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Summary:  

As the railways are a significant section of transportation infrastructure, it is crucial to use 

good maintenance procedures for railway networks. Condition-monitoring of railway 

wheels and tracks is especially important where extremely unfortunate failure happens. 

So regular examination of railway tracks and wheels health is required to maintain safe 

and reliable train operations. The traditional method of manually inspecting rail tracks is 

inefficient and prone to human error and bias. This study aims to improve the aging 

railway system by using an automated solution to address these difficulties. 

A series of experimental tests were carried out before data collection. A LabVIEW 

application was made for recording data and tested with a function generator and Data 

Acquisition (DAQ) device. The provided Cemit Data Collection (CDC) time-series data 

were converted into frequency domain through Fast Fourier Transform (FFT) and Wavelet 

Transform (WT) in MATLAB. Multivariate data analysis was done through FFT and WT 

data for fault detection using Principal Component Analysis (PCA) and Partial Least 

Square Regression (PLS-R). 

During PCA, the score plot of FFT data depicted the important samples present in it. 

However, the score plot of WT data illustrated that important samples were absent. Hence, 

after further analysis of FFT data using PLSR, the calibration model was built which was 

validated from test set validation. From this, Y predicted was almost equal to the Y 

reference, hence the model performance can be significant. 

From comparing the score plots of FFT and WT data, it is concluded that the WT data is 

not useful for discovering faults in the tracks using multivariate data analysis because no 

relevant samples for further investigation were detected. To get better results, it's also a 

good idea to analyze multi-channel or more sensor data. 
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1 Introduction 
In most countries, railways make up a significant section of transportation infrastructure. To 

avoid service disruptions and preserve the system's safety, it's crucial to use good maintenance 

procedures for railway networks. For example, the monitoring of railway wheels and track 

conditions must be regularly done before the failure happens [1]. Condition-monitoring 

systems are especially important in essential machinery, where extremely unfortunate failures 

must be minimized due to the possible costs and threats to human life [2]. 

The railway industry still performs regular preventative maintenance at intervals determined 

by the distance traveled [2]. Between non-destructive testing examinations, which are currently 

the industry standard, no information regarding the machine's status is available. Condition-

monitoring systems would be a huge benefit to this business in terms of boosting comfort and 

reliability [3]. 

For railway track monitoring, several types of sensor technology have been used, including 

laser technology [4], camera technology [5],[6], and inertial sensors (accelerometers, 

gyrometers, and so on) [7]. Depending on the main goal of monitoring, some of these 

technologies can be utilized jointly or independently. Laser optical sensors are typically 

thought to be expensive, and they can also be costly to maintain. Camera-based systems are 

less expensive to implement, but they require costly image processing technologies and deliver 

limited data. Because of their simplicity, low cost, and effectiveness, inertial sensors have been 

widely employed. The responses of inertial sensors positioned on the train axle box, bogie, or 

within the cabin are continuously measured [1]. 

The control of certain features that change when a fault develops is often used in condition 

monitoring. Choosing features is difficult, especially when vibration signals are employed; 

because they are complicated and include a lot of information. Signal processing tasks are 

necessary to make the accessible information in a raw signal easier to manage while ensuring 

that the defect information is preserved. There are a variety of signal processing tools that can 

be used [2]. The current study describes a system for monitoring the condition of railway tracks 

and wheels in real time. Experimental vibration signals were recorded on a freight train and 

placed a sensor on a cabin. The feature selection was performed, resulting in the identification 

of a frequency band that appears to provide credible information regarding the fracture. 

Reliable multivariate data analysis was chosen using the knowledge of the features picked. 

1.1 Problem description 

Maintaining safe and reliable train operations is necessary for regular examination of railway 

track health. Cracks, rail discontinuities, burnt wheels, and misalignment generated on the rails 

as a result of non-maintenance, pre-emptive investigations, and delayed identification pose a 

serious threat to rail transport safety. The old method of manually examining rail tracks using 

a railway cart is inefficient and subject to human mistakes and bias. This research intends to 

improve the old railway system to overcome these concerns by implementing an automated 

method. 
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1.2 Aims and objectives 

The main objective of this thesis is to predict the fault in railway tracks and give an indication 

or alarm to the driver that there is a breakage in the railway line. For this, vibrating sensors are 

used to detect breakage in the railway track. Specific objectives are outlined as follows: 

• Developing a Data Acquisition (DAQ) system including software for acquisition 

(stream to disk) of continuous-time series from multiple sensors. 

• Developing software for signal processing of the recorded time series data involving 
identification and implementation of relevant signal processing methods for the analysis of 

train vibrations. 

• Calibrating multivariate regression models using multivariate data analysis. 

1.3 Structure of the report 

This thesis contains six main chapters. The first chapter gives an overview of the background, 

research objectives, and problem description, which gives a proper understanding of the overall 

project. The second chapter includes the literature review of previous research and some 

theories related to streaming to disk and time series analysis. The third chapter is about the 

method and equipment used in this project. The fourth chapter gives results obtained during 

the project with proper graphs and a discussion about the results. The fifth chapter gives the 

overall conclusions and findings of this study. And the last chapter presents the future works 

for making this project more efficient and economical. 
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2 Literature review 
This chapter includes the previous research, streaming to disk, time series analysis, and 

multivariate data analysis. 

