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Summary:  

Photovoltaic (PV) power production predictions have gained immense popularity in recent 

years. More and more solar power connects to grids. Considering PV power dependency 

on various weather parameters, improvements in power prediction possess a massive 

potential for optimisation and accurate forecasting.  

 

The main objective of this study is to understand weather parameters that affect PV power 

production. Furthermore, proposing a model to predict power output from historical data 

is one of the goals. It is expected to the developed PV power prediction model will give 

insights into forecasting.  

 

PV plant historical data was kindly shared by Lede Energi for Skagerak Arena in Skien. 

Meteorological data was gathered through meteorological institute frost application 

programming interface (API) for Gjerpen station which is operated by NIBIO. Air 

temperature, global horizontal irradiance, wind speed, wind category, relative humidity, 

and dew point temperature variable in addition to module temperature, and clear sky 

parameters from pvlib package in python were subject to examination. These variables’ 

impact was investigated on PV power output for a period from 2020 to 2021 on an hourly 

basis. In particular, weather parameters analysed from 2018 to 2021 to understand changes 

in climate on a yearly basis. After merging all data, correlation and principal component 

analysis were performed. Linear regression (LR) and artificial neural networks (ANNs) 

models were proposed and were tested on various cases.  

 

Models were best performed on consecutive clear sky days with mean absolute error of 

2.04 kW, and 1.66 kW for LR and ANN, respectively. ANN did a better job of prediction 

consecutive clear sky days compared to LR. Furthermore, models were evaluated for a 

longer testing set period from 2020 to 2021. While the mean absolute error for ANN was 

2.41 kW, LR was 2.92 kW. The study indicates that the ANN model’s prediction results 

are slightly improved compared to LR models. Besides, handling different sampling rates 

within datasets and their impact on the model accuracy were discussed.  

 

As a result of the meteorological variable selection case, it is concluded that while the 

model run by only irradiance and air temperature values produce sufficient results, the best 

performance was obtained by adding relative humidity and other sun parameters. In 

addition, it is found out that all variables that were investigated have an effect on power 

value predictions during relevant weather variable fluctuation periods.  
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1 Introduction 
Without a doubt, photovoltaic (PV) systems play an important role in changing the world by 

its emission free, and quick installation capabilities. In addition to that, the decreasing trend in 

manufacturing costs makes PV systems more attractive amongst other renewable sources. 

According to Rystad energy, prices in 2020 which was 0.20$ per watt peak (Wp), jumped to 

0.26-0.28$ per Wp in the second half of 2021 due to the material price inflation [1]. Even 

though the current downward trend has been disrupted by the latest price inflation around the 

globe, it is expected that PV system installations continue to surge in the coming years. Solar 

PV systems installed capacity was 843 TWh in 2021 and International Energy Agency (IEA) 

expects that PV capacity reaches up to 4958 TWh by 2050 [2]. Considering the goals in PV 

capacity, grid capacity and its optimisation for renewable sources are subject to debate. Lately, 

grid companies put a great deal of effort into grid optimisation and improvements.  

 

When it comes to PV power production, battery systems have gained popularity due to the lack 

of power production when the sun is out. That is why, solar power production systems, whether 

residential or commercial, commonly consist of solar modules with battery systems. While all 

parts work in harmony, power generation and consumption balance determine the electricity 

flow either to the grid or batteries. At this level of penetration, prediction of solar energy comes 

on the scene. Power production companies have integrated forecasting outcomes into their 

systems. As a result of this integration, it has become possible to get the most out of the sun 

energy and feed into the grid with the most effective amount. Hence, allocation of power 

depending on demand and load allows companies to maximize their profits in addition to 

increased grid security. However, solar power forecasting is a challenging task and may result 

in economic losses if it is not managed effectively. There are many different approaches for 

forecasting models such as using only irradiance values or taking into account other 

meteorological parameters. Models also differ in prediction methods such as regressions, and 

machine learning algorithms. To reach out higher accuracy and prediction capability of power 

with minimal errors, forecasting models are continuously in the process of improvement. 

Different algorithms and model inputs with feature and variable selection are being studied by 

researchers. Furthermore, the prediction of solar power output not only reduces the probability 

of power imbalance in the market but also secures the high penetration of PV systems in the 

grids for extended periods.  

 

Since this study was conducted in Norway, it might be beneficial to provide some information 

on PV trends in Norway. In 2020, 40 MW of solar panels was installed and the total capacity 

has reached 160 MW. DNV GL predicts that installed capacity will increase to 1.75 GW by 

2040 [3]. Additionally, it is expected that PV will account for only 1% in total electricity 

production. Relatively low solar radiation compared to central Europe degrades Norway’s 

power business motivation for PV systems. The average daily solar radiation is 2.46 kWh/m2 

and it can reach up to 5.5 kWh/m2 during summer [4]. Precisely, advances in PV technology 

and better optimisation with forecasting provide unique opportunities to the national grid. 
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1.1 Task Description 

The main objective of this study is to understand weather parameters that effect PV power 

production. Furthermore, proposing a model to predict power output from historical data is one 

of the goals. It is expected to the developed PV power prediction model will give insights into 

forecasting.  

 

Historical data on the weather observation from MET (The Norwegian Meteorological 

Institute), and photovoltaic power from Skagerak Arena on an hourly basis will be correlated 

to electricity production from solar energy. Main data for this task are observations from 

Gjerpen weather station (Skien) and Skagerak Energilab (Skagerak Arena, Skien). Observed 

variations in electricity production will be discussed related to the proper operation of the 

electrical network.   

 

The Norwegian Meteorological Institute, IFE (Institute for Energy Technology), and Skagerak 

Energi are the project partners of the study. Submitted task description can be found in 

Appendix A.  

1.2 Motivation 

Skagerak Arena is home to the first of its type project in Norway. Odd soccer club’s Skagerak 

Arena in Skien, Norway proved that lights can be powered by local renewable sources when 

the team plays in the evenings. 5,700 square meters of solar modules, with a nominal power of 

800 kWp were placed on the rooftop of the stadium by Skagerak Energi. Getting the chance of 

analysing power data from such a special place, Skagerak Arena, was one of the main 

motivations.  

 

One of the project partners, IFE, carries on a project called Sunpoint which is a research project 

for analysing solar power potential. The project aims to increase the estimation energy 

production of solar power plants in Norway. One of the main study areas of the project is 

predicting more accurate solar irradiance values for Norway. Thus, localised accurate data will 

be provided Norwegian solar energy market. By using PV power data and measured irradiance 

values, this study’s outputs can be another valuable input to other projects within Norway.   

 

The main driven motivation throughout the thesis is dealing with large datasets, and having a 

chance to practise data dealing techniques, statistical methods and machine learning 

algorithms. Writing python codes except for libraries from the scratch was a challenging part 

of this study. Furthermore, Norway is one the countries that is located in high latitude. For such 

a country that has challenging climate, understanding the power of sunlight reaches on the 

surface and its potential for electricity production is going to be an exciting part of this study.   

 

This thesis is one of a kind for Norway in terms of scaling of power and content of the study 

such as clear sky algorithms, extensive information meteorological variable – PV data 

relationship, and meteorological variable input selection.  
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1.3 Brainstorm for deciding on models   

At the beginning of the project, no specific model for historical data analysis and forecasting 

were stated. The chosen models were decided in the process of literature research. As is well 

known, PV power production is heavily dependent on the amount of irradiance that solar 

modules receive. It is also common knowledge that as air temperature increases so as PV cell 

temperature, the module efficiency decreases. A similar temperature effect is caused by wind 

speed. The higher wind speed means the lower cell temperature. All fluctuations seem that 

there is a linear relationship. That is why a simple but effective model such as linear regression 

may worth to be investigated. However, there are other variables that the relationship with PV 

power production is not clearly known such as wind direction or humidity. Moreover, different 

underlying relationships during season changes or the combination of other variables may 

produce non-linearity in data. In understanding and unrevealing hidden relationships in 

datasets, more advanced methods are used. For example, artificial neural networks (ANNs) are 

famous for achieving higher accuracy in time series forecasting [5]. In the literature, it is 

possible to follow that there is a growing interest in PV power prediction and forecasting by 

using ANNs [6]. Other supervised machine learning methods such as random forests (RF), and 

support vector machines (SVMs) are also good fits for predictions [7].  

1.4 The Outline of the Thesis 

The thesis is structured as follows. In section 2, it is given a general theoretical background on 

PV systems, and the working principles. In addition, PV cell information is provided based on 

the cell type that is used in the plant. In the second part of the theoretical background section, 

short information is available for meteorological variables and measurement methods. In the 

literature review part, data dealing methods specifically on meteorological variables and PV 

power values analysed through articles in the literature. Afterward, machine learning 

algorithms and prediction techniques are explored and model evaluation methods are 

presented.  

 

In section 3, the PV plant layout and meteorological station are presented. Besides, the data 

type and time scale are introduced. Data processing methodology is also explained in this 

section. Moreover, clear sky studies where different methods have been compared, are 

discussed in this part with examples. It has aimed by clear sky part that the by using measured 

irradiance values, detecting clear sky days automatically, and filtering out from the datasets 

easily for future analysis. Correlation analysis is conducted to analyse the relationship within 

input parameters and principal component analysis is used to investigate the possibility of 

dimension reduction and a better understanding of feature interdependence.  

 

In section 4, all results including historical data prediction and forecasting are presented with 

figures and tables.  

 

Section 5 discusses the outcome of the results and gives information on different trials on the 

way to forecasting steps. In addition, some suggestions for the continuity of this project are 

stated as future work. And lastly, in section 6, conclusions on all results and discussions are 

delivered. Some important parts from the code are given in Appendix F.   
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2 Theoretical Background 
In this part, some theoretical knowledge on PV systems, meteorological variable explanations 

and measurements and literature survey are presented. It is also aimed to give some insights 

into general concepts of thesis work components to readers.  

2.1 Photovoltaic Systems 

A typical photovoltaic system consists of three main groups. These are PV modules, inverters 

and grid or battery connection parts. Several photovoltaic cells are assembled in series or 

parallel circuits and a module is formed. A photovoltaic panel may include one or several 

modules together and gets the form ready to install. Moreover, a complete power generation 

unit is named as an array where PV panels are connected in series or parallel connections. 

Figure 2.1 describes a compact illustration of a cell, a module, a panel and an array system.  

 

 
Figure 2.1: Photovoltaic cells, modules, panels and arrays [8]. 

Unless direct current (DC) is produced from PV modules directly stored battery, it is converted 

to alternative current (AC) by inverters to be ready last user consumption. However, the 

electricity goes into several steps before being connected to the grid. First of all, a junction box 

is installed commonly behind the PV panels to harness electricity from the panel. In addition, 

the junction box includes bypass diodes to prevent the PV panel from any reverse current due 

to shadow or darkness. The junction box also includes string fuses is used to protect the wiring 

from overloading. Next, the electricity should be monitored by a controller. The controller box 

monitors and tracks the PV generation from the panel and the information feeds up next 

processes. DC electricity generated from PV panels is converted into alternative current by 

inverters. In PV systems, inverters are particularly designed for working in the maximum 

power point (MPP). The inverter is adjusted to get the maximum possible power from PV 

panels by the MPP tracking system. An electronic circuit adjusts the voltage so that the inverter 

works at the PC maximum power point. In case of fault status, direct current load switches 

isolate the inverter from the PV generator in large multi-inverter systems. Lastly, power 

metering and controlling systems work in harmony to provide electricity for the grid or 

consumer unit. Cabling is another important part of PV systems as different cable types are 
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used for module string cables, DC cables and AC cables. Nominal voltage in addition to 

mechanical and weather determine the specification of cables.  

2.1.1 PV Cell  

A PV cell absorbs sunlight and converts it to electricity by creating an electrical current. Cell 

power output heavily depends on solar irradiance, ambient temperature, and other factors that 

could lead to energy loss. PV Cell technology evolves rapidly to maximize power output and 

new cell types are coming on the market. While silicon solar cell accounts for the vast majority 

of the market, other types of cells are becomingly desirable such as crystalline silicon thin-film 

solar cells, high-efficiency III–V multijunction solar cells, and organic photovoltaics.  

 

A typical semiconductor solar cell consists of the n-type and p-type layers, anti-reflective layers 

and metal contact. When light hits the surface of a silicon semiconductor solar cell, light 

triggers electrons in the silicon and results in electron movement from the n-type layer to the 

p-type layer. Thus, a flow of electricity is created.  

 

In this part, one particular type of solar cell will be explained in detail. One of the advanced 

solar cell types is the Passivated Emitter and Rear Cell (PERC) which is also installed in 

Skagerak Arena. PERC cells can be classified as rear passivated cells that differ from 

traditional solar cells due to the capability of a high amount of light capture. Figure 2.2 

compares a conventional cell and a PERC cell. In particular, electrons are not captured by the 

rear surface and reflected electrons contribute to the current again in the PERC cell [9].     

 
Figure 2.2: Conventional and PERC Cell comparison [9]. 

Figure 2.3 shows a Passivated Emitter, Rear Locally-doped (PERL) Cell which is one of the 

most common PERC configurations [10]. While the pyramid surface captures most of the light 

with its design, rear contact with the oxide surface ensures that getting the most out of the light. 

The light that is reflected from rear contact reaches the surface of pyramids and goes back into 

the cell [11]. Thus, the efficiency of the cell may reach up to 25%.   

 
Figure 2.3: PERL Cell (Passivated Emitter, Rear Locally-doped) [10]. 
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PERC cells which are used in Skagerak Arena have a brand name called REC Twinpeak 2 

Series Module that has 120 half-cut multi-crystalline cells. Half-cut cell technology aims to 

reduce power loss by splitting standard square cells into two smaller parts. As a result, internal 

current decreases by 50% and reduces power loss as well as lowers resistive losses [12].  In 

addition, multi-crystalline refers to multiple separate crystals forming the cell. It is worth 

mentioning that in contrast to multi cells, mono cells have a higher energy yield as absorption 

efficiency is higher [12].  

2.1.2 PV Module 

When it comes to installing multi-PV modules and connecting to each other, it is important to 

design module arrays to get the most out of PV power production. Series and parallel module 

combinations are two ways of installing a PV module system. In series connections, each 

module's power production occurs at the same current and voltage values add up while in 

parallel connection, power production occurs at some voltage and current values add up [13]. 

Figure 2.4 represents an array distribution including series and parallel connections. If a module 

produces different power from others in a string due to for example partial shading, bypass 

diodes prevent other modules from failing. The shaded module is not influenced by reverse 

voltage and does not consume any power from other modules due to bypass diode blocking. 

Similarly, blocking diodes in series ensures that the current flows only in one direction and the 

current does not go back to failing strings or modules. Since the current flow in a series 

connection is determined by the lowest current value, if there is a current reduction in a cell or 

module, it will result in a loss of power. Similarly, the system voltage is determined by the 

lowest voltage in a parallel connection and lower voltage results in power loss.    

 

 
Figure 2.4: Parallel and Series connection of module in a PV system [13]. 

Shading plays an important role in the energy yield of PV systems. Partial shadowing affects 

PV output both current and voltage values. Seapan et al. [14] investigated the shading effect 

on a PV module by analysing maximum voltage Vmp and maximum current Imp values. In 
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Figure 2.5, xc indicates the ratio of shaded area in each cell. As it is seen clearly from the figure 

that current and voltage values are reduced caused by the shading.  

 
Figure 2.5: Variation of the Vmp and Imp caused by the shading [14]. 

The distinction between series and parallel module connection and its effect on voltage and 

current values are illustrated best in Figure 2.6. As it is explained above, a series connection of 

modules which is called a string produces the same amount of voltage and the voltage values 

are added up. Similarly, the parallel connection of strings produces the same amount of current 

and is added up. Hence, a PV system capacity reaches up to gigawatts.  

 
Figure 2.6: Interconnection of PV modules [15]. 

2.1.3 Electrical Characteristics 

In the PV module specification sheet, it is stated that electrical data such as nominal power, 

open-circuit voltage, or short circuit voltage as well as mechanical data. Nominal power voltage 
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(VMPP) (V) and nominal power current (IMPP) (A) determines the nominal power (PMPP) (Wp) 

of the module by Equation (2.1). 

                                                                   𝑃 = 𝐼 𝑥 𝑉  (2.1) 

Open circuit voltage VOC (V) is the maximum voltage of the module where the current is zero. 

In other words, the electrical current does not flow at this point. Short circuit current (ISC) (A) 

is measured at the zero voltage in the module. It can be said that open-circuit voltage and short 

circuit current values are the limits of the module and no power is obtained beyond those limits. 

Solar panel efficiency is calculated by dividing the power value at maximum (PMAX) by 

incident power (PIN) [16]. Equation (2.2) shows the solar panel efficiency formula.  

                                                           𝜂 =  
𝑃𝑀𝐴𝑋

𝑃𝐼𝑁
=  

𝐹𝐹𝑉𝑂𝐶𝐼𝑆𝐶

𝑃𝐼𝑁
     (2.2) 

FF is the fill factor and is calculated as in Equation (2.3). The fill factor is the maximum power 

values of voltage and current divided to open circuit voltage and short circuit current.  

