
www.usn.no

Faculty of Technology, Natural sciences and Maritime Sciences
Campus Porsgrunn

 FMH606 Master's Thesis

Real time control of robotic arm manipulators

[1]

www.usn.no

2

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

Course: FMH606 Master's Thesis, 2022

Title: Real time control of robotic arm manipulators.

This thesis report forms part of the basis for assessing the student’s performance in the
course.

Thesis code: FMH606 Master's Thesis

Participant: Mohammad Saifuddin Chowdhury

Supervisor: Roshan Sharma

Thesis partner: University of South-East Norway (USN)

Summary:
This thesis is based around creating an interface between a ROS-based robot arm and
MATLAB, focusing mostly on robots in the industry. MATLAB will be used to
implement a simulator of the robot and to create communication with it. In addition,
Denavit Hartenberg representation and optimization were used to calculate forward and
inverse kinematics. The results of this thesis are functional communication and robot
arm movement, pick and place operations with objects, multi-robot interactivity along
with trajectory tracking and position-based movements.

www.usn.no

3

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

ACKNOWLEDGEMENT

As part of my thesis at the University of South-Eastern Norway, Porsgrunn, I wrote this
dissertation. A lot of people helped the author with the thesis during this period, so they
deserve special thanks. I'd like to send my thanks to all of them.
First of all, I want to thank the one above all, the omnipresent God, for giving me strength to
write this thesis.
In addition, the author thanks his supervisor and guide Dr. Roshan Sharma, Associate
Professor, Department of Electrical Engineering, IT, and Cybernetics, USN, Porsgrunn, for
his valuable guidance, support, and encouragement. The work was completed successfully
and on time. Thanks to his constant inspiration and constructive criticism. The author can't
thank him enough.
Finally, the author has been away from home for long hours to complete this work. It's
impossible to express his gratitude to his wife Saima Rashid for her understanding,
patience, active cooperation throughout the master's dissertation. Thank you all for being
supportive and caring. Special thanks go to his parents and relatives for their inseparable
support and prayers.

www.usn.no

4

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

Abstract
This thesis report has been written as a part of the 30-credit course FMH606 Thesis. Several
ReactorX 150 Robot Arms from Trossen Robotics have been purchased by the University of
South-East Norway. As a part of this purchase, a thesis has been created with the goal of
creating, interfacing with the robot arm, forward and inverse kinematic problem solution
using DH representation and optimization mechanism, pick and place operation by using
gripper mechanism, multiple robot’s interactive operation in MATLAB. This document will
serve academic purposes in possible labs, or other applications, for robot arms.
It is a key objective for academic or industrial robot manipulators to achieve desired positions
and orientations of their end effectors or tools to perform the specified task. It is necessary to
possess solid knowledge of inverse kinematic problems to accomplish the above stated goal.
Robot manipulators are used in many different fields for completing various tasks such as
material handling, pick and place, interactive operation, collaborative operation, and
hazardous field work, etc. Furthermore, medical robotics is applicable to therapy and surgery
that require kinematic, and control functions. To build a career in robotics, academic robotic
manipulators must be familiar to a student with their joint variables and kinematic
parameters.
It is the joint actuators that control the motion of end effectors or manipulators, which causes
the motion to occur in each joint. For this reason, it is imperative that the controller provide
an accurate value for each joint variable to the end effector position. A robot manipulator's
forward kinematics is a simple problem with a unique solution. By converting joint space to
cartesian space of the manipulator, we can derive forward kinematics. The inverse
kinematics, on the other hand, can be determined by making a transformation from Cartesian
to joint space. The researchers have been primarily concerned with obtaining an exact
solution of the joint variables. This paper presents an overview of academic robot
manipulator including its evolution and classification. In this study, the difficulties of solving
forward and inverse kinematics of robot manipulators are discussed, and an optimization
method is introduced for solving inverse kinematics. A systematic study of the available tools
and techniques has been undertaken in order to achieve the objective of the work and solve
the robot arm manipulator interfacing and kinematic problem.

Porsgrunn, May 18th, 2022

Mohammad Saifuddin Chowdhury

www.usn.no

5

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

Table of Contents
Chapter 1

1.1 Overview .. 13
1.2 Evolution of robot manipulators ... 14
1.3 Structure of industrial robots .. 15
1.4 Classification by mechanism…………………………………………………………………….16
1.5 Review analysis and outcomes ... 16
1.6 Problem statement ... 17
1.7 Scope of work ... 18
1.8 Organization of the thesis ... 18
1.9 Summary ... 19

Chapter 2 .. 20
2.1 Overview .. 20
2.2 Materials .. 20

2.2.1 ReactorX 150 Robot Arm .. 20
2.2.2 DYNAMIXEL Servo Technology ... 21
2.2.3 Robot Operating System .. 21
2.2.4 MATLAB ... 21
2.2.5 Simulink ... 22
2.2.6 Simulation .. 22

2.3 Methods ... 22
2.3.1 Kinematics ... 23
2.3.2 Optimization to solve Inverse kinematic .. 27

2.4 Summary .. 28

Chapter 3 .. 29
3.1 Overview .. 29
3.2 DYNAMIXEL Wizard .. 29
3.3 Mode of servo operation .. 30
3.4 Implementing the Library ... 30

3.4.1 Bulk_Read_Write.m .. 30
3.5 Communication Protocol and Run Mode ... 32

3.5.1 Communication Protocol Details .. 32
3.6 Software stack and libraries .. 35
3.7 Summary .. 36

Chapter 4 .. 38
4.1 Xacro to URDF in ROS2 ... 38
4.2 Robot Arm Calibration and Movement from Simulink .. 38
4.3 Importing URDF model in Simulink .. 39
4.4 Movement and Calibration of Simulation ... 42
4.5 Trajectory Visualization with Inverse Kinematics in MATLAB Simulink 45
4.6 Inverse kinematics output stored in MATLAB workspace ... 46
4.7 Summary .. 47

Chapter 5 .. 48
5.1 Overview .. 48
5.2 Representation methods and kinematics .. 48
5.3 Kinematic variables and parameters .. 48

www.usn.no

6

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

5.3.1 DH-Parameters .. 49
5.3.2 DH-algorithm for frame assignment .. 50
5.3.3 DH table representation of rx150 robot arm with offset .. 51
5.3.4 Code snippet to calculate end effector coordinate by using DH table 54

5.4 Forward kinematic result with DH representation .. 55
5.5 Inverse kinematic result using Simulink library function (IK engine) 56

5.5.1 Real arm movement picture frame and video using Simulink (IK Library) 57
5.6 Inverse kinematic result using DH model and optimization in simulation 58

5.6.1 Code snippet.. 60
5.6.2 Real arm movement picture frame and video .. 61

5.7 Summary ... 62

Chapter 6 .. 63
6.1 Overview .. 63
6.2 Sleep position ... 63
6.3 Home position ... 64
6.4 Movement and Calibration of Physical Robot ... 65
6.5 Robot arm pick and place operation .. 69
6.6 Multiple robot interactive task ... 70

Chapter 7 .. 72
7.1 Overview .. 72
7.2 ROS2 Installation .. 72
7.3 Dynamixel Servo ID .. 72
7.4 Selection Of Servo Operation Mode ... 73
7.5 Servo Motor Communication ... 73
7.6 Servo Motor Rebooting .. 74
7.7 Interfacing .. 74
7.8 Robot Arm Jerking Solution .. 75
7.9 Code Shifting .. 76
7.10 Extrinsic Function .. 76
7.11 DH Model Tuning .. 77
7.12 Summary ... 78

Chapter 8 .. 79
8.1 Overview .. 79
8.2 Conclusions .. 79
8.3 Contributions .. 80
8.4 Future work ... 80

Chapter 9 .. 82
 9.1 References…………………………………………………………………………………………...82

www.usn.no

7

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

List of Tables

Table 3. 1: Different mode of servo operation...27
Table 3. 2: Address code in "bulk_read_write.m" ... 28
Table 3. 3: Communication related code in "read_write.m" ... 28
Table 4. 1: ROS2 code line for file conversion..35
Table 5. 1: DH parameters...47
Table 5. 2: DH-parameters table for 4-dof revolute manipulator with offset 49

Table 2.1: Detailed specifications of the ReactorX Robot Arm...18

www.usn.no

8

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

List Of Figures
Figure 1. 1: (a) Serial [11], (b) Parallel [11] and (c) Hybrid mechanisms [11] 13
Figure 2. 1: A 2-DOF robot with coordinate transformations [2]..23
Figure 2. 2: Animated image of a 2-DOF robot arm [3] .. 23
Figure 3. 1: The interface for the DYNAMIXEL Wizard 2...26
Figure 3. 2: The build-up of communication packets .. 29
Figure 3. 3: The reading of a sent packet with error status .. 30
Figure 3. 4: Table with instructions, and descriptions, for the servos 30
Figure 3. 5: Instruction packet flow chart between software application and robot arm 31
Figure 3. 6: Start of the EEPROM Area data table .. 31
Figure 3. 7: Start of the RAM Area data table ... 32
Figure 3. 8: Software stack flow .. 33
Figure 3. 9: Dynamixel wizard operating Area. .. 33
Figure 3. 10: MATLAB script and command window with communication result. 34
Figure 3. 11: MATLAB Hardware function in Simulink for multi robot interactive function.
.. 34
Figure 4. 1: Simulink code for the geometric link and joints for the robot arm.......................36
Figure 4. 2: Visual block for the upper arm of rx150 .. 37
Figure 4. 3: Visual block for selection of actuation for the waist joint 38
Figure 4. 4: Block diagram of the "rx150_robot_arm" with the slider inputs 38
Figure 4. 5: The "rx150_robot_arm" visualization with the slider inputs 39
Figure 4. 6: ZDP for the simulation with slider inputs .. 40
Figure 4. 7: Random position with slider inputs .. 40
Figure 4. 8: The angel plot for the joints at the random position ... 41
Figure 4. 9: The simulation of the RX 150 Robot Arm with trajectory based on inputs 41
Figure 4. 10: Inverse kinematic simulation block diagram of the RX150 robot arm 43
Figure 4. 11: RX150 robot arm simulation result .. 43
Figure 4. 12: RX150 robot arm joint angles result saved in workspace 44
Figure 5. 1: Position and direction of a cylindrical joint in a coordinate frame.......................47
Figure 5. 2: DH table coordinate frame of RX-150 robot arm configuration with an offset. .. 50
Figure 5. 3: Forward kinematic result by using DH model. .. 54

www.usn.no

9

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

Figure 5. 4: Inverse kinematic simulation block .. 54
Figure 5. 5: Inverse kinematic simulation result .. 55
Figure 5. 6: Inverse kinematic result implemented on RX150 robot arm 55
Figure 5. 7: Inverse kinematic simulation result implemented on RX150 robot arm 56
Figure 5. 8: Video link for robot arm movement using inverse kinematic (Simulink library) 56
Figure 5. 9: Inverse kinematic simulation using optimization ... 57
Figure 5. 10: Optimization result comparison with real trajectory .. 57
Figure 5. 11: Optimization result RX150 robot arm simulation .. 58
Figure 5. 12: Optimization MATLAB code .. 59
Figure 5. 13: Optimization result implemented in RX150 robot arm real unit 59
Figure 5. 14: Video link for robot arm movement using inverse kinematic by optimization
technique .. 60
Figure 6. 1: Image of the ReactorX 150 in the Sleep Position...61
Figure 6. 2: Simulink block to call ReactorX 150 in the Sleep Position 62
Figure 6. 3: Image of the ReactorX 150 in the Home Position .. 62
Figure 6. 4: Simulink block to call ReactorX 150 in the Home Position 63
Figure 6. 5: Image of the ReactorX 150 in the ZDP .. 64
Figure 6. 6: Slider inputs based on the ZDP .. 64

Figure 6. 7: Image of the ReactorX 150 with 90° change, from the ZDP, in joint 3 65

Figure 6. 8: Slider inputs based on the 90° change from ZDP .. 65
Figure 6. 9: Image of the ReactorX 150 with a random position from slider inputs 66
Figure 6. 10: Slider inputs based on the random position.. 66
Figure 6. 11: Simulink blocks for robot arm pick and place operation 67
Figure 6. 12: Video link for robot arm pick and place operation .. 67
Figure 6. 13: Simulink blocks for multiple robot arm ... 68
Figure 6. 14: MATLAB script write function code snippet ... 68
Figure 6. 15: Video link for multiple robot arm interactive operation 69
Figure 7. 1: Dynamixel wizard to change servo ID...72
Figure 7. 2: Dynamixel wizard to select servo operation mode .. 72
Figure 7. 3: Dynamixel wizard to check servo address with respect to ID 73
Figure 7. 4: Dynamixel wizard to reboot servo motor ... 73
Figure 7. 5: Dynamixel wizard default servo acceleration and velocity 74

www.usn.no

10

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

Figure 7. 6: Dynamixel wizard changed servo acceleration and velocity 74
Figure 7. 7: MATLAB editor to get access to workspace from Simulink 75
Figure 7. 8: Extrinsic library function used in hardware interfacing MATLAB code 75
Figure 7. 9: RX150 each joint length measurement [9]. .. 76
Figure 7. 10: DH model verification model in Simulink. .. 77

www.usn.no

11

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

List of Symbols
𝑎𝑎𝑖𝑖 Link Length

𝛼𝛼𝑖𝑖 Twist angle

𝑑𝑑𝑖𝑖 Joint Distance

𝜃𝜃𝑖𝑖 Joint angle

𝑐𝑐𝑖𝑖 cos𝜃𝜃𝑖𝑖 , (i 1,2,3...n)

𝑠𝑠𝑖𝑖 sin𝜃𝜃𝑖𝑖 , (i 1,2,3...n)

www.usn.no

12

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

Nomenclature
Degrees of Freedom, DOF
Operating System, OS
Robot Operating System, ROS
Denavit Hartenberg, DH
Forward Kinematic, FK
Inverse Kinematic, IK
University of South-East Norway, USN
Unified Robot Description Format, URDF
Visual Studio, VS
Zero-Degree Position, ZDP

www.usn.no

13

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

Chapter 1

Introduction

1.1 Overview
Today’s world observes a rapid revolution in the field of automation. We live in an era where
automation is sweeping the world. Automation is taking over the world these days. An example
of such a development is the increasing desire for the implementation of robots, or robot arms,
which is an ever-increasing demand. For example, one of the more noticeable trends in recent
times appears to be the increasing desire to create robots or robot arms. It is particularly
fascinating when we consider the growing desire to implement robotics into our everyday lives.
There have been reports that while robots in the industry are generally created and used for
very specific purposes, this has led to a lack of diversity when it comes to the software and the
utility, which can lead to a lack of diversity as well.
This kind of application does have a characteristic in common, it requires the robot to operate
in an unstructured environment, as opposed to a structure industrial work cell. Due to the
uncertainties in system modelling, sensor quality, and robot actuation, the control of robot
movements and trajectory planning in unstructured environments presents significant
challenges. Most robot applications at present can be classified into two categories: those that
deal with both structured and unstructured environments, while the rest can be classified as a
broader area of robot applications [10]. A rigorous treatment of the topics given in this text,
which were intended to serve as a first introduction to robotics, should be included in any first
introduction. A robot helps the human situation with additional convenient tasks as well as
being of assistance in the workplace as well as providing an isolated environment that would
prevent any harm, discomfort, repetition, etc. that would normally be present in such a
situation. Almost all the tasks performed by machines are becoming more complex as
technology progresses. Machines are becoming more capable of performing tasks which were
previously performed by men, and which are now performed by robots in spite of the danger
they pose. The robots of the future should be thought of as having human excellence in terms
of their structure, intelligence, subtlety, as well as ability to react in a timely manner, to
accomplish human tasks in human-like ways and to have an effective and safe co-operation
between humans and robots. The aforementioned reasons make robots comprised of
electromechanical systems that are capable of a high level of autonomy extremely complex
electromechanical systems whose analytic description requires advanced mathematical
methods. To develop such devices, represent many of the most interesting and challenging
problems and issues in the field of Robotics. Reprogram ability is more important than any
other feature of robots. Computer control is what gives the robot its utility and adaptability,
thus giving the robot its utility and adaptability. A greater initiative has been undertaken by the
government to encourage the use of robotics in the workplace. Robot manipulators are capable
of performing a wide variety of tasks in a variety of fields. There are a number of fields where

www.usn.no

14

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

this technology has been used, including cars, household goods, pick-and-place, radioactive
field defusing, and defusing of explosives. It has found application in fields such as
reconstruction, surgery and rehabilitation that involve activities such as kinematic, dynamic
and control operations.
With the sole objective of creating a connection between the robot arm and MATLAB, Forward
and Inverse kinematic calculation, Pick and Place operation and Optimization technique to
build own inverse kinematic engine. This thesis examines a robot arm manipulator
manufactured by Trossen Robotics, the ReactorX 150. As of today, Trossen Robotics utilizes
robotics-focused software in Linux, but in order to create an approachable solution with an
established general foundation, MATLAB was chosen as it is a program that many people,
such as students, are already familiar with, and it has Microsoft support, which is the most
popular operating system when it comes to personal computers.
As a first step towards achieving this interfacing goal, the robotic arm ReactorX, Linux-based
robotics software, as well as the platform MATAB will be used together in order to create a
fully functional communication with the robotic arm. It is recommended that communication
between robots is built around the several servos so that the robot's movements can be
controlled at the user's discretion, within the limits of safety and security. During robot
manipulation, manipulators move along prespecified trajectories, which are sequences of
points that display end effector positions as well as their orientations. Depending on their
kinematics, trajectory can be either joint space or Cartesian space based on time. A robot
designed for industrial applications can be explicitly understood as an open-chain mechanism
consisting of a rigid body and a number of joints that connects the rigid bodies together [11].
The joints allow the connected bodies to follow specific motions with respect to one another.
The rotational joint acts as a hinge between the connected bodies, and the rotational motion
between them is limited to a small, relative rotation about the axis of the joint. It is known that
a kinematic chain is made up of a group of rigid bodies linked to one another by joints [10]. It
is made up of links which are individual rigid bodies that make up the chain. An open, closed,
or branched kinematic chain can be serial, parallel, or a combination of both. This means that
kinematic chains can be random, or open, or closed. The smooth operation requires the
computation of all the points in Cartesian coordinates to be successful. Inverse kinematics
refers to the process of converting trajectory locations from Cartesian coordinates to joint
coordinates by converting the trajectory from Cartesian to joint coordinates [10].

