

www.usn.no

The University of South-Eastern Norway takes no responsibility for the results and

conclusions in this student report.

FMH606 Master's Thesis 2022

Industrial IT and automation

Specifying a machine learning operational
framework, refinement and scaling of

machine learning models for progressive
cavity pumps at Den Magiske Fabrikken

Martin Holm

www.usn.no

The University of South-Eastern Norway takes no responsibility for the results and

conclusions in this student report.

Course: FMH606 Master's Thesis, 2022

Title: Specifying a machine learning operational framework, refinement and scaling of

machine learning models for progressive cavity pumps at Den Magiske Fabrikken

Number of pages: 129

Keywords: Machine learning operations, machine learning, progressive cavity pump,

predictive maintenance

Student: Martin Holm

Supervisor: Carlos Pfeiffer, Håkon Viumdal

External partner: Lindum AS

Summary:

One process part of “Den Magiske Fabrikken” uses progressive cavity pumps (PCP),

these often have to be replaced which is costly. To reduce the amount of replacing and

increase repairing with spare parts, a system to warn the operators about faults on these

pumps is wanted.

The project uses machine learning in the form of long short-term memory (LSTM),

gated recurrent unit (GRU) and support vector machine (SVM) to make models which

will be able to predict when the pumps need maintenance. The models attempt to output

whether the pump is normal, or when there is one week before general failure or when

one day before general failure. It does so based on general measurements such as control

signal, current, torque and outlet pressure measured every 30 seconds.

A model which from the test set never gives false warnings, 50% of the samples warns

that there is one week until failure and 31.2% of the samples warn that there is one day

until failure has been developed. The thesis also discusses how to operationalize such a

model at a process plant.

 Preface

3

Preface
This report is written as a Master Thesis in the 6th semester of the Industry Master Industrial

IT and Automation master program. The report is a culmination of three years of work in the

Industry Master program at Lindum AS and will give an overview for Lindum of what has

been done. In addition, the work during the Master thesis should be useful to peers within the

machine learning community for predictive maintenance in the process industry.

For the vision of this project and great support during it, I would like to thank Bertil Johansen,

Jørgen Eikjeland for technical discussion and support, and Frode Steen for support during the

thesis. I would also like to thank USN for having the Industry Master program, especially

Carlos Pfeiffer and Håkon Viumdal for great support before, and during the thesis period.

This project uses Python, important libraries are scikit-learn, TensorFlow, Keras, pandas,

Plotly and psycopg2 and their underlying dependencies. In addition, some plots are made in

Microsoft Excel. Microsoft Visio is used for drawings and the report is written using Microsoft

Word.

The Python code can be found on Github at:

https://github.com/martinsgugge/mast_predictive_maintenance_PCP

Basic knowledge of process industry, programming and machine learning will help the

interested reader in understanding the contents of this report.

Tønsberg, 18.05.2022

Martin Holm

https://github.com/martinsgugge/mast_predictive_maintenance_PCP

 Contents

4

Contents

Preface ... 3

Contents ... 4

Nomenclature .. 6

1 Introduction ... 8

1.1 Existing systems ... 8
1.1.1 Process control system .. 8
1.1.2 Supervisory control and data acquisition system ... 9

1.2 Previous work on predictive maintenance of progressive cavity pumps 11
1.2.1 Machine Learning for Predictive Maintenance of pumps at Den Magiske Fabrikken12
1.2.2 An architectural design for implementing predictive maintenance in an industrial
plant 14

1.3 Project objectives ... 15
1.4 Machine Learning Operations ... 16
1.5 Software engineering ... 16
1.6 Machine learning ... 17

1.6.1 Long short-term memory (LSTM) .. 17
1.6.2 Gated Recurrent Unit (GRU) ... 18
1.6.3 Neural network complexity .. 19
1.6.4 Support Vector Machine (SVM) .. 20
1.6.5 Scaling .. 21

1.7 Report structure .. 22

2 Software specification .. 23

2.1 Machine learning operations ... 23
2.1.1 Data sources and data versioning .. 23
2.1.2 Data analysis & experiment management .. 23
2.1.3 Feature store and workflows ... 24
2.1.4 Foundations of DevOps .. 24
2.1.5 Continuous integration, training and deployment... 24
2.1.6 Model registry and model versioning ... 25
2.1.7 Model deployment ... 25
2.1.8 Prediction serving ... 25
2.1.9 Model, data and system monitoring .. 26
2.1.10 Metadata Store .. 26

2.2 Software scope ... 26

3 Software specification results ... 29

3.1 Requirements .. 29
3.1.1 Functional .. 29
3.1.2 Usability ... 29
3.1.3 Reliability ... 29
3.1.4 Performance .. 29
3.1.5 Supportability .. 30
3.1.6 Other ... 30

3.2 Infrastructure ... 30
3.2.1 On premise... 30
3.2.2 Cloud .. 31

3.3 Risk... 32

 Contents

5

3.3.1 OPC ... 32
3.3.2 Maintenance system ... 33
3.3.3 Model .. 33
3.3.4 Operator feedback .. 33

4 Machine learning, data and use of methods ... 34

4.1 Data source ... 34
4.2 Data labelling ... 34
4.3 Feature selection .. 36

4.3.1 Base features ... 36
4.3.2 Specifics in the data set ... 37
4.3.3 Feature engineering .. 47
4.3.4 Lurking variables .. 49

4.4 Pre-processing .. 50
4.4.1 Narrow to wide table conversion ... 50
4.4.2 Sequence ... 51
4.4.3 One hot encode ... 51
4.4.4 Scaler .. 52
4.4.5 Outliers ... 54
4.4.6 Training, validation and test set .. 55

4.5 Long short-term memory ... 56
4.6 Gated recurrent unit ... 60
4.7 Support vector machine ... 61
4.8 Testing ... 65

5 Model results ... 66

5.1 Long short-term memory ... 66
5.2 Gated recurrent unit ... 76
5.3 Support vector machine results .. 83

6 Discussion and future work ... 91

6.1 Input data ... 91
6.2 Design of output classes ... 91
6.3 Data versioning ... 92
6.4 Features ... 92

6.4.1 Combined features .. 92
6.4.2 Combination of aggregated and non-aggregated data ... 93
6.4.3 Outliers ... 94

6.5 Computer restrictions .. 94
6.5.1 Graphical processing unit .. 94
6.5.2 Memory trouble ... 94

6.6 Design of Models .. 95
6.7 SVM .. 96
6.8 Validation of training process ... 96
6.9 Overfitting .. 98

7 Conclusion .. 99

8 Bibliography .. 100

 Nomenclature

6

Nomenclature

Symbol Unit Description

PU Pump

E Container or vessel

FT m³/h Flow transmitter

PT Bar Pressure transmitter

VY Heat exchanger

V Boolean Valve

PUXX Boolean Control signal for pump XX

MO_PV % Control signal for pump

SF_PV % Speed of pump

PW_PV A Current measurement from pump

TQ_PV % Torque measurement from pump

Δt Time An arbitrary time from one point to another

Raw Set of measurements: Control signal [Boolean], Control signal [%],

Current [A], Torque [%] and Outlet Pressure [Bar]

Avg Set of averaged measurements: Control signal [%], Current [A],

Torque [%] and Outlet Pressure [Bar]

Std Set of standard deviation of measurements: Control signal [%],

Current [A], Torque [%] and Outlet Pressure [Bar]

Calc Calculated efficiency measurements: Control Signal/Current,

Control Signal/Outlet Pressure, Control Signal/Torque and

Current/Outlet Pressure

Abbreviations

7

Abbreviations
P&ID - Piping and instrument diagram

PLC - Programmable Logic Controller

VM - Virtual Machine

OPC UA - Open Platform Communications Unified Architecture

SCADA - Supervisory Control And Data Acquisition

ML - Machine Learning

MLOps - Machine Learning Operations

DevOps - Development Operations

AI - Artificial Intelligence

UP - Unified Process

OO - Object Oriented

LSTM - Long Short-Term Memory

GRU - Gated Recurrent Unit

SVM - Support Vector Machine

SVC - Support Vector Classifier

CI/CD - Continuous Integration and Continuous Delivery

ONNX - Open Neural Network Exchange

PI controller - Proportional Integral controller (Part of PID controller)

1 Introduction

8

1 Introduction
Lindum owns various factories and sites, amongst them two biogas plants. The report focuses

on Den Magiske Fabrikken in Tønsberg, Norway. Specifically on a system of pumps where

pumps are replaced every 3-60 weeks. They are replaced either when the operators feel it is

time after inspecting the pump by listening to, touching the pumps or when they are unable to

deliver wanted pressure. This approach creates a lot of unplanned work and often replacement

of whole pumps instead of specific parts. Lindum wants to investigate whether the lifetime of

the pumps can be extended by use of spare parts by having a model tell the operators when

something is wrong. This may also alleviate stress from ad-hoc maintenance by allowing the

operators to plan when to overhaul the pumps. The next subchapters will explain the systems

which are currently in place, the objectives in this thesis, which methods will be used to achieve

the objectives, and finally the report structure for the remainder of the report.

1.1 Existing systems

1.1.1 Process control system

The process system in question can be seen in Figure 1.1. The flow comes in from the buffer

tank, is pumped through a series of heat exchangers where it gains temperature, before being

pumped into a processing tank, E-11, where the substrate stays for one hour. When time is

due, the substrate is pumped out of E-11, cooled down and pumped into the biogas reactor.

For each of the pumps several measurements are sampled from the control system and

frequency converters, these can be seen in Figure 1.2. In the figure, PUXX can be any of the

pumps seen in Figure 1.1 and the other rows in Figure 1.2 below are additional measurements

which describes the pump in more detail.

1 Introduction

9

Figure 1.1 P&ID where the pumps are situated

MO_PV Control signal [%]

SF_PV

PW_PV

TQ_PV

Speed [%]

Current [A]

Torque [%]

PUXX On/off signal

Tag Description

Figure 1.2 Description of sub tags in pumps

1.1.2 Supervisory control and data acquisition system

The existing Lindum owned system can be categorized as a data acquisition and storage

system in the orange blocks of Figure 1.3. The field level represents all the sensors and

actuators at the plant, these are connected to the PLCs controlling the plant in the control

level. The orange blocks contain the system which will be the main focus of this thesis.

PU12

FT
01

PT
03

PT
05

VY-11

Buffer tank

PT
04

PU13
VY-11

PU15

PT
09

PT
11

VY12

PT
10

PU16
VY12

PT
08

PU14

V-1 V-2 V-3 V-4 V-5 V-6 V-7 V-8

PT
07

PT
06

E-11

FT
02

PT
14

PU17
VY13VY13

PU19

PT
15

PT
16

Reactor

PU18

PT
12

PT
13

V-9V-10V-11V-12PT Pressure transmitter

PU

VY

V

Pump

Heat exchanger

Valve

FT Flow transmitter

Acronym Description

E Vessel

1 Introduction

10

The first orange block contains a Windows virtual machine (VM) which runs an OPC UA

server called KepServerEx with a Datalogger addon [1]. This VM is considered the

communication level. The Datalogger feeds data to the storage level. The storage level runs

on virtual machine with the Linux distribution called Ubuntu, this is the second orange block.

On the Ubuntu machine a PostgreSQL server runs with the addon TimescaleDB [2].

TimescaleDB gives more functionality for time-series operations and also allows for faster

ingest and egress of data compared to a standard PostgreSQL database.

From the database there are two visualization platforms in the two lower orange boxes: one

on the production network called Grafana [3] using the same Ubuntu VM as the storage level.

Another is found on the Lindum network called QlikSense. Grafana is a query-based

visualization tool, this means it requests data from the database when the data is needed. This

contrasts the way QlikSense works, QlikSense loads all the data the user wants on a set

interval, this makes the data available quicker when the user want to see it, however it

requires more resources to ensure quick loading times.

In teal is the original SCADA system, which the operators use to control the plant.

1 Introduction

11

Storage level

Communication level

Control level

S1 S2 Sn

PLS
Main control

PostgreSQL
Database

Field level
Sensors and actuators

A1 AnA2

Lindum Ubuntu
VM

Tim
escaleD

B

KepServerEx
OPC server

Lindum Windows
 VM

PLS
Subsystem

Qlik Sense
Visualisation on
Lindum network

D
atalogger

Grafana
Visualisation on

Production network

Propriotary
closed OPC

server

MSSQL

SCADA

Operator
station

Lindum Ubuntu
VM

Cloud solution

Figure 1.3 Supervisory control and data acquisition (SCADA) system including field level and visualization

levels. Orange blocks are Lindum owned.

1.2 Previous work on predictive maintenance of progressive
cavity pumps

This subchapter will describe some of the earlier work done in the field of predictive

maintenance of the pumps. Two reports have been made: one on machine learning methods

and fitting the data to several types of machine learning (ML) models, and another

considering the design of a general software architecture for predictive maintenance. These

will be summarized in section 1.2.1 and 1.2.2 to give an idea of where this project should

continue.

1 Introduction

12

1.2.1 Machine Learning for Predictive Maintenance of pumps at Den Magiske
Fabrikken

The project “Machine Learning for Predictive Maintenance of pumps at Den Magiske

Fabrikken” focused on trying out various ML models with three data sets where the main

difference lies in measurement interval [4]. The variables can be seen in Table 1.1 along with

a description and whether the data was part of each of the three data sets or not. The variables

were sampled redundantly where it is part of more than one data set.

Table 1.1 Tags with descriptions and information on which tags are included in which data sets

Tag Description 30 sec interval 1 sec interval 50ms interval

PU19 On/off signal On change On change On change

PU19_PW_PV Current [A] Yes Yes Yes

PU19_TQ_PV Torque [%] Yes Yes Yes

PU19_MO Control signal [%] Yes Yes Yes

PU19_SF_PV Speed [%] Yes Yes Yes

PT15 Pressure before PU19 [Bar] Yes Yes Yes

PT16 Pressure after PU19 [Bar] Yes Yes Yes

FT02 Flow from processing tank

E-11 [m³/h]

Yes Yes Yes

PU19_V_L Velocity on bearing house

[mm/s]

No Yes No

PU19_V_I Velocity inlet [mm/s] No Yes No

PU19_V_O Velocity outlet [mm/s] No Yes No

PU19_P_L PeakVue bearing house No Yes No

PU19_P_I PeakVue inlet No Yes No

PU19_P_O PeakVue outlet No Yes No

With the assumption that the process variables would change as the pump became more and

more degraded, five states or classes were made and can be seen in Table 1.2. During the

project it was found that the state stopped (0) was unnecessary, and that states less than 24h

before failure (3) and Less than 1h before failure (4) were very hard to predict. The latter two

may have been because of the bias towards normal running (1) and the less than one week

before failure (2) being too great due to the difference in amount of training data. Another

possibility is that the states 2, 3, and 4 may have been too similar and thus hard to distinguish.

1 Introduction

13

Table 1.2 Output classes for the pump model

State Description

0 Stopped

1 Normal running

2 Less than 1 week before failure

3 Less than 24h before failure

4 Less than 1h before failure

The data was plotted in various ways to look at how the variables were distributed, how they

correlated with each other and to see whether the correlations were linear. It was found that

some variables had high correlation especially the current and torque when averaged. The

relationship between inlet pressure and flow and the relationship between inlet pressure and

control signal were sometimes shown to be nonlinear. See chapter 2 of the report [4] for more

details.

Several ML methods were tested with varying results as seen in Table 1.3. The leftmost

column indicates the used data set, and the top row indicates the method. The principal

component analysis (PCA) was able to describe much of the variations, however it was

difficult to clearly distinguish failing from normal running. The higher the resolution, the

easier it was to distinguish, although the explained variance did not increase. The Short-Time

Fourier Transform (STFT) gave some additional information to the rightmost ML methods

(Naïve Bayes (NB), Support Vector Machine (SVM), Long short-term memory (LSTM)),

however the non-averaged data sets should have been used as these may have given more

information. The Naïve Bayes gave rather poor predictions and may be due to the variables

being highly correlated and the Support Vector Machine didn’t do much better. This may be

due to the changes happening gradually and thus it may be hard to find good separations.

LSTM gave better results, the 30 second data set gave the best results. This is likely due to

there being 13 pump failures for this data set and only three for the 1 s data set and two for

the 50ms data set.

A big change occurred when moving from scaling data from all the pumps simultaneously to

scaling each pump with the first hour it was running. Accuracies then increased; this was only

done for the LSTM method.

1 Introduction

14

Table 1.3 Results from different combinations of data sets and methods

Data

set/Method

PCA

[explained

variance]

Short-Time

Fourier

Transform

on torque

[Yes/No]

(Used in

NB, SVM

and LSTM)

Naïve Bayes

[Accuracy]

Support

Vector

Machine

(Radial

Basis

kernel)

[Accuracy]

Long short-

term

memory

[Accuracy]

30 sec 79.62% Yes 54.9% 55% 55%

30 sec (state 0

removed)

84.95% No N/A N/A N/A

30 sec new

scalar per pump

No Yes No No 78.5%

1 second

averaged to 20s

75.36% Yes 27.5% 45.9% No

1 second

averaged to 20s

scaled per

pump

No Yes No No 71.8%

50 ms averaged

to 1 s

77.33% Yes 16.6% 17% No

50 ms averaged

to 1 s scaled

per pump

No Yes No No 59.5%

1.2.2 An architectural design for implementing predictive maintenance in an
industrial plant

This article focused on an architectural design for a general predictive maintenance system

for the process industry. A centrifugal pump with vibration measurements is used in

conjunction with normal pump measurements (such as power, flow and pressure) in the ML

method as an example. The machine learning model here is a self-organizing map (SOM).

SOM is enticing as it is unsupervised, and at the point when the process measurements aren’t

linked to specific faults, it can be used to show the difference between normal and bad states.

1 Introduction

15

The point of the article is however not to choose what sensors and methods that should be

used. It is rather about the process of setting up a predictive maintenance scheme, what to

consider when training a model, using supervised or unsupervised learning, how labelling

should be done for industrial equipment and what software modules should exist and what the

software modules should do. Figure 1.4 shows a flow diagram from the proposed architecture

taken from the article. Key takeaways are: the structure of the architecture, that the functions

should be modular to allow for other pre-processing and machine learning methods to be

used, and the contribution over time block. The contribution over time will slow down the

process, but also make it less erratic, meaning a false positive will not have a big impact

unless there are several false positives in a time interval. This does however reduce the

chance of picking up rapid changes. This is only a summary, a detailed review of the

architecture can be found in [5].

Figure 1.4 Flow diagram of data processing for a ML program in an industrial plant. Taken from the article [5].

1.3 Project objectives

This thesis will have two areas of interest, understanding what is needed for operationalizing

a machine learning model, and modify the model by generalizing for all the 8 pumps seen in

Figure 1.1.

To understand how to operationalize the model, MLOps will be investigated, and the

inception phase of the Unified Process will be used to describe the needs. The inception

phase may be used to decide whether to buy a product or to develop the program inhouse.

On the point of improving the model there are several points:

• There are more or less useless outputs from the model made, the “stopped” state is

already known from the SCADA system. Also, the output “1h from failure” was

never predicted in the test which was outside the training and validation set in any of

the models. Thus, these classes may be skipped to simplify the model.

• Trying out new methods.

Sensing Perception

External communication

Decision Actuation

DAQ

MODBUS

PLC

OPC
Server

Preprosessed
data for decision

Raw data

Maintenance
database

Maintenance
plan

SCADA

How
is

the
pump
doing?