                                                               𝐹𝐹 =  
𝑉𝑚𝑝𝐼𝑚𝑝

𝑉𝑂𝐶𝐼𝑆𝐶
      (2.3) 

PIN values are calculated under standard test conditions (STC) where air mass of 1.5, vertical 

irradiance of 1000 W/m2, and cell temperature of 25 ºC [16]. When it comes to comparing the 

panels, having the same STCs ratings does not necessarily mean that panels will produce the 

same amount of electricity. Panels may have different thermal losses or temperature 

coefficients and behave differently under low light conditions. Nominal operating cell 

temperature specifications (NOCT), on the other hand, reflect real world case output. Test 

values are obtained based on air mass of 1.5, irradiance 800 W/m2, air temperature 20 ºC, and 

wind speed 1 m/s. It is important to emphasise that while STC is based on cell temperature, 

NOCT is air temperature. Nominal specifications can be defined as for modules and named as 

nominal operating module temperature (NOMT). In the process of the design phase, STCs 

values are used for sizing. Nominal operating values have a good source for comparing panels 

that have the same STC rating.  

 

In the panel specification sheets, temperature ratings are listed. It is a scientific fact that 

electricity output is influenced by irradiance, temperature, and temperature associated with 

panel/cell cooling effect caused by wind speed. ISC, VOC, and PMPP values are also defined by 

temperature correction coefficients. For example, nominal power drop in percentage per 

temperature change.   

2.1.4 Grid Connection 

Standalone or medium/large scale PV output power is connected to national or local grid 

networks under certain regulations. Typically, the DC-AC inverter output is connected to the 

AC circuit breaker to avoid overloads. Theoretical PV output power is always reduced due to 

losses such as module soiling, shading, DC losses, MPP mismatch error, inverter and AC 

losses. An electricity meter or an advanced analyser measures the electricity provided to the 

grid for correct billing and recording. Lastly, transformers readjust the alternating current 

circuit and PV production is distributed to the grid network.    
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2.2 Available Meteorological Variables and Measurement 

The weather plays an important role in PV power production. Ideal conditions for PV 

production are receiving high irradiance, cold and windy weather. The sun releases solar 

radiation that a form of energy and roughly 1361 W/m2 radiation hits the top of the atmosphere. 

30% of this radiation returns to space and the rest reach the surface of the planet [16].  

 

Weather stations are the perfect fit for measuring current weather parameters. Different sensors 

are capable of measuring different meteorological variables above a certain level of height from 

the ground. In this study which is subject to analysing PV output correlation to meteorological 

variables, the station only measures certain variables such as solar irradiation, air temperature, 

relative humidity, dew point temperature, and wind direction and speed. That is why only these 

variables are explained in detail.  

2.2.1 Solar Irradiation 

Irradiance can be defined as the amount of energy from the sun hitting a square meter and 

having a unit of W/m2. Global radiation is taken into account for PV power output calculations. 

Moreover, total downwelling shortwave radiation from the sun includes ultraviolet, visible and 

infrared light [17]. A pyranometer measures short-wave radiation which is the radiation flux 

through a horizontal surface. Short-wave radiation has subcategories as downwelling and 

upwelling short-wave radiation. While downwelling radiation consists of direct solar beams 

and diffusive components, upwelling radiation only measures light reflection from the surface. 

That is why downwelling short-wave radiation is responsible for solar cell power production. 

Specifically, in PV prediction modelling, sun position inputs are possible inputs. Figure 2.7 

shows how the sun position is identified with solar elevation angle, azimuth, and zenith.  

 

 

 
Figure 2.7: Sun position angles with respect to directions [19]. 

 

For measuring, CM11 or CM3 type from Kipp&Zonen pyranometers are used in Gjerpen 

station [18].  
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2.2.2 Wind Speed and Direction 

Wind speed and direction are measured by an anemometer, either 2 m or 10 m above sea level. 

For wind direction measurement, mechanical parts of the wind vane operate at a 360º angle 

without stopping. A cup-anemometer-wind-vane pair is generally located at opposite ends of 

the horizontal bar to avoid a wind tunnel effect [17]. Measurement units are m/s and degree º. 

In the Gjerpen station, wind speed is the absolute value of the wind speed in the horizontal 

plane [18].  

2.2.3 Air Temperature 

Atmospheric temperature is measured by digital sensors. Different type of sensors has different 

sensitivity measurement. The output voltage is converted to degrees Celsius ºC.  

2.2.4 Relative Humidity 

Relative Humidity is simply a measure of water content in the air. Relative humidity is one 

way of measuring atmospheric humidity. The measurement is done by either a traditional 

psychrometer or thin-film polymers. Thin-film polymers absorb and desorb water throughout 

the relative humidity changes and the electric circuit is converted to relative humidity 

percentage [17]. Relative humidity heavily depends on atmospheric temperature and is 

sensitive to temperature changes. In rainy conditions, relative humidity reaches up to 100%.  

2.2.5 Dew Point Temperature 

The temperature below which water vapour in a volume of air at constant pressure condenses 

into liquid water is known as the dew point [20]. The point where air saturation occurs with 

moisture is called dew point temperature. Dew point temperature is affected by humidity which 

is also affected by atmospheric temperature. The measurement is done by either a dew point 

hygrometer or an equation that requires air temperature and humidity values.  

2.3 Literature Review 

There are two main approaches to estimate solar power production in the literature. While it is 

becoming popular to use machine learning methods to evaluate solar power production, there 

are also calculations based on correlation coefficients and proposing an equation for 

forecasting. When it comes to forecasting by using machine learning algorithms, artificial 

neural networks (ANN) and support vector machines (SVM) are produced reliable results 

under varying environmental conditions [21]. Studies on predicting solar PV output can be 

classified into two main groups; data handling and correlation analysis, model structure and 

machine learning algorithms.  In the literature survey part, researcher’s methodology and their 

findings will be presented under two main subtopics.   

2.3.1 Data Handling and Correlation Analysis 

Meteorological data and historical PV output data have to be handled differently as they are 

produced from separate sources. Meteorological data values vary daily and seasonally. That is 

why zero values, outliers and categorical information such as cloudiness require case specific 
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data handling. In addition, correlation analysis within the meteorological data holds valuable 

information for location base analysis. In contrast to meteorological data, PV output data has 

characteristic variations based on PV module location and inverter variations. Moreover, it is 

common that low light conditions, snow on module data, before sunrise and after sunshine data 

are filtered out from the PV output database to measure PV system performance.    

 

N. Maitanova et al. [22] predict photovoltaic power based on publicly available weather 

variables. The study does not take into account solar irradiance values and tries to make a 

reliable prediction based on other meteorological data such as temperature, wind speed, 

humidity, precipitation, and cloudiness. In the contrast to other studies, this paper proposes a 

method to convert raw PV data to adjusted values based on clear-sky condition data and 

maximum PV power data as a new input to the algorithm. Hence, publicly available weather 

reports which do not include solar irradiance values can be used for PV power forecast by 

adjusting historical PV output power by the pvlib clear-sky program. As a result, it is concluded 

that prediction with solar irradiance values produces accurate outcomes whereas the model 

without solar irradiance values is still suitable for energy management systems for individual 

energy production purposes.  

 

L. Hernández et al. [23] analyse weather variables and PV power production data. In the 

process of data pre-processing PCA method is used to remove outliers. Pearson’s linear 

correlation coefficient method is employed to find correlation coefficients between weather 

variables and electrical power production. The study also calculates seasonal average weather 

variables and correlations to PV power production as an input for classification algorithms for 

further studies.  

 

T. AlSkaif et al. [24] study 9 different meteorological variables in two different locations. 

Interdependency of variables is determined by correlation coefficients before moving forward 

to dimensionality reduction with PCA. PCA results vary in two cases such as some 

meteorological variables are less correlated to each other. The study concludes that reduced 

subspace estimation performs well in the linear support mechanism model. As a result, 4 

meteorological variables generate similar results compared to 9 meteorological variables. 

While for one location, humidity, temperature, visibility, and wind speed are important 

meteorological variables; humidity, visibility, temperature and could cover are valuable for the 

second location.  

 

There are also some studies for photovoltaic system evaluation for Norway. These studies take 

into account challenging environmental conditions such as low light and snow. M.B. Øgaard 

et al. [25] evaluate the performance of monitoring algorithms for photovoltaic systems in 

Norway. To evaluate snow cover on the PV modules, DC voltage variations were investigated. 

The study found that DC voltage variations increased during partial snow cover. By 

determining a threshold for DC voltage variations, partial and full snow cover data were 

removed. In addition, irradiance values below 50 W/m2 exclude morning and evening effects. 

In another study, M.B. Øgaard et al. [26] investigates the effects that reduce the stability of PV 

monitoring at high latitude locations such as Norway. Filtering out PV output data by using 

following criteria is suggested for specific location:  50 W/m2 < irradiance level < 200 W/m2, 

snow depth on the ground < 0m. While below 50 W/m2 irradiance level represents the low light 

condition, filtering out data above 200 W/m2 removes outliers.  
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G. Kim et al. [27] implement the Pearson correlation method to investigate the relation between 

weather variables and PV power output. After finding correlation coefficients, different model 

equations are presented and each equation model evaluation is done by mean absolute 

percentage error (MAPE) and root mean square error (RMSE). It is concluded that humidity 

has an impact on the accuracy of power prediction where environmental conditions have a low 

ambient temperature, low irradiance, and high humidity.  

2.3.2 Machine Learning Methods 

S. Leva et al. [28] use artificial neural networks (ANN) to make 24h ahead forecast based on 

the weather forecast and historical power measurements. A clearness index is proposed based 

on cloud conditions and provided as input to the algorithm. As a result of the training of the 

ANN model with historical data, weather forecast data is used as input. One of the highlights 

is that pre-processing step of historical data has an influence on ANN method accuracy. That 

is why historical data were used for the training set. After model evaluation, it is proved that 

solar irradiance is highly correlated to forecast accuracy.  

 

I. Jebli et al. [29] investigate four different machine learning methods. Linear regression (LR), 

random forests (RF), artificial neural networks (ANN) with different weights of the hidden and 

output nodes, and support vector mechanism (SVM). Two different locations were chosen for 

the study as Brazil and Morocco. Pearson coefficient analysis was conducted to determine the 

most relevant meteorological data. The study concluded that ANN produced accurate 

predictions for both historical and forecasted data. The nonlinearity handling capability of 

ANN has assumed the reason for leading to better forecasting results among other machine 

learning algorithms.   

 

X. Wang et al. [30] used several machine learning methods to compare each other. Lasso 

regression, random forests, support vector regression model, and gradient boosting regression 

model produced promising results. Weather type classification and time correlation were 

proposed to tackle with overfitting and underfitting problems.  

 

N. Maitanova et al. [22] preferred a more advanced machine learning method called Long-

Short Term Memory (LSTM). LSTM method is a developed version of recurrent neural 

network (RNN) with taking into account how long the information should be kept in the layer. 

In addition, LSTM does a good job of handling time series. The study suggested an LSTM 

method that handles continuous data input. After the data normalization step, the architecture 

of the model consists of the following features; five input parameters in the first layer, 

depending on the data density, two hidden layers with 64 and 32 neurons. The model was 

trained for 100 epochs. To make better predictions against season change, the model was 

trained for both cold and hot days in the study. The paper concludes that model accuracy 

depends on training set size, LSTM network configuration and input features.  

 

Similarly, other studies for solar power forecasting based on weather inputs uses different 

machine learning algorithms and evaluate results. M. Malvoni et al. [31] suggest a hybrid 

machine learning algorithm called Group Least Square Support Vector Mechanism,   M. P. 

Almeida et al. [32] used Quantile Regression Forests to make hourly PV power output 
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prediction, and L. Li et al. [33] adopted Deep Belief Network (DBN) model to build a 

regression model and to make short-term PV power output forecasting.   

2.4 Prediction Methods 

In this chapter, it will be given information on the prediction methods used in this study. Linear 

regression and the ANN model with model evaluation methodology will be explained in this 

part.  

2.4.1 Linear Regression 

In prediction applications, linear regression calculates the weighted sum of input features. An 

intercept or bias term exists as a constant. In case of multiple features are fed into the regression 

model, it is called multiple linear regression. Training of linear regression and setting model 

parameters is the starting point of building a model. The training dataset is fed into the 

regression model and the algorithm learns how to best fits the training dataset. Scatter plots are 

useful to analyse the data to determine the strength of data relationship with other features. To 

evaluate model performance, Root Mean Square Error (RMSE) is used which is one of the 

most common performance indicators [34]. The association of the observed data and variables 

are evaluated by the correlation coefficient. Standardization or scaling has no big impact on 

the final performance. Scikitlearn uses Singular Value Decomposition (SVD) linear regression 

which decomposes the training set matrix into submatrices. The more complex dataset requires 

improved linear regression models such as Gradient Descent.  

2.4.2  Artificial Neural Networks (ANN) 

ANN is one of the most efficient methods in prediction applications. Deep learning algorithms 

are frequently custom made for a specific application [35]. Specifically, ANN methods are 

commonly used in forecasting studies where non-linearity exists in a database [21]. In general, 

a neural network consists of three layers that are called the input layer, hidden layer and output 

layer as it is seen in Figure 2.8. The input layer is the place where raw variables are stored and 

ready to feed into the network. The actual processing is done through hidden layers. The values 

are entered into a hidden node and are multiplied by weights. Each node in the network has 

some weights and a transfer function is responsible for calculating weighted sum of the inputs 

and the bias. The bias, b, is a scalar vector while the inputs, x, and the weights, w, are vectors.  

 

Scaling of input raw data is important in this step because unscaled data can take large weights 

and makes the algorithm unstable and increase the error. After computing weighted sums of 

hidden nodes, the output is sent to the activation functions which deal with non-linearity in the 

dataset. There are different types of activation functions. One popular function is the rectified 

linear unit function (RELU). In regression applications, linear activation functions are a good 

choice. As it is seen in Figure 2.9 that RELU function takes 0 if the value is negative, otherwise 

the real value is returned. As a result, the activation function decides whether the hidden node 

should be activated or not. The key limitation of the RELU transfer function is that values from 

transfer function flow to activation function are negative in the case of large weight updates. 

Therefore, the output of the activation function will forever be 0 which is called a dry RELU.  

 



2 Theoretical Background 

27 

Hidden layers are connected to an output layer which represents the prediction of a variable. 

The flow of variables is from inputs to outputs, so this architecture is called a feedforward 

neural network. The algorithm first makes a prediction and visits each layer in reverse, and 

then calculates the error contributed by each connection. In the final step, the algorithm adjusts 

the connection weights to decrease the error [34]. The loss function which is used during 

training, is commonly the mean squared error. However, if the training set includes loads of 

outliers, mean absolute error might be used, instead. 

 
Figure 2.8: An ANN network architecture. 
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Figure 2.9: ANN network nodes connection with functions. 

Once the model is created, the model should be compiled and specified loss function in addition 

to the optimizer to use. Later, the model is called by the fit method where X_train and y_train 

sets are introduced. The number of epochs and validation functions are also described in this 

part. There are other hyperparameters in a neural network such as batch size, learning rate and 

the number of iterations. Batch size has a big impact on model performance and training time. 

In addition, the batch size is related to GPUs which process the model efficiently. A large batch 

can be used but the limit is where training instabilities start. The negative effect of a large batch 

size can be compensated by adjusting the learning rate. Learning rate determines the updates 

of weights on the training set. In Keras, the default number for the learning rate is 0.001 [36]. 

For example, for a given 1000 datasets with 5 batch sizes and 30 epochs, it returns 200 batches 

in total with 5 samples. The model weights are updated after each batch of 5 samples. Thus, 

one epoch consists of 200 batches. Each epoch goes through the whole dataset, so 30 epochs 

go through the dataset 1000 times. That is a total of 200,000 batches for the whole dataset. 
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Keras measures the loss and training time per sample including accuracy for both the training 

set and the validation set [36]. If the training loss decreases, it means that the model performs 

well.    

 

Overfitting is one of the common problems in ANN algorithms. One way to analyse overfitting 

is to evaluate the performance of the training set on the test set. If training set performance is 

much higher than on the test set, there is a possibility that the model is overfitting on the training 

set. The good fitting can be described as training and test loss plot decreases to a point of 

stability until to reach a small gap between the plots. Further training will likely result in 

overfitting, again. 

 

In contrast to good fitting, the model may have an unrepresentative training set. It means that 

the model training set does not provide enough information to the model. Unrepresentative data 

results in loss curve as while training loss decreases, validation loss stops decreasing and stays 

linear so the gap between the plots increases. Besides, if the validation set is not representative, 

then the plot becomes noisy on the validation curve. In some cases, the model predicts the test 

dataset easier. In the loss curve, it will be seen as test loss significantly low compared to training 

loss.          

2.4.3 Model Performance Evaluation 

 

The accuracy of the model is critical and the model should produce reliable results. In the event 

of forecasting, it is expected from a model that prediction accuracy should be above a certain 

level. In addition, using similar model performance evaluation criteria makes models 

comparable with other models. The commonly used model evaluation models are Mean Square 

Error (MSE), Root Mean Square Error (RMSE), Normalized Root Mean Square Error 

(nRMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and 

variance R2.  Calculation methods are shown in Equations (2.4), (2.5), (2.6), (2.7), and (2.8), 

respectively. These models are available in scikit-learn under the regression metrics functions.  