1.2 Evolution of robot manipulators
During the twentieth century, the Czech playwright Karel Capek proved that the concept of the
robot had been conceived by the playhouses of Rosassum's Universal Robots (R.U.R.) [10].
The word "robot" derives from "robota", which means subordinate labor in slave languages
[11]. Asimov, the Russian science-fiction writer, in his novel 'Run-around' wrote about three
fundamental laws that govern interactions between robots and human beings. This rule was
formulated in 1940, shortly after his novel was published [10]. By the middle of the twentieth
century, a new era of artificial intelligence (AI) research had begun as the first connections
between human intelligence and machines were explored, triggering a long period of fertile
research. During this time, the first robots were developed [10]. As the technologies of

www.usn.no

15

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

mechanics, controls, computers, and electronic have advanced, the advancements in these
sectors have become more and more important. With the advances that had been made over
time, this virtuous circle began to produce that knowledge and understanding needed to give
rise to what is known as robotics, the science and technology of robots. There was a confluence
of two technologies that led to the construction of the first robots built in the 1960s: numerical
control machines to make precision products and tele-operation to handle radioactive material
remotely. In comparison with the human arm, these master slave arms reproduce one-to-one
the mechanics of the human arm and had minimal control and little awareness of surroundings
[11]. There was a development in the medium to late twentieth century when integrated
circuits, digital computers and miniaturized parts led to the possibility of designing and
programming computer-controlled robots. In the 1970's, industrial robots - also known as
automated industrial robots - played an essential role in automating flexible manufacturing
systems.[10]. The industrial robots were also used successfully in general industry in addition
to their wide application in the automotive industry.

1.3 Structure of industrial robots
We are attempting to categorize industrial robots in this section by looking at the architectures
of serial structures. The primary focus in this study is limited to robots that will be used
primarily for manipulation tasks, optimization tasks and to numerical simulations of serial
kinematic chains. Based on the number of degrees of freedom (DOF) or axes that a robot has,
and their characteristics in terms of kinematics, robots can generally be classified. From the
extent of freedom possessed by a robot manipulator, its working excellence can be judged.
Typical 6-dof robot manipulators can generally accomplish a general task in 3-dimensional
space, where an object can be anywhere in space at any time without regard to its position or
orientation. However, one may need to design robot manipulators or other manipulators for
specific applications, depending on parameters such as the degree of freedom (DOF) or
kinematic characteristics. It is true that there are numerous criteria to classify robot
manipulators, but typically, one can choose based on the degree of freedom or the number of
axes [10]. In contrast, organizations such as the Robotics Institute of America (RIA), the
Association Francaise de Robotique (AFR) and the Japanese Industrial Robot Association have
grouped robotics into six distinct categories as follows:
 Manual handling devices
 Fixed sequence robot
 Variable sequence robot
 Playback robot
 Numerical control robot
 Intelligent robot

It is noteworthy that aside from the modules that have been mentioned above, industrial robot
manipulators can also be divided into categories based on their mechanisms, degrees of
freedom, actuation, workspace, control, motion, and application [10].

www.usn.no

16

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

1.4 Classification by mechanism
Robot manipulators typically come in either a serial or a parallel form, depending on whether
they contain an open or closed loop. There are two types of robot manipulators used in real
world applications, the prismatic type (P) and the revolute type (R) joints, with one of the
possible link types being rigid and flexible. It's simple that the axes of two adjacent joints can
either be parallel or orthogonal depending on whether you choose to combine these joints and
links in different ways. Due to the joint R and P, the axes of the two adjoining axes can be
parallel or orthogonal. In orthogonal joints, one axis will rotate 90 degrees with respect to the
other, and the two axes will intersect at 90 degrees with respect to their common normal [10],
see Figure 1.1.

 Figure 1. 1: (a) Serial [11], (b) Parallel [11] and (c) Hybrid mechanisms [11]

Examples of serial manipulators are PUMA, SCARA, Gough platform, Delta robot, are parallel
manipulators and (a) (b) (c) 7 Fanuc S-9000W is an example of hybrid manipulator as shown
in Figure 1.1(c).

1.5 Review analysis and outcomes
Taking on the structure and kinematics of manipulators and highlighting the importance of the
configuration of the manipulators, the post demonstrates that kinematics has been regarded as
a goldmine for robot designers. It is fair to say that there have been several researchers that
have tried to develop inverse kinematic solutions since the late 80's, with different methods and
for a variety of robot configurations [10]. There is increasing usage of robot manipulators in
various industrial settings to perform services such as pick and place on a robot, so the major
constraint was the finding of joint variables of the manipulator in order to achieve the desired
position with certain object coordinates. Currently there is a growing need for the use of robot
manipulators in other fields than the industrial world. They can now be used in a variety of
fields, ranging from clinical rehabilitation, underwater applications, assembly tasks,
agriculture, mining, space etc. to human interaction as well. Based on the literature review, it
can be concluded that to achieve the desired position and orientation of the end-effector or tool,
it is also crucial that manipulability and precision be preserved. There is a need for forward and
inverse kinematics in trajectory planning as well as modeling. There is no question that the
human arm is the key point in motivation and the driving force behind the development of

www.usn.no

17

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

robot manipulators. In order to find out the optimum design from a design point of view, it is
necessary to calculate the kinematic relationship between each joint variable in order to come
up with the best possible design. The design of a mechanism or robot manipulator may have
several configurations, structures, or functions, but the characteristics of a mechanism or robot
manipulator that are most important for design are kinematic analysis, workspace analysis,
trajectory generation and control. The significance of the explicit properties is always given to
the robot manipulator applications about the applications of the robot manipulator. When the
number of joint variables of the manipulator increases, the working space and manipulability
of the robot manipulator increases as well, resulting in more complex mathematical
formulations for inverse kinematic resolutions and difficulties in controlling the manipulator.
In many human environments, as well as in industrial applications, robot manipulators are
currently being used in a variety of designs and configurations. An important aim of the review
analysis is to examine the various methods and techniques that can be used to solve the
kinematics and optimization of any configuration of robot manipulator. A literature review
reveals that various thesis proposals generally follow DH-algorithm, homogeneous
transformation matrix, analytical approach, algebraic approach and geometric approach [10].
Algebraic solution of inverse kinematics has been the most commonly used method among all
the developed methodologies. If the robot configuration is complex and has a greater degree of
freedom, conventional algebra is difficult to model and obtain appropriate solutions.
Quaternion and screw algebra reduce the complexity of higher mathematical formulations.

Inverse kinematics formulations are further simplified by a few effective elimination methods.
When it comes to geometric algebra, when the first three joints of any manipulator or
mechanism do not form any joint angles between them, the inverse kinematic problem cannot
be solved exactly [11]. Furthermore, if the Jacobian matrix is not in good condition or suffers
from singularities, the problem becomes unstable. Thus, the conventional method is reliable,
but the configurations of manipulators and DOF’s always present a mathematical complexity
problem. The research community has adopted a number of intelligent techniques to resolve
these issues, including artificial neural networks, fuzzy logic, hybrid ANNs, and others [10]. It
is cheaper and easier to use these methods than traditional algorithmic solutions. In addition to
these approaches, optimization approaches such as heuristics, metaheuristics, numeric-based
approaches, etc. have shown promising results for solving inverse kinematics problems of robot
manipulators of any configuration [11]. There is often a trapping effect in local optimum points
that prevents most optimization algorithms from providing a global optimal solution. In order
to accomplish global optimum for fitness, it is necessary to develop an algorithm.

1.6 Problem statement
The prime objective of the present thesis work is to set up, configure and test the ReactorX 150
robotic arm, use the robotic arm for direct and inverse kinematics, use the robot arm for pick
and place operation, use two or more similar robot arms to perform interactive task,
optimization technique to create inverse kinematic engine to solve inverse kinematic problem.
To make it useful for real-time applications, the developed technique should be able to yield
faster results.

www.usn.no

18

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

1.7 Scope of work
Robotics has progressed so rapidly and is being adopted by companies increasingly, that many
design and operational challenges have emerged. Various macro and micro problems are being
explored to make the robot control system more user-friendly. Each component of the robot
technology has been developed in order to provide a wide range of thesis interests. Aspects of
the present thesis work, which focuses on academic robot arm RX150 bought from Trossen
Robotics.
A detailed plan of the thesis work is presented as follows which is based on appendix A, at
the end of this report:

 Set up, configure, and test the ReactorX 150 robotic arm which will be used with
Simulink/MATLAB for various functionalities. In this task, necessary communication
interfaces between the physical robotic arm and Simulink/MATLAB would be created.

 Using the robotic arm for direct and inverse kinematics. For the inverse kinematic, the
end-effector trajectory can either be (i) specified using polynomials, or (ii) it can also
be created by simply moving the robot arm manually by hand along the desired
trajectory.

 Using the robotic arm for pick and place operations. In order to do this the gripper
mechanism will be used.

 Using at least two or more ReactorX 150 robot arms, perform collaborative or
interactive tasks. In this task, additional hardware/software support can be taken if
require.

 Optimization technique can be developed to create inverse kinematic engine to solve
inverse kinematic problem. The developed technique should be able to yield faster
results, in order to make it useful for real-time applications.

1.8 Organization of the thesis
Chapter 1 is the Introduction part of the dissertation that provides a brief historical overview
of robot evolution along with information about the types of manipulators, classifications, and
application of robots in various fields. Forthcoming chapters apart from introduction chapter
are organized as follows.
Chapter 2 delivers the methods, several software and hardware used for this thesis.
Chapter 3 will go over the results in terms of the simulator and physical interfacing
Chapter 4 robot manipulator configurations are analyzed and mathematically modeled. A brief
discussion of various conventional techniques is presented, including algebra, analytical
method, iterative method, numerical method, geometric method, homogeneous matrix, DH
algorithm, and quaternion algebra. A classification of 4-dof manipulators and the DH
parameters as well as their mathematical modeling has been presented. A series of steps will
be presented to implement the simulator.

www.usn.no

19

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

Chapter 5 discusses about the adopted optimization algorithms for the solution of inverse
kinematics of robot manipulators. In this chapter forward kinematics equations are derived
from DH representation to find out the joint variables of robot manipulator. Kinematic results
achieved through all adopted techniques and comparison has been made with other existing
techniques. Forward and inverse kinematics along with the workspace analysis and joint angle
behavior has been addressed and compared.
Chapter 6 presents the real hardware unit implementation for various task. Output in the form
of pictures and Simulink blocks are depicted in this chapter in terms of the physical interfacing.
Chapter 7 will be a discussion of different problems about interfacing and coding in the thesis
which the author has experienced.
Chapter 8 presents the conclusions of the dissertation and future research guidance with
summary of contribution. That will conclude the report with an overall conclusion of the thesis.

1.9 Summary
In the current chapter, the general synopsis of the different types of robot manipulator,
classifications, history of developments are presented. The chronological progresses of some
techniques like kinematics and optimization are presented and status has been briefed. Basic
applications of kinematics and objectives are also discussed in this chapter.

www.usn.no

20

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

Chapter 2

MATERIALS AND METHODS

2.1 Overview
As a group of rigid joints connected by specific joints, robot manipulators can be considered.
It is possible to manufacture joints that are revolving, prismatic, screw-mounted, universal, or
cylindrical. A robot manipulator is considered to have the first link embedded at its base while
the last link can move around within its working space. Revolute joints rotate about their axes,
while prismatic joints slide along their axes without rotating. Later in the section are described
the selected configurations of robot arm manipulators and few methods applied on it to solve
interfacing with real hardware unit, kinematic solution and optimization.

2.2 Materials
There are two main categories of robot manipulators, which are classified according to the type
of kinematic chain they are made from. It is not only necessary to determine the classification
based on the type of robot, but it is also important to make it based on the joints and
connections, as explained in the previous section. Ideally, from a research perspective, we are
looking to develop university level robot manipulators whose simplest configuration is a 4 to
6-dof revolute robot. There are various types of robots used in industries for various tasks, and
it is evident that robot manipulators with Trossen robotics configuration and revolute robots
with 6-degrees of freedom are mostly used in academic research. As a result of this, it was
decided to take only this kind of robot manipulators into consideration.

2.2.1 ReactorX 150 Robot Arm
The thesis involves the ReactorX 150 Robot Arm from Trossen Robotics and Interbotix, called
the X-series Robot Arms. The ReactorX Robot Arm is a part of a new series of different models
from Trossen Robotics including a total of 11 different versions with different degrees of
freedom (DOF), weight, operating weights, and reach. [1]

The models span from 4-6 DOF, working payload of 100g, as well as repeatability of 5-1mm
depending on the chosen model. The ReactorX model was chosen seeing as it has 6 DOF, a
repeatability of 2.5mm, while at the same time being on the cheaper side of the spectrum. A table
with the physical specifications for the ReactorX150 Robot Arm, given from the Trossen Robotics,
is given below, in Table 2.1.

www.usn.no

21

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

Table 2.1: Detailed specifications of the ReactorX150 Robot Arm [12]

Degrees of Freedom: 6

Reach: 450mm

Span: 900mm

Repeatability: 2.5mm

Working Payload: 100g

Weight: 4lbs ≈ 1.8kg

2.2.2 DYNAMIXEL Servo Technology
The ReactorX Robot Arm uses two different types of servos, the DYNAMIXEL XM-430-
W350T and the DYNAMIXEL XL430-W250-T, both of which offer monitoring of
temperature, as well as positional feedback, voltage levels, and load, all given through
communication with the DYNAMIXEL. The U2D2 is a communication protocol which gives
the user access to communicate with DYNAMIXEL servo motors. The servos are connected
through Daisy Chain. Daisy Chain refers to communication between multiple items through a
singular connection. As for the Trossen Robotics robot arms, all servos of a robot arm are
connected through Daisy Chain, thereby allowing the operator to communicate with each servo
despite only being connected with a connection point at the base of the robot arm. This allows
for a simplified communication as well as preventing the need for several ports or wires
to cluster or inhibit the movement of the robot arm [12].