2.1 Previous research 

Several types of research have been done on the safety and security of railways. In a study [1], 

an algorithm for detecting railway track faults using data from an in-service train's bogie was 

proposed. A standard Irish Rail passenger train was instrumented with an accelerometer sensor 

and a Global Positioning System (GPS). The GPS technology was used to record the train's 

location with approximate forward speed. Sixty train passes were used to inspect six kilometers 

of the Dublin-Belfast railway route. The exact amplitudes (acceleration signals) were obtained 

using the Hilbert transform. A new method for determining the energy levels of amplitudes in 

the space domain was proposed. The passes with low energy due to low train forward speeds 

were removed using a data cleaning procedure. The cleaned data was then used and scaled 

using a new scaling procedure that emphasizes the importance of the vehicle's forward speed 

in determining the energy level. The scaled energy signals had a high level of consistency, 

which was suitable for inspecting railway tracks regularly. A persistently high amount of scaled 

energy across numerous passes was thought to signal a likely track fault. After the train 

measurements, Track Recording Vehicle (TRV) data was used to verify the track condition in 

two regions with high energy levels. The high-energy areas of the track were shown to 

correspond to the defects found in the TRV data. 

 

Figure 2.1 (a) presents an overview of the trailer bogie (i.e., non-powered) of an Irish Rail 

Hyundai Rotem InterCity fleet car, which was instrumented utilizing inertial sensors, and was 

put on the trailer (non-powered) bogie [1]. To reduce noise contamination from the power train, 

sensors were mounted on the trailer bogie. Figure 2.1 (b) shows a tri-axial accelerometer as 

close to the bogie's center of mass as possible. The data was collected at a 500 Hz sampling 

rate. A GPS antenna was used to capture the train's location at a frequency of 5 Hz. 

 

 

Figure 2.1: (a) Instrumented train (b) triaxial sensor [1]. 

(b) (a) 
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To avoid people, goods, and asset losses, real-time train track detection and adaptability are 

critical [8]. To track the problems, Yongzhi Min et al. [9] created a real-time visual portable 

machine vision inspection system. It had an acoustic emission sensor (for track breaks) as well 

as a Passive Infrared (PIR) sensor for detecting animal dead bodies on the track. The system, 

which was written in LabVIEW, obtained high-quality photographs from a light source 

environment by first adding hoods and a Light Emitting Diode (LED) auxiliary light source to 

the image acquisition equipment. The H value of the color image was immediately used to 

extract the original image in the second stage, which can reduce image preparation time and 

was ideal for a target area with a small range. The interference of a significant amount of 

redundant information was removed via morphological processing, and the direction chain 

code was employed to swiftly extract the defect's shape features for defect type detection. The 

rail area rapid locating method detects track problems in real-time, and the system has tight 

detection time constraints. A track's latitude and longitude coordinates were communicated to 

a nearby base station if a crack was discovered. 

The Wavelet Transform (WT) has been frequently employed for crack diagnosis in recent 

years. The WT is particularly well suited to this type of research since it operates in both the 

time and frequency domains, which is necessary when dealing with malfunctioning shaft 

signals that exhibit nonlinear and nonstationary effects [2]. The Wavelet Packet Transform 

(WPT energy) in particular, has been successfully exploited as a characteristic for crack 

identification in shafts [10],[11], [12]. The WPT energy's key advantage is that it turns a raw 

signal's complicated structure into a simple energy structure in the frequency domain, 

significantly lowering the amount of information while preserving the information linked to 

the fracture [2]. This feature has been successfully applied to crack detection in railway axles 

[13]. The WPT energy has also been utilized to assess the integrity of a rail fastening system 

in other railway applications [14]. In [15]  they use the WPT energy to choose the frequency 

band with the most defect information for axle bearing diagnosis. Later, the time-domain signal 

is reconstructed using Composite Multiscale Permutation Entropy (CMPE), and the frequency 

band chosen is employed as a feature. 

2.2 Streaming to disk 

A Technical Data Management Streaming (TDMS) file is used to store the time-series data. 

National Instruments created the TDMS open-source file format. It's a binary format designed 

for data streaming, thus it can manage dynamically growing files [16]. It contains two types of 

data, Meta data (Names and properties) and Raw data (Measurement data in binary format). 

The purposes of using the TDMS files are as follows; 

• To store test or measurement data. 

• To create structures for grouping the data. 

• To store headers/properties about your data. 

• To read and write at a high speed. 

 



2 Literature review 

13 

2.3 Time-series analysis 

Time-series analysis is a method of studying a collection of data points over a period of time. 

The ability to depict how variables change over time distinguishes time-series data from other 

types of data. In other words, time is an important variable since it reveals how the data changes 

through time as well as the outcomes. It provides an additional source of data as well as a 

predetermined order of data dependencies. To maintain consistency and dependability, time 

series analysis often requires a high number of data points. A large data collection ensures that 

the sample size is representative and that analysis can cut through noisy data. Time series data 

can also be used for forecasting or anticipating future data based on previous data [17]. 