 

                                                                𝑀𝑆𝐸 =  
1

𝑁
∑ (𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑦𝑡𝑒𝑠𝑡)2𝑁

𝑖=1                (2.4) 

 

                                                                𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑦𝑡𝑒𝑠𝑡)2𝑁

𝑖=1       (2.5) 

 

                                                                 𝑛𝑅𝑀𝑆𝐸 % = (√
1

𝑁
∑ (𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑦𝑡𝑒𝑠𝑡)2𝑁

𝑖=1 )) 𝑥100/𝑦𝑡𝑒𝑠𝑡𝑚𝑎𝑥
     (2.6) 

 

                                                                 𝑀𝐴𝐸 =  
1

𝑁
∑ |𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑦𝑡𝑒𝑠𝑡|𝑁

𝑖=1      (2.7) 

 

                                                                 𝑀𝐴𝑃𝐸 % =  
1

𝑁
∑

|𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑−𝑦𝑡𝑒𝑠𝑡|

𝑦𝑡𝑒𝑠𝑡
 𝑥100%𝑁

𝑖=1     (2.8) 

 

In these equations, ypredicted is the output class and ytest is the input value. While N represents 

the total number of data, ytest, max describes the maximum value of power values. In addition, 
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R2 (coefficient of determination) or regression coefficient function takes 1.0 which is the best 

possible prediction model.  

 

Another way of evaluating model performance is learning curves. Figure 2.10 describes the 

relation between underfitting and overfitting with error evolution. Both linear regression and 

ANNs benefit from learning curves to evaluate the model performance.  

 

 
Figure 2.10: A typical learning curve [37]. 

When training and generalization/validation/test error is both high, the model underfits. The 

more model learns, the more training error decreases. In overfitting zones, the generalization 

gap becomes higher. Furthermore, the main issue with overfitting is that the model loses its 

ability to make a good prediction since it is too much suited for training data. Test error 

decreases and to some degree flattens out, then it begins increasing again. In addition, the model 

does not learn from training data if the training error/loss is a flat line or noisy. Good fit occurs 

where test and training loss decrease together and it reaches stability with a small gap between 

each plot at some point.  
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3 Methodology 

3.1 PV Plant Layout and Meteorological Station 

In this part, extensive information will be given about the PV power plant such as PV modules, 

layout, and specifications. The second subsection will include information on the 

meteorological station.  

3.1.1 PV Plant Specifications  

The PV plant was built on the roof of the football stadium of Odds Ballklubb, Skagerak Arena 

and is located in Skien, Vestfold and Telemark County, Norway in 2019. The solar modules 

with a battery system are installed for storing electricity in addition to supplying power for 

internal usage in the stadium at nights and to the national grid. Figure 3.1 shows the stadium 

and solar modules on top of the roofs. Modules are only installed in the South, West and East 

direction. There are no PV modules on the north side of the roof. Shading is not a question in 

this plant since all 3 directions are in the open environment. Table 3.1 describes the plant’s 

overall specifications.      

 

 
Figure 3.1: Skagerak Arena stadium layout. 

The detailed module specification is given in Appendix B. REC Twinpeak 2 series modules 

are being used in the plant with two types of nominal power output 295 and 300 Wp. 300 Wp 

panel types are only used on the south direction rooftop.  
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Table 3.1: PV plant specifications. 

Installed power PV (kWp) 840 

Area (m2)  5330 

Modules (pcs) 3230 

Inverter power (kW) 675 

Production in a normal year (MWh) 660 

Specific Performance in a normal year 

(kWh/kWp.year) 

786 

Energy storage battery capacity (kWh) 1000 

 

Table 3.2 describes solar module specifications. Solar cell type is 120 half-cut multi-crystalline 

PERC cells that information was given in the theory part. Two different nominal power types 

of modules are used in the plant. One has 295 Wp and other type has 300 Wp.  

 
Table 3.2: Solar module selected features. 

Nominal Power - PMPP (Wp) 295 300 

Nominal Power Voltage - VMPP (V) 32.3 32.5 

Open Circuit Voltage - VOC (V) 39.0 39.2 

Panel Efficiency (%) 17.7 18.0 

 

Panel efficiency values are measured at standard test conditions which are air mass at AM 1.5, 

irradiance at 1000 W/m², and temperature at 25°C.  

 

Even though roof slopes are the same at 8º, azimuth values vary for different layouts. Table 3.3 

shows descriptive information on slope and azimuth values for all directions. Surface azimuth 

input data is vital due to the PV plant layout. Surface azimuth values are explained as panel 

azimuth from the north which means the azimuth convention is defined as degrees east of north. 

The built algorithm in python, pvlib, assumes north as 0 degrees. North takes 0 degrees, south 

180 degrees, east 90 degrees and west 270 degrees. However, the PV plant document accepts 

the south direction as 0 degrees and values take a negative sign from the north, east, and south 

directions.  
Table 3.3: Module slope, azimuth angels and area with respect to directions. 

 Slope Azimuth Area (m2) 

South Tribune 8 -20 1425 

West Tribune 8 70 2146 

East Tribune 8 -110 2146 

North Tribune 8 160 - 
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That is why PV plant document values were adjusted as 0 degrees for the north. By determining 

east direction as - 90º and the west direction as + 90º, the azimuth values take negative values 

in the east and south directions. Figure 3.2 describes the layout of tribunes based on azimuth 

degrees. The adjusted azimuth variables based on 0-degree north direction are shown on the 

right-hand side.   

 

 
Figure 3.2: The original azimuth angles with layout (left) and adjusted azimuth angles (right). 

Table 3.4 shows an updated version of Table 3.3 based on 0-degree north direction. These 

values were used as input in the get_total_irradiance function.  

 
Table 3.4: Azimuth degrees based on north direction. 

 Slope 
Azimuth (0 degrees 
South) 

Azimuth (0 degrees 
North) 

Area (m2) 

South Tribune 8 -20 160 1425 

West Tribune 8 70 250 2146 

East Tribune 8 -110 70 2146 

 

Table 3.5 describes the inverter’s selected features. The detailed inverter information is given 

in Appendix B.  

 
Table 3.5: AC/DC Inverter Specification. 

Absolute maximum DC input voltage (Vmax,abs) 1000 V 

Rated DC input voltage (Vdcr) 620 V 

Rated DC input power (Pdcr) 102 000 W 

Number of independent MPPT 6 

Maximum DC input current for each MPPT (Idcmax) 36 A 

Maximum AC output power (Pacmax @cosφ=1) 100 000 W 

Maximum efficiency (ηmax) 98.4% 
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Since the available power output is in AC which is after the inverter, an inverter connection 

was also investigated. Each inverter serves a different number of module strings. For example, 

Inverters 1-2-3 are connected to east direction panels. While 410 panels are linked to inverter 

1 with 6 MPPT, 400 panels are connected to inverter 2 with 6 MPPT, and 210 panels are bound 

to inverter 3 with 3 MPPT. East and west directions are identical in terms of inverters, 

connections and the number of panels. 2 inverters serve to south direction with 444 and 216 

panels for inverters 7 and 8, respectively. Figure 3.3 illustrates the panel layout based on 

directions.        

 
Figure 3.3: An illustration for PV plant layout inverter – module connections with respect to direction. 

 

String connections are different for each group of inverters. Figure 3.4 shows a string 

connection for inverter 4 on the west side. For example, the inverter 4 has 410 panels but 20 

strings in total. Each string has either 20 or 21 panels. Since inverter output AC power is 

analysed in this study, there will be no further investigation on detailed string connections.  
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Figure 3.4: String connection example for modules that are connected to Inverter 4. 

 

In general, 4 strings are connected to one MPPT, and some MPPT slots are empty due to 

matching the total number of string numbers. Each inverter has 5 or 6 MPPTs with DC/DC 

type. To sum up, module string connections to the inverter with MPPTs are illustrated in Figure 

3.5.  
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Figure 3.5: Module string connections to MPPs and the inverter. 
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3.1.2 Meteorological Station 

Gjerpen meteorological station is positioned approximately 1.87 km further from Skagerak 

Arena where the PV plant is located. In Figure 3.6, the station location is pointed out by a red 

pin. The station’s detailed information about latitude, longitude, and altitude is given in Table 

3.6. It is possible to say that the station measured meteorological variable represent perfectly 

the environment around the PV plant. Station variables were obtained by the station code from 

the free access meteorologisk institutt frost API system. Historical weather and climate data 

with quality control parameters were accessed by python codes. 

 

 
Figure 3.6: MET station and stadium location. 

 
Table 3.6: MET Station information. 

Station Code in the MET internal system SN30330 

Owner NIBIO 

Latitude 59.22684º 

Longitude 9.57805º 

Altitude 41 m 
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3.2 Data Gathering and Data Pre-processing 

Meteorological data was retrieved from frost database, PV data was delivered from Lede 

Energi, and clear sky including solar position data was accessed through pvlib-python package. 

The general methodology for meteorological data and PV data dealing flow diagram is shown 

in Figure 3.7.  

 

                           
Figure 3.7: Data processing flow diagram. 

 

The sampling rate and time interval vary a lot for different data sets. For example, the 

meteorological data sampling rate is 1 hour, and the pvlib database is 1 min whereas PV data 

is 10 mins. Therefore, the limitation for further analysis was meteorological data. The other 

variables had to be averaged to match with meteorological data. In addition, the resampling 

function in pandas was used to fit all sampling rates in an equal time interval. Measurement 

can represent separate time intervals. For example, meteorological data 10:00 data describes 

the observation from 09:01 to 10:00, however, PV data after resampling function 09:00 data 

represents from 09:00 to 09:59. To avoid this conflict, time shifting was applied. Besides, Pvlib 

data is available for 1 min sampling rate and 10:00 represents the observation at exactly 10:00. 

It was needed to a value to symbolise from 09:00 to 10:00 and this was achieved by taking the 

value at 09:30. Table 3.7 shows the sampling rate and time with changes in the time interval. 

Pvlib Data consists of Solar Position Elements (zenith, azimuth, elevation, equation_of_time), 

ClearSky (ghi, dni, dhi), POA (poa_global), erbs (dni_generated, dhi_generated).  
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Table 3.7: Time resolution for each data set. 

 
 

The presence of daylight-saving time in the dataset leads to a time lag between variables. To 

avoid any confusion in data, all time dependent data is gathered based on Universal Time 

Coordinated (UTC). Hence, the data does not affect by daylight saving changes throughout the 

year. That is why it is important to keep in mind adding +01:00 or +02:00 hours depending on 

the selected day when comparing the results with local time-based values for Norway.  

3.2.1 Meteorological Data 

Meteorological data was accessed through a free source meteorology institute frost database 

by a python script. Measuring interval is available in the frost database based on hour, day and 

month. Hourly values are the average value for the first hour after the stated measurement time 

as it was explained at the beginning of the chapter. Available variables are listed in Table 3.8. 

However, some critical parameters for solar power output are not recorded by the station such 

as precipitation, cloudiness and air mass. Nearby stations also have no record for these 

variables. Mean hourly values of variables are used for the study.  

 
Table 3.8: Available meteorological variables. 

Variable name and unit Variable name in the frost 

database 

Sampling rate and year 

periods 

Average Temperature at 

2m (ºC) 

mean(air temperature PT1H) Hourly mean average 

2018-2021 

Dew Point Temperature at 

2m (ºC) 

dew_point_temperature Hourly mean average 

2018-2021 

Relative Humidity at 2m 

(%) 

mean(relative_humidity PT1H) Hourly mean average 

2018-2021 

Wind Speed at 2m (m/s) wind_speed Hourly mean average 

2018-2021 

Wind Direction at 2m (º) mean(wind_from_direction PT1H) Hourly mean average 

From May 2019 to 2021 

Global Horizontal 

Radiation (W/m2) 

mean 

(surface_downwelling_shortwave_fl

ux_in_air PT1H) 

Hourly mean average 

2018-2021 
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Figure 3.8 shows raw meteorological data from January 2018 to December 2021. There are 

some periods where the station has no record due to being out of order. Especially, there is 

huge data loss for the period from January 2020 to April 2020 for irradiance and relative 

humidity values. Furthermore, the data loss exists in June 2018 for all variables except dew 

point temperature. It is evident that there are also some outliers. There are some peak values 

that disassociate from the pattern in wind speed. Moreover, air and dew point temperatures 

roughly are in harmony with irradiance. It is difficult to make a comment on relative humidity 

but wind speed is relatively higher during summertime. Wind direction data will be presented 

in a different chapter as further processing was applied to the data.     

 

 
Figure 3.8: Meteorological variables raw data against time. 

3.2.1.1 Wind Direction Category 

Wind direction is only available from May 2020 and it is recorded in 360 degrees. Using the 

raw wind direction in degrees, which stores 360 different values, causes data uncertainty and 

reduces relationships within other variables. That is why this data was converted into 4 main 

categories as north, east, west, and south. While Table 3.9 shows directions and corresponding 

values in degrees, the figure illustrates a compass with directions.           

 
Table 3.9: Wind directions and corresponding degrees. 

Direction Explanation Degrees 

N North 349-011 

NNE North-Northeast 012-033 

NE Northeast 034-056 

ENE East-Northeast 057-078 

E East 079-101 

ESE East-Southeast 102-123 

SE Southeast 124-146 

SSE South-Southeast 147-168 

S South 169-191 

SSW South-Southwest 192-213 
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For example, north direction limits are assumed from northeast to northwest. Northeast limits 

are 034º-056º while northwest limits are 304º-326º. Thus, north direction limits were 

determined as 327º-056º. Likewise, the same approach was applied to calculate other 

directions. Table 3.10 shows the 4 main direction categories of the table above. Corresponding 

degree numbers are also stated.    

 
Table 3.10: Categorical wind direction data with adjusted degrees. 

Category Direction  Degrees 

1 North 327-56 

2 East 56-146 

3 South 146-236 

4 West 236-326 
 

3.2.2 Pvlib Data 

Pvlib is a comprehensive package for simulating PV energy applications. It is available on 

python and provides reliable and open applications for PV systems with libraries and functions. 

This chapter consists of two subchapters as clear sky data and plane of array irradiance data.   

3.2.2.1 Clear Sky Data 

Free clear sky data is available on the internet in various platforms and pvlib library on python. 

In addition, there are different models of calculating clear sky global horizontal irradiance 

(ghi), direct horizontal irradiance (dhi), and direct normal irradiance (dni) values. In this study, 

the pvlib library is used and different models were compared to pick the best model. The best 

model can be defined in a way that covers most of the measured irradiance values and produces 

clear sky days successfully by using a clear sky day detection algorithm.  There are three 

common clear sky calculation methods in the pvlib library. These are Perez-Ineichen, Haurwitz 

and simplified Solis method. Each method is differentiated by various weather parameters. All 

equations use the linke turbidity factor as default or user input. Moreover, factor values are 

influenced by atmospheric absorption and scattering of the solar radiation. Linke turbidity is a 

function of aerosol particles and water vapour in the atmosphere. Aerosol particles are relative 

to the dry and clean atmosphere and absorption by the water vapour changes the optical 

thickness of the atmosphere. Thus, a larger linke turbidity factor refers to a reduction in the 

radiation by the clear sky atmosphere [38].  

 

Three methods were chosen and compared. These are Perez-Ineichen, Haurwitz, and Solis 

method. Method short explanations are given below.   

SW Southwest 214-236 

WSW West-Southwest 237-258 

W West 259-281 

WNW West-Northwest 282-303 

NW Northwest 304-326 

NNW North-Northwest 327-348 
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Ineichen: Uses default climatological turbidity values, and produces good results with fewer 

input requirements [39]. 

Haurwitz: The model has the best performance in terms of average monthly error among 

models which require only the zenith angle. The relationship between cloudiness, air mass and 

cloud density are the parameters in the equation [39]. 

Solis: The Simple Solis clear sky model is based on RTM and the Lambert–Beer relation to 

estimating irradiance. The model is a simplified version in order to reduce the computational 

requirements. The model requires predictable water vapour and aerosol optical depth 

(AOD700) as the main input parameters [39]. 

 

Figure 3.9 shows Perez-Ineichen, Haurwitz, Solis method global horizontal values (ghi) 

comparison with measured ghi values for 2021. The red line which represents the Haurwitz 

method has the highest average irradiance values and the Solis method is the second highest. 

Perez-Ineichen values are not visible in the graph, so a closer look for a day was plotted.  

 

 
Figure 3.9: Perez-Ineichen, Haurwitz, Solis methods and measured irradiance values against time. 

 

Figure 3.10 shows clear sky day calculation method results for a clear sky day on 24th June 

2021. Perez-Ineichen method values are lower than Haurwitz and Solis methods.   
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Figure 3.10: Clearsky methods and measured irradiance values for a selected clear sky day. 

There are some days that measured actual irradiance values exceed the theoretical clear sky 

irradiance values. These time periods were dug deeper. One might think that these values might 

be measurement errors or indicate air parameters change. It is concluded that these peak values 

are not measurement errors because PV production values also peaked in the same period. 

Figure 3.11 shows a specific time period where measured irradiance values exceed the 

calculated values with emphasised the time interval red lines. It is known that changes in 

meteorological variables and atmospheric conditions such as water content, albedo, and aerosol 

have an effect on measured irradiance values. That is why it was decided to compare 

meteorological variables for that specific time interval.     

 

 
Figure 3.11: The period of exceeding calculated clear sky values of measured irradiance. 

Figure 3.12 represents the corresponding time interval of exceeded irradiance values with 

emphasising two red lines. The examination was done only with available meteorological 

variables. The start and end date of plotting were kept long to help to compare how 
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meteorological conditions changed before and after the time interval. When two figures are 

compared, there are two variables that have different trends than before and after. Wind speed 

was quite low and relative humidity was high even though the sun shows up. Water content in 

the atmosphere was high and wind speed was low. There is a possibility that these findings 

might have affected measured irradiance values which resulted in high values than calculated 

values. As a result, the measurement device recorded high numbers and it was assumed that 

numbers reflect the real situation.    

 
Figure 3.12: Meteorological variables for exceeding time interval. 

To evaluate each model and compare it with measured irradiance values, correlation analysis 

was performed. By doing so, it was aimed to select a suitable model for location specific 

irradiance values. A consecutive clear sky data was captured between 22nd and 25th July 2021. 