2.2.3 Robot Operating System
Robot Operating System (ROS) is a framework mainly created for robot support in Ubuntu
Linux. While there are experimental versions available for other systems, such as Microsoft
Windows and macOS, the main goal is to create a loosely based framework which supports
packages and libraries from several different distributors in terms of robot knowledge. Through
this philosophy, the framework relies on different sectors experience in creating an operating
system (OS) which contains useful documentation, and code, for the different utilizations
for different robots [12].
Interbotix offers packages and documentation for most of their robot arms, all created and
tested in Ubuntu Linux, with the goal of creating easy to understand simulation software to run

www.usn.no

22

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

in ROS. This thesis uses the newer ROS2 software, specifically the “ROS2 Debian package”
version.

2.2.4 MATLAB

MATLAB is a coding language, or rather a programming platform/environment, owned by
MathWorks and is designed for programming with a higher focus mathematics, simulation,
and general manipulation of lot of data. The general purpose of MATLAB is to interface
programs cross different languages based on matrix data, i.e., use matrices to manipulate raw
data despite the original language of the data gathering. This matrix focus is also a part of the
name MATLAB, which in full is “matrix laboratory”. The language itself bears similarities to
other languages, such as Python, C++, and simpler versions of C#. MATLAB also supports
add-ons created by both the company itself, MathWorks, or other third parties. These add-ons
may add a lot of specific functions and code necessary for more specific purposes such
as Vision Technology, Machine Learning, and state machines [12].

2.2.5 Simulink
Simulink is a graphical simulation-based add-on to MATLAB which focuses on block-based
coding rather than script-coding, although user-defined blocks based on user-created scripts
are allowed. Much like the base-version of MATLAB, Simulink has the possibility of
adding on a lot of code and block created by MathWorks or third parties [12].

2.2.6 Simulation
MATLAB, and Simulink, will operate as the main software for the thesis seeing as the thesis
goal is to create interfacing between the robot arm and MATLAB. Based on the xacro-URDF
file conversions, described in chapter Xacro to URDF, the new URDF-files should be imported
to MATLAB and ran in Simulink to create a manual simulation of the robot arm. This
simulation will operate the same way as the original ROS2 simulation, documented through
several videos at Trossen Robotic [12].

2.3 Methods
This thesis primarily concentrated on inverse kinematics when interacting with real robot arms,
setting up DH tables, and analyzing robot manipulators based on inverse kinematics. One must
compute the joint variability associated with each joint of a robot manipulator in order to
determine all possible formations in which the end effector can be positioned in space. As a
result, authors have faced the following problems over the past few decades:
 There is a relationship between the complexity of the robot manipulator geometry and

the complexity of the inverse kinematic robotics problem. It is necessary that the first
three joints are the same to reach a satisfactory geometric solution.

 There are a few calculations which cannot be performed in real-time to solve the inverse
kinematic problem.

www.usn.no

23

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

 The possibility of achieving a closed form or single solution is not always possible.
 In addition, when it comes to some robot manipulator configurations, it is difficult to

get real solutions. A numerical solution is achieved from the algebraic solution of
kinematic equations.

 This thesis seeks to find out the joint variables or inverse kinematic solutions for the
RX150 manipulators but annotated with numerical solutions- when the Jacobian matrix
is singular (ill-conditioned), or the initial approximation is not precise, the solution may
be unstable. The main objective of this thesis is to find out the joint variables or inverse
kinematic solutions for the rx150 manipulators.

To achieve the thesis goal, several different methods have been used. Some of these
methods are the use of different software, such as MATLAB, with Simulink, and Robot
Operating System, while a physical approach includes the robot arm itself, to have a
concrete approach to testing and utilizing the different software programs. This chapter will
explain more about each method used and why these methods were relevant to the thesis.

2.3.1 Kinematics
A part of the goal in operating the robot arm was to fully utilize the kinematics part of physics.
Kinematics are based on motion of physical elements, which in this case is the robot arm,
and how force is used to manipulate a physical element [12].
Kinematics may significantly differ in expression from element to element, as well as between
different thesis or situations. This thesis has had a focus on inverse- and direct kinematics, also
called forwards- and inverse kinematics. The kinematics for this thesis would encompass how
different end effector positions and angles would affect the joints of the ReactorX arm, Six
joints in total. However, joint number five has not been used since this servo motor uses in
rotational application like screw fixing which is not a concern or interest for this thesis work.

2.3.1.1 Forward Kinematics
Direct/forward kinematics encompasses a more linear view on kinematics and could also be
seen as a more cause-and-effect approach. Forward kinematics is based on kinematics where
we can provide some known joint angles to the robot arm, which will calculate the end effector
position resulting movement by the robot arm.
By using forward kinematics, we can select the joint positions ourselves, as well as find/see
the position of the end-effector in 3D space based on the joint positions. The middle portion of
the gripper arm is the end-effector for the RX150 robot arm. As part of the simulation of the
forward kinematics of this robot arm, Simulink and Simscape Multibody are going to be used.
The first step is, to get the URDF file that tells us what physical and inertial properties of
the robot arms contains [12].

2.3.1.2 Inverse Kinematics
Inverse kinematics focuses on the end-product/goal of the movement and from there calculates
the necessary angles required for the joints. This could, for example, be by having the

www.usn.no

24

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

knowledge of the gripper position, of the robot arm, and a declared end effector position, and
from this deviation calculate the resulting angles/torque needed to move the gripper to the goal.
In order to solve the inverse kinematic problem, we assume that the position of the robot arm's
end-effector is known. A robot arm's end effector, as we mentioned earlier, is the center of the
left and right gripper links. For inverse kinematics to work, the position of the end-effectors in
space must first be defined. Trajectory generation is the process of defining this position.

2.3.1.3 Example of Kinematics
Transforming (either rotating or translating) a coordinate frame is also called as homogenous
transformation. In order to rotate a coordinate frame by an angle q1, we can use the rotation
matrix in a two-dimensional plane as shown below,

𝑅𝑅(𝑞𝑞1) = �
𝑐𝑐𝑐𝑐𝑠𝑠𝑞𝑞1 −𝑠𝑠𝑠𝑠𝑠𝑠𝑞𝑞1 0
𝑠𝑠𝑠𝑠𝑠𝑠𝑞𝑞1 𝑐𝑐𝑐𝑐𝑠𝑠𝑞𝑞1 0

0 0 1
� 2-1

In order to translate a coordinate frame by 𝑙𝑙𝑥𝑥 and 𝑙𝑙𝑦𝑦 length/distance, we can use the translation
matrix in a two-dimensional plane as shown below,

𝑇𝑇 (𝑙𝑙𝑥𝑥, 𝑙𝑙𝑦𝑦) = �
1 0 𝑙𝑙𝑥𝑥
0 1 𝑙𝑙𝑦𝑦
0 0 1

� 2-2

To find the position of end effector (given the joint angles) using forward kinematics, the
following transformations should be taken in their order:
(1) R(q1): Rotate the reference x − y coordinate frame by joint angle q1 in counterclockwise
direction (Figure 2.1(b)).
(2) Tx(l1): Translate in the x direction by length l1 (Figure 2.1(c)).
(3) R(q2): Rotate by joint angle q2 in counterclockwise direction (Figure 2.1(d)).
(4) Tx(l2): Translate in the x direction by length l2 (Figure 2.1(e)).
The homogeneous transformation matrix is then given by the product of rotation and translation
matrices as,

𝐸𝐸 = 𝑅𝑅𝑞𝑞1 .𝑇𝑇𝑥𝑥𝑙𝑙1 .𝑅𝑅𝑞𝑞2 .𝑇𝑇𝑥𝑥𝑙𝑙2

= �
𝑐𝑐𝑐𝑐𝑠𝑠(𝑞𝑞1 + 𝑞𝑞2) −𝑠𝑠𝑠𝑠𝑠𝑠(𝑞𝑞1 + 𝑞𝑞2) 𝑙𝑙1 cos(𝑞𝑞1) + 𝑙𝑙2cos (𝑞𝑞1 + 𝑞𝑞2)
𝑠𝑠𝑠𝑠𝑠𝑠(𝑞𝑞1 + 𝑞𝑞2) 𝑐𝑐𝑐𝑐𝑠𝑠(𝑞𝑞1 + 𝑞𝑞2) 𝑙𝑙1 sin(𝑞𝑞1) + 𝑙𝑙2sin (𝑞𝑞1 + 𝑞𝑞2)

0 0 1
� 2-3

As an example of the two aforementioned types of kinematics, the below equations, 2-4 and
2-5, may be given as example equations of a 2DOF. This example is based on a two-jointed

www.usn.no

25

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

robot arm. From the homogeneous transformation matrix, we can find the position of the end
effector (𝑥𝑥𝑒𝑒, 𝑦𝑦𝑒𝑒). It is given by the first two elements of the last column in equation 2-3 as,

𝑥𝑥𝑒𝑒 = 𝑙𝑙1 cos(𝑞𝑞1) + 𝑙𝑙2cos (𝑞𝑞1 + 𝑞𝑞2) 2-4

𝑦𝑦𝑒𝑒 = 𝑙𝑙1 sin(𝑞𝑞1) + 𝑙𝑙2sin (𝑞𝑞1 + 𝑞𝑞2) 2-5

The above equations calculate the resulting x and y coordinates based on the given length of
each joint arm, l1 and l2, and the angle of each joint, q1 and q2. This is direct kinematics. Known
angles and lengths result in a coordinate.
For inverse kinematics, the problem now is to find the joint angles q1 and q2 that would orient
the robot arm in such a way that the end-effector will reach the given position (𝑥𝑥𝑒𝑒, 𝑦𝑦𝑒𝑒).
Equations 2-4, 2-5 can be solved for q1 and q2 using algebra. Known quantities in equation 2-
4, 2-5 are 𝑥𝑥𝑒𝑒, 𝑦𝑦𝑒𝑒, 𝑙𝑙1 and 𝑙𝑙2. The unknown variables to solve are 𝑞𝑞1 and 𝑞𝑞2. Through a series of
formulations, the corresponding equations for q1 and q2 are given in 2-6 and 2-7, below.

𝑞𝑞1 = tan−1 �
𝑦𝑦𝑒𝑒
𝑥𝑥𝑒𝑒
� − tan−1 �

𝑙𝑙2 sin(𝑞𝑞2)
𝑙𝑙12 + 𝑙𝑙1𝑙𝑙2 cos(𝑞𝑞2) + 𝑙𝑙2 cos(𝑞𝑞2)�

2-6

𝑞𝑞2 = cos−1 �𝑥𝑥𝑒𝑒
2+𝑦𝑦𝑒𝑒2−𝑙𝑙12−𝑙𝑙22

2𝑙𝑙1𝑙𝑙2
� 2-7

The above equations for q1 and q2 are based on the knowledge of the joint lengths, l1 and l2, just
as before, but instead of knowing the angles, the x and y coordinates are now needed instead.
This is inverse kinematics. Seeing as a coordinate is given, with the goal of finding the
corresponding angles, more complicated equations are needed. In addition to being more
complicated, the equation for q1 requires the resulting angle for q2 as well, thereby showing the
dependency between angels when using inverse kinematics. A vector-based schematic of the
2-DOF robot arm is displayed in Figure 2. 1, while a more realistic depiction of a 2-DOF robot
arm is displayed in Figure 2. 2.

www.usn.no

26

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

Figure 2. 1: A 2-DOF robot with coordinate transformations [2]

Figure 2. 2: Animated image of a 2-DOF robot arm [3]

www.usn.no

27

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

2.3.2 Optimization to solve Inverse kinematic
Inverse kinematic solutions can be determined by using different optimization algorithms. To
apply optimization algorithms, all that is required is to define the objective function for the
respective manipulator. It is discussed in detail in chapter 5 how to formulate objective
functions, which can then be applied to any manipulator configuration with minor
modifications. A candidate solution is also produced for each individual joint variable by the
objective function, which can be defined by the configuration vector of the manipulator. A
forward kinematic equation and its associated constants or parameters are all that are needed
for this method. By using this methodology, many tasks related to robot manipulators can be
completed, such as design, kinematic analysis, and synthesis of kinematic structures.
Alternatively, MATLAB's 'fmincon' optimization function and 'sqp' algorithm can be used to
optimize robot manipulator tasks with higher degrees of freedom and more complex tasks.
Nonlinearity should be handled by optimization algorithms. Inverse kinematics can be solved
by implementing any optimization algorithm that is capable of solving various multimodal
functions. An optimization-based approach can be implemented to overcome the limitations
of conventional tools and intelligent methods [10]. It is generally assumed that the
optimization-based methods are more stable, and they often lead to convergent global
solutions. The current work investigates optimization methods based on error minimization
objective function.
Here, the objective function, associated constraints, and the formulation of the objective
function are all discussed in detail.

2.3.2.1 Position based function
The current position of the manipulator is described by (2.1):

𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐 = [𝑥𝑥𝑒𝑒 ,𝑦𝑦𝑒𝑒 , 𝑧𝑧𝑒𝑒] (2.1)
Desired position of end effector can be denoted by (2.2):

𝑃𝑃𝑑𝑑𝑒𝑒𝑑𝑑𝑖𝑖𝑐𝑐𝑒𝑒𝑑𝑑 = 𝑥𝑥𝑒𝑒_ℎ𝑎𝑎𝑐𝑐, 𝑦𝑦𝑒𝑒_ℎ𝑎𝑎𝑐𝑐 , 𝑧𝑧𝑒𝑒_ℎ𝑎𝑎𝑐𝑐] (2.2)
A comparison will be made between the current position of the end effector and the desired
position. This may result in the following equation being used to represent the fitness
function. This was determined using the equation (2.3) which is based on a homogeneous
Euclidian distance between the current positions and the desired positions of end effectors
evaluated by the number of iterations.

2.3
Current position 𝑥𝑥𝑒𝑒 , 𝑦𝑦𝑒𝑒 , 𝑧𝑧𝑒𝑒 can be evaluated from equations. (2.4), (2.5) and (2.6) as follows.

End effector position 𝑥𝑥𝑒𝑒 equation as,

 𝑥𝑥𝑒𝑒 = (cos(q1)*cos(q2))/20 + (3*cos(q4)*(cos(q1)*cos(q2)*cos(q3) -
cos(q1)*sin(q2)*sin(q3)))/20 - (3*sin(q4)*(cos(q1)*cos(q2)*sin(q3) +
cos(q1)*cos(q3)*sin(q2)))/20 + (3*cos(q1)*cos(q2)*cos(q3))/20 -
(3*cos(q1)*sin(q2)*sin(q3))/20 (2.4)

emin = Pdesiered(i) - Pcurrent(i)

www.usn.no

28

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

End effector position 𝑦𝑦𝑒𝑒 equation as,
𝑦𝑦𝑒𝑒 = (cos(q2)*sin(q1))/20 - (3*cos(q4)*(sin(q1)*sin(q2)*sin(q3) -
cos(q2)*cos(q3)*sin(q1)))/20 - (3*sin(q4)*(cos(q2)*sin(q1)*sin(q3) +
cos(q3)*sin(q1)*sin(q2)))/20 - (3*sin(q1)*sin(q2)*sin(q3))/20 +
(3*cos(q2)*cos(q3)*sin(q1))/20

(2.5)

End effector position 𝑧𝑧𝑒𝑒 equation as,
𝑧𝑧𝑒𝑒 = sin(q2)/20 + (3*cos(q2)*sin(q3))/20 + (3*cos(q3)*sin(q2))/20 +
(3*cos(q4)*(cos(q2)*sin(q3) + cos(q3)*sin(q2)))/20 + (3*sin(q4)*(cos(q2)*cos(q3) -
sin(q2)*sin(q3)))/20 + 1/4 (2-6)
The above three equations (2.4), (2.5) and (2.6) derived from DH representation and
homogeneous transformation matrix which has been briefly discussed in chapter 5.
Subjected to joint limits in radian

−1.57 ≤ 𝑞𝑞1 ≤ 1.57

−1.57 ≤ 𝑞𝑞2 ≤ 1.57

−1.57 ≤ 𝑞𝑞3 ≤ 1.57

−1.57 ≤ 𝑞𝑞4 ≤ 1.57
Now overall error minimization objective function can be given as follows,

 𝐽𝐽 = 𝑞𝑞1,𝑞𝑞2,𝑞𝑞3,𝑞𝑞4
𝑚𝑚𝑖𝑖𝑐𝑐 𝑒𝑒𝑇𝑇𝑄𝑄 𝑒𝑒 (2.7)

where Q is 3x3 weighting matrix for the minimization of the problem and calculation of the
entire joint angles base on constraint can be achieved using objective function (2.8). The
performance of considered algorithm is checked with the parameters: 𝑙𝑙1 = 0.117 m,
𝑙𝑙2 = 0.133 mm, 𝑙𝑙3 = 0.150 mm, 𝑙𝑙4 = 0.147 mm, 𝑏𝑏1 = 0.015 mm. Upper and lower limit of five
joint angles(in degree) are: 𝑞𝑞1 = [-90, 90]; 𝑞𝑞2 = [-75, 90]; 𝑞𝑞3 = [-90, 30], and 𝑞𝑞4= [-90, 90].