2.3.1 Fast Fourier Transform (FFT) 

W. T. Cochran et al. [18] describe FFT as it is a computational method that allows digital 

computers to do signal analysis such as filter simulation and power spectrum analysis. The FFT 

is a significant measurement method that breaks down a signal into its various spectral 

components and hence offers frequency information. The FFTs are employed in machine or 

system defect analysis, quality control, and condition monitoring. The FFT is an optimized 

algorithm for performing the "Discrete Fourier Transform" (DFT). A signal (for example time 

series) is sampled and separated into its frequency components over a time period. Single 

sinusoidal oscillations at different frequencies having their amplitude and phase are depicted 

in Figure 2.2. The signal has three separate dominating frequencies across the period. 

 

Figure 2.2: A signal in frequency and time domain [19]. 

2.3.2 Wavelet transforms (WT) 

Using the discrete wavelet transform, wavelet-based Multi-Resolution Analysis (MRA) 

decomposes a signal into several components at different resolutions. As shown in Figure 2.3 

a signal is decomposed into some detailed (high-frequency) components and approximation 

(low-frequency) components [20]. 
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Figure 2.3: Decomposition of signal into low frequency (LF) and high frequency (HF) components [20]. 

 

where, 

           a1, a2, a3 = Approximate component (Low frequency)  

           d1, d2, d3 = Detailed component 

          S= original signal =   d1+d2+d3+ ….. + dn +an                                  2-1 

   

 

2.4  Multivariate data analysis 

Multivariate data analysis is a kind of statistical analysis in which more than two dependent 

variables are used to produce a single result [21]. There is a different type of methods that can 

be used for data analysis but in this study Principal Component Analysis (PCA) and Partial 

Least Square methods (PLS) are used for data analysis. 

2.4.1 Principal Component Analysis (PCA) 

This method decomposes one data matrix into ‘information’ and ‘noise’ [21]. It visualizes the 

relation between samples and the variables. The score plot depicts objects/samples 

interrelationships and the loading plot presents variable interrelationships. From this method, 

outlier can be detected which was used as important samples in this study. The background 

information of this method is described in the following section. 
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Scaling or weighting 

Scaling or weighting means the preprocessing of data before analysis. The goal of 

preprocessing is to turn the data into the most useful format for analysis. The methods use for 

scaling or weighting are standardization and autoscaling. In standardization, the inverse of 

standard deviation (SDev) is used as a scaling factor. Every element of the X matrix is 

multiplied by 1/SDev.Whereas in autoscaling, centering and scaling both are used [22]. 

Outliers 

Outliers are observations discovered experimentally which are different from the original data 

structure. Figure 2.4  shows the outlier in a mild and extreme position. Outliers should be 

deleted if they are the outcome of incorrect measurements because they will affect the model. 

In some cases, the outlier plays an important role so it should not be removed otherwise the 

model will be incorrect [22]. In this study, the outlier is taken as an important sample for 

making the model. 

 

Figure 2.4: Mild and extreme outlier [22] 

2.4.2 Partial least Square Regression (PLSR) method  

K. H. Esbensen et al. [22], describe PLS as a method that was created to handle completely 

multivariate regression scenarios (both X- and Y-spaces are multivariate). PLS's main 

accomplishment is that it addresses MLR's shortcomings while also improving PCR in terms 

of prediction ability with fewer, and more interpretable components. 

2.4.3 Calibration stage 

It is the first stage of multivariate modeling (X, Y). The matrices X and Y are involved in 

multivariate calibration. The dependent variable(s) is represented by the Y matrix, while the 

independent variables are represented by the X matrix. Using known X and Y data a regression 

model is built. 

 

The calculation of calibration variance or modeling error is described in the following steps.  

A model based on Xcal and Ycal  is made which means the multivariate model (X, Y) is calibrated 

as shown in Figure 2.5 [22]. 
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Figure 2.5 Calibration of the multivariate model (X, Y) [22]. 

The Xcal is used to feed the model to predict ŷcal  

 𝑋𝑐𝑎𝑙 + 𝑀𝑜𝑑𝑒𝑙 → 𝑦̂𝑐𝑎𝑙  2-2 

By comparing the predicted and measured ycal model error is calculated as given in the equation  

 

                                                              𝑀𝑜𝑑𝑒𝑙𝑙𝑖𝑛𝑔 𝑒𝑟𝑟𝑜𝑟 = ŷcal-ycal 2-3 

Finally, Root Mean Square Error of Calibration (RMSEC) is calculated by, 

 

                       𝑅𝑀𝑆𝐸𝐶 = √
∑ (𝑦̂𝑖,𝑐𝑎𝑙−𝑦𝑖,𝑐𝑎𝑙)2   𝑛

𝑖=1

𝑛
                                                    2-4 

2.4.4 Validation stage 

The testing of the performance of the model by a predetermined set of test result specifications 

is called validation. Validation testing, for example, in prediction model validation, is 

concerned with the model's capacity to predict on a new data set that was not used in its 

creation. The test set is the name given to this new data set [22]. The calculation of validation 

variance is described in the following steps. 