Correlation analysis was done within these dates by using global horizontal irradiance values 

(ghi) and the results are presented in Table 3.11.  

 
Table 3.11: Correlation analysis results for clear sky and measured irradiance. 

 Haurwitz_ghi  Solis_ghi  Ineichen_ghi Measured_ghi 

Haurwitz_ghi  1.0000 0.9996 0.9983 0.9847 

Solis_ghi  0.9996 1.0000 0.9994 0.9865 

Ineichen_ghi  0.9983 0.9994 1.0000 0.9873 

Measured_ghi 0.9847 0.9865 0.9873 1.0000 

 

The highest correlation is obtained by Perez-Ineichen method. Figure 3.13 shows Perez-Ineichen 

and measured irradiance values graph for the year of 2021.  
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Figure 3.13: Perez-Ineichen and measured irradiance values graph for the year of 2021. 

However, Ineichen- Perez clear sky data comparison with actual irradiance values throughout 

the year of 2021 does not overlap well. There are some peak measured irradiance values. The 

comments on this matter are available under the discussion section. For further analysis with 

PV data, Ineichen- Perez values were chosen.  
 

Figure 3.14 shows irradiance components of Ineichen- Perez model on a selected day. Direct 

normal irradiance (dni), direct horizontal irradiance (dhi), and global horizontal irradiance (ghi) 

values were plotted with default algorithm settings.  
 

 
Figure 3.14: Irradiance components of Ineichen- Perez model on a selected day 

Detection of clear sky days with the pvlib algorithm is challenging because it requires minute 

based data. However, measured irradiance values are on an hourly based. There are other 

numerical ways of detecting of clear sky in literature which also require minute-based data. In 
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order to overcome this problem, hourly base irradiance values were converted to minute-based 

data. The polynomial interpolation method was used with a power factor of 3. detect_clearsky 

algorithm in the pvlib library produces Boolean results. These Boolean results were converted 

to 0 and 1 integer values which 0 refers to cloudy and 1 refers to clear sky. The produced 

minute-based results were again transformed into hourly based outputs. Changing the time 

frame twice, even though the approach and method are correct, produces some errors. 

However, most of the errors were removed in the process of resampling to hourly data by the 

forward filling method.  
 

Figure 3.15 demonstrates the clear sky detection algorithm result for a clear sky and a cloudy 

day with measured and clear sky irradiance included. The data in the figure is minute based. 

False values refer to cloudy time and true values are clear sky time. As it is seen from the graph 

that clear sky was detected on 24th June 2021 with cloud detection in the early morning which 

measured irradiance values proved. The rest of the day was cloud clear. The next day measured 

irradiance values were below clear sky irradiance values with some variation. Before sunset, a 

clear sky was detected. The clear sky line was interrupted on 26th June 2021 before sunset even 

though measured irradiance and clear sky data overlaps. The algorithm detects wrong due to 

resampling. This problem was eliminated when the data was inversed hourly based. Another 

reason for the wrong detection is that while measured hourly based irradiance values represent 

measurement from 09:00 – 10:00 as 10:00. Time shifting correction was included in the 

algorithm to reduce wrong detection errors.   

    
Figure 3.15: Clear sky detection algorithm result. 

 

Figure 3.16 displays clear sky detection minute-based data with transformed hourly based data. 

For the purpose of eliminating some detection errors due to data transformation, a conservative 

approach was chosen to resampling data on an hourly base. Hence, some errors were removed 

at the cost of some clear sky data loss. For example, there was a clear sky in the early morning 

on 24th June 2021 from 02:19 to 03:36 UTC. When this time interval was converted to 1 hour 

sampling, 03:00 was classified as the clear sky and 2:00 was recorded as cloudy or no 

irradiance.        
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Figure 3.16: Clear sky detection minute-based data (blue) with transformed hourly based data (red). 

3.2.2.2 Plane of Array Irradiance Data 

Since PV power output is dependent on the plane of array irradiance (POA) data, global 

horizontal irradiance measured values are required to be converted to the plane of array 

irradiance values. POA values can easily be calculated by the get_total_irradiance algorithm in 

pvlib, however, the solver requires measured dni and dhi which are not available. There are 

models for estimating dni and dhi values from ghi. Analytical approaches require measured dni 

and dhi values to calculate POA values. One model is the erbs model in the pvlib library. The 

erbs model uses diffuse fraction to estimate dhi values and dni values are calculated by an 

equation that uses a zenith angle [39]. By feeding the get_total_irradiance function with solar 

azimuth and zenith, surface tilt and azimuth, ghi, and generated dni and dhi values, POA values 

for the south, east, and west directions were obtained. Figure 3.17 shows monthly total 

irradiance values based on direction. While the south and west directions receive higher 

irradiance compared to measured global horizontal irradiance, the east direction catches low 

irradiance.   

 

 
Figure 3.17: Monthly total irradiance values based on direction. 
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Figure 3.18 shows the plane of array irradiance for the east direction compared with measured 

ghi values which is assigned as actual on the graph. Global horizontal irradiance is slightly 

higher than the plane of array irradiance values for each direction throughout the year.   

 
Figure 3.18: Plane of array irradiance (red) and measured irradiance (blue) against time. 

3.2.3 PV Plant Data  

A comprehensive signal list for the PV plant was provided by Lede Energi. PV power out 

analysis is based on inverter AC power output. Inverter status values were also used to examine 

whether the inverter was functioning well or not. Status values are Boolean type whereas power 

values are float in kW. Data covers only two years, 2020 and 2021. Figure 3.19 shows IV1-8 

power values separately, and total_AC_power_IV_on represents the sum of inverter power 

values which are only in operation together. That means if all inverters produce record power 

values at the same time, it will be summed up. Otherwise, there will be no record for total ac 

power. Total AC power represents plant total power production on high at its best times where 

all inverters are in operation together. As it is seen from Figure 3.19 that there are some periods 

inverters were not in operation. That is why not all inverters are valued to be analysed. Inverter 

2, Inverter 5, and Inverter 7 values are going to be further analysed as representations for each 

direction. Inverter 2 and 5 are identical which means the same number of modules, 400, are 

connected with the same module type, 295 Wp. Inverter 7, however, is powered by 444 panels 

and a 300 Wp module type. Pre-processing results will be shown in the results chapter.         
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Figure 3.19: Inverter based AC power values against time. 

PV power data has gone through a bunch of pre-processing. As it is seen from the graph and 

detailed investigation of data, there are zero power outputs which either represent an 

inverter/module problem or night time values. Firstly, zero values were removed. By using 

solar elevation data from the pvlib library, data before sunrise and after sunshine were cleared 

out from the dataset. Ultimately, the PV power dataset consists of only values which cover the 

time the sun's presence without fault data.   

 

Module temperature is another important parameter in PV power production. Solar cells have 

an optimum operating temperature range. Above a certain level, PV module power output 

decreases due to low voltage. Wind speed, air temperature, and module materials help to 

maintain heat balance on PV cells and PV modules. Therefore, module temperature is a crucial 

parameter to watch, however, the parameter is not available for the plant. Instead, module 

temperature values were generated since pvlib.sapm_module function in pvlib provides this 

parameter by feeding the function with the plane of array irradiance, wind speed, air 

temperature and coefficients for the module type. Figure 3.20 shows module temperature with 

air temperature on the same scale, and power output of IV2 in kW for different days in July 

2021.   

 
Figure 3.20: Module temperature (red), air temperature (green) on the right y-axis, IV2 AC power (blue) values 

on the left y-axis. 
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Data filtering for PV data is another data processing step. Even though the prediction of PV 

power output will be under any circumstances such as cloudy days, low irradiance and low 

irradiation, measuring PV data quality and filtering corrupt and inaccurate data may increase 

the model accuracy. This idea will be investigated. Therefore, low elevation and irradiance 

values which cause possible noise in PV data, were determined for further processing. One way 

to measure PV data quality is to compare actual values with predicted power output values 

which are estimated by a general power output formula shown in Equation (3.1).  

                                                          𝐸 = 𝐴 ∗  𝜂 ∗ 𝐼 ∗ 𝐿        (3.1) 

where A is total solar panel area (m2), 𝜂 is panel efficiency, I is irradiance (W/m2), L is loss 

factor, and E is expected power output (W). One estimation example was done for IV2 

connected panels which have 1.67*400 m2 area, 17.7% assumed panel efficiency, 0.75 assumed 

loss factor and irradiance values throughout the year. By dividing expected power output by 

actual power output, a performance index value is obtained. Figure 3.21 shows elevation and 

irradiance values plotting with performance index values as data points. Yellow points 

correspond to the lowest performance values which are assumed as the lowest 10% of 

performance values. As it is seen clearly from the graph, yellow dots are gathered where 

elevation is below 9º and irradiance around 100 W/m2. Obviously, there are also a significant 

number of data points has good performance index within these values. However, it is possible 

to comment that low elevation outweighs low irradiance. As a result, the prediction model will 

be analysed above 9º elevation during the analysis.  

 

 
Figure 3.21: Elevation and irradiance with coloured performance index. 

At the end of the data gathering and pre-processing phase, all features are ready to further 

processing and analysis. Figure 3.22 shows the whole process of data dealing methodology at 

a glance.   
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Figure 3.22: Data dealing methodology for each data set. 

3.3 Correlation Analysis 

Correlation analysis is a method to evaluate the linear relationship between variables. The 

Pearson correlation analysis is by far the most common method for correlation analysis [40]. 

Correlation values vary from -1 to 1 and positive values indicate variables are positively 

correlated. For example, if a negative correlation exists, it means that while one variable 

increases, the other variable decreases. The more correlation values close to -1, the more 

correlation gets stronger. The correlation becomes weaker close to zero values. The power of 

Pearson correlation analysis is that it is not influenced by the variable regardless of dependent 

or independent [41]. In this study, pandas.DataFrame.corr() in python was used for calculating 

Pearson correlation coefficients.      

3.4 Principal Component Analysis 

Dealing with a great number of features and using all features in further data analysis can be 

excessive or can cause uncertainty in the model. Principal component analysis is a powerful 

method that is used in data analysis. The method is able to handle feature reduction or outlier 

detection. By maximizing the number of variations in the features, it creates orthogonal 

components that is based on orthogonal decomposition [41]. Eigenvectors and eigenvalues are 

produced based on covariance matrix. The output class of the matrix is linear relation within 

the input variables. The highest variance obtained is held in the first principal component and 

other components are produced with a decreasing variance score. Moreover, scree plots and 

visualization of values help to understand the output classes. Scree plot describes eigenvalues 

and the explanation ratio of components. In this study, sklearn.decomposition PCA was used 

to perform PCA analysis. However, there is one point in PCA analysis that is critical to making 

analysis effectively and that is scaling. Scaling transforms the data and creates a new set of 

data which is in the same range by keeping variance information in the dataset. Thus, each 

feature contributes equally to the analysis. There are two common scaling methods. These are 

standard scaling and minmax scaling which is also called normalization.        
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Standard Scaler is a function in Scikitlearn and aims to remove the mean and scales the data to 

unit variance. Thus, mean average becomes zero and the standard deviation one. However, 

standard scaling is influenced by outliers in the dataset. In order to make all feature set mean 

average zero, outliers take extreme values and data distribution does not reflect the main 

dataset. Therefore, standard scaling is useful where data distribution normal or Gaussian.  

 

If the feature has a skewed distribution, then, MinMax scaling will keep the shape of the dataset 

as it distributes the values for a given range such as [0, 1]. The spaces between each feature are 

maintained, and the information and shape of the dataset are mainly preserved. This method is 

useful for regression and neural network methods. Since outliers were removed from the 

dataset, standard scaler was used for PCA analysis.   

3.5 Prediction Methods 

In this study, two prediction methods were investigated. Linear regression (LR) is one of the 

basic statistical approaches to various problems that assume a linear relationship between 

inputs and outputs. Furthermore, more advanced and improved methods have been developed 

in recent years. One of them is Artificial Neural Networks (ANN) which is able to handle non-

linear relationships between inputs and outputs. Sklearn library linear_model was used for 

linear regression and Keras API was used for ANN which works on TensorFlow 2 [42]. 

TensorFlow is an open-source library and Keras is a high-level neural network library that runs 

on TensorFlow. As it was stated in the theory part, it is essential to use scaling in the ANN 

model. Importantly, the dataset should be split into training and test sets before models are 

used. While LR has a simple methodology, the ANN model requires input parameters. Table 

3.12 shows input parameters that were used for ANN model. Model parameters are subject to 

change to improve model accuracy. Selected parameters are indicated as trial in the table.  

 
Table 3.12: ANN network model parameters and inputs. 

Model Parameters Inputs Model Parameters Inputs 

Number of Inputs Trial Optimizer Adam 

Training/Test size 0.25 Batch size Trial 

Model Type Sequential/ 

Feedforward 

Learning rate Trial 

Nodes Trial Epoch Trial 

Dense layer 3 Loss MSE 

Hidden layer 1 Performance MAE, MSE, RMSE, R2 

Output nodes 1   

Activation function RELU   

Kernel Glorot-uniform   
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The methodology of prediction models is summarized in Figure 3.23. Specifically, reverse 

scaling of scaled data in the ANN model is done before visualization.   

 

 
Figure 3.23: ANN network and linear regression model methodology. 

3.6 Pvlib and other Python Libraries 

Python and its libraries were preferred as the programming language. It will be emphasised 

information on some specific functions in this part.  

pvlib.irradiance.get_total_irradiance: This function produces the plane of array irradiance and 

its beam by introducing surface tilt, surface azimuth, solar zenith, solar azimuth, dni, ghi and 

dhi values. Poa_global, poa_direct, poa_diffuse variables are created. Isotropic sky diffuse 

model is selected by default [39]. 

pvlib.solarposition.get_solarposition: This function produces zenith, elevation, and azimuth of 

the solar position in addition to the equation of time. The function takes time, altitude and 

longitude variables as an input [39].  

pvlib.irradiance.erbs: This function estimates DNI and DHI values from global horizontal 

irradiance, GHI by using the Erbs model [39]. 

pvlib.get_clearsky: The function calculates clear sky irradiance values for a given time interval 

and location. The default calculation method is Ineicnen [39].  

pvlib.clearsky.detect_clearsky: The algorithm determines clear sky times based on measured 

GHI values. Measured and clear sky irradiance values are inputs in addition to window length 

which is the length of the sliding time window in minutes. The best performance was captured 

by determining window length is 8 [39].  

pvlib.temperature.sapm_module: The function calculates module back surface temperature by 

Sandia Array Performance Model. Plane of array irradiance, wind speed, air temperature and 

a and b coefficients are inputs for the algorithm as shown in Equation (3.2).  

                                                𝑇𝑚 = 𝐸 ∗ 𝑒𝑥𝑝(𝑎 + 𝑏𝑥𝑊𝑆) + 𝑇𝑎        (3.2) 
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where E is irradiance, WS is wind speed, Ta is air temperature. a and b coefficients take 

different values based on module type (glass/polymer) or mounting type (open rack/close 

roof/insulated back). For glass/polymer module and open rack mounting, a takes -3.56 and b 

takes -0.075 as inputs [39].  

sklearn.metrics: The function is used for model evaluation such as RMSE, and MAE. It is 

important to note that MAPE in sckitlearn does not return a percentage value [42]. That is why 

a function was written to calculate the percentage output.   

3.7 Case Studies 

It is possible to make different types of predictions with large datasets. Without a doubt, the 

overall aim is to keep PV power at a minimum error. Since this study also investigates how PV 

power output varies with other meteorological data, different types of case studies were 

planned. For example, one case study evaluates how models behave without measured 

irradiance data but calculated clear sky data in the event of having no access to measured 

irradiance values. Another case study tries to explore each meteorological variable impact on 

PV power output. Table 3.13 shows planned case studies for both ANN and LR.  

 
Table 3.13: Planned case studies for PV power output analysis 

 Case Study Information 

1 Model performance on clear sky days Consecutive prediction 

2 Model performance on clear sky days Consecutive prediction without measured 

irradiance values 

3 Training and tests set on a yearly basis  Training with 2020 data and test with 2021 

data 

4 Training with the 2020/2021 data set  Shorter test set with longer training data.   

5 MET variable selection  Each meteorological variable is examined 

6 Prediction with forecasted data 1 day ahead PV power output prediction 
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4 Results 
This chapter was divided into 3 main sections. Data inspection and pre-processing are started 

with meteorological data. Later, data were combined with PV power data. The merged dataset 

is used to make PV power output predictions. According to the methodology of this work, the 

results for data processing are represented in this part and the results are supported by data 

visualisation. The output of this study for power output prediction trails and model evaluation 

results are introduced at the end.  

4.1 Meteorological Data 

4 years of meteorological raw data is shown in Table 4.1. Raw data represents raw values 

without being processed. The data type explanation was given in Appendix C. Count refers to 

the total number of available data in dataset. The method of calculation mean and standard 

deviation is as mathematical standards. Minimum and maximum values show minimum and 

maximum values in the relevant column. Percentiles of data are categorized as 25%, 50%, and 

75% of data. 50% values also represent the median value of the related column.  

 
Table 4.1: Raw meteorological data statistics. 

 dew_point_temp air_temp relative_humidity irradiance wind_speed 

count 34806 33776 31036 31776 33622 

mean 3.06 7.61 74.84 115.69 1.49 

std 7.65 8.51 20.83 198.76 1.26 

min -20.4 -17.2 16 -6.8 0 

25% -2.5 1.1 60 0 0.6 

50% 3 7.3 79 5.2 1.1 

75% 9.2 14.1 93 144.3 2.1 

max 23.2 31.5 100 1491 10.1 

 

As it is seen from the data statistics, the number of data varies. The total number of missing 

values is shown in Table 4.2.  