2.4 Summary
This chapter presents the discussion of different materials and methods adopted for the
kinematic analysis. The main purpose of this chapter is to avail the detail description of
adopted material for interfacing with robot manipulator, kinematic analysis, and different
methods to achieve the objective of the thesis. The detailed derivation of forward and inverse
kinematic solution has been given in chapter 5 where the result of inverse kinematic solution
from optimization technique also represented.

(2.6)

www.usn.no

29

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

Chapter 3

Interfacing with ReactorX 150 Robot Arm

3.1 Overview
Interfacing with the robot arm is one of the major goals in this thesis since ‘Forward’ and
‘Inverse’ kinematic, ‘Pick and Place’ operation, and ‘Collaborative or Interactive’ task between
two ReactorX 150 robot arms shall be done in real hardware. Dynamixel wizard and manual
sliders are used which provide inputs or set goals to test the different servos. This chapter will
focus basically on the interfacing, as well as how to communicate, with the five different servo
motors of the robot arm.

3.2 DYNAMIXEL Wizard
Before connecting and running any code, it is very useful to connect to the robot arm using the
DYNAMIXEL Wizard application, which is provided by DYNAMIXEL. Out of the many
different features of the application, the most important feature is to view all the information
of every register/servo, i.e., current position, temperature of the servo, PID values etc.
Moreover, control of servos can also be done from this application. Safety boundary of
different servos can also be set from this wizard. The most useful part of this application is the
initial scan for different baud rate and DXL_ID, which is the ID for the different servos.
The DYNAMIXEL Wizard is displayed in Figure 3-1 [12].

Figure 3. 1: The interface for the DYNAMIXEL Wizard 2

www.usn.no

30

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

3.3 Mode of servo operation
RX150 robot arm uses Dynamixel servo motor in each joint. There are two types of servo
motor (XL430 and XM430) are used in this manipulator arm. Dynamixel servo has different
operation mode which has been presented in Table 3-1.

Table 3. 1: Different mode of servo operation

3.4 Implementing the Library
Another way to connect to the robot arm is the DYNAMIXEL SDK. It is a software library,
mainly created in C and C++, which enables the user to communicate with the various
DYNAMIXEL units, such as the servos. This library is integral for interfacing with the
ReactorX 150 Robot Arm, or any of the other ROS-based robot arms. This library is available
in several different programming languages, such as C, C#, C++, LabVIEW,
JAVA, MATLAB, etc.[12].
In this thesis, the MATLAB library was used as an interface to communicate with ReactorX
150 Robot Arm. The library includes several methods which simplifies the process of
communication. Some of the more relevant methods include a “read_write.m” file, which is
used for simple communication with the arm, a “bulk_read_write.m”, which is used for
multiple messages, and a “rebooting.m”, which is helpful to reboot the robot without having
the possibility of doing something wrong [12]. For a full list of the different methods
generated, please use this link [5].

www.usn.no

31

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

3.4.1 Bulk_Read_Write.m
The “read_write.m” file should be the first MATLAB program to change seeing as other
programs build of the communication method. The program uses a while loop in which the
communication is executed, and in each loop, program waits for the next user input. Initially,
this program sends command to first servo (DXL_ID_1) to rotate 360° rotation which is base
servo. Later the program is modified to give command to all 5 servos in the same while loop.
Different DXL_ID from 1 to 5 is used to address individual servos [12].
The file starts with the different addresses which is relevant for the communication. This may,
e.g., be referring to torque, velocity, position, etc. A code snippet of the “read_write.m”, with
the addresses, is displayed in Table 3-2.
Care should be taken to check the ADDRESS of the registers which may not be same with
working robot. The baud rate is usually 1,000,000 by default but may be adjusted if needed.

Table 3. 2: Address code in "bulk_read_write.m" [12]

% Control table address

ADDR_PRO_TORQUE_ENABLE = 64;% Control table address is different in

DYNAMIXEL model
ADDR_PRO_GOAL_POSITION = 116;
ADDR_PRO_PRESENT_POSITION = 132;
ADDR_PRO_GOAL_VELOCITY = 104;

The communication with the robot arm is done through a computer port, and the port number
can be found in the Device Manager, in Windows. After connecting computer with the robot
arm, the port is then mentioned as the communication port in the program.
After the connection, the next goal for the program is to write instruction to the relevant
addresses to the robot arm. After successful connection next part of code will be to enable
torque of servo. The code which enables torque is displayed in Table 3-3. If the connection
is unsuccessful, the program ends [12].

Table 3. 3: Communication related code in "read_write.m"[12]

% Enable Dynamixel Torque DXL_ID_2

write1ByteTxRx(port_num, PROTOCOL_VERSION, DXL_ID_2,

ADDR_PRO_TORQUE_ENABLE, TORQUE_ENABLE);
dxl_comm_result = getLastTxRxResult(port_num, PROTOCOL_VERSION);
dxl_error = getLastRxPacketError(port_num, PROTOCOL_VERSION);
if dxl_comm_result ~= COMM_SUCCESS
 fprintf('%s\n', getTxRxResult(PROTOCOL_VERSION, dxl_comm_result));
elseif dxl_error ~= 0
 fprintf('%s\n', getRxPacketError(PROTOCOL_VERSION, dxl_error));
else
 fprintf('Dynamixel has been successfully connected \n');
end

www.usn.no

32

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

Upon enabling torque , the program then starts a while loop which reads, and waits for, user
input continuously. This keyboard input check code is showed in Table 3-3. The example
code currently communicates with servo number 1, which is the rotation-based servo.

Expansion to all five servos is done by expanding the program to include checks for other
keyboard inputs related to other servos, differentiated by their respective DXL_ID number.

3.5 Communication Protocol and Run Mode
ReactorX 150 Robot arm has 2 - XM430-W350-T servos and 4 - XL430-W250-T servos. Both
types of servos are operated with an ARM Cortex-M3 32-bit controller. They are also attached
with 12-bit contactless encoder to allow for 360° movement without having cables in the way.
It supports baud rates from 9600 up to 4.5 Mbps, and this thesis uses a baud rate of 1 Mbps.
Each servo has a resolution of 4096 pulse/rev, resulting in a high accuracy and has the
PID control [12].

Each servo has four different modes: Velocity Control, Position Control, Extended Position
Control, and PWM Control. PWM Control operates on a voltage spectrum, and Extended
Position Control allows multiple turns instead of the 360° limit in the Position Control. This
thesis utilizes the Position Control seeing as this was deemed as the more relevant control for
positioning.

The physical connection between the computer and the ReactorX 150 Robot Arm is a TTL
half-duplex asynchronous serial communication. Half-duplex implies that both units may read
and write, but not at the same time. The serial communication packets are 8 bits, 1 start bit, and
no parity.

3.5.1 Communication Protocol Details
The DYNAMIXEL servos allow two different protocols, being DYNAMIXEL Protocol 1.0
and DYNAMIXEL Protocol 2.0, where Protocol 2.0 is the recommended protocol. These
protocols use instruction packets to execute tasks with the robot arm. The packets are built
according to Figure 3-2. The “ID” references the servo ID, the “Length” references the length
of the packets which is to ensure the entire packet is received, the “Inst” references the given
instruction for the robot arm, while the “Param” is extra parameters to execute
instruction which is not mandatory for all instruction [12].

www.usn.no

33

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

Figure 3. 2: The build-up of communication packets

In addition to sending packets, it is also possible to read the status of the sent packet to check
for communication errors. An example of such a packet read is depicted in Figure 3-3.

Status packet

Figure 3. 3: The reading of a sent packet with error status [12]

There are several different instructions, as well as different instructions dependent on the
control table, the servos are operating on. As previously mentioned, the servos receive their
instructions as a packet. An example of such a table of instructions is given in Figure 3-4 and
instruction packet flow chart between software application and robot arm illustrated in Figure
3-5.

www.usn.no

34

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

Instruction packet

Figure 3. 4: Table with instructions, and descriptions, for the servos [12]

 Figure 3. 5: Instruction packet flow chart between software application and robot arm

As a part of the several settings and register value available within the servos, it is also possible
to set limitations or retrieve register values from the servos. These values are separated into
two different tables, a EEPROM Area table and a RAM Area table. The RAM data is data
which is deleted/removed on shutdown, while the EEPROM data is data which is stored with
the servos. RAM data may for example, information regarding the current speed, position, if
torque is enabled, and trajectory, while EEPROM is data regarding the model number, ID

www.usn.no

35

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

number, baud rate, and limitations. Images of the start of each data table is depicted in Figure
3-6 and Figure 3-7.

Figure 3. 6: Start of the EEPROM Area data table [12]

Figure 3. 7: Start of the RAM Area data table [12]

www.usn.no

36

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

3.6 Software stack and libraries
Software components that comprise a software stack may include virtualization or abstracted
hardware resources, as well as other components necessary to run an application. Stacking is
the process which combines individual components to support the application to execute. In a
hierarchical structure, each component consists of an architectural layer, protocols, operating
system, runtime environments, databases, and function calls. Higher-level components
usually perform specific tasks and services for end users in our thesis its MATLAB
application while the lower-level components typically interact with hardware which is
RX150 robot arm communication board. Through complex instructions traversing the stack,
components communicate directly with applications. “MATLAB C” library and U2D2
software protocol been used by Dynamixel servo at the lowest level which is drawn in Figure
3-8.

 Figure 3. 8: Software stack flow

www.usn.no

37

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

3.7 Summary
Several important steps are given as follows which are required during interfacing with
RX150 manipulator arm (real hardware unit).
 Dynamixel wizard 2.0 need to be installed.
 Real unit setup, calibration, servo motor testing shall be done by using Dynamixel

wizard shown in Figure 3-9, before interfacing through MATLAB.

Figure 3. 9: Dynamixel wizard operating Area.

 Dynamixel servo Id, mode of control, comport for communication, profile
acceleration and velocity, goal and present position address, rebooting/resetting servo
motor in case of overload can be monitored and change by using this application
illustrated in Figure 3-9.

 During interfacing through MATLAB, first thing needs to do is run the Hardware
initialization script and check comport and all the servos are communicating with
MATLAB. Figure 3-10 shows the servo motor communication result in MATLAB
command window. If there is any problem in communication with any of the servo
motor, then error message “There is no status packet” will pop up in command
window. In that case, user have to check in Dynamixel wizard either servo ID is
wrongly addressed in MATLAB script or servo motor got tripped.

www.usn.no

38

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

 Figure 3. 10: MATLAB script and command window with communication result.

 Once Dynamixel servo motor successfully connected through U2D2 software
protocol, user can run the desired MATLAB script or Simulink model where Read
and Write address has been written inside MATLAB function. For example,
Figure 3-11 shows MATLAB Hardware function in Simulink.

 Figure 3. 11: MATLAB Hardware function in Simulink for multi robot interactive function.

www.usn.no

39

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

Chapter 4

ReactorX 150 Robot Arm Simulation

As a start to the goal of successfully interface MATLAB with the ReactorX 150 Robot Arm, a
functioning simulator must be created first. This simulator should be able to replicate the
functions of the physical arm, as well as operating as a safer step seeing as it is possible
avoiding physical damage. This chapter will go through the several steps needed to be able to
implement the ReactorX 150 simulator with MATLAB.

4.1 Xacro to URDF in ROS2
Interbotix offers many simulations, and packages, for ROS2 and seeing as the simulations are
all stored in the xacro file format, the main goal is to convert these files, and simulations, into
a format usable for MATLAB.
After installing, and running, the ROS2 in Linux platform, the xacro files were converted to a
Unified Robot Description Format (URDF) format. These files were given from an Interbotix
GitHub repository [4]. This conversion is supported in ROS2 and is simply done with the
below code line, showed in Table 4.1. The “rx150” refers to the specific robot arm which the
files are based on. There are simulators for all the aforementioned robot arms, mentioned in
chapter ReactorX 150 Robot Arm, and dependent on the robot arm, the name of the file
must be changed [12].

Table 4. 1: ROS2 code line for file conversion[12]

ros2 run xacro xacro -o rx150.urdf rx150.urdf.xacro

Both the URDF and xacro file formats are based on the standard XML file format which makes
the conversion possible. The URDF file is then ready to be imported, and used, in
MATLAB with Simulink, in order to simulate the robot.

4.2 Robot Arm Calibration and Movement from Simulink
For the purpose of simulating the robot arm in a MATLAB environment, the URDF and rigid
body tree models are needed. A rigidbodytreemodel is one way to represent the mechanical
properties of a robot arm in MATLAB and to visualize and control robot arms in Simulink.
This is the first step for utilizing the robotics toolbox in MATLAB and for visualizing and
controlling the robot arms in Simulink. As shown in Figure 4-1, a rigid body tree is made up
from rigid bodies that are attached to each other via joints, similar to the joints on robot arms.
There are several joints found in rigid bodies that determine how these bodies move in
relation to their parent bodies. According to Figure 4-1, the top-left corner shows the world
coordinate frame, which is created by linking to the base link. All other links of this system
are positioned

www.usn.no

40

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

according to the world coordinate frame. Joints are the means by which two links/bodies are
connected to each other. The links in joint2 are formed by both the parent link Body1 and the
child link Body2. There are three main types of joints that are supported by the rigid body tree,
namely fixed, revolute and prismatic joints. It is also important to note that a fixed joint is not
able to move the rigid body/link. The rigid link in this case is rigidly attached to the parent
body. As the name implies, the revolute joint enables a body/link to rotate around one of its
axes (either the x, y, or z axis) with respect to its parent. It should be noted that when using the
prismatic joint, there is only the possibility of translation (and no rotation). According to the
axis of motion, the body moves linearly in relation to its parent link. There are several details
that should be provided in order to describe the robot, such as the type of joints, the length of
the links, the mass of the link, as well as the inertial properties of the link/body and ideally
the origin position(coordinate) of the body [12].
There is a file called URDF (Universal Robot Description Format) that contains a bundle of
information describing the physical properties of a robot. A 3D-model of a robot can also be
included in the URDF file which allows one to describe the robot. This type of 3-dimensional
model of a robot can be created by the use of computer-aided design (CAD) programs such as
AutoCAD, Solidworks, TinkerCAD, etc. For 3D rendering, URDF supports the export of .stl
files.Importing URDF model in Simulink
The simulation was created by running the newly created URDF file, or more specifically,
using the MATLAB command “smimport ‘RX150_robot’” in the command window. Then the
geometry file should thereby be created within the same path as the URDF file. Upon starting
the simulation, a file for the ReactorX 150 geometry opens and executes customizations
for clear visualization which then prepares the simulation [12].
The first step after importing the command is to connect each joint to their respective geometry
files and settings. The block diagram of this file is shown in Figure 4-1. The block diagram is
mainly based on “link” blocks, the white squares, and “revolute joint” blocks, which are a part
of the simulation system. In addition, the five main joints are given their respective ID number,
ranging from 1-5 where id number 5 is not used because it is not relevant for this thesis, for
example, this servo is used for tightening the screw.

