
 
www.usn.no  

 

Faculty of Technology, Natural sciences and Maritime Sciences 
Campus Porsgrunn 

 

 

FMH606 Master's Thesis 2022 

Process Technology 

 

 

 

Development of machine learning model 
for CO2 capture plants to predict solvent 

degradation 
 

 

 

 

 

  

 

 

 

 

 

Sam Narimani 

 

 



 
www.usn.no  

 

The University of South-Eastern Norway takes no responsibility for the results and 

conclusions in this student report. 

Course: FMH606 Master's Thesis, 2022 

Title: Development of machine learning model for CO2 capture plants to predict solvent 

degradation 

Number of pages: 72 

Keywords: Solvent degradation, Machine Learning, CO2 capture plant 

Student: Sam Narimani 

Supervisor:   Leila Ben Saad, Ru Yan 

External partner:   Technology Centre Mongstad (TCM) / Rune Teigland 

 

Summary:  

Increasing average temperature of the earth has significantly influenced human’s life that many 

efforts have been carried out to cut the major sources of rising temperature. Among all, emissions 

and specifically carbon plays a key role as a type of greenhouse gasses in this area. Therefore, 

capturing CO2 has become an area of interest for researchers to deal with in the recent years. 

Carbon capture can be performed by employing several methods, but the most common method 

is post-combustion since it can be installed for the plants constructed before and there is no need 

to change any structure in the previous plant. However, there are many problems in the post-

combustion carbon plant, such as solvent degradation, which is the most important phenomena as 

its cost is counted for about 20% of the total operational cost of a carbon capture plant. Therefore, 

finding the causes can significantly affect the performance of a carbon capture plant. In this study, 

the focus is on behavior of carbon capture plant in the subject of solvent degradation by using 

machine learning methods. As this phenomenon has a complex behavior and there are no certain 

traditional methods or software to simulate the solvent degradation of a carbon capture plant, 

machine learning would be an efficient method to predict this phenomenon. Although there are 

many methods in machine learning, several methods such as Artificial Neural Network, Random 

Forest and Support Vector Regression have been so popular in the literature review. Therefore, 

these methods are employed to model the solvent degradation in the carbon capture plant. First, 

lab and online data provided by Technology Centre Mongstad, were cleaned. Secondly, to enhance 

the performance of the model, feature selection methods like Spearman’s and Pearson’s 

correlation methods were applied to decrease the number of features. There are many sources of 

solvent degradation in a carbon capture plant, but in the current one information about ten sources 

of solvent degradation is available. Therefore, ten various models with different hyperparameters 

and features were utilized to reach the best results. Results show that ANN and Random Forest 

are the best and most promising models to predict the solvent degradation behavior in the plant as 

compared to the R2 score that was mainly more than 0.90 for 483 datasets received from TCM. 
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Nomenclature 

Abbreviation Description 

AI Absorber Inlet 

ANFIS Adaptive Neuro Fuzzy Inference System  

ANN Artificial Neural Network 

BNN Biological Neural Network 

CCS Carbon Capture and Storage 

CHP Combined Heat and Power  

DG Depleted Gas 

FOLU Forestry and Other Land Use 

GEP Gene Expression Programming  

GHG Green House Gas 

GMDH Group Method of Data Handling  

HEI 1H-Imidazole-1-ethanol  

HEPO 4-(2-hydroxyethyl)-2-piperazinone  

ILs Ionic liquids  

lAAI lean Amine Absorber Inlet 

MAD Mean Absolute Difference 

MEA Monoethanolamine 

ML Machine Learning 

MLP Multilayer Perceptron  

MLP-NN Multi-Layer Perceptron Neural Network  

NLP Natural language processing  

PG Product Gas 

QSPR Quantitative Structure-Property Relationship  

RBFNN Radial Basis Function Neural Network  

RF Random Forest 

RFCC Residual Fluidized Catalytic Cracker  

RMSE Root Mean Square Error  
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SL Sample Location 

SVC Support Vector Classification 

SVM Support Vector Machine  

SVR Support Vector Regression 

TCM Technology Center of Mongstad 

wt% Weight percent 
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1 Introduction 

1.1 Background and objectives 

One of the most major issues in the last decades has been global average temperature increase 

that is mainly due to Green House Gas (GHG) emissions [1]. GHG mainly consists of water 

vapor, carbon dioxide, methane, nitrogen and sulfur compounds. Increasing CO2 avoids 

enough solar absorption. Therefore, the average temperature goes up and resulting in extinction 

of many species, ice melting and rising sea level [1]. 

Total annual GHG emissions from 1970 to 2010 are shown in Figure 1.1. It can be noticed 

from the figure that the most major emission is CO2 from fossil fuel and industrial processes 

counting averagely 60% of total annual GHG. On the other hand, CO2 Forestry and Other Land 

Use (FOLU) was decreased over the years. A large part of these emissions belongs to energy 

sector which stands on 25% of total annual GHG emissions [2]. 

Increasing GHG will result in increasing average temperature that can lead to many problems 

like environmental issues. Figure 1.2 shows how the temperature has changed in the period of 

1880 to 2018 in the ocean and land. As it can be seen, the temperature anomaly experienced a 

high increase in both land and ocean over the period since GHG has increased [3]. One of the 

solutions to prevent from increasing temperature is carbon capture. It has been reported by 

International Energy Agency that Carbon Capture and Storage (CCS) might reduce up to 17% 

of the emitted CO2 by 2050 [1]. 

 

Figure 1.1: Total annual GHG emission between 1970 and 2010 [2]. 
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Figure 1.2: Temperature anomaly during the years [3]. 

Understanding the phenomena of carbon capture plant needs more complex models rather than 

traditional solutions. Artificial intelligence and machine learning (ML) methods have been 

utilized to predict many intricate phenomena such as carbon capture plant cases. The present 

study is predicting solvent degradation in the carbon capture with absorption at Technology 

Center of Mongstad (TCM). TCM is the largest center in the world to test carbon capture 

phenomenon. TCM started its journey 2006 when Norwegian government and Equinor agreed 

to establish the largest test plant for carbon capture and has been operating since 2012 in 

industrial scale [4]. A wide range of data has been collected by 1000 online instruments in the 

amine plant [4]. There are also several sampling points in the plant which analyze liquid 

components for further data [4].  

In this report, the focus is on solvent degradation as a major problem in the carbon capture 

plants. Since this phenomenon has a very complicated behavior and there is no exact formula 

or classic regression model to fit on, the use of machine learning methods to predict the 

phenomenon over a campaign test is investigated. The purpose is finding a better model to look 

for a pattern in degradation of Monoethanolamine (MEA) solvent. Three methods of Support 

Vector Regression (SVR), Random Forest (RF) and Artificial Neural Network (ANN) are used. 

The results based on machine learning metrics are shown, discussed and the suitable models 

are chosen. Task description is also presented in the Appendix A. 

1.2 Thesis outline 

The rest of this report is structure as follows. Chapter 2 presents an overview of different carbon 

capture methods and solvent degradation in the plant as well as machine learning concepts. 

Literature review is also investigated to explain the former research in solvent degradation and 

machine learning applications in capturing carbon plants. In chapter 3, the system description 

and data pre-processing are explained. The following chapter deals with the results of all 

methods and present some discussions and possible improvements. The last chapter concludes 

this study and presents recommendations for future research studies. 
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2 Literature  
In this chapter, carbon capture methods including pre-combustion, oxy-fuel combustion and 

post-combustion will be investigated. In addition, solvent degradation phenomena in post-

combustion carbon capture, machine learning methods used in the models and feature selection 

are presented in detail. Finally, literature related to the solvent degradation and machine 

learning in the carbon capture plant will be introduced. 