 
Table 4.2: The number of missing values of 4 years of meteorological data. 

Missing Values Count 

dew_point_temp 139 

air_temp 1169 

relative_humidity 3909 

irradiance 3169 

wind_speed 1323 
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Missing values were dropped from the dataset in addition to unrealistic minus irradiance 

values. In the end, the processed data summary is shown in Table 4.3.  

 
Table 4.3: Processed data statistics. 

 dew_point_temp air_temp relative_humidity irradiance wind_speed 

count 29311 29311 29311 29311 29311 

mean 3.57 8.55 74.59 121.23 1.53 

std 7.76 8.54 20.98 195.36 1.25 

min -20.4 -17.2 16 0 0 

25% -2.2 2 59 0 0.6 

50% 3.9 8.9 79 11.1 1.1 

75% 9.9 15 93 163.05 2.1 

max 20.9 31.5 100 1186 10.1 

 

The total number of values dropped to 29311 from the minimum count in the raw dataset. The 

reason is that distribution of missing values is not homogenous. For example, while there is a 

value in the air temperature column for a specific row, there is no value for corresponding 

irradiance values. In this case, the whole row is deleted to keep the same amount of data in 

each column.  

 

Another data inspection step is histogram figures of variables. Thus, it is possible to get an 

overview of data distribution. Figure 4.1 shows histograms of each variable.  

 

 
Figure 4.1: Histograms of meteorological variables. 

While wind speed has a skewed distribution, dew point and air temperature are close to normal 

distribution. Irradiance and relative humidity histograms are heavily under the impact of night 

and rainy/cloudy times.   

 

Another type of data inspection step is producing scatter plots. There are some outliers were 

observed in Figure 4.2. For example, some irradiance values are above 1000 W/m2. When it 

was investigated these values, there was a time that the meteorological station was out of order. 

The specific 10 days from 18/11/2019 to 28/11/2019 were removed from the database. Wind 

speeds above 9.2 m/s were also excluded.     
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Figure 4.2: Scatter plots of meteorological variables. 

 

Scatter plots after outliers removed are represented in Appendix C. Before investigate the 

dataset further, the last statistics of variables are shown in Table 4.4. 

 
Table 4.4: Processed data statistics. 

 dew_point_temp air_temp relative_humidity irradiance wind_speed 

count 29267 29267 29267 29267 29267 

mean 3.58 8.56 74.57 120.93 1.53 

std 7.77 8.54 20.99 194.74 1.25 

min -20.4 -17.2 16 0 0 

25% -2.2 2 59 0 0.6 

50% 3.9 8.9 79 11.1 1.1 

75% 9.9 15 93 162.6 2.1 

max 20.9 31.5 100 912 8.8 

 

Figure 4.3 shows 4 years of processed meteorological data in a line graph after outliers were 

removed. From time to time the station was out of order. For example, at the beginning of 2020, 

July 2018 and the beginning of 2021 there were no records at the station. The missing periods 

including removed periods are connected by a line in the graph and they are not representing 

real values. 

 



4 Results 

57 

 
Figure 4.3: Meteorological data plotting against time after outliers removed. 

 

Since all data was pre-processed, it is ready to investigate further. To understand how variables 

are correlated to each other, the correlation matrix was used. Figure 4.4 shows the correlation 

matrix of meteorological variables. The highest positive correlation is among air temperature 

and irradiance with 0.82, whereas the lowest positive correlation is among dew point 

temperature and wind speed. Likewise, the highest negative correlation is observed between 

relative humidity and air temperature, however, the lowest negative correlation is observed in 

two different variables as relative humidity – air temperature and relative humidity – wind 

speed.   

 
Figure 4.4: Correlation matrix of meteorological variables. 

 

The next step is performing PCA analysis. 3 PCA components explain 92% of the total variance 

in the dataset with 49% PC1, 29% PC2, and 14% PC3. The scree plot of variance explanation 

is shown in Figure 4.5.  
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Figure 4.5: Scree plot of 3 components PCA analysis. 

Each PCA component results are shown in scatter plots with respect to other components. In 

Figure 4.6, principal components 1-2 and principal components 1-3 are represented. A detailed 

representation for PC1-2 is in Appendix D with indicated colours which refer to irradiance 

values.  

 
Figure 4.6: Principal components plotting PC1-2 (left), PC1-3 (right). 

 

PCA loadings are shown in Figure 4.7 and Figure 4.8. In Figure 4.7, while irradiance and 

relative humidity have a high contribution to PC1 and PC2, the negative correlation in 

irradiance and relative humidity together with wind speed is hidden in these loadings. It is 

observed that irradiance and wind speed are positively correlated. Although air temperature 

contributes more to PC1, dew point temperature influences PC2 more than PC1.  
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Figure 4.7: PCA loadings for PC1 and PC2. 

In contrast to PC1 and PC2 loadings, the highest contribution comes from wind speed and 

relative humidity to PC1 and PC3, shown in Figure 4.8. Dew point temperature, air temperature 

and irradiance did not capture by PC3. It should be noted that PC1 and PC3 only explain 63% 

of total variations.  

 
Figure 4.8: PCA loadings for PC1 and PC3. 

 

It is clear that different meteorological variables are captured differently in PCA loadings. 3 

PCA loadings represent 92% of the total variance in 4 years period dataset. During the PCA 

analysis, when components were plotted by using a scatter plot, a linear boundary was observed 

in the PC1 and PC2 plots. This finding was investigated further and it turned out that limits in 

meteorological conditions cause this type of boundary. More broadly, the variables 

accumulated near the linear boundary belong to low irradiance values or 100% relative 

humidity.  

 

Wind direction data is only available after April 2020. That is why the data from 2020 to 2021 

was investigated separately from 4 years of data. Figure 4.9 reveals the histogram of variables 
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for 2020-2021. At the same time, 4 years of meteorological and 2020/2021-year meteorological 

situation is going to be compared.   

 

 

 
Figure 4.9: Histograms of meteorological variables from 2020 to 2021. 

Wind direction is recorded in degrees. That is why 360 different values have dominated the 

wind direction data. In order to produce meaningful results from wind direction data, this 

variable was categorized as 4 main directions: north, south, east and west. The methodology 

was explained under the methodology section. It was aimed that with 4 main direction 

categories, a better correlation with other meteorological variables and in PCA analysis would 

be achieved.     

 

Table 4.5 shows 2020–2021-year data meteorological variables statistics. Wind direction data 

recording starts from April 2020, that is why the number of available data points is the lowest. 

    
Table 4.5: 2020–2021-year data meteorological variables statistics. 

 dew_point_temp air_temp relative_humidity irradiance wind_direction wind_speed 

count 17384 16946 15037 15045 14968 16949 

mean 3.37 7.8 75.85 115.78 163.32 1.57 

std 7.53 8.26 20.2 191.16 124.87 1.24 

min -20.4 -16.1 21 0 0 0 

25% -1.9 1.8 61 0 31 0.7 

50% 3.8 7.6 81 7.9 179 1.1 

75% 9.3 13.9 94 154.8 252 2.1 

max 20.9 29.8 100 1438 360 9.7 

 

The mean value of wind direction is 163º and corresponds to the south-southeast direction. 

After pre-processing of this data, the new statics are shown in Table 4.6.  
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Table 4.6: Processed data statistics. 

 dew_point_temp air_temp relative_humidity irradiance wind_speed wind_category 

count 14944 14944 14944 14944 14944 14944 

mean 3.89 8.54 75.85 115.58 1.59 1.94 

std 7.79 8.42 20.21 189.55 1.23 1.07 

min -20.4 -16.1 21 0 0 1 

25% -1.4 2.7 61 0 0.7 1 

50% 5 9.3 81 7.9 1.1 1 

75% 10 14.7 94 155.7 2.2 3 

max 20.9 29.8 100 874 8.8 4 

 

The frequency of wind direction data is shown in Figure 4.10. As it is seen clearly, wind 

category 3 is the highest frequency after wind category 1.  

 

 
Figure 4.10: Wind direction categorical data histogram. 

 

Figure 4.11 shows the correlation plot comparison after wind direction in degrees categorised 

as 4 main directions. While the figure on the left-hand side consists of the wind_category 

variable which states categorised wind direction as 4, the figure b on the right-hand side shows 

correlation of wind_direction variable in degrees with other meteorological data. More robust 

results were obtained for wind direction. One spectacular difference is relative humidity and 

wind category/direction have no correlation. Wind direction data which is numerical has no 

correlation with irradiance, however, a relationship was captured by categorical wind data. Air 

and dew temperature correlations against wind category slightly increased.  

 

 
Figure 4.11: Correlation matrixes including wind category (left) and wind direction numerical values (right). 
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Once more, PCA analysis were repeated. 3 PCA components explain 84% of the total variance 

in the dataset with 45% PC1, 25% PC2, and 14% PC3. The scree plot of variance explanation 

is shown in Figure 4.12. Since the wind_category variable was added to PCA analysis, the 

explanation dropped to 84% from 92%.  

 

 

 
Figure 4.12: Scree plot for data including wind direction. 

 

PC1-2 and PC1-3 scatter plots are shown in Figure 4.13. Likewise, first PCA analysis, the 

distribution is similar. However, since categorical information was added such as 

wind_category, we capture wind category information in PC1 and PC3. PCA loadings will 

explain the relation of variables further.  

 
Figure 4.13: PCA scatter plots with PC1-2 (left) and PC1-3 (right). 

 

 

 

 



4 Results 

63 

Figure 4.14 describes PC1 and PC2 loadings. The wind category contributes to both PC1 and 

PC2. In addition, wind category and air temperature are positively correlated. This information 

was also gathered in correlation analysis.   

 
Figure 4.14: PCA loadings for PC1-2. 

Figure 4.15 describes PC1 and PC3 loadings. PC1 and PC3 explain only 39% of the dataset. 

Air temperature, dew point temperature and irradiance are positively correlated. Furthermore, 

wind speed and wind category variables were captured as positive correlation in PC1 and PC3.  

 

 
Figure 4.15: PCA loadings for PC1-3. 

As a result, the meteorological variable analysis included wind category does a better job with 

categorised meteorological variable, however, PCA analysis does not produce clear wind 

category relation, yet.   

 

Wind direction data was analysed in detail to understand the relation with other meteorological 

variables. Table 4.7 shows how meteorological variable mean values changes regarding wind 

direction category.  
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Table 4.7: Meteorological data mean variables with respect to wind category. 

Wind 

Category 

dew_point_temp air_temp relative_humidity irradiance wind_speed 

1 1.32 5.46 77.90 54.73 1.11 

2 3.61 8.79 72.94 155.41 1.97 

3 8.59 13.91 73.35 221.07 2.51 

4 5.01 9.75 75.62 92.3 1.04 

 

Since the location of the station is in the south of Norway, the wind from the north should 

decrease the weather temperature. In addition, seasonal changes affect the direction of the 

wind. The lowest mean values of air temperature, irradiance and dew point temperature were 

recorded when the wind comes from the north. In other words, this indicates the winter season. 

In contrast to the north direction, the highest mean values of air temperature, dew point 

temperature and irradiance were recorded when the wind comes from the south. This direction 

refers to the south and summer season. For east and west directions, it is difficult to make a 

conclusion. While the east direction had higher irradiance than the west, air temperature and 

dew point temperature were slightly higher. The highest wind speed was recorded in the west 

direction. However, wind speed measurement below 1 m/s can be affected by local turbulence 

at 10m. Making correlations below and around 1 m/s measurement is not very reliable. 

Statistically, wind from the southwest is frequent in summer for the south of Norway and wind 

speed could be higher daily due to solar rotation in the afternoon.  

 

MET data was analysed seasonally to understand the weather changes in detail. The following 

radar charts belong from autumn 2019 to 2021. Figure 4.16 shows the seasonal change in wind 

speed, and relative humidity. Winter and autumn seasons had frequently higher relative 

humidity.  

 
Figure 4.16: Radar charts for seasonal meteorological variables, wind speed (left), relative humidity (right). 
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Figure 4.17 refers to dew point temperature in blue colour and air temperature in orange colour. 

On the right-hand side, the figure describes irradiance values. Summer seasons recorded the 

highest air temperature and dew point temperature. Irradiance values in 2020 spring and 

summer had very close numbers. One reason is that there was data loss in the 2020 spring 

season for irradiance values. The rest of the data which corresponds to the spring season 

belonged to largely the end of the season before the summer season began.  

 
Figure 4.17: Radar charts for seasonal meteorological variables, dew point (blue) and air temperature (orange) 

(left), irradiance (right). 

 

One question was raised during the analysis of relative humidity. As stated in PCA analysis, 

there is a linear boundary in PCA scatter plots. If it is rainy, relative humidity hits 100% and 

cannot rise further. The frequency of 100% relative humidity is also high. Instead of using 

relative humidity, values were converted to absolute humidity. Figure 4.18 shows the 

correlation matrix of absolute humidity and relative humidity values correlated with other 

meteorological variables for 4 years period from 2018 to 2021. Relative humidity has a strong 

correlation with irradiance which actually represents rainy days or sunny days due to 

cloudiness. However, we lose irradiance correlation with absolute humidity. Instead, absolute 

humidity has a strong correlation with air and dew point temperature due to the calculation 

method which uses air and dew point temperature.    
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Figure 4.18: Correlation matrix included absolute humidity 

 

PCA analysis was conducted again and PCA loadings are shown in Figure 4.19 and Figure 

4.20. Absolute humidity was captured on the same side in PC1 and PC2 with a positive 

correlation.  

 
Figure 4.19: PCA loadings of PC1-2 included absolute humidity. 

 

In contrast relative humidity, absolute humidity has no impact on PC3. This result is 

undesirable. There is a risk of losing one variable’s footprint in PCA analysis.  
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Figure 4.20: PCA loadings of PC1-3 included absolute humidity. 

 

One conclusion would be that if absolute humidity values were used, dew point temperature 

values would be excluded from the database. Since precipitation and cloudiness are not 

available at nearby stations, relative humidity is going to be used in further analyses to have an 

idea about precipitation and cloudiness. Wind direction was only available from 2020 April. 

To observe if any relation exists in absolute humidity with wind direction, the correlation plot 

was produced for the 2021 year of data to represent one whole year. Figure 4.21 shows the 

correlation plot including wind category and absolute humidity records. The highest positive 

correlation was observed for wind category with absolute humidity.  

 

 
Figure 4.21: Correlation matrix with absolute humidity and wind category for 2021. 
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4.2 PV power analysis results 

PV data analysis with other meteorological variables included starts from 4th April 2020 until 

the end of 2021 due to the availability of wind category variable. Power values are only 

available from the beginning of 2020. That is why the first 3 months in 2020 for power values 

are out of the investigation. Figure 4.22 shows IV2 power values with irradiance values for the 

analysed period. Layout and slope cause receiving less irradiance than global horizontal 

irradiance valu1es on east direction panels which is shown in the graph as measured irradiance. 

The information for receiving irradiance based on direction had been shown in the 

methodology section. Power values with irradiance plotting for other selected inverters IV5 

and IV7 were given in Appendix D. 

 
Figure 4.22: Power values for IV2 and measured irradiance values in addition to POA irradiance. 

 

Figure 4.23 illustrates a comprehensive plot with all meteorological values and irradiance 

values. In the dataset, if one variable has no record for a period of time, the corresponding 

values for other variables were also deleted to have the same number of rows in each column.  

 

 
Figure 4.23: IV2 AC power values with meteorological variables. 
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Figure 4.24 illustrates correlation analysis for inverter 2 with other methodology variables. 

Correlation coefficients are shown in the figure itself. While darkest colours indicate the 

highest negative correlation, lightest colours describe the highest positive correlation. The 

highest correlation was obtained among the plane of array irradiance and irradiance values. 

Power output correlation with the plane of array irradiance is higher than horizontal irradiance 

values as expected. The second highest correlation with power output is module temperature 

with a 0.77 coefficient. Module temperature is a generated value that takes into account three 

different dependent variables, air temperature, wind speed, and the plane of array irradiance. 

The third highest correlation is with air temperature at 0.47. On the other hand, the highest 

negative correlation was observed among power output and relative humidity. Power output 

and solar position parameters are not going to be discussed as the main focus is weather 

parameters. It is important to note that only above zero sun elevation values have been taken 

into account which represents the periods when the PV plant is ready to produce power. 

Correlation analysis results for inverters 5 and 7 were given in Appendix D.  

 
Figure 4.24: IV2 correlation analysis with other meteorological variables included. 

Figure 4.25 introduces inverter 2 power output and the plane of array irradiance value graph. 

Dots were coloured by the corresponding air temperature. Clearly, low irradiance leads to lower 

PV power. It is also possible to conclude that higher PV values were recorded when air 

temperature was relatively low. Yellows values which belong to higher air temperature, 

gathered mostly at the bottom of the trend line.   
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Figure 4.25: Inverter 2 power output and plane of array irradiance coloured with air temperature. 

In the methodology section, the PV power output filtering method had been discussed. A 

performance index calculation method had also been introduced. What can be concluded from 

the analysis is that low elevation leads to a drop in performance index. Among the values, the 

bottom 10% of the performance index values were assigned as 0 and other values as 1. On the 

left-hand side of Figure 4.26, dots were coloured based on elevation values. The lowest PV 

output values were recorded in the event of low elevation and irradiance, obviously. On the 

right-hand side of the same figure, PV power values were filtered out based on performance 

index 0 and the plot was reproduced. Thus, high irradiance but low power values are eliminated. 

