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Summary:  

Different categories of industries, such as manufacturing plants, power production plants 
etcetera, are equipped with a control mechanism to keep their process-variables of interest 

within the desired limit. Among different prevalent advanced control systems, Model 

Predictive Controller (MPC) has gained significant interest because of its ability to act 

based on the uncertainties that may occur in the future. 

Skagerak Energi has predicted ensemble of inflow uncertainties that may occur in Lake 
Toke. The spreading of these ensembles increases as the prediction days march forward. 

The main goal of this thesis is to design a stochastic MPC (SMPC) that can handle these 

inflow uncertainties, while maintaining the optimal operation of the hydropower plant by 

maximizing the reservoir’s water level within the limits. 

This thesis starts with an understanding of possible methods for SMPC formulation, such 
as multistage nonlinear MPC (NMPC), multi-objective optimization (MOO), and Min-

Max MPC. Such stochastic formulations are computationally demanding, therefore 

efficient numerical methods for solving these formulations are often sought out. In this 
thesis, the direct multiple shooting method is explored as a numerical scheme. The thesis 

proceeds further with comparison of two different types of objective functions based on 
the results from deterministic MPC. The objective function which meets the requirement 

of optimal operation of the hydropower plant is then selected to design the SMPC.  

SMPC based on the weighted sum MOO is designed. When full spreading of the inflow 
ensembles was used, the results obtained for the gate opening signals are changing 

irregularly along with the level constraint violation. However, the results were improved 
when the inflow ensembles spreading was limited to 100 m3/s. From the author’s 

experience with the problem, two important factors are outlined for improving the results. 

First, the spreading of the inflow ensembles should be handled for the outliers, and second, 

a suitable choice of weighting parameters should be taken into consideration.  
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Nomenclature 
 

Here is the list of variables that are frequently used in this thesis. 

Quantity  Unit Description 

𝐴 [𝑚2] Cross sectional area of the reservoir 

ℎ𝑔 [𝑚] Gate opening signal, this is the control 

signal evaluated by MPC 

ℎ1  [𝑚] Absolute water level in Merkebekk 

ℎ2 [𝑚] Absolute water level in Dalsfoss 

�̇�𝑜  [𝑚3/𝑠] The total volumetric water outflow from 

Dalfoss station 

�̇�𝑡 [𝑚3/𝑠] Volumetric inflow to the turbines  

�̇�𝑖 [𝑚3/𝑠] Inflow into the Lake Toke 

�̇�𝑔 [𝑚3/𝑠] Volumetric outflow through the flood 

gates 

𝑤𝑅  − Weight given to level while formulating 

objective function 

𝑤𝛥𝑢 - Weight given to change in gate opening 

while formulating objective function 

𝑤𝑢  - Weight given to gate opening while 

formulating objective function 

𝑥𝑀 [𝑚] Relative water level at Merkebekk from 

sea level 

𝑥𝐷 [𝑚] Relative water level at Dalsfoss from sea 

level 

 

Here is the list of abbreviations that are often used throughout the report. 

 

Abbreviations  Full form 

CPU Central Processing Unit 

MPC Model Predictive Control 

MOO  Multi Objective Optimization  
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NLP Non-Linear Programming 

NMPC Non-Linear Model Predictive Control 

OCP Optimal Control Problem 

WSA Weighted Sum Approach 
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1 Introduction 

1.1 Background 

Although the application of MPC was originally designed to be applicable in the field of 

chemical processes [1], MPC now has been of immense interest in a wide range of fields 
including hydropower plants. The ability of MPC to handle uncertainties that may occur in the 

system and realization of constraints in the process variables are the major features researchers 

in the field of hydropower are attracted to and motivated to implement MPC in this sector. 
Furthermore, an optimal centralized control system can be achieved using MPC for the smooth 

operation of hydropower plants [2]. 

The operation of hydropower production is directly associated with the water available in the 

reservoir, and it is always desirable to maintain the maximum water level in the reservoir. 

However, the unforeseen circumstances due to weather change result in the uneven water 
quantity in the reservoir. One situation may be unanticipated flooding in the reservoir, resulting 

in water overflow, while another could be a water deficit in the reservoir.  In both scenarios, 
the proper operation of the water handling mechanism, known as flood gates, becomes crucial 

for water resource management. 

State-of-art water resource management applications for the hydropower plant include 

components like hydrological modeling and optimization techniques for decision-making in 

reservoir operation [2]. Different possible inflows in the reservoirs are predicted over a certain 
period using hydrological modeling, and these inflows cause the behavioral change of the plant 

as they incorporate disturbance in its operation. To handle such dynamical behavior change, 
techniques based on optimization can suggest the proper operation of flood gates such that the 

optimal operation is ensured. A deterministic or stochastic MPC can be the solution to address 

this scenario. These controllers can take all the ensembles disturbance, optimize the system, 
and suggest the control strategy for the reservoir operation addressing the constraints imposed 

on the system.  

1.2 Objectives 

The main objective of this thesis is to design a SMPC that can handle inflow uncertainties in 

Lake Toke and determine the optimal flood gate openings to maximize water levels in the 
reservoirs. Because choosing the right objective function is critical on achieving this goal, the 

first step is to find a suitable objective function. Because the inflow uncertainties utilized in 
simulations are distributed over the next 13 days, SMPC considers 13 days of prediction 

horizon. 

1.3 Previous Work 

The model of Lake Toke was developed back in 2014, and is based on mass balance equations 

as given in [3]. The differential and algebraic equations representing Lake Toke were simulated 
to see the behavior of the model. Furthermore, a deterministic MPC algorithm was proposed 

based on the reference region tracking cost function. The inflow to the system was assumed to 
be constant over the whole prediction horizon when formulating MPC which does not reflect 

the reality. Later in 2019, the author in [4] designed a deterministic MPC with the same cost 
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function, furthermore extended to stochastic analysis. However, the inflow ensembles used for 
the simulation were fictitious. Although the simulation results look sensible for both 

deterministic and stochastic design, the data used to design MPC was never the real data 
therefore may not represent the actual behavior of the MPC controller. Moreover, the stochastic 

MPC was designed in python platform with control signal grouping technique to reduce the 

computational load. In [5], the authors looked for the changes in the cost function and designed 

deterministic MPC accordingly.  

In this thesis, the two cost functions proposed in [5] are revisited and compared to observe the 
best-performing cost function based on deterministic MPC results. Finally, the cost function 

suitable for this thesis is selected to design stochastic MPC. Although ensemble forecasts used 

to simulate stochastic MPC are real data, the inflows are limited to certain value in some of the 

simulations. The reason behind limiting the inflow will be discussed later in Chapter 5. 

1.4 Requirements 

MPC design requires a computer platform with an optimization tool, such as MATLAB or 

Python. The optimization tool might be embedded within the programming environment, or it 
could be a compatible framework containing optimization techniques. This thesis uses IPOPT 

(Interior Point Optimizer) from CasADi framework. Furthermore, high-performance CPUs are 

recommended for dealing with the computing demands of stochastic simulation. The results in 

this thesis, however, were achieved with an 8-gigabyte CPU. 

1.5 Thesis structure 

The thesis is divided into six chapters, the first of which is the introduction. The second chapter 

discusses the system under investigation, the regulations that have been put on it, and quick 

visualization of the inflow uncertainty. Chapter 3 covers stochastic MPC formulation, 
numerical approaches for optimal control problems, and an introduction to CasADi. With a 

brief explanation, Chapter 4 summarizes the findings obtained using two alternative objective 
functions. The results of stochastic MPC are summarized and discussed in Chapter 5. Finally, 

a conclusion is given in Chapter 6. 

Furthermore, the contextual equations, figures, chapters, and sections are cross-linked such that 
clicking on them leads to the connected part, avoiding information duplication across the 

report. 
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2 System Overview 
 

This chapter describes the system under study with its governing models, different parameters, 

regulations, and uncertainties that may occur in the process.  

2.1 Lake Toke and operational regulations 

Kragerø Waterways located in Telemark Norway has been used by the Skagerak Energi for 

hydropower operation. Altogether five hydropower plants are being operated in this waterway 
starting at Dalsfoss hydropower station. This station uses Lake Toke as the reservoir for its 

operation which has a catchment area of over 1200 square kilometers [3].  

Over a year, Lake Toke faces drastic changes in the water level; due to the ice melting and rain 

in the months of April-May, it faces heavy inflow causing floods in Lake Toke. The two flood 

gates operating in Dalsfoss serve to bypass the heavy inflow. However, it is important to 
maintain the levels at Merkebekk and Dalsfoss, shown in Figure 2-1, to a certain limit. The 

regulations on water levels are imposed by the Norwegian government authority, Norwegian 
Water Resources and Energy Directorate (NVE), and these levels constraints change over the 

years. The water level, mainly at Merkebekk, should not cross the upper regulated and lower 
regulated value named as xLRV and xHRV shown by the red and blue lines respectively as shown 

in Figure 2-2. 

 

Figure 2-1: Map Showing Lake Toke, Merkebekk and Dalfoss point [3] 
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Figure 2-2: Constraints on water levels throughout the year [3] 

 

Table 2-1: Constraints on water level throughout the year[3] 

Date range Lowest Regulated value xLRV [m] Highest regulated value xHRV [m] 

Jan 1 – April 30 55.75 60.65 

May 1 – Aug 30 58.85 59.85 

Sept 1 – Sept 14 58.35 59.35 

Sept 15 – Oct 27 55.75 59.35 

Oct 28 – Nov 11 55.75 59.85 

Nov 12 – Dec 31 55.75 60.35 

 

Furthermore, the downstream outflow from the Dalfoss station operation should not be abruptly 

changed since this might endanger humans and animals. The minimum outflow should be more 
than 4 m3/s, although it is expected that a flow rate greater than 10 m3/s is good since it supports 

the functioning of other downstream hydroelectric plants. This need does not appear to be an 
issue while hydropower is in operation, as Dalsfoss station has three hydro turbines with a total 

capacity of 36 m3/s [3]. 
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2.2 Process Model 

Figure 2-3 shows the functional block diagram of Lake Toke with its input, outputs, states and 

disturbance variables. The control signal, hg, is applied for the flood gates opening and closing 
such that the levels at Merkebekk xM  and Dalsfoss xD, are maintained to the desired limit. The 

disturbance acting on the system is the volumetric flow, �̇�𝑖, into Lake Toke; these volumetric 

inflows are computed by the Skagerak Energi using a hydrological model based on the 
measurements and historic data. The water inflow to the turbine, Vt, also acts as a disturbance 

to the system in reality and varies depending upon the power production forecast, however, for 

simplicity Vt will be assumed constant in this thesis.  

The outflow from the flood gates, �̇�𝑔, and through the turbines constitute the total outflow, �̇�𝑜 , 

from the Dalsfoss station as given in Equation 2-1. 

�̇�𝑜  =  �̇�𝑔  +  �̇�𝑡 2-1 

As there are two flood gates, therefore the total flow through both gates is given by Equation 

2-2. 

�̇�𝑔 = �̇�𝑔,1 + �̇�𝑔,2 2-2 

The individual flow through the gates is evaluated using Equation 2-3, and the schematic of 

the flood gate is shown in Figure 2-4.  

�̇�𝑔 ,𝑗 = 𝐶𝑑 ∗ 𝑤𝑗 ∗ 𝑚in(ℎ𝑔, ℎ2) ∗ √2 ∗ g ∗ 𝑚𝑎𝑥(ℎ2,0) 
2-3 

 

Figure 2-3: Functional block diagram of lake Toke [3] 
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Figure 2-4: Schematic of flood gates [3] 

The cross-sectional area of the reservoir is the function of the water level in it which can be 

seen in Figure 2-5 and given by Equation 2-4. 

𝐴(ℎ) = 𝑚𝑎𝑥(28 ∗ 106 ∗ 1.1 ∗ 10(1\ℎ), 103) 2-4 

The system states, h1 and h2, are the absolute levels of Lake Toke at Merkebekk and Dalsfoss 

respectively, and given by Equation 2-5 and Equation 2-6 respectively. 

 

𝑑ℎ1
𝑑𝑡

=
1

(1 − 𝛼)𝐴(ℎ1)
((1 − 𝛽)�̇� 𝑖 − �̇� 12) 

2-5 

 

 

 

Figure 2-5: Schematic of Lake Toke [3] 

 

 

𝑑ℎ2
𝑑𝑡

=
1

𝛼𝐴(ℎ2)
(𝛽�̇�𝑖 + �̇�12 − �̇�𝑡 − �̇�𝑔 ) 

2-6 
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The heights of water level relative to sea level at Merkebekk and Dalsfoss are given by 

Equation 2-7 and Equation 2-8 respectively. 

And the intercompartmental flow in the reservoir is given by Equation 2-9. 

�̇�12 = 𝐾12. (ℎ1 − ℎ2). √𝑎𝑏𝑠(ℎ1 − ℎ2) 2-9 

The parameter values that are used in Equations from 2-1 to 2-9 are provided in Table 2-2. 