First, the model is applied to the Xval values (the test set) and it predicts the proper ŷval. 

The predicted ŷval calculated as [22]: 

       𝑋𝑣𝑎𝑙 + 𝑀𝑜𝑑𝑒𝑙 → 𝑦̂𝑣𝑎𝑙   2-5 

 

Now, predicted (ŷval) and measured yval are compared to find the Prediction error, which is 

given below, 

 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 = 𝑦̂𝑣𝑎𝑙 − 𝑦𝑣𝑎𝑙   2-6 

 

Finally, Root Mean Square Error of Prediction (RMSEP) is given by 

 

𝑅𝑀𝑆𝐸𝑃 = √
∑ (𝑦̂𝑖,𝑣𝑎𝑙 − 𝑦𝑖,𝑣𝑎𝑙 )2   𝑛

𝑖=1

𝑛
 

2-7 

Xcal Ycal Model 
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3 Materials and methods 
This section describes the proposed methodology and equipment used in this study. 

3.1 Methods 

Figure 3.1 depicts a detailed block diagram of the methods employed in this study. The core 

methods include sensing elements, Data acquisition, signal processing, and multivariate data 

analysis. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Sensing element 

 

Initially the vibration is detected 

through accelerometer sensor. 

Time series analysis 
 

FFT and Wavelet transform 

methods are used. 

Data acquisition 
 

DAQ device is used, where signal 

conditioning and A/D conversion 

is done. 

 

Multivariate data 

analysis 
 

 

In this method: calibration and 

validation are done. 

  Signal    

Figure 3.1: Overview of proposed methodology. 

Time series data 
 

LabVIEW program is used to store 

the data. 
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Sensing element: 

In this research, accelerometer sensors are used to assess the vibration of the railway structure 

and to monitor the readings in real-time for interesting frequencies. Triaxial capacitive 

accelerometer sensors were planned as sensing devices to measure the signals. In the next stage, 

the measured signal is sent to Data Acquisition. 

Data Acquisition: 

The USB X series NI USB-6363 device by National Instruments (NI-DAQ) was planned to use 

to digitize the analog signals. A LabVIEW-based Graphical user interface (GUI) has been 

created for storing the data on disk in TDMS format. Since LabVIEW Programming Language 

is also by NI, the DAQ hardware was nicely integrated with the application software. 

Time series data: 

Time series data, which also means time-stamped data, are data points recorded in time order. 

A LabVIEW program was used to store time-series data on disk in TDMS format. 

3.2 Experiment setup 

This section details the setup's working method as well as the hardware and software 

applications that were planned to employ during the project. 

3.2.1 Locomotive 

The locomotive that was planned to use for the data collection was a freight train. This train is 

used for carrying raw materials to cement factories. The train run with approximately a weight 

of 896 tons with loads and 316 tons (information from train operator) when unloaded. The train 

operates between Porsgrunn and Brevik with an approximate distance of 9.73 kilometers. 

Figure 3.2 (a) shows the proposed locomotive and (b) shows the map where the locomotive 

runs. 

 

 

Figure 3.2 (a) Diesel freight locomotive for experiment  (b) Train route from Porsgrunn to Brevik 



3 Materials and methods 

19 

 

3.2.2 Sensors 

The sensors purposed for the data collection are two MEMS capacitive triaxial accelerometers. 

The triaxial sensors are chosen as the vibration from all the axis was needed. These were 

planned to place near the wheel. The locations of these sensors are chosen concerning the high 

vibrational area. The sensors were tested in the lab before going to mount on the train. They 

were tested by connection with NI USB-6363 DAQ device and LabVIEW program. Figure 3.3 

shows the triaxial capacitive accelerometer sensor. And Table 3.1 shows the details of the 

sensor. 

 

 

Figure 3.3: Capacitive triaxial sensor [23]. 

 

 

Table 3.1: Detail specification of sensor [23]. 

Sensor 

Name 

Measurement 

range 

Axis Frequency 

range 

Operating 

Temperature 

range 

Supply 

voltage 

Differential 

analog 

output 

voltage 

Triaxial 

MEMS 

capacitive 

±2 to ±400g x, y, z 2kHz (±5) -40 to +100 

ºC 

6 to 40 V ±4 V 
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3.2.3 Data Acquisition 

The USB series NI USB-6363 device by National Instruments (NI-DAQ) was planned to use 

for data acquisition which is shown in Figure 3.4 a) and b) shows the channels of DAQ. It 

processes the physical data from the real world and converts it into digital numeric values that 

can be manipulated by Computer. The connection to the DAQ channel from the sensor output 

during the testing of sensors can be seen in Table 3.2. 

 

 Figure 3.4 : (a) NI DAQ module (b) Channels of DAQ 

 

Table 3.2: Connections of the sensor with DAQ during testing of sensor [23]. 