It is aimed that by introducing a performance index and filtering low performance values, noise 

in PV power would be eliminated. Thus, cleaned power output data may reduce the error in 

predictions.  

 

 
Figure 4.26: Inverter 2 power values and POA values coloured by elevation (left) and PV performance filtered 

graph coloured with air temperature (right). 
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Having had PV data, PCA analysis can be expanded with PV power data.  Since the number of 

input variables increased, 4 PCs were determined. Figure 4.27 describes the scree plot for PCA 

analysis with 4 components. PC1 explains 50%, PC2 16%, PC3 11%, and PC4 9% variance in 

the dataset with a total of 85.44% explanation.  

 

 
Figure 4.27: Scree plot of PCA analysis including PV power values and sun parameters. 

 

Figure 4.28 illustrates PC scatter plots. With additional inputs, the distribution of variables is 

much more homogeneous. That is why variance explanations have dropped.   

 
Figure 4.28: PCA components with PC1-2 (left), PC1-3 (right). 

 

In PCA loadings, irradiance related parameters such as elevation, module temperature and POA 

irradiance overlap with PV power. Figure 4.29 and Figure 4.30 explain PC1-2 and PC1-3 

loadings.    
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Figure 4.29: PCA loadings for PC1-2 with PV power values and sun parameters included. 

 

 
Figure 4.30: PCA loadings for PC1-3 with PV power values and sun parameters included. 

4.3 PV Power output prediction case study results 

In the methodology chapter, planned case studies were announced. In this part of the result 

chapter, each case study will be represented for both linear regression (LR) and artificial neural 

networks (ANNs). Different plotting styles were used. For example, short term LR graphs were 

plotted as scatter plots while ANN graphs were plotted as a line with value markers. The reason 

is that in the linear regression model, graphs also show corresponding time while ANN graphs 

have only index numbers. Hence, it was avoided non-value period within night time which has 

made plotting readable. Since ANN graphs will be introduced together with LR graphs, it is 

possible to identify the ANN graph time scale by comparing LR graphs.   
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4.3.1 Model performance on clear sky days 

Consecutive prediction aims to short term prediction with relatively similar weather variables 

in one period. Thus, smaller data sets can achieve sufficient results and less computation time 

and resources are required. In this section, short term model performance on clear sky was 

evaluated.  

 

Consecutive clear sky days were observed between 22nd July 2021 and 24th July 2021. The 

model is trained with data from 12th July 2021 to 21st July 2021. Table 4.8 shows training and 

test set mean and standard deviation results for each variable. 

 
Table 4.8: Training and test set mean and standard deviation for each variable. 

Variables Mean Values - 

Training 

Std - Training Mean Values - 

Test 

Std - Test 

dew_point_temp 12.58 4.07 12.6 1.62 

air_temp 21.91 3.96 21.93 3.92 

relative_humidity 57.13 14.7 57.41 15.67 

poa_global_east 364.61 238.3 354.87 241.36 

wind_speed 1.79 1.03 2.09 1.12 

wind_category 2.25 1.05 2.72 0.77 

module_temp 30.86 8.51 30.46 8.90 

hour_harmonic 0.36 0.51 0.32 0.51 

zenith 59.72 16.16 62.17 16.23 

elevation 30.27 16.16 27.82 16.25 

azimuth 177.96 82.37 188.21 84.03 

 

PV power training data mean value is 38.14 kW, and standard deviation is 24.61 kW. In 

Appendix E, the historical PV power output with irradiance values plot for the period when the 

model was evaluated is accessible.  

 

Figure 4.31 describes the result of the linear regression model. In each graph, model error 

results were printed on top of the plot. Mean absolute error (MAE) is 2.04 kW, mean squared 

error (MSE) is 5.99 kW, root mean square error (RMSE) is 2.45 kW, and variance is 0.99. For 

the next result graphs, the same error representation approach will be used. While the LR model 

indicates linear regression, the ANN model shows artificial neural network model on the 

plotting.  
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Figure 4.31: LR model prediction for clear sky days. 

 

The LR learning curve explains the model stopped learning after 70 training data. The more 

training data feeds into the model, the model no longer learns.  

 
Figure 4.32: LR model learning curve for clear sky days. 

  

The simulation was repeated for the ANN model. Figure 4.33 shows the ANN prediction plot 

which achieves relatively better prediction with fewer errors.   
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Figure 4.33: ANN regression prediction for clear sky days 

In the ANN model, different model configurations were used due to the small data set. It is 

seen from the RMSE error graph that the model achieves its best performance with 500 epochs.   

 
Figure 4.34: ANN learning curve for clear sky days. 

4.3.2 Model performance on clear sky days without measured irradiance input 

It is not always possible to access the latest measured irradiance values for PV power output 

prediction. That is why the model performance was evaluated without measured irradiance 

values. Since module temperature input was derived from measured irradiance values, this 

variable was also excluded. Instead, calculated clear sky irradiance values were fed into the 

model. Figure 4.35 illustrates LR model results without measured irradiance values but 

calculated clear sky irradiance values. Higher errors were obtained compared to prediction with 

measured irradiance values.  
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Figure 4.35: LR model prediction for clear sky days without measured irradiance values. 

 

ANN model achieves the same prediction with lower error but with a low performance 

compared to measured irradiance values included. The model completely fails without any 

irradiance values either clear sky or measured irradiance. The figure is given in Appendix E.  

 

 
Figure 4.36: ANN model prediction for clear sky days without measured irradiance values. 

4.3.3 Year based training and test sets  

The PV plant has been in operation since 2020. It is aimed in this part to evaluate prediction 

performance for 2021 with the 2020 year of data training. In the methodology section, it was 

observed that 4 years of meteorological variable correlations are not quite different from 2021-

year data. Hence it can be concluded that the prediction of PV power from 2021 historical data 

may be a reliable source for future predictions in 2022. The models were trained by 2020 

historical PV power output and meteorological variables and tested in 2021. The training period 

starts from 1st April 2020 when the wind direction variable started to be recorded until 01 April 

2021. On the test set side, December was not included as there are only a few PV power data 
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available. Table 4.9 includes training and test sets mean and standard deviation values. Power 

values training set mean value is 24.94 kW and standard deviation is 22.99 kW.   

 
Table 4.9: Training and test data variable statistics. 

Variables Mean Values - 

Training 

Std - Training Mean Values - 

Test 

Std - Test 

dew_point_temp 4.68 7.4 9.54 5.31 

air_temp 11.7 7.3 15.09 6.7 

relative_humidity 65.9 21.93 72.2 18.45 

poa_global_east 233.4 210.08 203.15 195.91 

wind_speed 2.01 1.31 1.8 1.17 

wind_category 2.23 1.03 2.32 0.98 

module_temp 17.3 10.42 20.02 10.18 

hour_harmonic 0.5 0.46 0.55 0.43 

zenith 65.87 15.2 67.42 14.6 

elevation 24.12 15.2 22.58 14.6 

azimuth 179.63 70.34 180.32 70.41 

 

Figure 4.37 illustrates 2021 year of data prediction for LR. As it is seen from the figure, 

predictions fall below zero on some days. Furthermore, there are some days when the model 

was not able to capture peak values.  

 

 
Figure 4.37: LR model prediction for 2021-year data from April. 
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For the same period, the ANN model did a better job of capturing peak values. Predictions 

rarely fell below zero as it is seen in Figure 4.38. As a result, ANN has low errors overall. 

Different ANN configurations achieved better results. For this prediction, 100 epochs, 64 and 

32 dense were provided to the model.   

 
Figure 4.38: ANN model prediction for 2021-year data from April. 

 

The learning curve for LR shows that as the model predicts better with more training sets, 

training errors get higher values indicating that the data set gets complicated as it is observed 

in Figure 4.39.  

 

 
Figure 4.39: Learning curves for LR (left) and ANN (right). 

4.3.4 Training on 2020/2021 data and meteorological variable selection 

In this section, it is aimed to train the model with as much as possible data and test them during 

different periods to observe the overall performance of models. One of the expectations was to 

evaluate model performance on the large dataset by letting the models learn from more datasets. 

In addition, this case study will show how the model might perform on forecasted 

meteorological data. Furthermore, the meteorological variable's impact on the overall result 

was examined.  

 

The models were trained from 01/04/2020 to 21/07/2021 and tested on consecutive clear sky 

days. By doing this, model performance was compared with the trial in the 4.3.1 chapter. Figure 
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4.40 shows ANN model performance. Since the model has more training data, the prediction 

was easy and the model overfitted on the test set. The model was run by 50 epochs.   

 

 
Figure 4.40: ANN model output training with 2020/2021 and testing on consecutive clear sky days. 

However, LR produced poor results on the same test set as it is shown in Figure 4.41.  

 
Figure 4.41: LR model output training with 2020/2021 and testing on consecutive clear sky days. 

 

The trial was done on fluctuating PV power output days. Figure 4.42 shows the days are going 

to be tested with PV power and POA values.  
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Figure 4.42: IV2 and poa_global values for selected days. 

 

Results are shown in Figure 4.43 and Figure 4.44 for ANN and LR models. ANN model was 

run by 50 epochs, and 64 batches. As a result, while ANN predicts slightly better than the LR 

model, both models failed to capture the power value drop on 27th September 2022 at 11:30. 

Some comments have been made on this issue in the discussion section.  

 
Figure 4.43: ANN model output training with 2020/2021 and testing on fluctuating power output days. 
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Figure 4.44: LR model output training with 2020/2021 and testing on fluctuating power output days. 

 

In most scenarios not all meteorological variables are accessible. For example, without wind 

parameters, it is still possible to predict power outputs. In this part, it is explored how 

meteorological variables affect PV power output prediction. All trials were done on the same 

test set period which is from 28th August 2021 to 20th October 2021. The training period starts 

from April 2020 until the beginning of the test set. Figure 4.45 illustrates prediction results for 

the ANN model with all parameters included. For the ANN model, with all parameters 

included, prediction results for the test set were given in the first row in Table 4.10. Likewise, 

Figure 4.46 describes prediction results for the LR model with all parameters included and 

prediction errors were given in Table 4.10.  

 
Figure 4.45: ANN model prediction results with all parameters included. 

 

The best predictions with the ANN model were obtained with hyperparameters in which 64 

and 32 dense, 32 batch sizes and 80 epochs.   
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Figure 4.46: LR model prediction results with all parameters included. 

 

The learning curves for LR and ANN in Figure 4.47 describe that while the LR model continues 

to learn as more training data is fed in, the ANN model with given parameters makes an easier 

prediction on the test set.  

 
Figure 4.47: Learning curves for LR (left) and ANN (right) with all parameters included. 

 

More broadly explanations for Table 4.10 is that excluded variables indicate all other 

parameters included but only the stated variable was not taken into account. There are other 

cases such as only the selected variable’s effect was explored. ANN parameters were simplified 

in the process of trial of only POA irradiance with 10 epochs and 16 and 8 dense.  
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Table 4.10: Meteorological variable selection for ANN model’s error and variance values. 

Models ANN Model Results LR Model Results 

Errors / Variance MAE* MSE* RMSE* R2 MAE* MSE* RMSE* R2 

All Parameters 1.64 6.57 2.56 0.97 2.08 8.76 2.96 0.96 

wind_speed excluded 1.78 7.17 2.68 0.97 2.04 8.64 2.94 0.96 

wind_speed and 

wind_category 

excluded 

1.65 7 2.65 0.97 2.04 8.64 2.94 0.96 

relative_humidity 

excluded 
1.82 7.66 2.77 0.97 2.09 8.82 2.97 0.96 

air and 

module_temperature 

excluded 

1.74 7.05 2.65 0.97 2.12 8.92 2.99 0.96 

Only air_temp, POA 

irradiance, and sun 

parameters included 

1.63 6.66 2.58 0.97 2.11 8.86 2.98 0.96 

Only air_temp, and 

POA irradiance 

included 

1.8 9.14 3.02 0.96 1.97 9.51 3.08 0.96 

Only air_temp, POA 

irradiance, and 

relative_humidity 

included 

1.78 9.61 2.93 0.96 1.96 9.27 3.04 0.96 

Only POA irradiance 

included 
1.95 10.25 3.2 0.96 1.9 9.32 3.05 0.96 

Only MET variables 

included, POA 

irradiance and sun 

parameters excluded 

10.24 184.77 13.59 0.23 11.6 206.3 14.26 0.14 

Only MET variables 

and sun parameters 

included but POA 

irradiance excluded  

5.3 54.6 7.39 0.77 7.31 82.13 9.06 0.66 

* Values are in kW. 
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Due to small differences between errors for different trials in the same model, it is difficult to 

assess variable effects on the model output. That is why some cases were dug in with a closer 

look.  

4.3.4.1 Wind Direction Effect 

Figure 4.48 demonstrates metrological variables and PV power output for a selected time scale. 

There was one specific date, 18th July, for wind direction was on 1 category label which 

represents wind from the north. This information has shown in the red box in the figure. In the 

corresponding period, PV power output peaked as it can be seen in Figure 4.48 and Figure 4.49. 

The trained period from 2020 to July 2021 was tested from July 7th to 29th.   

 
Figure 4.48: Meteorological variables and power output for wind direction analysis. 

 

 
Figure 4.49: PV power output and irradiance values for wind direction effect analysis. 

When the wind direction category was excluded from inputs of the model, ANN and LR models 

fails to catch the peak power output value. A comparison for the ANN model before all inputs 

were included for the given period and after the wind direction variable was excluded from the 

input is given in Figure 4.50 and Figure 4.51. Clearly, after wind direction data was eliminated, 

prediction falls for the peak value which was achieved at a lower number. The difference is 

emphasised with red circles.  
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Figure 4.50: ANN model result with all variables included within wind direction analysis period. 

 

 
Figure 4.51: ANN model result without wind direction variable. 

The same relation was observed for IV5 and IV7 which are on different roofs with different 

layouts. Figure 4.52 and Figure 4.53 describes IV5 and IV7 result, respectively. In addition, 

the LR model has also detected the same difference. 

 

 
Figure 4.52: ANN model results comparisons with (left) and without (right) wind direction variable 

for IV5. 
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Figure 4.53: ANN model results comparisons with (left) and without (right) wind direction variable for IV7. 

4.3.4.2 Relative Humidity Effect 

The relative humidity effect on the model was explored for the period from 29th May to 19th 

June. Figure 4.54 illustrates the period that relative humidity has an increasing trend for a 

certain period and it is shown with a red box. When relative humidity variable was eliminated 

from the database, the ANN model predicted power values at a lower value for the time where 

relative humidity was relatively high between 9th and 10th June. Likewise, similar prediction 

results were obtained with the LR model.  

 
Figure 4.54: Meteorological variables and power output for relative humidity analysis. 

 

 
Figure 4.55: ANN model result with all variables included within relative humidity analysis period. 
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Figure 4.56: ANN model result without relative humidity variable. 

4.3.4.3 Dew Point Temperature Effect 

Relative humidity effect on the model was explored for the period from 5th May to 24th June. 

Figure 4.57 describes the period that dew point temperature fluctuations specifically from July 

13th to 15th.  

 

 
Figure 4.57: Meteorological variables and power output for dew point temperature analysis. 

 

When dew point temperature variable was eliminated from the database, predictions were the 

same and did not change for ANN and LR models. Figure 4.58 and Figure 4.59 describe ANN 

model predictions with a red box emphasised for dew point temperature fluctuations period.  
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Figure 4.58: ANN model result with all variables included within dew point temperature analysis period. 

 
Figure 4.59: ANN model result without dew point temperature variable. 

4.3.4.4 Wind Speed Effect 

Figure 4.60 illustrates PV power output and meteorological variables for wind speed analysis 

and the red box focuses on the period when there were wind speed fluctuations from June 13th 

to 17th. Since the module temperature variable is a function of wind speed, this variable was 

excluded before the wind speed variable was eliminated from the database. Predictions without 

module temperature are shown in Figure 4.61. The model was run without wind speed and 

module temperature; however, the effect of wind speed was not observed in Figure 4.62.    
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Figure 4.60: Meteorological variables and power output for wind speed analysis. 

 

 
Figure 4.61: ANN model result with all variables included except module temperature. 

 

 
Figure 4.62: ANN model result with all variables included except module temperature and wind speed. 
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Clearly, this result was unexpected. It is a scientific phenomenon that wind speed is an 

important parameter for PV power output. A different time period was investigated for the 

wind speed case. First, a period when there is an obvious impact of wind speed on power output 

was determined. Figure 4.63 shows the plane of array and IV2 power output line graph on 11th 

July 2021. The second peak in power value occurred at low irradiance value compared to the 

first peak. Figure 4.64 illustrates the same period in two parallel red lines with other weather 

variables and emphasised wind speed in the red box. A steep increase was observed for the 

wind speed during the second peak occurrence in power output.  

 

 
Figure 4.63: IV2 Power output and the plane of array irradiance for the wind speed case. 

 

 
Figure 4.64: IV2 and weather parameters for the wind speed case.  

 

When the model was trained with the same time period as previous examples, the second peak 

was not captured. This time the model was trained for a shorter time period and results were 

shown in Figure 4.65 with wind speed included and Figure 4.66 with excluded wind speed 

parameter. The wind speed included graph predicts higher values for the rest of day compared 

to Figure 4.66. The red line exceeds the blue line. Model accuracy is low for the wind speed 

excluded case. Longer training periods make the model count on irradiance values more.  
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Figure 4.65: ANN results with wind speed included. 

 

 
Figure 4.66: ANN results without wind speed parameter.  