Monitor
And

Control

Sensors
Existing
sensors

Electric/bus

Sensors
Vibration

DAQ

Electric/bus

Database
read

Outlier
detections

SOM

Database
write

Process
database

System
database

Database
read

Database
write

What do we know about the pump?

Contri-
bution

over time

Store evaluation in database

Database
read

Database
write

Check
validity of

action

Store message in log

Are there
planned
work?

Create work order?

Create
message/

action

OPC
communi-

cation

How is the pump doing?

Spectral
analysis

Standardiz
ation

Not
Vibration

signals

Vibration
signals

System
database

System
database

Learning

User
feedback

Developer
feedback

Operator
feedback

Retraining of model

Update output weights

Save
model

1 Introduction

16

• Changing parameters of the models such as number of layers, number of neurons and

network structure.

• Using more data from the other pump locations.

• Change input features for the models.

The model should be applicable to other pumps than pump 19 (HYG_PU19), there are

additionally 7, very similar pumps, the model should be able to monitor them as well.

1.4 Machine Learning Operations

As a machine learning model is developed, it will eventually need to be set into production to

give value. Once in production it needs to be monitored and maintained. This workflow is

called machine learning operations or MLOps. MLOps is defined as “the extension of the

DevOps methodology to include Machine Learning and Data Science assets as first class

citizens within the DevOps ecology” [6] [7]. DevOps doesn’t have a consensus on a

definition, however a suggestion has been "a set of practices intended to reduce the time

between committing a change to a system and the change being placed into normal

production, while ensuring high quality" [8]. For the purpose of this report, MLOps is a

framework on how to effectively and orderly form a machine learning project from start to

finish modularly. This ranges from finding features in the data, creating data pipelines,

versioning data, features and models, model training, evaluation, deployment, and

monitoring. Continuous integration will not be a high priority but may be a result of the

methodology.

AI readiness “denotes a company’s maturity in incorporating AI into the business” [9]. There

are three levels of AI readiness for an organization, tactical, strategic and transformational.

Tactical is the lowest level, where all tasks for ML is manual. Strategic is one level up where

some tasks are automated, typically pipelines for pre-processing and model training.

Transformational is the highest level of AI readiness where most tasks are automated [9].

1.5 Software engineering

The ML framework needs some way of being expressed, here the Unified Process (UP) will

be used to define the specifications of the needed software. Unified Process is a framework to

design software for object-oriented (OO) programs and constitutes the whole development

process of the given software [10]. The UP consists of 4 main phases: Inception, Elaboration,

Construction and Transition phase. This report will only investigate the inception phase and

elaboration phase. The interested reader for the whole process may find more information in

[10] or [11].

The Inception phase decides whether the project should be executed or not by making a high-

level plan on how to execute the project. It also decides on how the project team should be set

up and what the business cases are for the project. Lastly it may decide whether to purchase

or develop the software in house1.

Elaboration phase starts to identify use cases, define functional and non-functional

requirements and the software architecture. If it is decided to develop the software in-house,

an implementation of the architecture may also be developed and tested.

1 The decision to buy or develop can also be made in the elaboration phase

1 Introduction

17

One way to describe the functional and non-functional requirements is to divide them into the

attributes Functional, Usability, Reliability, Performance, Supportability and Other

(FURPS+) [10].

• Functional - Capabilities of the system.

• Usability - How does a human interact with the software and how much training is

needed.

• Reliability – Expected uptime, mean time between failure

• Performance – Response time, data throughput, resource usage

• Supportability – Configuration, operating system, new algorithms

• + – Resource limitations, interface constraints (to systems)

1.6 Machine learning

This subchapter will go through the main methods of machine learning used in this thesis.

1.6.1 Long short-term memory (LSTM)

Long short-term memory, often known as LSTM, is a type of recurrent neural network which

has the capacity to “remember” earlier states. This enables the network to see sequential

connections and see when the sequence may differ compared to only seeing what happens

now as an independent try. Comparing to a standard recurrent neural network, LSTM does

not struggle as much with vanishing or exploding gradients during training [12]. LSTM is

good at solving issues related to sequential data and is typically used for speech recognition,

handwriting recognition and time-series forecasting. Figure 1.5 shows an LSTM block, these

are typically set up in series to create “memory” in between samples in a sequence. The

LSTM memory may persist between sequences, yet most problems may be solved by using

stateless LSTM, that is no memory between sequences only within a given sequence [13].

The LSTM block is a combination of four neural networks. These are there to control three

gates which regulate how much information should be forgotten (forget gate), added (input

gate) and outputted (output gate) from the cell state. The cell state is the memory previously

mentioned which is the core of an LSTM network.

The forget gate uses a neural network with sigmoid activation function to decide how much

information should be forgotten from the cell state for each timestep. The sigmoid network

takes in the previous output timestep, ℎ𝑡−1, and the current input timestep, 𝑥𝑡, of data as one

vector. Based on the training, the network will know which parts to remove from the previous

cell state 𝐶𝑡−1. The network outputs a value between zero and one. Zero meaning forget

everything of the given memory, and one, keep all the information about the given memory.

After calculation of the sigmoid network, the results are multiplied with the previous

timestep’s cell state, 𝐶𝑡−1.

The input gate uses a combination of a neural network with sigmoid activation and a neural

network with tanh activation funciton. The sigmoid network work decides in what capacity

the previous output timestep, ℎ𝑡−1, and the current input timestep, 𝑥𝑡, should be added the

new cell state, 𝐶𝑡. Zero meaning do not add and one meaning add all that the tanh layer gives.

The tanh layer also takes ℎ𝑡−1 and 𝑥𝑡, to create a potential new cell state which will be

multiplied with the output of the sigmoid layer. This potentially new cell state are vectors

similar to the cell state with values between -1 and 1 and decides in what direction and

magnitude the cell state should be updated. The outputs of these two networks (sigmoid and

1 Introduction

18

tanh) are multiplied to create a vector which will be added to the previous cell state 𝐶𝑡−1 to

create the current cell state 𝐶𝑡.

The output gate consists of a sigmoid network, a tanh function and a multiplication of these.

The sigmoid network takes ℎ𝑡−1 and 𝑥𝑡 to decide what part of the cell state should be

outputted. The tanh function takes the cell state 𝐶𝑡 to squish the values to be between -1 and 1

and outputs the product of the sigmoid network and the squished cell state, ℎ𝑡.

As mentioned, Figure 1.5 is an LSTM block, this will be executed for each timestep in the

sequence iteratively and the cell state, 𝐶𝑡, and output, ℎ𝑡, will be transferred to the next

iteration. Traditionally for each of the iterations there will be an actual output such that there

will be a sequence as output as long as the sequence input [14]. Optionally there can be one

output from the whole input sequence. The number of neurons will be the same for all the

neural networks inside the LSTM block.

For a more thorough description, some variations on LSTM and the math behind see [15] and

[12].

Sigmoid
(Forget)

X

Sigmoid
(Input)

Tanh
(Input)

Sigmoid
(Output)

X

+

X

Tanh
(Output)

Concatenate

Copy

Hadamard
product

+ Add

Neural
Network

layer

Function

Figure 1.5 LSTM block2

1.6.2 Gated Recurrent Unit (GRU)

Gated Recurrent Unit (GRU) is a variation of Long Short-Term Memory (LSTM) and thus

also a recurrent neural network. GRU has been found to cost less computation and give

similar results to LSTM [16]. The structure of a GRU block can be seen in Figure 1.6 where

there are fewer neural networks (rectangular boxes) comparing to the LSTM, this reduces the

number of parameters to tune. This makes for two gates, reset and update gates. In addition,

there is a tanh neural network for the candidate hidden state.

The reset gate decides how much of the hidden state should be added to the candidate hidden

state ℎ′𝑡 based on the previous hidden state ℎ𝑡−1 and the current input 𝑥𝑡. This is done by

passing ℎ𝑡−1 and 𝑥𝑡 to a neural network with a sigmoid activation function to get the reset

2 Hadamard product; Element-wise product of two matrices [44]

1 Introduction

19

vector 𝑟𝑡 which works similar to the forget gate of LSTM, a zero value removes the memory

and a one keeps the memory, it may also be partially forgotten. The Hadamard product of

ℎ𝑡−1 and 𝑟𝑡 decides how much of the hidden state should be kept for the candidate hidden

state ℎ′𝑡.

The candidate hidden state is a neural network with tanh activation function and takes in the

modified previous hidden state from the reset gate and the current input. The output is a value

between -1 and 1 and is used to update the next hidden state (and output).

The update gate also uses a neural network with sigmoid activation function to decide what

parts of the previous hidden state ℎ𝑡−1 and the candidate hidden state ℎ′𝑡 to keep. The output

of the network gives a vector 𝑧𝑡. The Hadamard product of 𝑧𝑡 and ℎ𝑡−1 decides what part of

the hidden state is kept, while the Hadamard product of 1-𝑧𝑡 and ℎ′𝑡 decides what part of the

candidate hidden state is kept. Finally, the two Hadamard products are added together to give

out the final output, ℎ𝑡, of an iteration [17] [18].

Sigmoid
(Update)

Sigmoid
(Reset)

X

X

+

X
Concatenate

Copy

Hadamard
product

+ Add

Neural
Network

layer

Function

Tanh

Figure 1.6 GRU block

1.6.3 Neural network complexity

There are no hard rules on how to decide how many layers and how many neurons should be

in each layer for a neural network [19]. A single layer may suffice to model close to anything,

yet it may not be as efficient as a network with more layers. Complex problems may profit

from having deeper networks. The number of neurons in each layer also adds to what

complexity the model can handle. Gradually increasing can be a good way to find the right

amount. One source recommends using equation (1) where 𝑁ℎ is the number of neurons, 𝑁𝑖 is

number of inputs and 𝑁𝑜 is number of outputs [20].

1 Introduction

20

𝑁ℎ =

2

3
(𝑁𝑖 + 𝑁𝑜)

(1)

1.6.4 Support Vector Machine (SVM)

Support vector machine is a supervised machine learning method used for classification. It

attempts to put data points into classes by drawing a line (support vector) which maximizes

the Euclidian distance between the training datapoints which are labelled as different classes

[21]. Originally the support vectors were linear, later the method has been modified to allow

for nonlinear vectors by using kernel functions. The kernel functions are a proxy for

projecting the data into higher dimensions where the data may be split linearly. When

returned to “normal” dimensions, the linear separation from the higher dimension folds and

becomes nonlinear. Originally it was a binary classifier but has been modified to allow for

multiple classes.

There are several variations to SVM, most notably hard and soft margin. Hard margin either

creates an optimal hyperplane if it exists or fails to create a hyperplane to use as a margin.

The hard margin does not allow for samples to be misclassified during the training and works

best where there is a clear distinction between the classes. Hard margin does not allow for

samples to be misclassified in the sense that there are mathematical constraints which must

hold, where the margin (hyperplane in higher dimension) must divide the samples according

to the classes. If not, the method fails.

Soft margin on the other hand allows for some error in its optimization problem where the

number of errors can be minimized. This allows for classification where the samples are

somewhat overlapping between classes.

The original SVM were made to linearly divide two sets of classes. This obviously allows

only for linear separation and has since been remedied by the use of kernel functions. The

idea is to push the data into higher dimensions where the data may be linearly separable, find

a hyperplane which separate the classes. This is computationally heavy and is in practices not

done. In stead a kernel trick is done where the nonlinear boundaries are calculated directly

based on the kernel function. Popular kernel functions are linear, radial basis function,

sigmoid and polynomials of arbitrary degrees [22].

The SVM is in its nature a binary classifier, it can however be used as a multiclass classifier.

This is done by changing the multiclass problem into several binary problems. The most

common ways to implement this is with the one-versus-all and one-versus-one methods. One-

versus-all checks whether this classifier (one of the several binary problems) scores the

highest. The one-versus-one uses voting where every classifier will output one of two classes,

the class with the highest number of votes, wins.

Figure 1.7 shows a three-class problem solved by a linear kernel. It uses soft margins as the

data overlaps to a large degree as seen by the crossover between the different colors i.e.,

white is in the red, light blue and dark blue areas.

1 Introduction

21

Figure 1.7 Three class SVM problem

Comparing to the recurrent neural networks LSTM and GRU, SVM is a lightweight method

with the potential to classify just as well. This was seen in a previous project where SVM and

LSTM was tested, initially they both seemed to give rather good results on the validation sets

[4]. Only when tested on an entirely new data set was it revealed that none of them performed

very well. On a second attempt with the LSTM, the data was scaled as explained in section

1.6.5, the LSTM model performed significantly better. The scaling method should be

reproduced here for the SVM.

1.6.5 Scaling

In the previous project explained in section 1.2.1, the scaling method was found to be of high

impact on the LSTM model. The scaler used was a standardization, which “removes the mean

and scales to unit variance” [22]. Figure 1.8 shows the difference in the scaling method, the

here called old method uses one standardization for many physical pumps. The new method

creates one standard scaler for each new physical pump. This specifically had a high impact

on testing outside the training area. Both SVM and LSTM gave good results before changing

to the new scaling method for the test set within the training area but gave bad results when

testing on an entirely new physical pump failure. This new scaling method was tested on

LSTM with good results. It is thus not unreasonable to consider that SVM also can give good

results when using the new scaling method. A detailed review of the scaling method can be

seen in Appendix B (draft for publication).

1 Introduction

22

Pump 1 Pump 2 Pump 3

Pump 1 Pump 2 Pump 3

1
 h

o
u

r u
sed

 to

scale

1
 h

o
u

r u
sed

 to

scale

1
 h

o
u

r u
sed

 to

scale

Scaled using entire dataset

Old method

New
method

E
n

d
 o

f life

E
n

d
 o

f life

E
n

d
 o

f life
E

n
d

 o
f life

E
n

d
 o

f life

E
n

d
 o

f life

Figure 1.8 Difference in how the data was standard scaled. Image from Appendix B.

1.7 Report structure

Further on this thesis will investigate the use of machine learning operations in chapter two.

This serves to create a software specification and get input on how to run a machine learning

project. The third chapter gives the results for the software specification. In chapter four, the

thesis starts to focus on the machine learning part where the data pipelines for training are

explained and experiments are defined. The fifth chapter shows the results from the models

developed during the experiments. Chapter six discusses alternatives on the models, what

could have been done differently to indicate what should be done in future work. Chapter

seven concludes the work done in the thesis.

2 Software specification

23

2 Software specification
As machine learning models are being developed a system for them to run in will be necessary.

This chapter will investigate what the standards of machine learning operations are, as well as

the needs in an industrial sense for the specific use case of predictive maintenance. In essence,

the model will need to receive data, process it, run it through a model and finally sending the

inferred data to someone or something which can use the data as seen in Figure 2.1. First, best

practices on how to develop and deploy machine learning models will be investigated. This

serves three purposes; Using best practices in the machine learning development process later

in the project, to understand how models are deployed and the relationship between the two.

Data source Process Model inference Data consumer

Figure 2.1 High level data flow for a deployed machine learning model

2.1 Machine learning operations

Machine learning operations (MLOps) can be seen as a continuum as mentioned in section

1.4. It may be strategic to not aim for the highest level of MLOps in the first round of

machine learning development in a company. An assessment based on the size and

experience of the team which works with machine learning within the company may be

useful as well. To do this, the MLOps stack canvas can be used [9]. The MLOps stack canvas

will be filled out with information from the next subchapters and can be seen in Figure 2.2.

2.1.1 Data sources and data versioning

The process data sources available are a PostgreSQL database and an OPC server on the

production network of the plant. The operation logs which are written by the operators daily

for information about when a pump has been replaced are available in an online file server.

The process data is readily available on the production network; however, it may be simpler

to work with the data online, thus a backup should be taken to an online computer. The

operation logs are written in free-text and on a form of morning shift and evening shift, on a

daily basis with notation Monday-Sunday with a corresponding week. Thus, data about when

the pumps are replaced must be extracted, together with the date from week-day combination.

Finally, the dates must be matched with a time in the process data to find when the pumps are

replaced. When a pump is replaced, the backup pump is started. From the combination of one

pump stopping and the backup starting, the timestamp of the replacement can be found.

Data versioning is likely not very necessary as time-series data is not expected to change

once logged. It may be useful to know which time frames are used to train the models for

historical reasons, more on this in section 2.1.6.

2.1.2 Data analysis & experiment management

The initial data analysis has been done as described in section 1.2.1. Python was used for the

initial analysis, and python will be used further on. Initially, the project seems feasible with

2 Software specification

24

the best model giving a 78.5% accuracy. Other evaluation methods may be investigated for

the models such as F1-score, precision and recall. To process more data GPU processing

power should be available as training deep neural networks (DNNs) such as long short-term

memory (LSTM) and gated recurrent unit (GRU) may take a very long time on a CPU. On

low interval data such as 50ms, only 5minutes of every hour was used in training the LSTM

model, the data was also averaged to 1s which reduced the processing needs 20-fold. To train

a model with all the available data and not using average requires a lot more processing

power (or time).

To manage the experiments, several parameters for each type of model should be stored.

Amongst them are an identifier, features, pre-processing steps, training time, what data has

been trained on, test accuracy, network configuration for the LSTM and GRU models, kernel

function for SVM and hyperparameters depending on the kernel used.

2.1.3 Feature store and workflows

The feature store allows for extracted features to be shared from data engineers to ML model

engineers. This allows for a feature to only be found once, then stored such that it can be

reused for other training sessions easily. One of the points of doing this is to avoid the ML

model engineers having to use any low-level API to get the data. As the project for now is

close to a solo project and all tasks are done by one person, there is little need to make hard

rules and layers to standardize features for a “next step”. In the live serving of the model, the

data will still be received from a SQL server and must be pre-processed with a similar

pipeline and use the predict method instead of fitting method. Transformations can be logged

in the database, such as to avoid calculating the transformations every time the model is

trained again.

2.1.4 Foundations of DevOps

As the IT department is rather small, there is next to no DevOps at Lindum. Lindum uses

GitHub, this is used primarily to hold code, versioning and collaborating on the code. The

code may run on offline servers which makes continuous integration and continuous delivery

(CI/CD) hard. Systems may be monitored by feeding data to a database through the firewall,

although this is not implemented. Metrics on deployment frequencies, lead time for change,

mean time to restore, and failure rate is not stored.

2.1.5 Continuous integration, training and deployment

As there is next to no DevOps in Lindum, automating integration, training and deployment is

not feasible. There may not be much need as Lindum does not use many models yet, and the

models will likely not change fast. As the number of models increase, the point on continuous

integration, training and deployment should be reevaluated together with resources appointed

to these tasks.

Training may occur inside the production network, on an online computer or in a cloud

environment. The workflow for of the pipeline in development is dependent on manually

taking data out from the production network, finding useful features, pre-processing it,

training and producing a model before evaluating. A production pipeline should be similar;

however, it should automatically get the data, use the features which has been found useful,

process and run through model and serve results. For development the Python programming

language has been used with primarily Pandas, SciPy and TensorFlow. Further on Kedro may

2 Software specification

25

be used for pipelines and AirFlow may be used for scheduling. Distributed model training is

not yet considered necessary.

Non-functional model requirements:

Fairness, the training data is rather skewed at least in the way the networks has previously

been set up as seen in Table 1.2. When basing the output categories on time from failure

where the “normal operations” time frame is much larger, the training data unless modified

will also have a much larger proportion of normal operations. This may not be a problem

assuming that the outputs have group fairness in the form of equalized odds [23]. This

indicates that the categories (the group) have or have close to equal true positive rate

(equalized odds).