Figure 4. 1: Simulink code for the geometric link and joints for the robot arm

www.usn.no

41

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

The file also changes the settings for the joints when the files are linked and changes the unit,
which is changed from meters to millimeters, to get the clear view of entire robot arm. As an
example, a visual block, for the upper arm, is displayed in Figure 4-2, as well as the change of
unit for the revolute joint. This change is done for all joints.

Figure 4. 2: Visual block for the upper arm of rx150

The next step is to change the actuation of all five movable joints, namely the base, waist,
shoulder, elbow, and wrist joints. The actuations of these joints are set to “Automatically
Computed” for torque, and “Provided by Input” for motion. This actuation setting results in
inverse kinematics seeing as the resulting motion is the input, and the necessary torque is
computed. The inputs for motion are given through several sliders. An example of a visual
block for waist, in which this setting is changed, is displayed in Figure 4-3.

www.usn.no

42

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

Figure 4. 3: Visual block for selection of actuation for the waist joint[12]

The third, and final, step of this customization file is to connect the aforementioned slider inputs
with the simulation block named “rx150_robot_arm”. This is the main block for the simulation.
To connect these sliders, five inputs are provided. These inputs are based on the input selection
from the previous step. Each joint angle input is connected to a slider based on degrees, and
the degree signal is converted into radians before being sent to the simulator or Simulink model.
In addition to this input, a MATLAB library function is used to convert the MATLAB Simulink
signal into a physical signal. This converter is named “Simulink PS” shown in figure 4-1. The
system is currently running as a simulator, but the program itself is created as a physical
movement, thereby requiring the converter regardless. The block diagram for the simulator,
with the inputs, is displayed in Figure 4-4 and robot arm simulation shown in Figure 4-5.

Figure 4. 4: Block diagram of the "rx150_robot_arm" with the slider inputs [12]

www.usn.no

43

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

 Figure 4. 5: The "rx150_robot_arm" visualization with the slider inputs

4.3 Movement and Calibration of Simulation
The implementation of the simulator was necessary both in terms of testing the movement and
communication but was also necessary in order to test other functions such as trajectory
tracking and inverse kinematics. The simulator offers a graphical system in which the
communication and movement of the robot arm may be tested.
Figure 4. 6, shows the zero-degree position (ZDP) for the simulation arm. The ZDP is defined
at 0° for joint 2, 3, 4, and 5, while joint 1, the rotation, is defined at 180°. This ZDP is being
used as starting point, i.e., all movement is based on its difference from the ZDP, which is then
used to calculate the current position. Seeing as the declared ZDP differs from some of the
joints’ 0° values, equations has been used to track the declared ZDP. These equations are
given below as equation 4-1 and 4-2. Equations are made based on servo charactristic.

𝑞𝑞1 =
−(2047 − digitalbit)

11.375
(4.1)

q2 = q3 = q4 =
(2047 − 𝑑𝑑𝑠𝑠𝑑𝑑𝑠𝑠𝑑𝑑𝑎𝑎𝑙𝑙𝑏𝑏𝑠𝑠𝑑𝑑2,3,4)

11.375
(4.2)

The 180° limitation for rotation is based on physical construction of robotic arm, which is
considered in the simulation. The limited ranges of joint 2 and 3 is also based on physical
limitation.

www.usn.no

44

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

Figure 4. 6: ZDP for the simulation with slider inputs [12]

The simulator movement may be both position-based, using inverse kinematics, or slider-
based, sending inputs to each joint. As an example of the slider-based movement,
the simulation arm was given several angles to set, and one of these inputs are given in
Figure 4.6 which is zero-degree position of robot arm means slider inputs are zero for all
joints. The Figure 4-6 shows both the position of the simulation arm as well as the input
angels from the sliders. The simulation is based on thumb rule of robotics which is negative
degree of angle for clockwise and positive degree of angle for anti-clockwise. This is a setting
given in the original URDF file. From the image, Figure 4. 7, the 2nd slider is given 90° as
an input, resulting an anticlockwise movement 90° in joint 2. In joint 3 and 4, negative
degree of movement is provided, resulting in clockwise movement. The plots for each of the
joint values, at the random position, is given in Figure 4. 8.

Figure 4. 7: Random position with slider inputs [12]

www.usn.no

45

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

Figure 4. 8: The angel plot for the joints at the random position [12]

An example of using position-based movement in the simulation is given in Figure 4.9. By
using inverse kinematics, as documented in chapter Inverse Kinematics, the chosen position is
used to calculate the necessary joint angles. As a part of these calculations, the trajectory
may be plotted together with the simulation viewer. This plotting is displayed in Figure 4.9.
The movement is documented with red points, while the trajectory coordinates are displayed as
blue circles. It is therefore also possible to see the most efficient line of movement by
watching the red line between two coordinates.

www.usn.no

46

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

Figure 4. 9: The simulation of the RX 150 Robot Arm with trajectory based on inputs [12]

4.4 Trajectory Visualization with Inverse Kinematics in MATLAB
Simulink

This sub chapter will focus of the block diagram of the inverse kinematic simulation, describing
the general flow and purpose of the several blocks used for the simulation.
As a result of this, we have defined the trajectory (collection of the end-effector positions in
3D space) as well as the velocity of the waypoints. The robot arm has to be made to follow this
trajectory using inverse kinematics, which in its simplest form asks what angle of joint must
be applied to reach the position at the end-effector given the end-effector position. The inverse
kinematic problem for the RX150 robot arm will be formulated and solved using Simulink in
order to determine and solve the problem.
The first three “constant block” from the left side in Figure 4-10, represents the three
inputs: waypoint, velocity, and time. Waypoint contains the coordinates of trajectory for the
robot arm, velocity being the speed of travelling from one coordinate to next coordinate of
trajectory, and time being the timeframe of the entire motion.
These inputs are sent to a ‘Polynomial Trajectory’ block which gives a matrix output of the
given inputs, which is then transformed before being used as the basis for the necessary
kinematic calculations, which in this case the inverse kinematics. The calculated joint angles
are then given to robot simulation function block based on the initial position feedback taken
from robot model and also stored in MATLAB workspace as variable name V as q1, X as q2,
Y as q3 and Z as q4 shown in Figure 4-12, in order to use later to test forward and
inverse kinematic problem with real hardware unit.
Some minor actions are taken to avoid algebraic looping, and to remove delay, before the final
values are sent to the simulator, which then executes the movements. After the movement in

www.usn.no

47

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

the simulator, the current position is returned to calculate error/deviation, thereby creating a
feedback loop to account for any errors.
The final block is the visualization in Simulink, i.e., the function which makes the movements,
as well as the simulation, graphically visible. This process is displayed in the block diagram
shown in Figure 4-10. The inverse kinematics also makes it possible to track the movement of
the simulation arm. The “visualizationRobot.m” file is also needed to visualize the robot arm
movement, which follows the trajectory. According to the given waypoints and cubic
polynomial trajectory formulation inverse kinematic solution has been displayed in 3-
dimensional plot as in Figure 4-11.

Figure 4. 10: Inverse kinematic simulation block diagram of the RX150 robot arm

 Figure 4. 11: RX150 robot arm simulation result

www.usn.no

48

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

4.5 Inverse kinematics output stored in MATLAB workspace
Inverse kinematic output for defined trajectory stored in MATLAB workspace by using a
library block called ‘To Workspace’ shown in Figure 4-12. The purpose to use this library
block is to use the joint angles during real hardware interfacing.
In addition, these joint angles can be used in forward kinematic equation as timeseries data to
move the robot in desired trajectory.

 Figure 4. 12: RX150 robot arm joint angles result saved in workspace

4.6 Summary
This chapter represented the calibration and setup of Simscape model to make the RX150
robot arm ready for simulation environment. Robot arm manipulator movement by using
slider was also a part of simulation. In addition, most important part of the simulation was
trajectory following which has been done by using inverse kinematic engine from Simulink
library. The main purpose of this chapter is to avail the simulation environment ready and
tested the robot model before interfacing with real hardware unit.

www.usn.no

49

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

Chapter 5

Mathematical Modelling , Kinematic And Optimization Analysis
Using Denavit Hartenberg representation

5.1 Overview
In various fields of the recent technology and trend, the conventional solution approach of
kinematics is pivotal, this section extends varying from computer graphics (e.g. analysis of
animation characters) to further expansion of space manipulation and simulation. As a result,
all these applications are fundamentally based on evaluating both the position and orientation
of the Cartesian coordinates of the end effectors of robot manipulators as well as the joint
variables of the robot. A homogeneous transformation matrix method can be used for
evaluating the position and orientation of end effectors and their joint variables. There are
two main types of methods for describing kinematic relations between joints and for
describing the motion of links.

5.2 Representation methods and kinematics
It is possible to understand kinematics with the use of a chain or links connected to joints for
the creation of relative motion, without studying the torques, forces, or mechanisms by which
the motion occurs. The kinematic system of a robot can be understood as the motion of the
robot link with respect to a single fixed coordinate system or base coordinate system with
time as it is perceived [10]. It is also possible to study the higher derivatives of the kinematics
of robot link, such as velocity, jerk, acceleration, etc.

5.3 Kinematic variables and parameters
Usually, a kinematic chain is composed of a pair of links, perhaps linked by revolute or
prismatic joints with rotating or translating degrees of freedom. As described in the literature,
there are numerous approaches for representing kinematic chains mathematically. There are
major differences in how coordinate frames are attached to these approaches. For this reason,
Denavit-Hartenberg parameters are commonly employed. For the placement of coordinate
frames to links and joint variables, homogeneous transformation matrices are more
appropriate [11]. There are four parameters in the method which are known as DH
parameters of a kinematic chain. A link's geometry and the joint's relative displacement are
defined by these scalars. As a result of this representational method, the kinematic
description is simplified, and mathematical/arithmetical operations are reduced. Using the
Figure 5.1 as an example, it’s possible to determine the position and orientation of the joint
axis relative to the base coordinates X, Y, Z with a minimum of four parameters. As a result,
the magnitude of the length (a) that is located from the origin of the frame to the point of
another joint at an

www.usn.no

50

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

offset distance (d). θ represents the angle formed by OA, which is parallel to x-axis, and OP.
α represents the angle formed by PQ, as shown in the diagram, this angle represents the
rotation about the z axis, which is measured in terms of the x-axis. A joint axis can rotate by a
certain angle if the axis is parallel to the z-axis and measured in the z-direction. The four
scalars a, α, θ, and d represent Denavit Hartenberg parameters which are used to represent the
position of the axis of joints in Cartesian coordinate systems. There is a more detailed
discussion of these four parameters in the following section.

 Figure 5. 1: Position and direction of a cylindrical joint in a coordinate frame

The Denavit-Hartenberg (DH) representation is a better choice when dealing with complex
robotic systems, including robot arms with offsets. In industrial robot arm configurations, the
DH representation is widely used and is regarded as a universal method of identifying robotic
arm manipulators. For robot arm configurations with offsets, the DH representation is very
useful. Using the DH representation, it is possible to calculate the kinematics of complex
robotic systems with only four basic parameters. There are two displacement parameters and
two rotation parameters in this list. As a result of the convention of DH representation,
counterclockwise (CCW) rotation is positive, and clockwise (CW) rotation is negative.

5.3.1 DH-Parameters
From Table 5.1, DH- parameters can be defined as follows with the geometry and
orientation of associated links considered:

www.usn.no

51

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

Table 5. 1: DH parameters

Parameter Name Description

𝜃𝜃𝑖𝑖 Rotation of the joint, which is measured as the angle at which links
𝑥𝑥𝑖𝑖−1 and 𝑥𝑥𝑖𝑖 rotate about the 𝑧𝑧𝑖𝑖−1 .

ai It can be defined as the length of the common normal between links i+1
and i, measured in the direction of 𝑥𝑥𝑖𝑖 , i.e. from axis i to i+1.

di This parameter describes the difference between the common normal and
the coordinate 𝑥𝑥𝑖𝑖−1 or the distance from the origin of coordinate frame to
the positions of i a in direction of 𝑧𝑧𝑖𝑖−1 .

αi This parameter, also known as the twist angle parameter, is defined as the
angle of inclination between the axes of the links measured in 𝑥𝑥𝑖𝑖 direction
and the angle from 𝑧𝑧𝑖𝑖−1 to 𝑧𝑧𝑖𝑖 .

These parameters describe the complete geometry of kinematic pair, if the joint is revolute
then 𝜃𝜃𝑖𝑖, di will be only variables and rest of the parameters will be constant while in case of
prismatic joint di will be the variable and similarly other parameters will be constant.

5.3.2 DH-algorithm for frame assignment
According to the DH algorithm, the references of 𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0 coordinate are attached to non-
moving links of the base coordinate frame and the local coordinate frames are attached to the
joints of the moving links. In this case, i-1 to i are the connecting links where i=1,2,3...n.
Hence, the basic steps required in order to assign frames using the DH-algorithm are as
follows.
When it comes to the coordinate frames, there are three rules that have to be followed. For
each of the three coordinate frames, the following rules apply:

1. To determine the joint axis, the z-axis must be chosen in the same direction as the
joint axis. When a joint is revolving, the axis of rotation is the join axis, and this is the
z-axis as well. In a prismatic joint, the joint axis is the axis along which the movement
takes place.

2. It is also recommended that, the right-hand rule for the y-axis. The thumb is
responsible for the x-axis, the index finger is responsible for the y-axis, and the
middle finger is responsible for the z-axis.

3. In order to satisfy rule number 3 the 𝑥𝑥𝑖𝑖 axis must be interested in the 𝑧𝑧𝑖𝑖−1 axis.

Step 1 Draw the kinematic diagram of desired robot arm manipulator. The base frame is
typically 𝑥𝑥0,𝑦𝑦0, 𝑧𝑧0 attached to the fixed body at the origin in such a way that the axis of
rotation aligns with the 𝑧𝑧0 axis, while 𝑥𝑥0 will also be placed arbitrarily depending on the

www.usn.no

52

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

direction in which the manipulator is moving towards the perpendicular rotation axis or with
the direction in which the manipulator is moving forward. The last axis 𝑦𝑦0 can be placed by
using the right-hand coordinate rule which is 𝑦𝑦0 = 𝑧𝑧0 ∗ 𝑥𝑥0.

Step 2 The 𝑥𝑥𝑖𝑖 axis shall be chosen such that it is perpendicular to both the 𝑧𝑧𝑖𝑖 and 𝑧𝑧𝑖𝑖−1axes.
Step 3 Establish the coordinate system for the end-effector. Coordinate frames for the end-
effector should be identical to those for the previous frame, i.e. the immediately preceding
coordinate frame should be duplicated on the end-effector.

Step 4 Creating a table with DH parameter a𝑖𝑖 ,𝛼𝛼𝑖𝑖 , θ𝑖𝑖 and 𝑑𝑑𝑖𝑖 where

a𝑖𝑖 = Displacement between two coordinate frames along 𝑥𝑥𝑖𝑖 axis.

𝑑𝑑𝑖𝑖 = Displacement between two coordinate frames along 𝑧𝑧𝑖𝑖−1 axis.

𝛼𝛼𝑖𝑖 = 𝑅𝑅otation around 𝑥𝑥𝑖𝑖 axis that is required to rotate 𝑧𝑧𝑖𝑖−1 axis to get it match 𝑧𝑧𝑖𝑖 axis.

θ𝑖𝑖 = rotation around 𝑧𝑧𝑖𝑖−1 axis. θ𝑖𝑖 is a joint variable when the joint is revolute.
Step 5 Substituting the values for i = 1, 2, ..n into Ai, a homogeneous transformation matrix
shall be created.

