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Summary:

Photovoltaic (PV) power production predictions have gained immense popularity in recent
years. More and more solar power connects to grids. Considering PV power dependency
on various weather parameters, improvements in power prediction possess a massive
potential for optimisation and accurate forecasting.

The main objective of this study is to understand weather parameters that affect PV power
production. Furthermore, proposing a model to predict power output from historical data
is one of the goals. It is expected to the developed PV power prediction model will give
insights into forecasting.

PV plant historical data was kindly shared by Lede Energi for Skagerak Arena in Skien.
Meteorological data was gathered through meteorological institute frost application
programming interface (API) for Gjerpen station which is operated by NIBIO. Air
temperature, global horizontal irradiance, wind speed, wind category, relative humidity,
and dew point temperature variable in addition to module temperature, and clear sky
parameters from pvlib package in python were subject to examination. These variables’
impact was investigated on PV power output for a period from 2020 to 2021 on an hourly
basis. In particular, weather parameters analysed from 2018 to 2021 to understand changes
in climate on a yearly basis. After merging all data, correlation and principal component
analysis were performed. Linear regression (LR) and artificial neural networks (ANNS)
models were proposed and were tested on various cases.

Models were best performed on consecutive clear sky days with mean absolute error of
2.04 kW, and 1.66 kW for LR and ANN, respectively. ANN did a better job of prediction
consecutive clear sky days compared to LR. Furthermore, models were evaluated for a
longer testing set period from 2020 to 2021. While the mean absolute error for ANN was
2.41 kW, LR was 2.92 kW. The study indicates that the ANN model’s prediction results
are slightly improved compared to LR models. Besides, handling different sampling rates
within datasets and their impact on the model accuracy were discussed.

As a result of the meteorological variable selection case, it is concluded that while the
model run by only irradiance and air temperature values produce sufficient results, the best
performance was obtained by adding relative humidity and other sun parameters. In
addition, it is found out that all variables that were investigated have an effect on power
value predictions during relevant weather variable fluctuation periods.

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this student report.
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1 Introduction

1 Introduction

Without a doubt, photovoltaic (PV) systems play an important role in changing the world by
its emission free, and quick installation capabilities. In addition to that, the decreasing trend in
manufacturing costs makes PV systems more attractive amongst other renewable sources.
According to Rystad energy, prices in 2020 which was 0.20$ per watt peak (Wp), jumped to
0.26-0.28% per Wp in the second half of 2021 due to the material price inflation [1]. Even
though the current downward trend has been disrupted by the latest price inflation around the
globe, it is expected that PV system installations continue to surge in the coming years. Solar
PV systems installed capacity was 843 TWh in 2021 and International Energy Agency (IEA)
expects that PV capacity reaches up to 4958 TWh by 2050 [2]. Considering the goals in PV
capacity, grid capacity and its optimisation for renewable sources are subject to debate. Lately,
grid companies put a great deal of effort into grid optimisation and improvements.

When it comes to PV power production, battery systems have gained popularity due to the lack
of power production when the sun is out. That is why, solar power production systems, whether
residential or commercial, commonly consist of solar modules with battery systems. While all
parts work in harmony, power generation and consumption balance determine the electricity
flow either to the grid or batteries. At this level of penetration, prediction of solar energy comes
on the scene. Power production companies have integrated forecasting outcomes into their
systems. As a result of this integration, it has become possible to get the most out of the sun
energy and feed into the grid with the most effective amount. Hence, allocation of power
depending on demand and load allows companies to maximize their profits in addition to
increased grid security. However, solar power forecasting is a challenging task and may result
in economic losses if it is not managed effectively. There are many different approaches for
forecasting models such as using only irradiance values or taking into account other
meteorological parameters. Models also differ in prediction methods such as regressions, and
machine learning algorithms. To reach out higher accuracy and prediction capability of power
with minimal errors, forecasting models are continuously in the process of improvement.
Different algorithms and model inputs with feature and variable selection are being studied by
researchers. Furthermore, the prediction of solar power output not only reduces the probability
of power imbalance in the market but also secures the high penetration of PV systems in the
grids for extended periods.

Since this study was conducted in Norway, it might be beneficial to provide some information
on PV trends in Norway. In 2020, 40 MW of solar panels was installed and the total capacity
has reached 160 MW. DNV GL predicts that installed capacity will increase to 1.75 GW by
2040 [3]. Additionally, it is expected that PV will account for only 1% in total electricity
production. Relatively low solar radiation compared to central Europe degrades Norway’s
power business motivation for PV systems. The average daily solar radiation is 2.46 kWh/m?
and it can reach up to 5.5 kWh/m? during summer [4]. Precisely, advances in PV technology
and better optimisation with forecasting provide unique opportunities to the national grid.
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1 Introduction

1.1 Task Description

The main objective of this study is to understand weather parameters that effect PV power
production. Furthermore, proposing a model to predict power output from historical data is one
of the goals. It is expected to the developed PV power prediction model will give insights into
forecasting.

Historical data on the weather observation from MET (The Norwegian Meteorological
Institute), and photovoltaic power from Skagerak Arena on an hourly basis will be correlated
to electricity production from solar energy. Main data for this task are observations from
Gjerpen weather station (Skien) and Skagerak Energilab (Skagerak Arena, Skien). Observed
variations in electricity production will be discussed related to the proper operation of the
electrical network.

The Norwegian Meteorological Institute, IFE (Institute for Energy Technology), and Skagerak
Energi are the project partners of the study. Submitted task description can be found in
Appendix A.

1.2 Motivation

Skagerak Arena is home to the first of its type project in Norway. Odd soccer club’s Skagerak
Arena in Skien, Norway proved that lights can be powered by local renewable sources when
the team plays in the evenings. 5,700 square meters of solar modules, with a nominal power of
800 kWp were placed on the rooftop of the stadium by Skagerak Energi. Getting the chance of
analysing power data from such a special place, Skagerak Arena, was one of the main
motivations.

One of the project partners, IFE, carries on a project called Sunpoint which is a research project
for analysing solar power potential. The project aims to increase the estimation energy
production of solar power plants in Norway. One of the main study areas of the project is
predicting more accurate solar irradiance values for Norway. Thus, localised accurate data will
be provided Norwegian solar energy market. By using PV power data and measured irradiance
values, this study’s outputs can be another valuable input to other projects within Norway.

The main driven motivation throughout the thesis is dealing with large datasets, and having a
chance to practise data dealing techniques, statistical methods and machine learning
algorithms. Writing python codes except for libraries from the scratch was a challenging part
of this study. Furthermore, Norway is one the countries that is located in high latitude. For such
a country that has challenging climate, understanding the power of sunlight reaches on the
surface and its potential for electricity production is going to be an exciting part of this study.

This thesis is one of a kind for Norway in terms of scaling of power and content of the study

such as clear sky algorithms, extensive information meteorological variable — PV data
relationship, and meteorological variable input selection.
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1 Introduction
1.3 Brainstorm for deciding on models

At the beginning of the project, no specific model for historical data analysis and forecasting
were stated. The chosen models were decided in the process of literature research. As is well
known, PV power production is heavily dependent on the amount of irradiance that solar
modules receive. It is also common knowledge that as air temperature increases so as PV cell
temperature, the module efficiency decreases. A similar temperature effect is caused by wind
speed. The higher wind speed means the lower cell temperature. All fluctuations seem that
there is a linear relationship. That is why a simple but effective model such as linear regression
may worth to be investigated. However, there are other variables that the relationship with PV
power production is not clearly known such as wind direction or humidity. Moreover, different
underlying relationships during season changes or the combination of other variables may
produce non-linearity in data. In understanding and unrevealing hidden relationships in
datasets, more advanced methods are used. For example, artificial neural networks (ANNSs) are
famous for achieving higher accuracy in time series forecasting [5]. In the literature, it is
possible to follow that there is a growing interest in PV power prediction and forecasting by
using ANNSs [6]. Other supervised machine learning methods such as random forests (RF), and
support vector machines (SVMs) are also good fits for predictions [7].

1.4 The Outline of the Thesis

The thesis is structured as follows. In section 2, it is given a general theoretical background on
PV systems, and the working principles. In addition, PV cell information is provided based on
the cell type that is used in the plant. In the second part of the theoretical background section,
short information is available for meteorological variables and measurement methods. In the
literature review part, data dealing methods specifically on meteorological variables and PV
power values analysed through articles in the literature. Afterward, machine learning
algorithms and prediction techniques are explored and model evaluation methods are
presented.

In section 3, the PV plant layout and meteorological station are presented. Besides, the data
type and time scale are introduced. Data processing methodology is also explained in this
section. Moreover, clear sky studies where different methods have been compared, are
discussed in this part with examples. It has aimed by clear sky part that the by using measured
irradiance values, detecting clear sky days automatically, and filtering out from the datasets
easily for future analysis. Correlation analysis is conducted to analyse the relationship within
input parameters and principal component analysis is used to investigate the possibility of
dimension reduction and a better understanding of feature interdependence.

In section 4, all results including historical data prediction and forecasting are presented with
figures and tables.

Section 5 discusses the outcome of the results and gives information on different trials on the
way to forecasting steps. In addition, some suggestions for the continuity of this project are
stated as future work. And lastly, in section 6, conclusions on all results and discussions are
delivered. Some important parts from the code are given in Appendix F.
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2 Theoretical Background

2 Theoretical Background

In this part, some theoretical knowledge on PV systems, meteorological variable explanations
and measurements and literature survey are presented. It is also aimed to give some insights
into general concepts of thesis work components to readers.

2.1 Photovoltaic Systems

A typical photovoltaic system consists of three main groups. These are PV modules, inverters
and grid or battery connection parts. Several photovoltaic cells are assembled in series or
parallel circuits and a module is formed. A photovoltaic panel may include one or several
modules together and gets the form ready to install. Moreover, a complete power generation
unit is named as an array where PV panels are connected in series or parallel connections.
Figure 2.1 describes a compact illustration of a cell, a module, a panel and an array system.

Photovoltaic (PV) Module
Cell

L 2 2 28 2 28 2 2% 2 2 2
A 2 S 2 S 28 2h 28 S o 2
L 2 S S8 28 2% 2% 2% 2% 2 2

Panel
Figure 2.1: Photovoltaic cells, modules, panels and arrays [8].

Unless direct current (DC) is produced from PV modules directly stored battery, it is converted
to alternative current (AC) by inverters to be ready last user consumption. However, the
electricity goes into several steps before being connected to the grid. First of all, a junction box
is installed commonly behind the PV panels to harness electricity from the panel. In addition,
the junction box includes bypass diodes to prevent the PV panel from any reverse current due
to shadow or darkness. The junction box also includes string fuses is used to protect the wiring
from overloading. Next, the electricity should be monitored by a controller. The controller box
monitors and tracks the PV generation from the panel and the information feeds up next
processes. DC electricity generated from PV panels is converted into alternative current by
inverters. In PV systems, inverters are particularly designed for working in the maximum
power point (MPP). The inverter is adjusted to get the maximum possible power from PV
panels by the MPP tracking system. An electronic circuit adjusts the voltage so that the inverter
works at the PC maximum power point. In case of fault status, direct current load switches
isolate the inverter from the PV generator in large multi-inverter systems. Lastly, power
metering and controlling systems work in harmony to provide electricity for the grid or
consumer unit. Cabling is another important part of PV systems as different cable types are
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2 Theoretical Background
used for module string cables, DC cables and AC cables. Nominal voltage in addition to
mechanical and weather determine the specification of cables.

2.1.1 PV Cell

A PV cell absorbs sunlight and converts it to electricity by creating an electrical current. Cell
power output heavily depends on solar irradiance, ambient temperature, and other factors that
could lead to energy loss. PV Cell technology evolves rapidly to maximize power output and
new cell types are coming on the market. While silicon solar cell accounts for the vast majority
of the market, other types of cells are becomingly desirable such as crystalline silicon thin-film
solar cells, high-efficiency I11-V multijunction solar cells, and organic photovoltaics.

A typical semiconductor solar cell consists of the n-type and p-type layers, anti-reflective layers
and metal contact. When light hits the surface of a silicon semiconductor solar cell, light
triggers electrons in the silicon and results in electron movement from the n-type layer to the
p-type layer. Thus, a flow of electricity is created.

In this part, one particular type of solar cell will be explained in detail. One of the advanced
solar cell types is the Passivated Emitter and Rear Cell (PERC) which is also installed in
Skagerak Arena. PERC cells can be classified as rear passivated cells that differ from
traditional solar cells due to the capability of a high amount of light capture. Figure 2.2
compares a conventional cell and a PERC cell. In particular, electrons are not captured by the
rear surface and reflected electrons contribute to the current again in the PERC cell [9].

CONVENTIONAL CELL PERC CELL
o
. 5, Dielectric
- layer
Sl metal

contacts
Figure 2.2: Conventional and PERC Cell comparison [9].

Figure 2.3 shows a Passivated Emitter, Rear Locally-doped (PERL) Cell which is one of the
most common PERC configurations [10]. While the pyramid surface captures most of the light
with its design, rear contact with the oxide surface ensures that getting the most out of the light.
The light that is reflected from rear contact reaches the surface of pyramids and goes back into
the cell [11]. Thus, the efficiency of the cell may reach up to 25%.
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Figure 2.3: PERL Cell (Passivated Emitter, Rear Locally-doped) [10].
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PERC cells which are used in Skagerak Arena have a brand name called REC Twinpeak 2
Series Module that has 120 half-cut multi-crystalline cells. Half-cut cell technology aims to
reduce power loss by splitting standard square cells into two smaller parts. As a result, internal
current decreases by 50% and reduces power loss as well as lowers resistive losses [12]. In
addition, multi-crystalline refers to multiple separate crystals forming the cell. It is worth
mentioning that in contrast to multi cells, mono cells have a higher energy yield as absorption
efficiency is higher [12].

2.1.2 PV Module

When it comes to installing multi-PV modules and connecting to each other, it is important to
design module arrays to get the most out of PV power production. Series and parallel module
combinations are two ways of installing a PV module system. In series connections, each
module's power production occurs at the same current and voltage values add up while in
parallel connection, power production occurs at some voltage and current values add up [13].
Figure 2.4 represents an array distribution including series and parallel connections. If amodule
produces different power from others in a string due to for example partial shading, bypass
diodes prevent other modules from failing. The shaded module is not influenced by reverse
voltage and does not consume any power from other modules due to bypass diode blocking.
Similarly, blocking diodes in series ensures that the current flows only in one direction and the
current does not go back to failing strings or modules. Since the current flow in a series
connection is determined by the lowest current value, if there is a current reduction in a cell or
module, it will result in a loss of power. Similarly, the system voltage is determined by the
lowest voltage in a parallel connection and lower voltage results in power loss.

Bl=k‘
P
Module O 7~ O 7~ O AN
O VAN O AN O AN
O N O AN O 7\ Bypass
diode

Figure 2.4: Parallel and Series connection of module in a PV system [13].

Shading plays an important role in the energy yield of PV systems. Partial shadowing affects
PV output both current and voltage values. Seapan et al. [14] investigated the shading effect
on a PV module by analysing maximum voltage Vmp and maximum current Imp values. In
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Figure 2.5: Variation of the Vimpand Imp caused by the shading [14].

2 Theoretical Background
Figure 2.5, X¢ indicates the ratio of shaded area in each cell. As it is seen clearly from the figure
that current and voltage values are reduced caused by the shading.
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The distinction between series and parallel module connection and its effect on voltage and
current values are illustrated best in Figure 2.6. As it is explained above, a series connection of
modules which is called a string produces the same amount of voltage and the voltage values
are added up. Similarly, the parallel connection of strings produces the same amount of current
and is added up. Hence, a PV system capacity reaches up to gigawatts.

current / in A

+ =
number of modules connected in series
2>
1 2 3
3 ’SC F 3
- 3
2lg

~N
number of strings connected in paralle!

volt'age VinV
Figure 2.6: Interconnection of PV modules [15].

2.1.3 Electrical Characteristics

In the PV module specification sheet, it is stated that electrical data such as nominal power,
open-circuit voltage, or short circuit voltage as well as mechanical data. Nominal power voltage
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2 Theoretical Background
(Vwmpe) (V) and nominal power current (Imep) (A) determines the nominal power (Pmep) (Wp)
of the module by Equation (2.1).
P=IxV (2.1)
Open circuit voltage Voc (V) is the maximum voltage of the module where the current is zero.
In other words, the electrical current does not flow at this point. Short circuit current (Isc) (A)
is measured at the zero voltage in the module. It can be said that open-circuit voltage and short
circuit current values are the limits of the module and no power is obtained beyond those limits.
Solar panel efficiency is calculated by dividing the power value at maximum (Pmax) by
incident power (Pin) [16]. Equation (2.2) shows the solar panel efficiency formula.
— Pmax _ FFVoclsc (2.2)
PN PiN
FF is the fill factor and is calculated as in Equation (2.3). The fill factor is the maximum power
values of voltage and current divided to open circuit voltage and short circuit current.
FF = Zmplmp (2.3)
Voclsc
Pin values are calculated under standard test conditions (STC) where air mass of 1.5, vertical
irradiance of 1000 W/m?, and cell temperature of 25 °C [16]. When it comes to comparing the
panels, having the same STCs ratings does not necessarily mean that panels will produce the
same amount of electricity. Panels may have different thermal losses or temperature
coefficients and behave differently under low light conditions. Nominal operating cell
temperature specifications (NOCT), on the other hand, reflect real world case output. Test
values are obtained based on air mass of 1.5, irradiance 800 W/m?, air temperature 20 °C, and
wind speed 1 m/s. It is important to emphasise that while STC is based on cell temperature,
NOCT is air temperature. Nominal specifications can be defined as for modules and named as
nominal operating module temperature (NOMT). In the process of the design phase, STCs
values are used for sizing. Nominal operating values have a good source for comparing panels
that have the same STC rating.

In the panel specification sheets, temperature ratings are listed. It is a scientific fact that
electricity output is influenced by irradiance, temperature, and temperature associated with
panel/cell cooling effect caused by wind speed. Isc, Voc, and Pupe values are also defined by
temperature correction coefficients. For example, nominal power drop in percentage per
temperature change.

2.1.4 Grid Connection

Standalone or medium/large scale PV output power is connected to national or local grid
networks under certain regulations. Typically, the DC-AC inverter output is connected to the
AC circuit breaker to avoid overloads. Theoretical PV output power is always reduced due to
losses such as module soiling, shading, DC losses, MPP mismatch error, inverter and AC
losses. An electricity meter or an advanced analyser measures the electricity provided to the
grid for correct billing and recording. Lastly, transformers readjust the alternating current
circuit and PV production is distributed to the grid network.
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2.2 Available Meteorological Variables and Measurement

The weather plays an important role in PV power production. Ideal conditions for PV
production are receiving high irradiance, cold and windy weather. The sun releases solar
radiation that a form of energy and roughly 1361 W/m? radiation hits the top of the atmosphere.
30% of this radiation returns to space and the rest reach the surface of the planet [16].

Weather stations are the perfect fit for measuring current weather parameters. Different sensors
are capable of measuring different meteorological variables above a certain level of height from
the ground. In this study which is subject to analysing PV output correlation to meteorological
variables, the station only measures certain variables such as solar irradiation, air temperature,
relative humidity, dew point temperature, and wind direction and speed. That is why only these
variables are explained in detail.