2.1.6 Model registry and model versioning

The model registry and versioning component is as the name implies used to register models,

this can range from having control on what data the model has been trained on, which is

newer, which is better in various metrics. An important note is also to be able to go back to a

previous model. The model registry is a useful tool to keep track of the models, especially

when the number of models start to grow. The models can be stored on a file server, or on the

server it is running from and details about each model can be described in a database or CSV

file until more resources are available.

2.1.7 Model deployment

The model will be delivered as an Open Neural Network Exchange (ONNX) file which “is an

open format built to represent machine learning models” [24]. The expected time for

changing the model should be on the scale of months as the pumps are typically replaced with

an interval between 3-60 weeks today. Thus, retraining of a single model should not be

expected to be more often than one month. One month may even prove a high interval, as

there are likely not much changes happening. The target environment will depend on the

solution to run the model, some solutions require to be on-premise others are more flexible or

require to be on cloud.

2.1.8 Prediction serving

Prediction serving is the act of giving new unknown data to the model and receiving a result.

There are generally two ways of prediction serving: online and batch mode [9]. There are five

patterns for serving, the most applicable ones are Model-as-Service, Model-as-Dependency

and Precompute. Model-as-Service wraps the model as an independent service and can be

accessed through a REST API [25]. Model-as-Dependency includes the model inside the

software and thus makes the software dependent on the model. The Precompute pattern

computes data batchwise, stores the predictions in a database where users can query for

results.

As the predictions are wanted cyclically, Precompute may be the best option. Thus, i.e., one

hour of data can processed in a batch and the results are stored in a database where other

programs may query for the data. As briefly discussed in section 1.2.2, a contribution over

time may be useful to reduce the number of false positives, this is to reduce the potential

erratic behavior of independent trials.

2 Software specification

26

How many trials should be included in such an average for it to be trustworthy, yet still be

reactive to what is happening will have to be trial and error when a sufficiently good model

has been achieved. A trustworthy model indicates that the users trust the model when the

model gives a warning. If not trustworthy, it may quickly fall out of fashion and not be used,

the trustworthiness is thus essential.

As the model is attempting to predict errors one week ahead of time, but at the same time

give the operators time to plan work, the model should serve predictions between every hour

and every day. As it is not very costly to predict, once an hour may be sufficient.

2.1.9 Model, data and system monitoring

Monitoring of the model may be hard as the goal of the model is to avoid the pumps being

damaged beyond repair. If the pumps aren’t run until failure anymore, how is it known

whether there was one week left or one day left? The assessment of whether the model

predicts the right label or not will to some degree be a subjective matter from the operators as

they are the ones inspecting, repairing or replacing the pumps. The predictions will of course

be logged, a procedure or system must be defined to allow the operators to give their

feedback.

There are some reasons why the data would change, the pump type may change, there will

always be variations in the dry matter, some new equipment may be installed causing a

change. While the pump type may change, this can also be a known factor, and may be

considered a different model. By knowing which type of pump is installed, operators may

change the model used for a tag3. The dry matter will invariably change and must be built

into the model, this will influence the pump’s behavior. Sensors can be installed to get this

information, however then a new model may need to be trained.

The deployment system should also be monitored, and mainly consist of connections

monitoring of database and/or OPC servers.

2.1.10 Metadata Store

The metadata store is used to store information about the models developed. This data can

include what features and time frames are used, how it is pre-processed, hyperparameters of

models, various evaluation results and more [9].

2.2 Software scope

To run the model automatically a system for getting the data, transforming it to the right

format, processing it, inferring the information from the model and sending the information

to an operator or to another software is needed. The software does not include training the

model as this may be considered a separate step in MLOps. The previous section on MLOps

goes through some steps related to data needed, the processing of the data and deployment of

the model as well as metadata that should be known and monitored. Figure 2.2 shows the

culmination of the sections on MLOps and from this a scope can be defined.

3 Tag – A position within a process control system, physical equipment may be changed, but the positions name

remains the same

2 Software specification

27

Figure 2.2 Machine learning operations stack canvas [9]

Starting with the data source for inference is the process database, the system will need an

interface to the PostgreSQL database. Further on the data will generally need some pre-

processing such as outlier detection, scaling and transformations, typically called a data

pipeline. When the data has reached the end of the pipeline, it is used to infer information

from the model. At this point, the information is ready to be consumed by applications or

users. To get to a consumer, the inferred information needs to be transmitted in some way,

this can be either to a database or to an OPC server. There are primarily two possible

consumers, the operators using the SCADA system or the maintenance program for placing a

work order when the pumps need to be fixed. A third alternative is to store it in a database

where another application may use it. For the consumer to use the information, the data needs

to be formatted in a way that suits both the transmission protocol and the consumer. As such

the system not only needs interfaces to one or more of these consumers, but it also needs a

translation layer from the outputs of the model to something that makes sense for the

consumer. The general scope can be seen in Figure 2.3.

2 Software specification

28

External communication OPC
Server

Inferred
data

to
translation

Maintenance
database

Maintenance
plan

Database
read

Pre-
processing

steps

ML
inference

Process
database

Database
write

Store message in log

Create work order?

Create
message

OPC
communi-

cation

How is the pump doing?

System
database

Figure 2.3 Scope for software to infer data from model

3 Software specification results

29

3 Software specification results
This chapter shows the resulting software specification.

3.1 Requirements

The requirements will attempt to concretely define what is needed from a software to run the

model. Here there is a separation in the MLOps, training is not considered here as this may be

done separately. The requirements may be achieved using a modular solution; thus, the

system does not need to be one program. To frame the requirements FURPS+ is used.

FURPS+ is Functional Usability Reliability Performance Supportability and other design

challenges or limitations.

3.1.1 Functional

Run ML model files: As the system is going to use a machine learning model, it must be able

to run it. At a minimum ONNX files must be supported, in addition pickle objects,

TensorFlow objects .pb, PyTorch’s .pt are nice to have.

Communicate with OPC UA: the software needs to send data to the SCADA system this can

be done using an existing OPC server. To do this, the software needs to have functionality for

receiving OPC UA events with a subscription and be able to send data to the OPC UA server.

Communicate with PostgreSQL: The program needs to get process data from the PostgreSQL

server, it also needs to send data to a PostgreSQL server to store results

Communicate with SQLExpress: The program needs to communicate with the maintenance

management system to create work orders. Creating work orders likely will require to be able

to create, read and update records.

Maintain configuration: As various models are developed, there is a need to switch out which

models is used, data sources, how the data is processed (data pipelines). This may be done in

either a database or in local files.

3.1.2 Usability

The user should view results from the system using the SCADA system or maintenance

program. The user does not directly interact with the system as this is a cyclically called

function which gives results.

3.1.3 Reliability

This is essentially not a critical system, thus an availability of 95% should suffice which

equates to 18.26 days downtime per year [26]. The program should run batchwise when

available and errors must be logged.

3.1.4 Performance

A single core CPU of 1GHz, 2GB RAM, 4GB of storage will suffice plenty for a single

model of the size. This is based on running a test with three pump lifetimes. With more

models comes higher requirements, although the specifications are already oversized.

3 Software specification results

30

3.1.5 Supportability

As different problems will require different solutions in the form of pre-processing and

machine learning method there should be possibility to integrate Python scripts to do some of

the work, thus allowing processing techniques and libraries to be used.

3.1.6 Other

Communication to the maintenance program and the SCADA system will require specific

methods and formats. The maintenance program does not currently allow for external

communication, however an API has been started on by a supplier. The SCADA system can

be communicated with over OPC. The SCADA supplier will have to provide tags which the

program can send information to.

3.2 Infrastructure

There are primarily two ways the model can be set up to run; on premise (local intranet), or in

the cloud. There are advantages and disadvantages to both, this subchapter will investigate

some of them.

3.2.1 On premise

Running the machine learning inference on the hardware which already exists may appear the

most intuitive. The processing power, RAM and storage is already there. The machine

holding these resources are however offline which creates a few complications. The first is

updating, this becomes harder due to operating system variations from online computer to

offline computers. Finding the correct dependencies to install a given program, finding the

correct modules for i.e., Python or C# and their submodules. There is generally less

automation when working offline which makes it more time consuming.

As have been discussed in section 2.1, much of DevOps and thus MLOps is based on

reducing time from a change is initiated to it is deployed. There are frameworks to work from

on this which can be installed locally. This does require some of setup and combining of

various system LF AI & Data Foundation Interactive Landscape gives an overview of many

solutions [27]. There also exists some solutions which are considered end-to-end MLOps

which indicates that they cover more or less all the steps of MLOps [28].

Because the model is running inside the production network, it will not have to cross the

firewall to receive and send data to/from the database and OPC server as seen in Figure 3.1.

This removes one of the risk factors. It will still have to connect to the maintenance database,

the maintenance database is on Lindum’s own network. For this communication, it may be

enough that the ML model sends data out from the production network.

3 Software specification results

31

OPC

SCADAProcess database

Maintenance database

ML model

Lindum network

Production network

Figure 3.1 Running the model on premise

3.2.2 Cloud

Running the model in the cloud has the clear disadvantage that there are more firewalls to

cross, thus exposing the production network at several locations as seen in Figure 3.2. It will

also be an extra expense to process the inference of the model(s). It will however be easier to

integrate the model to cloud MLOps solutions which would allow for easy updates of the

models and software surrounding the model. Using the cloud will in general also allow the

hardware to scale easily and for the infrastructure to run models for several factories. This

will reduce the amount of maintenance.

3 Software specification results

32

OPC

SCADA

Process database

Maintenance databaseML model

OPC updater

Cloud Lindum network

Production network

Figure 3.2 Using cloud to run the machine learning model

3.3 Risk

There are various types of risks, in broad they can be divided into safety and security risks.

Safety risks are unwanted events which happen by mistake or negligence, while security risks

are intentional by an attacker [29].

There are several cyber security risks to assess, no matter where the model is deployed data

has to go through firewalls and open up to the production network (sending data in or out).

The OPC server runs on the production network and is directly in communication with the

PLC. The maintenance system is in Lindum’s online network.

3.3.1 OPC

• The OPC server should maintain the current security level using certificates,

difficulties have been observed in approving the certificate using Python API (in case

of developing the system in-house).

3 Software specification results

33

• Should the model be run in the cloud, connecting directly to the OPC server may pose

a cyber security threat as the OPC server can directly control the PLCs. Using

certificates should be safe, yet additional measures may be taken, the database may

function as an intermediate where an internal program on the production network

queries the database and updates the OPC server. Using datatype checks, it should be

very hard to maliciously control the OPC server.

• Writing to wrong tags may disturb production

3.3.2 Maintenance system

• The maintenance system runs on Lindum’s network and needs connection to the

model runtime.

• There are no available stored procedures to create a work order, this will have to be

developed. Can be outsourced.

• Creating the wrong work order may issue work where it is not needed.

• Creating redundant work orders may cause confusion and frustration.

3.3.3 Model

As a machine learning model is not deterministic it cannot be guaranteed to give the same

response for a given set of inputs. This does bring up the possibility for several iterations to

give a wrong prediction and thus letting the equipment stay too long or for the equipment to

be replaced too early. Remedies can go in the way of understanding how the model behaves

once implemented and use that experience to read the model. Alternatively, the model can

use an additional layer such as a moving average or checking how many of the previous

samples are similar.

3.3.4 Operator feedback

If ultimately the operator needs to give feedback to the system, how should this be done? The

operators should not be able to update the model directly, rather the model may be retrained

on an ad hoc basis as the model likely does not need frequent retraining. The information

about what is replaced should be stored and ideally an estimate of the state of what is

replaced. I.e., is a seal broken, damaged or fine. Some procedure for assessing the equipment

should be made.

4 Machine learning, data and use of methods

34

4 Machine learning, data and use of
methods

The second part of this thesis considers the training of several models, the data pipeline to get

and transform the data, and evaluating the results of each experiment. The general data flow

to train a machine learning model is similar to that of inferring information from one as was

seen in Figure 2.1. Figure 4.1 shows the general dataflow for machine learning, first there is a

need to find useful data, then there is often a need to pre-process the data before training a

model and evaluating the model. This chapter will go through these steps to explain the paths

taken to get the results that will be shown in section 5.

Data source Pre-process Model training Model evaluation

Figure 4.1 Machine learning flow diagram

4.1 Data source

The data source is a PostgreSQL database which is queried from a Python script. The data is

stored in various tables and thus requires some logic to put it together into a coherent data set.

Most process variables are stored in specified time intervals, Boolean process variables are

stored when the value changes and the labels are stored when they change. Two data sets exist,

one, which has been stored every 30 second and one which has been stored every 50ms. The

30 second data set has been stored with some outages from March 2020 and data to train with

has been taken out up until February 2022. The remaining 30 second data from February to

May will be used for testing. The 50ms dataset has been stored since July 2021, however due

to limited time, it will not be used in this thesis even though it may hold valuable information.

Figure 1.1 and Figure 1.2 best describes what process variables exist and a general model will

be seen in section 4.3.1.

4.2 Data labelling

To use supervised learning, the outputs must be labelled. To label the data, the pump failure

times are needed. When a pump is replaced or repaired, it should be written in an

unstructured log. It is also possible to see when a pump is replaced in the process data by

looking at which pumps are being used and which are not. As the pump failures and repairs

are not always written down in the unstructured log, the process data needs to be investigated.

Figure 4.2 shows the Boolean control signal from one of the main pumps (pump 17) in blue

and a backup pump (pump 18) in red. The signal is cyclically being turned on and off and can

be used to indicate when a replacement or repair is happening. It is assumed that for each

time a similar pattern occurs, a pump is being replaced. As there is no known way of telling

the difference between an overhauled pump and a new pump, these are assumed to be the

same.

4 Machine learning, data and use of methods

35

Figure 4.2 Time-series plot of Boolean control signal for pump 17 (main pump) in blue and pump 18 (backup

pump) in red. When a pump is taken out of operation, the backup pump will activate which is seen here, the blue

(pump 17) Boolean control signal stops cycling on and off 17th March and the red (pump 18) Boolean control

signal starts to cycle on and off. This indicates that pump 17 has been deemed by the operators unable to do its

job properly, and pump 18 is doing the work while pump 17 is being replaced or overhauled.

The pumps will be labelled in two ways, one to indicate what predictor state the pump is in,

an extract can be seen in Table 4.1. The other to indicate when a “new”4 pump is set into

production again in

Table 4.2.

Comparing to the states from the previous project, two of the states have been removed.

Table 1.2 shows the five states from the previous project. The first, “stopped” and the last,

“1h to failure” were deemed unhelpful as “stopped” is already known and 1h to failure was

never predicted. This leaves three states, normal running, less than one day before failure and

less than one week before failure as seen in Table 4.1.

Table 4.1 Extract from pump state data, joined with labels for readability

Time Tag Status

14.10.2020 10:18 HYG_PU12_State Normal running

07.02.2022 03:23 HYG_PU12_State Less than 1 day until failure

01.02.2022 03:23 HYG_PU12_State Less than 1 week before failure

08.02.2022 18:01 HYG_PU12_State Normal running

14.12.2020 17:20 HYG_PU13_State Less than 1 week before failure

08.12.2020 17:20 HYG_PU13_State Less than 1 day until failure

16.12.2020 19:41 HYG_PU13_State Normal running

4 New, in this scenario is considered either an actual new pump, or a pump that has been overhauled and is put

into production again

4 Machine learning, data and use of methods

36

Table 4.2 Extract from pump number

Time Tag Pump number

07.07.2020 12:00 HYG_PU12_Pump_no 1

08.02.2022 18:01 HYG_PU12_Pump_no 2

16.12.2020 19:41 HYG_PU13_Pump_no 1

06.07.2021 10:21 HYG_PU13_Pump_no 2

13.08.2021 10:24 HYG_PU13_Pump_no 3

4.3 Feature selection

Feature selection is choosing what features, variables, sensors which should be used in the

machine learning model. Choosing the features wisely can reduce training times, increase

accuracy and reduce complexity of the model. The features can be many things, raw data,

properties about the raw data, aggregates, or combinations such as fractions or multiplication

of data. Raw data can give important details about local variations, aggregates can give

longer term variations. The combination can reduce the number of connections (free

parameters) the model needs to learn by itself [30] [31].

To get a feeling for the data, several plots will be made to see trends, correlations and other

properties. This may help in understanding if any features can be dropped, what features can

be extracted from the available data, what pre-processing steps that need to be done.

This may be important as there may be variations between the physical pumps and their

location in the process. The idea here will be to investigate if it is feasible to use data from

various pumps for one model to monitor all the pumps. It is especially interesting to

investigate if they lie in the same general range after being scaled. In the project described in

section 1.2.1, standardization was used based on the first hour of the pumps running time.

The principle of using the start of a pump’s lifetime is likely a good choice when considering

that the data for the whole series will not be available when the model should infer on a real

pump. Using this approach will require the pump to be running for the period used to create

the scalers before inferring.

4.3.1 Base features

As the pumps are relatively similar, so is the sensors for the pumps. These eight pumps have

6 variables in common and can be seen in Figure 4.3. As was seen in Figure 1.1, the system

of pumps before and after the processing vessel each has a flow transmitter (FT). If one

model for each pump was created, this may have yielded good information. However, when

creating one model for all the pumps, the flow measurement will have some time delay

between the pumps as illustrated in Figure 4.4. The time delay is visualized as one Δt from

the flow transmitter to PU17 and with an arbitrary number of times, x, Δt from the flow

transmitter to PU19. The flow transmitter may be included in a potential future calibration

phase using transfer learning. It can also be noted from Figure 4.4 that some pumps, such as

PU19 has inlet and outlet pressure, while others only have outlet pressure such as PU17. As

only some have the inlet pressure, the general model cannot have it.

4 Machine learning, data and use of methods

37

PUXX

PT
X

MO_PV Control signal [%]

SF_PV

PW_PV

TQ_PV

Speed [%]

Current [A]

Torque [%]

PUXX On/off signal

PTX Outlet pressure [Bar]

Figure 4.3 Common measurements for the progressive cavity pumps

FT
02

PT
14

PU17PU19

PT
15

PT
16

ΔtxΔt

Figure 4.4 Time delay from flow transmitter to two different pumps

4.3.2 Specifics in the data set

There are two backup pumps which seldom are replaced, and it is hard to discern when they

are replaced from the data available. From what is known from reports and process data,

pump 14 has not been replaced during the data collection. Thus, when a scaler was created in

the automatic way, it is based on the data seen in Figure 4.5. The control signal in red is

stationary at five, which is not necessarily wrong, however the pressure in beige seems to

change, even though the current (green) and torque (blue) is at zero. This would obviously

confuse the model as the outlet pressure is varying while the pump is not running. As there

has only been one of these pumps, it may be useful to leave this pump out of the training as

there would require new logic to include it properly. This also goes for Pump 18

(HYG_PU18), it does have one replacement, yet in the interest of time it will be skipped.

4 Machine learning, data and use of methods

38

Figure 4.5 Unscaled pump 14 data (HYG_PU14)

Figure 4.6 Unscaled pump 18 data (HYG_PU18)

An interesting note is that the current and thus also the torque increases in variance as the

control signal increases, this can be seen in Figure 4.7. It may indicate that the standard

deviation of the signals may be useful to the model.

When the scaler is applied to the data, the pressure variations are clearer in Figure 4.8, but

does not seem to be dependent on any of the other measurements. This may be due to there

being a pump in series after Pump 15 that sucks to control its inlet pressure to 1 bar.