 

Table 2-2: Parameters used in Lake Toke model equations [3] 

Parameter Value Unit Comment 

𝛼 0.05 - Fraction of surface in compartment 2 

𝛽 0.02 - Fraction of inflow to compartment 2 

𝐾12 800  Intercompartment flow coefficient 

𝐶𝑑 0.7 - Discharge coefficient, Dalsfoss gate 

𝑤1 11.6 𝑚 Width of Dalsfoss gate 1 

𝑤1 11 𝑚 Width of Dalsfoss gate 2 

𝑥𝐿𝑅𝑉
𝑚𝑖𝑛 55.75 𝑚 Minimum low regulated level value 

𝑥𝐿𝑅𝑉
𝑚𝑎𝑥 60.35 𝑚 Maximum high regulated level value 

𝑔 9.81  Acceleration due to gravity 

 

2.3 Time period selection for simulation 

In Section 2.1, the need for maximum permissible levels in the reservoir for the entire year was 

provided. In the simulations reported in this thesis, the level limitations are evaluated for a 
certain period, from April 15 to May 15, as shown in Figure 2-6. This period is particularly of 

interest for the hydroelectric operation since substantial inflows into the reservoir are expected. 
The goal is to see if hydropower can be run in the best possible environment, meaning that 

water levels are optimal for power generation even when a flood is a possibility. 

𝑥𝑀 = ℎ1 + 𝑥𝐿𝑅𝑉
𝑚𝑖𝑛 2-7 

𝑥𝐷 = ℎ2 + 𝑥𝐿𝑅𝑉
𝑚𝑖𝑛 2-8 
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Figure 2-6: Indication of simulation time period 

2.4  Open-loop simulation 

The model equations presented in Section 2.2 are simulated in MATLAB with a sampling time 

of 1 hour and a total simulation time of 1 month. For this purpose, the flow through the turbines 

is set to their maximum capacity, 36 m3/s, and the inflow to the reservoir is assumed to have 
two different scenarios of 200 m3/s and 250 m3/s. The simulation results are shown in Figure 

2-7. 

The results seem logical because when the flood gates are closed, the levels go on increasing 

in the reservoir. On the other hand, with the opening of flooding gates, the level decreases. 

Furthermore, when the inflow to the reservoir is 200 m3/s, the rise in the levels is slow as 
compared to the inflow of 250 m3/s. When high inflow occurs in the reservoir, flood gates 

needed to open more to prevent flooding situation which is justified in Figure 2-7. 

It is important to note that the gate openings in this simulation are set manually and adjusted 

as required to realize the flooding control scenario: levels within the given constraints. 

However, the design of MPC facilitates the same operation with the optimal evaluation of the 

gate opening/control signal. 

2.5 Inflow data visualization 

Skagerak Energi records the forecast of ensembles for the next 13 days by updating twice a 

day. Although the ensembles are updated twice, one-time data are used for the simulation 

purpose in this thesis. The forecasts consist of 50 different ensembles generated with slight 
variations in the initial condition of the hydrological model and weather conditions [4]. One 

example of such an ensemble forecast is shown in Figure 2-8. 

From Figure 2-8, it can be observed that the ensemble forecasts tend to scatter from each other 

when moved ahead in time which signifies that the range of uncertainty in a forecast increases 

when the number of prediction days becomes greater. 
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Figure 2-7: Open-loop simulation result: with higher inflow in the reservoir, levels increase faster, and therefore 

more gate opening is required to meet constraints 

 

 

Figure 2-8: Ensemble forecast recorded on April 22, 2020 

The forecast ensembles recorded over the whole year of 2020 and 2021 have been provided by 

Skagerak. The 50 different variations in inflow obtained each day from April 15, 2020, to May 
15, 2020, and April 15, 2021, to May 15 2021 are shown in Figure 2-9 and Figure 2-10 

respectively. It is important to note that the data updated each day are repeated 24 times and 

then plotted. The inflow into the reservoirs has been predicted quite high at the start of May in 

2020, however, the inflow is higher around the middle of May in the year 2021. 
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Figure 2-9: Each day inflow variations starting from April 15, 2020 - May 15, 2020 

 

 

Figure 2-10: Each day inflow variations starting from April 15, 2021 - May 15, 2021 
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3 Theory 
The formulation of stochastic MPC can be carried out using a wide range of methods. However, 
this section primarily focuses on some methods named scenario-based multistage NMPC, 

weighted sum method; one of the methods to solve MOO and Min-Max MPC. These 
formulations are the optimization problem with non-linear functions involved, and therefore 

can be transformed into Non-Linear Programming Problems (NLP). Some of the methods to 

transcribe optimization problems into NLP problems are also discussed in this section. 

Furthermore, a numerical optimization framework – CasADi – will be introduced. 

3.1 Some methods for SMPC formulation 

3.1.1 Multi-stage scenario-based NMPC 

The idea behind the multistage MPC formulation comes from the multistage stochastic 

programming. The first output variable, 𝑦1  must be selected anyway however the outputs 

afterward, 𝑦2, 𝑦3 , … . . , 𝑦𝑁 , are the results of uncertainties that have been acted on the system as 

shown in Figure 3-1. To be specific, 𝑦3  has the impact of both uncertainties represented by the 

symbols δ1 and δ2 as shown in Figure 3-1. To counteract the changes in the system due to these 

uncertainties, the optimal moves are evaluated over a certain time, which is also called the 
prediction horizon [5]. Furthermore, the optimal moves must be evaluated in each time step to 

encounter the changes of uncertainties in the future which is called closed-loop optimization 

[6].  

 

Figure 3-1: Stochastic Programming in multistage [1] 

Multistage NMPC is also known as the closed loop optimization method since it explicitly 

takes into account the new information or changes that happen to the system in the future and 
recomputes optimal control input to the system. In this approach, the uncertainties are modeled 

as a moving scenario tree as shown in Figure 3-2. Each branch of the scenario diagram 
represents variable trajectories of the states or outputs considering the future evolutions in the 

uncertainties at each point over the prediction horizon. It is important to note that the control 

moves acting in each branch are set equal (i.e., 𝑢0
1 = 𝑢0

2 = 𝑢0
3,…..) to realize real time decisions 

to the system. This idea of setting the same control action is called non-anticaptivity constraints 

[7]. 
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Figure 3-2: Example of scenario diagram for multistage NMPC [8] 

In [9], the author emphasizes the importance of considering the robust horizon when the length 
of the prediction horizon increases. With the increase in the number of the prediction horizon, 

the branching from each node or uncertainty increases resulting in computational complexity. 
The idea to deal with this case is to limit the branching after a certain point of time, called a 

robust horizon as shown in Figure 3-2, such that uncertainties remain constant. 

The optimization problem resulting from the scenario-based multistage formulation can be 

written as: 

𝑚𝑖𝑛
𝑥𝑘
𝑗
,𝑢𝑘
𝑗
∀(𝑗,𝑘)∈𝐼

∑ 𝑤𝑖𝐽𝑖(𝑋𝑖 ,𝑈𝑖)
𝑁

𝑖=1
 

  3-1 

subject to, 

𝑥𝑘+1
𝑗 = 𝑓 (𝑥𝑘

𝑝(𝑗), 𝑢𝑘
𝑘 , 𝑑𝑘

𝑟(𝑗)), ∀(𝑗, 𝑘 + 1) ∈ 𝐼 3-2 

𝑔(𝑥𝑘+1
𝑗 , 𝑢𝑘

𝑗)  ≤ 0 ∀(𝑗, 𝑘) ∈ 𝐼 3-3 

𝑢𝑘
𝑗 = 𝑢𝑘   

𝑙 𝑖𝑓  𝑥𝑘
𝑝(𝑗) = 𝑥𝑘

𝑝(𝑙) ∀(𝑗, 𝑘), (l, k) ∈ 𝐼 3-4 

where, in Equation   3-1, Xi and Ui represent the set of states and control inputs that belong to 

scenario Si. Si denotes the ith scenario which is the path from the root node x0 to one of the leaf 

nodes and it contains all the states 𝑥𝑘
𝑗
 and control inputs 𝑢𝑘

𝑗
 that belong to the ith scenario. N 

represents the number of scenarios (or leaf nodes). 

The cost of each scenario is represented by Ji(.) and given by Equation 3-5 

𝐽𝑖 =∑ L(𝑥𝑘+1
𝑗 , 𝑢𝑘

𝑗)
𝑁𝑝

𝑘=1
 

∀(𝑥𝑘+1
𝑗 , 𝑢𝑘

𝑗) ∈ 𝑆𝑖 3-5 

where Np represents the length of the prediction horizon. 
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Equation 3-2 above represents the state trajectories and  𝑥𝑘+1
𝑗

 at stage k+1 and position j is the 

function of the previous state 𝑥𝑘
𝑝(𝑗)

 , vectors of control inputs 𝑢𝑘
𝑗
 and the corresponding 

realization r of the uncertainty 𝑑𝑘
𝑟(𝑗)

. The superscript p(j) denotes the index of the previous 

node in the tree, which is the function of its position j and stage k. The index set of all occurring 

indices (j, k) is denoted by I. Similarly, Equation 3-3 represents the nonlinear constraints and 
Equation 3-4 represents an anticaptivity constraint. Details of the symbolic representation can 

be found in [9]. 

3.1.2 MPC based on multi-objective optimization  

The general MOO can be posed as: 

𝑚𝑖𝑛𝑥  𝐹(𝑥) 

where, 𝐹(𝑥) = [𝐹1(𝑥), 𝐹2(𝑥),… , 𝐹𝑘(𝑥)] 

subject to, 

 3-6 

𝑔𝑗(𝑥) ≤ 0 𝑗 ∈ 1,2,3… ,𝑚 3-7 

ℎ𝑝(𝑥) = 0 𝑝 ∈ 1,2,3… , 𝑛 3-8 

where k is the number of the objective function, m is the number of inequality constraints, n 

is the number of the equality constraints and x is the design or optimization variable. 

The optimized variable x that minimizes all the objectives simultaneously normally does not 

exit. In most of the real-life examples, these objectives are contradictory to each other, for 
example, maximizing quality versus minimizing the cost of the goods. Therefore, there comes 

a concept of Pareto optimality to describe the solutions for MOO problems. The solution of 

MOO is Pareto optimal if it is not possible to improve one objective without harming the other 
objectives [10]. Furthermore, for the given MOO problem, the solution set, also called Pareto 

optimal set, can be more than one in numbers and all these solution sets are collectively known 
as Pareto Front. All the possible points in Pareto Front are equally acceptable solutions, 

however, the selection of the best solution depends upon the decision-makers [11]. There are 

different methods available to solve such kinds of problems and these methods are briefly listed 

in Figure 3-3. 

Among these available methods, Weighted Sum Approach (WSA) has been used to design 

stochastic MPC in this thesis which is described in detail in Chapter 5. 
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Figure 3-3: Methods to solve MOO problems [12] 

3.1.3 Min-Max MPC 

The formulation of min-max MPC can be either an open loop, which is also called classical 
min-max MPC, or can be closed-loop [13]. The classical min-max MPC determines the control 

action that can guarantee the constraints along the predicted trajectory of the states and 

minimizes the cost associated with the worst-case uncertainty. It is important to note that these 
control actions ignore the sliding horizon strategy [14]; the first control action is applied to the 

process and the future controls are evaluated by solving the optimization problem in each time 
step addressing the new uncertainties. Such open-loop control actions give poor closed-loop 

performance when the uncertainties are assumed time-invariant in the formulation [15] and 

sometimes lead to extremely conservative solutions [13]. On the other hand, in the closed-loop 
type, control actions are part of the optimization problem in each step. The solution obtained 

from this method demonstrates a better closed-loop performance index, however, introduces a 

computation burden. 

The closed-loop min-max NMPC can be presented in a form similar to multistage NMPC by 

simply replacing the summation sign of Equation 3-1 with a max operator as shown in Equation 

3-9. 

𝑚𝑖𝑛
𝑥𝑘
𝑗
,𝑢𝑘
𝑗
∀(𝑗,𝑘)∈𝐼

 𝑚𝑎𝑥  𝑤𝑖𝐽𝑖(𝑋𝑖 ,𝑈𝑖) 3-9 

The constraints to Equation 3-9 are similar as given in Equation 3-2 to Equation 3-4. 
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3.2 Numerical Methods for the optimal control problem 

The formulation of a dynamic optimization problem or optimal control problem can be done 

in a variety of ways with the use of different types of objective functions/cost functions and 
constraints. The constraints in the formulation can be represented by ordinary differential 

equations (ODEs), differential-algebraic equations (DAEs), or partial differential equations 
(PDEs). The basic solution policy is to minimize/maximize the objective function by 

addressing the defined constraints. Over the past decades, there has been significant 

development in the efficient approaches for solving optimal control problems such as control 
parametrization [16], collocation method [17], and model-reality difference approach 

[18],[19]. Basically, the algorithms developed are divided into indirect and direct methods as 

shown in Figure 3-4.  

 

Figure 3-4: Numerical methods for dynamic optimization problem [20] 



Indirect methods are based on finding optimal solutions based on the optimality condition 

criteria instead of minimizing or maximizing the cost criteria. The optimality criteria lead to a 
two-point or multi-point boundary value issue, depending on the specified optimal control 

problem (MPBVP), and may give accurate solutions [21]. Nevertheless, these methods suffer 
significant numerical difficulty and make a computational burden, if the initial guess is not 

quite good enough [22]. These methods are not implemented in any simulations presented in 

this thesis. 