4.3.5 Predictions with forecasted meteorological data on a clear sky day 

ANN and LR models were trained and tested on historical data. Moreover, the accuracy of the 

models was evaluated. The limit of the models has been assessed and the possible lowest error 

numbers have given an idea about how models would behave on forecasted metrological data. 

Even though forecasting was not front-and-centre of this study, it is now possible to test the 

model on forecasted metrological data. Forecasted meteorological data was accessed through 

THREDDS Data Server (TDS) operated by met.no. Unfortunately, forecasted irradiance values 

are not available. Instead, clear sky calculated data was used for the prediction day and adjusted 

to the plane of array irradiance. Besides, PV power data was requested from Lede Energi for 

the corresponding period. Module temperature was not fed into the model as it is a function of 

irradiance values. Models were trained by one year before in the same month with 30 days of 

data and prediction was held on 25th April 2022. Table 4.11 describes the training and test data 

mean and standard deviation values.  
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Table 4.11: Training and test data variable statistics for forecasting analysis. 

Variables 
Mean Values - 

Training 
Std - Training 

Mean Values 

- Test 
Std - Test 

dew_point_temp -3.6 3.43 0.36 1.49 

air_temp 7.3 4.56 13.2 3.84 

relative_humidity 48.7 17.9 43.9 10.1 

Clearksy data 

adjusted to 

poa_global_east 

269.2 189.2 370.1 222.3 

wind_speed 2.2 1.16 2.0 0.57 

wind_category 2.0 1.03 3.3 0.69 

zenith 66.2 12.2 63.6 13.7 

elevation 23.8 12.2 26.3 13.7 

azimuth 180.6 65.2 182.6 71.2 

 

Power values training set mean value is 30.9 kW and standard deviation is 21.5 kW. Figure 

4.67 and Figure 4.68 show ANN and LR results, respectively. The ANN model produced lower 

error than the LR model and the trend fitted with output values. In the LR model, the model 

predicted higher power values after midday. One reason is that using clear sky values caused 

the linear regression model predicts higher values. ANN was able to learn more from historical 

values.  

 

Figure 4.67: ANN prediction results for forecasting analysis on a clear sky day. 
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Figure 4.68: LR prediction results for forecasting analysis on a clear sky day. 

 

Prediction on a forecasted cloudy was also planned. Alternatively, cloudiness percent and clear 

sky values would be used to predict the possible amount of irradiance that modules can absorb. 

However, it was noticed that the forecasted cloudiness percent on the TDS did not match with 

the real scenario. That is why the cloudy day forecasting was not presented here.  
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5 Discussion 
Since this study consists of three main parts as data dealing part, clear sky studies, and 

modelling, the discussion section is also divided into three parts in line with structure.   

5.1 Meteorological and PV power datasets  

Data dealing comes first for setting up an accurate model. That is why the common data 

processing techniques were applied to the datasets. Pre-processing of data can result in a huge 

amount of data loss due to excessive filtering. In this study, while the most of data were tried 

to be kept, the data was cleared out from outliers, fault status, and unrealistic values. 

Specifically for PV data, zero values and night periods were removed before modelling. It is 

important to keep in mind that noise in data still can hold valuable information, and 

disregarding noise in data might reduce the model performance. At the end of data processing 

for 4 years of meteorological data, available irradiance values dropped 8.5% which is 

acceptable. Differently, PV power data was received mainly filtered based on inverter’s 

operation period from the company’s database. However, this data was also filtered in terms 

of night periods when the sun is out. As a result, 12.5% of PV power data filtered out from the 

database. Considering night periods in PV dataset and out of order period in the MET station, 

it is fair to say that the data count after processing is sufficient. Moreover, not all PV data does 

consist of decent values. Irradiance values and PV power output usually go hand in hand. As 

is seen from Figure 4.25, that is not the case every time. Some power values do not 

proportionally rise with respect to irradiance. As it was explained in detail in the methodology 

section, after a rough performance index proposal, power values are becoming degenerate 

below 9º elevation. If a performance index filtering is applied to data, only decent power values 

are obtained. However, feeding filtering power values into models increases model erroneous. 

That is why PV data filtering was halted after removing night periods. It is aimed to predict 

power values for the complete cycle in a day. Removing some PV power data disrupts models 

to predict low PV power values.     

 

PCA analysis provided a great deal amount of information about datasets. Thus, it became 

possible to observe the data distribution and outliers in data. In addition, PCA loadings are in 

compliance with the correlation matrix. One of the aims of performing PCA analysis was 

dimension reduction. However, considering three and four components PCA only explains 

92% and 85% of variations in datasets. To achieve a higher explanation more components will 

be required and the dimension reduction goal becomes unreasonable. It is already known that 

irradiance and power values have a correlation above 95%. This study is actually after the other 

5%. As a result, PC values were not fed into the model. 

 

The correlation matrix proves that irradiance and power values have the highest correlation. 

Sun elevation and air temperature are also important inputs for the model. Wind speed has a 

higher correlation than wind category. There is no correlation between dew point temperature 

and power values. In relation to this information, dew point temperature effect could not detect 

in the variable case model evaluation. Correlation matrixes among other selected inverters 

slightly differ. One reason is that each inverter was not in operation for different periods. That 
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is why each inverter’s value was correlated with meteorological variables at different times. It 

is concluded that the difference is insignificant and the effect on the model was negligible.   

 

Detailed meteorological variable investigation gives some insights into seasonal and yearly 

changes. It is possible to conclude that training models with only one year of meteorological 

data can still produce similar accuracy based on close correlation coefficients. However, 

correlations for each different year in the same season may differ.    

5.2 Clear sky studies 

The model’s performance on clear sky days is expected to be at its best value. To prove this 

idea, a clear sky days study was performed. However, 2 years of data which consists of more 

than 7000 rows make it difficult to capture clear sky days easily.  On the way to clear sky days 

analysis, it was noticed that measured irradiance values exceed calculated clear sky days and 

those values are not measurement errors since they were checked with PV power output at the 

corresponding period. Atmospheric conditions have an impact on irradiance values that reach 

the earth’s surface. If wind speed is low, and relative humidity is high, there is a possibility that 

measured global horizontal irradiance values will exceed calculated clear sky values.  

 

Different clear sky calculation methods are accessible in the literature and some of them are 

available on pvlib. To choose the appropriate clear sky model, correlation analysis between 

measured global horizontal irradiance values and different clear sky model values was 

performed. The highest correlation is obtained by Perez-Ineichen method among the other two 

models. As is seen from Figure 3.13, while other methods predict higher values for irradiance 

values, Perez-Ineichen is the closest model to measured irradiance values. Nevertheless, 

calculated values frequently exceed the measured values. This problem can be eliminated by 

parameter change in the model. It is possible to feed different linke turbidity or air mass values 

but the model run by default values. These values may differ geographically and unfortunately, 

air mass and linke turbidity values do not exist for Gjerpen station. As a result, clear sky values 

can be adjusted better to be in line with measured irradiance values. 

 

Pvlib detect_clearsky() function works only with 1min time resolution. Measured irradiance 

values had to be transformed from 1h to 1min resolution. By using interpolation, values were 

produced but this rough estimation for 1min measured irradiance values, the algorithm from 

time to time fails. Some adjustments within the algorithm have been made such as resolution 

adjustment and different interpolation methods and the best possible output was obtained. 

Hence, the effort to find clear sky days within the data has become lower. Clear sky values are 

important as these values are used to produce the plane of irradiance values. That is why an 

extensive investigation was performed on clear sky irradiance values.  

5.3 Prediction and model evaluations 

5.3.1 Time Resolution Problem 

Three different datasets were used from three different sources. As given information in Table 

3.7, PV values have 10 min resolution. 10 mins PV values fluctuate a lot especially on cloudy 
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days as it is seen in Appendix G. This data averaged to on an hourly basis. In general, averaging 

is one way of dealing outliers in datasets in data processing steps. One advantage of averaging 

PV data to 1 hour is having much more smooth data. However, when a new dataset from 

another source is combined with hourly PV power data, in this case irradiance, the time scale 

problem arises. For example, in the event of irradiance value drop for a specific period, no 

changes were captured in PV power data. In the second figure in Appendix G, one example of 

this situation was illustrated. There might be two reasons that cause the problem, station 

location might be cloudy and plant location was cloudiness or irradiance measurement 

disrupted for couple of minutes for some reasons. Whatever the reason, this situation frequently 

occurred and it is quite difficult to filtering out such periods from the data. One biggest 

disadvantage keeping such situations in the dataset, they cause prediction fault and increase the 

model error. One report presented form Sandia National Laboratories proves that the higher 

time resolution means higher prediction erroneous [43]. In the same report, it is also concluded 

that reducing the weather parameters interval from one hour to 15 minutes generally results in 

an error drop in energy by a factor of 10. 

 

In the literature, it is possible to find articles that obtain lower prediction errors for historical 

data analysis and forecasting. For some cases MAPE error numbers were produced exclusively 

to make comparisons with specific articles. One paper conducted in Cyprus, found 4.7% mean 

absolute percentage error on historical dataset for a period of 170 days compared to 25% MAPE 

for a 90 days period in our study [44]. For consecutive clear sky days study in chapter 4.3.4,  

MAPE was 14%. Another study for day ahead forecasting found 10.06% MAPE on a clear sky 

day [45]. A different study conducted research for one year period with 5 min resolution and 

found R2 92.2 [46]. Even though this study’s outputs for clear sky days evaluation is close to 

the literature, time resolution problem leads a great amount of erroneous on the output. It is 

important to check the article’s evaluation method. The reason is some evaluations were made 

based on scaled inputs and outputs. This study uses unscaled values in other words, actual 

power values for error calculations. 

 

One might argue that instead of averaging PV values to an hour basis, meteorological variables 

could have converted to 10 mins resolution by interpolation. This idea would not solve the 

problem for overlapping. An example is shown in the second page of Appendix G. It is notable 

that observation values do not overlap between irradiance and PV power output. What it means 

that values do not reflect the same time interval. That is why interpolation of meteorological 

variables would lead the same issue, again.  

5.3.2 Model input selection 

Apart from PV power values, it was observed that 11 different inputs have different impacts 

on power values. In addition, the selection of training period dramatically changes model 

accuracy. That is why models were evaluated for different periods with different training 

periods such as training for a short period, or one whole year of training. It was also benefited 

from K-fold validation. When it comes to predicting clear sky days, the training period is not 

as important as predicting cloudy days. The best model accuracy values always were obtained 

with clear sky days predictions. Time resolution issue leads to high cloudy days prediction 

errors.   

 



5 Discussion 

97 

Sun parameters such as azimuth, and elevation cause a rise in the model accuracy. These 

parameters follow a pattern on a daily basis. Thus, predictions catch the power values pattern 

easily. Air temperature and the plane of array irradiance values are vital for the model. It was 

possible to obtain low MAE values. In contrast, relative humidity which has the highest 

negative correlation with power values has almost no impact on the model where the plane of 

array, air temperature, and relative humidity are only inputs. However, with all variables 

included and only relative humidity excluded, ANN prediction accuracy increases. LR 

prediction accuracy does not change. Thus, ANN was able to capture non-linearities in the 

relative humidity-power values relationship.  

 

It was observed during the simulations that the longer training period is chosen, the more 

models become dependent on irradiance values. Impact of other weather variables decreases.  

5.3.3 Model Evaluations 

Learning curves was used in addition to statistical analysing tools to evaluate model 

performance. It is important to mention that ANN models were run by trial-and-error approach. 

Model trials were suspended where the best ANN outputs were obtained.  

 

Training for long periods and predicting short periods require simple model parameters. For 

example, 50 epochs were sufficient for clear sky day power value predictions training with 

2020/2021 data. Whereas more epochs were required in case of using a smaller training dataset.  

 

In general, the training and test set ratio basically manipulates data complexity. The reason is 

that learning capabilities from the data are limited where a lower train/test ratio is applied. 

Higher node numbers were used in the ANN model and the LR model still needed more data 

to learn.  

 

Even though squared error methods are widely used as a comparison method in the literature, 

mean absolute errors were the main comparison criteria between LR and ANN as having 

relatively high error numbers due to time resolution issues in this study. By definition, squared 

error methods produce higher numbers and the sensitivity dramatically drops for this dataset. 

MAPE is, however, used to make this study comparable with some articles in the literature.  

5.4 Future Work Discussions 

This comprehensive study still has a huge potential to make accurate predictions. Averaging 

power is overestimated and leads to higher errors in predictions. Once inevitable issues due to 

time resolution eliminated, models can produce more sensitive results in terms of capturing 

meteorological variable effects. Since power values are recorded at 10min resolution, frequent 

sampling rate recording values are required for irradiance, air temperature, and relative 

humidity including wind direction data. Thus, it will be possible to capture irradiance and 

power output fluctuations at the same time for better training. Furthermore, it was expected to 

observe wind direction effect for each layout, separately. By achieving higher accuracy, this 

effect may be explored deeper for IV5 and IV7.  
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An optimisation study for ANN hyperparameters is required to make model reliable throughout 

the year. Thus, a real-time PV power forecasting system can be built and work in harmony for 

a grid optimisation.  
 

Depending on forecasting horizons such as short term (less than 1 day) or medium term (1-3 

days ahead), there is a trade-off between selling electricity to the market and storage of 

batteries. In general market electricity prices are at the lowest from 11:00 to 16:00 depending 

on the season, however, PV power output is at its highest. This relation is known as the duck 

curve. Without a doubt, battery systems are one solution to sell PV power to the market when 

prices are high such as in early mornings or in the evenings. Nevertheless, building and 

operating feasible systems are challenging. On the one hand, accurate short term forecasting 

outputs may suggest a period when expected PV power is high out of the lowest electricity 

prices period. Thus, the grid connected period can be planned. In addition, the observed 

differences in PV power output for the same weather conditions hide unique potential to detect 

problems and keep the system in operation at the highest efficiency all the time. On the other 

hand, medium term forecast contributes to power system management in addition to planning 

maintenance activities from a broader perspective. In summary, for future work, building a 

model and training with a shorter time resolution such as 10min to increase the model accuracy, 

and forecasting with a 1hour time resolution for grid planning scenario should be investigated.  

 

One might demand using trained models in this study for a different PV module, layout, or 

plant to predict PV power output. However, PV power output is not only the function of 

weather parameters. Firstly, inverter type and its efficiency are one parameter that has not been 

discussed in this study. Typically, for a given DC input, the inverter converts to AC power for 

only a certain amount. The efficiency of inverters not only changes during the day but also 

takes different values for each inverter type. Since this study uses the output of inverters which 

is AC, the results might comparable for only the same type of inverter. Secondly, the module 

type is another parameter that affects PV power output. In the PV module specification sheet, 

the temperature coefficients of PV modules are stated as a linear equation. For example, the 

module types that are subject to this analysis have a -0.36%/ºC for PMPP. It describes that every 

1 ºC rise in module temperature, results in a 0.36% drop in power. The nominal module 

operating temperature has given as 44.6 ± 2 ºC. These values vary for different manufacturers. 

That is why the models are fit for the same module types. In Skagerak Arena, there are different 

types of modules with 300 Wp in the south direction. However, since models are trained by 

each inverter’s historical data separately, PV power output values are already influenced by 

module specifications. Alternatively, an efficiency factor can be calculated by taking into 

account measured module temperature and power loss/rise percentage. Thus, PV power values 

would be normalised and models can be used for different types of modules. Thirdly, tilt angle 

and direction (azimuth) are other parameters. Measured global horizontal values have been 

converted to the plane of array irradiance values by taking into account tilt angle and azimuth 

values. Therefore, it is possible to use these models feeding with adjusted irradiance values in 

the process of predictions. Moreover, cabling systems also affect power output. Considering 

various parameters that effects using the model in other PV systems, further adjustments have 

to be made. In particular, building models by training with DC instead of AC power can 

eliminate the effect of inverters and most some cabling differences. Thus, the newly established 

model including the temperature coefficient factor would serve different PV systems.        
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6 Conclusion 
This study provides thorough research in the PV power prediction domain focusing on time 

series prediction using LR and ANN models. The results show that ANN models are relatively 

better in the prediction of PV power values than LR models.   

 

It is concluded from the meteorological variable study that yearly changes within 

meteorological variables will not have a big impact on PV power prediction estimations 

according to correlation analysis. Even though PCA analysis provides some information on 

data and relationships, using PCA components does not produce improved results for 

predictions due to low explanation. PV power data filtering based on performance resulted in 

an accuracy drop due to data loss for low elevation periods. There is a slight difference between 

the correlations and power values with respect to different layouts and other meteorological 

variables. One of the reasons that cause this difference is that each inverter has a different 

operation time.   

 

For the specified location, Ineichen-Perez clear sky method delivered better results for 

correlation with measured irradiance values with a 0.9873 correlation coefficient. It is possible 

to produce more correlated results by taking into account observed air mass or linke turbidity 

variables.  

 

It is concluded that air temperature and the plane of array irradiance parameters are vital to 

predicting PV power values. Relative humidity is another important parameter to reach better 

accuracy, especially for ANN models. However, clear relation could not be detected with the 

LR model for relative humidity variable. The best performance was obtained by adding relative 

humidity and other sun parameters to air temperature and the plane of array irradiance 

parameters. In the detailed model parameters study, wind direction is another parameter to 

make predictions closer to real outputs. Furthermore, it is found out that all variables that were 

investigated have an effect on power value predictions during relevant variable fluctuation 

periods. The time resolution issue which causes swings in power values and weather 

parameters leads to an accuracy drop for both models.  