2.2.1 Solar Irradiation

Irradiance can be defined as the amount of energy from the sun hitting a square meter and
having a unit of W/m?2. Global radiation is taken into account for PV power output calculations.
Moreover, total downwelling shortwave radiation from the sun includes ultraviolet, visible and
infrared light [17]. A pyranometer measures short-wave radiation which is the radiation flux
through a horizontal surface. Short-wave radiation has subcategories as downwelling and
upwelling short-wave radiation. While downwelling radiation consists of direct solar beams
and diffusive components, upwelling radiation only measures light reflection from the surface.
That is why downwelling short-wave radiation is responsible for solar cell power production.
Specifically, in PV prediction modelling, sun position inputs are possible inputs. Figure 2.7
shows how the sun position is identified with solar elevation angle, azimuth, and zenith.
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Figure 2.7: Sun position angles with respect to directions [19].

For measuring, CM11 or CM3 type from Kipp&Zonen pyranometers are used in Gjerpen
station [18].
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2.2.2 Wind Speed and Direction

Wind speed and direction are measured by an anemometer, either 2 m or 10 m above sea level.
For wind direction measurement, mechanical parts of the wind vane operate at a 360° angle
without stopping. A cup-anemometer-wind-vane pair is generally located at opposite ends of
the horizontal bar to avoid a wind tunnel effect [17]. Measurement units are m/s and degree °.
In the Gjerpen station, wind speed is the absolute value of the wind speed in the horizontal
plane [18].

2.2.3 Air Temperature

Atmospheric temperature is measured by digital sensors. Different type of sensors has different
sensitivity measurement. The output voltage is converted to degrees Celsius °C.

2.2.4 Relative Humidity

Relative Humidity is simply a measure of water content in the air. Relative humidity is one
way of measuring atmospheric humidity. The measurement is done by either a traditional
psychrometer or thin-film polymers. Thin-film polymers absorb and desorb water throughout
the relative humidity changes and the electric circuit is converted to relative humidity
percentage [17]. Relative humidity heavily depends on atmospheric temperature and is
sensitive to temperature changes. In rainy conditions, relative humidity reaches up to 100%.

2.2.5 Dew Point Temperature

The temperature below which water vapour in a volume of air at constant pressure condenses
into liquid water is known as the dew point [20]. The point where air saturation occurs with
moisture is called dew point temperature. Dew point temperature is affected by humidity which
is also affected by atmospheric temperature. The measurement is done by either a dew point
hygrometer or an equation that requires air temperature and humidity values.

2.3 Literature Review

There are two main approaches to estimate solar power production in the literature. While it is
becoming popular to use machine learning methods to evaluate solar power production, there
are also calculations based on correlation coefficients and proposing an equation for
forecasting. When it comes to forecasting by using machine learning algorithms, artificial
neural networks (ANN) and support vector machines (SVM) are produced reliable results
under varying environmental conditions [21]. Studies on predicting solar PV output can be
classified into two main groups; data handling and correlation analysis, model structure and
machine learning algorithms. In the literature survey part, researcher’s methodology and their
findings will be presented under two main subtopics.

2.3.1 Data Handling and Correlation Analysis

Meteorological data and historical PV output data have to be handled differently as they are
produced from separate sources. Meteorological data values vary daily and seasonally. That is
why zero values, outliers and categorical information such as cloudiness require case specific
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data handling. In addition, correlation analysis within the meteorological data holds valuable
information for location base analysis. In contrast to meteorological data, PV output data has
characteristic variations based on PV module location and inverter variations. Moreover, it is
common that low light conditions, snow on module data, before sunrise and after sunshine data
are filtered out from the PV output database to measure PV system performance.

N. Maitanova et al. [22] predict photovoltaic power based on publicly available weather
variables. The study does not take into account solar irradiance values and tries to make a
reliable prediction based on other meteorological data such as temperature, wind speed,
humidity, precipitation, and cloudiness. In the contrast to other studies, this paper proposes a
method to convert raw PV data to adjusted values based on clear-sky condition data and
maximum PV power data as a new input to the algorithm. Hence, publicly available weather
reports which do not include solar irradiance values can be used for PV power forecast by
adjusting historical PV output power by the pvlib clear-sky program. As a result, it is concluded
that prediction with solar irradiance values produces accurate outcomes whereas the model
without solar irradiance values is still suitable for energy management systems for individual
energy production purposes.

L. Hernandez et al. [23] analyse weather variables and PV power production data. In the
process of data pre-processing PCA method is used to remove outliers. Pearson’s linear
correlation coefficient method is employed to find correlation coefficients between weather
variables and electrical power production. The study also calculates seasonal average weather
variables and correlations to PV power production as an input for classification algorithms for
further studies.

T. AlSKaif et al. [24] study 9 different meteorological variables in two different locations.
Interdependency of variables is determined by correlation coefficients before moving forward
to dimensionality reduction with PCA. PCA results vary in two cases such as some
meteorological variables are less correlated to each other. The study concludes that reduced
subspace estimation performs well in the linear support mechanism model. As a result, 4
meteorological variables generate similar results compared to 9 meteorological variables.
While for one location, humidity, temperature, visibility, and wind speed are important
meteorological variables; humidity, visibility, temperature and could cover are valuable for the
second location.

There are also some studies for photovoltaic system evaluation for Norway. These studies take
into account challenging environmental conditions such as low light and snow. M.B. @gaard
et al. [25] evaluate the performance of monitoring algorithms for photovoltaic systems in
Norway. To evaluate snow cover on the PV modules, DC voltage variations were investigated.
The study found that DC voltage variations increased during partial snow cover. By
determining a threshold for DC voltage variations, partial and full snow cover data were
removed. In addition, irradiance values below 50 W/m? exclude morning and evening effects.
In another study, M.B. @gaard et al. [26] investigates the effects that reduce the stability of PV
monitoring at high latitude locations such as Norway. Filtering out PV output data by using
following criteria is suggested for specific location: 50 W/m? < irradiance level < 200 W/m?,
snow depth on the ground < 0m. While below 50 W/m? irradiance level represents the low light
condition, filtering out data above 200 W/m? removes outliers.
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G. Kimetal. [27] implement the Pearson correlation method to investigate the relation between
weather variables and PV power output. After finding correlation coefficients, different model
equations are presented and each equation model evaluation is done by mean absolute
percentage error (MAPE) and root mean square error (RMSE). It is concluded that humidity
has an impact on the accuracy of power prediction where environmental conditions have a low
ambient temperature, low irradiance, and high humidity.

2.3.2 Machine Learning Methods

S. Leva et al. [28] use artificial neural networks (ANN) to make 24h ahead forecast based on
the weather forecast and historical power measurements. A clearness index is proposed based
on cloud conditions and provided as input to the algorithm. As a result of the training of the
ANN model with historical data, weather forecast data is used as input. One of the highlights
is that pre-processing step of historical data has an influence on ANN method accuracy. That
is why historical data were used for the training set. After model evaluation, it is proved that
solar irradiance is highly correlated to forecast accuracy.

1. Jebli et al. [29] investigate four different machine learning methods. Linear regression (LR),
random forests (RF), artificial neural networks (ANN) with different weights of the hidden and
output nodes, and support vector mechanism (SVM). Two different locations were chosen for
the study as Brazil and Morocco. Pearson coefficient analysis was conducted to determine the
most relevant meteorological data. The study concluded that ANN produced accurate
predictions for both historical and forecasted data. The nonlinearity handling capability of
ANN has assumed the reason for leading to better forecasting results among other machine
learning algorithms.

X. Wang et al. [30] used several machine learning methods to compare each other. Lasso
regression, random forests, support vector regression model, and gradient boosting regression
model produced promising results. Weather type classification and time correlation were
proposed to tackle with overfitting and underfitting problems.

N. Maitanova et al. [22] preferred a more advanced machine learning method called Long-
Short Term Memory (LSTM). LSTM method is a developed version of recurrent neural
network (RNN) with taking into account how long the information should be kept in the layer.
In addition, LSTM does a good job of handling time series. The study suggested an LSTM
method that handles continuous data input. After the data normalization step, the architecture
of the model consists of the following features; five input parameters in the first layer,
depending on the data density, two hidden layers with 64 and 32 neurons. The model was
trained for 100 epochs. To make better predictions against season change, the model was
trained for both cold and hot days in the study. The paper concludes that model accuracy
depends on training set size, LSTM network configuration and input features.

Similarly, other studies for solar power forecasting based on weather inputs uses different
machine learning algorithms and evaluate results. M. Malvoni et al. [31] suggest a hybrid
machine learning algorithm called Group Least Square Support Vector Mechanism, M. P.
Almeida et al. [32] used Quantile Regression Forests to make hourly PV power output
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prediction, and L. Li et al. [33] adopted Deep Belief Network (DBN) model to build a
regression model and to make short-term PV power output forecasting.

2.4 Prediction Methods

In this chapter, it will be given information on the prediction methods used in this study. Linear
regression and the ANN model with model evaluation methodology will be explained in this
part.

2.4.1 Linear Regression

In prediction applications, linear regression calculates the weighted sum of input features. An
intercept or bias term exists as a constant. In case of multiple features are fed into the regression
model, it is called multiple linear regression. Training of linear regression and setting model
parameters is the starting point of building a model. The training dataset is fed into the
regression model and the algorithm learns how to best fits the training dataset. Scatter plots are
useful to analyse the data to determine the strength of data relationship with other features. To
evaluate model performance, Root Mean Square Error (RMSE) is used which is one of the
most common performance indicators [34]. The association of the observed data and variables
are evaluated by the correlation coefficient. Standardization or scaling has no big impact on
the final performance. Scikitlearn uses Singular Value Decomposition (SVD) linear regression
which decomposes the training set matrix into submatrices. The more complex dataset requires
improved linear regression models such as Gradient Descent.

2.4.2 Artificial Neural Networks (ANN)

ANN is one of the most efficient methods in prediction applications. Deep learning algorithms
are frequently custom made for a specific application [35]. Specifically, ANN methods are
commonly used in forecasting studies where non-linearity exists in a database [21]. In general,
a neural network consists of three layers that are called the input layer, hidden layer and output
layer as it is seen in Figure 2.8. The input layer is the place where raw variables are stored and
ready to feed into the network. The actual processing is done through hidden layers. The values
are entered into a hidden node and are multiplied by weights. Each node in the network has
some weights and a transfer function is responsible for calculating weighted sum of the inputs
and the bias. The bias, b, is a scalar vector while the inputs, x, and the weights, w, are vectors.

Scaling of input raw data is important in this step because unscaled data can take large weights
and makes the algorithm unstable and increase the error. After computing weighted sums of
hidden nodes, the output is sent to the activation functions which deal with non-linearity in the
dataset. There are different types of activation functions. One popular function is the rectified
linear unit function (RELU). In regression applications, linear activation functions are a good
choice. As itis seen in Figure 2.9 that RELU function takes O if the value is negative, otherwise
the real value is returned. As a result, the activation function decides whether the hidden node
should be activated or not. The key limitation of the RELU transfer function is that values from
transfer function flow to activation function are negative in the case of large weight updates.
Therefore, the output of the activation function will forever be 0 which is called a dry RELU.
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Hidden layers are connected to an output layer which represents the prediction of a variable.
The flow of variables is from inputs to outputs, so this architecture is called a feedforward
neural network. The algorithm first makes a prediction and visits each layer in reverse, and
then calculates the error contributed by each connection. In the final step, the algorithm adjusts
the connection weights to decrease the error [34]. The loss function which is used during
training, is commonly the mean squared error. However, if the training set includes loads of
outliers, mean absolute error might be used, instead.

Input Layer Hidden Layer 1 Hidden Layer 2 Qutput Layer
Figure 2.8: An ANN network architecture.
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Figure 2.9: ANN network nodes connection with functions.
Once the model is created, the model should be compiled and specified loss function in addition
to the optimizer to use. Later, the model is called by the fit method where X_train and y_train
sets are introduced. The number of epochs and validation functions are also described in this
part. There are other hyperparameters in a neural network such as batch size, learning rate and
the number of iterations. Batch size has a big impact on model performance and training time.
In addition, the batch size is related to GPUs which process the model efficiently. A large batch
can be used but the limit is where training instabilities start. The negative effect of a large batch
size can be compensated by adjusting the learning rate. Learning rate determines the updates
of weights on the training set. In Keras, the default number for the learning rate is 0.001 [36].
For example, for a given 1000 datasets with 5 batch sizes and 30 epochs, it returns 200 batches
in total with 5 samples. The model weights are updated after each batch of 5 samples. Thus,
one epoch consists of 200 batches. Each epoch goes through the whole dataset, so 30 epochs
go through the dataset 1000 times. That is a total of 200,000 batches for the whole dataset.

Output
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Keras measures the loss and training time per sample including accuracy for both the training
set and the validation set [36]. If the training loss decreases, it means that the model performs
well.

Overfitting is one of the common problems in ANN algorithms. One way to analyse overfitting
is to evaluate the performance of the training set on the test set. If training set performance is
much higher than on the test set, there is a possibility that the model is overfitting on the training
set. The good fitting can be described as training and test loss plot decreases to a point of
stability until to reach a small gap between the plots. Further training will likely result in
overfitting, again.

In contrast to good fitting, the model may have an unrepresentative training set. It means that
the model training set does not provide enough information to the model. Unrepresentative data
results in loss curve as while training loss decreases, validation loss stops decreasing and stays
linear so the gap between the plots increases. Besides, if the validation set is not representative,
then the plot becomes noisy on the validation curve. In some cases, the model predicts the test
dataset easier. In the loss curve, it will be seen as test loss significantly low compared to training
loss.

2.4.3 Model Performance Evaluation

The accuracy of the model is critical and the model should produce reliable results. In the event
of forecasting, it is expected from a model that prediction accuracy should be above a certain
level. In addition, using similar model performance evaluation criteria makes models
comparable with other models. The commonly used model evaluation models are Mean Square
Error (MSE), Root Mean Square Error (RMSE), Normalized Root Mean Square Error
(nRMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and
variance R?. Calculation methods are shown in Equations (2.4), (2.5), (2.6), (2.7), and (2.8),
respectively. These models are available in scikit-learn under the regression metrics functions.

1
MSE = N Iivzl(ypredicted _ytest)z (2.4)

1
RMSE = \/Ezyzl(ypredicted - ytest)z (2-5)

1
nRMSE % = <\/EZ§V:1(ypredicted - ytest)2)>x100/ytestmax (2.6)

1
MAE = N ?1:1|ypredicted _ytest| (2.7

MAPE % = %zgvzl—'yr’”di“ed‘y test] 1100% (2.8)

Ytest

In these equations, Ypredicted IS the output class and yrest is the input value. While N represents
the total number of data, Ytest max describes the maximum value of power values. In addition,
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R? (coefficient of determination) or regression coefficient function takes 1.0 which is the best
possible prediction model.

Another way of evaluating model performance is learning curves. Figure 2.10 describes the
relation between underfitting and overfitting with error evolution. Both linear regression and
ANNs benefit from learning curves to evaluate the model performance.

— - Training error

Underfitting zone| Overfitting zone . .
I Generahzatlon error

Error

— —
—_——

s e e .
0 Optimal Capacity
Figure 2.10: A typical learning curve [37].

When training and generalization/validation/test error is both high, the model underfits. The
more model learns, the more training error decreases. In overfitting zones, the generalization
gap becomes higher. Furthermore, the main issue with overfitting is that the model loses its
ability to make a good prediction since it is too much suited for training data. Test error
decreases and to some degree flattens out, then it begins increasing again. In addition, the model
does not learn from training data if the training error/loss is a flat line or noisy. Good fit occurs
where test and training loss decrease together and it reaches stability with a small gap between
each plot at some point.

29



3 Methodology

3 Methodology

3.1 PV Plant Layout and Meteorological Station

In this part, extensive information will be given about the PV power plant such as PV modules,
layout, and specifications. The second subsection will include information on the
meteorological station.

3.1.1 PV Plant Specifications

The PV plant was built on the roof of the football stadium of Odds Ballklubb, Skagerak Arena
and is located in Skien, Vestfold and Telemark County, Norway in 2019. The solar modules
with a battery system are installed for storing electricity in addition to supplying power for
internal usage in the stadium at nights and to the national grid. Figure 3.1 shows the stadium
and solar modules on top of the roofs. Modules are only installed in the South, West and East
direction. There are no PV modules on the north side of the roof. Shading is not a question in
this plant since all 3 directions are in the open environment. Table 3.1 describes the plant’s
overall specifications.

L7 \:-\ ‘5":*"“‘: -
Figure 3.1: Skagerak Arena stadium layout.
The detailed module specification is given in Appendix B. REC Twinpeak 2 series modules
are being used in the plant with two types of nominal power output 295 and 300 Wp. 300 Wp
panel types are only used on the south direction rooftop.
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Table 3.1: PV plant specifications.

Installed power PV (kWp) 840
Area (m?) 5330
Modules (pcs) 3230
Inverter power (kW) 675
Production in a normal year (MWh) 660
Specific Performance in a normal year 786
(KWh/kWp.year)

Energy storage battery capacity (kWh) 1000

3 Methodology

Table 3.2 describes solar module specifications. Solar cell type is 120 half-cut multi-crystalline
PERC cells that information was given in the theory part. Two different nominal power types

of modules are used in the plant. One has 295 Wp and other type has 300 Wp.

Table 3.2: Solar module selected features.

Nominal Power - PMPP (Wp) 295 300
Nominal Power Voltage - VMPP (V) | 32.3 32.5
Open Circuit Voltage - VOC (V) 39.0 39.2
Panel Efficiency (%) 17.7 18.0

Panel efficiency values are measured at standard test conditions which are air mass at AM 1.5,
irradiance at 1000 W/m2, and temperature at 25°C.

Even though roof slopes are the same at 8°, azimuth values vary for different layouts. Table 3.3
shows descriptive information on slope and azimuth values for all directions. Surface azimuth
input data is vital due to the PV plant layout. Surface azimuth values are explained as panel
azimuth from the north which means the azimuth convention is defined as degrees east of north.
The built algorithm in python, pvlib, assumes north as 0 degrees. North takes 0 degrees, south
180 degrees, east 90 degrees and west 270 degrees. However, the PV plant document accepts
the south direction as 0 degrees and values take a negative sign from the north, east, and south

directions.

Table 3.3: Module slope, azimuth angels and area with respect to directions.

Slope Azimuth | Area (m?)
South Tribune 8 -20 1425
West Tribune 8 70 2146
East Tribune 8 -110 2146
North Tribune 8 160 -

31



3 Methodology
That is why PV plant document values were adjusted as 0 degrees for the north. By determining
east direction as - 90° and the west direction as + 90°, the azimuth values take negative values
in the east and south directions. Figure 3.2 describes the layout of tribunes based on azimuth
degrees. The adjusted azimuth variables based on 0-degree north direction are shown on the
right-hand side.

90 degrees 270 degrees

w w

70 ?egraes 250 degrees

N 180 degrees S N 0 degree

0 degree 180 degrees

-20 degrees ~ 160 degrees

\ .
\,-110 degrees ! \70 degrees

-90 degrees 90 degrees

Figure 3.2: The original azimuth angles with layout (left) and adjusted azimuth angles (right).

Table 3.4 shows an updated version of Table 3.3 based on 0-degree north direction. These
values were used as input in the get_total irradiance function.

Table 3.4: Azimuth degrees based on north direction.

Azimuth (O degrees Azimuth (0 degrees | Area (m?)
Slope South) North)
South Tribune 8 -20 160 1425
West Tribune 8 70 250 2146
East Tribune 8 -110 70 2146

Table 3.5 describes the inverter’s selected features. The detailed inverter information is given
in Appendix B.

Table 3.5: AC/DC Inverter Specification.