2.1 Carbon capture methods 

There are three main methods to capture carbon namely pre-combustion, oxy-fuel and post-

combustion capturing. In the following, a brief explanation of each method is presented [5]. 

2.1.1 Pre-combustion 

In pre-combustion carbon capture, the carbon is taken from combustible gases before 

combustion [6]. In this method, the carbon is captured by applying three reactions between 

methane, water and pure oxygen. First, in steam reforming, the methane reacts with high 

pressure steam to produce hydrogen and CO. Then, the pure oxygen separated from air reacts 

with methane gas to form hydrogen and CO again. Finally, CO is converted to CO2 by passing 

over water and CO2 is captured [5]. All three reactions are described in the relation 2.1.  

4 2 2

4 2 2

2 2 2

CH H O CO 3H

CH 0.5O CO 2H

CO H O CO H
 

(2.1) 

The hydrogen produced in these reactions is used for power generation. Although this method 

removes carbon before combusting the gas, it has significant energy demand to separate oxygen 

from air. Many research studies have been carried out in increasing the efficiency of pre-

combustion carbon capture and separation techniques, however, high energy demand in the 

method still exists. Figure 2.1 shows an integrated gasification combined cycle which used pre-

combustion carbon capture [5, 7]. 
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Figure 2.1: Integrated gasification combined cycle with pre-combustion capturing method [7]. 

2.1.2 Oxy-fuel combustion 

Oxy-fuel combustion is the process of the fuel combustion in pure oxygen. As shown in Figure 

2.2, the separated oxygen from air is added to fuel and reaction happens in the boiler to produce 

CO2. In this method, purity of produced CO2 is significantly high and emissions such as NOx 

(either NO or NO2) reduce since the burning is nitrogen free. The only disadvantage of this 

method is production cost of oxygen and carbon compression expenses which are expensive 

[5, 6]. 

 

 

Figure 2.2: Oxy-fuel combustion system [6] 
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2.1.3 Post-combustion 

As its name shows, this method is used after combustion meaning that it can be used for the 

existing plants [8]. This is the most important advantage of post-combustion rather than the 

other two carbon capture methods [5]. As shown in Figure 2.3, the flue gas is entered to the 

absorber and after crossing with solvent, rich solvent leaves the absorber. The rich solvent gains 

some heat to increase its temperature by passing a heat exchanger and finally, it enters the 

stripper. Rich solvent is heated to release CO2 and then leaves the stripper to come back to the 

absorber and the cycle is done for the operational time of the plant [5, 9]. 

 

 

Figure 2.3: Simplified process in post-combustion carbon capture [9]. 

 

CO2 concentration in the flue gas is approximately 4-20 percent which is relatively low. 

Variation in percentage of carbon dioxide depends on what kind of fuel has been used so that 

if coal is burning fuel, flue gas can contain about 14% carbon dioxide [5]. 

In amine based post-combustion carbon capture, the overall reaction between MEA, as solvent, 

and CO2 can be shown in the reaction 2.2 [1]. 

2 2 2 3CO 2RNH RNHCO RNH
 

(2.2) 

The reaction 2.2 shows that to end up the reaction, one mole CO2 needs 2 MEA moles. The 

ratio between CO2 and MEA moles is described as loading in the Equation 2.3. The Loading 

is usually between 0.2 to 0.5 as the absorbed CO2 into the MEA [1]. 

2CO

MEA

n

n
 

(2.3) 

2.2 Solvent degradation 

Solvent degradation is one of the common issues in carbon capture plants. Several research 

studies have proved that it mainly occurs due to presence of oxygen, high temperature and 

impurities such as NOx and SOx [1]. Degradation has multiple disadvantages such as lower 

solvent capacity, corrosion, emissions and foaming [1]. The largest amount of degradation is 
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due to the volatility of solvent in the absorber [1]. However, this issue has been almost solved 

by using water wash [1]. Water wash is a unit that absorbs the degraded solvent in absorber 

and sends volatile MEA to the absorber to again be used in the process [1]. 

2.2.1 Oxidative degradation 

Oxidative degradation mainly happens in the presence of oxygen in flue gas. One of the factors 

increasing this kind of degradation is diffusivity of oxygen in the solvent [1]. Temperature and 

oxygen rate are the effective factors in oxygen diffusivity into the solvent [1]. As temperature 

or oxygen rate in flue gas increases, oxidative degradation rate goes up [1]. For instance, natural 

gas-based power plant can have more oxidation degradation rather than coal based as natural 

gas power plants needs more air meaning higher oxygen rate [1].  

As discussed earlier, oxidative degradation mainly occurs in the absorber. However, it might 

exist small portion of dissolved oxygen in the rich solvent exiting the absorber. Reactions 2.4 

and 2.5 show the main reactions resulting oxidative degradation in the absorber [1]. 

2 2 2 3MEACOO MEAH O 2CH O CO 2NH
 (2.4) 

2 2 2 2 2 2 3MEACOO MEAH 2O 2C H O 2H O CO 2NH
 (2.5) 

As these reactions demonstrate, ammonia is one of the most important products of oxidative 

degradation. 

2.2.2 Decomposition or thermal degradation 

Thermal degradation takes place due to reaction between CO2 and the solvent at high 

temperature [1]. This type of degradation as mentioned happened in high temperature sections 

such as stripper, hot lines, and heat exchanger [1]. Therefore, it is more probable to find thermal 

degradation in stripper rather than other parts of carbon capture plant. In addition, when loading 

factor  increases, thermal degradation increases as the system gains more CO2 [1].  

2.2.3 Degradation due to impurities 

The main impurities causing solvent degradation are SOx and NOx [1]. In most of carbon 

capture plants, the amount of these impurities is low and therefore, it is not considered in this 

study [1]. 

Solvent degradation will be more complex when several types of degradation happen 

simultaneously or depend on each other. Therefore, the interaction between two main groups 

of degradation, oxidative and thermal, should be considered.  

2.3 Machine learning 

Machine learning can be defined as learning of the system from past to forecast the future [10]. 

To find the relationship between the data, many algorithms have been suggested such as ANN, 

decision tree, Adaptive Neuro Fuzzy Inference System (ANFIS) and Support Vector Machine 

(SVM). 
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Machine learning and artificial intelligence are the most important tools used in the field of 

data analysis and technology. Many ML applications such as weather forecasting and face 

recognition are used in different industries to achieve the best and effective results [10]. 

Machine learning can be divided into three main categories supervised, unsupervised and 

reinforcement learning. In the following, these three classes are briefly described [10]. 

2.3.1 Supervised learning 

In this type of ML method, algorithms show the relationship between the features and targets 

that are the observations [10]. Targets or outputs are also referred to labeled data [10]. 

Supervised learning can also be divided into two groups of classification and regression 

problems [10]. In classification problems, dataset is broken to limit number of classes. On the 

other hand, in regression problems, features have a numeric relationship with the targets that 

is in a continuous spectrum [10]. 

2.3.2 Unsupervised learning 

In unsupervised learning, there is no need to supervise the model and it allows the model to 

find the pattern in data. One example is density estimation and finding the concentration of 

similar variables in dataset [10]. 

2.3.3 Reinforcement learning 

Reinforcement learning is considered as one of the best methods as it tries to reach the best 

output by self-optimization [5]. 

Figure 2.4 illustrates these three categories with their applications in more detail. 

 

 

 Figure 2.4: Different types of ML categories [10]. 
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2.3.4 Machine learning methods 

Machine learning methods used in this study are ANN, RF and SVR. This selection is as a 

result of their popularity and desirable accuracy in former research studies based on literature. 

In the following sections, these methods are briefly explained. 