4 Machine learning, data and use of methods

39

Figure 4.7 Changes in control signal to Pump 15 (HYG_PU15) increases the variation in current drastically,

while pressure seems rather independent of the control signal. The speed seems to increase linearly with the

control signal.

Figure 4.8 Scaled version of Figure 4.7

It should also be noted that not all the pumps are controlled by a PI controller, some are set

based on other criteria. Pumps 12, 15 and 17 are manually controlled based on the wanted

flow. Pumps 13, 14, 16, 18 and 19 are controlled by a PI controller based on the inlet

pressure. This changes the behavior of the pumps, yet the relationships are assumed to

endure. As with Pump 15, it can be seen in Figure 4.9 that the current in green also increases

in variation as the control signal in red increases for Pump 16 which is PI controlled. Also,

the outlet pressure in beige also appears independent of the control signal and current as was

seen for pump 15.

4 Machine learning, data and use of methods

40

Figure 4.9 Pump 16: As was observed in pump 15, the current increases in variation as the control signal is

increased. The outlet pressure again seems to be independent of the control signal

As have already been seen, some pumps are not controlled by a PI controller, this leads to the

possibility that the control signal is static in the scaler fitting data. The histograms in Figure

4.10 shows the distribution of variables after scaling from pump 17 between 25. March 2021

and 4. July 2021. The control signal now lies between -70 and + 8, while the remaining

variables mostly lie around 0. This can be explained by looking at Figure 4.11 and Figure

4.12. Figure 4.11 shows the control signal and speed after scaling, while Figure 4.12 shows

the same variables before scaling. The control signal simply didn’t have any change in the

scaler calibration period and the variance of the scaler is thus 0. Essentially, what the scaler

does is to move the control signal from 70 to zero, that is centering the data.

Figure 4.10 Scaled histograms from pump 17 without PI controller

4 Machine learning, data and use of methods

41

Figure 4.11 Scaled timeseries plot from pump 17 where control signal in red and speed in blue is shown.

Figure 4.12 Not scaled timeseries plot from pump 17 where control signal in red and speed in blue is shown.

Figure 4.13 shows the variance of the control signal for each of the pump failures in the data.

It shows the difference in variance of the data used to create the scalers. A rather large span

can be seen, the span is of no issue as this is what the scaler is there for, to standardize the

variation. The problem however is the ones that have 0 variance. As shown in Figure 4.10

before, this will cause the control signal to only be centred instead of scaling the data. To

remedy this, the scaler data for the control signal is replaced with a linear interpolation

between the bounds of the control signal, zero and 100. This should properly scale the data to

be in the vicinity of zero as the other variables. This is shown in Figure 4.14 where a new

scaler has been created for the data set. The control signal is now between -2 and 1, while the

rest of the variables remain the same.

4 Machine learning, data and use of methods

42

Figure 4.13 Variance of control signal from all the scaler successfully calculated

Figure 4.14 New plot of Figure 4.10 where the control signal has been rescaled

As far as it is known by the author, there have primarily been two types of pumps in these

positions, with one exception, 14. September 2021 where a third type was tested. Most have

been of type 1, type 2 has been tested out for some time on the most exposed positions,

HYG_PU17 and HYG_PU19. Table 4.3 shows what type of pump has been installed on what

position. The documentation on this is sparse, and there may be errors, however this should

be better than assuming all are equal.

0

5

10

15

20

25

30

35
H

YG
_P

U
1

9
 2

0
2

0
-0

3
-0

4

H
YG

_P
U

1
9

 2
0

2
0

-0
9

-0
2

H
YG

_P
U

1
9

 2
0

2
0

-1
0

-2
7

H
YG

_P
U

1
9

 2
0

2
1

-0
4

-1
6

H
YG

_P
U

1
9

 2
0

2
1

-0
5

-0
6

H
YG

_P
U

1
9

 2
0

2
1

-0
9

-1
4

H
YG

_P
U

1
9

 2
0

2
1

-1
0

-0
7

H
YG

_P
U

1
9

 2
0

2
1

-1
1

-2
2

H
YG

_P
U

1
7

 2
0

2
0

-0
3

-0
4

H
YG

_P
U

1
7

 2
0

2
0

-0
3

-2
0

H
YG

_P
U

1
7

 2
0

2
0

-0
8

-0
6

H
YG

_P
U

1
7

 2
0

2
0

-1
2

-1
7

H
YG

_P
U

1
7

 2
0

2
1

-0
3

-2
5

H
YG

_P
U

1
7

 2
0

2
1

-0
7

-0
6

H
YG

_P
U

1
7

 2
0

2
1

-0
9

-0
7

H
YG

_P
U

1
7

 2
0

2
1

-1
1

-2
5

H
YG

_P
U

1
7

 2
0

2
2

-0
1

-2
7

H
YG

_P
U

1
6

 2
0

2
0

-0
3

-0
4

H
YG

_P
U

1
6

 2
0

2
0

-0
4

-0
3

H
YG

_P
U

1
6

 2
0

2
0

-0
9

-2
1

H
YG

_P
U

1
6

 2
0

2
0

-1
1

-0
6

H
YG

_P
U

1
6

 2
0

2
1

-0
2

-0
2

H
YG

_P
U

1
6

 2
0

2
1

-0
5

-0
7

H
YG

_P
U

1
6

 2
0

2
1

-0
8

-1
7

H
YG

_P
U

1
5

 2
0

2
0

-0
3

-0
4

H
YG

_P
U

1
5

 2
0

2
0

-0
4

-0
7

H
YG

_P
U

1
5

 2
0

2
0

-0
6

-2
3

H
YG

_P
U

1
5

 2
0

2
0

-1
0

-0
2

H
YG

_P
U

1
5

 2
0

2
0

-1
2

-2
3

H
YG

_P
U

1
5

 2
0

2
1

-0
9

-0
1

H
YG

_P
U

1
5

 2
0

2
1

-1
0

-0
8

H
YG

_P
U

1
3

 2
0

2
0

-0
3

-0
4

H
YG

_P
U

1
3

 2
0

2
0

-1
2

-1
6

H
YG

_P
U

1
3

 2
0

2
1

-0
7

-0
6

H
YG

_P
U

1
2

 2
0

2
0

-0
3

-0
4

Variance calculated for Control Signal for each scaler

4 Machine learning, data and use of methods

43

Table 4.3 Type of pumps installed on pump location HYG_PU17 and HYG_PU19

Date Pump 17 Pump 19

January 2020 (04.03.2020) Type 2

20 mars 2020 Type 1

06 august 2020 Type 1

02 September 2020 Type 1

27. October 2020 Type 2

17. December 2020 Type 1

25. March 2021 Type 1

16. April 2021 Type 1

30. April 2021 Type 1

06. May 2021 Type 1

06. July 2021 Type 1

07. September 2021 Type 2

14. September 2021 Type 3

07. October 2021 Type 2

22. November 2021 Type 2

25. November 2021 Type 2

27. January 2022 Type 2

08. February 2022 Type 2

The previous project primarily looked on the data with an assumption that each physical

pump was the same and thus investigated them as one data set. Here an attempt to dig deeper

into each physical pump is made to see if there are connections that are not visible when all

of them is seen at the same time.

Pump 19 has eleven usable failures in the data period, Figure 4.15 shows how the data

evolved over time in the leftmost column for one of the eleven pumps. The dark blue in the

figure illustrates when the pump is considered ok. The red indicates that there is one week

until failure, and the yellow indicates that there is less than one day remaining. The diagonal

from upper left to lower right shows a scatter plot where the same variable is put up against

itself. Thus, these are always straight lines.

4 Machine learning, data and use of methods

44

An interesting feature here is that the control signal and speed also appear to be close to such

a straight line. This indicates that the correlation is high, and that feeding both to a machine

learning model may not yield any new information compared to only giving one. Similarly,

the subplot between current and torque also has a high degree of correlation, it is not as clear

cut as the control signal and speed.

Figure 4.15 Scatter matrix plot of PU19 Type 2 pump

Figure 4.15 shows mostly the dark blue dots, normal running. In Figure 4.16 the same plot is

shown where the last week has been highlighted. This doesn’t show any clear indication that

the pump is failing, rather it would seem that the pump is operating in a way it also could

operate during normal running when looking at any two variables at the same time. It may be

that certain combinations of the values will indicate the state of degradation.

Figure 4.16 Scatter matrix plot of PU19 where one week from failure (red) and one day from failure (yellow) is

highlighted. Pump type 2.

Figure 4.17 shows the lifetime of a type 2 pump which lasted very long. The control signal at

first seems to increase, but then is reduced and varied, before taking on a slow increase.

Meanwhile the current seems to have a steady increase over the whole lifetime. This is rather

4 Machine learning, data and use of methods

45

different from the previous plots where the current has been locally varying but mostly

staying the same globally. These are both of type 2 which indicates that there must be some

other factor, this may very well be the type of fault for the pump. Other than this, the plots

look rather similar, the control signal and speed correlate and so does the current and torque.

The outlet pressure has a rather high span considering that it has already been scaled and can

be shown to have a similar span compared to before being scaled as seen in Figure 4.18.

Figure 4.17 Scatter matrix plot of another pump 19 failure of pump type 2. Steady increase in current may be a

feature of general degradation.

Figure 4.18 Unscaled outlet pressure from same time frame and pump as Figure 4.17

Figure 4.19 shows a type one pump in position Pump 19. As in Figure 4.17 the current and

torque seem to have an increase, although the change in slope is appears lower. It can also be

noticed that the plot between current and torque seems to have more variation compared to

that of the type two pump.

4 Machine learning, data and use of methods

46

Figure 4.19 Scatter matrix plot of pump 19 failure, pump type 1

Figure 4.20 shows one failure from pump 17, it is rather different in the control signal

compared to the previous plots from pump 19 as this one is not controlled by a PI controller.

The current follows the trend that was observed in Figure 4.17 where it increases over time.

However, this also happens to the control signal which may be to keep up the pressure or

flow. It can be noted that towards the end, the outlet pressure seems to vary less and become

lower. As in Figure 4.19 the scatter plot between current and torque seems to be much wider

compared to the narrower pump type two and models for separate pumps may be of interest.

Figure 4.20 Scatter matrix plot of pump 17 type 1 without PI controller. Current and control signal is increasing

as the pressure is dropping.

Figure 4.21 shows a histogram of the number of samples taken over close to 1.5 years. Some

gaps can be seen where there are zero samples. This has happened several times where a

pump has been replaced, that leaves only the normal data for training. As there is a lot of data

where the pumps are normal, the pumps where there is no process data for the end has been

omitted from training.

4 Machine learning, data and use of methods

47

The pumps of this category can be seen in Table 4.4 along with other exceptions. The backup

pumps have been omitted as well as these will be having samples from pressure even if they

are not in use, and thus likely will be misleading for the model. It is also hard to determine

when they have been replaced from operational data and the logs seldom mention them. For

them to be useful, additional logic would be required.

Figure 4.21 Timeseries count of measurements, gap in count indicate that there are no measurements

Table 4.4 Pumps that has been omitted from training

Tag Pump number Start date End date Comment

HYG_PU17 7 25.11.2021 26.01.2022 No data

HYG_PU17 1 20.03.2020 01-30.07.2020 No data

HYG_PU19 6 30.04.2021 05.05.2021 Operating failure

HYG_PU12 0 04.03.2020 07.07.2020 No data

HYG_PU14 0 04.03.2020 Unknown, still

same?

Additional logic

needed to use

HYG_PU18 0 04.03.2020 22.06.2020 Additional logic

needed to use

HYG_PU18 1 22.06.2020 Unknown, still

same?

Additional logic

needed to use

4.3.3 Feature engineering

Up until now all that has been seen is in the raw data. It has been observed that the currents

variation is increasing when the control signal increases. Interestingly the current doesn’t

seem to get higher, only lower in the short term as seen in Figure 4.7. Long term there has

been signs that the current is increasing over the pumps lifetime as seen in Figure 4.20. These

two observations may indicate that short term the average current may decrease when the

control signal increases, and also that the average current may increase over the lifetime of

the pump. From this it may be interesting to also use the average over some time to get a

4 Machine learning, data and use of methods

48

longer-term information into the model. I.e., get the average from the previous 24 hours into

the model.

Using this information may be analogous to understanding the context of an event. Seeing

that a cup of coffee is half-full may indicate that it is cold or hot, but if it was full five

minutes ago it would mean someone has been drinking it and the probability it is still hot, is

somewhat high. In the other event if it was half-full five minutes ago, it may be indicative

that it is cold. If this is taken several steps further, the cup may have been half-full for

30minutes, and it is quite certain it is cold, and you would like to get fresh one.

Similar to the cup of coffee it may be of interest to know if the control signal, current and

output pressure is temporarily being increased or decreased, or if it is increasing or

decreasing over a longer period. It could also show deviations from the overall trend, if a

given variable increases over time, but at some point, has a dip it may indicate that something

unusual is happening. Physically this can indicate that some solid has been through the pump

or some other event is happening.

On the other hand, a large change in mean may indicate that a wear part has met a critical

point and the system is trying to compensate for the damage, or if the pump is simply not able

to deliver what it used to.

Figure 4.22 shows the pump variables for pump 17 where the data has been averaged over 60

minutes. That is, each sample shown here is 120 samples of the raw data averaged and is

done by PostgreSQL’s avg function & TimescaleDBs time_bucket function. It seems clear

that the current in light green and the torque in blue generally is increasing over time even

though the control signal in red for the most part is stable. Locally the current and outlet

pressure to some degree correlate, however over the lifetime the current and torque increases

while the outlet pressure stays more or less the same. Figure 4.23 shows the same for another

physical pump which indicates that this is a trend, at least for pumps that are not controlled

by a PI controller.

Figure 4.22 Pump 17 scaled averaged data, each sample 60minutes, over the lifetime of a physical pump

4 Machine learning, data and use of methods

49

Figure 4.23 Pump 17 scaled averaged data, each sample 60minutes, over the lifetime of another physical pump

Figure 4.24 shows the standard deviation over the same time frame as Figure 4.23. Outlet

pressure and current appear to have high standard deviation in the beginning before being

reduced. The standard deviation goes up and down for some time, but towards the end it

seems to increase for current and torque. The spikes that occur from time to time may be an

indication that something is happening inside the pump.

Figure 4.24 Pump 17 scaled standard deviation of data, each sample 60minutes, over the lifetime of a physical

pump

4.3.4 Lurking variables

Dry matter

A lurking variable is a variable that is not included in the analysis, yet have an impact on the

analysis. One such variable that is known, is the dry matter of the medium being pumped.

Roughly it varies between 8-20% and is measured in a laboratory at arbitrary times. This

makes it hard to add to the model as the dynamics cannot be seen from the measurements.

4 Machine learning, data and use of methods

50

There are 55 samples over a two year period, although it is claimed that the dry matter

various between these samples. As such there is little reason to use this variable.

Temperature

The temperature for the pumps in the system varies to a rather high degree, but there aren’t

good measurements for this. The inlet temperature is not measured, only the outlet from the

second heat exchanger before being put into the processing tank E-11. The medium is then

measured in the tank while processing, when it comes out from the tank, it is measured after

the two heat exchangers.

4.4 Pre-processing

In general pre-processing is a part of machine learning that has large impact on the results of

a model. This can be operations like data wrangling, transformation, aggregation, and scaling

in various ways. The order of the operations may have a large impact. This subchapter will go

through the pre-processing steps that will be used.

4.4.1 Narrow to wide table conversion

The data is stored in a narrow table, that is many variables are stored with a timestamp, name

and value as seen in Table 4.5. This is a format that any machine learning method generally

will not take. Normally a wide data structure, meaning one timestamp and one column for

each variable is used.

Most data points are sampled cyclically at a rate of 30 seconds. The Boolean control signal is

sampled when it changes, and the state is stored when it changes. The data is combined by

using a zero order-hold join function. An example of the data before joining can be seen in

Table 4.5, where the data is in one column. Here the state of pump 17 and the current of the

same pump is used to illustrate. The state only has two datapoints, while the current has

measurements every 30 second for close to a week. The machine learning models require the

data to have one timestamp column and one column for each feature (variable). One row of

data (timestamp and one value per variable) is called a sample.

Table 4.5 Measurements before joining of data

Time Name Measurement

11.03.2020 00:00 PU17_State 1

17.03.2020 14:31 PU17_State 2

2020-03-11 00:00:22.948 PU17_Current 15.03

2020-03-11 00:00:52.964 PU17_Current 11.66

2020-03-11 00:01:22.98 PU17_Current 9.02

… PU17_Current …

2020-03-17 14:29:45.956 PU17_Current 11.39

2020-03-17 14:30:15.971 PU17_Current 13.49

2020-03-17 14:30:45.987 PU17_Current 11.28

2020-03-17 14:31:15.987 PU17_Current 11.7

2020-03-17 14:31:46.002 PU17_Current 10.15

2020-03-17 14:32:16.018 PU17_Current 15.04

2020-03-17 14:32:46.034 PU17_Current 11.22

4 Machine learning, data and use of methods

51

After the function has been executed the data looks like Table 4.6. The status has been

forward filled until a change occurred whereupon the new value is forward filled. This of

course can be used for any variables.

Table 4.6 Measurements after joining of data

Time Name PU17_Current PU19_STATUS

2020-11-03 00:00:11.566 PU17_Current 15.03 1

2020-11-03 00:00:41.581 PU17_Current 11.66 1

2020-11-03 00:01:11.585 PU17_Current 9.02 1

…

2020-03-17 14:29:45.956 PU17_Current 11.39 1

2020-03-17 14:30:15.971 PU17_Current 13.49 1

2020-03-17 14:30:45.987 PU17_Current 11.28 1

2020-03-17 14:31:15.987 PU17_Current 11.7 2

2020-03-17 14:31:46.002 PU17_Current 10.15 2

2020-03-17 14:32:16.018 PU17_Current 15.04 2

4.4.2 Sequence

LSTM takes a sequence of data and thus the features have to be split into sequences of data.

The general idea can be seen in Figure 4.25, where nine timesteps of features can be seen on

the upper timeline. One the sequenced timeline the nine timesteps has been split into 3

sequences of three timesteps each. These sequences are fed to the LSTM and GRU models as

input vectors. The length of the sequences is somewhat arbitrary and depends on the problem.

A reasonable length here, would be to cover at least one cycle of the pump, that is 120

samples. The bottom timeline shows the aggregated data fitted to the sequence, where N is an

arbitrary number depending on how long the aggregation time is.

T=0...T=N T=N...T=2N T=2N...T=3N T=3N...T=4N T=4N...T=5N T=5N...T=6N T=6N...T=7N T=7N...T=8N T=8N...T=9N

Sequenced
aggregated

timeline

T=0 T=1 T=2 T=3 T=4 T=5 T=6 T=7 T=8
Sequenced

timeline

T=0 T=1 T=2 T=3 T=4 T=5 T=6 T=7 T=8Timeline

Figure 4.25 Upper timeline shows how the data is before sequencing where each blue block is the features at

timestep T. The middle timeline shows the structure of the sequenced data, where each new color indicates a

new sequence. The bottom timeline shows how aggregated data is fitted to the sequencing.

4.4.3 One hot encode

When attempting to classify data, the final output will be a text string. Machine learning

methods does generally not accept strings as outputs, but rather demand numbers. The data is

stored as a number in the database as described in Table 4.7. The loss function

CategoricalCrossentropy used to train the LSTM and GRU requires the data to be in a one-

4 Machine learning, data and use of methods

52

hot encoded form [32]. This means each category will be one column where only one of the

rows will have a 1, and the rest has a 0 as seen in Table 4.8 [33].