Absolute maximum DC input voltage (Vmax.abs) 1000 V
Rated DC input voltage (Vdcr) 620 V
Rated DC input power (Pdcr) 102 000 W
Number of independent MPPT 6

Maximum DC input current for each MPPT (lgemax) | 36 A

Maximum AC output power (Pacmax @cos@=1) 100 000 W

Maximum efficiency (max) 98.4%
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3 Methodology
Since the available power output is in AC which is after the inverter, an inverter connection
was also investigated. Each inverter serves a different number of module strings. For example,
Inverters 1-2-3 are connected to east direction panels. While 410 panels are linked to inverter
1 with 6 MPPT, 400 panels are connected to inverter 2 with 6 MPPT, and 210 panels are bound
to inverter 3 with 3 MPPT. East and west directions are identical in terms of inverters,
connections and the number of panels. 2 inverters serve to south direction with 444 and 216
panels for inverters 7 and 8, respectively. Figure 3.3 illustrates the panel layout based on
directions.

Inverter 4 Inverter 5 Inverter 6
MPP1-6 MPP1-6 MPP1-3
410 Panels 295 Wp 400 Panels 295 Wp 210 Panels 295 Wp

Inverter 8
MPP1-3
216 Panels
300 Wp

Sgr/South

a
=
~ o8
AR
o 2
15
£=2¢8
Inverter 1 Inverter 2 Inverter 3
MPP1-6 MPP1-6 MPP1-3
410 Panels 295 Wp 400 Panels 295 Wp 210 Panels 295 Wp

Figure 3.3: An illustration for PV plant layout inverter — module connections with respect to direction.

String connections are different for each group of inverters. Figure 3.4 shows a string
connection for inverter 4 on the west side. For example, the inverter 4 has 410 panels but 20
strings in total. Each string has either 20 or 21 panels. Since inverter output AC power is
analysed in this study, there will be no further investigation on detailed string connections.
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Figure 3.4: String connection example for modules that are connected to Inverter 4.

In general, 4 strings are connected to one MPPT, and some MPPT slots are empty due to
matching the total number of string numbers. Each inverter has 5 or 6 MPPTs with DC/DC
type. To sum up, module string connections to the inverter with MPPTSs are illustrated in Figure
3.5.
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Figure 3.5: Module string connections to MPPs and the inverter.
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3.1.2 Meteorological Station

Gjerpen meteorological station is positioned approximately 1.87 km further from Skagerak
Arena where the PV plant is located. In Figure 3.6, the station location is pointed out by a red
pin. The station’s detailed information about latitude, longitude, and altitude is given in Table
3.6. It is possible to say that the station measured meteorological variable represent perfectly
the environment around the PV plant. Station variables were obtained by the station code from
the free access meteorologisk institutt frost API system. Historical weather and climate data
with quality control parameters were accessed by python codes.

%

‘.\\ ¥ ¢T3 4 o\
N\, Sklep‘%(e G 3

\

Figure 3.6: MET station and stadium location.

Table 3.6: MET Station information.

Station Code in the MET internal system SN30330
Owner NIBIO
Latitude 59.22684°
Longitude 9.57805°
Altitude 41'm
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3 Methodology
3.2 Data Gathering and Data Pre-processing

Meteorological data was retrieved from frost database, PV data was delivered from Lede
Energi, and clear sky including solar position data was accessed through pvlib-python package.
The general methodology for meteorological data and PV data dealing flow diagram is shown
in Figure 3.7.

eData type (float, integer, boolean, etc.)
eData Statistics

¢Data visualisation&inspection
GENAPEIZRS o \jissing values analysis

~N
eRemoving empty rows
eUnrealisting data removal
Data Dealing eScatter plots and histograms
J
eOutlier removals/Filtering h
eData averaging/aggragation
Data eCorrelation analysis
Processing *PCA analysis )

Figure 3.7: Data processing flow diagram.

The sampling rate and time interval vary a lot for different data sets. For example, the
meteorological data sampling rate is 1 hour, and the pvlib database is 1 min whereas PV data
is 10 mins. Therefore, the limitation for further analysis was meteorological data. The other
variables had to be averaged to match with meteorological data. In addition, the resampling
function in pandas was used to fit all sampling rates in an equal time interval. Measurement
can represent separate time intervals. For example, meteorological data 10:00 data describes
the observation from 09:01 to 10:00, however, PV data after resampling function 09:00 data
represents from 09:00 to 09:59. To avoid this conflict, time shifting was applied. Besides, Pvlib
data is available for 1 min sampling rate and 10:00 represents the observation at exactly 10:00.
It was needed to a value to symbolise from 09:00 to 10:00 and this was achieved by taking the
value at 09:30. Table 3.7 shows the sampling rate and time with changes in the time interval.
Pvlib Data consists of Solar Position Elements (zenith, azimuth, elevation, equation_of_time),
ClearSky (ghi, dni, dhi), POA (poa_global), erbs (dni_generated, dhi_generated).
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3 Methodology
Table 3.7: Time resolution for each data set.

Meteorological Data PV Data Pvlib Data
Sampling Rate 1 hour 10 mins 1 min
Resampling function assingns

Measurement | 09:01-10:00 as 10:00 10:00 as 10:00

09:00-09:59 as 09:00

PV Data shifted 1 hour further so |subtracted 30 mins so 10:00
10:00 represents 09:00 - 09:50 represents 09:30

Time Change No change

The presence of daylight-saving time in the dataset leads to a time lag between variables. To
avoid any confusion in data, all time dependent data is gathered based on Universal Time
Coordinated (UTC). Hence, the data does not affect by daylight saving changes throughout the
year. That is why it is important to keep in mind adding +01:00 or +02:00 hours depending on
the selected day when comparing the results with local time-based values for Norway.

3.2.1 Meteorological Data

Meteorological data was accessed through a free source meteorology institute frost database
by a python script. Measuring interval is available in the frost database based on hour, day and
month. Hourly values are the average value for the first hour after the stated measurement time
as it was explained at the beginning of the chapter. Available variables are listed in Table 3.8.
However, some critical parameters for solar power output are not recorded by the station such
as precipitation, cloudiness and air mass. Nearby stations also have no record for these
variables. Mean hourly values of variables are used for the study.

Table 3.8: Available meteorological variables.

Variable name and unit | Variable name in the frost Sampling rate and year
database periods
Average Temperature at mean(air temperature PT1H) Hourly mean average
2m (°C) 2018-2021
Dew Point Temperature at | dew_point_temperature Hourly mean average
2m (°C) 2018-2021
Relative Humidity at 2m mean(relative_humidity PT1H) Hourly mean average
(%) 2018-2021
Wind Speed at 2m (m/s) wind_speed Hourly mean average
2018-2021
Wind Direction at 2m (°) mean(wind_from_direction PT1H) Hourly mean average
From May 2019 to 2021
Global Horizontal mean Hourly mean average
Radiation (W/m?) (surface_downwelling_shortwave_fl | 2018-2021
ux_in_air PT1H)
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3 Methodology
Figure 3.8 shows raw meteorological data from January 2018 to December 2021. There are
some periods where the station has no record due to being out of order. Especially, there is
huge data loss for the period from January 2020 to April 2020 for irradiance and relative
humidity values. Furthermore, the data loss exists in June 2018 for all variables except dew
point temperature. It is evident that there are also some outliers. There are some peak values
that disassociate from the pattern in wind speed. Moreover, air and dew point temperatures
roughly are in harmony with irradiance. It is difficult to make a comment on relative humidity
but wind speed is relatively higher during summertime. Wind direction data will be presented
in a different chapter as further processing was applied to the data.

4 years of MET Raw Data

b4
E

0
Jan 2018 Jul 2018 Jan 2019 Jul 2019 Jan 2020 Jul 2020 Jan 2021 Jul 2021

Time

Figure 3.8: Meteorological variables raw data against time.

3.2.1.1 Wind Direction Category

Wind direction is only available from May 2020 and it is recorded in 360 degrees. Using the
raw wind direction in degrees, which stores 360 different values, causes data uncertainty and
reduces relationships within other variables. That is why this data was converted into 4 main
categories as north, east, west, and south. While Table 3.9 shows directions and corresponding
values in degrees, the figure illustrates a compass with directions.

Table 3.9: Wind directions and corresponding degrees.

Direction Explanation Degrees
N North 349-011
NNE North-Northeast 012-033
NE Northeast 034-056
ENE East-Northeast 057-078
E East 079-101
ESE East-Southeast 102-123
SE Southeast 124-146
SSE South-Southeast 147-168
S South 169-191
SSW South-Southwest | 192-213
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SW Southwest 214-236
WSsw West-Southwest 237-258
w West 259-281
WNW West-Northwest 282-303
NW Northwest 304-326
NNW North-Northwest | 327-348

For example, north direction limits are assumed from northeast to northwest. Northeast limits
are 034°-056° while northwest limits are 304°-326°. Thus, north direction limits were
determined as 327°-056°. Likewise, the same approach was applied to calculate other
directions. Table 3.10 shows the 4 main direction categories of the table above. Corresponding
degree numbers are also stated.

Table 3.10: Categorical wind direction data with adjusted degrees.

Category Direction Degrees
1 | North 327-56
2 | East 56-146
3 | South 146-236
4 | West 236-326

3.2.2 Pvlib Data

Pvlib is a comprehensive package for simulating PV energy applications. It is available on
python and provides reliable and open applications for PV systems with libraries and functions.
This chapter consists of two subchapters as clear sky data and plane of array irradiance data.

3.2.2.1 Clear Sky Data

Free clear sky data is available on the internet in various platforms and pvlib library on python.
In addition, there are different models of calculating clear sky global horizontal irradiance
(ghi), direct horizontal irradiance (dhi), and direct normal irradiance (dni) values. In this study,
the pvlib library is used and different models were compared to pick the best model. The best
model can be defined in a way that covers most of the measured irradiance values and produces
clear sky days successfully by using a clear sky day detection algorithm. There are three
common clear sky calculation methods in the pvlib library. These are Perez-Ineichen, Haurwitz
and simplified Solis method. Each method is differentiated by various weather parameters. All
equations use the linke turbidity factor as default or user input. Moreover, factor values are
influenced by atmospheric absorption and scattering of the solar radiation. Linke turbidity is a
function of aerosol particles and water vapour in the atmosphere. Aerosol particles are relative
to the dry and clean atmosphere and absorption by the water vapour changes the optical
thickness of the atmosphere. Thus, a larger linke turbidity factor refers to a reduction in the
radiation by the clear sky atmosphere [38].

Three methods were chosen and compared. These are Perez-Ineichen, Haurwitz, and Solis
method. Method short explanations are given below.
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3 Methodology
Ineichen: Uses default climatological turbidity values, and produces good results with fewer
input requirements [39].
Haurwitz: The model has the best performance in terms of average monthly error among
models which require only the zenith angle. The relationship between cloudiness, air mass and
cloud density are the parameters in the equation [39].
Solis: The Simple Solis clear sky model is based on RTM and the Lambert-Beer relation to
estimating irradiance. The model is a simplified version in order to reduce the computational
requirements. The model requires predictable water vapour and aerosol optical depth
(AOD700) as the main input parameters [39].

Figure 3.9 shows Perez-Ineichen, Haurwitz, Solis method global horizontal values (ghi)
comparison with measured ghi values for 2021. The red line which represents the Haurwitz
method has the highest average irradiance values and the Solis method is the second highest.
Perez-Ineichen values are not visible in the graph, so a closer look for a day was plotted.

Haurwitz, Perez-Ineichen and Solis Methods GHI Values Comparison with Measured Values

—— Perez-Ineichen

W/m2

Jan 2021 Mar 2021 May 2021 Jul 2021 Sep 2021 Nov 2021

Time

Figure 3.9: Perez-Ineichen, Haurwitz, Solis methods and measured irradiance values against time.

Figure 3.10 shows clear sky day calculation method results for a clear sky day on 24" June
2021. Perez-Ineichen method values are lower than Haurwitz and Solis methods.
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Haurwitz, Perez-Ineichen and Solis Methods GHI Values Comparison with Measured Values
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Figure 3.10: Clearsky methods and measured irradiance values for a selected clear sky day.

There are some days that measured actual irradiance values exceed the theoretical clear sky
irradiance values. These time periods were dug deeper. One might think that these values might
be measurement errors or indicate air parameters change. It is concluded that these peak values
are not measurement errors because PV production values also peaked in the same period.
Figure 3.11 shows a specific time period where measured irradiance values exceed the
calculated values with emphasised the time interval red lines. It is known that changes in
meteorological variables and atmospheric conditions such as water content, albedo, and aerosol
have an effect on measured irradiance values. That is why it was decided to compare
meteorological variables for that specific time interval.

Haurwitz, Perez-Ineichen and Solis Methods GHI Values Comparison with Measured Values
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800 - Haurwitz
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Figure 3.11: The period of exceeding calculated clear sky values of measured irradiance.

Figure 3.12 represents the corresponding time interval of exceeded irradiance values with
emphasising two red lines. The examination was done only with available meteorological
variables. The start and end date of plotting were kept long to help to compare how
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meteorological conditions changed before and after the time interval. When two figures are
compared, there are two variables that have different trends than before and after. Wind speed
was quite low and relative humidity was high even though the sun shows up. Water content in
the atmosphere was high and wind speed was low. There is a possibility that these findings
might have affected measured irradiance values which resulted in high values than calculated
values. As a result, the measurement device recorded high numbers and it was assumed that
numbers reflect the real situation.

4 years of MET Raw Data
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Figure 3.12: Meteorological variables for exceeding time interval.

To evaluate each model and compare it with measured irradiance values, correlation analysis
was performed. By doing so, it was aimed to select a suitable model for location specific
irradiance values. A consecutive clear sky data was captured between 22" and 25" July 2021.
Correlation analysis was done within these dates by using global horizontal irradiance values
(ghi) and the results are presented in Table 3.11.

Table 3.11: Correlation analysis results for clear sky and measured irradiance.

Haurwitz_ghi Solis_ghi Ineichen_ghi Measured_ghi
Haurwitz_ghi 1.0000 0.9996 0.9983 0.9847
Solis_ghi 0.9996 1.0000 0.9994 0.9865
Ineichen_ghi 0.9983 0.9994 1.0000 0.9873
Measured_ghi 0.9847 0.9865 0.9873 1.0000

The highest correlation is obtained by Perez-Ineichen method. Figure 3.13 shows Perez-Ineichen
and measured irradiance values graph for the year of 2021.
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Haurwitz, Perez-Ineichen and Solis Methods GHI Values Comparison with Measured Values

Perez-Ineichen

~— Measured
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Figure 3.13: Perez-Ineichen and measured irradiance values graph for the year of 2021.
However, Ineichen- Perez clear sky data comparison with actual irradiance values throughout
the year of 2021 does not overlap well. There are some peak measured irradiance values. The
comments on this matter are available under the discussion section. For further analysis with
PV data, Ineichen- Perez values were chosen.

Figure 3.14 shows irradiance components of Ineichen- Perez model on a selected day. Direct
normal irradiance (dni), direct horizontal irradiance (dhi), and global horizontal irradiance (ghi)
values were plotted with default algorithm settings.
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Figure 3.14: Irradiance components of Ineichen- Perez model on a selected day

Detection of clear sky days with the pvlib algorithm is challenging because it requires minute
based data. However, measured irradiance values are on an hourly based. There are other
numerical ways of detecting of clear sky in literature which also require minute-based data. In
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order to overcome this problem, hourly base irradiance values were converted to minute-based
data. The polynomial interpolation method was used with a power factor of 3. detect_clearsky
algorithm in the pvlib library produces Boolean results. These Boolean results were converted
to 0 and 1 integer values which 0 refers to cloudy and 1 refers to clear sky. The produced
minute-based results were again transformed into hourly based outputs. Changing the time
frame twice, even though the approach and method are correct, produces some errors.
However, most of the errors were removed in the process of resampling to hourly data by the
forward filling method.

Figure 3.15 demonstrates the clear sky detection algorithm result for a clear sky and a cloudy
day with measured and clear sky irradiance included. The data in the figure is minute based.
False values refer to cloudy time and true values are clear sky time. As it is seen from the graph
that clear sky was detected on 24™ June 2021 with cloud detection in the early morning which
measured irradiance values proved. The rest of the day was cloud clear. The next day measured
irradiance values were below clear sky irradiance values with some variation. Before sunset, a
clear sky was detected. The clear sky line was interrupted on 26™ June 2021 before sunset even
though measured irradiance and clear sky data overlaps. The algorithm detects wrong due to
resampling. This problem was eliminated when the data was inversed hourly based. Another
reason for the wrong detection is that while measured hourly based irradiance values represent
measurement from 09:00 — 10:00 as 10:00. Time shifting correction was included in the
algorithm to reduce wrong detection errors.
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Figure 3.15: Clear sky detection algorithm result.

Figure 3.16 displays clear sky detection minute-based data with transformed hourly based data.
For the purpose of eliminating some detection errors due to data transformation, a conservative
approach was chosen to resampling data on an hourly base. Hence, some errors were removed
at the cost of some clear sky data loss. For example, there was a clear sky in the early morning
on 24" June 2021 from 02:19 to 03:36 UTC. When this time interval was converted to 1 hour
sampling, 03:00 was classified as the clear sky and 2:00 was recorded as cloudy or no
irradiance.
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Figure 3.16: Clear sky detection minute-based data (blue) with transformed hourly based data (red).

3.2.2.2 Plane of Array Irradiance Data

Since PV power output is dependent on the plane of array irradiance (POA) data, global
horizontal irradiance measured values are required to be converted to the plane of array
irradiance values. POA values can easily be calculated by the get_total_irradiance algorithm in
pvlib, however, the solver requires measured dni and dhi which are not available. There are
models for estimating dni and dhi values from ghi. Analytical approaches require measured dni
and dhi values to calculate POA values. One model is the erbs model in the pvlib library. The
erbs model uses diffuse fraction to estimate dhi values and dni values are calculated by an
equation that uses a zenith angle [39]. By feeding the get_total irradiance function with solar
azimuth and zenith, surface tilt and azimuth, ghi, and generated dni and dhi values, POA values
for the south, east, and west directions were obtained. Figure 3.17 shows monthly total
irradiance values based on direction. While the south and west directions receive higher
irradiance compared to measured global horizontal irradiance, the east direction catches low
irradiance.
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Figure 3.17: Monthly total irradiance values based on direction.
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Figure 3.18 shows the plane of array irradiance for the east direction compared with measured
ghi values which is assigned as actual on the graph. Global horizontal irradiance is slightly
higher than the plane of array irradiance values for each direction throughout the year.
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Figure 3.18: Plane of array irradiance (red) and measured irradiance (blue) against time.

3.2.3 PV Plant Data

A comprehensive signal list for the PV plant was provided by Lede Energi. PV power out
analysis is based on inverter AC power output. Inverter status values were also used to examine
whether the inverter was functioning well or not. Status values are Boolean type whereas power
values are float in kW. Data covers only two years, 2020 and 2021. Figure 3.19 shows 1\V1-8
power values separately, and total AC_power_IV_on represents the sum of inverter power
values which are only in operation together. That means if all inverters produce record power
values at the same time, it will be summed up. Otherwise, there will be no record for total ac
power. Total AC power represents plant total power production on high at its best times where
all inverters are in operation together. As it is seen from Figure 3.19 that there are some periods
inverters were not in operation. That is why not all inverters are valued to be analysed. Inverter
2, Inverter 5, and Inverter 7 values are going to be further analysed as representations for each
direction. Inverter 2 and 5 are identical which means the same number of modules, 400, are
connected with the same module type, 295 Wp. Inverter 7, however, is powered by 444 panels
and a 300 Wp module type. Pre-processing results will be shown in the results chapter.
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Figure 3.19: Inverter based AC power values against time.