2.3.4.1 Support Vector Machine (SVM) 

Support Vector Machine or SVM is a kind of machine learning method to generalize nonlinear 

problems by minimizing the error bound to reach better performances [11]. 

It has two main categories namely SVR and Support Vector Classification (SVC). This method 

has been primarily presented by Vapnik and is capable to be utilized when the problem has 

many features [11, 12]. The most important feature of SVR is that the model is only dependent 

on a subset of training set as the model cost function does not accept any training data being 

close to the prediction of the model [11]. SVR can be referred to the common and practical 

form of SVM [12]. 

Suppose there is a set of training data as {(x1, y1), (x1, y2), ...., (xn, yn)}. Figure 2.5 illustrates a 

scheme of SVR problem. The target is finding a function like f(x) so that the error between f(x) 

and yi would be less than epsilon. Therefore, the problem is minimizing the norm of parameters 

that satisfy the conditions of the model which is model error. Equation 2.6 shows that f(x) can 

be written as a summation of parameter product and inputs, and a bias. Relation 2.7 also shows 

the basic minimizing problem that SVR model solves to achieve minimum error [11]. 

 

Figure 2.5: The margin loss for SVR [11]. 

if (x) wx b
 (2.6) 

2

i i

i i

1
min : w

2

y wx b
Subject to :

y wx b
 

(2.7) 

2.3.4.2 Random Forest (RF) 

Random Forest is a set of tree predictors depending on random vector values with the same 

distribution for trees [13]. Generalization of Random Forest relies on each tree strength and 

relation between trees [13]. This method was firstly developed by Breiman in 1996 with 

application for both regression and classification problems [14]. To better understand the RF 

model, consider the dataset in the Table 2.. there are four features namely Outlook, HWDone, 

Weekend and Play along with eight datasets [14]. 
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Table 2.1: Training data [14]. 

 

As it is seen in the Figure 2.6, there are three trees, which will be referred to n_estimator lately, 

to predict feature Play which is the target. This is based on Yes and No conditions. For instance, 

in tree B, if it is rainy the prediction should show Don’t Play, otherwise the tree will investigate 

other conditions such as HWDone and so on [14]. Random Forest models follow randomization 

in each tree and split the best node to break that can improve the accuracy of the model. It has 

been reported that RF accuracy is mostly better than decision tree and SVM models in the 

application of carbon capture [13, 14].  

 

Figure 2.6: Random Forest example with three trees [14]. 

 

Several hyperparameters affect efficiency of RF method such as number of trees (n_estimator), 

the maximum depth of tree (max_depth), the number of the features for best splitting 

(max_features), minimum sample number for splitting internal node (min_samples_split) and 

minimum sample number at one node (min_samples_leaf) [15]. Therefore, hyperparameters 

should be tuned to reach a better result. The meaning of hyperparameters is shown in the Figure 

2.7 to Figure 2.9. 
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Figure 2.7: max_depth in RF method [15]. 

 

 

Figure 2.8: min_samples_leaf in RF method [15]. 

 

 

Figure 2.9: min_sample_split and max_features in RF method [15]. 

 

2.3.4.3 Artificial Neural Network (ANN) 

ANN has become one of the most popular models in ML during the last decade thanks to its 

high-speed processing provided for big data. ANN has many applications such as predicting 

value, face recognition and Natural language processing (NLP) in different industries. 

Although ANN is utilized in various fields, there is major necessity to address some problems 

and solve them before generalizing models. For example, selection of data set and features, 

data accuracy, data pre-processing and cleaning, validation of data can be mentioned [16]. 
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The name of neural network comes from a biological phenomenon. The brain of the human 

contains many neurons which each one performs a special function based on received 

information from its environment. Figure 2.10 illustrates a neuron consisting of soma, axon 

and dendrites. Axons and dendrites are like input and output in neural network while soma 

reflects the neuron. Synapses connect axons to dendrites and when a signal is given to a neuron, 

synapses can grow or lessen the electrical potential which are similar to weights in neural 

network [17]. Although there are many similarities between ANN and Biological Neural 

Network (BNN), there are also several differences. The processing speed is the one of major 

differences between ANN and BNN which is faster in ANN. Moreover, the process can carry 

out big data in parallel way in BNN, though it operates sequentially [18]. 

Figure 2.11 illustrates an ANN includes input, hidden and output layers. Input layer consists of 

given data for the model while output layer is the model targets. Hidden layer is the layer that 

connect inputs to output. Each layer consists of some nodes which perform a special function 

based on received information. Output of each layer is specific activation function that should 

be defined for every application separately as there in no certain way to examine. There are 

also some weights in each layer that should be optimized in the process of fitting the model 

[16, 17]. 

 

Figure 2.10: Structure of a neuron in brain [17]. 

 

Figure 2.11: ANN architecture including input, hidden and output layers with different nodes [16]. 

 

To better understand the performance of ANN, consider a simple ANN with just one neuron 

shown in Figure 2.12. In the figure, xi represents input while y is output. Besides, wi’s and b 

are weights and bias in ANN model. Relation between input, output, weights and bias are 
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described in the relation 2.8. There are several activation functions that should be tested for 

each problem and find the suitable one, though Rectified Linear Units (ReLU) and tanh are the 

common activation functions [17].  
 

 

Figure 2.12: Simple ANN performance with one neuron 

n

i i

i 1

z w x b

a f (z)

y a  

(2.8) 

2.4 Feature selection 

Feature selection is a kind of pre-processing method to efficiently prepare data for machine 

learning problems [19]. Its target is creating simpler models and enhancing model performance. 

In the case of high dimensional data, there is a well-known issue as dimensionality curse 

causing data sparser [19]. On one hand, increasing number of features can lead the model to 

overfit that may affect model performance to predict unseen data. One the other hand, high 

dimensional feature need memory storage requirement and consequently computational cost 

increases [19]. 

Dimensionality reduction is a crucial method and tool to overcome the mentioned problems. It 

can be classified into two main parts of feature extraction and feature selection. Feature 

extraction represents original dimensional features in a lower dimensional feature where the 

interesting parts of data are captured [20]. In feature selection, the most relevant features as a 

subset of data are chosen to construct the model [19]. 

Both techniques are utilized to enhance the performance, reducing memory storage and 

constructing more effective model. Therefore, these methods are referred to as efficient 

dimensionality reduction methods. When comprehensible features are not included in raw data 

to an ML algorithm, feature extraction is elected. As the feature extraction creates new features, 

latter analysis is difficult as we are not able to sustain the physical meaning of these new 

features. Therefore, feature selection retains physical meanings of the primary features by 

holding some of the main features. Then, many researchers prefer to employ feature selection 

in their models instead of feature extraction [19]. 

In the world of the real data, many improper, redundant and noisy data can be seen. Removing 

these features enhances model performance and decreases the computational cost. As Figure 

2.13 Figure (a) shows that feature f1 is a relevant feature and can separate two clusters while 

Figure 2.13 (b) illustrates redundant parameters of f1 and f2 because they are correlated. 
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Moreover, in Figure 2.13 (c), f1 is an irrelevant feature since it cannot discriminate two clusters. 

Therefore, the model performance would not be negatively affected in case of removing 

features f2 and f3 [19]. 

 

Figure 2.13: Different types of features (relevant, redundant and irrelevant) [19]. 

Feature selection can be classified in three categories in strategy point of view namely filter, 

wrapped and embedded [19]. In the following, these methods will be briefly explained. 

In filter strategy, feature selection is independent of any learning algorithm and is just based 

on data characteristics. This method is very computationally efficient while due to lack of 

learning algorithms evaluating the feature selection process, the selected feature may not be 

the optimal target for the model. There are several techniques in filter methods like Chi-square 

Test, Fisher’s Score, Correlation Coefficient, Variance Threshold, Mean Absolute Difference 

(MAD) and Dispersion ratio which Correlation Coefficient is one of the most popular ones 

[19].  