Table 4.7 Integer coded categories

Name ID

Normal running 0

One week from failure 1

One day from failure 2

Table 4.8 One hot encoded categories

Normal
running

One week from
failure

One day
from failure

1 0 0

0 1 0

0 0 1

4.4.4 Scaler

The data is scaled using standardization, equation (1) shows how to standardize a data set. In

the equation, z is the resulting standardized value of a given variable, x is the input value for

the variable which will be scaled, µ is the mean for the given variable data set and σ is the

standard deviation of the data set.

𝑧 =
𝑥 − µ

𝜎
 (1)

As was discussed in section 4.3.2, the control signal can be manually controlled by the

operators, and some of the pumps are always controlled manually. This causes issues for the

standard scaler, as such an evenly spaced line between 0 and 100 has been made for the

control signal to be scaled by.

As in the previous project, the scalers will be created using a part of each physical pump’s

data. Figure 4.26 shows how this is processed. There are 8 pump positions with a few or

many pump replacements, which in the figure are represented as physical pump numbers. As

the positions have different tag names related to them, the tags have to be looked up

depending on which pump position is being worked on. For each of the physical pumps,

process measurements have to be retrieved for each of the related tags. The data is then used

to create a scaler which is stored as a pickle5 file.

The number of hours used was increased from one hour to 12 hours compared the previous

project due to some starting time not being exact. The scalers then would be created with

values such that some of the scaled variables became high. To mitigate this, more data was

added, it is still reasonable in a practical standpoint where the model can’t predict anything

before 12 hours after the pump has been started for the first time.

5 Pickle is a python library for serializing objects to file, allowing the object to be stored and read at a later

point.

4 Machine learning, data and use of methods

53

Figure 4.26 Process to create scalers for each physical pump

Figure 4.27 shows the scaled training data from all the pumps that is used for training. The

control signal is expected to have some high counts as some of the pumps are controlled

manually. The current has a nice distribution, although the span is high and there are a lot of

spikes where the current likely has been zero before scaling. As the scalers does not have the

same base due to separate scaling per pump, these zeros may vary after scaling. The torque

has a somewhat wider distribution than the current, but generally follows the current. The

outlet pressure also seems to be nicely distributed around zero as well, although there is still a

large span.

4 Machine learning, data and use of methods

54

Figure 4.27 Scaled data for pumps 12, 13, 15, 16, 17 and 19

4.4.5 Outliers

As the pumps run cyclically, there are a lot of samples where the pump is off. For LSTM,

these should be kept to hold the sequence intact, but for SVM this may be seen as noise. One

of the easiest ways to remove these outliers is to remove the values where the pump is off by

a simple filter. This is reasonable as the model does not need to make predictions when the

pump is not running. In addition, there are a lot of zero values in the data set for the current

and torque as these may have some time delay from start and stop signal. There is also motor

starting current which gives a high current for one or two samples after starting, these can be

removed by removing the highest values of the current and torque using a quantile range. The

quantiles are set to keep values higher than 1% and lower than 99% of the current, torque and

outlet pressure. When such values are removed, the entire sample (row of data) is removed.

Figure 4.28 shows the base features from all the training pumps after removing values where

the pump is off. Most of the peaks at the lower end of the current and torque has been

removed.

4 Machine learning, data and use of methods

55

Figure 4.28 Histogram for base features after removing samples where the pump is off

Figure 4.29 shows the base features after removing the upper and lower quantiles in addition

to removing samples where the pump is off. The span has been reduced greatly.

Figure 4.29 Histogram for base features after removing samples where pump is off and quantiles

4.4.6 Training, validation and test set

The data will be split in three for each pump, one training set consisting of 70%, validation

set used while training of 15% and a test set of 15% which will be used when the training

over all pumps is finished.

4 Machine learning, data and use of methods

56

4.5 Long short-term memory

The data pipeline for the LSTM model can be seen in Figure 4.30. As for many parts of the

project, the process is executed on the basis of processing one physical pump from a pump

position at a time. The data for the pump number is retrieved from the database, before the

data is pre-processed to fit structurally and to improve training. If it is not the first iteration of

a given model, the previous checkpoint is loaded, and its weights are continued to be trained

in the train LSTM model block. When training is finished, the weights are saved and the

metadata from the training is saved to keep order of what data has been trained on. Details of

the green processes will be explained further below.

Figure 4.30 Data pipeline for LSTM and GRU models

Figure 4.31 shows what data is retrieved from the database. The amount of data retrieved is

varying for each of the states. The normal running is the most occurring state and can last

anywhere from 2-60 weeks which makes for a lot of normal data. To reduce training times,

one day of each week where the pump is running normally is retrieved for training. For the

state one week from failure, which lasts for six days, all the data is retrieved. The last day of

the week becomes one day from failure and the whole last day is retrieved. These are

appended before being sent to the pre-processing block. The result can be seen in a timeseries

in Figure 4.32 for an illustration of how the data looks. To further describe; in time there is a

gap after this function, it is however not empty between these sample times in the data fed to

the model. This function has alternatives which adds aggregated data as well, but this is

omitted as the underlying principle is the same except for the database query. When using

only aggregates, all data is used as it already is reduced from 44-120 times for the

experiments set up at the end of this subchapter.

4 Machine learning, data and use of methods

57

Figure 4.31 Subprocess get process measurements

Figure 4.32 Retrieved data from process described in Figure 4.31 where one day of each week is taken where

data is considered normal, six days where data is considered one week from failure and the last day of the pump

before being replaced considered one day from failure.

The pre-processing step is shown in Figure 4.33. As explained earlier, the narrow to wide

conversion is needed. The features are renamed from its original tag name to a generic name

such as HYG_PU19_PW_PV become Current so that no matter which pump it comes from

4 Machine learning, data and use of methods

58

it’s always called Current. If there are empty or not a number (NaN6) cells in the data set, it

should be filled first forward such as to copy the previous value, if there are cells at the start

which is empty or NaN it should fill backward to use the value which would follow. The data

is then split into sequences of varying lengths depending on the experiment in Table 4.9. The

sequencing must happen before splitting the data into training, validation and test set as the

splitting takes random samples out and would break the continuity of the sequences. Finally,

the output is one hot encoded before training. After pre-processing the data, the previous

model checkpoint is loaded if it exists before the training starts.

Rename features to
generic features

Scale

Sequence

Split to training,
validation and test set

Narrow to wide
conversion

Fill not a number samples

One-hot encode

Figure 4.33 LSTM pre-process pipeline

The training experiments can be seen in Table 4.9. The number column is an identity of the

experiment. The features can be either Raw, which means the features control signal

(Boolean and analogue), current, torque and outlet pressure. Avg are the average of each of

the mentioned features with the exception of Boolean control signal. Std is the standard

deviation of the features also with the exception of the Boolean control signal. Calc is

calculations between the analogue signals seen in Figure 4.34. The aggregation time is only

valid if there are any aggregations such as average of standard deviation. The sequence step

length indicates how long each sequence given to the LSTM model should be. Layers

indicate the number of LSTM block layers are in the network. Number of neurons indicate

how many neurons are in each layer in the experiment where the first number is the first

layer, and the second number is the second layer. Stateful indicates whether the network will

remember between sequences or if the cell state is reset in each sequence. The batch size

parameter decides how many sequences will be used per update of the weights, the batch size

can be used to control the training time. Increasing the batch size, reduces training times it

may reduce accuracy however. An epoch tells the model how many times the data should be

6 NaN, Not a number

4 Machine learning, data and use of methods

59

iterated over. Max epochs indicates that there should be a maximum number of epochs when

early stopping is used, this means that even though the max epochs might be 50, the model

might stop at 15 due to the validation accuracy reducing. A parameter patience controls how

many epochs the validation accuracy must be reduced before early stopping intervenes, for all

models it has been set to three. The skip parameter decides which type of pumps should be

skipped during training, this is related to Table 4.3.

Current/Outlet pressure

Control signal/Torque

Control signal/Outlet pressure

Control signal/Current

Figure 4.34 Calculated features

Table 4.9 LSTM experiments

Number Features Aggregation

time

Sequence

steps

Layers No of

Neurons

Stateful Batch

size

Max

epochs

Skip

1 Raw|

Calc

0 128 1 6 No 32 50 None

2 Raw|

Calc

0 128 2 6|6 No 32 50 None

3 Raw|Avg

|Std|Calc

22min 128 1 12 No 32 50 None

4 Raw|Avg

|Std|Calc

22min 128 2 12|6 No 32 50 None

5 Avg|Std 22min 16 2 12|6 No 32 5 None

6 Avg|Std 22min 16 2 12|6 Yes 1 5 None

7 Avg|Std 60min 16 2 12|6 No 32 5 None

8 Raw|Avg

|Std

22min 128 1 4 Yes 1 5 None

9 Raw|Avg

|Std

22min 128 2 6|6 No 32 5 None

10 Raw 0 120 2 32|16 No 64 5 Type 2

11 Raw|Avg

|Std

22min 120 3 32|32|

16

No 64 5 None

12 Avg|Std 22min 16 1 8 No 32 5 None

4 Machine learning, data and use of methods

60

13 Avg|Std 22min 16 1 6 No 32 5 None

14 Avg|Std 22min 16 3 64|32|

16

No 32 5 None

15 Raw 0 120 2 32|16 No 32 5 None

For each pump iteration of training, a training run number together with a model name is

saved to identify the previous training such that the checkpoint can be loaded properly.

Together with this information, the features, pre-process steps, when the training starts and

stops and on what time frame is trained on. The train, validation, test split, layers number of

neurons, checkpoint path, whether the model is stateful are stored for each pump. The test

accuracy is updated after the model has trained on all training examples.

4.6 Gated recurrent unit

The gated recurrent unit uses the same data pipeline as the LSTM model, instead of LSTM

blocks, there are GRU blocks in the model architecture. The experiments can be seen in

Table 4.10.

Table 4.10 GRU experiments

Number Features Aggregation

time

Sequence

steps

Layers No of

Neurons

Stateful Batch size Max

epochs

Skip

1 Raw|

Calc

0 128 1 6 No 32 50 None

2 Raw|

Calc

0 128 2 6|6 No 32 50 None

3 Raw|Avg

|Std|Calc

22min 128 1 12 No 32 50 None

4 Raw|Avg

|Std|Calc

22min 128 2 12|6 No 32 50 None

5 Avg|Std 22min 16 2 12|6 No 32 50 None

6 Avg|Std 22min 16 1 6 Yes 1 50 None

7 Avg|Std 60min 16 1 6 Yes 1 50 None

8 Raw 0 128 1 6 No 32 5 None

9 Raw|Avg

|Std

22min 128 2 6|6 No 32 5 None

4 Machine learning, data and use of methods

61

10 Raw|Avg

|Std

22min 120 1 6 No 32 50 None

11 Raw|Avg

|Std

22min 120 1 6 No 32 50 Type 2

12 Raw|Avg

|Std

22min 120 1 6 No 32 50 Type 1

13 Raw 0 120 2 32|16 No 64 5 Type 2

14 Raw|Avg

|Std

22min 120 2 32|16 No 64 5 Type 2

15 Raw|Avg

|Std

22min 120 3 32|32|

16

No 64 5 None

16 Avg|Std 60 16 2 6|6 Yes 1 5 None

4.7 Support vector machine

The training pipeline is rather similar to that of LSTM and GRU, however Scikit-learns

implementation of Support Vector Classifier (SVC) does not allow for partial fitting. Thus,

all the data that will be used has to be included in one data set (and fit in memory). The same

method for getting the data is used here as in LSTM and GRU, where one day of each week

for all normal data points are used, six days of one week from failure and the one day from

failure.

The pre-processing pipeline can be seen in Figure 4.36. The data must be structured in a

wide-table manner, the features renamed to generalize, the data should be scaled using the

created scaler, and empty samples filled, it is also split into training, validation and test set.

Some outliers are removed to reduce the number of extreme values, this is particular for the

current and torque, where the top and bottom 1% of data points are removed. Finally, the

outputs are one-hot encoded.

Before training the model, the data for all the pumps are gathered up into one coherent data

set in the Restructure data for all pumps block.

4 Machine learning, data and use of methods

62

Start

Get physical
pump

numbers

For each pump
number

Save modelD
B

End

Scaler, .pkl

Get process
measurementsD

B

For each pump
position

Pre-process
data

Train SVM
model

Restructure
data for all

pumps

Model, .pkl

Save
metadata in

database

Model name
Pre-process steps

Training timestamps
Hyperparameters

Figure 4.35 Training pipeline for Support Vector Machine

4 Machine learning, data and use of methods

63

Rename features to
generic features

Scale

Remove outliers

Narrow to wide
conversion

Fill not a number samples

One-hot encode

Split to training,
validation and test set

Figure 4.36 SVM pre-process pipeline

SVM has several parameters that may alter the results of the model. It has a kernel which can

be a radial basis function, linear line, a polynomial, or a sigmoid function. Each of these four

kernels has parameters which describes them. The linear kernel only has one parameter, C

which is a regularization parameter, effectively deciding how much the model should be

allowed to fail (and thus not overtrain). Gamma is a kernel coefficient for radial basis

function, polynomial and sigmoid. Low gamma gives a high impact for each sample point,

while a high gamma gives a lower impact for each sample. Low gamma tends to overtrain.

For the polynomial a parameter degree decides what degree the function will be. C0ef0 is a

bias term for the polynomial and sigmoid kernel function.

The outputs of the classes can be weighted in the case where there are more samples for one

class than another. Scikit has a parameter for this called class weight. An option is to use a

balanced argument where the SVM algorithm will find the best weights for the classes to

make them even. This is set for all the SVM experiments.

Finding the hyperparameters of SVM can be tedious work and can be done using estimators

from Scikit-learn [22]. These amongst others, include GridSearchCV and

HalvingGridSearchCV. The SVM experiments can be seen in Table 4.11.

Table 4.11 SVM experiments

Number Features Kernel C Gamma Degree Coef0

1 Raw|Avg|

Std|Calc

RBF 1 1

2 Raw|Avg|

Std

GridSearchCV

RBF

0.1 to 1 0.001 to 0.0001

4 Machine learning, data and use of methods

64

3 Raw|Avg|

Std|Calc

Linear 1

4 Raw|Avg|

Std

Halving

GridSearchCV

Linear

0.1 to 1

5 Raw|Avg|

Std|Calc

GridSearchCV

Polynomial

0.1 to 1 0.001 to 0.0001 1 to 2

6 Raw|Avg|

Std|Calc

Polynomial 0.1 1 3 1

7 Raw|Avg|

Std

Sigmoid 1 1 0

8 Raw|Avg|

Std

GridSearchCV

Sigmoid

0.1 to 1 0.001 to 0.0001 1

10 Raw|Avg|

Std

RBF 0.1 0.1

11 Raw|Avg|

Std

RBF 0.1 10

12 Raw|Avg|

Std

RBF 0.1 50

13 Raw|Avg|

Std

RBF 0.1 100

14 Raw|Avg|

Std

RBF 1 50

15 Raw|Avg|

Std

RBF 1 5

16 Avg|Std RBF 1 5

17 Avg|Std RBF 0.5 5

18 Avg|Std RBF 0.5 7

4 Machine learning, data and use of methods

65

19 Avg|Std RBF 1.5 5

20 Raw|Avg|

Std|Calc

RBF 1 Scale

4.8 Testing

The tests are run on physical pumps which has not been used for training, the training data

has been from 2020-03-01 to 2022-02-01. The tests are done as such due to the results seen in

the previous project, where the models could fairly well predict the outcomes of the same

pumps that was used to train with, even though the data was split into train, validation and

test set. However, when tested on a new pump, the models had trouble in predicting the

correct category and this can be considered a true test as it is closer to how the model would

behave in production.

Some pumps started running in the training period but has not been trained on as the end of

life is the most interesting part. These may have been included in the testing data if they

stopped working in the period from 2022-02-01 to 2022-05-01. The pumps tested on can be

seen in Table 4.12. Exceptions may occur as the data pipeline has been somewhat changed

since the first model training. Thus, some models will test with higher amount of pump

failures which are not listed below.

Table 4.12 Pumps used for testing models.

Date and time end of life Tag location Pump number

2022-01-27 16:41:00 HYG_PU19 10

2022-04-06 10:26:00 HYG_PU19 11

2022-03-30 09:30:00 HYG_PU17 8

2022-02-08 12:49:00 HYG_PU16 6

2022-04-19 22:08:00 HYG_PU13 3

2022-02-08 03:23:00 HYG_PU12 2

2022-04-18 10:04:00 HYG_PU15 6

5 Model results

66

5 Model results
This chapter will go through the results from the LSTM, GRU and SVM models, as there are

many experiments done, only a handful of them will be described in detail. First the LSTM

results will be presented, then the GRU results and finally the SVM results.

5.1 Long short-term memory

Many LSTM models has been trained, here some of the results will be shown in the form of

confusion matrices along with network structures and details of parameters.

The first LSTM model used the raw features On/Off [Boolean], Control signal [%],

Current[A], Torque[%] and Outlet Pressure [Bar]. In addition, it uses some calculated values

which is considered to be various efficiency measures, these are seen in the lower part of the

inputs in Figure 5.1. The inputs are connected to an LSTM block, here shown as a typical

neural network layer, named Layer one in the figure with 6 neurons, meaning each of the

neural networks in the LSTM block has 6 neurons. The LSTM block is then connected to the

outputs of the model in a dense layer using the softmax activation function. The softmax

function gives a probability distribution between the outputs, the label with the highest

probability is considered the predicted value. The model is not stateful, meaning that for each

sequence, the old cell state is forgotten. Each sequence is of 128 samples which equates to 64

minutes. The model was trained on pumps from tag locations PU12, 13, 15, 16, 17 and 19.

This model trains on all model types described in Table 4.3.

5 Model results

67

Control signal [%]

Current [A]

Torque [%]

On/off signal

Outlet pressure [Bar]

Control signal/Outlet pressure

Control signal/Current

Control signal/Torque

Current/Outlet pressure

Layer oneInput Output

1 week from failure [0;1]

1 day from failure [0;1]

Normal running [0;1]

Figure 5.1 LSTM model structure for model one.

The confusion matrix in Figure 5.2 shows the results from the model. The confusion matrix

shows what the true label is on the vertical axis and what the predicted label is on the

horizontal. The numbers are divided by total samples over the horizontal, meaning each row

adds up to one and is a decimal value between zero and one indicating how big part was

predicted in each label. The diagonal from lower left to upper right shows where the model

correctly predicted the labels. 100% of the Normal samples were correctly predicted. 17.6%

of the one week from fail was correctly predicted, while 82.4% were predicted as normal.

0.2% was correctly predicted in the one day from failure. 28.7% of the one day from failure

was predicted as one week from fail and 71.2% was predicted as normal.

5 Model results

68

Figure 5.2 Confusion matrix for LSTM model one

LSTM model 5 used only aggregated data, the features consists of average and standard

deviation of Control signal [%], Current[A], Torque[%] and Outlet Pressure [Bar] as seen in

Figure 5.3. The data was aggregated over 22minutes and had a sequence length of 16,

meaning each sequence looked at approximately 6 hours at the time to give an indication of

the pump state. The model has two layers, the first using 12 neurons for each neural network

in the LSTM block, the second using 6 neurons for each neural network in the LSTM block.

The model was not stateful, so for each new sequence, earlier states are forgotten. The model

was trained on all types of pumps considered in Table 4.3.