Direct methods [21], which are based on a discretization to time, address optimum control 

problems for purely continuous and nonlinear systems. That is, by assessing state and control 
values only at a fixed number of time samples, the infinite-dimensional issue of identifying 

optimum state and control trajectories is reduced to a finite-dimensional challenge. In other 
words, these states and control variables are replaced with piecewise constant parametrization 

[23]. The implementation of these methods may be easier as compared to the indirect methods; 

however, the optimality results are usually not guaranteed [22], therefore can only be the 
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approximate solutions.In this thesis, the results based on the application of direct multiple 

shooting will be presented. 

Direct single shooting method 

The direct single shooting method is based on the discretization of control inputs only as the 

decision variables in the optimization algorithm. The control input u(t) is discretized on the 

fixed number of time grid N, for example, 0 = t0<t1<…. <tN = T as shown in Figure 35, and 
the states x(t; q), q being control parameters such that q = (q0,q1,…,qN-1),  on [0, T] are 

considered as dependent variables evaluated using numerical integration methods. After 
control discretization and the numerical solution for states, an optimization algorithm is solved 

using a finite-dimensional optimization solver, for example, Sequential Quadratic 

Programming (SQP) by defining cost function and constraints. This method is also called the 
sequential method because numerical integration and optimization are performed one after the 

other [24]. 

 

 

Figure 3-5: Illustration of single shooting: discretization of control inputs only [25] 

 

Direct single shooting method 

Direct multiple shooting method based on the discretization of both the control inputs and the 
states. Each step involved in the transcription of the optimal control problems into NLP can be 

pointed out as: 

➢ Divide total time, T, intervals into N equal subintervals. 

𝑡0 < 𝑡1 < ⋯ < 𝑡𝑁 = 𝑇 3-10a 

➢ Parameterize the control input and the initial condition of the states in each subinterval. 

 

 

 

𝑢𝑖(𝑡) 

𝑥𝑖(𝑡) 

∀ 𝑡 ∈ [𝑡𝑖 , 𝑡𝑖+1] 

∀ 𝑡 ∈ [𝑡𝑖 , 𝑡𝑖+1] 

 3-10b 
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➢ Calculate the state trajectories in each subinterval and the values of the states at the end 
of each subinterval using the parameterized values of the states at the beginning of each 

subinterval. 

 𝑥𝑖+1(𝑡) = 𝑓(𝑥𝑖(𝑡),𝑢𝑖(𝑡)) ∀ 𝑡 ∈ [𝑡𝑖 , 𝑡𝑖+1] 3-10c 

➢ Define continuity/equality constraints to maintain continuity of the states between the 

subintervals. 

 ℎ𝑖+1 − 𝑥𝑖+1(𝑡) = 0 𝑖 = 0,1, . . . 𝑁 − 1 3-11c 

 

➢ In each subinterval, evaluate the objective function and formulate the NLP problem. 

➢ Solve the NLP problem 

 

3.3 CasADi – A framework for algorithmic differentiation and 
numerical optimization 

CasADi [26] is an open-source software framework that is primarily used to tackle optimization 
issues in a flexible manner. It's developed in self-contained C++, but it may be used with a 

variety of programming languages, including Python, MATLAB, and Octave. CasADi 
originated as an algorithmic differentiation (AD) tool with a syntax similar to that of a computer 

algebra system (CAS), thus the name. While cutting-edge AD is still a big part of CasADi, in 

recent years the focus has shifted to optimization. It includes a set of methods that make solving 

numerical optimum control problems easier without sacrificing efficiency. 

CasADi is based on a symbolic framework that allows users to build expressions and use them 
to create functions that are automatically differentiable. These general-purpose expressions are 

analogous to the Symbolic Toolbox in MATLAB and the SymPy package in Python. 

With CasADi, NLPs can be solved using block structure or generic sparsity utilizing sequential 
quadratic programming (SQP) or interfaces to IPOPT/BONMIN, BlockSQP, WORHP, 

KNITRO, and SNOPT.  
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4 Deterministic MPC 
The findings of deterministic MPC with two alternative objective function formulations are 
presented in this section. The purpose of implementing two alternative functions is to determine 

the best-performing objective function that can fulfill the optimal operating condition while 

attempting to keep the reservoir level at its maximum level. 

The power production plan and inflows into Lake Toke are the disturbances affecting the 

hydropower plant, as described in Section 2.2. To satisfy the production plan, the equations 
determining power generation are solved to calculate how much water input through the turbine 

is necessary. However, if the turbines are permitted to work at full capacity, which is 36m3/s, 
the maximum production is expected. Here, the simulation results of deterministic MPC 

assume the full operation of turbines.  

Furthermore, another disturbance, water inflow into the reservoir within the period of 15, April 
– 15, May is shown in Figure 2-9. From the 50 different possible inflows each day, a single 

inflow is selected which altogether forms a possible operational/realization inflow acting in the 
system as shown in Figure 4-1. The inflow scenario represented by the red solid line in Figure 

4-1 is the disturbance inflow used for the simulation of deterministic MPC. The realization 

inflow has a maximum value of around 55 m3/s and a minimum of 15 m3/s. 

 

Figure 4-1: Operational inflow selection from the 50 different possible inflows each day. 

 

The selection of a particular inflow for a day is based on the mean methods as given by 
Equation 4-1 and Equation 4-2. Equation 4-1 evaluates the mean of all the 50 ensembles by 

taking 13 days of predicted inflow data. Each mean value is denoted by 𝑀1, 𝑀2,…, 𝑀50 as 

shown in the first column of Equation 4-1. Equation 4-2 calculates mean of these mean values, 
𝑀𝑚 and then an inflow close to 𝑀𝑚 is selected. 
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�̇� 𝑖 =

(

 
 

𝑀1 ← 𝑀𝑒𝑎𝑛(𝑉𝑖,1
(1)

𝑉𝑖,1
(2)

⋯ 𝑉𝑖,1
(13)
)

𝑀2 ← 𝑀𝑒𝑎𝑛(𝑉𝑖,2
(1)

𝑉𝑖,2
(2)

⋯ 𝑉𝑖,2
(13)
)

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

𝑀50 ← 𝑀𝑒𝑎𝑛(𝑉𝑖,50
(1)

𝑉𝑖,50
(2)

⋯ 𝑉𝑖,50
(13)
))

 
 

 

4-1 

 

𝑀𝑒𝑎𝑛 𝑜𝑓 𝑚𝑒𝑎𝑛,𝑀𝑚  =
𝑀1 +𝑀2+. . . . +𝑀50

50
  

4-2 

4.1 Type I OCP formulation based on reference region tracking 

The traditional reference point tracking objective function is slightly modified to make 

reference region tracking as given by Equation 4-3 which is valid at time 𝑡 ∈ 𝑁, N is the set of 

natural numbers. 

𝑚𝑖𝑛
𝑢
𝐽 (ℎ, 𝑢) =∑ 𝑤𝑅

𝑁𝑝

𝑘=1
𝑅2 + 𝛥𝑢′𝑤𝛥𝑢𝛥𝑢 + 𝑢

′𝑤𝑢𝑢 
4-3 

𝛥𝑢 = 𝑢𝑡+𝑘−1 − 𝑢𝑡−1  4-4a 

This cost function is subject to the dynamic model of the system along with an additional 

constraint that limits the maximum and the minimum control signal. These constraints are 

represented by Equation 4-5. 

 

ℎ𝑢(𝑘 + 1) = 𝑓(ℎ𝑢(𝑘), 𝑢(𝑘), 𝑑(𝑘)) 4-5 

𝑢 ∈ [0, 𝑢𝑚𝑎𝑥]  

 

The term R in Equation 4-3 represents the reference region contribution to the cost function 

which is evaluated as given by Equation 4-6. 

𝑅(ℎ𝑡+𝑘) = 𝑚𝑖𝑛(𝑥𝑀,𝑡+𝑘 − 𝑟𝑡+𝑘
𝑙 , 0) +𝑚𝑎𝑥(𝑥𝑀,𝑡+𝑘 − 𝑟𝑡+𝑘

𝑢 , 0) 4-6 

where, 

 𝑟𝑘
𝑙 = (1 −)𝑥𝐿𝑅𝑉,𝑘 + χ𝑅𝑥𝐻𝑅𝑉,𝑘 4-6a 

 𝑟𝑘
𝑢 = 𝑥𝐻𝑅𝑉,𝑘 − δ𝐻𝑅𝑉 4-6b 

 

The terms 𝑟𝑘
𝑙   in Equation 4-6a and 𝑟𝑘

𝑢 in Equations 4-6b represent the customized lower and 

upper reference boundaries respectively, although the permissible boundaries are 𝑥𝐻𝑅𝑉 and 

𝑥𝐿𝑅𝑉 . 
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It is important to note that the term 𝑅(ℎ𝑡+𝑘) = 0, if 𝑥𝑀,𝑡+𝑘 ∈  [𝑟𝑡+𝑘
𝑙 , 𝑟𝑡+𝑘

𝑢 ]. A normally used 

value of χ𝑅 is 0.75 which signifies that the level of Merkebekk lies closer to the upper boundary 

𝑥𝐻𝑅𝑉. The parameter values used in Equation 4-3 to Equation 4-6 are given in Table 4-1. 

 

Table 4-1: Parameters used in Type I OCP formulation 

Parameter Value Comment 

χ𝑅 0.75 Location of 𝑟𝑢 in [𝑥𝐻𝑅𝑉 , 𝑥𝐿𝑅𝑉] 

δ𝐻𝑅𝑉 0.05 Safety margin for upper 

reference region 

 

The cost function proposed in Equation 4-3 contains three weighting factors which are the 

tuning parameters of the controller. The performance of the controller is analysed with different 

groups of weighting factors as given in Table 2-1. Although the variations of these parameters 
can be done in any way, these groups are selected randomly to get an overview of the controller 

behaviour.  

 

Table 4-2: Groups of tuning parameters to analyze the performance of the controller 

Groups wR w Δu wu 

Group 1 10 1 0.1 

Group 2 1 100 0.1 

Group 3 10 500 0.01 

Group 4 1 10 100 

 

The MPC simulation can begin at any moment in terms of reservoir levels. However, the 

simulations offered only explore two alternative beginning levels, with one set of levels in the 

lower zone and the other set of levels in the upper region. 

Case I: Water levels initialized below the narrow reference boundaries 

In this example, there is initially little water in the reservoir, yet the hydroelectric operation 
continues at full capacity for a month. The inflow in the reservoir is considered as it is, which 

means that the flood coefficient 1 is used in the given inflow data.  In such a scenario, the 
behaviour of the levels and the control signals are shown in Figure 4-2. The levels of 

Merkebekk and Dalsfoss are constantly decreasing, and the gate opening is a straight line with 

a value of zero. 

These results show that with limited inflow and low reservoir levels, operating the turbines at 

maximum capacity is not ideal since the water levels would decrease to the low region. In 
addition, the controller's behaviour is rational because the gate should not be opened to throw 
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water in such condition. It signifies that the power production plan should be changed 

accordingly rather than operating to produce maximum power.  

 

Figure 4-2: Type I OCP, initially water at the lower region of the reservoir - [57.75;57.70], turbine operating in 

full capacity-Vt = 36 m3/s, flood coefficient = 1, Group 1 tuning parameters 

 

The outcome of considering low inflow situations provides two avenues to pursue to have a 

better knowledge of MPC performance. Either consider limited turbine input and use flood 
coefficient 1 or operate the turbine at full capacity and use flood coefficient 3 to account for 

larger reservoir inflow. Therefore, the simulation results presented in this Chapter consider the 

later assumption. 

Figure 4-3 depicts the results of using the flooding coefficient 3, and all of the tuning parameter 

groups. Although the pattern of gate opening differs between tuning parameter groups, the 
effect on level is nearly the same. The water level in each case is increasing gradually until it 

hits the maximum allowed limit, 𝑥𝐻𝑅𝑉. Then, the gate opening signal is activated because the 

level has reached to bounds.  

The flood gates of Dalsfoss are operated manually, therefore if the operator is allowed to choose 

the best control signal, the selection would be the signal that is less variable or practically 

constant for most of the time, since this would reduce the need for frequent visits and gate 
operations. If this is the case, Group 1 tuning appears to perform better than the others. It's 

worth noting that just the Merkebekk level is depicted because it represents a major part of the 

reservoir. 

Figure 4-3 shows variation in the level of Merkebekk and Dalsfoss, gate opening signals, out-

flow through each gate, and the total outflow, and the inflow in the reservoir with flooding 

coefficient 3 respectively from top to bottom row using Group 1 tuning parameters.  
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Figure 4-5 shows the execution time to run Case I with Group 1 tuning parameters. It shows 
that the evaluation of the control signal to be used next hour only takes a fraction of seconds, 

that is, 0.19 seconds. 