Wrapped method is based on an ML algorithm and tries to find the possible correlation between 

features until the optimal features are obtained. Forward and backward propagation are the 

most common methods used in the wrapped method. Wrapped method process is shown in the 

Figure 2.14 [21]. 

 

Figure 2.14: Wrapped method algorithm [21]. 

 

Embedded strategy is a combination of filter and wrapped method. Elastic Net and Ridge 

regression are two methods in this category of feature selection. In this study, filter method is 

utilized as feature selection strategy for further process [19]. 

The correlation coefficient, which is originally one of the techniques in filter strategy, is a 

statistical technique measuring the relation between two variables. The most usable correlation 

methods are Pearson's product moment correlation coefficient and Spearman's rank correlation 

coefficient. Pearson’s correlation coefficient shows a linear relationship between two variables 

while Spearman's rank correlation coefficient is a non-linear rank coefficient [22]. 
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The produced coefficient of both methods is between -1 and 1 which negative and positive 

signs show reverse and direct relationship between variables. As the absolute number becomes 

closer to zero, there is less relation between two variables [22]. 

2.5 Literature review on solvent degradation and machine 
learning approaches 

In this section, previous studies are presented in both solvent degradation and machine 

leaning methods used in the carbon capture plants. 

2.5.1 Solvent degradation  

Léonard et al. studied the effect of solvent degradation in a post-combustion capture plant and 

introduced a model to increase solvent degradation. They showed that the model has a potential 

to reduce solvent loss about 11% rather than primary case. Their results also proved that the 

major solvent loss happened in absorber that is oxidative degradation [23].  

In 2021, Seo et al. proposed Ionic liquids (ILs) as the major solvent instead of MEA to reduce 

thermal solvent loss. ILs are more expensive than MEA, but they showed the effect of thermal 

degradation is considerably more important than using traditional solvent as the system worked 

in lower temperatures. They also showed that residence time of the solvent, as an important 

factor in solvent degradation, significantly decreased by using ILs [24]. 

Solvent and emission behavior were monitored to estimate solvent degradation and emissions 

sources at TCM in long operational period. This research showed that Ammonia emission is a 

type of emission indicating solvent loss in the carbon capture plant as well as other types of 

degradation such as heat stable salt and organic loss [25]. 

A thorough investigation was carried out by Anne K Morken et al. to show the source of solvent 

degradation in the carbon capture plant at TCM. They showed that solvent can be degraded by 

emitting via absorber, stripper, in Ammonia formation in product flue gas, wash water and due 

to leakage. Figure 2.15 shows the solvent degradation types seen at TCM for 1960 hours 

operational time. In this research, they also showed that the color of the solvent is an indication 

for the solvent degradation that solvent color changed from colorless to yellow during the time 

due to solvent loss. Figure 2.16 illustrates the result of color and solvent degradation 

dependency during the time. Finally, a table was introduced to show the fraction of product 

produced per unit of degraded solvent (MEA). Table 2.2 shows that Ammonia is the most 

source of degradation for carbon capture plant with MEA solvent [26]. 

Table 2.2: Fraction of different types of degradation per solvent loss [26]. 
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Figure 2.15: Different types of solvent degradation at TCM carbon capture plant [26]. 

 

Figure 2.16: Solvent color form colorless to yellow over the time [26]. 

Flø et al. studied the thermal reclaiming to reduce accumulated solvent loss at TCM. They 

showed that some physical characteristics of solvent can be changed during the solvent 

degradation. For instance, Figure 2.17 shows that viscosity of the lean solvent recorded by 

different samples increases during the time as solvent is degraded [27].  
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Figure 2.17: Viscosity change in lean solvent over the time [27]. 

 

Cuccia et al. presented a review on solvent degradation and showed that a major part of 

degradation is in form of aldehydes and organic acids [28]. 

The blend 1MPZ-PZ-Water was presented as a substitute for MEA in a lab scale carbon capture 

by Cuccia et al. This experiment showed that the degradation of new solvent is around 22% for 

900-hour operational time [29].  

In 2019, Flø et al. investigated compatibility of the metal materials used in the carbon capture 

plant to avoid corrosion due to MEA solution. All material except CS235 was introduced as 

compatible material with MEA solvent during the long operational period [30]. 

A new lab scale CO2 capture benchmark was presented by Bontemps et al. to measure solvent 

degradation. Results were shown acceptable agreement with solvent degradation in industrial 

application [31].  

In 2017, a study in solvent degradation was carried out on three CO2 capture plants namely 

TNO, EnBW and ENEL located in Netherlands, Germany and Italy, respectively. The results 

showed that Ammonia emissions is a cause of solvent degradation. Time residency was also 

introduced as an effective parameter in high temperature parts of carbon capture plant [32]. 

In 2015, impact of operational parameters on solvent degradation was studied in a lab scale 

with MEA solvent. Results revealed that oxidative degradation is the main solvent loss in a 

capture plant [33]. 

2.5.2 Machine learning 

Rahimi et al.  presented a ML implementation in carbon capture plant to reach a smart plant in 

the future. They showed that ML methods can find the optimal energy demand of a carbon 

capture in case data acquisition has been effectively carried out. As the development of the 

model also depends on the data, selecting the practical data demonstrating relation between the 

parameters is also vital. Figure 2.18 shows the suggested ML method using ANN for carbon 

capture plant. In this model, inputs are flue gas temperature entering absorber, fraction of CO2, 
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flow rate of the flue gas and the absorbent. On the other hand, the targets are predicting carbon 

capture rate and duty of reboiler [34]. 

 

 

Figure 2.18: An example for ML methods implementing in carbon capture plant [34]. 

 

Amar et al. utilized three ML methods namely Multilayer Perceptron (MLP), Gene Expression 

Programming (GEP) and Group Method of Data Handling (GMDH), to predict CO2 viscosity 

in high temperature. In this research, 1124 experimental data was used, and inputs were 

temperature and density of CO2. Results showed that MLP is the most effective model to 

predict the viscosity so that R2 and Root Mean Square Error (RMSE) showing 0.9999 and 

0.0012 mPa, respectively [35]. 

In 2019, Dureckova et al. studied the use of ML methods in pre-combustion carbon capture 

plants to predict CO2/H2 separation features and CO2 working capacities. They proposed 

Quantitative Structure−Property Relationship (QSPR) model with R2 values 0.872 and 0.944 

for working capacity of CO2 and CO2/H2 [36]. 

Menad et al. modeled solubility of CO2 with 570 data sets by using MLP and Radial Basis 

Function Neural Network (RBFNN) methods. The results proved that RBFNN model had 

higher accuracy rather than MLP [37]. 

Mesbah et al. also presented Multi-Layer Perceptron Neural Network (MLP-NN) model to 

predict the CO2 solubility with a wide range of temperature and pressure data as features. They 

showed that accuracy of the model is so high and therefore, the model is feasible to be 

generalized [38].  

Another approach was carried out to optimize the pressure oscillation in carbon capture plant 

with adsorption. In this research, ANN was applied, and the results indicated that the average 

mean square error was around 10-8  [39]. 

Previous research studies in the literature have proved neural network models are promising 

models to predict targets in carbon capture plant. However, there is also a limitation in the 

neural network models that can result poor accuracy. The reason stands on trapping this kind 

of model in local minimum when the data and algorithm are trained, and the model can overfit 

the noise in the process of training data [40]. Many techniques have been suggested to solve 

this problem such as early stopping [41], other types of regularization like dropout [42] and 

Bayesian learning [43]. 
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Since there is no study about prediction of solvent degradation by utilizing ML methods, the 

main purpose of this study is to predict a continuous value for all types of degradation appearing 

in the carbon capture plant by using three ML methods and finding a better model.  
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3  System description and data pre-
processing 

In this chapter, a brief description of the carbon capture plant is presented. In addition, machine 

learning steps for solvent degradation and data pre-processing are investigated. 