Sensor 

cable 

number 

Pin DAQ channel 

connected 

LabVIEW channel 

1 Power - - 

2 GND GND - 

3 Signal+ (X-Axis) 1  

      Channel 0 
4 Signal-  (X-Axis) 2 

5 Signal+ (Y-Axis) 4        

      Channel 1 
6 Signal- (Y-Axis) 5 

7 Signal+ (Z-Axis) 7  

      Channel 2 
8 Signal- (Z-Axis) 8 
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3.2.4 Application 

A LabVIEW application was developed for collecting time-series data in TDMS format. Figure 

3.5 shows the front panel of the application. Both the LabVIEW application and the DAQ 

device have been developed under NI, hence they worked quite well without any technical 

complications. 

 

Figure 3.5: Front panel of LabVIEW program visualizing time-series signal during testing of sensor 

 

3.2.5 Testing of Application 

Testing of the LabVIEW application was done through the NI USB-6251 DAQ device which 

is shown in Figure 3.6 (a). And for the input, the function generator was used with different 

frequencies and voltages which is shown in Figure 3.6 (b). Firstly, the application was made 

for single-channel and then it was updated for more channels which means for more sensors or 

other axes of the tri-axial sensor. For this, two function generators were used which can be seen 

in Figure 3.7. During the testing time, the time series data were recorded in TDMS format, 

which is shown in Figure 3.8. 
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Figure 3.7: Testing LabVIEW Application with two function generators. 

                    

 

Figure 3.6 : (a) NI USB-6251 DAQ device and (b) Function or signal generator 

(a) (b) 
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Figure 3.8: TDMS file with detail about time-series data. 

 

Figure 3.8 shows the details of the time series data with starting time, time step, amplitude 

(voltage), and length of data. Figure 3.9 shows the plot of time series data recorded from a 

signal generator with 41Hz of 4 peak to peak (p-p) voltage and Figure 3.10 shows the frequency 

domain plot of the same time series data which shows the almost 41Hz signal so the LabVIEW 

program tested successfully.  

 

 Figure 3.9: Time-domain plot of time series data for 0.115 sec. 
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Figure 3.10: Frequency domain plot of 41Hz signal. 

 

3.2.6 Sensor testing 

The capacitive triaxial sensor was tested before going to install it in the train which can be 

shown in Figure 3.11 and Figure 3.12. The senor wires connected to DAQ as a reference to 

Table 3.2. The sensor was tested successfully by manually vibrating the sensor on the x-axis, 

the y-axis and z-axis respectively which can be visualized in LabVIEW as shown in Figure 

3.12. 

 

 

            

              

 

   

   

   

   

 

   

   

   

   

 
 
  
   

  
  
 
 

Figure 3.11: (a) Sensor wire connected in DAQ device (b) Triaxial capacitive sensor 

(a) (b) 
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Figure 3.12: Amplitude variation of sensor data during testing. 

3.3 Process description 

First, the LabVIEW application was made for storing the time series data and tested 

successfully. The application was tested by giving input as a sine wave signal from a function 

generator with different voltage (p-p) as shown in Figure 3.13. 

Figure 3.13: Sine wave generated with 4V (p-p) from function generator visualized through LabVIEW. 
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Due to the busy schedule of train operations, the data could not be collected, so the analysis 

was conducted through the Cemit Data Collector (CDC) time-series data provided by CEMIT. 

These data were collected by the accelerometer sensor placed on the cabin of the train as 

information given by CEMIT. 

These time-series data are converted into the frequency domain by FFT through the MATLAB 

program with favorable window size (128) and windowing transform which will be discussed 

further in the result chapter. The result from the FFT was stacked in a row and made a matrix 

(5102*65) for multivariate data analysis. In multivariate data analysis, the PCA was used for 

detecting the most important samples and the Matrix was made with output (fault) for the PLSR 

method for making the model. The other method of time series analysis, WT also used to break 

down the frequencies into small frequencies for feature extraction. 

The fault detection part was done from the multivariate data analysis which will be discussed 

further in the result section. For the detection of the exact position of fault in the track, the 

comparison of the timing for the fault locations with the respective distances in the data 

provided by CEMIT was done. The details will be discussed in section 4.3 of the results 

chapter. 
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4 Results and discussion 
All the results described here are outputs from the previously described methodology. Here, 

MATLAB and Unscrambler software were used for the data analysis. For the time series 

analysis, time-series data recorded from the tri-axial sensor with a sampling frequency of 500 

Hz, time step 0.002, and total time period of 1271.905 seconds was used as shown in Figure 

4.1. 

 

Figure 4.1: Time-domain plot of x-axis (channel_00) data for 1271.905 seconds 

Figure 4.1 shows the times domain plot for the tri-axial sensor x-axis (channel_00) which 

possibly depicts more vibration (acceleration) between 600 and 1000 seconds as the amplitudes 

are at a high position. 

And the time series plot for the y-axis (channel_01) is shown in Figure 4.2. From this also, it 

can be assumed that more vibration occurs between 600 and 1000 seconds. 
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Figure 4.2: Time-domain plot of y-axis (channel_01) data for 1271.905 seconds. 