 

Figure 4-3: Type I OCP, initially water level lower region of the reservoir- [57.75;57.70], turbine operating in 

full capacity – Vt = 36 m3/s, flood coefficient = 3, results comparison using all groups of parameters 
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Figure 4-4:Type I OCP, initially water at the lower region of the reservoir - [57.75;57.70], turbine operating in 

full capacity-Vt = 36 m3/s, flood coefficient = 3, Group 1 tuning parameters 

 

 

 

Figure 4-5: Type I, Case I OCP timing diagram; the results obtained within average loop run time of 0.2s with 

Group 1 tuning parameters. 
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Case 2: Water levels initialized inside the narrow reference boundaries 

This case assumes that the levels are already in the upper region of the reservoir. Figure 4-6 

shows the findings obtained after taking this case into account.  

It can be noticed that the outcome for group 4 tuning settings differs from the other groups. As 

the flooding is very high, it is obvious to increase the level. At the same time, MPC should 

have suggested sufficient gate openings to throw extra flood water, but the MPC could not 

control the flooding in the reservoir with proper gate openings. 

However, the first three groups have nearly identical results in terms of water levels, although 
the pattern of gate opening is slightly different. It seems difficult to prefer gate opening signal 

one over the other as the performance is almost similar. If the optimal gate opening from group 

3 is chosen, Figure 4-7 shows the variation in the levels, control signals, flow through the gates, 

and inflow with flood coefficient 3 respectively. 

 

Figure 4-6: Type I OCP, initially water level at the higher region of the reservoir- [59.55;59.50], turbine 

operating in full capacity – Vt = 36 m3/s, flood coefficient = 3, results from comparison using all groups of 

parameters 
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Figure 4-7: Type I OCP, initially water at the lower region of the reservoir - [59.55;59.50], turbine operating in 

full capacity-Vt = 36 m3/s, flood coefficient = 3, Group 3 tuning parameters 

 

Figure 4-8: Type I OCP, Case II timing diagram; the results obtained within an average loop run time of 0.13s 

with Group 3 tuning parameters. 
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4.2 Type II OCP formulation based on levels maximization 

The amount of water available in the reservoir plays a crucial role in power production; the 

abundance of water is the opportunity for the hydropower operation. Therefore, it is desirable 
to have sufficient water in lake Toke. Therefore, the objective is defined in such a way that the 

level of Merkebekk is maximized; minus sign has been assigned to it as given in Equation 4-7. 
Furthermore, as compared to the formulation in Section 4.1, an additional constraint given by 

Equation 4-9 is added in the formulation to limit the level within 𝑥𝐿𝑅𝑉  and 𝑥𝐻𝑅𝑉.  

 

𝑚𝑖𝑛
𝑢
 𝐽 (ℎ, 𝑢) =∑ −𝑤𝑅

𝑁𝑝

𝑘=1
𝑥𝑀
2 + Δ𝑢′𝑤𝛥𝑢Δ𝑢 + 𝑢

′𝑤𝑢𝑢 
4-7 

subject to, 

ℎ𝑢(𝑘 + 1) = 𝑓(ℎ𝑢(𝑘), 𝑢(𝑘), 𝑑(𝑘)) 4-8 

𝑥𝑀, 𝑥𝐷 ∈ [𝑥𝐿𝑅𝑉 , 𝑥𝐻𝑅𝑉] 4-9 

𝑢 ∈ [0, 𝑢𝑚𝑎𝑥] 4-10 

 

 Case I: Water levels initialized below the narrow reference boundaries 

Although the influence of the weighting groups on level is almost the same, the type of the gate 

opening signal is distinct as shown in Figure 4-9. To be specific, the control signal with group 
1 weighting is noisier as compared to the other control signals. It has unusual peaks when 

opening and closing the gates as shown at time 425 hours and 450 hours. Furthermore, the gate 
opening signals tuned with group 2 and group 3 are almost similar. However, the gate openings 

with group 4 start early but open less. In this case also, there is not a strong point to select 

among group’s 2,3, and 4. However,  if group 3 is chosen as the best performing weighting set, 

its effect on the level and flow through gates can be seen in Figure 4-10. 

With this tuning, the average loop run time taken to compute the optimal gate opening is shown 

in Figure 4-11 which is around 0.20 seconds. 
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Figure 4-9: Type II OCP, initially water at level lower region of the reservoir- [57.75;57.70], turbine operating 

in full capacity – Vt = 36 m3/s, flood coefficient = 3, results comparison using all groups of parameters 

 

 

 

 

                         
  

  

  

  

  

  

  

 
  

 

                              

 
 
        

 
 
        

 
 
        

 
 
        

    

    

                         

           

 

   

   

   

   

   

   

   

 
 
  

 

           

           

           

           

           

           

           

            



4 Deterministic MPC 

  

28 

 

 

Figure 4-10: Type II OCP, initially water at the lower region of the reservoir - [57.75;57.70], turbine operating 

in full capacity-Vt = 36 m3/s, flood coefficient = 3, Group 3 tuning parameters 

 

 

Figure 4-11: Type II OCP, Case I timing diagram; the results obtained within average loop run time of 0.20s 

with Group 3 tuning parameters. 
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Case 2: Water levels initialized inside the narrow reference boundaries 

The effect of group 4 tuning, in this case, is not desirable which can be seen in Figure 4-12. 
The gate opening signal starts early and slowly goes on increasing. Furthermore, the 

performance of this signal in terms of level maximization is not good as compared to the other 

groups.  

Group 1’s performance is quite similar to group’s 2 and 3 in terms of level maximization, 

however, the gate opening itself reaches maximum opening with slight distortion. Therefore, 
it can be deduced that group 2 and group 3 are performing optimally to meet the desired 

objective. If group 3 is chosen optimally performing, the variations in the levels, gate openings 

and the flow through the gates are clearly shown in Figure 4-13. Similarly, the time taken to 

solve the optimization problem in each time step and the average time is shown in Figure 4-14. 

 

 

Figure 4-12:Type II OCP, initially water level at higher region of the reservoir- [59.55;59.50], turbine operating 

in full capacity – Vt = 36 m3/s, flood coefficient = 3, results comparison using all groups of parameters 
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Figure 4-13:Type II OCP, initially water at the upper region of the reservoir - [59.55;59.50], turbine operating in 

full capacity-Vt = 36 m3/s, flood coefficient = 3, Group 3 tuning parameters 

 

 

Figure 4-14: Type II OCP, Case II timing diagram; the results obtained within average loop run time of 4.18s 

with Group 3 tuning parameters. 
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4.3 Comparison of best results 

In Section 4.1 and Section 4.2, two different objective functions were formulated and tuned 

using groups of parameters considering two separate cases for each objective. Although the 
tuning parameters can take any value to give better results, here the best results are selected 

only from the 4 sets of grouping parameters as given in Table 4-2. In each case, the best results 

will be compared obtained from these two objectives. 

4.3.1 Results comparison based on Case 1  

When the initial levels are lower in the reservoir, the controller appears to behave similarly in 

terms of level control except for very small differences from 400 hours. The nature of the gate 
opening, on the other hand, is entirely different. The gate opening signals obtained from Type 

I objective begin gate opening early, at time around 380 hours, but maintain it low. The gate 

opening signals obtained from Type II objective, on the other hand, keep the gate closed for 

longer, up to around 440 hours, but the opening is greater, as illustrated in Figure 4-15. 

 

 

Figure 4-15: Type I vs Type II OCP formulation, comparison of level change and control signal using best 

performing weighting factor, initial level in the lower region 
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4.3.2 Results comparison based on Case 2 

The effect on results due to two different objective functions is clear when the initial levels are 
in the upper region of the reservoir. Type II objective clearly gives superior results both in 

terms of levels maximization and the gate opening signal as shown in Figure 4-16. The level 

of Merkebekk is maximized up to the maximum allowed level as compared to the result given 
by Type I. Furthermore, Type I gate opening signal is arduous for the operator to inject into 

the real system because the gate opening signal should be adjusted every day over the whole 
month. Type II gate opening signal, on the other hand, is closed for a longer period and has 

step opening for the majority of the month except for a steep opening at around 350 hours. 

 

Figure 4-16:Type I vs Type II OCP formulation, comparison of level change and control signal using best 

performing weighting factor, initial level in the upper region 
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4.4 Discussion on deterministic MPC 

4.4.1 Discussion on weighting parameters 

The results obtained using different groups of weighting parameters suggest that the 

performance of a MPC depends upon how well the weighting parameters are tuned. With Type 
I OCP formulation, the effect is even more noticeable. To be specific, an improperly tuned 

controller can even result in overflooding in the reservoir as shown in Figure 4-6. On the other 

hand, with Type II OCP formulation, because of explicit constraint on the level as given in 
Equation 4-9, the effect of improperly tuned parameters causing flood is comparably less likely, 

however, can take more computational time. This signifies the importance of the proper 
weighting factor that is assigned to the controller. Therefore, it is crucial to monitor the changes 

in the weighting factors if conditions of operation change. 

4.4.2 Discussion on OCP formulation 

As already mentioned, the term reference region, R, evaluated in Equation 4-6 in Type I OCP 

formulation becomes zeros, when the level of Merkebekk is inside  𝑟𝑙and 𝑟𝑢. This signifies 
that the effect of level itself becomes insignificant when the objective function is evaluated. 

Furthermore, this formulation introduces fictitious boundaries 𝑟𝑙and 𝑟𝑢  introducing 

complexity, although the permissible boundaries are already defined by 𝑥𝐻𝑅𝑉  and 𝑥𝐿𝑅𝑉 . 

On the other hand, Type II OCP formulation uses 𝑥𝐻𝑅𝑉  and 𝑥𝐿𝑅𝑉  as the upper and lower level 

boundaries by eliminating 𝑟𝑙and 𝑟𝑢 from Type I OCP formulation. Moreover, an additional 
output constraint, as given in Equation 4-9, is introduced which mostly ensures level constraints 

except in the worst scenario of flooding. This formation not only simplifies the problem 
formulation, performs better in terms of holding maximum allowed level in the reservoir, as 

shown in Figure 4-16, ensuring optimal operation of the hydropower plant.  
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5 Stochastic MPC 
The results obtained from Section 4.3.2 suggested that the objective function defined in Type 
II deterministic OCP gives better results in terms of maintaining the higher water level in the 

reservoir. Therefore, the same OCP formulation has been chosen for SMPC and solved using 

WSA. This section details the WSA implementation for SMPC as well as the findings. 

5.1 WSA for SMPC 

The WSA-based SMPC tries to satisfy the total objective, given by Equation 5-1, obtained 
from all the different inflow ensembles. Specifically, the individual ensemble give rise to 

separate objective function denoted by 𝐽𝑛 in Equation  5-1, and subject to the constraints as 

given in Equations 4-8, 4-9, and 4-10.  

𝐽𝑡𝑜𝑡𝑎𝑙 = 𝑤1 ∗ 𝐽1 +𝑤2 ∗ 𝐽2 +⋯+𝑤𝑛 ∗ 𝐽𝑛 5-1 

where, 𝑤1, 𝑤2,… . , 𝑤𝑛  are the weights assigned to each ensemble. However, the ensembles here 

are not specifically prioritized, which means, any ensemble is likely to occur, therefore are 
given equal weights. The total objective obtained from Equation 5-1 is a scalar value, therefore 

called the scalarization method, which is passed to MPC along with the constraints, initial 

states, and the disturbance acting in the system to evaluate the optimal gate opening which 

ultimately is used to the process as shown in Figure 5-1.  

In this thesis, MPC runs with a sampling time of 1 hour, however, new inflow disturbances 
acting in the system are updated every 24 hours. Therefore, over the period of 24 hours, the 

ensembles acting on the previous time are adjusted slightly and then utilized in the current time 
step. The adjustment is such that the stochastic ensembles acting in the previous time step are 

chopped and the last column data from the inflow matrix, as given in Equation 4-1, is repeated.   

The overall implementation of the algorithm to design stochastic MPC using the WSA method 
is shown in Figure 5-2. The algorithm contains two loops while evaluating the total objective, 

one is used to run through each ensemble and the other calculates objective and constraints 
over the whole prediction horizon. The realization inflow acting in the process is assumed to 

be the same as the ensemble used in deterministic MPC which is shown in Figure 4-1. 

 

Figure 5-1: A framework showing the connection between the MPC and process
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Figure 5-2: Flowchart showing implementation of SMPC using WSA method 
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5.2 Performance testing of SMPC at low turbine intake 

The MOO SMPC's performance has been evaluated using different numbers of ensembles and 

data sets from two distinct years, 2020 and 2021. The results presented in this section consider 

low turbine inflow of 10m3/s and flood coefficient 1. Each scenario assumed in the simulation is 

described below with corresponding results. 

a. The first ensemble is selected from 50 different ensembles predicted each day from the year 
2020 and repeated to make 10 same ensembles. Although the same ensembles acting on the 

system do not represent the stochastic nature, this case has been assumed for the integrity test 

of the MPC algorithm which is developed to handle stochastic ensembles. 

Figure 5-3 shows that the levels are maximized until the upper-level constraint, 𝑥𝐻𝑅𝑉, is about 
to hit, then the gate opening signals become active to meet constraint satisfaction. This result 

testifies the implementation of the WSA algorithm. 