3.1 System Description 

This study focuses on carbon capture plant at TCM located in Mongstad next to the Equinor 

refinery. Figure 3.1 indicates the process flow diagram for this plant. As shown in the figure, 

there are two sources of flue gas feeding this plant namely Combined Heat and Power (CHP) 

and Residual Fluidized Catalytic Cracker (RFCC). The CHP flue gas has about 4% CO2 while 

the RFCC contains around 14% CO2. Both flue gas sources cool down before entering 

absorber. CO2 in flue gas is removed by passing over lean solvent in the absorber. Besides, in 

the top of the absorber, there are columns of water washes to absorb evaporated amine and 

ammonia and then, feed to the bottom of the absorber where the rich solvent is. Finally, the 

depleted flue gas, which contains small emissions, is released from top of the absorber. On the 

other side, rich solvent containing CO2 heats up by passing from a heat exchanger to reach the 

temperature of the stripper. In stripper, trapped CO2 in rich solvent is released after gaining 

some heat from reboiler and therefore, rich solvent is converted to lean solvent. CO2 is collected 

in top of the stripper and cooled down for further storage [26]. 

In this study, one of the TCM campaign test data for carbon capture with MEA solvent is used. 

This campaign test was begun from the first of July 2017 and lasted to the first of March 2018 

(approximately eight months). Total operational days during this campaign was 162.5 based 

on flue gas circulation. Figure 3.2 shows operational time of plant in each day over the time 

period. In y axis, one and zero present working and stopping of the process in the plant, 

respectively. In addition, Figure 3.3 illustrates total working days in the plant during the time. 
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Figure 3.1: Carbon capture plant overview [26]. 

 

Figure 3.2: Operational time in carbon capture plant over the time  
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Figure 3.3: Total number of working days in the plant over the period 

3.2 Machine learning process 

Machine learning steps used in TCM data are shown in the Figure 3.4. As it can be seen in 

the figure, data should be firstly collected and then pre-processed. Pre-processing step can 

consist of several steps like cleaning, manipulation of data and feature selection. After pre-

processing, model should be chosen and trained. Performance of the model is evaluated by 

test model step. Finally, improvement can be carried out by comparing test and train result in 

case test results are not satisfied. 

 

 

Figure 3.4: Machine learning steps for TCM data [44]. 

3.3 Data collection and pre-processing 

There are available online and lab data from different parts of the plant. According to the 

literature and former research studies at TCM, there are some components that are very 

important in solvent degradation prediction. Ammonia, Formaldehydes, Acetaldehydes, 1H-

Imidazole-1-ethanol (HEI) and 4-(2-hydroxyethyl)-2-piperazinone (HEPO) which can be seen 

in the Table 2.2 or Figure 2.15 in detail. Data availability is one of the concerns that can limit 
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the prediction of some components. For instance, available HEPO data over the period is just 

20 datasets which is very low for further analysis. In the following, the process of the data 

selection and pre-processing will be explained in detail. 

3.3.1 Online data 

To measure parameters like temperature, pressure, flue gas decomposition and flow rate, 

several instruments have been installed at TCM to record the information continuously. This 

data referred to online data, has high resolution with frequency of 12 hours or even better, as 

they are continuously recorded. Therefore, a vast majority of data needed can be obtained from 

online sources. According to the literature and as Figure 3.1 shows, source of solvent loss can 

be followed in the exit of the plant which is depleted gas and product gas. Ammonia, 

Formaldehydes and Acetaldehydes can represent oxidative degradation in the absorber and 

stripper containing a high percentage of total solvent degradation. Besides, stripper temperature 

and data regarding the absorber inlet should be extracted. Stripper temperature plays a role in 

thermal degradation while fraction of components in the absorber inlet influences the oxidative 

degradation. Flue gas in the inlet of the absorber, depleted flue gas and product flue gas are 

also of interest because they represent flow rate of each component after multiplying into their 

component fraction. Finally, to measure volatility of the solvent in absorber, flow rate of water 

in the water wash sections have been extracted. 

Data pre-processing has been executed in Excel. All Nan values have been omitted and zero 

value has been replaced for flue gas rate less than 2000 Sm3/h in the absorber inlet as it was 

proposed by TCM. Appendix B shows an overview of the final and cleaned online data for 

further implementation. 

3.3.2 Lab data 

As it can be seen in the Figure 3.1, there are some points in the plant shown in sample location 

(SL). There are several places in the plant that samples should be taken to evaluate their 

components in the laboratory. TCM provided more than 10 data sources for lab data over the 

period. Each lab data source corresponds to a specific period of time that in total would be 

around six months which is far less than available period time for online data. In addition, data 

frequency in each data source is different that needs further process. Ammonium and MEA 

content in both water wash sections, and viscosity are also essential data for further 

implementations based on the literature. Therefore, this data has been extracted form available 

lab data sources. Appendix D shows the source code used to extract the needed data from lab 

data sources. Excel was employed for further data pre-processing. Cleaned lab data is also 

presented in the Appendix C.  

One of the issues in lab data was various data frequency which should be solved. One of the 

solutions is considering constant value in each interval. Figure 3.5 to Figure 3.8 show almost 

the same number of data sets (about 105 datasets) for each parameter while Figure 3.9 has a 

lower data frequency (76 datasets). However, this data has been extended by assuming constant 

behavior in each interval. This can be easily seen in Figure 3.9 where the figure has a shape 

like the step function. This assumption is shown in the Figure 3.10 for more explanation.  
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Figure 3.5: Ammonium content in the water wash inlet section 1 over the time 

 

Figure 3.6: Ammonium content in the water wash inlet section 2 over the time 

 

Figure 3.7: MEA content in the water wash inlet section 1 over the time 
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Figure 3.8: MEA content in the water wash inlet section 2 over the time 

 

Figure 3.9: Viscosity of the lean solvent over the time 

 

As shown in the right plot of Figure 3.10 , some intervals have constant value extended before 

combination with online data. Real data is also presented in the left plot of the figure.  

Figure 3.10: Viscosity of the lean solvent (right plot: extended data, left plot: original data) 
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By combining lab and online data, the whole data is used for the further pre-processing. After 

combination of online and lab, 483 datasets are ready further pre-processing and modelling. In 

the following chapter, feature selection process and results are presented. 
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4 Results and discussion 
In this chapter, Pearson’s and Spearman’s coefficients for variables are firstly presented. Then, 

the results of all machine learning methods are introduced and discussed. 

4.1 Feature selection 
By combining lab and online data with the same frequency of data, Spearman’s and Pearson’s heatmap can be 

shown as Figure 4.1 and Figure 4.2, respectively. Besides, Table 4.1 and  

 

Table 4.2 show the coefficients clearly for the further process. As the nature of solvent degradation is nonlinear, 

therefore, Spearman’s coefficient would be more beneficial. 