𝐴𝐴𝑖𝑖 =

⎣
⎢
⎢
⎡
𝑐𝑐𝑐𝑐𝑠𝑠θ𝑖𝑖 −𝑠𝑠𝑠𝑠𝑠𝑠θ𝑖𝑖𝑐𝑐𝑐𝑐𝑠𝑠α𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠θ𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠α𝑖𝑖 𝑎𝑎𝑖𝑖𝑐𝑐𝑐𝑐𝑠𝑠θ𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠θ𝑖𝑖 𝑐𝑐𝑐𝑐𝑠𝑠θ𝑖𝑖𝑐𝑐𝑐𝑐𝑠𝑠α𝑖𝑖 −𝑐𝑐𝑐𝑐𝑠𝑠θ𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠α𝑖𝑖 𝑎𝑎𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠θ𝑖𝑖

0 𝑠𝑠𝑠𝑠𝑠𝑠α𝑖𝑖 𝑐𝑐𝑐𝑐𝑠𝑠α𝑖𝑖 𝑑𝑑𝑖𝑖
0 0 0 1 ⎦

⎥
⎥
⎤
 (5-1)

Step 6 In order to evaluate the homogeneous transformation matrix for the position and
orientation of the end-effector, simply multiply all the individual 𝐴𝐴𝑖𝑖 .
The homogeneous transformation matrix (H) as,

𝐻𝐻 = 𝐴𝐴1 .𝐴𝐴2.𝐴𝐴3 .𝐴𝐴4 (5-2)

For the forward kinematics, the x-coordinate, y-coordinate, and the z-coordinate of the end-
effector position can be found from the first three rows of the last column of H respectively.

5.3.3 DH table representation of rx150 robot arm with offset
This paper discusses a mathematical modeling of forward and inverse kinematics of a robot
manipulator using the homogeneous transformation matrix method with DH parameters.
With respect to the base coordinates X, Y, and Z, the position and orientation of the joint axis
can be determined with minimum four parameters. This can be accomplished by drawing the
joint axis and the Z axis of the base frame. As a result, the magnitude of the common normal
represents the length l, which is represented as the offset distance d from the origin of Z axis.
Here, θ𝑖𝑖 represents a parallel angle to the x-axis. Angles represent rotations about z-axis and
are measured on the x-axis. In the diagram below, angle θ𝑖𝑖 represents the rotation of the axis
of the joint which is parallel to z-axis and measured in direction of z-axis.

www.usn.no

53

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

The first thing that should be done is to establish the coordinate frame.
In Figure 5-2, the coordinate frames are overlaid with the frame of the i joint, allowing the
distance or offset distance 𝑑𝑑𝑖𝑖 to be described, and the Joint Rotation parameter qi, which
corresponds to the rotation angle between links i and i-1 as measured from 𝑥𝑥𝑖𝑖−1 to 𝑥𝑥𝑖𝑖 about
the 𝑧𝑧𝑖𝑖−1. In addition to the definition of DH parameters, the mathematical expression of the
coordinate frames and the imposed frame can also be given by the homogeneous
transformation matrix that is an iterative product of the homogeneous transformation matrices
describing the DH parameters.

 Figure 5. 2: DH table coordinate frame of RX-150 robot arm configuration with an offset.

DH parameters and Homogeneous transformation matrix can then be evaluated, and then
written in a table form shown in Table 5-2, in this section, once all coordinate frames for all
links 𝑠𝑠 = 1, 2, 3, ..., n have been assigned.

www.usn.no

54

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

Table 5. 2: DH-parameters table for 4-dof revolute manipulator with offset

Link of joint ai di α𝑖𝑖 θ𝑖𝑖

i = 1 0 𝑙𝑙1 + 𝑙𝑙2 90° 𝑞𝑞1

i = 2 𝑏𝑏1(Offset) 0 0 𝑞𝑞2

i = 3 𝑙𝑙3 0 0 𝑞𝑞3

i = 4 𝑙𝑙4 0 0 𝑞𝑞4

𝐴𝐴𝑖𝑖 =

⎣
⎢
⎢
⎡
𝑐𝑐𝑐𝑐𝑠𝑠𝜃𝜃𝑖𝑖 −𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑖𝑖𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼𝑖𝑖 𝑎𝑎𝑖𝑖𝑐𝑐𝑐𝑐𝑠𝑠𝜃𝜃𝑖𝑖
𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑖𝑖 𝑐𝑐𝑐𝑐𝑠𝑠𝜃𝜃𝑖𝑖𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼𝑖𝑖 −𝑐𝑐𝑐𝑐𝑠𝑠𝜃𝜃𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼𝑖𝑖 𝑎𝑎𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑖𝑖

0 𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼𝑖𝑖 𝑐𝑐𝑐𝑐𝑠𝑠𝛼𝛼𝑖𝑖 𝑑𝑑𝑖𝑖
0 0 0 1 ⎦

⎥
⎥
⎤

 𝐴𝐴1 =

⎣
⎢
⎢
⎢
⎡𝑐𝑐𝑐𝑐𝑠𝑠𝑞𝑞1 −𝑠𝑠𝑠𝑠𝑠𝑠𝑞𝑞1𝑐𝑐𝑐𝑐𝑠𝑠90° 𝑠𝑠𝑠𝑠𝑠𝑠𝑞𝑞1𝑠𝑠𝑠𝑠𝑠𝑠90° 0
𝑠𝑠𝑠𝑠𝑠𝑠𝑞𝑞1 𝑐𝑐𝑐𝑐𝑠𝑠𝑞𝑞1𝑐𝑐𝑐𝑐𝑠𝑠90° −𝑐𝑐𝑐𝑐𝑠𝑠𝑞𝑞1𝑠𝑠𝑠𝑠𝑠𝑠90° 0

0 𝑠𝑠𝑠𝑠𝑠𝑠90° 𝑐𝑐𝑐𝑐𝑠𝑠90° 𝑙𝑙1 + 𝑙𝑙2
0 0 0 1 ⎦

⎥
⎥
⎥
⎤

 = �

𝑐𝑐𝑐𝑐𝑠𝑠𝑞𝑞1 0 𝑠𝑠𝑠𝑠𝑠𝑠𝑞𝑞1 0
𝑠𝑠𝑠𝑠𝑠𝑠𝑞𝑞1 0 −𝑐𝑐𝑐𝑐𝑠𝑠𝑞𝑞1 0

0 1 0 𝑙𝑙1 + 𝑙𝑙2
0 0 0 1

� (5-3)

𝐴𝐴2 =

⎣
⎢
⎢
⎢
⎡𝑐𝑐𝑐𝑐𝑠𝑠𝑞𝑞2 −𝑠𝑠𝑠𝑠𝑠𝑠𝑞𝑞2𝑐𝑐𝑐𝑐𝑠𝑠0° 𝑠𝑠𝑠𝑠𝑠𝑠𝑞𝑞2𝑠𝑠𝑠𝑠𝑠𝑠0° 𝑏𝑏1𝑐𝑐𝑐𝑐𝑠𝑠q2
𝑠𝑠𝑠𝑠𝑠𝑠𝑞𝑞2 𝑐𝑐𝑐𝑐𝑠𝑠𝑞𝑞2𝑐𝑐𝑐𝑐𝑠𝑠0° −𝑐𝑐𝑐𝑐𝑠𝑠𝑞𝑞2𝑠𝑠𝑠𝑠𝑠𝑠0° 𝑏𝑏1𝑠𝑠𝑠𝑠𝑠𝑠q2

0 𝑠𝑠𝑠𝑠𝑠𝑠0° 𝑐𝑐𝑐𝑐𝑠𝑠0° 0
0 0 0 1 ⎦

⎥
⎥
⎥
⎤

= �

𝑐𝑐𝑐𝑐𝑠𝑠𝑞𝑞2 −𝑠𝑠𝑠𝑠𝑠𝑠𝑞𝑞2 0 𝑏𝑏1𝑐𝑐𝑐𝑐𝑠𝑠q2
𝑠𝑠𝑠𝑠𝑠𝑠𝑞𝑞2 𝑐𝑐𝑐𝑐𝑠𝑠𝑞𝑞2 0 𝑏𝑏1𝑠𝑠𝑠𝑠𝑠𝑠q2

0 0 1 0
0 0 0 1

� (5-4)

𝐴𝐴3 =

⎣
⎢
⎢
⎢
⎡𝑐𝑐𝑐𝑐𝑠𝑠𝑞𝑞3 −𝑠𝑠𝑠𝑠𝑠𝑠𝑞𝑞3𝑐𝑐𝑐𝑐𝑠𝑠0° 𝑠𝑠𝑠𝑠𝑠𝑠𝑞𝑞3𝑠𝑠𝑠𝑠𝑠𝑠0° 𝑙𝑙3𝑐𝑐𝑐𝑐𝑠𝑠q3
𝑠𝑠𝑠𝑠𝑠𝑠𝑞𝑞3 𝑐𝑐𝑐𝑐𝑠𝑠𝑞𝑞3𝑐𝑐𝑐𝑐𝑠𝑠0° −𝑐𝑐𝑐𝑐𝑠𝑠𝑞𝑞3𝑠𝑠𝑠𝑠𝑠𝑠0° 𝑙𝑙3𝑠𝑠𝑠𝑠𝑠𝑠q3

0 𝑠𝑠𝑠𝑠𝑠𝑠0° 𝑐𝑐𝑐𝑐𝑠𝑠0° 0
0 0 0 1 ⎦

⎥
⎥
⎥
⎤

 = �

𝑐𝑐𝑐𝑐𝑠𝑠𝑞𝑞3 −𝑠𝑠𝑠𝑠𝑠𝑠𝑞𝑞3 0 𝑙𝑙3𝑐𝑐𝑐𝑐𝑠𝑠q3
𝑠𝑠𝑠𝑠𝑠𝑠𝑞𝑞3 𝑐𝑐𝑐𝑐𝑠𝑠𝑞𝑞3 0 𝑙𝑙3𝑠𝑠𝑠𝑠𝑠𝑠q3

0 0 1 0
0 0 0 1

� (5-5)

𝐴𝐴4 =

⎣
⎢
⎢
⎢
⎡𝑐𝑐𝑐𝑐𝑠𝑠𝑞𝑞4 −𝑠𝑠𝑠𝑠𝑠𝑠𝑞𝑞4𝑐𝑐𝑐𝑐𝑠𝑠0° 𝑠𝑠𝑠𝑠𝑠𝑠𝑞𝑞4𝑠𝑠𝑠𝑠𝑠𝑠0° 𝑙𝑙4𝑐𝑐𝑐𝑐𝑠𝑠q4
𝑠𝑠𝑠𝑠𝑠𝑠𝑞𝑞4 𝑐𝑐𝑐𝑐𝑠𝑠𝑞𝑞4𝑐𝑐𝑐𝑐𝑠𝑠0° −𝑐𝑐𝑐𝑐𝑠𝑠𝑞𝑞4𝑠𝑠𝑠𝑠𝑠𝑠0° 𝑙𝑙4𝑠𝑠𝑠𝑠𝑠𝑠q4

0 𝑠𝑠𝑠𝑠𝑠𝑠0° 𝑐𝑐𝑐𝑐𝑠𝑠0° 0
0 0 0 1 ⎦

⎥
⎥
⎥
⎤

 = �

𝑐𝑐𝑐𝑐𝑠𝑠𝑞𝑞4 −𝑠𝑠𝑠𝑠𝑠𝑠𝑞𝑞4 0 𝑙𝑙4𝑐𝑐𝑐𝑐𝑠𝑠q4
𝑠𝑠𝑠𝑠𝑠𝑠𝑞𝑞4 𝑐𝑐𝑐𝑐𝑠𝑠𝑞𝑞4 0 𝑙𝑙4𝑠𝑠𝑠𝑠𝑠𝑠q4

0 0 1 0
0 0 0 1

� (5-6)

www.usn.no

55

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

The homogeneous transformation matrix (H) as,

𝐻𝐻 = 𝐴𝐴1 .𝐴𝐴2.𝐴𝐴3 .𝐴𝐴4

𝐻𝐻 = �

ℎ11 ℎ12 ℎ13 ℎ14
ℎ21 ℎ22 ℎ23 ℎ24
ℎ31 ℎ32 ℎ33 ℎ34
0 0 0 1

� (5-7)

End effector position 𝑋𝑋𝑒𝑒 equation as,

ℎ14 = 𝑥𝑥𝑒𝑒 = (cos(q1)*cos(q2))/20 + (3*cos(q4)*(cos(q1)*cos(q2)*cos(q3) -
cos(q1)*sin(q2)*sin(q3)))/20 - (3*sin(q4)*(cos(q1)*cos(q2)*sin(q3) +
cos(q1)*cos(q3)*sin(q2)))/20 + (3*cos(q1)*cos(q2)*cos(q3))/20 -
(3*cos(q1)*sin(q2)*sin(q3))/20 (5-8)

End effector position 𝑌𝑌𝑒𝑒 equation as,
ℎ24 = 𝑦𝑦𝑒𝑒 = (cos(q2)*sin(q1))/20 - (3*cos(q4)*(sin(q1)*sin(q2)*sin(q3) -
cos(q2)*cos(q3)*sin(q1)))/20 - (3*sin(q4)*(cos(q2)*sin(q1)*sin(q3) +
cos(q3)*sin(q1)*sin(q2)))/20 - (3*sin(q1)*sin(q2)*sin(q3))/20 +
(3*cos(q2)*cos(q3)*sin(q1))/20 (5-9)

End effector position 𝑍𝑍𝑒𝑒 equation as,
ℎ34 = 𝑧𝑧𝑒𝑒 = sin(q2)/20 + (3*cos(q2)*sin(q3))/20 + (3*cos(q3)*sin(q2))/20 +
(3*cos(q4)*(cos(q2)*sin(q3) + cos(q3)*sin(q2)))/20 + (3*sin(q4)*(cos(q2)*cos(q3) -
sin(q2)*sin(q3)))/20 + 1/4 (5-10)

Using the homogeneous transformation matrix method with DH parameters, a mathematical
model for end effector position of robot manipulator is presented. The objective of this
application is to introduce users to kinematics, including both open and closed kinematic
chains. A solution to the Inverse Kinematics problem is the opposite to that of the Forward
Kinematics, in that the forward kinematics provides a single solution, whereas the inverse
kinematics provides multiple solutions [10]. As a result of the addition of joint variables, the
end effector or tool piece can assume a particular pose. The figure 5-2 illustrates the basic
joint configuration of a revolute planar manipulator with 4 DOF and Table 5-2 represents the
control parameters of the RX150 robot kinematic model. Coordinates of a joint can be used to
specify the position and orientation of an end effector.

www.usn.no

56

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

5.3.4 Code snippet to calculate end effector coordinate by using DH table

%Length of arms in meter
l1 = 0.140; %0.11791;%0.13891; % distance between joint 1 and 2
l2 = 0.110; %0.133; % distance between joint 2 and 3 in y direction
b1 = 0.05; %offset
l3 = 0.150;%0.150; %0.153; % distance between joint 3 and 4
l4 = 0.150;%0.147575; distance between joint 4 and end effector
%Chosen position in radian
q1 = 0;
q2 = 0;
q3 = 0;
q4 = 0;
syms q1 q2 q3 q4
%DH representation for 4 joint with offset
A1 = [cos(q1) 0 sin(q1) 0; sin(q1) 0 -cos(q1) 0; 0 1 0 l1+l2; 0 0 0 1];
A2 = [cos(q2) -sin(q2) 0 (b1)*cos(q2); sin(q2) cos(q2) 0 (b1)*sin(q2); 0 0 1 0; 0 0 0 1];
A3 = [cos(q3) -sin(q3) 0 l3*cos(q3); sin(q3) cos(q3) 0 l3*sin(q3); 0 0 1 0; 0 0 0 1];
A4 = [cos(q4) -sin(q4) 0 l4*cos(q4); sin(q4) cos(q4) 0 l4*sin(q4); 0 0 1 0; 0 0 0 1];
%Homogeneous transfer function
H_symb = A1 * A2 * A3 * A4;
%End effector coordinate point
xe = H_symb(1,end);
ye = H_symb(2,end);
ze = H_symb(3,end);

% In order to get symbolic expression
xe_subs = subs(xe,[q1 q2 q3 q4]);
ye_subs = subs(ye,[q1 q2 q3 q4]);
ze_subs = subs(ze,[q1 q2 q3 q4]);

www.usn.no

57

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

5.4 Forward kinematic result with DH representation
For the known values of q1, q2, q3, q4, we can use DH model equation to derive end effector
position in 3D coordinate frame. To accomplish that, we need three mathematical model for
𝑥𝑥𝑒𝑒 ,𝑦𝑦𝑒𝑒 , 𝑧𝑧𝑒𝑒 end effector position where we will supply joint angles. After providing the known
joint angles in the three equations 5-8, 5-9, 5-10 it will give us the end effector point
according to our forward kinematic rules which shows in Figure 5-3.