PV power data has gone through a bunch of pre-processing. As it is seen from the graph and
detailed investigation of data, there are zero power outputs which either represent an
inverter/module problem or night time values. Firstly, zero values were removed. By using
solar elevation data from the pvlib library, data before sunrise and after sunshine were cleared
out from the dataset. Ultimately, the PV power dataset consists of only values which cover the
time the sun's presence without fault data.

Module temperature is another important parameter in PV power production. Solar cells have
an optimum operating temperature range. Above a certain level, PV module power output
decreases due to low voltage. Wind speed, air temperature, and module materials help to
maintain heat balance on PV cells and PV modules. Therefore, module temperature is a crucial
parameter to watch, however, the parameter is not available for the plant. Instead, module
temperature values were generated since pvlib.sapm_module function in pvlib provides this
parameter by feeding the function with the plane of array irradiance, wind speed, air
temperature and coefficients for the module type. Figure 3.20 shows module temperature with
air temperature on the same scale, and power output of 1V2 in kW for different days in July
2021.
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Figure 3.20: Module temperature (red), air temperature (green) on the right y-axis, IV2 AC power (blue) values
on the left y-axis.
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Data filtering for PV data is another data processing step. Even though the prediction of PV
power output will be under any circumstances such as cloudy days, low irradiance and low
irradiation, measuring PV data quality and filtering corrupt and inaccurate data may increase
the model accuracy. This idea will be investigated. Therefore, low elevation and irradiance
values which cause possible noise in PV data, were determined for further processing. One way
to measure PV data quality is to compare actual values with predicted power output values
which are estimated by a general power output formula shown in Equation (3.1).
E=Axnx*IxL (3.2)
where A is total solar panel area (m?), n is panel efficiency, | is irradiance (W/m?), L is loss
factor, and E is expected power output (W). One estimation example was done for 1V2
connected panels which have 1.67*400 m? area, 17.7% assumed panel efficiency, 0.75 assumed
loss factor and irradiance values throughout the year. By dividing expected power output by
actual power output, a performance index value is obtained. Figure 3.21 shows elevation and
irradiance values plotting with performance index values as data points. Yellow points
correspond to the lowest performance values which are assumed as the lowest 10% of
performance values. As it is seen clearly from the graph, yellow dots are gathered where
elevation is below 9° and irradiance around 100 W/m?. Obviously, there are also a significant
number of data points has good performance index within these values. However, it is possible
to comment that low elevation outweighs low irradiance. As a result, the prediction model will
be analysed above 9° elevation during the analysis.

Low Irradiance and Elevation Filtering

'e ® %00 0 o -~ F o P:.‘.. .?.u \ 4
.
& i -. . . ... - :-_.. :o..‘ -..'}..‘.:_..,’.\.'..

40

Elevation °

100 200 300 400 500 600 700 800 900

Irradiance W/m2

Figure 3.21: Elevation and irradiance with coloured performance index.

At the end of the data gathering and pre-processing phase, all features are ready to further
processing and analysis. Figure 3.22 shows the whole process of data dealing methodology at
a glance.
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Figure 3.22: Data dealing methodology for each data set.

3.3 Correlation Analysis

Correlation analysis is a method to evaluate the linear relationship between variables. The
Pearson correlation analysis is by far the most common method for correlation analysis [40].
Correlation values vary from -1 to 1 and positive values indicate variables are positively
correlated. For example, if a negative correlation exists, it means that while one variable
increases, the other variable decreases. The more correlation values close to -1, the more
correlation gets stronger. The correlation becomes weaker close to zero values. The power of
Pearson correlation analysis is that it is not influenced by the variable regardless of dependent
or independent [41]. In this study, pandas.DataFrame.corr() in python was used for calculating
Pearson correlation coefficients.

3.4 Principal Component Analysis

Dealing with a great number of features and using all features in further data analysis can be
excessive or can cause uncertainty in the model. Principal component analysis is a powerful
method that is used in data analysis. The method is able to handle feature reduction or outlier
detection. By maximizing the number of variations in the features, it creates orthogonal
components that is based on orthogonal decomposition [41]. Eigenvectors and eigenvalues are
produced based on covariance matrix. The output class of the matrix is linear relation within
the input variables. The highest variance obtained is held in the first principal component and
other components are produced with a decreasing variance score. Moreover, scree plots and
visualization of values help to understand the output classes. Scree plot describes eigenvalues
and the explanation ratio of components. In this study, sklearn.decomposition PCA was used
to perform PCA analysis. However, there is one point in PCA analysis that is critical to making
analysis effectively and that is scaling. Scaling transforms the data and creates a new set of
data which is in the same range by keeping variance information in the dataset. Thus, each
feature contributes equally to the analysis. There are two common scaling methods. These are
standard scaling and minmax scaling which is also called normalization.
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Standard Scaler is a function in Scikitlearn and aims to remove the mean and scales the data to
unit variance. Thus, mean average becomes zero and the standard deviation one. However,
standard scaling is influenced by outliers in the dataset. In order to make all feature set mean
average zero, outliers take extreme values and data distribution does not reflect the main
dataset. Therefore, standard scaling is useful where data distribution normal or Gaussian.

If the feature has a skewed distribution, then, MinMax scaling will keep the shape of the dataset
as it distributes the values for a given range such as [0, 1]. The spaces between each feature are
maintained, and the information and shape of the dataset are mainly preserved. This method is
useful for regression and neural network methods. Since outliers were removed from the
dataset, standard scaler was used for PCA analysis.

3.5 Prediction Methods

In this study, two prediction methods were investigated. Linear regression (LR) is one of the
basic statistical approaches to various problems that assume a linear relationship between
inputs and outputs. Furthermore, more advanced and improved methods have been developed
in recent years. One of them is Artificial Neural Networks (ANN) which is able to handle non-
linear relationships between inputs and outputs. Sklearn library linear_model was used for
linear regression and Keras APl was used for ANN which works on TensorFlow 2 [42].
TensorFlow is an open-source library and Keras is a high-level neural network library that runs
on TensorFlow. As it was stated in the theory part, it is essential to use scaling in the ANN
model. Importantly, the dataset should be split into training and test sets before models are
used. While LR has a simple methodology, the ANN model requires input parameters. Table
3.12 shows input parameters that were used for ANN model. Model parameters are subject to
change to improve model accuracy. Selected parameters are indicated as trial in the table.

Table 3.12: ANN network model parameters and inputs.

Model Parameters Inputs Model Parameters Inputs

Number of Inputs Trial Optimizer Adam

Training/Test size 0.25 Batch size Trial

Model Type Sequential/ Learning rate Trial
Feedforward

Nodes Trial Epoch Trial

Dense layer 3 Loss MSE

Hidden layer 1 Performance MAE, MSE, RMSE, R?

Output nodes 1

Activation function RELU

Kernel Glorot-uniform
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The methodology of prediction models is summarized in Figure 3.23. Specifically, reverse
scaling of scaled data in the ANN model is done before visualization.
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eDetermining eLearning Curves
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Figure 3.23: ANN network and linear regression model methodology.

3.6 Pvlib and other Python Libraries

Python and its libraries were preferred as the programming language. It will be emphasised
information on some specific functions in this part.
pvlib.irradiance.get_total_irradiance: This function produces the plane of array irradiance and
its beam by introducing surface tilt, surface azimuth, solar zenith, solar azimuth, dni, ghi and
dhi values. Poa_global, poa_direct, poa_diffuse variables are created. Isotropic sky diffuse
model is selected by default [39].
pvlib.solarposition.get_solarposition: This function produces zenith, elevation, and azimuth of
the solar position in addition to the equation of time. The function takes time, altitude and
longitude variables as an input [39].
pvlib.irradiance.erbs: This function estimates DNI and DHI values from global horizontal
irradiance, GHI by using the Erbs model [39].
pvlib.get_clearsky: The function calculates clear sky irradiance values for a given time interval
and location. The default calculation method is Ineicnen [39].
pvlib.clearsky.detect _clearsky: The algorithm determines clear sky times based on measured
GHI values. Measured and clear sky irradiance values are inputs in addition to window length
which is the length of the sliding time window in minutes. The best performance was captured
by determining window length is 8 [39].
pvlib.temperature.sapm_module: The function calculates module back surface temperature by
Sandia Array Performance Model. Plane of array irradiance, wind speed, air temperature and
a and b coefficients are inputs for the algorithm as shown in Equation (3.2).

Ty = E xexp(a+ bxWS) + T, (3.2)
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where E is irradiance, WS is wind speed, Ta is air temperature. a and b coefficients take
different values based on module type (glass/polymer) or mounting type (open rack/close
roof/insulated back). For glass/polymer module and open rack mounting, a takes -3.56 and b
takes -0.075 as inputs [39].
sklearn.metrics: The function is used for model evaluation such as RMSE, and MAE. It is
important to note that MAPE in sckitlearn does not return a percentage value [42]. That is why
a function was written to calculate the percentage output.

3.7 Case Studies

It is possible to make different types of predictions with large datasets. Without a doubt, the
overall aim is to keep PV power at a minimum error. Since this study also investigates how PV
power output varies with other meteorological data, different types of case studies were
planned. For example, one case study evaluates how models behave without measured
irradiance data but calculated clear sky data in the event of having no access to measured
irradiance values. Another case study tries to explore each meteorological variable impact on
PV power output. Table 3.13 shows planned case studies for both ANN and LR.

Table 3.13: Planned case studies for PV power output analysis

Case Study Information
1 | Model performance on clear sky days Consecutive prediction
2 | Model performance on clear sky days Consecutive prediction without measured

irradiance values

3 | Training and tests set on a yearly basis Training with 2020 data and test with 2021
data

4 | Training with the 2020/2021 data set Shorter test set with longer training data.

5 | MET variable selection Each meteorological variable is examined

6 | Prediction with forecasted data 1 day ahead PV power output prediction
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4 Results

This chapter was divided into 3 main sections. Data inspection and pre-processing are started
with meteorological data. Later, data were combined with PV power data. The merged dataset
is used to make PV power output predictions. According to the methodology of this work, the
results for data processing are represented in this part and the results are supported by data
visualisation. The output of this study for power output prediction trails and model evaluation
results are introduced at the end.

4.1 Meteorological Data

4 years of meteorological raw data is shown in Table 4.1. Raw data represents raw values
without being processed. The data type explanation was given in Appendix C. Count refers to
the total number of available data in dataset. The method of calculation mean and standard
deviation is as mathematical standards. Minimum and maximum values show minimum and
maximum values in the relevant column. Percentiles of data are categorized as 25%, 50%, and
75% of data. 50% values also represent the median value of the related column.

Table 4.1: Raw meteorological data statistics.

dew_point temp | air_temp | relative_humidity | irradiance | wind_speed

count 34806 33776 31036 31776 33622
mean 3.06 7.61 74.84 115.69 1.49

std 7.65 8.51 20.83 198.76 1.26
min -20.4 -17.2 16 -6.8 0
25% -2.5 1.1 60 0 0.6
50% 3 7.3 79 5.2 1.1
75% 9.2 14.1 93 144.3 2.1
max 23.2 315 100 1491 10.1

As it is seen from the data statistics, the number of data varies. The total number of missing
values is shown in Table 4.2.

Table 4.2: The number of missing values of 4 years of meteorological data.

Missing Values | Count

dew_point_temp 139

air_temp 1169

relative_humidity | 3909

irradiance 3169

wind_speed 1323
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Missing values were dropped from the dataset in addition to unrealistic minus irradiance
values. In the end, the processed data summary is shown in Table 4.3.

Table 4.3: Processed data statistics.

dew point temp | air temp | relative _humidity | irradiance | wind_ speed

count 29311 29311 29311 29311 29311
mean 3.57 8.55 74.59 121.23 1.53

std 7.76 8.54 20.98 195.36 1.25
min -20.4 -17.2 16 0 0

25% -2.2 2 59 0 0.6
50% 3.9 8.9 79 11.1 1.1
75% 9.9 15 93 163.05 2.1
max 20.9 31.5 100 1186 10.1

The total number of values dropped to 29311 from the minimum count in the raw dataset. The
reason is that distribution of missing values is not homogenous. For example, while there is a
value in the air temperature column for a specific row, there is no value for corresponding
irradiance values. In this case, the whole row is deleted to keep the same amount of data in
each column.

Another data inspection step is histogram figures of variables. Thus, it is possible to get an
overview of data distribution. Figure 4.1 shows histograms of each variable.
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Figure 4.1: Histograms of meteorological variables.
While wind speed has a skewed distribution, dew point and air temperature are close to normal
distribution. Irradiance and relative humidity histograms are heavily under the impact of night
and rainy/cloudy times.

Another type of data inspection step is producing scatter plots. There are some outliers were
observed in Figure 4.2. For example, some irradiance values are above 1000 W/m2. When it
was investigated these values, there was a time that the meteorological station was out of order.
The specific 10 days from 18/11/2019 to 28/11/2019 were removed from the database. Wind
speeds above 9.2 m/s were also excluded.
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Figure 4.2: Scatter plots of meteorological variables.
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wind_speed

Scatter plots after outliers removed are represented in Appendix C. Before investigate the
dataset further, the last statistics of variables are shown in Table 4.4.

Table 4.4: Processed data statistics.

dew point temp | air_temp | relative_humidity | irradiance | wind speed

count 29267 29267 29267 29267 29267
mean 3.58 8.56 74.57 120.93 1.53

std 7.77 8.54 20.99 194.74 1.25
min -20.4 -17.2 16 0 0

25% -2.2 2 59 0 0.6
50% 3.9 8.9 79 11.1 1.1
75% 9.9 15 93 162.6 2.1
max 20.9 315 100 912 8.8

Figure 4.3 shows 4 years of processed meteorological data in a line graph after outliers were
removed. From time to time the station was out of order. For example, at the beginning of 2020,
July 2018 and the beginning of 2021 there were no records at the station. The missing periods
including removed periods are connected by a line in the graph and they are not representing
real values.
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4 years of MET Processed Outliers Removed Data
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Figure 4.3: Meteorological data plotting against time after outliers removed.
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Since all data was pre-processed, it is ready to investigate further. To understand how variables
are correlated to each other, the correlation matrix was used. Figure 4.4 shows the correlation
matrix of meteorological variables. The highest positive correlation is among air temperature
and irradiance with 0.82, whereas the lowest positive correlation is among dew point
temperature and wind speed. Likewise, the highest negative correlation is observed between
relative humidity and air temperature, however, the lowest negative correlation is observed in
two different variables as relative humidity — air temperature and relative humidity — wind
speed.
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Figure 4.4: Correlation matrix of meteorological variables.

The next step is performing PCA analysis. 3 PCA components explain 92% of the total variance
in the dataset with 49% PC1, 29% PC2, and 14% PC3. The scree plot of variance explanation
is shown in Figure 4.5.
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Screeplot of Variance Explained %
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Figure 4.5: Scree plot of 3 components PCA analysis.

Each PCA component results are shown in scatter plots with respect to other components. In

Figure 4.6, principal components 1-2 and principal components 1-3 are represented. A detailed

representation for PC1-2 is in Appendix D with indicated colours which refer to irradiance
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Figure 4.6: Principal components plotting PC1-2 (left), PC1-3 (right).

PCA loadings are shown in Figure 4.7 and Figure 4.8. In Figure 4.7, while irradiance and
relative humidity have a high contribution to PC1 and PC2, the negative correlation in
irradiance and relative humidity together with wind speed is hidden in these loadings. It is
observed that irradiance and wind speed are positively correlated. Although air temperature
contributes more to PC1, dew point temperature influences PC2 more than PC1.
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PCA loading PC1 and PC2
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Figure 4.7: PCA loadings for PC1 and PC2.
In contrast to PC1 and PC2 loadings, the highest contribution comes from wind speed and
relative humidity to PC1 and PC3, shown in Figure 4.8. Dew point temperature, air temperature
and irradiance did not capture by PC3. It should be noted that PC1 and PC3 only explain 63%
of total variations.
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Figure 4.8: PCA loadings for PC1 and PC3.

It is clear that different meteorological variables are captured differently in PCA loadings. 3
PCA loadings represent 92% of the total variance in 4 years period dataset. During the PCA
analysis, when components were plotted by using a scatter plot, a linear boundary was observed
in the PC1 and PC2 plots. This finding was investigated further and it turned out that limits in
meteorological conditions cause this type of boundary. More broadly, the variables
accumulated near the linear boundary belong to low irradiance values or 100% relative
humidity.

Wind direction data is only available after April 2020. That is why the data from 2020 to 2021
was investigated separately from 4 years of data. Figure 4.9 reveals the histogram of variables
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for 2020-2021. At the same time, 4 years of meteorological and 2020/2021-year meteorological
situation is going to be compared.
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Figure 4.9: Histograms of meteorological variables from 2020 to 2021.
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Wind direction is recorded in degrees. That is why 360 different values have dominated the
wind direction data. In order to produce meaningful results from wind direction data, this
variable was categorized as 4 main directions: north, south, east and west. The methodology
was explained under the methodology section. It was aimed that with 4 main direction
categories, a better correlation with other meteorological variables and in PCA analysis would
be achieved.

Table 4.5 shows 2020-2021-year data meteorological variables statistics. Wind direction data
recording starts from April 2020, that is why the number of available data points is the lowest.

Table 4.5: 2020-2021-year data meteorological variables statistics.

dew point_temp | air_temp | relative_humidity | irradiance | wind direction | wind_speed

count 17384 16946 15037 15045 14968 16949
mean 3.37 7.8 75.85 115.78 163.32 1.57

std 7.53 8.26 20.2 191.16 124.87 1.24
min -20.4 -16.1 21 0 0 0
25% -1.9 1.8 61 0 31 0.7
50% 3.8 7.6 81 7.9 179 1.1
75% 9.3 13.9 94 154.8 252 2.1
max 20.9 29.8 100 1438 360 9.7

The mean value of wind direction is 163° and corresponds to the south-southeast direction.
After pre-processing of this data, the new statics are shown in Table 4.6.
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Table 4.6: Processed data statistics.

4 Results

dew point temp | air_temp | relative_humidity | irradiance | wind_speed | wind_category

count 14944 14944 14944 14944 14944 14944
mean 3.89 8.54 75.85 115.58 1.59 1.94

std 7.79 8.42 20.21 189.55 1.23 1.07

min -20.4 -16.1 21 0 0 1

25% -1.4 2.7 61 0 0.7 1

50% 5 9.3 81 7.9 1.1 1

75% 10 14.7 94 155.7 2.2 3

max 20.9 29.8 100 874 8.8 4

The frequency of wind direction data is shown in Figure 4.10. As it is seen clearly, wind
category 3 is the highest frequency after wind category 1.
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Figure 4.10: Wind direction categorical data histogram.

Figure 4.11 shows the correlation plot comparison after wind direction in degrees categorised
as 4 main directions. While the figure on the left-hand side consists of the wind_category
variable which states categorised wind direction as 4, the figure b on the right-hand side shows
correlation of wind_direction variable in degrees with other meteorological data. More robust
results were obtained for wind direction. One spectacular difference is relative humidity and
wind category/direction have no correlation. Wind direction data which is numerical has no
correlation with irradiance, however, a relationship was captured by categorical wind data. Air
and dew temperature correlations against wind category slightly increased.
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Figure 4.11: Correlation matrixes including wind category (left) and wind direction numerical values (right).
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Once more, PCA analysis were repeated. 3 PCA components explain 84% of the total variance
in the dataset with 45% PC1, 25% PC2, and 14% PC3. The scree plot of variance explanation
is shown in Figure 4.12. Since the wind_category variable was added to PCA analysis, the

explanation dropped to 84% from 92%.
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Figure 4.12: Scree plot for data including wind direction.