 

 

Figure 4.1: Spearman’s heatmap for variables 
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Figure 4.2: Pearson’s heatmap for variables 

 

Table 4.1: Spearman’s coefficient results for variables 
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CO2  AI (Sm3/h) 1.00 0.46 0.64 0.08 0.58 0.62 0.73 0.60 0.45 0.64 0.75 0.69 0.66 0.74 0.65 0.70

O2 AI (Sm3/h) 0.46 1.00 0.79 0.67 -0.08 0.28 0.53 -0.09 0.60 0.49 0.50 0.71 0.46 0.37 0.57 0.39

H2O AI (Sm3/h) 0.64 0.79 1.00 0.53 0.25 0.37 0.57 0.13 0.53 0.48 0.55 0.76 0.44 0.45 0.69 0.58

CHP stripper temp. (C) 0.08 0.67 0.53 1.00 -0.31 0.06 0.23 -0.37 0.30 0.25 0.18 0.44 0.10 0.03 0.30 0.05

RFCC stripper temp. (C) 0.58 -0.08 0.25 -0.31 1.00 0.62 0.45 0.71 0.25 0.46 0.55 0.17 0.46 0.60 0.46 0.68

Viscosity lAAI (mPa.s) 0.62 0.28 0.37 0.06 0.62 1.00 0.68 0.59 0.56 0.68 0.71 0.39 0.75 0.80 0.56 0.70

NH3 DG (SL/h) 0.73 0.53 0.57 0.23 0.45 0.68 1.00 0.61 0.72 0.73 0.84 0.62 0.76 0.80 0.74 0.71

Acetalehyde DG (SL/h) 0.60 -0.09 0.13 -0.37 0.71 0.59 0.61 1.00 0.39 0.45 0.58 0.23 0.53 0.68 0.46 0.64

Formaldehyde DG (SL/h) 0.45 0.60 0.53 0.30 0.25 0.56 0.72 0.39 1.00 0.56 0.59 0.51 0.62 0.58 0.56 0.57

NH3 PG (g/h) 0.64 0.49 0.48 0.25 0.46 0.68 0.73 0.45 0.56 1.00 0.84 0.42 0.78 0.81 0.68 0.70

Acetalehyde PG (g/h) 0.75 0.50 0.55 0.18 0.55 0.71 0.84 0.58 0.59 0.84 1.00 0.55 0.79 0.86 0.74 0.75

Formaldehyde PG (g/h) 0.69 0.71 0.76 0.44 0.17 0.39 0.62 0.23 0.51 0.42 0.55 1.00 0.45 0.45 0.60 0.49

Ammonium Water inlet sec1 (kg/h) 0.66 0.46 0.44 0.10 0.46 0.75 0.76 0.53 0.62 0.78 0.79 0.45 1.00 0.91 0.57 0.71

Ammonium Water inlet sec2 (kg/h) 0.74 0.37 0.45 0.03 0.60 0.80 0.80 0.68 0.58 0.81 0.86 0.45 0.91 1.00 0.68 0.82

MEA sec1 (kg/h) 0.65 0.57 0.69 0.30 0.46 0.56 0.74 0.46 0.56 0.68 0.74 0.60 0.57 0.68 1.00 0.85

MEA sec2 (kg/h) 0.70 0.39 0.58 0.05 0.68 0.70 0.71 0.64 0.57 0.70 0.75 0.49 0.71 0.82 0.85 1.00
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Table 4.2: Pearson’s coefficient results for variables  

 

 

AI, lAAI, DG, PG, sec and temp. in the tables represent Absorber Inlet, lean Amine Absorber 

Inlet, Depleted Gas, Product Gas, section and temperature, respectively.  

The corresponding source code to create the coefficients and heatmap can be found in 

Appendix E.  

To select the suitable features, 0.5 is used as threshold to choose the effective parameter for 

predicting all sources of the solvent degradation namely NH3 DG and PG, Acetaldehyde DG 

and PG, Formaldehyde DG and PG, Ammonium Water inlet sections 1 and 2, MEA in the 

sections 1 and 2. According to Table 4.1, there is no relation between all targets and CHP 

stripper temperature since its absolute coefficients are less than 0.5. Therefore, this variable 

can be neglected for further modelling. In addition, all variables except for RFCC stripper 

temperature have coefficient more than 0.5 for NH3 DG prediction. Regarding the 

Acetaldehyde DG, variables CO2 AI, RFCC stripper temp., NH3 DG, Acetaldehyde PG, 

Ammonium Water inlet sec1 and Ammonium Water inlet sec2, and MEA sec2 have 

coefficients less than threshold 0.5. Therefore, the rest of variables would be considered to 

forecast Acetaldehyde DG. This process should be carried out on all target variables to reach 

the minimum features for modelling. Table 4.3 shows the result for feature selection so that 

coefficient in the yellow cells are the final features for each target. 
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CO2  AI (Sm3/h) 1.00 0.16 0.64 -0.17 0.66 0.66 0.61 0.63 0.22 0.37 0.70 0.58 0.24 0.61 0.29 0.09

O2 AI (Sm3/h) 0.16 1.00 0.71 0.77 -0.28 0.35 0.22 -0.24 0.12 0.15 0.22 0.48 0.11 -0.14 0.25 0.13

H2O AI (Sm3/h) 0.64 0.71 1.00 0.41 0.22 0.59 0.42 0.18 0.19 0.20 0.45 0.64 0.15 0.20 0.39 0.26

CHP stripper temp. (C) -0.17 0.77 0.41 1.00 -0.60 0.07 0.00 -0.40 -0.04 0.06 -0.04 0.30 -0.03 -0.34 -0.04 -0.12

RFCC stripper temp. (C) 0.66 -0.28 0.22 -0.60 1.00 0.52 0.49 0.70 0.22 0.27 0.58 0.07 0.19 0.69 0.36 0.25

Viscosity lAAI (mPa.s) 0.66 0.35 0.59 0.07 0.52 1.00 0.54 0.42 0.22 0.39 0.58 0.39 0.19 0.55 0.28 0.14

NH3 DG (SL/h) 0.61 0.22 0.42 0.00 0.49 0.54 1.00 0.63 0.24 0.36 0.75 0.32 0.10 0.52 0.28 0.05

Acetalehyde DG (SL/h) 0.63 -0.24 0.18 -0.40 0.70 0.42 0.63 1.00 0.44 0.23 0.63 0.20 0.12 0.67 0.18 0.03

Formaldehyde DG (SL/h) 0.22 0.12 0.19 -0.04 0.22 0.22 0.24 0.44 1.00 0.04 0.22 0.07 0.04 0.16 0.14 0.11

NH3 PG (g/h) 0.37 0.15 0.20 0.06 0.27 0.39 0.36 0.23 0.04 1.00 0.48 0.07 0.10 0.38 0.10 -0.03

Acetalehyde PG (g/h) 0.70 0.22 0.45 -0.04 0.58 0.58 0.75 0.63 0.22 0.48 1.00 0.30 0.18 0.57 0.24 -0.02

Formaldehyde PG (g/h) 0.58 0.48 0.64 0.30 0.07 0.39 0.32 0.20 0.07 0.07 0.30 1.00 0.12 0.05 0.22 0.07

Ammonium Water inlet sec1 (kg/h) 0.24 0.11 0.15 -0.03 0.19 0.19 0.10 0.12 0.04 0.10 0.18 0.12 1.00 0.29 -0.06 0.00

Ammonium Water inlet sec2 (kg/h) 0.61 -0.14 0.20 -0.34 0.69 0.55 0.52 0.67 0.16 0.38 0.57 0.05 0.29 1.00 0.07 0.00

MEA sec1 (kg/h) 0.29 0.25 0.39 -0.04 0.36 0.28 0.28 0.18 0.14 0.10 0.24 0.22 -0.06 0.07 1.00 0.78

MEA sec2 (kg/h) 0.09 0.13 0.26 -0.12 0.25 0.14 0.05 0.03 0.11 -0.03 -0.02 0.07 0.00 0.00 0.78 1.00
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Table 4.3: Effective variables based on Spearman’s correlation method 

 

4.2 Support Vector Regression (SVR) 

There are several hyperparameters in SVR method that should be tuned before further 

processing. Regularization parameter (C), epsilon ( ), kernel function, tolerance and gamma 

(kernel coefficient) can be named as the most important hyperparameters in SVR method. 