 

                Figure 5-3: Levels and gate openings change using 10 same ensembles in MOO formulation 

 

b. However, instead of 10 same ensembles, 10 different ensembles from the year 2020 are used 
in the MPC algorithm. The change in the levels and control signals are shown in  Figure 5-4 

and Figure 5-5 respectively With this scenario, the MPC's performance appears anomalous as 

the gate opening signal changes abruptly within 200 hours, despite the levels not reaching the 
maximum boundaries. Furthermore, between 350 and 500 hours, the upper-level restriction 

has been violated. 
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Figure 5-4: Changes in levels with 10 ensembles data taken from year 2020, level constraints violation around 400 

hours 

 

Figure 5-5: Changes in one control signal with 10 ensembles data taken from year 2020 
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c. In attempt to observe the performance of the MPC with different settings, the ensembles data 
is taken from a different year, year 2021, ensembles spread is restricted to the maximum limit 

of 100 m3/s as shown in Figure 5-6, and the weightings are adjusted differently as prediction 

horizon marches forward as shown in Figure 5-7. 
 

 

Figure 5-6: Example of chopped data to limit the maximum inflow to 100 m3/s,  

data obtained on May 5, 2021, 

 

 

 

Figure 5-7: Weightings are set differently as time marches forward in the prediction horizon 

 

All the 50 ensembles are fed to stochastic MPC with the settings mentioned above. The result 

of levels variations is shown in Figure 5-8. It can be seen that the levels are within the defined 

level constraints, 𝑥𝐻𝑅𝑉 and 𝑥𝐿𝑅𝑉 , with slightly noticeable variation on Dalsfoss level from the 
period of 370 hours to 437 hours as shown in Figure 5-9. The maximum variation of Dalfoss 

is 0.27 m within 67 hours. It signifies that it takes 2.7 days to balance the water dynamics once 
the constraints are around the narrow region. 
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Figure 5-8: Level variations due to 50 ensembles with maximum inflow limit to 100 m3/s, 

 ensemble data taken from year 2021 

 

 

Figure 5-9: A close look on levels variation from 340 hours to 470 hours 
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The gate openings are smooth most of the time except with some steep openings as shown 

in Figure 5-10. A closer look at Figure 5-10 is shown in Figure 5-11. 

 

Figure 5-10: Changes in gate opening signal with 50 ensembles, data taken from the year 2021, 

inflow limited to 100 m3 /s 

 

 

 Figure 5-11: Changes in gate opening signal with 50 ensembles, Figure 5-10 view 

 from time 300 hours to 460 hours 

 

The steep gate openings are marked with lines A, B, and C in Figure 5-11, and their slope 

is given as:  

𝑆𝑙𝑜𝑝𝑒𝑜𝑓𝐿𝑖𝑛𝑒 𝐴 =
1.39 − 0.12

395 − 394
 =  1.27 m/hour 

5-2 

𝑆𝑙𝑜𝑝𝑒𝑜𝑓𝐿𝑖𝑛𝑒 𝐵 =
0 − 0.74

418 − 410
 =  −0.09 m/hour 

5-3 

𝑆𝑙𝑜𝑝𝑒𝑜𝑓𝐿𝑖𝑛𝑒 𝐶 =
1.64 − 0.13

435 − 434
 =  1.51 m/hour 

5-4 
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The steepest openings have occurred at 394 hour and 434 hours with slope given as 

1.27 𝑚/ℎ𝑜𝑢𝑟 and 1.51𝑚/ℎ𝑜𝑢𝑟 respectively. These slopes suggest opening 1.27 m at 394 

hours and 1.51 m at 434 hours respectively to meet the level constraints.  

The average time taken to compute optimal gate openings hourly is around 24.55 seconds 

which is shown in Figure 5-12.  

 

 

Figure 5-12: Average loop run time considering 50 ensembles and low turbine inflow 

 

d. The SMPC's performance is further examined by reducing the number of prediction horizon 

to six days. The prediction horizon is reduced but the ensembles are kept intact without 
limiting to any value. The corresponding results in terms of level variations and gate opening 

signal are shown in Figure 5-13. From this figure, it is seen that the levels are maximized up 

to the upper constraint limit with very less and smooth variations. Furthermore, the gate 
openings are smooth, and step-change throughout the simulation period. Note that the results 

plotted in Figure 5-13 are zoomed in to visualize the variations. 

However, reducing prediction horizon disregards the possible variabilities of the ensembles in 

the future. That is, ensembles spread are taken only up to the six days in this case, although 

the provided ensembles spread are up to 13 days. As a result, while the stochastic MPC 

performs better, the results may not be substantial for Dalfoss operation. 
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Figure 5-13: Level variations and gate openings change with prediction horizon reduced to 6 days, but ensembles 

without limiting the inflow 

 

5.3 Performance testing of SMPC at maximum turbine intake 

The maximum inflow data limited to 100 m3/s from the year 2021 is used to test the performance 

of the MPC considering the full operation of the turbine; 36 m3/s inflow to the turbine. From 
Figure 5-14 it is seen that the levels are within the constraints, therefore MPC can meet the level 

requirements. Merkebekk level is maximum throughout the simulation period, except from 400 

to 500 hours, where it seems to drop by a little margin.  
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Figure 5-14: Level variations, flood coefficient 1, maximum inflow from year 2021 limited to 100 m3/s 

 

 

Figure 5-15: Gate openings variations, maximum inflow from the year 2021 limited to 100 m3/s 

 

The corresponding optimal gate openings evaluated are shown in Figure 5-15. When the level 

constraints become narrow, gate opening signals vary frequently with some steep suggestions. To 
see the range of variation closely, Figure 5-15 is narrower down from 350 hours to 650 hours as 

shown in Figure 5-16. It is seen that at a time around 350 hours and 580 hours, optimal gate 

openings are steep. 

The time taken to evaluate the gate opening signals in each time step is around 22 seconds as 

shown in Figure 5-17. 
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Figure 5-16: Gate opening variations, Figure 5-15 viewed from 350 hours to 650 hours. 

 

 

Figure 5-17: Average loop run time considering 50 ensembles and high turbine inflow 
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5.4 Discussion on stochastic MPC 

5.4.1 Trajectories of inflow ensembles 

The WSA method evaluates optimal gate openings considering the spread of every ensemble and 
giving them equal weights. However, among the provided 50 ensembles each day, some of the 

ensembles have very large spread as compared to most of the ensembles as shown in  Figure 5-18. 
The ensemble numbered 1 has reached up to 150 m3/s, the ensembles numbered 2 and 3 are over 

100 m3/s, however, the majority of the ensembles have spread under 82 m3/s. This might be one 

of the reasons stochastic MPC performed strangely when the original data set was fed; however, 

when the ensemble spread was limited to 100 m3/s, the performance dramatically improved. 

 

Figure 5-18: Ensembles numbered 1,2 and 3 are different than majority of the ensembles, data recorded on 20 April 

2020 

5.4.2 Weight adjustment 

The same weight given to each weighting parameter over the whole prediction horizon might not 

be sufficient to tune the controller to get better results. As time moves forward, the stochastic 
behavior of the ensembles increases, therefore the tuning is needed in such a way to counter this 

phenomenon. For example, with reference to Figure 5-18, the same weighting might work up to 
6 days of prediction length, however, after 6 days the ensembles change drastically, therefore the 

weights assigned should be different after 6 days to have less effect of these changes while the 

optimization process runs. One example of such a setting is already shown in Figure 5-7. The 
performance of stochastic MPC can be enhanced by assigning appropriate weighting factors over 

the prediction horizon, however, finding the ideal values is challenging.  
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5.4.3 Computational load 

The ensemble spread given to the optimizer, the MPC weighting factors, and most crucially, the 

numerical approach utilized for MPC all have a significant influence on the computation time 
required to evaluate the optimal gate openings. The author in [4] used single shooting method to 

solve stochastic MPC with fictitious sinusoidal ensembles and it took, on average, 20 minutes to 
solve each iteration. If the same simulation is performed for a whole month, it seems to take a 

couple of days. In this thesis, multiple shooting has been used with ensembles restricted to a 

maximum value of 100 m3/s, and it took around 23 seconds in each iteration. With this average 
timing, it takes a couple of hours to complete the simulations. Moreover, when the original 

ensembles data provided by Skagerak are used for MPC, even with multiple shooting, it takes 
minutes to solve each iteration, consequently days to simulate for a month. In such a scenario, 

tuning the controller with proper weighting values and re-running the simulation is extremely 

time-consuming. This is also one of the major reasons that imposed difficulty in this thesis to find 
better solutions using stochastic MPC. The availability of a high-performance CPU might have 

helped to have a detailed analysis of stochastic MPC, however conventional CPU unit used to 

perform simulation in this thesis could not meet the computational load.  
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6 Conclusion 

6.1 Conclusion 

It is crucial to operate the flood gate openings of Dalsfoss power plant considering the possibilities 

of several inflows into lake Toke. Furthermore, it is desirable to hold water in the lake Toke up to 

the maximum allowed limit as it ensures the optimal operation of the hydropower plant. The 

solution to this description can be fulfilled with the design of the stochastic MPC. 

The objective function that was used to design SMPC was determined based on the necessity of 
maintaining the reservoir's maximum level while fulfilling the level constraints. The objective 

function for SMPC was chosen after the comparison of results obtained from two different OCP 

formulations: a) Type I formulation with reference region tracking b) Type II formulation with 
level maximization. The later formulation not only meets the criteria of level maximization, but 

also simplifies the problem formulation by eliminating the artificial level constraints inherent in 

the former version.  

The MOO based WSA SMPC was formulated, which determines the optimal gate openings based 

on inflow ensemble uncertainties. The SMPC's performance assessment started using just 10 
ensembles with full spreading and low turbine intake. The results obtained did not fulfill the 

objective of level maximization and constraint satisfaction. That is, the optimal gate opening 
signals were active even though the levels were not maximized. However, when the ensemble’s 

spreading was limited to 100 m3/s, and the weightings parameters were adjusted differently over 

the prediction horizon, the performance met the requirements of level maximization and 
constraints satisfaction. SMPC also performed satisfactorily with these adjustments while 

considering the optimal operation of the hydropower. The performance of the SMPC was 
improved when the length of the prediction horizon was reduced, although this solution does not 

consider the ensemble spreading up to 13 days. 

Furthermore, the computational burden that comes with stochastic simulation limited the task of 
detail analysis. With full ensembles spreading, it takes couple of minutes just to run a single 

iteration, resulting days to run SMPC with simulation period of 1 month. However, the 
computational time was reduced from minutes to seconds when ensembles spreading was limited 

to 100 m3/s.  

Therefore, it can be inferred that examining the ensembles before using them, and re-running 
SMPC with modified weighting parameters can produce better results even with using full 

ensembles spreading. 
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6.2 Future Work 

Based on the experience of the author, the following future work are worth on implementing.   

➢ Revisit the stochastic MPC framework used in this thesis by minutely studying implemen-

tation details, assigning appropriate values to tuning parameters, and inspecting ensemble 
variations 

➢ Although the multiple shooting technique is considered as an efficient approach to solve 
the problem, considering the code optimization technique would help to solve the problem 

faster 

➢ Validate the integrity of the designed stochastic MPC by testing the performance on dif-
ferent ensemble data set with different inflow trajectories. Thereafter, study the robustness 

and conservativeness of the stochastic MPC. 
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which (out of the possible 50) inflow occurs into the system, the MPC should still be able to 

satisfy the water level concession requirements. 

 
Aim: 
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The following are the main tasks: 

(i) Detailed literature review on different methods for Robust/Stochastic MPC. 

(ii) Evaluate the possible objective functions for stochastic MPC.  

(iii) Develop stochastic MPC for optimal operation of the Dalsfoss hydropower plant. 
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Appendix B – MATLAB files 

 

A list of all the MATLAB script and function files used to produce the results for this thesis is 

given in Table A.1. 

Table A.1. List of MATLAB files 

 Types File name Description 

Open loop simulation Simulator_casadi.m 

 

Model simulation  

Deterministic, Level 

Maximization objective 

main_file.m contains parameters setting, 
function calling and main 

loop of MPC simulation 

 compute_both.m evaluate objectives and 
constraints over the 

prediction horizon 

Deterministic, Reference 

region tracking objective 
compute_both.m evaluate objectives and 

constraints 

 

Stochastic MPC 

 

main_file.m 

contains parameters setting, 
function calling and main 

loop of MPC simulation 

 compute_both.m evaluate objectives and 

constraints over the 

prediction horizon 

Common files select_disturbance.m create deterministic 

realization inflow  

 state_models.m contains model equations of 

the process 

 update_states.m Use first input into the 
process, sliding horizon 

implementation 
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main_file.m (deterministic: level maximization) 

clc 

clear 

% close all 

addpath('C:\aaa._MY_FILES\aUSN\4th semester\casadi-windows-matlabR2016a-v3.5.5'); 

import casadi.* 

%%....................Parameters settings::Start.........................%% 

%->....Gate opening requirements 

hg_min = 0; % [m], minimum gate opening 

hg_max = 5.6;%[m], maximum gate opening 

 

%->....Time setting for simulations 

sampling_time = 3600;% [s],Sampling time of 1 hour 

sim_time = 30*24*3600;% [s],Simulation time of 30 days 

timespan = 0:sampling_time:sim_time; 

timesteps = length(timespan); 

 

%->....Length of the prediction horizon 

Np = 13*24; % 13 days of prediction horizon 

 

%->....Level constraints from April 15 to May 15 

x_LRV1 = 55.75; %[m] from april 15 to april 30 

x_LRV2 = 58.85; % [m] from may 1st to may 15 

x_HRV1 = 60.35; %[m] from april 15 to april 30 

x_HRV2 = 59.85; % [m] from may 1st to may 15 

 

%->....Creating array for constraints limit and also needed for plotting 

xLRV = zeros(timesteps,1); 

xLRV(1:timesteps/2) = x_LRV1; 

xLRV(timesteps/2:end) = x_LRV2; 

 

xHRV = zeros(timesteps,1); 

xHRV(1:timesteps/2) = x_HRV1; 

xHRV(timesteps/2:end) = x_HRV2; 

 

%->....Add extra number of values for simulating until the end of... 

