PM 0.18 1 1 0
12:30 PM 0.95 0 0 1
12:31 PM 0.69 0 0 0
12:31 PM 0.50 0 0 0
12:31 PM 0.24 1 1 0
12:31 PM 0.33 1 0 0
12:31 PM 0.27 1 0 0
12:31 PM 0.19 1 1 0
12:31 PM 0.27 1 0 0
12:31 PM 0.40 1 0 0
12:31 PM 0.63 0 0 0
12:31 PM 0.60 0 0 0
12:31 PM 0.15 1 1 0
12:31 PM 0.87 0 0 1
12:32 PM 0.66 0 0 0
12:32 PM 0.59 0 0 0
12:32 PM 0.57 0 0 0
12:32 PM 0.95 0 0 1

2 of 2

	edith_2
	Appendix_A_Signed_Project_Description
	Appendix_B_NOMAD_Formatted_Flow
	Appendix_C_SQL_script_NOMAD
	Appendix_D_Dummy_Starting_Data
	Appendix_E_Jets_Quick_Guide_NOMAD_Short_Version
	Appendix_F_Dummy_Data_NOMAD_Temperature
	Appendix_G_Dummy_Data_NOMAD_Vacuum