Now plotting the z-axis (channel_02) time-series data, the plot obtained is shown in Figure 4.3. 

This plot also shows that more vibration is around 600 to 1000 seconds, but the highest 

vibration is nearly at 900 seconds.  

 

 

Figure 4.3: Time-domain plot of z-axis (channel_02) data for 1271.905 seconds. 
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From this time series data, time series analysis is done through FFT and Wavelet Transform. 

After that, multivariate data analysis was performed which will be discussed in the next topics.  

4.1 Analysis from Fast Fourier Transform (FFT) 

For the FFT, some calculations were done before doing the analysis, 

Calculation of time step: 

 

 Time step = 
𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒

𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
 = 

128

500
 = 0.256 Hz  

 

4-1 

 

Calculation of frequency resolution: 

Here the frequency resolution (Δf) is calculated by the formula, 

 

 Δf =  
𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒
 =  

500

128
 =  3.90 Hz 4-2 

 

Now, 128 samples (window size) with a time of 0.256 seconds (see equation 4-1) from x-axis 

time series data (see Figure 4.1) were chosen, and FFT was done which can be shown in Figure 

4.4. The frequency-domain plot shows the signal of 150 Hz. For Windowing transform, 

Blackman Harris was used with window size 128 which can be seen in MATLAB code in 

appendix B. 

The FFT of 128 samples gave the 65 frequencies data which were stacked in rows one after 

another and made a matrix of 5102*65 (for one channel) with every time step 0.256 (for 

calculation see equation 4-1) for multivariate data analysis. This will be explained in next 

section. 

Similarly, FFT of other channels (y-axis and z-axis) was done which is shown in Figure 4.5 

and Figure 4.6. 
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Figure 4.4: Time domain and frequency domain plot of 128 samples of channel_00 (x-axis). 

 

Figure 4.5: Time domain and frequency domain plot of 128 samples of channel_01 (y-axis). 
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In Figure 4.5 the frequency domain plot shows the signal containing frequency below 50Hz 

with low amplitudes whereas, in Figure 4.6, it seems that the signal of 150Hz with high 

amplitudes is presented. Now for multivariate data analysis, only one channel (x-axis) data is 

used which will be discussed in the next topic. 

The frequency-domain plot in Figure 4.5 reveals that the signal contains frequencies below 

50Hz with low amplitudes, but in Figure 4.6, the signal appears to be 150Hz with significant 

amplitudes. Only one channel (x-axis) of data is used for multivariate data analysis, which will 

be described in the next topic. 

 

 

Figure 4.6: Time domain and frequency domain plot of 128 samples of channel_02 (z-axis). 

 

4.2 Multivariate data analysis of FFT data 

The variance of variables was first checked using the matrix produced from the FFT, as 

illustrated in Figure 4.7. In comparison to other variables, the variables from approximately 1 

to 11 have a considerable variance. As a result, the data should be scaled to improve the analysis 

results. Then PCA was used to select important samples from the score plot for fault detection, 

as shown in Figure 4.8. 
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Figure 4.7: Matrix plot of FFT data. 

 

 

 

 

Figure 4.8: Score plot of samples in 2D scatter form. 
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The score plot, shown in Figure 4.8, depicts how the objects are related to one another. 

The sample index numbers 3075, 3246, 3550, and 3793 were chosen as crucial samples 

since they are far apart from other objects, making them the model with output as a 

fault (1) and non-fault (0) in the track. The model was then created using PLS using 

input (X) and output (Y). Figure 4.9 depicts the model's calibration, with a predicted vs 

reference plot. 

 

Figure 4.9: Predicted versus reference plot of calibration. 

At the calibration stage, the predicted value was compared to the reference value (0 or 1) as in 

Figure 4.9. Root Mean Square Error of Calibration (RMSEC) of roughly 0.02573 is used to fit 

the given data and calibration model. The slope is just 0.2410 in this case, which could be due 

to the reference only having a 0 or 1 value. 

A test set with a different data matrix was used to validate the model's performance. The PCA 

was used to select important samples, as shown in  Figure 4.10. The sample numbers 3465, 

3683, and 3684 were selected to create an output matrix for the validation test set matrix. Figure 

4.11 shows the model validation with the predicted versus reference. 
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 Figure 4.10: Score plot of test set data.  

 

 

Figure 4.11: Predicted versus reference plot of validation. 
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Figure 4.11 shows that the Root Mean Square Error of Prediction (RMSEP) is 0.02469 

indicating that the model's performance is significant.  

Figure 4.12, Y predicted is almost equal to the Y reference, hence the model performance can 

be significant. The model can be made more accurate by analyzing more data sets and making 

a better output matrix. 

4.3 Location of fault in the track 

The train operates from Porsgrunn to Brevik. The distance between the start and stop of the 

train is 9.73 km. Based on the score plot of the samples shown in Figure 4.13, it is of interest 

to evaluate the fault locations between Porsgrunn and Brevik.  