%->simulation time 

xLRV = [xLRV;ones(Np+1,1).*x_LRV2]; 

xHRV = [xHRV;ones(Np+1,1).*x_HRV2]; 

 

%->....Finding minimum value of XLRV, added to states to find x_M and x_D 

x_LRV_min = min(xLRV); %[m] 

 

%->.... Nominal values for MPC cost function parameters 

X_R = 0.75; % Location of rl_i in interval [xLRV,xHRV] 

delta_HRV = 0.05; %[m] Safety margin for upper reference region boundary 

%Selection of reference region boundries 
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 rl = (1-X_R).*xLRV + X_R.* xHRV; 

 ru = xHRV - delta_HRV; 

%->.... Nominal values for MPC cost function parameters 

X_R = 0.75; % Location of rl_i in interval [xLRV,xHRV] 

delta_HRV = 0.05; %[m] Safety margin for upper reference region boundary 

 

%Weight matrices 

w_R = 10; %Weight on cost outside reference region 

w_delU = 1; %Weight on change of flood gate opening 

w_U = 0.1; % Weight on flood gate opening 

 

% Vectors for storing volumetric flow through gates 

Vgate_each = zeros(timesteps,2); 

Vgate_total = zeros(timesteps,1); 

 

%%...........Parameters settings::End................................%% 

 

%%..........Symbolic representation for CasADi::Start................%% 

 

%->....States representation,two states h1 and h2 

h = SX.sym('h',2,1); 

st = h ; 

n_states = length(st); 

 

%->....Control action representation,hg1 and hg2 

hg = SX.sym('hg',2,1); 

controls = hg; 

n_controls = length(controls); 

n_u_prev = n_controls; 

 

%->....Process disturbance, volumetric inflow 

Vi_dot = SX.sym('Vi_dot'); 

n_disturbance = length(Vi_dot); 

 

%->....Process model, rhs term and the output from the models 

[hdot,Vg_dot,Vg_dot_total] = State_models(st,controls,Vi_dot); 

 

%->.... Non Linear mapping function; inputs to outputs 

f = Function('f',{st,controls,Vi_dot},{hdot,Vg_dot,Vg_dot_total}); 

 

%->....Decision variables(control input) and states vector for the whole 

%->prediction horizon 

U = SX.sym('U',n_controls,Np ); % Control inputs matrix 

H = SX.sym('H',n_states,(Np + 1)); % States matrix 

 

%->.... Parameter vector to store initial states and disturbance 

P = SX.sym('P',n_states + n_u_prev + Np,1); % 2 initial states and Np number of 

%->disturbance for the whole prediction horiozon 

%%..........Symbolic representation for CasADi::END................%% 

%%..........Evalution of objective and constraint::Start................%% 

%->....Compute objective and constraints over the prediction horizon 

[obj,g] = compute_both(U,H,P,Np,sampling_time,x_LRV_min,w_R,w_delU,w_U,f); 

%..........Evalution of objective and constraint::END................%% 

%%..........IPOPT optimizer setup::Start................%% 

%->....Define decision/optimization variables 
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OPT_variables = [reshape(H,2*(Np+1),1);reshape(U,2*Np,1)]; 

 

%->....Define NLP problem object 

nlp_prob = struct('f',obj,'x',OPT_variables,'g',g,'p',P); 

 

%->....Options set up for optimizer 

opts = struct; 

opts.ipopt.max_iter = 1000; 

opts.print_time = 0; 

opts.ipopt.acceptable_tol = 1e-6; 

opts.ipopt.acceptable_obj_change_tol = 1e-6; 

opts.ipopt.print_level = 0; % 3,5(default) upto 13 

opts.ipopt.fixed_variable_treatment = 'make_constraint'; 

opts.ipopt.warm_start_init_point = 'yes'; 

 

solver = nlpsol('solver','ipopt',nlp_prob,opts); 

 

%%..........IPOPT optimizer setup::END................%% 

%%..........Bounds setup::Start................%% 

args = struct; 

%->....equality constrainst matrix g(equality constraint) and delta_u 

 

args.lbg = repelem(0,2*(Np+1)); 

args.ubg = repelem(0,2*(Np+1)); 

 

%->....Bounds on gate opening, U 

args.lbx(2*(Np+1)+1:1:2*(Np+1)+ 2*Np,1) = 0; % Lower limit of gate opening 

args.ubx(2*(Np+1)+1:1:2*(Np+1)+ 2*Np,1) = hg_max; 

%Upper bound of gate opening 

%%..........Bound setup::Partial END................%% 

%%.........Partial END because the bounds on states are changed in each 

%%time step, therefore the bounds are supplied fromt the main loop. 

%%..........The simulation loop starts from here........................%% 

%-------------------------------------------------------------------------- 

%-------------------------------------------------------------------------- 

 

%->.... Initialization of control input over the whole prediction horizon 

initial_control = [0;0]; 

U0 = repmat(initial_control,1,Np)'; 

 

%->....Initialization of states over the whole prediction horizon 

%->....Give initial states between 0 and 4.6, this limit is because it will 

%help to bound x_M and x_D inbetween xLRV and xHRV 

initial_states = [3.8;3.75]; 

H0 =  repmat(initial_states,1,Np+1)'; 

 

u_prev = [0;0]; 

%->....state_history matrix contains the evolution of states over the whole 

%simulation time, these states values are obtained from the first optimized 

%control input in each time step 

state_history(:,1) = initial_states; 

 

%->....u_eachstep contains the changes in control signal over the whole 

%simulation time period, these values are first optimal move stored in each 

%time step 

u_eachstep = [initial_control]; 
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%->.... Create a large vector storing the value for the disturbance over 

%the simulation period 

disturbance = select_disturbance(); 

%-> ....Repeat each element of inflow disturbance(Here,24 times), because 

%prection of inflow from the company are provided after 24 hours, i.e next 

%day 

generate_disturbance = repelem(disturbance,24).*1; 

 

%->.... Start MPC with with initialization of iterations count 

no_iterations = 0; 

%->....For optimal solution trajectory starting each timestep 

% optimal_traj = []; % Contains the optimal solution trajectory 

 

%->.....Start the main loop 

for i=1:timesteps 

 

    tic; 

    %->....Parametrization vector,P and initial vector args.x0 are changed 

    %in each timestep 

    args.p = [initial_states;u_prev;generate_disturbance(i:i+Np-1,1)]; 

    args.x0 = [reshape(H0',2*(Np+1),1);reshape(U0',2*Np,1)]; 

 

    %->....Bounds on h1 

    % x_M E [xLRV,xHRV] 

    % xLRV <= x_M <= xHRV 

    %xLRV <= h1+x_LRV_min <= xHRV 

    %xLRV-x_LRV_min <= h1 <= xHRV-x_LRV_min 

 

    args.lbx(1:2:2*(Np+1),1) = xLRV(i:i+Np,1) - x_LRV_min; 

    args.ubx(1:2:2*(Np+1),1) = xHRV(i:i+Np,1) - x_LRV_min; 

 

%     %->....Bounds on h2 

    args.lbx(2:2:2*(Np+1),1) = xLRV(i:i+Np,1)-x_LRV_min; 

    args.ubx(2:2:2*(Np+1),1) = xHRV(i:i+Np,1)-x_LRV_min; 

 

    %->.... Call IPOPT solver object in each iterations 

    sol = solver('x0',args.x0,'lbx',args.lbx,'ubx',args.ubx,'lbg',... 

                    args.lbg,'ubg',args.ubg,'p',args.p); 

 

    %->....Extract the control signal which is after states variables in 

    % the optimization variable 

    u = reshape(full(sol.x(2*(Np+1)+1:end))',2,Np)'; 

     %Get OPTIMAL solution trajectory 

    optimal_traj(:,1:2,no_iterations+1) = reshape(full(sol.x(1:2*(Np+1)))',2,Np+1)'; 

 

    %->....Append first move in eachstep 

    u_eachstep = [u_eachstep,u(1,:)']; 

 

    %->....Update the states by appling first control move 

    [initial_states,U0,Vg_dot,Vg_total] = update_states(sampling_time,... 

                                    initial_states,u,f,generate_disturbance(i)); 

 

    u_prev = u(1,:)'; 

    %->....Storing gate flow in each time step 

    Vgate_each(no_iterations+1,:) = full(Vg_dot); 
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    Vgate_total(no_iterations+1,:) = full(Vg_total); 

 

    % ->....Storing updated states in each time step 

    state_history(:,no_iterations+2) = initial_states; 

 

    %->....Get solution trajectory 

    H0 = reshape(full(sol.x(1:2*(Np+1)))',2,Np+1)'; 

 

    %->....Shift trajectory to initialize the next step 

    H0 = [H0(2:end,:);H0(end,:)]; 

 

    %->....Increase the number of iterations 

    no_iterations = no_iterations + 1 

 

    %->....Record time of completion of each loop 

    time_eachloop(:,no_iterations) = toc; 

end 

 

%->....Finding average loop completion time 

Average_looprun_time = sum(time_eachloop)/timesteps 

Total_iteration = no_iterations 

total_time = Total_iteration*Average_looprun_time 

 

%->.... x holds the information both x_M and x_D, the levels we are 

% interested on. 

x = state_history + x_LRV_min; 

 

%->....Visualization function call for plotting all the results 

plotting_results(x,u_eachstep,Vgate_each,Vgate_total,generate_disturbance,... 

                  xLRV,xHRV,timesteps,time_eachloop,Average_looprun_time,rl,ru) 

 

compute_both.m (deterministic: level_maximization) 

function [obj,g] = compute_both(U,H,P,Np,sampling_time,x_LRV_min,w_R,w_delU,w_U,f) 

 

    %->....Objective function initialization 

    obj = 0; 

    %->....Empty Constraints vector,later we will add the evaluated 

    %constraints in each step of prediction horizon through for loop 

    g  = []; 

    %->....st variable initialization with the optimal states stored on H 

    st = H(:,1); %Initial states 

    %->....Initial condition constraints, the difference is appended in 

    %each iteration, the concept of multiple shooting adds this equality 

    %constraint 

    g = [g; st - P(1:2,1)]; 

    %->....Disturbance vector is assigned to P vector, these values stored 

    %in P vector are changed in each iteration fromt the main for loop 

    Vi_disturbance = P(5:end,1); 

    u_prev = P(3:4,1); 

    U_extended = [u_prev,U]; 

    del_con = U_extended(:,2:end) - U_extended(:,1:end-1); 

 

 for k = 1:Np 
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        st = H(:,k); 

        con = U(:,k); 

 

        inflow = Vi_disturbance(k,1); 

 

        %->....level of Merkebekk to be maximized in the objective function 

        x_M1 = H(1,k) + x_LRV_min ; 

        obj = obj + (-w_R*x_M1^2 + del_con(:,k)'*... 

                                   w_delU*del_con(:,k) + con'*w_U*con); 

        st_next = H(:,k+1); 

 

        % Integrating the models with explicit runge kutta method 

         k1 = f(st,con,inflow); 

         k2 = f(st+k1.*sampling_time/2,con,inflow); 

         k3 = f(st+k2.*sampling_time/2,con,inflow); 

         k4 = f(st+k3.*sampling_time,con,inflow); 

 

         st_next_predicted = st +sampling_time/6*(k1+2.*k2+2.*k3+k4); 

 

         g = [g; 

             st_next - st_next_predicted % x(k+1) = f(x(k),u(k)) Equality constraints 

             ]; 

 end 

 

end 

 

compute_both.m (deterministic: reference region tracking) 

function [obj,g] = compute_both(U,H,P,Np,sampling_time,... 