PC1-2 and PC1-3 scatter plots are shown in Figure 4.13. Likewise, first PCA analysis, the
distribution is similar. However, since categorical information was added such as
wind_category, we capture wind category information in PC1 and PC3. PCA loadings will

explain the relation of variables further.
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Figure 4.13: PCA scatter plots with PC1-2 (left) and PC1-3 (right).
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Figure 4.14 describes PC1 and PC2 loadings. The wind category contributes to both PC1 and
PC2. In addition, wind category and air temperature are positively correlated. This information
was also gathered in correlation analysis.
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Figure 4.14: PCA loadings for PC1-2.

Figure 4.15 describes PC1 and PC3 loadings. PC1 and PC3 explain only 39% of the dataset.
Air temperature, dew point temperature and irradiance are positively correlated. Furthermore,
wind speed and wind category variables were captured as positive correlation in PC1 and PC3.
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Figure 4.15: PCA loadings for PC1-3.
As a result, the meteorological variable analysis included wind category does a better job with
categorised meteorological variable, however, PCA analysis does not produce clear wind
category relation, yet.

Wind direction data was analysed in detail to understand the relation with other meteorological

variables. Table 4.7 shows how meteorological variable mean values changes regarding wind
direction category.
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Table 4.7: Meteorological data mean variables with respect to wind category.

4 Results

Wind dew_point_temp | air_temp | relative_humidity | irradiance | wind_speed
Category
1 1.32 5.46 77.90 54.73 1.11
2 3.61 8.79 72.94 155.41 1.97
3 8.59 13.91 73.35 221.07 251
4 5.01 9.75 75.62 92.3 1.04

Since the location of the station is in the south of Norway, the wind from the north should
decrease the weather temperature. In addition, seasonal changes affect the direction of the
wind. The lowest mean values of air temperature, irradiance and dew point temperature were
recorded when the wind comes from the north. In other words, this indicates the winter season.
In contrast to the north direction, the highest mean values of air temperature, dew point
temperature and irradiance were recorded when the wind comes from the south. This direction
refers to the south and summer season. For east and west directions, it is difficult to make a
conclusion. While the east direction had higher irradiance than the west, air temperature and
dew point temperature were slightly higher. The highest wind speed was recorded in the west
direction. However, wind speed measurement below 1 m/s can be affected by local turbulence
at 10m. Making correlations below and around 1 m/s measurement is not very reliable.
Statistically, wind from the southwest is frequent in summer for the south of Norway and wind
speed could be higher daily due to solar rotation in the afternoon.

MET data was analysed seasonally to understand the weather changes in detail. The following
radar charts belong from autumn 2019 to 2021. Figure 4.16 shows the seasonal change in wind
speed, and relative humidity. Winter and autumn seasons had frequently higher relative
humidity.
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Figure 4.16: Radar charts for seasonal meteorological variables, wind speed (left), relative humidity (right).
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Figure 4.17 refers to dew point temperature in blue colour and air temperature in orange colour.
On the right-hand side, the figure describes irradiance values. Summer seasons recorded the
highest air temperature and dew point temperature. Irradiance values in 2020 spring and
summer had very close numbers. One reason is that there was data loss in the 2020 spring
season for irradiance values. The rest of the data which corresponds to the spring season
belonged to largely the end of the season before the summer season began.
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Figure 4.17: Radar charts for seasonal meteorological variables, dew point (blue) and air temperature (orange)
(left), irradiance (right).

One question was raised during the analysis of relative humidity. As stated in PCA analysis,
there is a linear boundary in PCA scatter plots. If it is rainy, relative humidity hits 100% and
cannot rise further. The frequency of 100% relative humidity is also high. Instead of using
relative humidity, values were converted to absolute humidity. Figure 4.18 shows the
correlation matrix of absolute humidity and relative humidity values correlated with other
meteorological variables for 4 years period from 2018 to 2021. Relative humidity has a strong
correlation with irradiance which actually represents rainy days or sunny days due to
cloudiness. However, we lose irradiance correlation with absolute humidity. Instead, absolute
humidity has a strong correlation with air and dew point temperature due to the calculation
method which uses air and dew point temperature.
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Figure 4.18: Correlation matrix included absolute humidity

PCA analysis was conducted again and PCA loadings are shown in Figure 4.19 and Figure
4.20. Absolute humidity was captured on the same side in PC1 and PC2 with a positive
correlation.
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Figure 4.19: PCA loadings of PC1-2 included absolute humidity.

In contrast relative humidity, absolute humidity has no impact on PC3. This result is
undesirable. There is a risk of losing one variable’s footprint in PCA analysis.
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PCA loading PC1 and PC3
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Figure 4.20: PCA loadings of PC1-3 included absolute humidity.

One conclusion would be that if absolute humidity values were used, dew point temperature
values would be excluded from the database. Since precipitation and cloudiness are not
available at nearby stations, relative humidity is going to be used in further analyses to have an
idea about precipitation and cloudiness. Wind direction was only available from 2020 April.
To observe if any relation exists in absolute humidity with wind direction, the correlation plot
was produced for the 2021 year of data to represent one whole year. Figure 4.21 shows the
correlation plot including wind category and absolute humidity records. The highest positive
correlation was observed for wind category with absolute humidity.
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Figure 4.21: Correlation matrix with absolute humidity and wind category for 2021.
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4.2 PV power analysis results

PV data analysis with other meteorological variables included starts from 4™ April 2020 until
the end of 2021 due to the availability of wind category variable. Power values are only
available from the beginning of 2020. That is why the first 3 months in 2020 for power values
are out of the investigation. Figure 4.22 shows I\V2 power values with irradiance values for the
analysed period. Layout and slope cause receiving less irradiance than global horizontal
irradiance valules on east direction panels which is shown in the graph as measured irradiance.
The information for receiving irradiance based on direction had been shown in the
methodology section. Power values with irradiance plotting for other selected inverters IV5
and IVV7 were given in Appendix D.
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Figure 4.22: Power values for IV2 and measured irradiance values in addition to POA irradiance.
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Figure 4.23 illustrates a comprehensive plot with all meteorological values and irradiance
values. In the dataset, if one variable has no record for a period of time, the corresponding
values for other variables were also deleted to have the same number of rows in each column.
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Figure 4.23: IV2 AC power values with meteorological variables.
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Figure 4.24 illustrates correlation analysis for inverter 2 with other methodology variables.
Correlation coefficients are shown in the figure itself. While darkest colours indicate the
highest negative correlation, lightest colours describe the highest positive correlation. The
highest correlation was obtained among the plane of array irradiance and irradiance values.
Power output correlation with the plane of array irradiance is higher than horizontal irradiance
values as expected. The second highest correlation with power output is module temperature
with a 0.77 coefficient. Module temperature is a generated value that takes into account three
different dependent variables, air temperature, wind speed, and the plane of array irradiance.
The third highest correlation is with air temperature at 0.47. On the other hand, the highest
negative correlation was observed among power output and relative humidity. Power output
and solar position parameters are not going to be discussed as the main focus is weather
parameters. It is important to note that only above zero sun elevation values have been taken
into account which represents the periods when the PV plant is ready to produce power.
Correlation analysis results for inverters 5 and 7 were given in Appendix D.
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Figure 4.24: IV2 correlation analysis with other meteorological variables included.

Figure 4.25 introduces inverter 2 power output and the plane of array irradiance value graph.
Dots were coloured by the corresponding air temperature. Clearly, low irradiance leads to lower
PV power. It is also possible to conclude that higher PV values were recorded when air
temperature was relatively low. Yellows values which belong to higher air temperature,
gathered mostly at the bottom of the trend line.
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Power vs POA, colored by air temp.
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Figure 4.25: Inverter 2 power output and plane of array irradiance coloured with air temperature.

In the methodology section, the PV power output filtering method had been discussed. A
performance index calculation method had also been introduced. What can be concluded from
the analysis is that low elevation leads to a drop in performance index. Among the values, the
bottom 10% of the performance index values were assigned as 0 and other values as 1. On the
left-hand side of Figure 4.26, dots were coloured based on elevation values. The lowest PV
output values were recorded in the event of low elevation and irradiance, obviously. On the
right-hand side of the same figure, PV power values were filtered out based on performance
index 0 and the plot was reproduced. Thus, high irradiance but low power values are eliminated.
It is aimed that by introducing a performance index and filtering low performance values, noise
in PV power would be eliminated. Thus, cleaned power output data may reduce the error in
predictions.
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Figure 4.26: Inverter 2 power values and POA values coloured by elevation (left) and PV performance filtered

graph coloured with air temperature (right).
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Having had PV data, PCA analysis can be expanded with PV power data. Since the number of
input variables increased, 4 PCs were determined. Figure 4.27 describes the scree plot for PCA
analysis with 4 components. PC1 explains 50%, PC2 16%, PC3 11%, and PC4 9% variance in
the dataset with a total of 85.44% explanation.
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Figure 4.27: Scree plot of PCA analysis including PV power values and sun parameters.

Figure 4.28 illustrates PC scatter plots. With additional inputs, the distribution of variables is
much more homogeneous. That is why variance explanations have dropped.
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Figure 4.28: PCA components with PC1-2 (left), PC1-3 (right).

In PCA loadings, irradiance related parameters such as elevation, module temperature and POA
irradiance overlap with PV power. Figure 4.29 and Figure 4.30 explain PC1-2 and PC1-3

loadings.
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Figure 4.29: PCA loadings for PC1-2 with PV power values and sun parameters included.
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Figure 4.30: PCA loadings for PC1-3 with PV power values and sun parameters included.

4.3 PV Power output prediction case study results

In the methodology chapter, planned case studies were announced. In this part of the result
chapter, each case study will be represented for both linear regression (LR) and artificial neural
networks (ANNS). Different plotting styles were used. For example, short term LR graphs were
plotted as scatter plots while ANN graphs were plotted as a line with value markers. The reason
is that in the linear regression model, graphs also show corresponding time while ANN graphs
have only index numbers. Hence, it was avoided non-value period within night time which has
made plotting readable. Since ANN graphs will be introduced together with LR graphs, it is
possible to identify the ANN graph time scale by comparing LR graphs.
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4.3.1 Model performance on clear sky days

Consecutive prediction aims to short term prediction with relatively similar weather variables
in one period. Thus, smaller data sets can achieve sufficient results and less computation time
and resources are required. In this section, short term model performance on clear sky was
evaluated.

Consecutive clear sky days were observed between 22" July 2021 and 24™ July 2021. The
model is trained with data from 12" July 2021 to 21 July 2021. Table 4.8 shows training and
test set mean and standard deviation results for each variable.

Table 4.8: Training and test set mean and standard deviation for each variable.

Variables Mean Values - Std - Training | Mean Values - Std - Test
Training Test
dew_point_temp 12.58 4.07 12.6 1.62
air_temp 21.91 3.96 21.93 3.92
relative_humidity 57.13 14.7 57.41 15.67
poa_global east 364.61 238.3 354.87 241.36
wind_speed 1.79 1.03 2.09 1.12
wind_category 2.25 1.05 2.72 0.77
module_temp 30.86 8.51 30.46 8.90
hour_harmonic 0.36 0.51 0.32 0.51
zenith 59.72 16.16 62.17 16.23
elevation 30.27 16.16 27.82 16.25
azimuth 177.96 82.37 188.21 84.03

PV power training data mean value is 38.14 kW, and standard deviation is 24.61 kW. In
Appendix E, the historical PV power output with irradiance values plot for the period when the
model was evaluated is accessible.

Figure 4.31 describes the result of the linear regression model. In each graph, model error
results were printed on top of the plot. Mean absolute error (MAE) is 2.04 kW, mean squared
error (MSE) is 5.99 kW, root mean square error (RMSE) is 2.45 kW, and variance is 0.99. For
the next result graphs, the same error representation approach will be used. While the LR model
indicates linear regression, the ANN model shows artificial neural network model on the
plotting.
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LR Model MAE: 2.04 MSE: 5.99 RMSE: 2.45 Variance: 0.99
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Figure 4.31: LR model prediction for clear sky days.

The LR learning curve explains the model stopped learning after 70 training data. The more
training data feeds into the model, the model no longer learns.

Learning curve for LR

704
—&— train score

—8— test score

60 4

501

404

MAE

304

204

104

o e&—— = = -

T + Y v T T
20 40 60 80 100 120
Training data

Figure 4.32: LR model learning curve for clear sky days.

The simulation was repeated for the ANN model. Figure 4.33 shows the ANN prediction plot
which achieves relatively better prediction with fewer errors.
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ANN Model MAE: 1.66 MSE: 4.2 RMSE: 2.05 Variance: 0.99
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Figure 4.33: ANN regression prediction for clear sky days
In the ANN model, different model configurations were used due to the small data set. It is
seen from the RMSE error graph that the model achieves its best performance with 500 epochs.
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Figure 4.34: ANN learning curve for clear sky days.

4.3.2 Model performance on clear sky days without measured irradiance input

It is not always possible to access the latest measured irradiance values for PV power output
prediction. That is why the model performance was evaluated without measured irradiance
values. Since module temperature input was derived from measured irradiance values, this
variable was also excluded. Instead, calculated clear sky irradiance values were fed into the
model. Figure 4.35 illustrates LR model results without measured irradiance values but

calculated clear sky irradiance values. Higher errors were obtained compared to prediction with
measured irradiance values.
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LR Model MAE: 4,74 MSE: 40.51 RMSE: 6.36 Variance: 0.93
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Figure 4.35: LR model prediction for clear sky days without measured irradiance values.

ANN model achieves the same prediction with lower error but with a low performance
compared to measured irradiance values included. The model completely fails without any
irradiance values either clear sky or measured irradiance. The figure is given in Appendix E.

ANN Model MAE: 3.12 MSE: 17.73 RMSE: 4.21 Variance: 0.97

—— Qutput
—e— Prediction

Power (kW)

0

20 30 50

Figure 4.36: ANN model prediction for clear sky days without measured irradiance values.

4.3.3 Year based training and test sets

The PV plant has been in operation since 2020. It is aimed in this part to evaluate prediction
performance for 2021 with the 2020 year of data training. In the methodology section, it was
observed that 4 years of meteorological variable correlations are not quite different from 2021-
year data. Hence it can be concluded that the prediction of PV power from 2021 historical data
may be a reliable source for future predictions in 2022. The models were trained by 2020
historical PV power output and meteorological variables and tested in 2021. The training period
starts from 1% April 2020 when the wind direction variable started to be recorded until 01 April
2021. On the test set side, December was not included as there are only a few PV power data
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available. Table 4.9 includes training and test sets mean and standard deviation values. Power
values training set mean value is 24.94 kW and standard deviation is 22.99 kW.

Table 4.9: Training and test data variable statistics.

Variables Mean Values - Std - Training Mean Values - | Std - Test
Training Test
dew_point_temp | 4.68 74 9.54 531
air_temp 11.7 7.3 15.09 6.7
relative_humidity | 65.9 21.93 72.2 18.45
poa_global east |233.4 210.08 203.15 195.91
wind_speed 2.01 1.31 1.8 1.17
wind_category 2.23 1.03 2.32 0.98
module_temp 17.3 10.42 20.02 10.18
hour_harmonic 0.5 0.46 0.55 0.43
zenith 65.87 15.2 67.42 14.6
elevation 24.12 15.2 22.58 14.6
azimuth 179.63 70.34 180.32 70.41

Figure 4.37 illustrates 2021 year of data prediction for LR. As it is seen from the figure,
predictions fall below zero on some days. Furthermore, there are some days when the model
was not able to capture peak values.

LR Model MAE: 2.92 MSE: 17.54 RMSE: 4.19 Variance: 0.96
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Figure 4.37: LR model prediction for 2021-year data from April.
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For the same period, the ANN model did a better job of capturing peak values. Predictions
rarely fell below zero as it is seen in Figure 4.38. As a result, ANN has low errors overall.
Different ANN configurations achieved better results. For this prediction, 100 epochs, 64 and
32 dense were provided to the model.

ANN Model MAE: 2.41 MSE: 14.94 RMSE: 3.86 Variance: 0.97
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Figure 4.38: ANN model prediction for 2021-year data from April.

The learning curve for LR shows that as the model predicts better with more training sets,
training errors get higher values indicating that the data set gets complicated as it is observed
in Figure 4.39.
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Figure 4.39: Learning curves for LR (left) and ANN (right).
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4.3.4 Training on 2020/2021 data and meteorological variable selection

In this section, it is aimed to train the model with as much as possible data and test them during
different periods to observe the overall performance of models. One of the expectations was to
evaluate model performance on the large dataset by letting the models learn from more datasets.
In addition, this case study will show how the model might perform on forecasted
meteorological data. Furthermore, the meteorological variable's impact on the overall result
was examined.

The models were trained from 01/04/2020 to 21/07/2021 and tested on consecutive clear sky
days. By doing this, model performance was compared with the trial in the 4.3.1 chapter. Figure
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4.40 shows ANN model performance. Since the model has more training data, the prediction
was easy and the model overfitted on the test set. The model was run by 50 epochs.

ANN Model MAE: 0.83 MSE: 1.24 RMSE: 1.11 Variance: 1.0
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Figure 4.40: ANN model output training with 2020/2021 and testing on consecutive clear sky days.
However, LR produced poor results on the same test set as it is shown in Figure 4.41.

LR Model MAE: 3.0 MSE: 11.42 RMSE: 3.38 Variance: 0.98
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Figure 4.41: LR model output training with 2020/2021 and testing on consecutive clear sky days.

The trial was done on fluctuating PV power output days. Figure 4.42 shows the days are going
to be tested with PV power and POA values.

79



4 Results

IV2 AC Power - Irradiance 2021

kW

A
. \ -
A \ \

—— AC_Power_IV2

800 poa_global

w/m2

12:00 00:00 12:00 00:00 12:00
Sep 24, 2021 Sep 25, 2021 Sep 26, 2021

Figure 4.42: 1V2 and poa_global values for selected days.

Results are shown in Figure 4.43 and Figure 4.44 for ANN and LR models. ANN model was
run by 50 epochs, and 64 batches. As a result, while ANN predicts slightly better than the LR
model, both models failed to capture the power value drop on 27" September 2022 at 11:30.
Some comments have been made on this issue in the discussion section.
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Figure 4.43: ANN model output training with 2020/2021 and testing on fluctuating power output days.
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LR Model MAE: 1.86 MSE: 4.8 RMSE: 2.19 Variance: 0.98
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Figure 4.44: LR model output training with 2020/2021 and testing on fluctuating power output days.

In most scenarios not all meteorological variables are accessible. For example, without wind
parameters, it is still possible to predict power outputs. In this part, it is explored how
meteorological variables affect PV power output prediction. All trials were done on the same
test set period which is from 28" August 2021 to 20" October 2021. The training period starts
from April 2020 until the beginning of the test set. Figure 4.45 illustrates prediction results for
the ANN model with all parameters included. For the ANN model, with all parameters
included, prediction results for the test set were given in the first row in Table 4.10. Likewise,
Figure 4.46 describes prediction results for the LR model with all parameters included and
prediction errors were given in Table 4.10.

ANN Model MAE: 1.64 MSE: 6.57 RMSE: 2.56 Variance: 0.97
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Figure 4.45: ANN model prediction results with all parameters included.

The best predictions with the ANN model were obtained with hyperparameters in which 64
and 32 dense, 32 batch sizes and 80 epochs.
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LR Model MAE: 2.08 MSE: 8.76 RMSE: 2.96 Variance: 0.96
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Figure 4.46: LR model prediction results with all parameters included.