Regularization parameter should be a positive number and the regularization technique is based 

on L2 regularization. Epsilon also represents the tube area with  radius that loss function 

applies no penalty for the training data. There are several kernel functions such as linear, poly, 

radial based function (rbf) and sigmoid. Kernel function rbf is the most common function used 

in SVR and therefore, it is used for current SVR models. Besides, tolerance and gamma are set 

to 10-5 and ‘scale’ to reach better results. Therefore, regularization parameter and epsilon 

should be tuned in each type of solvent degradation in the carbon capture plant.  

Grid search optimization method is employed to tune regularization parameter and epsilon in 

SVR models. 20 and 5 points are chosen for regularization parameter and epsilon, respectively, 

to search for the best results. As shown in the Figure 4.3, grid search has been executed in the 

range of 0 to 37000 and 0.02 to 0.1 for regularization parameter and epsilon, respectively, for 

MEA sec1. As shown in the figure, tuned regularization parameter and epsilon are chosen 

30000 and 0.02, respectively, to reach 0.9670 and 0.9861 for the train and test R2 score. Table 

4.4 shows the results for each type of solvent degradation based on the optimal regularization 

parameter and epsilon for two splitting type of 80/20, 70/30 for train/test datasets. The results 

show that there is an excellent validation in this method for most cases while R2 is low for 

training and test dataset in some cases. In fact, SVR predicts well in NH3 DG, Acetaldehyde 

PG, Formaldehyde PG, Ammonium Water inlet sec2, MEA sec1 and MEA sec2 as the train 

and test R2 is more than 0.9. In other cases, the models need more improvement to reach better 

result. As a general rule and based on the results of SVR methods shown in the table, the model 

can appropriately predict when data is split 80/20 in train/ test datasets rather than 70/30. 
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NH3 DG (SL/h) 0.73 0.53 0.57 0.45 0.68 1.00 0.61 0.72 0.73 0.84 0.62 0.76 0.80 0.74 0.71

Acetalehyde DG (SL/h) 0.60 -0.09 0.13 0.71 0.59 0.61 1.00 0.39 0.45 0.58 0.23 0.53 0.68 0.46 0.64

Formaldehyde DG (SL/h) 0.45 0.60 0.53 0.25 0.56 0.72 0.39 1.00 0.56 0.59 0.51 0.62 0.58 0.56 0.57

NH3 PG (g/h) 0.64 0.49 0.48 0.46 0.68 0.73 0.45 0.56 1.00 0.84 0.42 0.78 0.81 0.68 0.70

Acetalehyde PG (g/h) 0.75 0.50 0.55 0.55 0.71 0.84 0.58 0.59 0.84 1.00 0.55 0.79 0.86 0.74 0.75

Formaldehyde PG (g/h) 0.69 0.71 0.76 0.17 0.39 0.62 0.23 0.51 0.42 0.55 1.00 0.45 0.45 0.60 0.49

Ammonium Water inlet sec1 (kg/h) 0.66 0.46 0.44 0.46 0.75 0.76 0.53 0.62 0.78 0.79 0.45 1.00 0.91 0.57 0.71

Ammonium Water inlet sec2 (kg/h) 0.74 0.37 0.45 0.60 0.80 0.80 0.68 0.58 0.81 0.86 0.45 0.91 1.00 0.68 0.82

MEA sec1 (kg/h) 0.65 0.57 0.69 0.46 0.56 0.74 0.46 0.56 0.68 0.74 0.60 0.57 0.68 1.00 0.85

MEA sec2 (kg/h) 0.70 0.39 0.58 0.68 0.70 0.71 0.64 0.57 0.70 0.75 0.49 0.71 0.82 0.85 1.00
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Figure 4.3: Results of tuning regularization parameter and epsilon in SVR model for MEA sec1. 

 

Table 4.4: Results for SVR method with tuned hyperparameter. 

Splitting type 

Train set 

(80%), Test set 

(20%) 

Train set 

(70%), Test 

set (30%) Regularization 

parameter 
Epsilon 

Outputs 
Train 

R2 
Test 

R2 
Train 

R2 
Test 

R2 

NH3 DG  0.919 0.902 0.919 0.906 47000 0.02 

Acetaldehyde 

DG  0.554 0.502 0.566 0.485 45000 0.04 

Formaldehyde 

DG  0.449 0.443 0.482 0.362 55000 0.05 

NH3 PG  0.453 0.446 0.458 0.436 52000 0.04 

Acetaldehyde 

PG  0.970 0.973 0.968 0.976 56000 0.02 

Formaldehyde 

PG  0.873 0.856 0.876 0.852 50000 0.02 

Ammonium 

Water inlet 

sec1  
0.305 0.149 0.292 0.175 12000 0.02 

Ammonium 

Water inlet 

sec2  
0.947 0.887 0.947 0.915 60000 0.04 

MEA sec1  0.967

0 
0.9861 0.963 0.983 30000 0.02 

MEA sec2  0.980 0.984 0.975 0.988 15000 0.02 

 

Appendix F shows the source code for SVR methods. 
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4.3 Random Forest (RF) 

There are also several hyperparameters in RF method that should be also tuned before further 

implementation. These hyperparameters are listed as n_estimators, min_sample_split, 

min_sample_leaf, max_depth and bootstrap. To tune hyperparameters in RF models, 

randomized search cross validation is used. Therefore, hyperparameters can be selected in the 

range described in the Table 4.5. As shown in the table, several points are produced linearly 

for max_depth and n_estimator by using linear function in python. 
 

 Table 4.5: Results for tuned hyperparameter in RF method for splitting 80/20 train/test dataset. 

Hyperparameter Hyperparameter choices 

n_estimator 10 numbers between 20 and 1000 (linear function) 

min_sample_split 2, 5, 8 

min_sample_leaf 1, 2, 5 

max_depth 11 number between 1 and 110 (linear function), None 

bootstrap False, True 

 

By implementing randomized search cross validation for splitting 80/20 in train/ test data sets, 

tuned hyperparameter in RF model are described as Table 4.6. None in the max_depth 

demonstrates that the extension of nodes continues until number of samples in all leaves are 

less than min_samples_split. 
 

Table 4.6: Results for tuned hyperparameter in RF method for splitting 80/20 in train/test dataset 

Type of 

degradation 

Hyperparameters  

n_estimators min_sample_split min_sample_leaf max_depth bootstrap 

NH3 DG 237 5 1 60 False 

Acetaldehyde 

DG 
128 2 1 none False 

Formaldehyde 

DG 
20 2 1 50 True 

NH3 PG 673 5 2 none False 

Acetaldehyde PG 346 5 1 90 False 

Formaldehyde 

PG 
128 2 1 none False 

Ammonium 

Water inlet sec1 
128 2 1 none False 

Ammonium 

Water inlet sec2 
455 8 1 80 False 

MEA sec1 237 2 2 110 False 

MEA sec2 128 2 1 none False 
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Figure 4.4 illustrates a view of RF model belonging to Acetaldehyde DG.  
 

 

Figure 4.4: RF architecture for Acetaldehyde DG with tuned hyperparameter. 

 

Table 4.7: Results for RF method by using cross validation random search. 