                                w_R,w_delU,w_U,f,n_states,n_u_prev,x_LRV_min) 

 

 

    %->....Objective function initialization 

    obj = 0; 

    %->....Empty Constraints vector,later we will add the evaluated 

    %constraints in each step of prediction horizon through for loop 

    g  = []; 

 

    %->....st variable initialization with the optimal states stored on H 

    st = H(:,1); %Initial states 

 

    %->....Initial condition constraints, the difference is appended in 

    %each iteration, the concept of multiple shooting adds this equality 

    %constraint 

    g = [g; st - P(1:n_states)]; 

 

    %->....Disturbance vector is assigned to P vector, these values stored 

    %in P vector are changed in each iteration fromt the main for loop 

 

    u_prev = P(n_states+1:n_states+2,1); 

 

    U_extended = [u_prev,U]; 
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    del_con = U_extended(:,2:end) - U_extended(:,1:end-1); 

 

    Vi_disturbance = P(n_states + n_u_prev + 1:n_states + n_u_prev  + Np,1); 

 

    r_ll = P(n_states +n_u_prev + Np + 1:n_states + n_u_prev + Np + Np,1); 

 

    r_uu = P(n_states + n_u_prev + Np + Np + 1:end,1); 

 

 for k = 1:Np 

 

        st = H(:,k); 

        con = U(:,k); 

 

        inflow = Vi_disturbance(k,1); 

 

        R = min(H(1,k)+x_LRV_min-r_ll(k),0) + max(H(1,k)+x_LRV_min-r_uu(k),0); 

        obj = obj + w_R*R^2 + del_con(:,k)'*... 

                                   w_delU*del_con(:,k) + con'*w_U*con; 

 

        st_next = H(:,k+1); 

 

        % Integrating the models with explicit runge kutta method 

         k1 = f(st,con,inflow); 

         k2 = f(st+k1.*sampling_time/2,con,inflow); 

         k3 = f(st+k2.*sampling_time/2,con,inflow); 

         k4 = f(st+k3.*sampling_time,con,inflow); 

 

         st_next_predicted = st +sampling_time/6*(k1+2.*k2+2.*k3+k4); 

 

         g = [g; 

             st_next - st_next_predicted % x(k+1) = f(x(k),u(k)) Equality constraints 

             ]; 

 end 

 

end 

 

main_file.m (stochastic MPC) 

clc 

clear 

% close all 

 

addpath('C:\aaa._MY_FILES\aUSN\4th semester\casadi-windows-matlabR2016a-v3.5.5'); 

import casadi.* 

%%....................Parameters settings::Start.........................%% 

 

%->....Gate opening requirements 

hg_min = 0; % [m], minimum gate opening 

hg_max = 5.6;%[m], maximum gate opening 

 

%->....Time setting for simulations 

sampling_time = 3600;% [s],Sampling time of 1 hour 

sim_time = 30*24*3600;% [s],Simulation time of 30 days 

timespan = 0:sampling_time:sim_time; 
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timesteps = length(timespan); 

 

%->....Choose the number of ensemble for MPC 

no_ensemble = 20; 

%->....Length of the prediction horizon 

N_days = 13; % Number of days for prediction horizon 

Np = N_days*24; % number of steps in prediction horizon 

%->....Level constraints from April 15 to May 15 

x_LRV1 = 55.75; %[m] from april 15 to april 30 

x_LRV2 = 58.85; % [m] from may 1st to may 15 

x_HRV1 = 60.35; %[m] from april 15 to april 30 

x_HRV2 = 59.85; % [m] from may 1st to may 15 

%->....Creating array for constraints limit and also needed for plotting 

xLRV = zeros(timesteps,1); 

xLRV(1:timesteps/2) = x_LRV1; 

xLRV(timesteps/2:end) = x_LRV2; 

 

xHRV = zeros(timesteps,1); 

xHRV(1:timesteps/2) = x_HRV1; 

xHRV(timesteps/2:end) = x_HRV2; 

 

%->....Add extra number of values for simulating until the end of... 

%->simulation time 

xLRV = [xLRV;ones(Np+1,1).*x_LRV2]; 

xHRV = [xHRV;ones(Np+1,1).*x_HRV2]; 

 

%->....Finding minimum value of XLRV, added to states to find x_M and x_D 

x_LRV_min = min(xLRV); %[m] 

%->.... Nominal values for MPC cost function parameters 

X_R = 0.75; % Location of rl_i in interval [xLRV,xHRV] 

delta_HRV = 0.05; %[m] Safety margin for upper reference region boundary 

 

%Selection of reference region boundries 

 rl = (1-X_R).*xLRV + X_R.* xHRV; 

 ru = xHRV - delta_HRV; 

 

%->.... Nominal values for MPC cost function parameters 

X_R = 0.75; % Location of rl_i in interval [xLRV,xHRV] 

delta_HRV = 0.05; %[m] Safety margin for upper reference region boundary 

 

%Weighting matrices for MPC 

w_R = repelem([1,1,1,1,1,1,0.9,0.9,0.8,0.8,0.7,0.7,0.7],24); %Weight given to the level of 

Merkebekk 

w_delU = repelem([100,100,100,100,100,100,1000,1000,1000,2000,2000,2000,2000],24); %Weight on 

change of flood gate opening 

w_U = repelem([0.1,0.1,0.1,0.5,0.5,0.5,0.95,0.85,0.75,0.75,0.75,0.75,0.75],24); % Weight on 

flood gate opening 

% Vectors for storing volumetric flow through gates 

Vgate_each = zeros(timesteps,2); 

Vgate_total = zeros(timesteps,1); 

%%...........Parameters settings::End................................%% 

%%..........Symbolic representation for CasADi::Start................%% 

%->....States representation,two states h1 and h2 

h = SX.sym('h',2,1); 

st = h ; 

n_states = length(st); 



 Appendices 

  

63 

 

%->....Control action representation,hg1 and hg2 

hg = SX.sym('hg',2,1); 

controls = hg; 

n_controls = length(controls); 

n_u_prev = n_controls; 

 

%->....Process disturbance, volumetric inflow 

Vi_dot = SX.sym('Vi_dot'); 

n_disturbance = length(Vi_dot); 

 

%->....Process model, rhs term and the output from the models 

[hdot,Vg_dot,Vg_dot_total] = State_models(st,controls,Vi_dot); 

 

%->.... Non Linear mapping function; inputs to outputs 

f = Function('f',{st,controls,Vi_dot},{hdot,Vg_dot,Vg_dot_total}); 

 

%->....Decision variables(control input) and states vector for the whole 

%->prediction horizon 

U = SX.sym('U',n_controls,Np); % Control inputs matrix 

H = SX.sym('H',n_states,no_ensemble*(Np+1)); % States matrix 

 

%->.... Parameter vector to store initial states and disturbance 

P = SX.sym('P',n_states + n_u_prev + no_ensemble*Np,1); % 2 initial states 

% , 2 previous control signals and (no_ensemble * Np) number of 

% disturbance for the whole prediction horiozon 

%%..........Symbolic representation for CasADi::END................%% 

%%..........Evalution of objective and constraint::Start................%% 

%->....Compute objective and constraints over the prediction horizon 

[obj,g] = 

compute_both(U,H,P,Np,sampling_time,x_LRV_min,w_R,w_delU,w_U,f,n_states,n_u_prev,no_ensemble)

; 

%..........Evalution of objective and constraint::END................%% 

 

%%..........IPOPT optimizer setup::Start................%% 

 

%->....Define decision/optimization variables 

OPT_variables = [reshape(H,no_ensemble*2*(Np+1),1);reshape(U,2*Np,1)]; 

 

%->....Define NLP problem object 

nlp_prob = struct('f',obj,'x',OPT_variables,'g',g,'p',P); 

 

%->....Options set up for optimizer 

opts = struct; 

opts.ipopt.max_iter = 800; 

opts.print_time = 0; 

opts.ipopt.acceptable_tol = 1e-5; 

opts.ipopt.acceptable_obj_change_tol = 1e-5; 

opts.ipopt.print_level = 0; % 3,5(default) upto 13 

opts.ipopt.fixed_variable_treatment = 'make_constraint'; 

opts.ipopt.warm_start_init_point = 'yes'; 

 

solver = nlpsol('solver','ipopt',nlp_prob,opts); 

 

%%..........IPOPT optimizer setup::END................%% 

%%..........Bounds setup::Start................%% 

args = struct; 
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%->....equality constrainst matrix g(equality constraint) 

args.lbg = repelem(0,no_ensemble*2*(Np+1)); 

args.ubg = repelem(0,no_ensemble*2*(Np+1)); 

 

%->....Bounds on gate opening, U 

% Lower limit of gate opening 

args.lbx(no_ensemble*2*(Np+1)+1:1:no_ensemble*2*(Np+1)+ 2*Np,1) = 0; 

%Upper bound of gate opening 

args.ubx(no_ensemble*2*(Np+1)+1:1:no_ensemble*2*(Np+1)+ 2*Np,1) = hg_max; 

 

%..........The simulation loop starts from here........................%% 

% % -------------------------------------------------------------------------- 

% % -------------------------------------------------------------------------- 

 

%->.... Initialization of control input over the whole prediction horizon 

initial_control = [0;0]; 

U0 = repmat(initial_control,1,Np)'; 

 

%->u_previous value is needed to calcultae delta u 

u_prev = [0;0]; 

 

%->....Initialization of states over the whole prediction horizon 

%->....Give initial states between 0 and 4.6, this limit is because it will 

%help to bound x_M and x_D inbetween xLRV and xHRV 

initial_states = [3.8;3.75]; 

H0 =  repmat(initial_states,1,no_ensemble*(Np+1))'; 

 

%->....state_history matrix contains the evolution of states over the whole 

%simulation time, these states values are obtained from the first optimized 

%control input in each time step 

state_history(:,1) = initial_states; 

 

%->....u_eachstep contains the changes in control signal over the whole 

%simulation time period, these values are first optimal move stored in each 

%time step 

u_eachstep = zeros(2,timesteps); 

 

% ->....array for storing each loop execution time 

time_eachloop = zeros(timesteps,1); 

 

%->.... Create a large vector storing the value for the disturbance over 

%the simulation period 

disturbance = select_disturbance(); 

 

%-> ....Repeat each element of inflow disturbance(Here,24 times), because 

%prection of inflow from the company are provided after 24 hours, i.e next 

%day 

generate_disturbance = repelem(disturbance,24).*1; 

 

%->.... Start MPC with with initialization of iterations count 

no_iterations = 0; 

 

%->....Days counter initilization, data are accessed for the whole one 

%month or 30 days 

days_counter = 1; 
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%->....first day data accesse, multiplies by a  number to realize flood scenario 

%and then to see the controllere performance 

rep_ensem = bring_ensemble(days_counter,no_ensemble,N_days).*1; 

each_step_ensemble = rep_ensem'; 

 

%->....Putting all the ensemble as a column array which is sent to MPC for 

%control signal optimization 

in_one_col = reshape(each_step_ensemble,[],1); 

 

 

% optimal_traj = zeros(no_ensemble*(Np+1),2,120); 

%->.....Start the main loop 

for i=1:timesteps 

 

    tic; 

    %->....Parametrization vector,P and initial vector args.x0 are changed 

    %in each timestep 

 

    args.p = [initial_states;u_prev;in_one_col]; 

    args.x0 = [reshape(H0',no_ensemble*2*(Np+1),1);reshape(U0',2*Np,1)]; 

 

 

    for m = 1:no_ensemble 

 

            %->....Bounds on h1 

 

            args.lbx((m-1)*2*(Np+1)+1:2:m*2*(Np+1),1) = xLRV(i:i+Np,1) - x_LRV_min; 

            args.ubx((m-1)*2*(Np+1)+1:2:m*2*(Np+1),1) = xHRV(i:i+Np,1) - x_LRV_min; 

 

            %->....Bounds on h2 

            args.lbx((m-1)*2*(Np+1)+2:2:m*2*(Np+1),1) = 0; 

            args.ubx((m-1)*2*(Np+1)+2:2:m*2*(Np+1),1) = inf; 

 

    end 

 

    %->.... Call IPOPT solver object in each iterations 

    sol = solver('x0',args.x0,'lbx',args.lbx,'ubx',args.ubx,'lbg',... 

                    args.lbg,'ubg',args.ubg,'p',args.p); 

 

 

    %->....After each days(23 steps of simulations), new data are accessed 

    % from next day 

    if  mod(i,24) == 0 

        days_counter = days_counter + 1 ; 

        rep_ensem = bring_ensemble(days_counter,no_ensemble,N_days).*1; 

        each_step_ensemble = rep_ensem'; 

        in_one_col = reshape(each_step_ensemble,[],1); 

 

    else 

        rep_ensem = [rep_ensem(:,2:end),rep_ensem(:,end)]; 

        each_step_ensemble = rep_ensem'; 

        in_one_col = reshape(each_step_ensemble,[],1); 

    end 

 

    %->....Extract the control signal which is after states variables in 

    % the optimization variable 
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    u = reshape(full(sol.x(no_ensemble*2*(Np+1)+1:end))',2,Np)'; 

 

    %->....Store first move in eachstep 

    u_eachstep(:,i) = u(1,:)'; 

 

    %->....Update the states by appling first control move 

    [initial_states,U0,Vg_dot,Vg_total] = update_states(sampling_time,... 