5 Model results

69

Layer oneInput Layer two Output

1 week from failure [0;1]

1 day from failure [0;1]

Normal running [0;1]

Average(Control signal [%])

Average(Current [A])

Average(Torque [%])

Average(Outlet pressure [Bar])

StandardDeviation(Control signal [%])

StandardDeviation(Current [A])

StandardDeviation(Torque [%])

StandardDeviation(Outlet pressure [Bar])

Figure 5.3 LSTM model 5, inputs, layers, neurons and outputs

The confusion matrix in Figure 5.4 shows the results from LSTM model 5. The confusion

matrix shows what the true label is on the vertical axis and what the predicted label is on the

horizontal axis. 100% of the Normal samples were correctly predicted. 14.7% of the one

week from fail was correctly predicted while 85.3% were predicted as normal. 0% was

correctly predicted in the one day from failure, the label was neither wrongfully predicted.

0.9% of the one day from failure was predicted as one week from fail and 99.1% was

predicted as normal.

5 Model results

70

Figure 5.4 Confusion matrix from LSTM model 5, normalized correctly predicted labels are on diagonal from

lower left to upper right

All of the models have, during training had a validation accuracy between 99% and 100%.

This led to an idea that the model was overtraining, thus a model with fewer than

recommended neurons was tested. This is model 8, it uses the raw data, average and standard

deviation with 4 neurons in the LSTM layer as seen in Figure 5.5. The model was set to be

stateful, meaning it will keep the cell state from the previous sequence. Each sequence was

128 samples.

5 Model results

71

Figure 5.5 Model structure for LSTM model 8

The resulting confusion matrix can be seen in Figure 5.6 where close to only Normal was

predicted by the model. The exception being 0.8% of the samples which was labelled one day

from fail were predicted as one week from fail. While the number of neurons was very low,

the results were not any better than previous models, here too the validation accuracy was

above 99%.

5 Model results

72

Figure 5.6 Confusion matrix for LSTM model 8

As going down on the number of neurons didn’t seem to help, going up to how the previous

project modelled the system may be better as good results was achieved with this model.

Model number 10 is the closest to what was made in the previous project, although the result

seems rather different. The model has the raw input features, On/Off [Boolean], Control

Signal [%], Current[A], Torque [%] and Outlet Pressure [Bar]. It has two LSTM layers, the

first with 32 neurons, and the second with 16 neurons as illustrated in Figure 5.7 and it has a

dense output layer. The sequence length is 120 which corresponds to one hour which is the

process system cycle time.

5 Model results

73

N1

N2

N3

N4

N5

N1

N2

Layer oneInput Layer two Output

N15

N16

1 week from failure [0;1]

1 day from failure [0;1]

Normal running [0;1]

N28

N29

N30

N31

N32

Control signal [%]

Current [A]

Torque [%]

On/off signal

Outlet pressure [Bar]

Figure 5.7 LSTM model 10, 2 layers, 32 neurons in first layer, 16 in second layer

Figure 5.8 shows the results from model 10 where 100% of the samples considered normal

has been correctly predicted to be normal. 0.1% of the one week from fail has been correctly

predicted while the remaining 99.9% was predicted as Normal. The label one day from fail

was never predicted, and all of these samples ended up incorrectly as normal.

5 Model results

74

Figure 5.8 Confusion matrix for LSTM model 10

Model 10 was set up as in the previous project. The previous project however tries to predict

the state of one pump, this project tries to do the same for eight pumps. There may be

complexities that did not occur with one pump but occurs when there are several pumps to

model.

Model 11 uses raw, average and standard deviation of the data in a three-layered model

having 32 neurons in the first and second layer and 16 in the last LSTM layer. The idea being

that with more neurons, the model will be able to learn many types of faults and identify them

as normal, one week from failure or one day from failure. The model structure can be seen in

Figure 5.9.

5 Model results

75

Figure 5.9 Structure for model 11

The confusion matrix in Figure 5.10 shows that creating a large network does not seem to

give any better predictions where most predictions again has landed as Normal, with 3.2% of

the one week from fail being correctly predicted and 0.1% of one week from fail has been

predicted as one day from fail.

Figure 5.10 Confusion matrix for LSTM model 11

5 Model results

76

The remaining experiments are subtle variations of what has been seen, and these generally

has poorer performance. All LSTM experiments and the results of them can be seen in Table

5.1, the confusion matrices for all the LSTM models can be seen in Appendix C.

Table 5.1 LSTM model results

Model

number

Accuracy:

Normal

Accuracy:

One week from fail

Accuracy:

One day from fail

1 100% 17.6% 0.2%

2 100% 0.2% 0%

3 100% 0% 0%

4 100% 0.2% 0%

5 100% 14.7% 0%

6 100% 1.4% 0.5%

7 99.8% 1.5% 15.6%

8 100% 0% 0%

9 100% 0.1% 0%

10 100% 0.1% 0%

11 100% 3.2% 0%

12 100% 0% 7.8%

13 100% 0% 0%

14 100% 0% 9.4%

15 100% 2.9% 0%

5.2 Gated recurrent unit

The gated recurrent unit has the exact same data pipeline as LSTM as shown in Figure 4.30

except for the content of train LSTM model which is now a GRU model instead of LSTM

model. Table 4.10 showed the GRU experiments, some of the experiments will be

investigated in more detail below.

Figure 5.11 shows the inputs, number of layers, number of neurons and the outputs for GRU

model two. This is not an exact representation of a GRU model, here the inside of a layer is a

representation of the number of neurons inside each of the neural networks in the GRU

model. The layers represent layers of GRU cells as described in section 1.6.2. Each GRU cell

5 Model results

77

in addition has a recurrence where each GRU cell iterates as many times as the sequence

length. For GRU model 2, this is 128 times.

Control signal [%]

Speed [%]

Current [A]

Torque [%]

On/off signal

Outlet pressure [Bar]

Control signal/Outlet pressure

Control signal/Current

Control signal/Torque

Current/Outlet pressure

Layer oneInput Layer two Output

1 week from failure [0;1]

1 day from failure [0;1]

Normal running [0;1]

Figure 5.11 Representation of GRU model 2 as a neural network. Figure 1.6 shows that there are three neural

networks for each GRU block, meaning that there are three parallel layers in the block (with varying weights).

Figure 5.12 shows the result for GRU model 2 in a confusion matrix. The confusion matrix

has two axis, one which is the true value from the test set, and one which is the predicted

value from the model. Each row of the confusion matrix is a distribution which adds up to 1

where 1 indicates 100% of the predictions. I.e., in Figure 5.12 100% of the Normal operations

were correctly predicted. Only 1.2% were correctly predicted in the One week from fail

category, while 0.9% of the true one week from fail was predicted as One day from fail and

the remaining 97.9% of the One week from fail were predicted as Normal. Similarly on the

top row for the true One day from fail, 0% were correctly predicted, 0.6% was predicted as

one week from fail and 99.4% was predicted as Normal.

5 Model results

78

Figure 5.12 Confusion matrix for GRU model 2

The GRU model 4 uses the average and standard deviation in addition to the raw and

calculated values as seen in Figure 5.13. This model also has two layers, however there are

also more input features and more neurons in the first layer.

The model gets 100% right for the normal operations, 13.2% right for one week from failure,

falsely predicting 4.1% of the one week from failure as one day from failure. The remaining

82.8% are predicted as normal. 3.3% of the one day from failure are predicted correctly,

5.6% are wrongly predicted as one week from fail and the remaining 91.1% are predicted as

normal in Figure 5.14.

5 Model results

79

Control signal [%]

Current [A]

Torque [%]

On/off signal

Outlet pressure [Bar]

Control signal/Outlet pressure

Control signal/Current

Control signal/Torque

Current/Outlet pressure

Layer oneInput Layer two Output

1 week from failure [0;1]

1 day from failure [0;1]

Normal running [0;1]

Average(Control signal [%])

Average(Current [A])

Average(Torque [%])

Average(Outlet pressure [Bar])

StandardDeviation(Control signal [%])

StandardDeviation(Current [A])

StandardDeviation(Torque [%])

StandardDeviation(Outlet pressure [Bar])

Figure 5.13 Representation of GRU model 2 as a neural network.

5 Model results

80

Figure 5.14 Confusion matrix for GRU model 4

The gated recurrent unit model 6 structure can be seen in Figure 5.15. This model only uses

aggregated data. There are two aggregations, average and standard deviation. Both

aggregations have an aggregation time of 22 minutes which approximately adds up to six

hours for each sequence. The model has only one layer with 6 neurons. Additional this model

is stateful, meaning its cell state is transferred between sequences.

This model also correctly predicts normal operations 100% of the tests. 33.7% of the one

week from fail is predicted correctly and the remaining 66.3% are predicted as normal. One

day from failure is never correctly predicted, 3.1% of them are predicted as one week from

failure and 96.9% are predicted as normal.

5 Model results

81

Average(Current [A])

Average(Torque [%])

Average(Outlet pressure [Bar])

Layer oneInput Layer twoOutput

1 week from failure [0;1]

1 day from failure [0;1]

Normal running [0;1]

Average(Control signal [%])

StandardDeviation(Current [A])

StandardDeviation(Torque [%])

StandardDeviation(Outlet pressure [Bar])

StandardDeviation(Control signal [%])

Figure 5.15 Representation of GRU model 6 and 7 as a neural network.

Figure 5.16 Confusion matrix for GRU model 6

5 Model results

82

GRU model 7 has the same structure as GRU model 6 although the aggregation is done over

one hour and keeping the sequence equally long. This means each sequence represents 16

hours of data. The results seem to be improving in Figure 5.17 where 100% of the Normal

labels are correctly being predicted. 50% of the one week from fail is correctly predicted and

the remaining 50% are predicted as Normal. One day from fail is correctly predicted 31.2%

of the samples and the 68.8% remaining are predicted as Normal.

Figure 5.17 Confusion matrix for GRU model 7

The remaining experiments are subtle variations of what has been seen, and these generally

has poorer performance. All GRU experiments and the results of them can be seen in Table

5.2, the full results in confusion matrices can be seen in Appendix D.

Table 5.2 GRU experiments

Model

number

Accuracy:

Normal

Accuracy:

One week from fail

Accuracy:

One day from fail

1 100% 0.7% 0%

2 100% 1.2% 0%

3 100% 0.3% 0.8%

4 100% 13.2% 3.3%

5 100% 0.3% 0.0%

6 100% 33.7% 0%

5 Model results

83

7 100% 50% 31.2%

8 100% 0% 0%

9 100% 0% 0%

10 100% 0.4% 0%

11 100% 1.8% 0%

12 100% 0.8% 1.3%

13 100% 0.6% 0%

14 100% 1.2% 0.4%

15 100% 3.1% 0%

16 100% 0% 6.2%

5.3 Support vector machine results

The SVM experiments were introduced in Table 4.11. Some of the experiments will be

investigated further in this chapter. As was explained earlier, SVM does not allow partial

fitting, thus what pumps were trained on was not stored in the same manner as in GRU and

LSTM. SVM is tested on the pumps that GRU model 3 has not been trained on, meaning it

will use the same test set as GRU model 3.

SVM model one uses the raw features On/Off [Boolean], Control Signal [%], Current [A],

Torque[%] and Outlet Pressure [Bar], the aggregated features of the raw features, except for

On/Off for both average and standard deviation. It also uses the calculated features based on

the raw features seen in Figure 5.18. The model uses the Radial Basis function as the kernel

function with parameters C as one and gamma as one.

Current/Outlet pressure

Control signal/Torque

Control signal/Outlet pressure

Control signal/Current

Figure 5.18 Calculated features

Figure 5.19 shows the resulting confusion matrix. 99.3% were correctly classified as Normal,

while 0.7% of the true Normal was classified as one week from failure. 4.5% of the one week

from failure was correctly predicted while 95.5% of them was misclassified as Normal. One

day from fail was never predicted, 4.3% of them was predicted as one week from failure and

the remaining as Normal.

5 Model results

84

Figure 5.19 Confusion matrix from SVM model 1 using radial basis function

A grid search using cross validation was tested in SVM model 2, the range seemed to be off

as validation accuracy was very poor with a total accuracy of 4.9% and all predictions

became one day from fail. Using grid search also proved to be very time consuming, using

several days for one result. Therefore, several experiments were tested near the parameters

SVM model 1. This was done sequentially by tuning one parameter at the time. Figure 5.20

shows the C parameter along the x-axis, gamma as bars on the y-axis and the validation

accuracy of the three labels as a line on the y-axis. The validation accuracies appear to be

rather good, with mostly above 90% for normal, above 60% for one week from fail and

around 30% for one day from fail. However, this was only on validation set, that is, validating

with the same pumps that it was trained on. When testing on new pumps however, only one

label is predicted per SVM model in SVM models 16, 17, 18 and 19. The models 16, 17, 18

and 19 used the raw, average and standard deviation features.

5 Model results

85

Figure 5.20 Validation accuracy for four support vector classifiers using radial basis function as kernel

Using the standard parameters for SVM’s radial basis function C as one and gamma as

‘scale’ the results became somewhat different, although not necessarily better. SVM model

20 used the raw features, average and standard deviation and the calculated features. The

results are shown in Figure 5.21 where 57.6% of the normal samples were correctly

classified, 0.7% of them was classified as one week from fail and 41.7% was classified as one

day from fail. One week from fail was correctly predicted 3.8% of the samples, 28.7% was

predicted as normal and 67.5% was predicted as one day from fail. One day from fail had a

rather high correct prediction rate of 68.9% where 5.5% of the remaining were predicted as

one week from failure and the last 25.6% was predicted as Normal.

5 5 7 5

91.859

18.588

91.176 93.453

69.193

95.031

69.503
64.099

35.115
38.55

28.244
33.969

0

10

20

30

40

50

60

70

80

90

100

1 0.5 1 1.5

G
am

m
a,

 a
cc

u
ra

cy
 [

%
]

C

Radial basis function parameters and validation
accuracy for each label

Gamma Normal [%] One week from fail [%] One day from fail [%]

5 Model results

86

Figure 5.21 Confusion matrix for model 20

The linear SVM model 3 used raw, average, standard deviation and calculated features and

set C to default as one. The aggregation time for average and standard deviation was

22minutes. The confusion matrix in Figure 5.22 shows that most samples were put into

Normal with a few samples landing in One day from failure, and One week from fail was

never predicted.

5 Model results

87

Figure 5.22 Confusion matrix for SVM model 3

SVM model 6 uses a polynomial kernel function of grade 3, with C as 1 and gamma as 1. It

also uses the raw features, average standard deviation and calculated features. The confusion

matrix shown in Figure 5.23. Once again, most samples were put into one class, here the one

class became One day from fail.

5 Model results

88

Figure 5.23 Confusion matrix for SVM model 6

SVM model 7 uses the sigmoid kernel with standard parameters, C as one, gamma as one and

coef0 as 0. The model uses raw, average and standard deviation as features. It does for the

most part also predict one class as seen in Figure 5.24. The figure indicates that between 80-

90% of the samples are predicted as one day from fail no matter the true label. 10-14% are

predicted as one week from normal and 0-3% are classified as normal independent of the true

label.

5 Model results

89

Figure 5.24 Confusion matrix from SVM model 7 using sigmoid kernel function

The remaining results can be seen in Table 5.3, the confusion matrix of each successful

model can be seen in Appendix E.

Table 5.3 SVM experiments

Model

number

Accuracy:

Normal

Accuracy:

One week from fail

Accuracy:

One day from fail

1 99.30% 4.50% 0%

2 0% 0% 100%

3 99.9% 0% 0%

4 Failed Failed Failed

5 Takes too much time Takes too much time Takes too much time

6 0% 0% 99.8%

7 2.7% 10.9% 87%

8 Takes too much time Takes too much time Takes too much time

10 0% 0% 100%

11 0% 0% 100%

5 Model results

90

12 0% 0% 100%

13 0% 0% 100%

14 0% 0% 100%

15 2.9% 0% 96.8%

16 100% 0% 0%

17 0% 100% 0%

18 100% 0% 0%

19 100% 0% 0%

20 57.5% 37.8% 68.9%

6 Discussion and future work

91

6 Discussion and future work
This chapter will discuss various choices made during the thesis, what has been learned,

issues that has occurred and future work based on the discussion.

6.1 Input data

There is a concern that not all failures have been found. Figure 6.1 shows a large difference

in how the pump behaves. This is very much seen in the control signal and the current with

large variations before there is a gap in samples. After the gap, the variation on both is

drastically reduced. This all happens while the outlet pressure is somewhat stable. In section

4.3.2 it has been seen that the current increases in variation when the control signal increases,

however a cause for the high variation in control signal is not found. It may be caused by the

pump having been degraded and replaced, or the pump before being degraded or some

entirely different reason. This adds to the point of having good documentation of what

happens to the pumps, or more generally to the factory.

Figure 6.1 Pump 19 07.10.2021 to 19.11.2021

There is a data set available which measures the same variables used in this thesis every 50ms

for all pumps. Due to processing times and different storage format, this was omitted. To use

this dataset, part of the code for retrieving data must be updated. Much of the underlying code

exists.

6.2 Design of output classes

Many of the models predict mostly one class, this may be caused by the model structure, the

input data, but also how the classes are defined in regard to the input data.

The labels are set somewhat arbitrarily when considering that there are many faults. The

labels are purely based on time and the assumption that the last week of a pump’s lifetime

should look different from earlier. It may be that this is true to some degree, however

degradation usually happens over time, causing the measurements to change over time.

Depending on what time a fault, which is not purely a degradation, start to occur, the

measurements related to a fault may look different. In addition, depending on the fault the

6 Discussion and future work

92

measurements may look different. It is possible that the model learns to recognize many types

of faults as one week from failure or one day from failure given a complex enough model.

However, it may give more information and require less complex models to create models

dedicated to each type of fault which can predict the labels normal, one week from failure and

one day from failure for each of them. It may be that some faults are not captured by the

current measurements, i.e., a partly broken seal may cause the operators to temporarily shut

down a pump and use a backup pump, which for the current labelling would be the same as

any other fault. However, it may be that the differences in the measurements are not

noticeable.

The data to model each individual fault is not yet available but is something to strive towards

in general for future similar projects.

More manual work could be done in classifying similar faults with the goal to create smaller

models which monitor individual faults. When a failure occurs, the type of fault would be

identified.

In future works, it may be wise to investigate if there are particular faults that is being

detected by the models.

6.3 Data versioning

Although the time-series have few changes, the labelling data has changed during the project.

Some have been removed, some have been updated due to new information. This should have

been logged to keep control on what models, if any, has been trained on other than the latest

version of the labels.

6.4 Features

6.4.1 Combined features

It has been discovered that the calculated values in Figure 6.2 did not work as intended as

these were divided after scaling causing them to often become very high. When features have

high magnitude values compared to other features, the high magnitude features are likely to

dominate the outcome of the model. Models using the calculated values may have less impact

from the other features, most experiments were set up using them. When discovered how they

behaved they were omitted from further models. An example of the scale achieved with the

calculations can be seen in Figure 6.3 where the calculated features range from -1500 to 2500

and the raw features typically range from -5 to 5.

In future projects, the calculated features may be feasible, however the fraction will have to

be made before scaling.

Current/Outlet pressure

Control signal/Torque

Control signal/Outlet pressure

Control signal/Current

Figure 6.2 Calculated values

6 Discussion and future work

93

Figure 6.3 Line plot of calculated values

6.4.2 Combination of aggregated and non-aggregated data

An idea of combining two sequences of different time scale was introduced in section 4.4.2.