The fault location can be evaluated by knowing the timing of the train for the samples given 

by 

 𝑇𝑖𝑚𝑒 = 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 ∗ 𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑝𝑙𝑒 4-3 

The timing for different outliers as shown in Figure 4.13 can, then, be calculated as  

Timing of sample number 3075 = 0.256 sec * 3075 = 787.2 sec  

Timing of sample number 3246 = 0.256 sec * 3246 = 830.976 sec 

Timing of sample number 3550 = 0.256 sec * 3550 = 908.8 sec 

Timing of sample number 3793 = 0.256 sec * 3793 = 971.008 sec 

 

 

Figure 4.12 : Comparison between reference and prediction of validation  
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Next, comparing the timing for the fault locations with the respective distances in the data 

provided by CEMIT, the distances of the fault locations from the starting point (Porsgrunn) 

are given as, 

Distance of sample number 3075 = 5.91 Km  

Distance of sample number 3246 = 6.49 Km  

Distance of sample number 3550 = 7.40 Km 

Distance of sample number 3793 = 7.99 Km 

The fault locations can be shown in  

 

 

Figure 4.13: The location of faults in the train track. 

4.4 Wavelet transform (WT) 

Another method of time-series analysis was chosen as WT which decomposed the signal into 

detailed (HF) and approximation (LF) coefficients as shown in Figure 4.14. These decomposed 

frequencies were used to make a matrix (5102*160) for further analysis through multivariate 

data analysis. The detail coefficient from level 1 to level 5 shows the high-frequency 

components and the approximation at level 5 is the low-frequency component. These 

frequencies are chosen as the features of data and used for analysis which will be discussed in 

the next topic. 
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Figure 4.14: Decomposition of time series signal (128 samples) into low frequency (LF) and high frequency 

(HF) components. 

4.5 Multivariate data analysis of WT data 

To discover relevant samples, the PCA of WT data (5102*160) was used. The score plot of 

WT data is shown in Figure 4.15 which depicts objects are spread all over and there are no 

significant samples to choose from for further analysis. 
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Figure 4.15: The score plot of WT data. 

4.6 Discussion on the number of channels 

For multivariate data analysis, only one channel (channel_00/ x-axis) was used in this research. 

Only three Principal Components (PC1, PC2, PC3) were found in the PCA of one channel, 

implying that only three components were available to accommodate the enormous number of 

samples. Other channels (y-axis, z-axis) can be used to see the outcomes of the analysis. 

Additional information about the data was accessible if many sensors (more channels) were 

positioned in different places of the train. This can aid in the creation of a useful output matrix 

for subsequent analysis. As a result, multi-channel or more sensor data are recommended. 

4.7 Discussion on calibration and validation stage 

For the calibration, the input matrix (X5102*65) and output matrix (Y5102*1) with four faults were 

used. From Figure 4.9, by analyzing the RMSEC value alone which is 0.02458. It means the 

calibration model is working fine but when looking at the slope (0.2284) which is very low (for 

a perfect model, the slope should be nearly equal to 1). This may arise because of output matrix 

contains only 0 or 1 binary numbers. Similarly, for validation, a test set data was used which 

was taken from another data set with the same direction running of the train. A test set matrix 

with (X4581*65) and output matrix (Y4581*1) with three faults. From Figure 4.11 the RMSEP is 

0.0239 and the slope is 0.2481, which is also very low. So, it is also a topic for further analysis.  

4.8 Discussion on multivariate data analysis of FFT and WT data 

From the multivariate data analysis of FFT data, some interesting results were detected to 

analyze as discussed in section 4.7. However, from WT data after plotting the score plot (see 

Figure 4.15), no interesting samples were detected for further analysis. This means WT data 

are not useful for detecting faults in tracks using multivariate data analysis. 
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5 Conclusion 
It is critical to implement good railway network maintenance methods to avoid service 

disruptions and maintain system safety. The purpose of the project is to explore if railway track 

and wheel conditions can be analyzed using time series and multivariate data analysis to time 

series data. 

The FFT and WT were used to convert the time series data (from CDC) into the frequency 

domain. PCA and PLSR were used to do multivariate data analysis on FFT and WT data for 

fault detection. By comparing the score plot of FFT and WT data, it is concluded that the WT 

data is not beneficial for finding faults in the tracks using multivariate data analysis, because 

no interesting samples were discovered for further examination. Furthermore, it is advised to 

analyze multi-channel data to obtain better results.  
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6 Future works 
In this study, the time-series and multivariate data analysis were done to detect whether there 

is a fault or not in the track. This can be further proceeded to make a real-time monitoring 

system. Some work can be done to improve further as in the following points. 

➢ In this study, the analysis was done to detect the train tracks only. So, for the wheels 

fault detection, its geometry should be known, which can be the next step of the 

analysis.  

➢ GPS with more frequency range can be used for tracking at a small time stamp, where 

only 5Hz GPS was used in this research. 

➢ The IoT-based system can be implemented for real-time monitoring. 
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Appendices 
Appendix A Master thesis description. 
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Appendix B 

MATLAB FILE 

A list of all MATLAB scripts used to produce the results of this thesis is given in Table B.1. 