Figure 5. 3: Forward kinematic result by using DH model.

5.5 Inverse kinematic result using Simulink library function (IK
engine)

Figure 5-4 illustrated the simulation block solving inverse kinematic by using inverse
kinematic library function to make the robot following the trajectory. The purpose of this
simulation is to implement it on real hardware unit and to compare the robot arm movement
with inverse kinematic result by optimization technique. Figure 5-5 shows the robot arm,
tracking the trajectory in 3D planar. Inverse kinematic solution stored in blocks called “To
workspace” by the name of ‘V’, ‘X’, ‘Y’, ‘Z’ and ‘Gripper’ as ‘q1’, ‘q2’, ‘q3’ and ‘q4’ joint
angles respectively which has also been discussed in detail in chapter 4.

www.usn.no

58

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

Figure 5. 4: Inverse kinematic simulation block

Figure 5. 5: Inverse kinematic simulation result

5.5.1 Real arm movement picture frame and video using Simulink (IK Library)

Joint angles value is picked from workspace variable to implement in real hardware unit.
Joint angles implementation in real hardware has been done in two options. One is from
Simulink as shown in Figure 5-6 and by writing codes in MATLAB editor script.

www.usn.no

59

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

Figure 5. 6: Inverse kinematic result implemented on RX150 robot arm

Real hardware unit movement following the trajectory shown in Figure 5-7. Here, top left
position is number 1, top right position is number 2, bottom left is number 3 and bottom right
is number 4, same sequence followed in Figure 5-5.

Figure 5. 7: Inverse kinematic simulation result implemented on RX150 robot arm

YouTube video link provided as follows and Figure 5-8 can be clicked to see robot arm
movement using inverse kinematic (Simulink library) in YouTube.
https://youtu.be/YrbDmKQGEMY

1 2

3 4

www.usn.no

60

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

Figure 5. 8: Video link for robot arm movement using inverse kinematic (Simulink library)

5.6 Inverse kinematic result using DH model and optimization
in simulation

Inverse kinematic problem can also be solved by using optimization technique where we do
not need to depend on IK library from Simulink. Detailed optimization technique and formula
applied in this thesis has been demonstrated in method and material chapter. In this
optimization method we tried to minimize the current and desired position error by applying
the DH mathematical model as equations 5-8, 5-9, and 5-10 and optimization objective
function as equation 2-8. At first, inverse kinematic solution from optimization formula
implemented in Simscape model (simulation enviornment) shown in Figure 5-9, to make sure
that real hardware unit movement is safe and also to avoid hardware damage.

Figure 5. 9: Inverse kinematic simulation using optimization

After running the simulation model, we compare the end effector position with desired or
original trajectory shown in Figure 5-10 where it shows some mismatch in the end effector

www.usn.no

61

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

position which is not pinpoint same as our inverse kinematic solution derived by using library
block from Simulink. However, the movement behavior for joint number 1 and 2 is same.
That means there is still some possibility to improve optimization model furthermore to get it
match. Figure 5-11 shows the robot arm movement in simulation.

Figure 5. 10: Optimization result comparison with real trajectory

Figure 5. 11: Optimization result RX150 robot arm simulation

1 2

3 4

www.usn.no

62

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

5.6.1 Code snippet
Figure 5-12 represents code snippet shows the error minimization optimization technique
implemented in MATLAB script by using ‘sqp’ algorithm.

Figure 5. 12: Optimization MATLAB code

5.6.2 Real arm movement picture frame and video
Real hardware unit movement following the trajectory solved by optimization shown in
Figure 5-13. Here, top left position is number 1, top right position is number 2, bottom left is
number 3 and bottom right is number 4 same sequence followed in Figure 5-11. We can
consider the two videos containing real hardware movement solved by IK engine (one is from
Simulink library and other is by optimization) for comparison which shown in Figure 5-8 and
5-14. After analyzing both, it can be noticed that the robot movement by optimization
technique is not far away from the original one or the difference is not massive. That means
the solution can be bit better if we improve our optimization formula by adding other relevant
constraint. One improvement can be by adding joint angle error minimization along with
position error.

www.usn.no

63

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

Figure 5. 13: Optimization result implemented in RX150 robot arm real unit

YouTube video link provided as follows and figure 5-14 can be clicked to see the robot arm
movement using inverse kinematic by optimization technique in YouTube.
https://youtu.be/yWK_8rtbj90

Figure 5. 14: Video link for robot arm movement using inverse kinematic by optimization technique

1 2

3 4

www.usn.no

64

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

5.7 Summary
It is presented in this chapter that a mathematical model of the forward and inverse
kinematics of a robot manipulator is developed using the homogeneous transformation matrix
method and DH parameters. This application describes methods for introducing robot
kinematics, including open and closed kinematic chains. Unlike the forward kinematics,
Inverse Kinematics gives multiple solutions rather than a single solution.

www.usn.no

65

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

Chapter 6

Hardware Implementation

6.1 Overview
Chapter 3 and chapter 4 and 5 describes the process of creating, and implementing, the
simulator, as well as the interfacing, for the ReactorX150 Robot Arm. This chapter will focus
on the results from the interfacing and simulation process, seeing as the different position, robot
arm movement and calibration by using slider, multiple robot interactive operation, and object
pick and place are highly relevant for the conclusion of the thesis.

6.2 Sleep position
RX150 robot arm has different position. In Figure 6-1, shows the manipulator sleep
position. After unpacking the robot arm user will get the robot arm in same position as
Figure 6-1 shown.

Figure 6. 1: Image of the ReactorX 150 in the Sleep Position

There is one Simulink block created to call the real robot arm unit in sleep position shown in
Figure 6-2. In the most right, there is a block called joint angles where appropriate joint

www.usn.no

66

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

angles are provided by using slider. In addition, Slider represents the degrees and then degree
converted to digital bit by using Simulink gain function to manipulate the robot arm. Since
real robot arm unit does not familiar with degrees or radian, whereas robot arm simulation or
URDF model required radian. Details can be seen from Dynamixel wizard about digital bit
read and write addresses which has been discussed in Chapter 3 and 7. In the middle we have
sleep position function which is a hardware interfacing function where joint angles are
written in the specific address and one button named “Call_Sleep_Position” provided for the
user, by pressing this button user can call the real robot arm unit into sleep position.
Oscilloscope provided in the left to monitor the present joint angles in degree.

Figure 6. 2: Simulink block to call ReactorX 150 in the Sleep Position

6.3 Home position
The robot arm manipulator has the home position which is also known as zero-degree
position shown in figure 6-3. Zero-degree position means, each joint angles has been
provided zero degree or radian by using the sliders. All mechanism and blocks are same
except joint angles are the only main difference between sleep and home position which has
been provided by the slider shown in figure 6-4.

Figure 6. 3: Image of the ReactorX 150 in the Home Position

www.usn.no

67

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

Figure 6. 4: Simulink block to call ReactorX 150 in the Home Position

6.4 Movement and Calibration of Physical Robot
Upon successfully creating communication with the robot arm, the next goal was to calibrate
and check the response based on given signals. The first check was to check the ZDP seeing as
this is important in terms of startup, as well as having a standardized starting point for trajectory
tracking. The ZDP is displayed in Figure 6. 5, with the slider inputs displayed in Figure 6. 6.
The first thing to mention is the slight decline in the level arm, and this is due to the load of the
arm itself. Due to the position tracking, it was deemed more important to have standard,
meaningful, angles of the ZDP rather than compensating for the weight of the arm and thereby
having uneven degrees of the joints.

The rotational servo is declared as 180° at ZDP. Due to safety limitations for the joint number
1, the joint cannot rotate to lower than 60°, the base servo is based on 2.5 turns, each turn 360°.
However, in our case we have limited the robot arm turn between -90 to 90 degrees by
considering the safety.
Both the 2nd and 3rd joint has limited range. The 2nd joint angles provided by the slider is higher
than -75°, while the 3rd joint above -90°. Both ranges are limited due to minimizing collision
risk with the surface. The 6th joint is not a revolute joint but is the prismatic joint of the robot
arm which is unused in this thesis but can be used by giving some positive and negative values
based on digital bit of servo motor [12].

www.usn.no

68

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

Figure 6. 5: Image of the ReactorX 150 in the ZDP[12]

Figure 6. 6: Slider inputs based on the ZDP[12]

As a part of testing and calibrating the robot arm, several positions are tested and compared to
the resulting movements of the robot arm. An example of this is moving a joint -90°, and test
the amount of movement, as well as the direction of the movement. The movement of the robot
arm, by changing the angle of joint 3 with -90°, is shown in Figure 6. 7 with the corresponding
slider inputs in Figure 6. 8. The resulting position matches the predicted movement seeing as
the “front” of the robot is towards the left and the 0° angle is declared as orthogonal with joint
2 [12].

www.usn.no

69

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

Figure 6. 7: Image of the ReactorX 150 with 90° change, from the ZDP, in joint 3 [12]

Figure 6. 8: Slider inputs based on the 90° change from ZDP [12]

As a third check, the robot arm was moved based on random inputs from the sliders. This check
included several joints, with varying angles. The resulting position is displayed in Figure 6. 9
with the corresponding slider inputs in Figure 6. 10. From the slider inputs, the angle of joint
2 is set to 24°, while the angle of joint 4 is set to 54°. Joint 3 is kept at -90°. The position of the
robot arm reflects these inputs seeing as joint 2 is at a slight angle from the upwards position,
declared as 0°, with positive movement towards the left side, as well as a significant movement
in joint 4.

www.usn.no

70

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

Figure 6. 9: Image of the ReactorX 150 with a random position from slider inputs [12]

Figure 6. 10: Slider inputs based on the random position [12]

www.usn.no

71

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

6.5 Robot arm pick and place operation
One of the requirements of the thesis is to do the pick and place operation with an object by
using the gripper mechanism. Simulink block diagram has been created shown in Figure
6-11, to accomplish the pick and place task. Variable V, X, Y, Z, and Gripper are variable
called “To workspace” which contains joint angle in a timeseries data. In order to get the
timeseries data, trajectory has been created with desired waypoint, velocities, and way point
time in MATLAB script then built in inverse kinematic engine used from Simulink library
which shown in Figure 4-6, chapter 4. In the middle there is a MATLAB function block
called Hardware_Function contains all the hardware information to write the joint angles
value to the real hardware unit. There is a scope in the left side to monitor the present
position in graph.

Figure 6. 11: Simulink blocks for robot arm pick and place operation

YouTube video link provided as follows and also Figure 6-12 can be clicked to see the
pick and place operation in YouTube.
https://youtu.be/QD5qRvh6MXs

Figure 6. 12: Video link for robot arm pick and place operation

www.usn.no

72

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

6.6 Multiple robot interactive task
One more exciting task of the thesis is to do the interactive operation by using multiple robot
arm manipulator. Simulink block diagram has been created shown in Figure 6-13, to
accomplish the interactive task. Figure 6-13, shown two MATLAB function block called
“Robot_1_Write” and “Robot_2_Read”. “Robot_1_Write” function block will write the
present position of Robot_1 which will activate with zero torque so that user can move the
robot arm freely. On the other hand, “Robot_2_Read” function block activates the Robot_2
with torque and read the Robot_1 position and execute the task by writing the present
position data of Robot_1 in the specific write address which shown in Figure 6-14. Hence,
Robo_2 will follow the Robot_1 as user move it by hand. There is also a scope in the left side
to monitor the present position of Robot_2 in graph.

Figure 6. 13: Simulink blocks for multiple robot arm

www.usn.no

73

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

Figure 6. 14: MATLAB script write function code snippet

YouTube video link provided as follows and also Figure 6-15 can be clicked to see
the multiple robots interactive operation in YouTube.
https://youtu.be/-LV71MMBAX4

Figure 6. 15: Video link for multiple robot arm interactive operation

www.usn.no

74

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

Chapter 7

DISCUSSION

7.1 Overview
Interfacing issues, Forward and Inverse kinematic solutions problem, Real unit critical
calibration issue of RX150, academic robot arm manipulator is presented in this chapter. In
chapter 2, we have discussed about how we're going to use the materials and methods for this
thesis. To determine the forward and inverse kinematics of the adopted manipulators,
conventional tools such as DH representation and homogeneous transformation methods are
used. In homogeneous transformations, every orientation vector or transformation matrix needs
to be stored with respect to the previous one from the beginning. The modern algebras, like
quaternion algebras, require eight memory locations, whereas the homogeneous matrix method
takes 12 spots. Space requirements affect the overall computational cost because bringing an
operand from memory is more costly than performing a simple mathematical operation.

7.2 ROS2 Installation
As a part of creating the URDF file, both the Linux operating system and ROS2 was needed.
The Linux OS was installed on a memory stick and used as the bootup for the computer used.
ROS2 was then installed on the memory stick as well after running Linux. The problem which
occurred in this installation process was the necessary files for ROS2 and the many
dependencies needed. The code line, shown in Table 4. 1, is only possible if all dependencies
are met, resulting in a lot of testing just to make sure the necessary software was downloaded
for this file conversion. To make sure all the environmental set up done properly, installation
sequence with proper feedback message is required which can be followed from ROS2 official
website.

7.3 Dynamixel Servo ID
During the multiple robot interactive or collaborative operation, we need to connect multiple
robots with our PC. Each RX150 robot arm manipulator having default servo id from 1 to 6.
These id’s are contradictory when we use multiple robots (more than 6 servos) at the same
time. As a result, user will get error called “There is no status packet”. To overcome this issue,
we need Dynamixel wizard where servo id can be changed. As shown in Figure 7-1, we can
change the decimal point of address 7. Now it is written as ‘8’ which we can change based on
our requirement for interfacing.

www.usn.no

75

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

Figure 7. 1: Dynamixel wizard to change servo ID

7.4 Selection Of Servo Operation Mode
Dynamixel servo motor has many features, one of the special features is user can select
different operation mode like Position, Current, PWM. This has been discussed in detail in
chapter 3. It has shown top right corner in Figure 7-2, where we can select desired mode of
operation. Moreover, the most important thing is, read and write address shall be changed
based on the operation mode of selection.

Figure 7. 2: Dynamixel wizard to select servo operation mode

7.5 Servo Motor Communication
The last communication problem that occurred, based on the example code given in chapter 3
Table 3-2, was the communication protocol used in the given GitHub repository files. These
communication protocols/memory addresses were given for a different type of servo motor.
The solution was simply to find the manuals for the relevant servos for this thesis, namely the
DYNAMIXEL XL430- and XM 430 servos, and use the correct memory addresses. In addition,
we can do the address checking by simply connecting the real hardware unit with Dynamixel

www.usn.no

76

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

wizard shown in Figure 7-3. For example, since in this thesis we have used position control, so
address number 116 and 132 are required to write and read data respectively.

Figure 7. 3: Dynamixel wizard to check servo address with respect to ID

7.6 Servo Motor Rebooting
One of the most important issues faced during working with the real hardware unit is, motor
overloading. Servo motor can be tripped during the operation for many reasons like
overcurrent fault, overtemperature fault, overvoltage etc. To overcome this problem user
should use the Dynamixel wizard to reboot the servo motor from Dynamixel wizard shown in
Figure 7-4.

Figure 7. 4: Dynamixel wizard to reboot servo motor

www.usn.no

77

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

7.7 Interfacing
During development of the interfacing, another solution was created based on keyboard inputs.
This solution was based on key binding the several movements of the robot arm, such as
clockwise- and counter-clockwise rotation and moving each angle both ways, with different
keys on the keyboard, resulting in a more operator focused interaction rather than having sliders
in the code. This solution was changed to simplify the input from the operator, both in terms
of the number of inputs and the simplicity of a single named slider shown in chapter 4, rather
than two chosen buttons, for each joint [12].