The idea was to use one hour of data to represent a detailed view of the pump, and to also use

the previous 24 hours as distinct features in the LSTM and GRU models. The LSTM and

GRU models both use sequences and the idea was to use one hour of non-aggregated data

together with aggregated data which would cover the previous 24 hours. The aggregated data

was instead wrongfully joined with the non-aggregated data based on timestamps, meaning

that the closest aggregated datapoint was joined to many non-aggregated data points as seen

in Figure 6.4. When attempted to solve this proved to be rather tedious as each sequence

would have to query the database for the correct data and several changes would be required

in the code structure. As the aggregated data has proved to sometimes do well, this may still

be of interest to pursue.

6 Discussion and future work

94

Figure 6.4 Raw data and averaged data joined on timestamps

6.4.3 Outliers

The removal of outliers in section 4.4.5 didn’t seem ideal as both the current and torque had a

very long tail on the negative side. It was attempted to increase the percentage of the lower

quantile to remove more of the low values. This did not prove very effective, as few of the

actual low values were removed. Rather it removed many values from the large distribution

between -2 and 2. The quantiles were removed on a per pump basis, thus it is likely that there

are one or a few pumps that have very low values that cause this long tail. Removing these

may improve the SVM models.

6.5 Computer restrictions

6.5.1 Graphical processing unit

Although a graphical processing unit (GPU) was available, setting up the NVIDA CUDA

software was not trivial as DLL files was not found. After trying to fix this for a couple of

days, the idea was dropped. This may have sped up some of the training.

6.5.2 Memory trouble

The method used for sequencing data in LSTM and GRU was very heavy for the random-

access memory (RAM) of the computer. Previously during sequencing, there was an overlap

of samples. I.e., for a sequence of 120 samples, the first sequence would be sample 0-119, the

second sequence would be 10-129 etc. As this demanded very much RAM to execute, the

overlap was removed causing the first sequence to be 0-119, the second to be 120-239 etc. In

hindsight, this has reduced the training data considerably and may be a big reason for the

results achieved.

6 Discussion and future work

95

An evaluation of the impact of this method should be done in order to consider whether the

training pipeline has to be changed, an alternative is of course to use another computer with

more memory.

As there are more Normal samples than any of the other labels, a partial solution may be to

make overlapping sequences of only the labels One week from failure and One day from

failure. This would reduce the bias towards Normal and still hold memory low compared to

making overlapping sequences for the entire data set.

6.6 Design of Models

This project has tried to model all the pumps in the process part seen in Figure 1.1 as one and

the same model. It has taken the common measurements and assumed that the pumps behave

similar to each other. They are primarily of the same pump type which does call for some

similarity. They are also at various locations with separate process steps before and after.

Some pumps are pumping from a tank, others are pumping in series from another pump

which means that they have some effect on each other. Some are controlled manually, others

are controlled by a PI controller. They for the most part also have different temperatures on

the medium they pump which may have an impact on the behavior of the pumps and how

they degrade.

The previous project described in section 1.2.1, got relatively good results on the LSTM

model for one pump with a 78% accuracy. Through various network structures in LSTM,

GRU and SVM, very few models gave good results when trying to model all the similar

pumps as one model in this project. This may indicate that one model should be trained

separately for each of the pump locations. Training one model for each pump location may be

the easiest way forward, as the code is set up to train on one physical pump at the time based

on a list of tag names. For the long short-term memory and gated recurrent unit models it is

also possible to use the best trained models and train one additional round on specific pump

locations. This would allow for the model to know of many types of faults and may be better

calibrated to one specific tag location.

An alternative is also to model the system of pumps, this would allow the model to have more

information about the surroundings of the pumps. Modelling as a system would likely require

a much more complex model. A possible way to do this is to model two separate models

which are separated by vessels (Buffer tank to E-11 in Figure 6.5 and Figure 6.6, and E-11 to

Reactor). The reasoning being that each pump in series will have an impact on the next, and

process part one and process part two being independent of each other when both are running.

This alternative will however require more work than moving back to having one model per

pump.

The recommended way forward is to test the performance of the best model from this project

against a set of models trained for specific tag locations. During testing it should be

investigated if there are certain faults that are being detected, what they are, and if there are

others that aren’t detected.

6 Discussion and future work

96

PU12

FT
01

PT
03

PT
05

VY-11

Buffer tank

PT
04

PU13
VY-11

PU15

PT
09

PT
11

VY12

PT
10

PU16
VY12

PT
08

PU14

V-1 V-2 V-3 V-4 V-5 V-6 V-7 V-8

PT
07

PT
06

Figure 6.5 Process part one

E-11

FT
02

PT
14

PU17
VY13VY13

PU19

PT
15

PT
16

Reactor

PU18

PT
12

PT
13

V-9V-10V-11V-12PT Pressure transmitter

PU

VY

V

Pump

Heat exchanger

Valve

FT Flow transmitter

Acronym Description

E Vessel

Figure 6.6 Process part two

6.7 SVM

The linear, sigmoid and polynomial only got one experiment as the grid search took too much

time and eventually were shut down by windows update forcing a restart. All the grid

searches had the tolerance stopping criterion turned up to 0.01 from 0.001 (default) to reduce

the training time. For further studies, the tolerance for the grid search may be increased more

to give a coarse overview of good parameters which then can be used for fine-tuning.

6.8 Validation of training process

As few of the models have given good results, one may wonder if there is fundamentally

something wrong with how the model is trained and the setup for the project. Therefore, to

recapture the essence of the previous project, a model trained for only pump 19 was trained

using the same training pipeline as has been used in this thesis.

The model has two layers with four neurons each and only uses the raw measurements

Control Signal [%], Current [A], Torque [%], Outlet Pressure [Bar] and Control Signal

[Boolean]. The sequence length is 120 which is the process cycle for the pumps. The model

structure can be seen in Figure 6.7.

6 Discussion and future work

97

Layer oneInput Layer two Output

1 week from failure [0;1]

1 day from failure [0;1]

Normal running [0;1]Control signal [%]

Current [A]

Torque [%]

On/off signal

Outlet pressure [Bar]

Figure 6.7 Network structure for model describing the states of only pump 19

When the model was tested on pumps that failed after January 2022 from the pump 19

location, the results appear to be close the level of GRU model 7. The model correctly predict

Normal 100% of the times, One week from fail 46.4% and One day from fail 0% of the

samples. The model will not, from the test, give a false alarm where an alarm is defined as

One week from fail or One day from fail when the state should be Normal. The training

indicates that the training pipeline is not faulty, although what is modelled and how the

structure is built has a large impact on the model results.

Figure 6.8 Evaluation of LSTM model for only pump 19

6 Discussion and future work

98

6.9 Overfitting

Long short-term memory model 8 introduced the idea that the models may be overfitting as

the validation accuracy was constantly high. It may still hold true that the models were

overfitting, tools exist to deal with overfitting. Amongst them are “early stopping, l1 and l2

regularization, dropout, max-norm regularization, and data augmentation” [34]. It may be

useful to investigate such strategies in further studies. These strategies may increase the

generality of the model and increase the accuracy of the two critical labels One week from

failure and One day from failure.

7 Conclusion

99

7 Conclusion
This thesis has had two main goals; understanding what is needed to set a machine learning in

production for predictive maintenance and get useful information from the model. The

second part focused on generalizing a model which was initially proved to work for one

pump location.

A detailed specification on what is needed to run a machine learning model for predictive

maintenance in an industrial plant has been made including a requirement list, infrastructure

considerations and a risk assessment.

Many models have been trained using the three machine learning methods; long short-term

memory, gated recurrent unit and support vector machine. They have been trained using

many different configurations with the goal of being able to model all the pumps in the

process part under scrutiny. To get the results, the data was inspected to understand what

features may be useful and what pre-processing steps was needed.

The best model had a 100% probability of correctly predicting when the pumps are normal,

50% probability of predicting when there is one week to failure, where the remaining 50%

was assumed normal. It had 31.2% probability of predicting when there is one day before

failure, while the remaining 68.8% was predicted as normal from the test set that was

available.

The results indicate that there will be few false alarms saying that the pump needs

maintenance when it does not need it. It may however be conservative in giving alarms that

the pump needs maintenance when it does need it.

Bibliography

100

8 Bibliography

[1] Kepware, "DataLogger," [Online]. Available: https://www.kepware.com/en-

us/products/kepserverex/advanced-plug-ins/datalogger/.

[2] Timescale, "TimescaleDB," [Online]. Available: https://www.timescale.com/.

[3] Grafana Labs, "Grafana," Grafana labs, [Online]. Available:

https://grafana.com/oss/grafana/.

[4] O. Y. R. A. H. M. Martin Holm, "Machine Learning for predictive maintenance of

pumps at "Den Magiske Fabrikken"," 2021.

[5] M. Holm, "An architectural desgin for implementing predictive maintenance in an

industrial plant," Not published, 2021.

[6] M. N. K. d. l. M. I. H. A. B. Terry Cox, "MLOps Roadmap 2021," 06 11 2021.

[Online]. Available: https://github.com/cdfoundation/sig-

mlops/blob/master/roadmap/2021/MLOpsRoadmap2021.md. [Accessed 08 02 2022].

[7] A. K. I. B. A. K. M. P. Larysa Visengeriyeva, "Machine Learning Operations,"

INNOQ, [Online]. Available: https://ml-ops.org/. [Accessed 08 02 2022].

[8] I. M. W. L. Z. Lenn Bass, DevOps: A Software Architect's Perspective, Addison-

Wesley Professional, 2015.

[9] A. K. I. B. A. K. M. P. Dr. Larysa Visengeriyeva, "MLOps Stack Canvas," INNOQ,

[Online]. Available: https://ml-ops.org/content/mlops-stack-canvas. [Accessed 10 02

2022].

[10] N.-O. Skeie, Software Engineering Object-oriented Analysis, Design, and Programming

using UML and C#, Porsgrunn: Lecture notes, 2019.

[11] Wikipedia, "Unified Process," 11 09 2021. [Online]. Available:

https://en.wikipedia.org/wiki/Unified_Process. [Accessed 06 02 2022].

[12] R. K. S. J. K. B. R. S. J. S. Klaus Greff, "LSTM: A Search Space Odyssey,"

TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2015.

[13] P. Remy, "Stateful LSTM in Keras," 30 07 2016. [Online]. Available:

http://philipperemy.github.io/keras-stateful-lstm/. [Accessed 16 03 2022].

[14] Wikipedia, "Recurrent neural networks," Wikipedia, 16 02 2022. [Online]. Available:

https://en.wikipedia.org/wiki/Recurrent_neural_network#Fully_recurrent. [Accessed 30

03 2022].

[15] C. Olah, "Understanding LSTM Networks," 27 08 2015. [Online]. Available:

https://colah.github.io/posts/2015-08-Understanding-LSTMs/. [Accessed 14 03 2022].

Bibliography

101

[16] C. G. K. C. Y. B. Junyoung Chung, "Empirical Evaluation of Gated Recurrent Neural

Networks on Sequence Modeling," 12 2014. [Online]. Available:

https://arxiv.org/pdf/1412.3555v1.pdf. [Accessed 03 17 2022].

[17] Z. C. L. M. L. a. A. J. S. Aston Zhang, "Gated Recurrent Units (GRU)," in Dive into

Deep Learning, 2022, pp. 346-349.

[18] S. Kostadinov, "Understanding GRU Networks," 16 12 2017. [Online]. Available:

https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be. [Accessed

17 03 2022].

[19] A. Géron, "Fine-Tuning Neural Network Hyperparameters," in Hands-On Machine

Learning with Scikit-Learn, Sebastopol, O’Reilly Media, Inc., 2017, pp. 362-364.

[20] K. Eckhardt, "Choosing the right Hyperparameters for a simple LSTM using Keras,"

Towardsdatascience, 29 11 2018. [Online]. Available:

https://towardsdatascience.com/choosing-the-right-hyperparameters-for-a-simple-lstm-

using-keras-f8e9ed76f046. [Accessed 15 03 2022].

[21] V. V. Corinna Cortes, "Support-Vector Networks," Machine Learning, pp. 273-297,

1995.

[22] F. a. V. G. a. G. A. a. M. V. Pedregosa, "Scikit-learn: Machine Learning in Python,"

Journal of Machine Learning Research, no. 12, pp. 2825--2830, 2011.

[23] M. H. L. M. Y. L. Jie M. Zhang, "Machine Learning Testing: Survey, Landscapes and

Horizons," 21 12 2019. [Online]. Available: https://arxiv.org/pdf/1906.10742.pdf.

[Accessed 15 02 2022].

[24] The Linux Foundation, "ONNX," 2019. [Online]. Available: https://onnx.ai/. [Accessed

22 02 2022].

[25] A. K. I. B. A. K. M. P. Dr. Larysa Visengeriyeva, "Three Levels of ML Software,"

INNOQ, [Online]. Available: https://ml-ops.org/content/three-levels-of-ml-

software#code-deployment-pipelines. [Accessed 16 02 2022].

[26] Wikipedia, "High Availability," Wikipedia, 11 02 2022. [Online]. Available:

https://en.wikipedia.org/wiki/High_availability. [Accessed 23 02 2022].

[27] Linux Foundation, "LF AI & Data Foundation Interactive Landscape," Linux

Foundation, 21 02 2022. [Online]. Available: https://landscape.lfai.foundation/.

[Accessed 24 02 2022].

[28] Neptune, "Best End-to-End MLOps Platforms: Leading Machine Learning Platforms

That Every Data Scientist Need to Know," 27 12 2021. [Online]. Available:

https://neptune.ai/blog/end-to-end-mlops-platforms. [Accessed 24 02 2022].

[29] S. H. Marvin Rausand, "Security," in Risk Assessment: Theory, Methods, and

Applications, John Wiley & Sons, 2020, p. 51.

Bibliography

102

[30] Wikipedia, "Feature Scaling," 21 09 2021. [Online]. Available:

https://en.wikipedia.org/wiki/Feature_scaling.

[31] A. Géron, "Irrelevant Features," in Hands-On Machine Learning with Scikit-Learn &

TensorFlow, O’Reilly Media, Inc., 2017, p. 49.

[32] F. a. o. Chollet, "Probabilistic losses," 2015. [Online]. Available:

https://keras.io/api/losses/probabilistic_losses/.

[33] A. Géron, "Handling Text and Categorical Attributes," in Hands-On Machine Learning

with Scikit-Learn, Gravenstein Highway North, Sebastopol, O’Reilly Media, Inc., 2017,

pp. 92-93.

[34] A. Géron, "Avoiding Overfitting Through Regularization," in Hands-On Machine

Learning with Scikit-Learn, Sebastopol, O’Reilly Media, Inc., 2017, pp. 406-415.

[35] Wikipedia, "Hadamard product," Wikipedia, 22 03 2022. [Online]. Available:

https://en.wikipedia.org/wiki/Hadamard_product_(matrices). [Accessed 30 03 2022].

Bibliography

103

Appendices
Appendix A Task description

Appendix B Predictive Maintenance of pumps at ‘Den Magiske Fabrikken’, using Machine

Learning Technique

Appendix C All long short-term memory results in confusion matrices

Appendix D All gated recurrent unit results in confusion matrices

Appendix E All support vector machine results in confusion matrices

Appendices

104

Appendix A. Task description

FMH606 Master's Thesis

Title: Specifying a machine learning operational framework, refinement and scaling of
machine learning models for progressive cavity pumps at Den Magiske Fabrikken

HSN supervisors: Carlos F. Pfeiffer. Carlos.Pfeiffer@usn.no, Håkon Viumdal.
Hakon.Viumdal@usn.no

External partner: Lindum, Drammen. Contact: Frode Steen. Frode.Steen@lindum.no

Task background:

L b “ M b ”
(DMF). In one segment of the process, there are 8 pumps which often are replaced due to
being damaged. The factory is aiming to reduce the costs of these high frequent
replacements, by using a predictive maintenance approach. The gained health prognosis will
help deciding when the pumps should be overhauled, and reducing the number of total
breakdowns. This has the prospective of buying less new pumps, but more spare parts.

Task description:

Previous projects have been done on finding estimates of progressive cavity pump states in
the sense of how damaged the pumps are, purely by considering time from failure, and to
identify some of the needs for operation. These findings should be used to create models
for all the pumps and prepare an implementation of the models into a system which can
monitor the physical pump. The process data can be accessed through OPC UA for near real-
time data or a PostgreSQL database for historical data. The results needs to be conveyed to
the operators/manager at the factory.

The main goal of this master thesis is to define a specification for implementation and refine
and scale the models. The expected tasks are:

• Complete a literature review on machine learning model
implementation/infrastructure (MLOps) and machine learning methods

• Create specifications for the software

• Additional learning
o Reinforce model with new data

o Try out new methods and features

mailto:Carlos.Pfeiffer@usn.no
mailto:Hakon.Viumdal@usn.no
mailto:Frode.Steen@lindum.no

Appendices

105

o Test models offline

o Scale model to other pumps

• Investigate how to communicate with the SCADA system

• Investigate how to communicate with the maintenance system

• Implementation, if the factory management allows for it

• Complete and deliver the master thesis report

• Prepare and deliver a thesis presentation

Student category: IIA

This project is reserved for the Industry master student working at Lindum

Practical arrangements:

The student will have access to the factory, and the related SCADA system. He has also got
the necessary support from the factory management to run this project.

Signatures:

Student (date and signature):

Appendices

106

Appendix B. Predictive Maintenance of pumps at ‘Den Magiske Fabrikken’, using

Machine Learning Technique

Predictive Maintenance ‘
M b ’, using Machine Learning

Techniques
Martin Holm1,2, Ozgur Yalcin1, Carlos Pfeiffer1, Håkon Viumdal1

1 Faculty of Technology, Natural Sciences, and Maritime Studies, University of South-Eastern Norway,

Norway,
2Lindum AS, Norway, martin.holm@lindum.no

 ozgurylc@gmail.com, {carlos.pfeiffer, hakon.viumdal}@usn.no

Abstract

In this work, we investigate machine learning

methods to predict the failures of progressive

cavity pumps (PCP). The PCPs are located in a

biogas plant, Den Magiske Fabrikken, in Norway,

which is transforming food waste and animal

manure to biogas and biofertilizer. Available

measurements were pump on-signal, speed,

current, torque and control signal, inlet flow, inlet

pressure and outlet pressure, and several

vibrations derived signals.

Five categories were defined to categorize the

operation of the pumps as: “stopped”, “normal

running”, “7 days from failure”, “1 day from

failure” and “1 hour from failure”. The objective

was to train a Machine Learning model to predict

these categories. The data was pre-processed to

clean gross outliers and scale the signals using

different techniques.

This paper presents results from the same Long

Short-Term Memory (LSTM) model using two

different approaches for scaling the data. The

results are evaluated using confusion matrices

where one scaling method clearly improves the

results when testing on new data points.

Further work is presently being carried out to

implement the selected methods in real-time and

to generalize the model.

Keywords: Machine Learning, Predictive

Maintenance, Long-Short Term Memory,
Progressive Cavity Pump

1 Introduction
This project investigates and evaluates

progressive cavity pump failures used in a waste

processing plant by applying Long Short-Term

Memory (LSTM) machine learning methodology.

In the industry, maintenance costs account for

significant losses in profit for companies.

Predictive maintenance methods and their tools

have changed the way in how to approach

problems through advanced control analysis.