The learning curves for LR and ANN in Figure 4.47 describe that while the LR model continues
to learn as more training data is fed in, the ANN model with given parameters makes an easier
prediction on the test set.
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Figure 4.47: Learning curves for LR (left) and ANN (right) with all parameters included.

More broadly explanations for Table 4.10 is that excluded variables indicate all other
parameters included but only the stated variable was not taken into account. There are other
cases such as only the selected variable’s effect was explored. ANN parameters were simplified
in the process of trial of only POA irradiance with 10 epochs and 16 and 8 dense.
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Table 4.10: Meteorological variable selection for ANN model’s error and variance values.

Models

ANN Model Results

LR Model Results

Errors / Variance

MAE"

MSE" | RMSE"

R2

MAE"

MSE" | RMSE"

R2

All Parameters

1.64

6.57 2.56

0.97

2.08

8.76 2.96

0.96

wind_speed excluded

1.78

7.17 2.68

0.97

2.04

8.64 2.94

0.96

wind_speed and
wind_category
excluded

1.65

7 2.65

0.97

2.04

8.64 2.94

0.96

relative_humidity
excluded

1.82

7.66 2.77

0.97

2.09

8.82 2.97

0.96

air and
module_temperature
excluded

1.74

7.05 2.65

0.97

2.12

8.92 2.99

0.96

Only air_temp, POA
irradiance, and sun
parameters included

1.63

6.66 2.58

0.97

2.11

8.86 2.98

0.96

Only air_temp, and
POA irradiance
included

18

9.14 3.02

0.96

1.97

9.51 3.08

0.96

Only air_temp, POA
irradiance, and
relative_humidity
included

1.78

9.61 2.93

0.96

1.96

9.27 3.04

0.96

Only POA irradiance
included

1.95

10.25 3.2

0.96

1.9

9.32 3.05

0.96

Only MET variables
included, POA
irradiance and sun
parameters excluded

10.24

184.77 | 13.59

0.23

11.6

206.3 14.26

0.14

Only MET variables
and sun parameters
included but POA
irradiance excluded

5.3

54.6 7.39

0.77

7.31

82.13 9.06

0.66

* Values are in kW.
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Due to small differences between errors for different trials in the same model, it is difficult to
assess variable effects on the model output. That is why some cases were dug in with a closer
look.

4.3.4.1 Wind Direction Effect

Figure 4.48 demonstrates metrological variables and PV power output for a selected time scale.
There was one specific date, 18" July, for wind direction was on 1 category label which
represents wind from the north. This information has shown in the red box in the figure. In the
corresponding period, PV power output peaked as it can be seen in Figure 4.48 and Figure 4.49.
The trained period from 2020 to July 2021 was tested from July 7% to 29™".
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Figure 4.48: Meteorological variables and power output for wind direction analysis.
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Figure 4.49: PV power output and irradiance values for wind direction effect analysis.

When the wind direction category was excluded from inputs of the model, ANN and LR models
fails to catch the peak power output value. A comparison for the ANN model before all inputs
were included for the given period and after the wind direction variable was excluded from the
input is given in Figure 4.50 and Figure 4.51. Clearly, after wind direction data was eliminated,
prediction falls for the peak value which was achieved at a lower number. The difference is
emphasised with red circles.
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ANN Model MAE: 2.35 MSE: 12.61 RMSE: 3.55 Variance: 0.98
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Figure 4.50: ANN model result with all variables included within wind direction analysis period.
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Figure 4.51: ANN model result without wind direction variable.

The same relation was observed for IV5 and I\VV7 which are on different roofs with different
layouts. Figure 4.52 and Figure 4.53 describes V5 and IV7 result, respectively. In addition,
the LR model has also detected the same difference.

ANN Model MAE: 2.69 MSE: 17.1 RMSE: 4,14 Variance: 0.98 ANN Model MAE: 2,52 MSE: 14.9 RMSE: 3.86 Varance: 0.98

| {\/( V{ IR I ,\ it

“ Figure 4.52: ANN rﬁodel fesults comparisons V\;ith (Iéft) ar’;d Wifﬁout zright; Win(; diregtion Cariable
for IV5.
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Figure 4.53: ANN model results comparisons with (left) and without (right) Wind direction variable for IV7.

4.3.4.2 Relative Humidity Effect

The relative humidity effect on the model was explored for the period from 29" May to 19"
June. Figure 4.54 illustrates the period that relative humidity has an increasing trend for a
certain period and it is shown with a red box. When relative humidity variable was eliminated
from the database, the ANN model predicted power values at a lower value for the time where
relative humidity was relatively high between 9" and 10" June. Likewise, similar prediction
results were obtained with the LR model.
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Figure 4.54: Meteorological variables and power output for relative humidity analysis.

ANN Model MAE: 2.36 MSE: 12.59 RMSE: 3.55 Variance: 0.98
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Figure 4.55: ANN model result with all variables included within relative humidity analysis period.
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ANN Model MAE: 2.4 MSE: 13.16 RMSE: 3.63 Variance: 0.98

—e— QOutput
—e— Prediction

[ oo

Power

0 50 100 150 200 250 300 350 400

Figure 4.56: ANN model result without relative humidity variable.

4.3.4.3 Dew Point Temperature Effect

Relative humidity effect on the model was explored for the period from 5" May to 24" June.
Figure 4.57 describes the period that dew point temperature fluctuations specifically from July
13th to 15™.
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Figure 4.57: Meteorological variables and power output for dew point temperature analysis.

When dew point temperature variable was eliminated from the database, predictions were the
same and did not change for ANN and LR models. Figure 4.58 and Figure 4.59 describe ANN
model predictions with a red box emphasised for dew point temperature fluctuations period.
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ANN Model MAE: 2.59 MSE: 13.57 RMSE: 3.68 Variance: 0.98
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Figure 4.58: ANN model result with all variables included within dew point temperature analysis period.
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Figure 4.59: ANN model result without dew point temperature variable.

4.3.4.4 Wind Speed Effect

Figure 4.60 illustrates PV power output and meteorological variables for wind speed analysis
and the red box focuses on the period when there were wind speed fluctuations from June 13™
to 17™. Since the module temperature variable is a function of wind speed, this variable was
excluded before the wind speed variable was eliminated from the database. Predictions without
module temperature are shown in Figure 4.61. The model was run without wind speed and
module temperature; however, the effect of wind speed was not observed in Figure 4.62.
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Figure 4.60: Meteorological variables and power output for wind speed analysis.
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Figure 4.61: ANN model result with all variables included except module temperature.
ANN Model MAE: 2.34 MSE: 12.71 RMSE: 3.56 Variance: 0.98
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Figure 4.62: ANN model result with all variables included except module temperature and wind speed.
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Clearly, this result was unexpected. It is a scientific phenomenon that wind speed is an
important parameter for PV power output. A different time period was investigated for the
wind speed case. First, a period when there is an obvious impact of wind speed on power output
was determined. Figure 4.63 shows the plane of array and 1\V2 power output line graph on 11"
July 2021. The second peak in power value occurred at low irradiance value compared to the
first peak. Figure 4.64 illustrates the same period in two parallel red lines with other weather
variables and emphasised wind speed in the red box. A steep increase was observed for the
wind speed during the second peak occurrence in power output.
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Figure 4.63: 1V2 Power output and the plane of array irradiance for the wind speed case.
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Figure 4.64: 1V2 and weather parameters for the wind speed case.

When the model was trained with the same time period as previous examples, the second peak
was not captured. This time the model was trained for a shorter time period and results were
shown in Figure 4.65 with wind speed included and Figure 4.66 with excluded wind speed
parameter. The wind speed included graph predicts higher values for the rest of day compared
to Figure 4.66. The red line exceeds the blue line. Model accuracy is low for the wind speed
excluded case. Longer training periods make the model count on irradiance values more.
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ANN Model MAE: 3.33 MSE: 23.1 RMSE: 4.81 Variance: 0.96 MAPE: 23.79
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Figure 4.65: ANN results with wind speed included.

ANN Model MAE: 3.3 MSE: 23.4 RMSE: 4.84 Variance: 0.96 MAPE: 26.57
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Figure 4.66: ANN results without wind speed parameter.

4.3.5 Predictions with forecasted meteorological data on a clear sky day

ANN and LR models were trained and tested on historical data. Moreover, the accuracy of the
models was evaluated. The limit of the models has been assessed and the possible lowest error
numbers have given an idea about how models would behave on forecasted metrological data.
Even though forecasting was not front-and-centre of this study, it is now possible to test the
model on forecasted metrological data. Forecasted meteorological data was accessed through
THREDDS Data Server (TDS) operated by met.no. Unfortunately, forecasted irradiance values
are not available. Instead, clear sky calculated data was used for the prediction day and adjusted
to the plane of array irradiance. Besides, PV power data was requested from Lede Energi for
the corresponding period. Module temperature was not fed into the model as it is a function of
irradiance values. Models were trained by one year before in the same month with 30 days of
data and prediction was held on 25" April 2022. Table 4.11 describes the training and test data
mean and standard deviation values.
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Table 4.11: Training and test data variable statistics for forecasting analysis.

) Mean Values - . Mean Values
Variables . Std - Training Std - Test
Training - Test
dew_point_temp -3.6 3.43 0.36 1.49
air_temp 7.3 4.56 13.2 3.84
relative_humidity 48.7 17.9 43.9 10.1

Clearksy data
adjusted to 269.2 189.2 370.1 222.3
poa_global east

wind_speed 2.2 1.16 2.0 0.57
wind_category 2.0 1.03 3.3 0.69
zenith 66.2 12.2 63.6 13.7
elevation 23.8 12.2 26.3 13.7
azimuth 180.6 65.2 182.6 71.2

Power values training set mean value is 30.9 kW and standard deviation is 21.5 kW. Figure
4.67 and Figure 4.68 show ANN and LR results, respectively. The ANN model produced lower
error than the LR model and the trend fitted with output values. In the LR model, the model
predicted higher power values after midday. One reason is that using clear sky values caused
the linear regression model predicts higher values. ANN was able to learn more from historical
values.

ANN Model MAE: 2.68 MSE: 10.98 RMSE: 3.31 Variance: 0.98

70

Power (kW)

0 2 4 6 8 10 12 14

Figure 4.67: ANN prediction results for forecasting analysis on a clear sky day.
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LR Model MAE: 4.5 MSE: 31.51 RMSE: 5.61 Variance: 0.94
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Figure 4.68: LR prediction results for forecasting analysis on a clear sky day.

Prediction on a forecasted cloudy was also planned. Alternatively, cloudiness percent and clear
sky values would be used to predict the possible amount of irradiance that modules can absorb.
However, it was noticed that the forecasted cloudiness percent on the TDS did not match with
the real scenario. That is why the cloudy day forecasting was not presented here.
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5 Discussion

Since this study consists of three main parts as data dealing part, clear sky studies, and
modelling, the discussion section is also divided into three parts in line with structure.

5.1 Meteorological and PV power datasets

Data dealing comes first for setting up an accurate model. That is why the common data
processing techniques were applied to the datasets. Pre-processing of data can result in a huge
amount of data loss due to excessive filtering. In this study, while the most of data were tried
to be kept, the data was cleared out from outliers, fault status, and unrealistic values.
Specifically for PV data, zero values and night periods were removed before modelling. It is
important to keep in mind that noise in data still can hold valuable information, and
disregarding noise in data might reduce the model performance. At the end of data processing
for 4 years of meteorological data, available irradiance values dropped 8.5% which is
acceptable. Differently, PV power data was received mainly filtered based on inverter’s
operation period from the company’s database. However, this data was also filtered in terms
of night periods when the sun is out. As a result, 12.5% of PV power data filtered out from the
database. Considering night periods in PV dataset and out of order period in the MET station,
it is fair to say that the data count after processing is sufficient. Moreover, not all PV data does
consist of decent values. Irradiance values and PV power output usually go hand in hand. As
is seen from Figure 4.25, that is not the case every time. Some power values do not
proportionally rise with respect to irradiance. As it was explained in detail in the methodology
section, after a rough performance index proposal, power values are becoming degenerate
below 9° elevation. If a performance index filtering is applied to data, only decent power values
are obtained. However, feeding filtering power values into models increases model erroneous.
That is why PV data filtering was halted after removing night periods. It is aimed to predict
power values for the complete cycle in a day. Removing some PV power data disrupts models
to predict low PV power values.

PCA analysis provided a great deal amount of information about datasets. Thus, it became
possible to observe the data distribution and outliers in data. In addition, PCA loadings are in
compliance with the correlation matrix. One of the aims of performing PCA analysis was
dimension reduction. However, considering three and four components PCA only explains
92% and 85% of variations in datasets. To achieve a higher explanation more components will
be required and the dimension reduction goal becomes unreasonable. It is already known that
irradiance and power values have a correlation above 95%. This study is actually after the other
5%. As a result, PC values were not fed into the model.

The correlation matrix proves that irradiance and power values have the highest correlation.
Sun elevation and air temperature are also important inputs for the model. Wind speed has a
higher correlation than wind category. There is no correlation between dew point temperature
and power values. In relation to this information, dew point temperature effect could not detect
in the variable case model evaluation. Correlation matrixes among other selected inverters
slightly differ. One reason is that each inverter was not in operation for different periods. That
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is why each inverter’s value was correlated with meteorological variables at different times. It
is concluded that the difference is insignificant and the effect on the model was negligible.

Detailed meteorological variable investigation gives some insights into seasonal and yearly
changes. It is possible to conclude that training models with only one year of meteorological
data can still produce similar accuracy based on close correlation coefficients. However,
correlations for each different year in the same season may differ.

5.2 Clear sky studies

The model’s performance on clear sky days is expected to be at its best value. To prove this
idea, a clear sky days study was performed. However, 2 years of data which consists of more
than 7000 rows make it difficult to capture clear sky days easily. On the way to clear sky days
analysis, it was noticed that measured irradiance values exceed calculated clear sky days and
those values are not measurement errors since they were checked with PV power output at the
corresponding period. Atmospheric conditions have an impact on irradiance values that reach
the earth’s surface. If wind speed is low, and relative humidity is high, there is a possibility that
measured global horizontal irradiance values will exceed calculated clear sky values.

Different clear sky calculation methods are accessible in the literature and some of them are
available on pvlib. To choose the appropriate clear sky model, correlation analysis between
measured global horizontal irradiance values and different clear sky model values was
performed. The highest correlation is obtained by Perez-Ineichen method among the other two
models. As is seen from Figure 3.13, while other methods predict higher values for irradiance
values, Perez-Ineichen is the closest model to measured irradiance values. Nevertheless,
calculated values frequently exceed the measured values. This problem can be eliminated by
parameter change in the model. It is possible to feed different linke turbidity or air mass values
but the model run by default values. These values may differ geographically and unfortunately,
air mass and linke turbidity values do not exist for Gjerpen station. As a result, clear sky values
can be adjusted better to be in line with measured irradiance values.

Pvlib detect_clearsky() function works only with 1min time resolution. Measured irradiance
values had to be transformed from 1h to 1min resolution. By using interpolation, values were
produced but this rough estimation for 1min measured irradiance values, the algorithm from
time to time fails. Some adjustments within the algorithm have been made such as resolution
adjustment and different interpolation methods and the best possible output was obtained.
Hence, the effort to find clear sky days within the data has become lower. Clear sky values are
important as these values are used to produce the plane of irradiance values. That is why an
extensive investigation was performed on clear sky irradiance values.

5.3 Prediction and model evaluations

5.3.1 Time Resolution Problem

Three different datasets were used from three different sources. As given information in Table
3.7, PV values have 10 min resolution. 10 mins PV values fluctuate a lot especially on cloudy

95



5 Discussion
days as it is seen in Appendix G. This data averaged to on an hourly basis. In general, averaging
is one way of dealing outliers in datasets in data processing steps. One advantage of averaging
PV data to 1 hour is having much more smooth data. However, when a new dataset from
another source is combined with hourly PV power data, in this case irradiance, the time scale
problem arises. For example, in the event of irradiance value drop for a specific period, no
changes were captured in PV power data. In the second figure in Appendix G, one example of
this situation was illustrated. There might be two reasons that cause the problem, station
location might be cloudy and plant location was cloudiness or irradiance measurement
disrupted for couple of minutes for some reasons. Whatever the reason, this situation frequently
occurred and it is quite difficult to filtering out such periods from the data. One biggest
disadvantage keeping such situations in the dataset, they cause prediction fault and increase the
model error. One report presented form Sandia National Laboratories proves that the higher
time resolution means higher prediction erroneous [43]. In the same report, it is also concluded
that reducing the weather parameters interval from one hour to 15 minutes generally results in
an error drop in energy by a factor of 10.

In the literature, it is possible to find articles that obtain lower prediction errors for historical
data analysis and forecasting. For some cases MAPE error numbers were produced exclusively
to make comparisons with specific articles. One paper conducted in Cyprus, found 4.7% mean
absolute percentage error on historical dataset for a period of 170 days compared to 25% MAPE
for a 90 days period in our study [44]. For consecutive clear sky days study in chapter 4.3.4,
MAPE was 14%. Another study for day ahead forecasting found 10.06% MAPE on a clear sky
day [45]. A different study conducted research for one year period with 5 min resolution and
found R? 92.2 [46]. Even though this study’s outputs for clear sky days evaluation is close to
the literature, time resolution problem leads a great amount of erroneous on the output. It is
important to check the article’s evaluation method. The reason is some evaluations were made
based on scaled inputs and outputs. This study uses unscaled values in other words, actual
power values for error calculations.

One might argue that instead of averaging PV values to an hour basis, meteorological variables
could have converted to 10 mins resolution by interpolation. This idea would not solve the
problem for overlapping. An example is shown in the second page of Appendix G. It is notable
that observation values do not overlap between irradiance and PV power output. What it means
that values do not reflect the same time interval. That is why interpolation of meteorological
variables would lead the same issue, again.

5.3.2 Model input selection

Apart from PV power values, it was observed that 11 different inputs have different impacts
on power values. In addition, the selection of training period dramatically changes model
accuracy. That is why models were evaluated for different periods with different training
periods such as training for a short period, or one whole year of training. It was also benefited
from K-fold validation. When it comes to predicting clear sky days, the training period is not
as important as predicting cloudy days. The best model accuracy values always were obtained
with clear sky days predictions. Time resolution issue leads to high cloudy days prediction
errors.
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Sun parameters such as azimuth, and elevation cause a rise in the model accuracy. These
parameters follow a pattern on a daily basis. Thus, predictions catch the power values pattern
easily. Air temperature and the plane of array irradiance values are vital for the model. It was
possible to obtain low MAE values. In contrast, relative humidity which has the highest
negative correlation with power values has almost no impact on the model where the plane of
array, air temperature, and relative humidity are only inputs. However, with all variables
included and only relative humidity excluded, ANN prediction accuracy increases. LR
prediction accuracy does not change. Thus, ANN was able to capture non-linearities in the
relative humidity-power values relationship.

It was observed during the simulations that the longer training period is chosen, the more
models become dependent on irradiance values. Impact of other weather variables decreases.

5.3.3 Model Evaluations

Learning curves was used in addition to statistical analysing tools to evaluate model
performance. It is important to mention that ANN models were run by trial-and-error approach.
Model trials were suspended where the best ANN outputs were obtained.

Training for long periods and predicting short periods require simple model parameters. For
example, 50 epochs were sufficient for clear sky day power value predictions training with
2020/2021 data. Whereas more epochs were required in case of using a smaller training dataset.

In general, the training and test set ratio basically manipulates data complexity. The reason is
that learning capabilities from the data are limited where a lower train/test ratio is applied.
Higher node numbers were used in the ANN model and the LR model still needed more data
to learn.