 

 

Table B.1: A list of files and their description. 

     File name                                    Description 

ff_window.m Script used to do Fast Fourier transform and stacks results 

vertically. 

ff_plot.m 

 

wavelet_decom.m 

 

wavelet_plot.m  

Script used to plot the time domain and frequency domain 

of 128 samples. 

Script used to do Wavelet transform and stacks results 

vertically. 

 

Script used to plot the decomposed frequencies from 

wavelet transform. 
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ff_window.m 

 

close all; 

clear all; 

clc; 

 % Load file 

[d,s] = xlsread('cdc1.xlsx'); 

 

 % Time vector 

t = d(:,1); 

 

 % acceleration data in time domain 

v = d(:,2); 

 

% Number of samples 

L = length(t); 

a=1; 

b=128; 

 

%interval 

N= 128; 

 

c=1; 

while b<L 

 

 

    % sampling time interval 

    Ts = mean(diff(t)); 

 

    % sampling frequency 

    Fs = 1/Ts; 

 

    % Nyquist frequency 

    Fn = Fs/2; 

 

    % chosing number of samples from acceleration data 

    vc=v(a:b); 

 

    % windowing with normalized Fast Fourier Transform 

    FTv = fft(vc.*blackmanharris(length(vc)))/N; 

 

    % Frequency vector 

    Fv = linspace(0, 1, fix(N/2)+1)*Fn; 

 

    % Index vector 

    Iv = 1:length(Fv); 

    % absolute value 

    y= abs(FTv(Iv))*2; 

 

    %figure(c) 

    %plot(Fv,y) 

 

    if c==1 

        abc=y'; 
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    else 

        abc=cat(1,abc,y'); 

    end 

    %grid 

    %xlabel('Frequency (Hz)') 

    %ylabel('Amplitude (V)') 

    c=c+1; 

    a=a+interval; 

    b=b+interval; 

 

end 

 

ff_plot 

close all 

clear all 

clc 

[d,s] = xlsread('cdc1.xlsx'); 

t = d(1:130,1); 

v = d(1:130,2); 

L = length(t); 

N=128; 

a=1; 

b=128; 

Ts = mean(diff(t)); 

Fs = 1/Ts; 

Fn = Fs/2; 

vc=v(a:b); 

FTv = fft(vc.*blackmanharris(length(vc)))/N; 

Fv = linspace(0, 1, fix(N/2)+1)*Fn; 

Iv = 1:length(Fv); 

y= abs(FTv(Iv))*2; 

subplot(2,1,1) 

plot(t,v) 

title('Time series plot of 128 samples'); 

xlabel('Time (sec)') 

ylabel('Acceleration(m/s^2)') 

subplot(2,1,2) 

plot(Fv,y) 

title('Frequency plot of 128 samples') 
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wavelet_decom.m 

 

clc; 

clear all; 

close all; 

[d,s] = xlsread('cdc1.xlsx'); 

t = d(:,1); 

v = d(:,2); 

a=1; 

b=128; 

L =length(t); 

while b<L 

    vc=v(a:b,:); 

    %wavelet decomposition at level 5 

    [c,l]= wavedec(vc,5,'db4'); 

    % low-frequency component (approximation) 

    approximation =appcoef(c,l,'db4'); 

    % high-frequency components (details) 

    [d1,d2,d3,d4,d5]=detcoef(c,l,[1 2 3 4 5]); 

    data = cat(1,d1,d2,d3,d4,d5,approximation)'; 

    if b==128 

        data1=data; 

    else 

        data1=cat(1,data1,data); 

    end 

    a=b+1; 

    b=b+128; 

 

end 

 

 

wave_plot.m 

 

clc; 

clear all; 

close all; 

[d,s] = xlsread('cdc1.xlsx'); 

t = d(1:130,1); 

v = d(1:130,2); 

L = length(t); 

a=1; 

b=128; 

while b<L 

    vc=v(a:b,:); 

    [c,l]= wavedec(vc,5,'db4'); 

    approximation =appcoef(c,l,'db4'); 

    [d1,d2,d3,d4,d5]=detcoef(c,l,[1 2 3 4 5]); 

    subplot(6,1,1) 

    %plot(approximation); 

    title('Approximation at level 5'); 
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    %subplot(6,1,2) 

    %plot(d5) 

    title('Detail coefficients at level 5'); 

    subplot(6,1,3) 

    plot(d4) 

    title('Detail coefficient at level 4'); 

    subplot(6,1,4) 

    plot(d3) 

    title('Detail coefficient at level 3'); 

    subplot(6,1,5) 

    plot(d2) 

    title('Detail coefficient at level 2'); 

    subplot(6,1,6) 

    plot(d1) 

    title('Detail coefficient at level 1'); 

    data = cat(1,d1,d2,d3,d4,d5,approximation)'; 

    if b==128 

        data1=data; 

    else 

        data1=cat(1,data1,data); 

    end 

    a=b+1; 

    b=b+128; 

 

end 

 