Lindum operates a waste management

company that produces biogas and biofertilizer as

a result of processing animal manure and food

waste. During the processing phase, the highly

corrosive and acidic liquid flows through the

pipes and causes severe effects on the pumps. To

prevent any production losses and increase the

pump lifetime, pumps are maintained

periodically. Obviously, excessive manual

supervision of the pumps may result in increased

labor force demand and increase the spare part

costs. However, increased periodic surveillance

do not prevent unexpected failures completely.

Consequently, the objective of this project is to

develop methods for preventing pump failures by

analyzing pump parameters with ML algorithms

and proposing a model to detect faults.

1.1 Progressive Cavity
Pumps and Predictive
Maintenance

Positive displacement pumps can handle solids,

high viscosity and low flow rates. Besides,

progressive cavity pumps are one type of positive

displacement pump. Centrifugal pumps, on the

other hand, are suitable for low viscosity and high

flow rates. The pump efficiency will decrease at

both higher and lower pressures for centrifugal

pumps, whereas the pump efficiency will increase

with increasing pressure in positive displacement

pumps.

mailto:ozgurylc@gmail.com
mailto:carlos.pfeiffer,%20hakon.viumdal%7d@usn.no

Appendices

107

In this project, the analyzed pump type is

‘Nemo’ brand progressive cavity pumps produced

by Netzsch Pumpen & Systeme GmbH. These

types of pumps provide a large capacity and

pressure range. During the operation of the

process in the factory, the pumps suffer from

changing viscosity and corrosive materials in

each batch. Figure 1.0 illustrates the progressive

cavity pump that is used in the process. The pump

has the following components: rotor (1), stator

(2a, 2b), drive chain (3), shaft sealing (4), suction

and discharge housing (5). Typical problems in

progressive cavity pumps are elastomer

expansion, rotor, and stator material corrosion

which are caused by high temperature or fluid

type (Lea et al., 2003).

There are some points to avoid pump failure

specifically in progressive cavity pumps. These

are:

• Choosing the right elastomer type by

taking into account temperature and

fluid physical properties

• Avoiding dry running conditions

• Selecting suitable rotor material to stay

away from abrasive wear on the rotor

Predictive maintenance aims to transform

advanced analytical and process data into valued

outcomes. Hence, equipment failure or

breakdown can be prevented just before it occurs.

Additionally, predictive maintenance may take

advantage of machine learning (ML) algorithms

to build a systematic approach. Besides,

predictive maintenance minimizes the cost of

maintenance and improves the equipment lifetime

without causing unpredicted production losses.

Thus, the process will run as long as possible

without interruption.

1.2 Machine Learning
Methods

Various type of data is gathered from the process

equipment. ML algorithms are able to unveil

unseen or hidden patterns and relationships within

a data set. With the progressively increase of

computational power, and development of new

ML algorithms, there is an increasing trend in

publications in the literature related to data

analysis through ML algorithms (Carvalho et al.,

2019). One method is the LSTM algorithm, which

is considered especially successful in time series

applications, where long-term dependencies in

the data needs to be detected (A. Géron, 2019,

pp.511-523). Simply, the function stores a value

and determines how long it should be stored. This

makes long short - term memory one of the most

common models when working with time-

dependent data (Rivas et al.,2019). Wisyaldin

(2020) compared Autoregressive Moving

Average (ARMA), Recurrent Neural Network

(RNN), and LSTM models for analyzing

vibration signals to predict the health condition of

bearings of a water circulation pump and LSTM

produced better accuracy. Even though LSTM is

used to calculate remaining useful time and

anomaly detection in various processes, there are

few studies for progressive cavity pump failure

analysis with LSTM found in the literature.

2 System
Description

2.1 Features
The system under scrutiny in this paper consists

of a progressive cavity pump with measurements

control signal [%], current [A], torque [%] and

Figure 1.1 Illustration of the progressive cavity pump that is used in the process.

Appendices

108

speed [%] from a frequency converter. In

addition, inlet pressure [Bar], outlet pressure

[Bar] and inlet flow [m³/h] is measured. These

will be used as the features for the machine

learning model. The sampling rate for all the

measurements is 30 seconds. Although the

selected pump is part of a system of pumps and

may be impacted by other pumps earlier in the

process, this potential impact has been ignored in

this work. The system cyclically pumps fluid for

45-60 minutes, it will always start the cycle again

after 60 minutes whether it has just ended or

ended 15minutes ago.

The analyzed feature data spans 17 months,

with some missing data. During this period, the

pump considered has been replaced 14 times due

to pump failures.

2.2 Predictions
The goal is to predict one of the five operational

categories: pump is (0) stopped, (1) running

normally, (2) less than one week from failure, (3)

less than one day from failure or (4) less than one

hour from failure. Where running normally is

assumed to be anything which is not covered by

the other categories.
These categories have been assumed useful as

there was little information concerning the

breakdown of the pumps, only sparse information

about when they had been replaced was available.

3 Methods and
Methodology

3.1 Long Short-Term
Memory Configuration

The LSTM model architecture was set up as a two

layered LSTM block with a dense output layer as

seen in Figure 3.1. The first layer has 7 feature

inputs with a sequence length of 120 and 32

output neurons. The layer has the parameter

return_sequence set as true (Chollet, LSTM layer,

2015) which means a sequence will be returned,

compared to only return the last estimate of the

sequence, which is the case when set to false. The

sequence length of 120 samples correspond to one

hour which is the cycle time for the pump

sequence. The pump sequence is determined by

the process operation. The 32 neurons from the

first layer serves as inputs to the second layer.

However, it outputs only 16 neurons as the return

sequence is set to false. Both the LSTM layers are

using standard configurations for all other

parameters. Lastly, a dense layer using the

softmax activation function with the 16 neurons

from the previous layer as inputs and outputting a

probability for each of the categories. The output

with the highest probability is assumed to be

correct for a given sequence thus giving a positive

for one of the five categories. The model is

compiled using the loss function categorical

crossentropy (Chollet, 2015) and using the Adam

optimizer (Kingma, 2017).

LSTM Layer 1

LSTM Layer 2

Dense Output layer

Input:

Output: 120 samples, 32 neurons

120 samples, 7 features

Input:

Output: 16 neurons

120 samples, 32 neurons

Input:

Output: 5 categories

16 neurons

Figure 3.1 LSTM model architecture

3.2 Scaling
Standardization is used to scale the data, using eq.

(1) where z is the scaled sample, x is the sample

that should be scaled, µ is the mean and σ is the

standard deviation.

𝑧 =
𝑥 − µ

𝜎
 (1)

The standardization is used in two ways, one

where the entire dataset is scaled using the same

scaler for the entire dataset. The other approach is

to collect data during one hour of operation for

each pump and use this data to calculate

individual means and standard deviations to scale

the new data. Both approaches are shown in

Figure 3.2.

Pump 1 Pump 2 Pump 3

Pump 1 Pump 2 Pump 3

1 ho
ur u

sed to

scale

1 ho
ur u

sed to

scale

1 ho
ur u

sed to

scale

Scaled using entire dataset

Method 1

Method 2

End
 o

f life

End
 o

f life

End
 o

f life
End

 o
f life

End
 o

f life

End
 o

f life

Figure 3.2 Two methods to scale training data

The reasoning behind this approach can be

seen by inspecting parts of the data shown in

Figure 3.3. There are several normal distribution-

like structures in the current when including data

from all the pumps in the same histogram. This

may indicate that the level of current (and other

variables) may vary between the pumps that have

been replaced, and thus the level near the end of

Appendices

109

the lifetime may vary. This gives the ML method

ambiguous signals as to what is considered a

degraded pump.

Looking at one single physical pump scaled with

the first hour of its own data, the distribution

seems closer to a single normal distribution as

depicted in Figure 3.4, yet it has two distinct tops.

Investigating other plots reveals that many look

like Figure 3.4 and some are a lot closer to a

narrow normal distribution.

Figure 3.3 Histogram including all pump failures

with previous original scaling method for current.

Figure 3.4 Histogram for one pump failure for the

feature current, scaled.

It thus appears that there are individual

characteristics of the pumps, and hence they have

various distributions. This may confuse the

LSTM-model as there will be many levels of data

points where the pump is ok for one pump, but not

for another.

Continuing this approach and using data from

only the first hour of the pump's active lifetime

yields a distribution as seen in Figure 3.5. This

distribution looks more coherent, yet there are

more outliers and a higher span.

Figure 3.5 Histogram including all failures with

scaling method 2.

3.3 One hot encoding
The outputs are one hot encoded from integer

encoded, meaning that the labels have been

converted to numbers as seen in Table 4. These in

turn has been transformed into a one hot encoded

format, where each row indicates an example

where only one label is true, and others are false.

As per definition of one hot encoding (Géron,

2017).

Table 4. Integer encoded labels

Label Description

0 Stopped

1 Normal running

2 Less than one week before failure

3 Less than 24 hours before failure

4 Less than 1 hour before failure

4 Results and
Discussion

4.1 Scaling pump data using
method one

Before the data is used for training, the features

are standardized. All the 14 failures are scaled

using one scaler and the data is split into

sequences. The outputs are one hot encoded. After

this, the data is split into training and testing

datasets with 60% used for training, 20% for

validation and 20% used for testing.

Using this method, the results on the confusion

matrix based on the training set can be seen in

Figure 4.1 and appears very good. Figure 4.2

however shows the results in a more realistic

manner where the data tested on was not involved

Appendices

110

in training the model. The model was trained on

data from March 2020 to September 2021 and was

then tested on data from September 2021 to

October 2021. The confusion matrix for the test

data shows that all the three categories where it

was less than one week before failure of the pump,

was considered “normal operation”, or in some

rare cases “stopped”. Some of the reason for this

might be related to an extensive number of

“normal operation” in the data, compared to the

other. That will affect the model. Comparing

Figure 4.1 and Figure 4.2, there is a clear

indication of a generalization problem with the

model. As already mentioned, the scaling method

1 has its short-comings, which is improved in

method 2.

Figure 4.1 Confusion matrix based on training data

Figure 4.2 Confusion matrix based on test data

4.2 Scaling pump data using
method 2

Using the new method for scaling the data has

reduced the overall accuracy of the model based

on the training data, as seen in Figure 4.3. It can

however be noted that most false positives in the

failure categories for the most part end up in

another failure category.

The test set shows that the model is greatly

improved by using the new scaling method in

Figure 4.4. The total accuracy becomes 78.5%

where the total accuracy is defined by how many

samples are correct for each label divided by

number of samples tested on.

Figure 4.3 Confusion matrix on test data with new

scaling method from training data

Figure 4.4 Confusion matrix on test data completely

separate from training data with new scaling method

Predicted label

Sto
pp

ed

Nor
m

al

1W
 fr

om
 fa

il

24
h f

ro
m

 fa
il

1h
 fr

om
 fa

il

Sto
pp

ed 92,4 % 6,7 % 0,7 % 0,2 % 0,0 %

Nor
m

al 0,7 % 99,3 % 0,0 % 0,0 % 0,0 %

1W
 fr

om
 fa

il

0,8 % 0,3 % 98,6 % 0,2 % 0,0 %

24
h f

ro
m

 fa
il

1,2 % 0,4 % 0,9 % 97,4 % 0,2 %

1h
 fr

om
 fa

il

2,6 % 0,5 % 0,0 % 8,3 % 88,6 %

Tr
u

e
la

b
el

Predicted label

Sto
pp

ed

Nor
m

al

1W
 fr

om
 fa

il

24
h f

ro
m

 fa
il

1h
 fr

om
 fa

il

Sto
pp

ed 96,8 % 3,1 % 0,0 % 0,0 % 0,0 %

Nor
m

al 0,8 % 99,1 % 0,0 % 0,0 % 0,0 %

1W
 fr

om
 fa

il

1,5 % 98,4 % 0,0 % 0,0 % 0,1 %

24
h f

ro
m

 fa
il

1,8 % 98,2 % 0,0 % 0,0 % 0,0 %

1h
 fr

om
 fa

il

2,5 % 97,5 % 0,0 % 0,0 % 0,0 %

Tr
u

e
la

b
el

Predicted label

Sto
pp

ed

Nor
m

al

1W
 fr

om
 fa

il

24
h f

ro
m

 fa
il

1h
 fr

om
 fa

il

Sto
pp

ed 93,6 % 5,4 % 0,8 % 0,2 % 0,0 %

Nor
m

al 1,0 % 98,9 % 0,0 % 0,0 % 0,0 %

1W
 fr

om
 fa

il

0,7 % 0,0 % 98,8 % 0,5 % 0,0 %

24
h f

ro
m

 fa
il

0,9 % 0,0 % 8,4 % 90,6 % 0,2 %

1h
 fr

om
 fa

il

0,5 % 0,0 % 14,7 % 37,8 % 47,0 %

Tr
u

e
la

b
el

Predicted label

Sto
pp

ed

Nor
m

al

1W
 fr

om
 fa

il

24
h f

ro
m

 fa
il

1h
 fr

om
 fa

il

Sto
pp

ed 97,1 % 1,2 % 0,6 % 1,2 % 0,0 %

Nor
m

al 0,8 % 99,2 % 0,0 % 0,0 % 0,0 %

1W
 fr

om
 fa

il

1,3 % 0,0 % 55,2 % 43,5 % 0,0 %

24
h f

ro
m

 fa
il

1,1 % 0,0 % 45,0 % 53,9 % 0,0 %

1h
 fr

om
 fa

il

0,9 % 0,0 % 50,5 % 48,6 % 0,0 %

Tr
u

e
la

b
el

Appendices

111

The expectation to be able to predict one hour

before failure may have been high, however, the

other failure categories appear to be reasonable, at

least a combination of them. Assuming all failure

modes are merged to one, the total accuracy of the

model becomes 98.9%. One week from fail:

98.7%, One day from fail: 98.9%, and one hour

from fail: 99.1% when adding together each row.

However, the model does never predict a

normal operation as an upcoming failure for the

given test set. The results indicate that there is a

small risk of having a false alarm, and performing

pump replacements without any good reason,

with this approach. Simultaneously, there is a

good chance of being able to detect an

approaching error within a pump in advance. On

the other side, it is a risk for not being able to

detect precisely when the pump failures will

occur.

The model was only tested on one pump

failure, while trained on many. As such there may

be a lucky draw that the model was able to predict

as well as it did. It has already been seen that the

data varies from pump to pump, and it may be that

other pump failures are not that well picked up.

In the process of LSTM modelling, the input

data was not filtered out of the noise and raw data

was fed into the model. One might argue that

noise filtering can increase accuracy. However, it

was concluded that noise in data still can hold

valuable information, and disregarding noise in

data might reduce the model performance.

5 Conclusions and
Further Work

This paper has aimed at evaluating and predicting

of progressive cavity pump failures in the waste

processing plant, Lindum AS. After gathering

information from field instruments, measurement

data classified 5 different pump working time

cycles such as stopped or normal condition, 1h,

24h, and 1 week from failure. Analyzed data

covered 17 months of operation that consist of 14

replacements, and with 30s sampling rate. The

time series data was handled well by the LSTM

algorithm, and produced reasonable results.

However, it became evident that scaling for the

entire dataset led to information loss on pump

failures. Instead, improved results were obtained

by scaling pump data with one hour of operational

data for each pump replacement. Thus, each pump

data was captured on the scaled dataset,
separately. The total accuracy of the model with

the proposed scaling method becomes 78.5%.

Further work is being done on trying to

generalize the model such as to fit onto similar

pumps in the process. This requires some features

to be removed and use data from many more

pumps.

As the stopped label is already known, it is not

really needed to predict and will be removed in

further studies. The one hour from failure label is

never predicted outside the training data and is

thus removed from further studies.

More work should be done on setting correct

parameters of the LSTM structure.

The initial project also explored other ML

techniques such as Support Vector Machine,

Naïve Bayes and Principle Component Analysis.

These were not tested with the new scaling

method and may be worthwhile to investigate

further.

Acknowledgements

We acknowledge the collaboration with and

support Lindum AS for providing data. Credits

for Ronnie Andre Horne Moe

(ronnie.moe@boliden.com), who was in the

project team, for building LSTM architecture and

coding support throughout the project.

References

Thyago P. Carvalho, Fabrízzio A. A. M. N. Soares,

Roberto Vita, and João P. Basto. A systematic

literature review of machine learning methods

applied to predictive maintenance, Computers &

Industrial Engineering, 137(106024), 2019, ISSN

0360-8352, doi: 10.1016/j.cie. 2019.106024.

François Chollet. LSTM layer, 2015. Retrieved from

https://keras.io/api/ layers/recurrent_layers/lstm/.

François Chollet. A. Probabilistic losses, 2015.

Retrieved from https://keras.io/api/

losses/probabilistic_losses/.

Aurélien Géron. Handling Text and Categorical

Attributes. In Hands-On Machine Learning with

Scikit-Learn, pages 92-93. O’Reilly Media, Inc,

2021. ISBN: 9781492032649.

Sepp Hochreiter and Jürgen Schmidhuber. Long-Short

Term Memory, Neural Computation, 9(8):1735 -

1780, 1997, doi: 10.1162 /neco.1997.9.8.1735.

Diederik P. Kingma and Jimmy Lei Ba. Adam: A

Method for Stochastic Optimization. Retrieved from

arXiv: https://arxiv.org/abs/1412.6980.

James Lae, Henry V. Nickens, and Mike. R. Wells. Gas

Well Deliquification, Gulf Professional Publishing,

2003. doi: 10.1016/B978-0-7506-8280-0.X5001-X.

Alberto Rivas, Jesús M. Fraile Pablo Chamoso,

Alfonso González-Briones, Inés Sittón, and Juan M.

Corchado. A. Predictive Maintenance Model Using

Recurrent Neural Networks, In 14th International

Conference on Soft Computing Models in Industrial

Appendices

112

and Environmental Applications (SOCO 2019),

Advances in Intelligent Systems and Computing,

Springer, pages 261-270, 2019. doi: 10.1007/978-3-

030-20055-8_25.

Muhammad Kamal Wisyaldin, Gita Maya Luciana,

and Henry Pariaman. Using LSTM Network to

Predict Circulating Water Pump Bearing Condition

on Coal Fired Power Plant, 2020 International

Conference on Technology and Policy in Energy and

Electric Power (ICT-PEP), pages 54-59, 2020, doi:

10.1109/ICT-PEP50916.2020.9249905.

Appendices

113

Appendix C. All long short-term memory results in confusion matrices

LSTM model 1

LSTM model 2

LSTM model 3

Appendices

114

LSTM model 4

LSTM model 5

LSMT model 6

Appendices

115

LSTM model 7

LSTM model 8

LSTM model 9

Appendices

116

LSTM model 10

LSTM model 11

LSTM model 12

Appendices

117

LSTM model 13

LSTM model 14

LSTM model 15

Appendices

118

Appendix D. All gated recurrent unit results in confusion matrices

GRU model 1

GRU model 2

GRU model 3

Appendices

119

GRU model 4

GRU model 5

GRU model 6

Appendices

120

GRU model 7

GRU model 8

GRU model 9

Appendices

121

GRU model 10

GRU model 11

GRU model 12

Appendices

122

GRU model 13

GRU model 14

GRU model 15

Appendices

123

GRU model 16

Appendices

124

Appendix E. All support vector machine results in confusion matrices

SVM model 1

SVM model 2

SVM model 3

Appendices

125

SVM model 6

SVM model 7

SVM model 10

Appendices

126

SVM model 11

SVM model 12

SVM model 13

Appendices

127

SVM model 14

SVM model 15

SVM model 16

Appendices

128

SVM model 17

SVM model 18

SVM model 19

Appendices

129

SVM model 20