Even though squared error methods are widely used as a comparison method in the literature,
mean absolute errors were the main comparison criteria between LR and ANN as having
relatively high error numbers due to time resolution issues in this study. By definition, squared
error methods produce higher numbers and the sensitivity dramatically drops for this dataset.
MAPE is, however, used to make this study comparable with some articles in the literature.

5.4 Future Work Discussions

This comprehensive study still has a huge potential to make accurate predictions. Averaging
power is overestimated and leads to higher errors in predictions. Once inevitable issues due to
time resolution eliminated, models can produce more sensitive results in terms of capturing
meteorological variable effects. Since power values are recorded at 10min resolution, frequent
sampling rate recording values are required for irradiance, air temperature, and relative
humidity including wind direction data. Thus, it will be possible to capture irradiance and
power output fluctuations at the same time for better training. Furthermore, it was expected to
observe wind direction effect for each layout, separately. By achieving higher accuracy, this
effect may be explored deeper for IV5 and V7.
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An optimisation study for ANN hyperparameters is required to make model reliable throughout
the year. Thus, a real-time PV power forecasting system can be built and work in harmony for
a grid optimisation.

Depending on forecasting horizons such as short term (less than 1 day) or medium term (1-3
days ahead), there is a trade-off between selling electricity to the market and storage of
batteries. In general market electricity prices are at the lowest from 11:00 to 16:00 depending
on the season, however, PV power output is at its highest. This relation is known as the duck
curve. Without a doubt, battery systems are one solution to sell PV power to the market when
prices are high such as in early mornings or in the evenings. Nevertheless, building and
operating feasible systems are challenging. On the one hand, accurate short term forecasting
outputs may suggest a period when expected PV power is high out of the lowest electricity
prices period. Thus, the grid connected period can be planned. In addition, the observed
differences in PV power output for the same weather conditions hide unique potential to detect
problems and keep the system in operation at the highest efficiency all the time. On the other
hand, medium term forecast contributes to power system management in addition to planning
maintenance activities from a broader perspective. In summary, for future work, building a
model and training with a shorter time resolution such as 10min to increase the model accuracy,
and forecasting with a 1hour time resolution for grid planning scenario should be investigated.

One might demand using trained models in this study for a different PV module, layout, or
plant to predict PV power output. However, PV power output is not only the function of
weather parameters. Firstly, inverter type and its efficiency are one parameter that has not been
discussed in this study. Typically, for a given DC input, the inverter converts to AC power for
only a certain amount. The efficiency of inverters not only changes during the day but also
takes different values for each inverter type. Since this study uses the output of inverters which
is AC, the results might comparable for only the same type of inverter. Secondly, the module
type is another parameter that affects PV power output. In the PV module specification sheet,
the temperature coefficients of PV modules are stated as a linear equation. For example, the
module types that are subject to this analysis have a -0.36%/°C for Pmpe. It describes that every
1 °C rise in module temperature, results in a 0.36% drop in power. The nominal module
operating temperature has given as 44.6 + 2 °C. These values vary for different manufacturers.
That is why the models are fit for the same module types. In Skagerak Arena, there are different
types of modules with 300 Wp in the south direction. However, since models are trained by
each inverter’s historical data separately, PV power output values are already influenced by
module specifications. Alternatively, an efficiency factor can be calculated by taking into
account measured module temperature and power loss/rise percentage. Thus, PV power values
would be normalised and models can be used for different types of modules. Thirdly, tilt angle
and direction (azimuth) are other parameters. Measured global horizontal values have been
converted to the plane of array irradiance values by taking into account tilt angle and azimuth
values. Therefore, it is possible to use these models feeding with adjusted irradiance values in
the process of predictions. Moreover, cabling systems also affect power output. Considering
various parameters that effects using the model in other PV systems, further adjustments have
to be made. In particular, building models by training with DC instead of AC power can
eliminate the effect of inverters and most some cabling differences. Thus, the newly established
model including the temperature coefficient factor would serve different PV systems.
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Conclusion

6 Conclusion

This study provides thorough research in the PV power prediction domain focusing on time
series prediction using LR and ANN models. The results show that ANN models are relatively
better in the prediction of PV power values than LR models.

It is concluded from the meteorological variable study that yearly changes within
meteorological variables will not have a big impact on PV power prediction estimations
according to correlation analysis. Even though PCA analysis provides some information on
data and relationships, using PCA components does not produce improved results for
predictions due to low explanation. PV power data filtering based on performance resulted in
an accuracy drop due to data loss for low elevation periods. There is a slight difference between
the correlations and power values with respect to different layouts and other meteorological
variables. One of the reasons that cause this difference is that each inverter has a different
operation time.

For the specified location, Ineichen-Perez clear sky method delivered better results for
correlation with measured irradiance values with a 0.9873 correlation coefficient. It is possible
to produce more correlated results by taking into account observed air mass or linke turbidity
variables.

It is concluded that air temperature and the plane of array irradiance parameters are vital to
predicting PV power values. Relative humidity is another important parameter to reach better
accuracy, especially for ANN models. However, clear relation could not be detected with the
LR model for relative humidity variable. The best performance was obtained by adding relative
humidity and other sun parameters to air temperature and the plane of array irradiance
parameters. In the detailed model parameters study, wind direction is another parameter to
make predictions closer to real outputs. Furthermore, it is found out that all variables that were
investigated have an effect on power value predictions during relevant variable fluctuation
periods. The time resolution issue which causes swings in power values and weather
parameters leads to an accuracy drop for both models.

The study was mainly conducted on IVV2 values. Correlations with other weather parameters
are quite similar for other selected inverters, 15 and 1V7. Using trained models produce more
accurate predictions for similar inverter-module types.

Clear sky prediction accuracies are comparable with literature and it is practical to use clear
sky irradiance values instead of measured irradiance values for the prediction of clear sky days
including other meteorological variables. Moreover, by using forecasted meteorological data
for a day ahead forecasting on a clear sky day produced comparable results to historical data
predictions.
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Appendix A: Task Description

FMHG606 Master's Thesis

Title: Solar power electricity production correlated to meteorological data

USN supervisor: Kjell-Arne Solli

External partner: The Norwegian Meteorological Institute (Erik Berge, Associate Professor -
Meteorology og Oceanography at UiO). Support from IFE (NFR-project Sunpoint) and Skagerak
Energi.

Task Background: Renewable energy sources will gain importance as profitability and acceptance
will become in favour of existing energy sources based on thermal power plants (‘fossil fuel’) and
limited hydropower potential. Wind and solar energy sources are inherently unstable and
weather dependent with respect to predictable production. It is of interest to gain improved
knowledge on solar power potential for Norway, as is the aim of the NFR-project Sunpoint.

Task description:

Historical data on weather observations (The Norwegian Meteorological Institute), and forecasts
from Meteorologist Weather Processor (MWP) on an hourly basis, shall be correlated to
electricity production from solar energy. Correlations will be valuable input for the development
of solar electricity production models. Main data sources for this task are observations from
Gjerpen weather station (Skien) and Skagerak Energilab (Skagerak Arena, Skien). If time permits,
supplemental data from campus Porsgrunn is planned.

Observed variations in electricity production shall be discussed related to the proper operation
of the electrical network and the grid as well as benefit from weather observations and forecasts.
The study should satisfy the following steps: A literature review of relevant methods and results,
effective way of data handling and analysis including pre-processing methods, correlation
analysis, developing a model, and evaluation of the model on historical and forecast data.

The task calls for skills in mathematical correlation and modelling of large database data sets.

Student category: EET
Is the task suitable for online students (not present at the campus)? Yes

Supervision:

As a general rule, the student is entitled to 15-20 hours of supervision. This includes necessary
time for the supervisor to prepare for supervision meetings (reading material to be discussed,
etc).

Signatures:
Supervisor (date and signature):

Student (write clearly in all capitalized letters): OZGUR YALCIN
Student (date and signature): 26/01/2022
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Appendix B: PV Plant Information

1. Solar Module Specification Sheet
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Measurements in mm [in]
ELECTRICAL DATA @ STC Product code*: RECxxxTP2
Nominal Power-P, .. (Wp) 275 280 285 290 295 300
WattClass Sorting- (W) -0/+5 -0/+5 -0/+5 -0/+5 -0/+5 -0/+5
Nominal PowerVoltage-V,,.. (V) 315 317 319 321 323 325
Nominal Power Current- |,z (A) 874 8.84 8.95 9.05 9.14 9.24
Open Circuit Voltage- V. (V) 38.2 38.4 386 38.8 39.0 39.2
Short Circuit Current-1.. (A) 9,52 9.61 9.66 971 976 9.82
PanelEfficiency (%) 16.5 16.8 17.1 17.4 17.7 18.0

Values at standard test conditions (STC: air mass AM 1.5, irradiance 1000W/m?, temperature 25°C), based on a production spread with a
tolerance of V, & .. 3% withinonewatt class. Ata low iradiance of 200W/m? at least 95% of the STC module efficiency will be achieved.
*Where xc0t Indicates the nominal power class (P} at STC indicated above, and can be followed by the suffix BLK for black framed modules.

ELECTRICAL DATA (@ NMOT

Product code®: RECxxxTP2

Nominal Power-P, .. (Wp) 206
NominalPowerVoltage-V, . (V) 29.2
Nominal Power Current- .. () 7.07
Open Circuit Voltage- V. (V) 35.4
Short Circuit Current-1. (A) 7.52

210
294
715
356
7.59

214
296
7.24
358
768

218
29.8
7.32
36.0
775

223
30.0
7.43
36.2
7.85

Nominal module operating temperature (NMOT: air mass AM 15, iradiance 800 W/m? temperature 20°C, windspeed 1 m/s).
*Where oot Indicates the nominal power class (P at STC indicated above, and can be followed by the suffix BLK for black framed modules.

CERTIFICATIONS

¢ & CeMm©

IEC 61215, IEC 61730 & UL 1703; MCS 005, |EC 62804 (PID)

IEC 62716 [Ammonia Resistance), IEC 60068-2-68 (Blowing Sand)
IEC 61701 (Salt Mist level 6) UNI8 457/9174 (Class A}, ISOTI925-2 (Class E)

150 9001: 2015, 150 14001 2004, OHSAS 18001 2007

See warranty conditions for further details

226
301
7.51
363
791

WARRANTY

10year product warranty
25 year linear power outputwarranty
(max. degressionin performance of 0.7% p.a.)
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EFFICIENCY

YEAR PRODUCT WARRANTY

YEAR LINEAR POWER
OUTPUT WARRANTY

GENERAL DATA

Celltype: 120 half-cut multicrystalline PERC cells
6strings of 20 cellsinseries

Glass: 3.2mmsolar glasswith
anti-reflection surface treatment

Backsheet: Highly resistant polyester
polyolefinconstruction

Frame: Anodized aluminum (silver / black)

Junction box: 3-part, 3bypass diodes, IP67 rated

inaccordancewith |EC 62790

Cable: 4 mm?saolarcable 0.9m+1.2m
inaccordance with EN 50618

Connectors:  StaubliMC4 PV-KBT4/PV-KST4 (4 mm32)
Tonglin TL-Cable015-FR (4 mm?2)

inaccordancewith [EC 62852 | P68 only when connected

Origin: Made in Singapore

MAXIMUM RATINGS

Operational temperature: -40..+85°C
Maximum systemvoltage: 1000V
Design load (+): snow 367 kg/m2(3600Pa)"
Maximum test load (+): 550kg/m?2(5400Pa)
Design load [-):wind 163 kg/m? (1600 Pa)*
Maximum test load (-}: 244kg/m?(2400Pa)
Max series fuse rating: 25A
Max reverse current: 25A

*Safety factor 1.5

TEMPERATURERATINGS™

Specifications subject to change without notice.

NeminalModule Operating Temperature: 44.6°C(x2°C)
Temperature coefficient of P, .- -0.36 %/°C
Temperature coefficientof V - -0.30%/°C
Temperature coefficient of |- 0.066 %/°C

*The temperature coefficients stated are linear values

MECHANICAL DATA

Ref: ME-05-07-07 Rev-G.2 1117

Dimensions: 1675 %997 x 38 mm
Area: 167 m?
Weight: 18.5kg
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2. Inverter Specification Sheet

ABB string inverters
PVS-100/120-TL

)|

01 ° L] -

a This completely new platform, for extreme high

PVS-100/120-TL power string inverters with power ratings up to

three-phase outdoor 120 kw, maximizes the ROI for decentralized ground

string inverter - - - -
mounted and large rooftop applications. With six
MPPT energy harvesting is optimized even in

shading situations.

Extreme power with high integration level

The extreme high power module up to 120 kW saves
installation resources as less units are required.
Due to its compact size further savings are
generated in logistics and in maintenance. Thanks
to the integrated DC/AC disconnection, 24 string
connections, fuses and surge protection no
additional boxes are required.

Ease of installation

The horizontal and vertical mounting possibility
creates flexibility for both ground mounted and
rooftop installations. Covers are equipped with
hinges and locks that are fast to open and reduce
the risk of damaging the chassis and interior
components when commissioning and performing
maintenance actions.

Standard wireless access from any mobile device
makes the configuration of inverter and plant easier
and faster. Improved user experience thanks to a
build in User Interface (Ul) enables access to
advanced inverter configuration settings.

The installer mobile APP, available for Android/10S
devices, further simplifies multi-inverter

installations.

The design supports both copper and aluminum
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ABB

The PV5-100/120-TL is ABB’s cloud
connected three-phase string
solution for cost efficient
decentralized photovoltaic systems
for both ground mounted and large
commercial applications.

cabling even up to 185 mm? cross section to
minimize the energy losses.

Fast system integration

Industry standard Modbus/SUNSPEC protocol
enables fast system integration. Two ethernet ports
enable fast and future proof communication for PV
plants.

ABB plant portfolio integration

Monitoring your assets is made easy as every
inverter is capable to connect to ABB plant portfolio
manager to secure your assets and profitability in
long term.

Design flexibility and shade tolerance

The double stage conversion topology and six MPPT
guarantee maximum flexibility for the system
design on rooftops or hilly ground.

with this technological choice energy harvesting is
optimized even in shading situations.

Highlights

- 6independent MPPT

Transformerless inverter

120 kW for 480 Vac and 100 kW for 400 Vac

Wi-Fi as standard for configuration

Two ethernet ports for plant level communication
Large set of specific grid codes available which
can be selected directly in the field

Double stage topology for a wide input range
Both vertical and horizontal installation
Separate wiring compartment for fast swap and
replacement

IP66 Environmental protection

Maximum efficiency up to 98.9%
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ABB string inverters ' I .
tring t
PVS-100/120-TL -
100 to 120 kW

L]

= I L]

- L]

Technical data and types
Type code PVS-100-TL PVS-120-TL
Input side
Absolute maximum DC input voltage (Vmassbs) 1000V
Start-up DC input voltage (Vs 420V (400...500V)
©Operating DC input voltage range (Vacmin.- Vaemasz) 360...1000V
Rated DC input voltage (Vee) G20V Faov
Rated DC input power (Pa) 102 ooow 123 000W
Number of independent MPPT [
MPPT input DC voltage range at (Vesstmin.. VeepTmas) 8t Paer 480.._850V 570...850V
Maximum DC input power for each MPPT (Puser.max) 17500 W [480V=Vuppr=850V 20500 W [STOV=Vupsr =850V
Maximum DC input current for each MPPT (lacemax) 36A
Maximum input short circuit current (lsemas) for each MPPT S0AY
Number of DC input pairs for each MPPT 4

DC connection type

PV quick fit connector @

Input protection

Reverse polarity protection

Input over voltage protection for each MPPT -
replaceable surge arrester

Photovoltaic array isolation control

DC switch rating for each MPPT

Fuse rating (versions with fuses)

5tring current monitoring

yes, from limited current source

Type 2 with monitoring

as per IEC62109
50Af 1000V
154/ 1000V #

5X¥2: (24ch) Individual string current monitoring; SX: (6ch) Input current monitering per

MPPT

output side

AC Grid connection type

Rated AC power (Puw @cosg=1)

Maximum AC output poWer (Pucw: @COSP=1)
Maximum apparent power (S max)

Rated AC grid voltage (Vaes)

AC voltage range

Maximum AC OUTPUT CUTTENT (luemas)

Rated output frequency (f)

output frequency range (fmin.--fmax)

Nominal power factor and adjustable range
Total current harmonic distortion
Maximum AC cable

AC connection type

Three phase 3W+PE or 4W+PE

100 000 W
100 000 W
100 000 VA
400V
320..480V4
145 A
50Hz / 60 Hz
4555 Hz / 55...65 Hz ¥

120 000W
120000wW
120 000 VA
480V
3B4..5T6 ¥

= 0.995, 0...1 inductive /capacitive with maximum S

< 3%

18smma2 aluminum and copper
Provided bar for lug connections M10, single core cable glands 4xM40 and M25, multi core

cable gland M63 as option

output protection

Anti-islanding protection

Maximum external AC overcurrent protection
Cutput overveltage protection -

replaceable surge protection device

According to local standard
225 A

Type 2 with monitering

oOperating performance

Maximum efficiency (Nmas)
weighted efficiency (EURO)

98.4%
98.2%

98.9%
98.6%

Ccommunication

Embedded communication interfaces
User interface

Communication protocol
Commissioning tool

Remote monitoring services
Advanced features

1x RS485, 2x Ethernet (R145), WLAN (IEEE802.11 b/g/n @ 2,4 GHz)

4 LEDs, Web User Interface

Modbus RTU/TCP (Sunspec compliant)
web User Interface, Mobile APP/APP for plant level
Aurora Vision® monitoring portal

Embedded logging, direct telemetry data transferring to ABB cloud

Environmental

Ambient temperature range

-25..+60°C f/-13...140°F with derating above 40°C J 104 °F
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Technical data and types
Type code PVS-100-TL PVS-120-TL

Relative humidity
Sound pressure level, typical
Maximum operating altitude without derating

4%_..100% condensing
68dB(A) @ 1im
2000m /6560 ft

Physical

Environmental protection rating
Cooling
Dimension (H x'W x D)

weight

Mounting system

IP 66 (IP54 for cooling section)
Forced air
BE9X1086x419 mm /342" x 42.8" x 16.5"

7okg f 154 |bs for power module ; ~55kg / 121 Ibs for wiring box

overall max 125 kg / 276 lbs
Mounting bracket vertical & horizontal support

safety

Isolation level
Marking & EMC

Transformerless
CE confoermity according to LV and EMC directives

safety IEC/EN 62109-1, IEC/EN 62109-2
CEIl 0-16, CEI 0-21, IEC 61727, IEC 62116, IEC 60068, IEC 61683, JORDAN IRR-DCC-MV, AS/
Grid standard (check your sales channel for availability) MZ54777.2, VDE-AR-N 4105, VDEV 0-126-1-1, VFR 2014, Belg C10-C11, UK59/3, P.O. 12.3,

ITC-BT-40, EN50438 Generic +ireland, CLC-TS 50549-1/2

Available products variants

Inverter power module PV5-100-TL-FOWERMODULE-400 PV5-120-TL-FPOWERMODULE-480

24 ch quickinput connections + fuses (both poles) + DC switches
+individual string current monitoring (ch 24) + AC breaker +
surgearresters Type 2, (DC &AC)

24 ch quick input connections + fuses (single pole) + DC
switches + input current monitoring per MPPT (ch 6) + surge
arresters Type 2 (DC & AC)

WB-5X2-PVS-100-TL WEB-SX2-PV5-120-TL

WEB-5X-PV5-100-TL WEB-SX-PVS-120-TL

optional available

Support for multi core AC cable ME2 + M25 (PE)