 

The study was mainly conducted on IV2 values. Correlations with other weather parameters 

are quite similar for other selected inverters, IV5 and IV7. Using trained models produce more 

accurate predictions for similar inverter-module types.  

 

Clear sky prediction accuracies are comparable with literature and it is practical to use clear 

sky irradiance values instead of measured irradiance values for the prediction of clear sky days 

including other meteorological variables. Moreover, by using forecasted meteorological data 

for a day ahead forecasting on a clear sky day produced comparable results to historical data 

predictions.  
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Appendices 
 

Appendix A: Task Description 
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Appendix B: PV Plant Information 

 

 

1. Solar Module Specification Sheet 
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2. Inverter Specification Sheet 
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Appendix C: Data 

 

1. Data Type 

 
 

2. Scatter_Matrix_Outliers_Removed 
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Appendix D: Results Data  
 

1. PCA 

 
 

2. IV5 Analysis 
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3. IV7 Analysis 
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4. IV2 Power - Irradiance 
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Appendix E: Prediction  
 

1. Historical PV output and irradiance for clear sky day case study.  

 

 
 

2. Model without irradiance values.  
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Appendix G: Discussion Section 

 

1. Time Resolution Problem 
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2. Time Resolution Problem on Excel Representation 

 

Raw PV power values:  

 

 
 

The hourly based PV power values:  

 

 
 

Irradiance Values are in the green box.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1h 

average: 

65.24 

1h 

average: 

56.07 
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Appendix F: Python Codes 
 

1. ANN Code 

 
ANN_Sim = True 

 

dataset = 

pd.read_csv('/Users/PycharmProjects/pythonProject/Master_Thesis/PV/Combined_MET_PV

_data.csv') 

 

print('Before Filtering', len(dataset.index)) 

dataset = dataset[dataset['AC_Power_IV2'] != 0] 

#dataset = dataset[dataset['IV2_status'] >= 1] 

#dataset = dataset[(dataset['irradiance'] >= 50)] 

print('Low_Irradiance_Filter', len(dataset.index)) 

#dataset = dataset[(dataset['elevation'] >= 10)] 

print('Elevation_Filter', len(dataset.index)) 

#dataset = dataset[dataset['Clear_Sky_Detection'] != 0] 

print('Clear_Sky_Days', len(dataset.index)) 

#dataset.to_csv('dataset.csv') 

#print(dataset) 

 

df = dataset[['referenceTime', 

              'dew_point_temp', 

              'air_temp', 

              'relative_humidity', 

              'poa_global_east', 

              'wind_speed', 

              'wind_category', 

              'module_temp_east', 

              'hour_harmonic', 

              'zenith', 

              'elevation', 

              'azimuth', 

              'AC_Power_IV2']] 

 

# timerange 

select_training = (df['referenceTime'] >= '2020-04-01 00:00:00+00:00') & 

(df['referenceTime'] < '2021-07-21 00:00:00+00:00') 

df_training = df.loc[select_training] 

#print(df_training) 

print('traning count', len(df_training)) 

 

select_test = (df['referenceTime'] >= '2021-07-22 00:00:00+00:00') & (df['referenceTime'] < 

'2021-07-25 00:00:00+00:00') 

df_test = df.loc[select_test] 

#print(df_test) 
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print('test count', len(df_test)) 

 

ratio = len(df_test)/len(df_training) 

print('ratio=', ratio) 

 

tf.random.set_seed(1234) 

 

df_training.drop(columns=['referenceTime'], inplace=True) 

df_test.drop(columns=['referenceTime'], inplace=True) 

 

X_train = df_training.iloc[:, :-1].values  # does not take Power 

y_train = df_training.iloc[:, -1].values  # only takes Power 

 

X_test = df_test.iloc[:, :-1].values  # does not take Power 

y_test = df_test.iloc[:, -1].values  # only takes Power 

 

print(X_train) 

print(y_train) 

y_train = np.reshape(y_train, (-1, 1)) 

print(X_train.shape, y_train.shape) 

 

print(X_test) 

print(y_test) 

y_test = np.reshape(y_test, (-1,1)) 

print(X_test.shape, y_test.shape) 

 

print(X_train.shape[1]) 

 

print('X_train mean values', np.mean(X_train, axis=0)) 

print('X_train std values', np.std(X_train, axis=0, dtype=np.float32)) 

print('X_test mean values', np.mean(X_test, axis=0)) 

print('X_test std values', np.std(X_test, axis=0, dtype=np.float32)) 

print('y_train mean values', np.mean(y_train, axis=0)) 

print('y_train std values', np.std(y_train, axis=0, dtype=np.float32)) 

 

if (ANN_Sim): 

    # scaling 

    sc_X = MinMaxScaler() 

    X_train = sc_X.fit_transform(X_train) 

    X_test = sc_X.transform(X_test) 

 

    sc_y = MinMaxScaler() 

    y_train = sc_y.fit_transform(y_train) 

    y_test = sc_y.transform(y_test) 

 

 

    # defining accuracy of the function 

    def model_input(n_layers, n_activation, kernels): 

        model = tf.keras.models.Sequential() 

        for i, nodes in enumerate(n_layers): 
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            if i == 0: 

                model.add(Dense(nodes, kernel_initializer=kernels, activation=n_activation, 

input_dim=X_train.shape[1])) 

                #model.add(Dropout(0.1)) 

            else: 

                model.add(Dense(nodes, activation=n_activation, kernel_initializer=kernels, 

input_dim=X_train.shape[1])) 

                #model.add(Dropout(0.1)) 

 

        model.add(Dense(1)) 

        optimizer = tf.keras.optimizers.Adam(learning_rate=0.0001) 

        model.compile(loss='mse', 

                      optimizer=optimizer, 

                      

metrics=[tf.keras.metrics.RootMeanSquaredError(name="root_mean_squared_error", 

dtype=None)]) 

        return model 

 

 

    seq_ANN = model_input([32, 16], 'relu', 'glorot_uniform') 

    print(seq_ANN.summary()) 

 

    hist = seq_ANN.fit(X_train, y_train, batch_size=32, validation_data=(X_test, y_test), 

epochs=80, verbose=2) 

 

    pd.DataFrame(hist.history).plot(figsize=(8, 5)) 

    plt.grid(True) 

    plt.gca().set_ylim(0, 0.4)  # set the vertical range to [0-1] 

    plt.show() 

 

    plt.plot(hist.history['root_mean_squared_error']) 

    plt.plot(hist.history['val_root_mean_squared_error']) 

    plt.title('Root Mean Squares Error') 

    plt.xlabel('Epochs') 

    plt.ylabel('error') 

    plt.legend(['train', 'validation'], loc='upper left') 

    plt.show() 

 

    print(seq_ANN.evaluate(X_train, y_train)) 

 

    y_pred = seq_ANN.predict(X_test)  # get model predictions (scaled inputs here) 

    y_pred_orig = sc_y.inverse_transform(y_pred)  # unscale the predictions 

    y_test_orig = sc_y.inverse_transform(y_test)  # unscale the true test outcomes 

 

 

    def mean_absolute_percentage(y_test_orig, y_pred_orig): 

        mape = np.mean(np.abs((y_test_orig - y_pred_orig) / y_test_orig)) * 100 

        return mape 
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    rmse_ANN = round(mean_squared_error(y_test_orig, y_pred_orig, squared=False), 2) 

    mse_ANN = round(mean_squared_error(y_test_orig, y_pred_orig, squared=True), 2) 

    r2_ANN = round(r2_score(y_test_orig, y_pred_orig), 2) 

    mae_ANN = round(mean_absolute_error(y_test_orig, y_pred_orig), 2) 

    mape_ANN = round(mean_absolute_percentage(y_test_orig, y_pred_orig), 2) 

 

    print('RMSE (Mean Squared Error):        ', mse_ANN) 

    print('RMSE (Root Mean Squared Error):   ', rmse_ANN) 

    print('Mean Absolute Error:              ', mae_ANN) 

    print('Mean Absolute Percantage Error:   ', mape_ANN) 

    print('R2 Score:                         ', r2_ANN) 

 

    classifier = KerasClassifier(build_fn=model_input, 

                                 batch_size=10, 

                                 nb_epoch=100) 

 

    accuracies = cross_val_score( 

        estimator=classifier, 

        X=X_train, 

        y=y_train, 

        cv=10 

    ) 

 

    mean = accuracies.mean() 

    variance = accuracies.std() 

    print(f'K cross mean {mean}') 

    print(f'K cross variance {variance}') 

 

 

    train_pred = seq_ANN.predict(X_train)  # get model predictions (scaled inputs here) 

    train_pred_orig = sc_y.inverse_transform(train_pred)  # unscale the predictions 

    y_train_orig = sc_y.inverse_transform(y_train)  # unscale the true train outcomes 

 

    print('Root Mean Squared Error Real Values Train', mean_squared_error(train_pred_orig, 

y_train_orig, squared=False)) 

    print('R2 Score Train Values', r2_score(train_pred_orig, y_train_orig)) 

 

    np.concatenate((train_pred_orig, y_train_orig), 1) 

    np.concatenate((y_pred_orig, y_test_orig), 1) 

 

    fig = go.Figure() 

    fig.add_trace( 

        go.Scatter(x=results.index, y=results['Real Solar Power Produced'], name='Output', 

mode='lines+markers')) 

    fig.add_trace( 

        go.Scatter(x=results.index, y=results['Predicted Solar Power'], name='Prediction', 

mode='lines+markers')) 

    fig.update_layout(title=f'ANN Model MAE: {mae_ANN}  MSE: {mse_ANN} RMSE: 

{rmse_ANN} Variance: {r2_ANN}', 

                      xaxis_title='Time', 
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                      yaxis_title='Power') 

    fig.update_yaxes(title_text='Power (kW)') 

    fig.show() 
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2. LR Code 

 

if(linear_regression_sim): 

 

 

    y_train = y_train.reshape((-1,)) 

 

    cv = KFold(n_splits=10, random_state=1, shuffle=True) 

 

    regr = linear_model.LinearRegression() 

    # Train the model using the training sets 

    regr.fit(X_train, y_train) 

    # Make predictions using the testing set 

    y_pred = regr.predict(X_test) 

 

 

    print('Coefficients: \n', regr.coef_) 

    # The mean squared error 

    print("Mean squared error: %.2f" 

          % mean_squared_error(y_pred, y_test)) 

    # Explained variance score: 1 is perfect prediction 

    print('Variance score: %.2f' % r2_score(y_pred, y_test)) 

    MSE = round(mean_squared_error(y_test, y_pred), 2) 

    #r2_score = round(r2_score(y_test, y_pred), 2) 

 

    def mean_absolute_percentage(y_test_orig, y_pred_orig): 

        mape = np.mean(np.abs((y_test_orig - y_pred_orig) / y_test_orig)) * 100 

        return mape 

 

 

    rmse_LR = round(mean_squared_error(y_test, y_pred, squared=False), 2) 

    mse_LR = round(mean_squared_error(y_test, y_pred, squared=True), 2) 

    r2_LR = round(r2_score(y_test, y_pred), 2) 

    mae_LR = round(mean_absolute_error(y_test, y_pred), 2) 

    mape_LR = round(mean_absolute_percentage(y_test, y_pred), 2) 

 

    scores = cross_val_score(regr, X=X_train, y=y_train, scoring='neg_mean_absolute_error', 

                             cv=cv, n_jobs=-1) 

    print('Cross Validation accuracy scores: %s' % scores) 

    print('Cross Validation accuracy: %.3f +/- %.3f' % (np.mean(scores), np.std(scores))) 

 

 

    y_test = y_test.flatten() 

    X_time = X_time.sort_values() 

 

    fig = go.Figure() 

    fig.add_trace(go.Scatter(x=X_time, y=y_test, name='Output', mode='lines+markers')) 

    fig.add_trace(go.Scatter(x=X_time, y=y_pred, name='Prediction', mode='lines+markers')) 

    fig.update_layout(title=f'LR Model MAE: {mae_LR} MSE: {mse_LR} RMSE: 

{rmse_LR} Variance: {r2_LR}', 
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                      xaxis_title='Time', 

                      yaxis_title='Power') 

    fig.update_yaxes(title_text='Power (kW)') 

    fig.show() 

 

    def plot_learning_curves(regr, X, y): 

 

        train_errors, val_errors = [], [] 

        for m in range(1, len(X_train)): 

            regr.fit(X_train[:m], y_train[:m]) 

            y_train_predict = regr.predict(X_train[:m]) 

            y_val_predict = regr.predict(X_test) 

            train_errors.append(mean_squared_error(y_train[:m], y_train_predict)) 

            val_errors.append(mean_squared_error(y_test, y_val_predict)) 

        plt.plot(np.sqrt(train_errors), "r-+", linewidth=2, label="train") 

        plt.plot(np.sqrt(val_errors), "b-", linewidth=3, label="val") 

    plot_learning_curves(regr, X, y) 

    plt.show() 

 

    # Learning Curve 

 

    def plot_learning_curve2(train_sizes, train_scores, test_scores, title, alpha=0.1): 

        train_scores = -train_scores 

        test_scores = -test_scores 

        train_mean = np.mean(train_scores, axis=1) 

        train_std = np.std(train_scores, axis=1) 

        test_mean = np.mean(test_scores, axis=1) 

        test_std = np.std(test_scores, axis=1) 

        plt.plot(train_sizes, train_mean, label='train score', color='blue', marker='o') 

        plt.fill_between(train_sizes, train_mean + train_std, 

                         train_mean - train_std, color='blue', alpha=alpha) 

        plt.plot(train_sizes, test_mean, label='test score', color='red', marker='o') 

        plt.fill_between(train_sizes, test_mean + test_std, test_mean - test_std, color='red', 

alpha=alpha) 

        plt.title(title) 

        plt.xlabel('Training data') 

        plt.ylabel(r'MAE') 

        plt.grid(ls='--') 

        plt.legend(loc='best') 

        plt.show() 

 

    plt.figure(figsize=(9, 6)) 

    train_sizes, train_scores, test_scores = learning_curve(regr, X=X_train, y=y_train, 

                                                            cv=5, scoring='neg_mean_absolute_error') 

    fig_lr = plot_learning_curve2(train_sizes, train_scores, test_scores, title='Learning curve 

for LR') 
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3. Correlation and PCA Analysis  

 

if (correlation_plot): 

    mask = np.zeros_like(df[features].corr()) 

    mask[np.triu_indices_from(mask)] = True 

    with sns.axes_style("white"): 

        f, ax = plt.subplots(figsize=(9, 7)) 

        ax = sns.heatmap(df[features].corr(), mask=mask, vmax=.8, square=True, annot=True) 

    plt.tight_layout() 

    plt.show() 

 

if (PCA_analysis): 

 

    X = df.loc[:, features].values 

    X = StandardScaler().fit_transform(X) 

    print(np.mean(X),np.std(X)) 

 

    pca = PCA(n_components=4) 

    principalComponents = pca.fit_transform(X) 

    principal_df = pd.DataFrame(data=principalComponents, columns=['Principal Component 

1', 'Principal Component 2', 'Principal Component 3', 'Principal Component 4']) 

    print(pca.explained_variance_ratio_.round(2)) 

 

    fig1 = plt.figure(figsize=(8, 8)) 

    ax = fig1.add_subplot(1, 1, 1) 

    ax.set_xlabel('Principal Component 1', fontsize=15) 

    ax.set_ylabel('Principal Component 2', fontsize=15) 

    ax.set_title('2 component PCA', fontsize=20) 

    plt.scatter(principal_df['Principal Component 1'], principal_df['Principal Component 2']) 

    plt.show() 

 

    fig2 = plt.figure(figsize=(8, 8)) 

    ax2 = fig2.add_subplot(1, 1, 1) 

    ax2.set_xlabel('Principal Component 1', fontsize=15) 

    ax2.set_ylabel('Principal Component 3', fontsize=15) 

    ax2.set_title('2 component PCA', fontsize=20) 

    plt.scatter(principal_df['Principal Component 1'], principal_df['Principal Component 3']) 

    plt.show() 

 

    variance_exp_cumsum = pca.explained_variance_ratio_.cumsum() 

    fig, axes = plt.subplots(1, 1) 

    plt.bar(range(1, 1+pca.n_components), variance_exp_cumsum, color='#FFB13F') 

    plt.xticks(range(1, 1+pca.n_components)) 

    plt.title('Screeplot of Variance Explained %') 

    plt.xlabel('# of PCs') 

    plt.show() 
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4. A Plotting Example 

 

 

if(plot_features_2yaxis): 

 

    fig = make_subplots(specs=[[{"secondary_y": True}]]) 

 

    fig.add_trace(go.Scatter( 

        x=df['referenceTime'], 

        y=df['AC_Power_IV2'], 

        name='AC_Power_IV2'), 

        secondary_y=False, 

        ) 

    # add line / trace 2 to figure 

    fig.add_trace(go.Scatter( 

        x=df['referenceTime'], 

        y=df['irradiance'], 

        name='Measured Irr'), 

        secondary_y=True, 

        ) 

    fig.add_trace(go.Scatter( 

        x=df['referenceTime'], 

        y=df['poa_global_east'], 

        name='poa_global_east'), 

        secondary_y=True, 

        ) 

    fig.update_layout(title_text='IV2 AC Power - Irradiance') 

    fig.update_xaxes(title_text='Time') 

    fig.update_yaxes(title_text='kW', secondary_y=False) 

    fig.update_yaxes(title_text='W/m2', secondary_y=True) 

    plotly.offline.plot(fig, filename='ClearSky_Irradiance_Power ' + '.html') 

    fig.show() 
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