                                    initial_states,u,f,generate_disturbance(i)); 

 

    %->....Update u_previous for next iteration 

    u_prev = u(1,:)'; 

 

    %->....Storing gate flow in each time step 

    Vgate_each(no_iterations+1,:) = full(Vg_dot); 

    Vgate_total(no_iterations+1,:) = full(Vg_total); 

 

    % ->....Storing updated states in each time step 

    state_history(:,no_iterations+2) = initial_states; 

 

    %->....Get optimal trajectories 

%     optimal_traj(:,1:2,no_iterations+1) = 

reshape(full(sol.x(1:no_ensemble*2*(Np+1)))',2,no_ensemble*(Np+1))'+ x_LRV_min; 

 

    %->....Get solution trajectory 

    H0 = reshape(full(sol.x(1:no_ensemble*2*(Np+1)))',2,no_ensemble*(Np+1))'; 

 

    %->....Shift trajectory to initialize the next step 

    H0 = [H0(2:end,:);H0(end,:)]; 

 

    %->....Increase the number of iterations 

    no_iterations = no_iterations + 1 

 

    %->....Record time of completion of each loop 

    time_eachloop(i) = toc; 

 

end 

 

% ->....Finding average loop completion time 

Average_looprun_time = sum(time_eachloop)/timesteps 

Total_iteration = no_iterations; 

total_time = Total_iteration*Average_looprun_time 

 

%->.... x holds the information both x_M and x_D, the levels we are 

% interested on. 

x = state_history + x_LRV_min; 

% ->....Visualization function call for plotting all the results 

plotting_results(x,u_eachstep,Vgate_each,Vgate_total,generate_disturbance,... 

                  xLRV,xHRV,timesteps,time_eachloop,Average_looprun_time,rl,ru); 

 

compute_both.m(stochastic MPC) 

function [obj_total,g] = compute_both(U,H,P,Np,sampling_time,... 

                    x_LRV_min,w_R,w_delU,w_U,f,n_states,n_u_prev,no_ensemble) 
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    addpath('C:\aaa._MY_FILES\aUSN\4th semester\casadi-windows-matlabR2016a-v3.5.5'); 

    import casadi.* 

 

    %->....Disturbance vector is assigned to P vector, these values stored 

    %in P vector are changed in each iteration fromt the main for loop 

 

    %->....Objective function vector for each of the ensemble 

    obj_array = SX.zeros(1,no_ensemble); 

    %->....Empty Constraints vector,later we will add the evaluated 

    %constraints in each step of prediction horizon through for loop 

    g  = []; 

 

   ensemble_iteration = 0; 

 

   u_prev = P(3:4,1); 

 

   U_extended = [u_prev,U]; 

 

   del_con = U_extended(:,2:end)-U_extended(:,1:end-1); 

 

 

   for j = 1:no_ensemble 

 

        obj = 0; 

 

        opt_states = H(:,(j-1)*(Np+1) + 1:j*(Np+1)); 

 

        st = opt_states(:,1); 

 

    %->....Initial condition constraints, the difference is appended in 

    %each iteration, the concept of multiple shooting adds this equality 

    %constraint 

        g = [g; st - P(1:n_states,1)]; 

 

    %->....select each ensemble 

        Vi_disturbance = P(n_states + n_u_prev + (j-1)*Np + 1:n_states + n_u_prev + j*Np,1); 

 

        ensemble_iteration = ensemble_iteration + 1; 

 

        sprintf('We are using %d numbered ensemble in the MPC',ensemble_iteration) 

 

        for k = 1:Np 

 

             st = opt_states(:,k); 

             con = U(:,k); 

 

            inflow = Vi_disturbance(k,1); 

 

            %->....level of Merkebekk to be maximized in the objective function 

            x_M1 = opt_states(1,k) + x_LRV_min ; 

 

            obj = obj + (-w_R(k)*x_M1^2 + del_con(:,k)'*... 

                                       w_delU(k)*del_con(:,k) + con'*w_U(k)*con); 
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            st_next = opt_states(:,k+1); 

 

            % Integrating the models with explicit runge kutta method 

             k1 = f(st,con,inflow); 

             k2 = f(st+k1.*sampling_time/2,con,inflow); 

             k3 = f(st+k2.*sampling_time/2,con,inflow); 

             k4 = f(st+k3.*sampling_time,con,inflow); 

 

             st_next_predicted = st +sampling_time/6*(k1+2.*k2+2.*k3+k4); 

 

              g = [g; 

                     st_next - st_next_predicted % x(k+1) = f(x(k),u(k),d(k)) Equalityconstr 

                     ]; 

        end 

        obj_array(j) = obj; 

   end 

 

    obj_total = 1*sum(obj_array); 

    end 

 

select_disturbance.m(common file) 

function selected_inflow = select_disturbance() 

 

clear all; 

clc; 

 

addpath 'C:\aaa._MY_FILES\aUSN\4th semester\Vi_Forecast_data\2020April_May_NormalData'; 

dirName = 'C:\aaa._MY_FILES\aUSN\4th semester\Vi_Forecast_data\2020April_May_NormalData'; 

 

files = dir(fullfile(dirName,'*.mat')); 

files = {files.name}; 

 

%->....50 different predicted ensemble 

no_ensemble = 50; 

no_days = 46; 

mean_each_ensemble = zeros(no_ensemble,1); 

square_error = zeros(no_ensemble,1); 

%->....Array for storing error for each 50 ensemble 

selected_inflow = zeros(no_days,1); 

 

for k = 1:no_days 

 

    load(files{k}); 

    %->....Use all the data except row number 51 as it is control signal 

    data = Vi(1:end-1,:); 

 

    %->....Loop for finding mean of each 50 ensemble for 13 days 

    for j = 1:no_ensemble 

        val = data(j,:); 

        mean_each_ensemble(j,:) = sum(val)/numel(val); 

    end 

 

    mean_of_mean = sum(mean_each_ensemble)/numel(mean_each_ensemble); 
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    %->....Loop for comparing mean of each ensemble to mean of mean of 

    %ensemble and finding error 

    for m = 1:no_ensemble 

        square_error(m) = sqrt((mean_of_mean - mean_each_ensemble(m))^2/... 

                                                             no_ensemble); 

    end 

    [min_val,index] = min(square_error); 

 

    selected_inflow(k) = data(index,1); 

 

end 

end 

 

state_models.m (common file) 

function [h_dot, Vg_dot,Vg_dot_total]  = State_models(h,hg,Vi) 

 

    %->....Parameters declaration 

    alpha = 0.05; % Fraction of surface area in compartment 2 

    beta = 0.02; % Fraction of inflow to compartment 2 

 

    C_d = 0.7; % Discharge coefficient, Dalsfos gate 

    w = [11.6,11]; % Width of the flood gates 1 and 2 

    g = 9.8; % Acceleration due to gravity 

    K12 = 800; % Inter compartmental flow coefficient 

 

    PPP = 10^(-5); 

 

    %->....Disturbance assignment to a variable 

    Vi_dot = Vi; 

    %->....Volumetric flow through the turbine [m3/sec] 

    Vt_dot = 36; 

 

    %->...Intermediate equations: Algebric equations 

    sectional_area = @(h) max((28e6*1.1* max(h,PPP)^(1/10)),1e3); 

 

    V12_dot = K12*(h(1)-h(2))*sqrt(max(abs(h(1)-h(2)),PPP)); 

 

    Vg_dot = [C_d*w(1)*min(hg(1),h(2))*sqrt(2*g*max(h(2),PPP)); 

              C_d*w(2)*min(hg(2),h(2))*sqrt(2*g*max(h(2),PPP)) 

              ]; 

 

    %->....Total flow through both gates 

    Vg_dot_total = sum(Vg_dot); 

 

    % State equations 

    h_dot = [((1-beta)*Vi_dot-V12_dot)/((1-alpha)*sectional_area(h(1))); 

 

            (beta*Vi_dot-Vt_dot-Vg_dot_total+V12_dot)/(alpha*sectional_area(h(2))) ]; 

end 
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update_states.m(common file) 

function [initial_states,U0,Vg_dot,Vg_total] = 

update_states(sampling_time,initial_states,u,f,generate_disturbance) 

 

     dis_inflow = generate_disturbance; 

     st = initial_states; 

     con = u(1,:)'; % Apply first control move to th model to update the states 

 

     [k1,Vg_dot,Vg_total] = f(st,con,dis_inflow); 

     k2 = f(st+k1.*sampling_time/2,con,dis_inflow); 

     k3 = f(st+k2.*sampling_time/2,con,dis_inflow); 

     k4 = f(st+k3.*sampling_time,con,dis_inflow); 

     st = st +sampling_time/6*(k1+2.*k2+2.*k3+k4); 

 

     initial_states = full(st); 

 

     %->....Removing first control and repeating last control 

     U0 = [u(2:size(u,1),:);u(size(u,1),:)]; 

 

 

end 

 

Simulator_casadi.m (Open loop simulation) 

clc; 

clear; 

close; 

addpath('C:\aaa._MY_FILES\aUSN\4th semester\casadi-windows-matlabR2016a-v3.5.5'); 

import casadi.* 

 

%Define requirements 

% hg_max = 5.6; 

 

%Level constraints from April 15 to May 15 

x_LRV1 = 55.75; %[m] from april 15 to april 30 

x_HRV1 = 60.35; %[m] from april 15 to april 30 

 

x_LRV2 = 58.85; % [m] from may 1st to may 15 

x_HRV2 = 59.85; % [m] from may 1st to may 15 

 

Vi_dot = 250; % Inflow variations in the lake Toke [m3/sec] 

 

Vt_dot = 36; 

 

x_LRV_min = 55.75; %[m] 

 

% Time setting for simulations 

initial_time = 0; 

final_time = 30*86400; % Total simulation period of 13 days 

sampling_time = 3600;% Sampling time of 1 hour 

t = initial_time:sampling_time:final_time; 

number_timesteps = int64((final_time-initial_time)/sampling_time) + 1 ; 
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hours = 1:1:number_timesteps; 

 

%%Creating array with constraints for plotting 

xLRV = zeros(1,number_timesteps); 

xLRV(1:360) = x_LRV1; 

xLRV(360:end) = x_LRV2; 

 

xHRV = zeros(1,number_timesteps); 

xHRV(1:360) = x_HRV1; 

xHRV(360:end) = x_HRV2; 

 

%%Symbolic representation for casadi 

%%States representation 

h = MX.sym('h',2); 

states = [h] ; 

n_states = length(states); 

 

%Control action representation 

hg = MX.sym('hg',2,1); 

controls = [hg]; 

n_control = length(controls); 

 

 

%Process model 

hdot = State_models(states,controls); 

 

% Non Linear mapping function 

f = Function('f',{states,controls},{hdot}); 

 

 

% For storing states of the system 

% H = DM(n_states,number_timesteps); 

 

H = SX.sym('H',n_states,number_timesteps); 

 

% Control signal over the simulation period 

Hg = DM(n_control,number_timesteps); 

 

%States assignment 

initial_states = [58.75;58.70]; 

H(:,1)= initial_states; 

El_t = zeros(number_timesteps-1,1); 

tic; 

 for k = 1:number_timesteps  -1 

%          tic; 

        if k<=50 

            Hg(:,k) = 0; 

 

        elseif k>50 && k<=150 

            Hg(:,k) = 0; 

 

        elseif k>150 && k<=340 

            Hg(:,k) = 0; 

 

        elseif k>300 && k<=400 

            Hg(:,k) = 1.2; 
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        elseif k>400 && k<=500 

             Hg(:,k) = 0.4; 

 

        elseif k>500 && k<=700 

            Hg(:,k) = 0.4; 

        else 

            Hg(:,k) = 0.4; 

 

        end 

        % Integrating the models with explicit runge kutta method 

         k1 = f(initial_states,Hg(:,k)); 

         k2 = f(initial_states+k1.*sampling_time/2,Hg(:,k)); 

         k3 = f(initial_states+k2.*sampling_time/2,Hg(:,k)); 

         k4 = f(initial_states+k3.*sampling_time,Hg(:,k)); 

         H(:,k+1) = initial_states +sampling_time/6*(k1+2.*k2+2.*k3+k4); 

         initial_states = H(:,k+1); 

 

%          El_t(k,1)=toc; 

 end 

 

toc; 

 

H = full(evalf(H)); 

Hg = full(evalf(Hg)); 

 

%%Plot results showing the level changes x_M and x_D 

subplot(3,1,1); 

plot5 = plot(hours,H,'LineWidth',1.05); 

hold on; 

plot6 = plot(hours,xLRV,hours,xHRV,'LineWidth',1.05); 

combined_plot = [plot5;plot6]; 

legend(combined_plot,'x_M','x_D','xLRV','xHRV'); 

 

% xlabel('Time(hours)'); 

ylabel('Levels[m]'); 

title('Open loop simulation for x_M and x_D change') 

grid on; 

 

subplot(3,1,2); 

plot(hours,Hg,'LineWidth',1.05); 

ylim([-0.95,5]); 

legend('hg1','hg2'); 

% xlabel('Time(hours)'); 

ylabel('control signal, hg[m]'); 

title('Control singal change over the period') 

grid on; 

 

subplot(3,1,3) 

plot(hours,ones(1,length(hours)).*Vt_dot,hours,ones(1,length(hours)).*Vi_dot); 

ylim([0,300]); 

xlabel('Time(hours)'); 

ylabel('volumetric flow, m^3/s'); 

legend('Vt dot','Vi dot'); 