1) Maximum number of opening 5 under overloading

2) Please refer to the document “String inverters — Product manual appendix” available at
www_abb_comy/solarinverters for information on the quick-fit connecter brand and model
used in the inverter

3) Maximum fuse size supported 20 A. Additicnally one string input per MPPT supports

AC output panel M&3 for wiring box

32 Afuse sizes for connecting two strings per input

4) The AC voltage range may vary depending om specific country grid standard

5) Frequency range may vary depending on specific country grid standard

Remark. Features not specifically listed in the present data sheet are notincluded in
the product
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Appendix C: Data

1. Data Type
Data_Type:

referenceTime object

dew point_temp float64
air_temp float64
relative_humidity float64
irradiance float64
wind_speed float64

2. Scatter_Matrix_Outliers_Removed

20

=20

p dew_point_temp

20

ir_tem

y ai

o

=20

100

50

1000

500

irradiance relative_humidit

wind_speed
wn

dew_point_temp air_temp relative_humidity irradiance wind_speed
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Appendix D: Results Data

PC 2 (29.4%)

kW

1. PCA

Total Explained Variance: 92.56%

700
600
500
400
300
200

100

-4 -3 -2 -1 0 1 2 3 4 =
PC 1 (49.4%)

2. 1V5 Analysis

IV5 AC Power - Irradiance

—— AC_Power_IV5
—— Measured Irr
poa_global_west

W/m2

2\

May 2020 Jul 2020 Sep 2020 Nov 2020 Jan 2021 Mar 2021 May 2021 Jul 2021 Sep 2021
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3. IV7 Analysis

IV7 AC Power - Irradiance

1000 —— AC_Power_IV7
Measured Irr

—— poa_global_south

w/m2

/
2y W1

Jul 2020 Oct 2020 Jan 2021 Apr 2021 Jul 2021 Oct 2021
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4. 1V2 Power - Irradiance
IV2 AC Power - Irradiance 2021
900 —— AC_Power_IV2

80 = Measured Irr

800 ~—— poa_global

70

700
60

600
50
500

kw

40

W/m2

30

20
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Appendix E: Prediction

Kw

Power

1. Historical PV output and irradiance for clear sky day case study.

IV2 AC Power - Irradiance

900

= AC_Power_IV2
80 Measured Irr
800 ——— poa_global_east
70
ﬂ 700
60
600
50
500
o~
£
40 400 =
30 300
20 200
IOJ 100
0 0
Jul 12 Jul 14 Jul 16 Jul 18 Jul 20 Jul 22 Jul 24
2021
2. Model without irradiance values.
ANN Model MAE: 16.35 MSE: 355.82 RMSE: 18.86 Variance: 0.4
—s— Output
70 —— Prediction
60
50
40
30
20
10
0
] 10 20 30 40 50
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Appendix G: Discussion Section

kW

kW

1. Time Resolution Problem

1V2 AC Power - Irradiance 2021

100

—— AC_Power_TV2
Measured Irr
1200
80
1000
0 I 800
\ \ o~
\ £
600 =
40 |
l 400
20| ~ ! |
0\ 200
A\ J ' ) d | \
| (|
l : \ i yH \
P if \|
. L N _ L - - .
Aug 2 Aug 3 Aug 4 Aug 5 Aug & Aug 7 Aug B Aug 9 Aug 10
2020
IV2 AC Power - Irradiance 2021
900 —— AC_Power_IV2
80 Measured Irr
500 —— poa_global
70
700
60
600
50
500
o
%0 S
a00 =
30 300
20 200
10 100
[ 0
00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00
Apr 17, 2021
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2. Time Resolution Problem on Excel Representation

Raw PV power values:

Ly[er) 2021-08-06 10:00:00+00:00
Ly[+EY 2021-08-06 10:10:00+00:00
Ly[e19 2021-08-06 10:20:00+00:00
Ly[5y) 2021-08-06 10:30:00+00:00
Ly[%1:] 2021-08-06 10:40:00+00:00
Ly (o) 2021-08-06 10:50:00+00:00
Ly[5150) 2021-08-06 11:00:00+00:00
Ly[°¥} 2021-08-06 11:10:00+00:00
Ly[-°v4 2021-08-06 11:20:00+00:00
2021-08-06 11:30:00+00:00
Ly[2Y 2021-08-06 11:40:00+00:00
Ly[-13:) 2021-08-06 11:50:00+00:00
LY 2021-08-06 12:00:00+00:00

The hourly based PV power values:

:y¥4 2021-08-06 10:00:00+00:00
:£7£12021-08-06 11:00:00+00:00
4 2021-08-06 12:00:00+00:00

Irradiance Values are in the green box.

2021-08-06 10:00:00+00:00
exEl) 2021-08-06 11:00:00+00:00
cp:E¥8 2021-08-06 12:00:00+00:00
sp:E¥A 2021-08-06 13:00:00+00:00

80.69
51.97
53.53
63.11
78.01
80.26
49.76
64.04
75.11
70.26

39.2
49.69
54.39

50.39
67.93
58.01

14.2
14.1
11.5

11

76.02
49.37
51.87 1h
62.57| average:
74.72 65.24
76.88
50.49
61.2 1h
7166 average:
67.32 56.07
37.25
48.5
52.42

R R R R R R R R R R R R R

1 48.59

1 65.24

1 56.07
—

18.7 75 431
20.4 67 647.4
215 53 749.9
21.5 51 505.9.
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Appendix F: Python Codes

1. ANN Code

ANN_Sim = True

dataset =
pd.read_csv('/Users/PycharmProjects/pythonProject/Master_Thesis/PV/Combined_MET_PV
_data.csv')

print('‘Before Filtering', len(dataset.index))
dataset = dataset[dataset['AC_Power_1V2'] 1= 0]
#dataset = dataset[dataset['1\VV2_status] >= 1]
#dataset = dataset[(dataset['irradiance’] >= 50)]
print('Low_Irradiance_Filter', len(dataset.index))
#dataset = dataset[(dataset['elevation’] >= 10)]
print('Elevation_Filter', len(dataset.index))
#dataset = dataset[dataset['Clear_Sky Detection’] '=0]
print('Clear_Sky Days', len(dataset.index))
#dataset.to_csv('dataset.csv')

#print(dataset)

df = dataset[['referenceTime',
‘dew_point_temp’,
air_temp’,
‘relative_humidity’,
'poa_global_east’,
'wind_speed’,
'wind_category’,
'module_temp_east’,
‘hour_harmonic',
‘zenith',
‘elevation’,
‘azimuth',
'AC_Power_IV21]

# timerange

select_training = (df['referenceTime'] >='2020-04-01 00:00:00+00:00") &
(df['referenceTime'] < '2021-07-21 00:00:00+00:00")

df_training = df.loc[select_training]

#print(df_training)

print(‘traning count’, len(df_training))

select_test = (df['referenceTime'] >='2021-07-22 00:00:00+00:00") & (df['referenceTime'] <
'2021-07-25 00:00:00+00:00"

df_test = df.loc[select_test]

#print(df_test)
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print(‘test count’, len(df _test))

ratio = len(df_test)/len(df _training)
print(‘ratio=", ratio)

tf.random.set_seed(1234)

df_training.drop(columns=['referenceTime'], inplace=True)
df_test.drop(columns=['referenceTime'], inplace=True)

X_train = df_training.iloc[:, :-1].values # does not take Power
y_train = df_training.iloc[:, -1].values # only takes Power

X_test = df _test.iloc[:, :-1].values # does not take Power
y_test = df test.iloc[:, -1].values # only takes Power

print(X_train)

print(y_train)

y_train = np.reshape(y_train, (-1, 1))
print(X_train.shape, y_train.shape)

print(X_test)

print(y_test)

y_test = np.reshape(y_test, (-1,1))
print(X_test.shape, y_test.shape)

print(X_train.shape[1])

print("X_train mean values', np.mean(X_train, axis=0))
print("X_train std values', np.std(X_train, axis=0, dtype=np.float32))
print("X_test mean values', np.mean(X_test, axis=0))

print("X_test std values', np.std(X_test, axis=0, dtype=np.float32))
print("y_train mean values', np.mean(y_train, axis=0))

print('y_train std values', np.std(y_train, axis=0, dtype=np.float32))

if (ANN_Sim):
# scaling
sc_X = MinMaxScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test)

sc_y = MinMaxScaler()
y_train = sc_y.fit_transform(y_train)
y_test = sc_y.transform(y_test)

# defining accuracy of the function

def model_input(n_layers, n_activation, kernels):
model = tf.keras.models.Sequential()
for i, nodes in enumerate(n_layers):
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ifi==0:
model.add(Dense(nodes, kernel_initializer=kernels, activation=n_activation,
input_dim=X_train.shape[1]))
#model.add(Dropout(0.1))
else:
model.add(Dense(nodes, activation=n_activation, kernel_initializer=kernels,
input_dim=X_train.shape[1]))
#model.add(Dropout(0.1))

model.add(Dense(1))
optimizer = tf.keras.optimizers.Adam(learning_rate=0.0001)
model.compile(loss="mse’,

optimizer=optimizer,

metrics=[tf.keras.metrics.RootMeanSquaredError(name="root_mean_squared_error",
dtype=None)])
return model

seg_ANN = model_input([32, 16], 'relu’, 'glorot_uniform’)
print(seg_ ANN.summary())

hist = seq_ ANN.fit(X_train, y_train, batch_size=32, validation_data=(X_test, y_test),
epochs=80, verbose=2)

pd.DataFrame(hist.history).plot(figsize=(8, 5))
plt.grid(True)

plt.gca().set_ylim(0, 0.4) # set the vertical range to [0-1]
plt.show()

plt.plot(hist.history['root_mean_squared_error'])
plt.plot(hist.history['val_root_mean_squared_error'])
plt.title('(Root Mean Squares Error’)
plt.xlabel('Epochs’)

plt.ylabel(‘error")

plt.legend(['train’, 'validation'], loc="upper left’)
plt.show()

print(seqg_ANN.evaluate(X _train, y_train))
y_pred =seq_ANN.predict(X_test) # get model predictions (scaled inputs here)

y_pred_orig =sc_y.inverse_transform(y_pred) # unscale the predictions
y_test_orig = sc_y.inverse_transform(y_test) # unscale the true test outcomes

def mean_absolute_percentage(y_test_orig, y_pred_orig):
mape = np.mean(np.abs((y_test_orig - y_pred_orig) / y_test_orig)) * 100
return mape
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rmse_ANN = round(mean_squared_error(y_test_orig, y_pred_orig, squared=False), 2)
mse_ANN = round(mean_squared_error(y_test_orig, y_pred_orig, squared=True), 2)
r2_ANN = round(r2_score(y_test_orig, y_pred_orig), 2)
mae_ANN = round(mean_absolute_error(y_test_orig, y_pred_orig), 2)
mape_ANN = round(mean_absolute_percentage(y_test_orig, y_pred_orig), 2)

print(RMSE (Mean Squared Error): ', mse_ANN)
print(RMSE (Root Mean Squared Error): ', rmse_ANN)
print('Mean Absolute Error: ', mae_ANN)
print('Mean Absolute Percantage Error: ', mape_ANN)
print('R2 Score: ', 12_ANN)

classifier = KerasClassifier(build_fn=model_input,
batch_size=10,
nb_epoch=100)

accuracies = cross_val_score(
estimator=classifier,
X=X _train,
y=y_train,
cv=10
)

mean = accuracies.mean()

variance = accuracies.std()

print(f'K cross mean {mean}')
print(f'K cross variance {variance}')

train_pred = seq_ANN.predict(X_train) # get model predictions (scaled inputs here)
train_pred_orig = sc_y.inverse_transform(train_pred) # unscale the predictions
y_train_orig = sc_y.inverse_transform(y_train) # unscale the true train outcomes

print('Root Mean Squared Error Real Values Train', mean_squared_error(train_pred_orig,
y_train_orig, squared=False))
print('R2 Score Train Values', r2_score(train_pred_orig, y_train_orig))

np.concatenate((train_pred_orig, y_train_orig), 1)
np.concatenate((y_pred_orig, y_test_orig), 1)

fig = go.Figure()
fig.add_trace(
go.Scatter(x=results.index, y=results['Real Solar Power Produced'], name="Output’,
mode='"lines+markers"))
fig.add_trace(
go.Scatter(x=results.index, y=results['Predicted Solar Power'], name="Prediction’,
mode='"lines+markers"))
fig.update_layout(title=FANN Model MAE: {mae_ANN} MSE: {mse_ANN} RMSE:
{rmse_ANN} Variance: {r2_ANNY},
xaxis_title="Time',
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yaxis_title="Power")
fig.update_yaxes(title_text="Power (kW)")
fig.show()
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2. LR Code

if(linear_regression_sim):

y_train =y _train.reshape((-1,))
cv = KFold(n_splits=10, random_state=1, shuffle=True)

regr = linear_model.LinearRegression()
# Train the model using the training sets
regr.fit(X_train, y_train)

# Make predictions using the testing set
y_pred = regr.predict(X_test)

print('Coefficients: \n', regr.coef )
# The mean squared error
print("Mean squared error: %.2f"

% mean_squared_error(y_pred, y_test))
# Explained variance score: 1 is perfect prediction
print("Variance score: %.2f' % r2_score(y_pred, y_test))
MSE = round(mean_squared_error(y_test, y_pred), 2)
#r2_score = round(r2_score(y_test, y_pred), 2)

def mean_absolute_percentage(y_test_orig, y_pred_orig):
mape = np.mean(np.abs((y_test_orig - y_pred_orig) / y_test_orig)) * 100
return mape

rmse_LR = round(mean_squared_error(y_test, y_pred, squared=False), 2)
mse_LR = round(mean_squared_error(y_test, y_pred, squared=True), 2)
r2_LR =round(r2_score(y_test, y _pred), 2)

mae_LR = round(mean_absolute_error(y_test, y_pred), 2)

mape_LR = round(mean_absolute_percentage(y_test, y_pred), 2)

scores = cross_val_score(regr, X=X_train, y=y_train, scoring="neg_mean_absolute_error’,
cv=cv, n_jobs=-1)

print('Cross Validation accuracy scores: %s' % scores)

print('Cross Validation accuracy: %.3f +/- %.3f' % (np.mean(scores), np.std(scores)))

y_test =y _test.flatten()
X_time = X_time.sort_values()

fig = go.Figure()

fig.add_trace(go.Scatter(x=X_time, y=y_test, name="Output’, mode="lines+markers"))

fig.add_trace(go.Scatter(x=X_time, y=y_pred, name='Prediction’, mode='"lines+markers'))

fig.update_layout(title=f'LR Model MAE: {mae_LR} MSE: {mse_LR} RMSE:
{rmse_LR} Variance: {r2_LR},
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xaxis_title="Time',
yaxis_title="Power")
fig.update_yaxes(title_text="Power (kW)
fig.show()

def plot_learning_curves(regr, X, y):

train_errors, val_errors =[], []
for m in range(1, len(X_train)):
regr.fit(X_train[:m], y_train[:m])
y_train_predict = regr.predict(X_train[:m])
y_val_predict = regr.predict(X_test)
train_errors.append(mean_squared_error(y_train[:m], y_train_predict))
val_errors.append(mean_squared_error(y_test, y_val_predict))
plt.plot(np.sgrt(train_errors), "r-+", linewidth=2, label="train")
plt.plot(np.sqrt(val_errors), "b-", linewidth=3, label="val")
plot_learning_curves(regr, X, y)
plt.show()

# Learning Curve

def plot_learning_curve2(train_sizes, train_scores, test_scores, title, alpha=0.1):
train_scores = -train_scores
test_scores = -test_scores
train_mean = np.mean(train_scores, axis=1)
train_std = np.std(train_scores, axis=1)
test_ mean = np.mean(test_scores, axis=1)
test_std = np.std(test_scores, axis=1)
plt.plot(train_sizes, train_mean, label="train score’, color="blue’, marker='0")
plt.fill_between(train_sizes, train_mean + train_std,
train_mean - train_std, color="blue’, alpha=alpha)
plt.plot(train_sizes, test_mean, label="test score’, color="red’, marker='0")
plt.fill_between(train_sizes, test mean + test_std, test_mean - test_std, color="red,
alpha=alpha)
plt.title(title)
plt.xlabel("Training data’)
plt.ylabel(rMAE")
plt.grid(Is="--")
plt.legend(loc="best")
plt.show()

plt.figure(figsize=(9, 6))
train_sizes, train_scores, test_scores = learning_curve(regr, X=X_train, y=y_train,
cv=5, scoring="neg_mean_absolute_error")
fig_Ir = plot_learning_curve2(train_sizes, train_scores, test_scores, title="Learning curve
for LR")

122



Appendices
3. Correlation and PCA Analysis

if (correlation_plot):
mask = np.zeros_like(df[features].corr())
mask[np.triu_indices_from(mask)] = True
with sns.axes_style("white"):
f, ax = plt.subplots(figsize=(9, 7))
ax = sns.heatmap(df[features].corr(), mask=mask, vmax=.8, square=True, annot=True)
plt.tight_layout()
plt.show()

if (PCA_analysis):

X = df.loc[:, features].values
X = StandardScaler().fit_transform(X)
print(np.mean(X),np.std(X))

pca = PCA(n_components=4)

principalComponents = pca.fit_transform(X)

principal_df = pd.DataFrame(data=principal Components, columns=['Principal Component
1', 'Principal Component 2', 'Principal Component 3', ‘Principal Component 4'])

print(pca.explained_variance_ratio_.round(2))

figl = plt.figure(figsize=(8, 8))

ax = figl.add_subplot(1, 1, 1)

ax.set_xlabel('Principal Component 1', fontsize=15)

ax.set_ylabel('Principal Component 2', fontsize=15)

ax.set_title('2 component PCA', fontsize=20)

plt.scatter(principal_df['Principal Component 1], principal_df['Principal Component 2])
plt.show()

fig2 = plt.figure(figsize=(8, 8))

ax2 = fig2.add_subplot(1, 1, 1)

ax2.set_xlabel('Principal Component 1', fontsize=15)

ax2.set_ylabel('Principal Component 3', fontsize=15)

ax2.set_title("2 component PCA', fontsize=20)

plt.scatter(principal_df['Principal Component 17, principal_df['Principal Component 3)
plt.show()

variance_exp_cumsum = pca.explained_variance_ratio_.cumsum()

fig, axes = plt.subplots(1, 1)

plt.bar(range(1, 1+pca.n_components), variance_exp_cumsum, color="#FFB13F")
plt.xticks(range(1, 1+pca.n_components))

plt.title('Screeplot of Variance Explained %)

plt.xlabel(‘# of PCs’)

plt.show()
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4. A Plotting Example

if(plot_features_2yaxis):
fig = make_subplots(specs=[[{"secondary_y": True}]])

fig.add_trace(go.Scatter(

x=df['referenceTime"],

y=df['’AC_Power_IV21,

name="AC_Power V2",

secondary_y=False,

)
# add line / trace 2 to figure
fig.add_trace(go.Scatter(

x=df['referenceTime",

y=df['irradiance’],

name="Measured Irr'),

secondary_y=True,

)
fig.add_trace(go.Scatter(

x=df['referenceTime",

y=df['poa_global_east],

name="poa_global east'),

secondary_y=True,

)
fig.update_layout(title_text="I\V2 AC Power - Irradiance’)
fig.update xaxes(title_text="Time")
fig.update_yaxes(title_text="kW', secondary_y=False)
fig.update_yaxes(title_text="W/m2', secondary_y=True)
plotly.offline.plot(fig, filename="'ClearSky_Irradiance_Power ' + '.html’)
fig.show()
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