7.8 Robot Arm Jerking Solution
Jerking problem face during trajectory following with real hardware unit which has been
overcome by changing the address 108 ‘Profile Acceleration (700 ms)’ and address 112 ‘Profile
Velocity (700 ms)’ in Dynamixel wizard. It has been shown in Figure 7-5, with default value
of ‘Profile Acceleration’ and ‘Profile Velocity’ and Figure 7-6, with change value where profile
defines the velocity on the programmed path. Default value (0 ms) provided following,

• The specified permissible velocities
• The accelerations and
• The set jerk is maintained.

One thing needs to be taken care is that, every time after shut down the power address 108 and
112 will contain the default value, so user should write the value again from Dynamixel wizard
or from inside the read and write hardware code from MATLAB.

Figure 7. 5: Dynamixel wizard default servo acceleration and velocity

www.usn.no

78

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

Figure 7. 6: Dynamixel wizard changed servo acceleration and velocity

7.9 Code Shifting
To shift the code from MATLAB script to Simulink, there was a problem to access MATLAB
workspace variable from Simulink. This problem solved by Edit data option from Simulink
where variables were added according to the requirement (i.e., Input, Output, Parameter etc.).
In Figure 7-7, shown the tab to select or add additional input, output, and parameter.

Figure 7. 7: MATLAB editor to get access to workspace from Simulink

7.10 Extrinsic Function
During communication with the physical robot arm, Simulink was not able to use the “calllib”
function seeing as it was already compiled as external files. This problem was fixed by using
the “extrinsic” function inside the code and call the MATLAB script where read, write and

www.usn.no

79

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

different compiled function are used. “Extrinsic” function is a standard library function in
MATLAB. Figure 7-8 shows how to use the function to make externally compiled file
compatible with Simulink.

Figure 7. 8: Extrinsic library function used in hardware interfacing MATLAB code

7.11 DH Model Tuning
Accuracy of Forward and inverse kinematic solution depends on good DH model. Therefore,
model should be as accurate as possible. A good model can be made by following the steps
mentioned in chapter 5. In addition, each joint length of robot arm manipulator should be
correct which shown in Figure 7-9. The DH model shall be verified by plotting the simulation
trajectory against DH model trajectory or implementing the DH model trajectory result in
real hardware. In Figure 7-10, there is one Simulink model created to test the DH model and
inverse kinematic solution created from optimization technique against the URDF model.
Variable V, X, Y, and Z shown in Figure 7-10 are the q1, q2, q3, q4 joint angles respectively
saved from built in inverse kinematic engine solution of Simulink library detailed discussed
in Figure 4-6 in chapter 4. These variables contain joint angles in time series data which
provided to the URDF model and Qs variable contains joint angles which derived from
inverse kinematic solved by optimization. The goal of this Simulink model to test as well as
compare both type of joint angles derived from two different techniques, one is from inverse
kinematic engine from Simulink library while other is inverse kinematic from optimization
solution.

www.usn.no

80

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

Figure 7. 9: RX150 each joint length measurement [9].

Figure 7. 10: DH model verification model in Simulink.

7.12 Summary
With the help of conventional and reactive approaches, a detailed analysis and discussion done
of communicating with real robots, solving forward and inverse kinematic problems of selected
manipulators and their simulations. The inverse kinematic solution for the selected benchmark
manipulator was determined by DH model analysis in this chapter. However, optimization
algorithms have been adopted, and comparisons have been made. To solve the inverse and
forward kinematics problems for selected manipulators, MATLAB programs are used. Chapter
5 presents optimization algorithms and their comparison. In that chapter, the quality and
efficiency of the proposed optimization technique are also presented.

www.usn.no

81

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

Chapter 8

CONCLUSIONS AND FUTURE WORK

8.1 Overview
Even though industrial robots have advanced to a point where they can replace most of the
various manual labor tasks, some of the fundamental problems in kinematics remain unsolved
and act as a focus of thesis research. This thesis covers a substantial number of unsolved
problems, namely the interfacing with robot arm manipulator through MATLAB, direct
kinematics as well as inverse kinematics problem for serial chains. It is the main goal of this
thesis work to discuss the interface with robot arms, the kinematics of the RX150
manipulator, and the optimization of it. An important aspect of this problem is that it can
provide a starting point for other applications including molecular modeling and computer
animations, in addition to manipulator design.
Today’s world experiences a rapid expansion in terms of automation and this thesis has had
the focus on how to create interfacing, with a robot arm, on a different and relevant platform.
The ReactorX 150 Robot Arm, used in this thesis, already had some useful infrastructure, from
Trossen Robotics, in terms of simulation files and documentation, but was designed for the
Robot Operating System.
As a solution to this, interfacing with MATLAB was created, both in terms of the simulation
and the physical communication with the ReactorX 150. The simulation, in MATLAB,
includes a graphical display of the simulation, forward kinematic with DH model, inverse
kinematics, and trajectory tracking based on the inverse kinematics and optimization to solve
inverse kinematic problem. The interfacing with the physical robot arm includes movement
based on slider input, as well as having the possibility to change between different control
settings in the servos.

8.2 Conclusions
Robot manipulator configurations with inverse kinematic analysis are playing a major role in
robotic systems, especially the control of the robot's movements. A key role that the kinematics
of the robot plays when it comes to completing a given task plays a crucial role for the
successful completion of different configurations of the robot for simulation and real-time
control. Using conventional approaches to derive inverse kinematic formulations is costly and
time-consuming because of the mathematical complexity. However, if one sets aside the
mathematical expenses, the procedure provides a closed form solution.

www.usn.no

82

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

8.3 Contributions
RX150 robot arm solutions include the following contributions based on Appendix A:

i. Set up, configure, and test the ReactorX 150 robotic arm used with various
functionalities of MATLAB. In this task, necessary communication interfaces
between the physical robotic arm and Simulink/MATLAB should be created.

ii. The robotic arm used for direct and inverse kinematics. For the inverse kinematic,
the end-effector trajectory specified using polynomials.

iii. DH model developed for the selected manipulators which has been used to find
the forward and inverse kinematic solution.

iv. The robot arm manipulator used for pick and place operations.
v. Two ReactorX 150 robot arms performed interactive tasks.
vi. Optimization technique developed to create inverse kinematic engine to solve

inverse kinematic problem. The developed technique can be developed more to able
to yield faster and accurate results, In order to make it useful for real-time
applications.

vii. We can propose an alternative optimization formula in order to avoid the problem
of DH model matrix-based numerical solution of the inverse kinematic. The
numerical solution poses several challenges, including the stability of the solution,
which increases as the number of degrees of freedom of the manipulator increases.

8.4 Future work
A major concern for many students writing their thesis is the inverse kinematic problem.
Researchers over the last few decades have been searching for general solution methods
for different configurations, as well as for N-DOF manipulators, with different degrees of
success [10]. This thesis lays the foundation on which future researchers will develop a
general solution to the problem. It is believed that methods such as intelligence-based
approaches, conventional approaches, and an optimization algorithm can provide inverse
kinematics with a basic tool for solving the problem. As a result of the current
performance, we have laid the foundation stone for future kinematic inversion studies so that
hopefully other researchers will be motivated to explore innovative procedures in this field.
There is also the possibility that a thesis could be examined on how to implement ANN
models to reduce the DH model and inverse kinematic errors.
The physical robot arm may also be expanded upon by implementing inverse kinematics, as
well as some complex trajectory tracking. For example, tightening the screw in a sophisticated
environment, robots movement synchronization including vision input by using camera. Some
methods from the neural network models of robot manipulator are required to be able to solve
the problem of mathematical operations of inverse kinematics. There are quite a lot of inverse
kinematic inversion problems that can be solved using ANN-based approaches. There is a
complex and non-linear organizational structure that the ANN provides for the input and output

www.usn.no

83

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

data structure and architecture. To generate the data sets used for training, forward kinematic
equations that describe the movement of the manipulator can be used. In addition to this, it is
important that the generated data sets are as big as possible to minimize the network's learning
error. ANN models are prone to poor performance since they require different optimization
strategies for the training of the model and are usually stuck at local optimum points. Inverse
kinematics problems can be successfully solved using conventional methods as well as gradient
descent learning algorithms.

www.usn.no

84

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

Chapter 9

9.1 References

[1] T. Robotics, "ROS Thesis Arms," 26 9 2021. [Online]. Available:
https://www.trossenrobotics.com/robotic-arms/ros-thesis-arms.aspx.

[2] R. Sharma, "Lecture Notes for the course IIA 4117: Model Predictive Control," 2019, p. 11.

[3] S. Sivakumar, "GrabCAD Community," STRATASYS, 14 6 2020. [Online]. Available:
https://grabcad.com/library/2-dof-robot-arm-1 . [Accessed 18 04 2022].

[4] Interbotix, "GitHub/Interbotix Ros Manipulators," 15 09 2021. [Online]. Available:
https://github.com/Interbotix/interbotix_ros_manipulators/tree/main/
interbotix_ros_xsarms. [Accessed 25 04 2022].

[5] Interbotix, "GitHub/DYNAMIXEL SDK," 25 09 2021. [Online]. Available:
https://github.com/ROBOTIS-GIT/DynamixelSDK/tree/master/matlab. [Accessed 25 04
2022].

[6] Robotis, "Protocol2," 2021. [Online]. Available:
https://emanual.robotis.com/docs/en/dxl/protocol2/. [Accessed 27 04 2022].

[7] Robotis, "XM430-W350," 2021. [Online]. Available:
https://emanual.robotis.com/docs/en/dxl/x/xm430-w350/. [Accessed 27 04 2022].

[8] Rick, "xseries_arms," ROS, 11 02 2020. [Online]. Available:
http://wiki.ros.org/xseries_arms. [Accessed 29 04 2022].

[9] "ReactorX 150 Robot Arm," Trossen Robotics, [Online]. Available:
https://www.trossenrobotics.com/reactorx-150-robot-arm.aspx. [Accessed 14 04 2022].

[10] Panchanand jha, Inverse Kinematic Analysis of Robot Manipulators. ROURKELA, 2015.

[11] J. Lenar i , T. Bajd and M. Stani i , Robot Mechanisms. Dordrecht: Springer, 2013.

[12] Mohammad Saifuddin Chowdhury, Kevin Skogstad and Syed Sami , FM4017 Project,
Porsgrunn, 2021

www.usn.no

86

The University of South-Eastern Norway takes no responsibility for the results and
conclusions in this thesis report.

Appendices

Appendix A: Thesis Description

FMH606 Master's Thesis

Title: Real time control of robotic arm manipulators

USN supervisor: Roshan Sharma (USN)

Task background:

Robotic arm manipulators are widely used in industries for various applications. They are used

in automotive, aerospace, electronic/electrical industries, shipping and trade etc. (just to name
a few), for example, for performing repetitive tasks like those involved in an assembly line.
USN has recently purchased several units of a ReactorX 150 robotic arm manipulators from

Trossen Robotics. These robotic arms are planned to be used in teaching and research activit ies
here at USN. The ReactorX 150 offers 5 degrees of freedom and a full 360 degree of rotation.

At the heart of the ReactorX150 is the Robotis DYNAMIXEL X-Series smart servo motors and
DYNAMIXEL U2D2 which enables easy access to Dynamixel software development kit.
Figure 1 shows the Reactorx150 robotic arm manipulator.

Figure 1: ReactorX 150 robotic arm manipulator

Aim:
It is of interest to use this robotic arm in a MATLAB/Simulink platform for forming various

tasks like position/trajectory control, direct/inverse kinematics, some advanced model based
control by making use of robot dynamics and advanced observer/estimator design. Furthermore
collaborative tasks involving interaction of two or more ReactorX150 robot arm manipulato rs

is also considered to be one of goals of this project.

Task description:
The following are the main tasks:

a) Set up, configure and test the ReactorX 150 robotic arm to be used with
Simulink/MATLAB for various functionalities. In this task you should create necessary

communication interfaces between the physical robotic arm and Simulink/MATLAB.

b) Use the robotic arm for direct and inverse kinematics. For the inverse kinematic, the
end-effector trajectory can either be (i) specified using polynomials, or (ii) it can also

be created by simply moving the robot arm manually by hand along the desired
trajectory.

c) Use the robotic arm for pick and place operations. For this the gripper mechanism

should be used.
d) Using at least two or more ReactorX 150 robot arms, perform collaborative or

interactive tasks. In this task, you may need to use additional hardware/software support.
e) If time permits, interface a camera (for e.g. raspberry pi camera) to the robot arm and

perform some tasks involving computer vision like classifying/separating different

coloured objects.
f) Document the work in a report. Presentation of the work.

Student category: Reserved

Reserved for Mohammad Saifuddin Chowdhury.

The task is suitable for online students (not present at the campus): No

Practical arrangements:

ReactorX 150 robotic arm manipulators will be provided to the student.

Signatures:

Supervisor (date and signature):

Students (date and signature):

25.01.2022

	Reprt_test
	1.1 Overview
	1.2 Evolution of robot manipulators
	1.3 Structure of industrial robots
	1.4 Classification by mechanism
	1.5 Review analysis and outcomes
	1.6 Problem statement
	1.7 Scope of work
	1.8 Organization of the thesis
	1.9 Summary
	2 Chapter 2
	2.1 Overview
	2.2 Materials
	2.2.1 ReactorX 150 Robot Arm
	2.2.2 DYNAMIXEL Servo Technology
	2.2.3 Robot Operating System
	2.2.4 MATLAB
	2.2.5 Simulink
	2.2.6 Simulation

	2.3 Methods
	2.3.1 Kinematics
	2.3.1.1 Forward Kinematics
	2.3.1.2 Inverse Kinematics
	2.3.1.3 Example of Kinematics

	2.3.2 Optimization to solve Inverse kinematic
	2.3.2.1 Position based function

	2.4 Summary

	3 Chapter 3
	3.1 Overview
	3.2 DYNAMIXEL Wizard
	3.3 Mode of servo operation
	3.4 Implementing the Library
	3.4.1 Bulk_Read_Write.m

	3.5 Communication Protocol and Run Mode
	3.5.1 Communication Protocol Details

	3.6 Software stack and libraries
	3.7 Summary

	4 Chapter 4
	4.1 Xacro to URDF in ROS2
	4.2 Robot Arm Calibration and Movement from Simulink
	4.3 Movement and Calibration of Simulation
	4.4 Trajectory Visualization with Inverse Kinematics in MATLAB Simulink
	4.5 Inverse kinematics output stored in MATLAB workspace
	4.6 Summary

	5 Chapter 5
	5.1 Overview
	5.2 Representation methods and kinematics
	5.3 Kinematic variables and parameters
	5.3.1 DH-Parameters
	5.3.2 DH-algorithm for frame assignment
	5.3.3 DH table representation of rx150 robot arm with offset
	5.3.4 Code snippet to calculate end effector coordinate by using DH table

	5.4 Forward kinematic result with DH representation
	5.5 Inverse kinematic result using Simulink library function (IK engine)
	5.5.1 Real arm movement picture frame and video using Simulink (IK Library)

	5.6 Inverse kinematic result using DH model and optimization in simulation
	5.6.1 Code snippet
	5.6.2 Real arm movement picture frame and video

	5.7 Summary

	6 Chapter 6
	6.1 Overview
	6.2 Sleep position
	6.3 Home position
	6.4 Movement and Calibration of Physical Robot
	6.5 Robot arm pick and place operation
	6.6 Multiple robot interactive task

	7 Chapter 7
	7.1 Overview
	7.2 ROS2 Installation
	7.3 Dynamixel Servo ID
	7.4 Selection Of Servo Operation Mode
	7.5 Servo Motor Communication
	7.6 Servo Motor Rebooting
	7.7 Interfacing
	7.8 Robot Arm Jerking Solution
	7.9 Code Shifting
	7.10 Extrinsic Function
	7.11 DH Model Tuning
	7.12 Summary

	8 Chapter
	8.1 Overview
	8.2 Conclusions
	8.3 Contributions
	8.4 Future work

	9 Chapter 9
	9.1 References

	Master thesis 2022_Mohammad_Description-signed