Splitting type 
Train set (80%), 

 Test set (20%) 

Train set (70%), 

 Test set (30%) 

Type of 

degradation 
Train R2  Test R2  Train R2  Test R2  

NH3 DG  0.9951 0.9099 0.9999 0.8917 

Acetaldehyde DG  0.9878 0.8334 0.9999 0.7684 

Formaldehyde 

DG  
0.9218 0.4841 0.5848 0.2866 

NH3 PG  0.9250 0.5059 0.9414 0.5434 

Acetaldehyde PG  0.9999 0.9368 0.9982 0.9146 

Formaldehyde PG  0.9999 0.7695 0.9919 0.7257 

Ammonium 

Water inlet sec1  
0.9489 0.1384 0.9411 0.1594 

Ammonium 

Water inlet sec2  
0.9999 0.8467 0.9999 0.8143 

MEA sec1  0.9911 0.8830 0.9999 0.8944 

MEA sec2  0.9756 0.9841 0.9602 0.9585 
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Table 4.7 shows the results of RF model for different types of solvent degradation in the plant. 

As it can be seen in the table, R2 in the training data is very good (more than 0.95). However, 

there is a gap between R2 training and testing dataset in a few models. For instance, RF model 

in Formaldehyde DG has experienced overfitting since there is a considerable gap between R2 

in train and test datasets. To avoid overfitting in this model, max_depth and min_sample_split 

was limited but no significant changes occurred. For example, by repeating the tuning process 

with limiting max_depth and min_sample_split to 20 and 4, respectively, train and test R2 

became 0.8927 and 0.5790. This process was also carried out for NH3 PG and the results were 

not satisfying. In Ammonium water inlet sec1, there is a huge gap between train and test R2 

which can be due to data quality. 

Appendix G displays the source code for Random Forest with randomized search cross 

validation. 

4.4 Artificial Neural Network (ANN) 

Hyperparameters in ANN model that should be tuned, are learning rate, number of neurons in 

each hidden layer, number of hidden layers, epochs, batch size and activation function. Several 

experiments were carried out before tuning all hyperparameters and seen that the best results 

are regarding to the models having activation functions of ReLU and tanh. 

Besides, one hidden layer was not observed as efficient as two hidden layers in ANN models, 

though increasing more hidden layers could increase the probability of overfitting. Therefore, 

two hidden layers are used in the further implementations. ReLU and tanh are considered as 

the first and second hidden layer activation function, respectively, while activation function for 

the output layer was chosen ReLU. ReLU was selected as the activation function for the output 

layer since targets or outputs are positive in models. Batch size was also assumed to be 40 after 

checking several choices. In addition, epochs should be checked before finalizing the ANN 

model for each type of solvent degradation since it can trap the model into overfitting. Finally, 

the rest of the hyperparameters should be tuned by one of the optimization methods. Grid search 

is used to optimize learning rate in each model for different number of neurons in each hidden 

layer. 120, 70 and 40 number of neurons for the first hidden layer and 100, 60 and 20 for the 

second hidden layers are considered. These numbers were chosen based on several trial 

implementations and checking train and test R2 in the ANN model. In fact, a grid search 

including 20 points of different learning rate is examined and the best learning rate based on 

R2 is chosen. Besides, all implementations are carried out with splitting data 80/20 in train/test. 

An overview of ANN architecture with two hidden layers is shown in the Figure 4.5. As shown 

in the figure, this model contains two hidden layers with 40 and 20 neurons in the first and 

second hidden layers, respectively. Input and output layer are also the first and last layer of this 

ANN model.  
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Figure 4.5: ANN architecture for one of the models. 

4.4.1 Performance of ANN for different types of solvent degradation 

Results for the NH3 DG are shown in Table 4.7. As it is seen, train and test R2 scores have very 

excellent results for different number of neurons. Since an ANN model with 120 and 100 

neurons in the first and second hidden layers have the best results among others, tuned 

hyperparameter relevant to this model is chosen for further improvement. 

 

Table 4.8: Results for NH3 DG with ANN method  

# Neuron in first 

hidden layer 

# Neuron in 

second hidden 

layer 

Train R2 Test R2 Learning rate 

120 

100 0.9981 0.9231 0.0015 

60 0.9833 0.9081 0.0019 

20 0.9916 0.9002 0.0035 

70 

100 0.9783 0.9161 0.0035 

60 0.9821 0.9196 0.0021 

20 0.9776 0.9224 0.0023 

40 

100 0.9800 0.9170 0.0021 

60 0.9707 0.9154 0.0021 

20 0.9819 0.9107 0.0031 

 

loss function versus epochs is plotted to find suitable epochs number for NH3 DG. As shown 

in Figure 4.6, validation and train dataset approximately experience no change after 1600 

epochs. Therefore, final ANN hyperparameters with corresponding R2 results for NH3 DG are 

described in the Table 4.9. 
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Figure 4.6: loss versus epochs for NH3 DG 

 

Table 4.9: Final hyperparameter of ANN model for NH3 DG 

Degradation 

type 
#Hidden 

layer 

#Nodes 

in the 

first 

hidden 

layer 

#Nodes 

in the 

second 

hidden 

layer 

Batch 

size 
Epochs 

Learning 

rate 
Train R2 Test R2 

NH3 DG 2 120 100 40 1600 0.0015 0.9902 0.9150 

 

Same as NH3 DG, optimized learning rate for Acetaldehyde DG is obtained. Results shown in 

Table 4.10, indicate that there is a gap between R2 in training and testing dataset which is 

probably due to overfitting. Figure 4.7 demonstrates that the ANN model experience overfitting 

after approximately 100 epochs as validation loss increases. Therefore, regularization methods 

are used to prevent overfitting in this model. Early stopping and L2 regularization method are 

applied to improve the results. As shown in Figure 4.8, regularization methods improved the 

model properly. After implementing all models shown in the Table 4.10, the best ANN 

hyperparameter is described in the Table 4.11. As it can be seen in Table 4.11, a model with 

120 and 60 neurons in the first and second hidden layers is the best ANN model.  
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Table 4.10: Results for Acetaldehyde DG with ANN method 

# Neuron in first 

hidden layer 

# Neuron in 

second hidden 

layer 

Train R2 Test R2 Learning rate 

120 

100 0.9242 0.6894 0.00023 

60 0.8920 0.7254 0.00016 

20 0.9035 0.6460 0.00024 

70 

100 0.8600 0.7007 0.00021 

60 0.9152 0.6444 0.00028 

20 0.8922 0.6613 0.00023 

40 

100 0.8609 0.6202 0.00022 

60 0.9195 0.6917 0.0008 

20 0.8435 0.7429 0.00029 

 

Figure 4.7: Overfitting in Acetaldehyde DG ANN model 
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Figure 4.8: Loss versus epochs after using regularization methods 

 

Table 4.11: Final hyperparameter of ANN model for Acetaldehyde DG 

Degradation 

type 
#Hidden 

layer 

#Nodes 

in first 

hidden 

layer 

#Nodes 

in 

second 

hidden 

layer 

Batch 

size 
Epochs 

Learning 

rate 
Train R2 Test R2 

Acetaldehyde 

DG 
2 120 60 40 332 0.00016 0.7809 0.7791 

 

The process of tuning is also executed for Formaldehyde DG. Table 4.12 displays the 

corresponding results for Formaldehyde DG. As it can be seen, the gap between train and test 

R2 can be due to overfitting. Therefore, overfitting should be investigated in Formaldehyde DG 

as well. As shown in Figure 4.9, overfitting has occurred, and regularization methods should 

be utilized. After implementing early stopping and L2 regularization method in all cases, an 

ANN model with 40 and 60 neurons in the first and second hidden layers, respectively, was the 

best model. Figure 4.10 shows the loss versus epochs after applying regularization methods on 

the model. As indicated in the figure, ANN model experience improvement after regularization. 

In addition, Table 4.13 shows the hyperparameter and R2 results for the tuned ANN model for 

Formaldehyde DG. 
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Table 4.12: Results for Formaldehyde DG with ANN method 

# Neuron in first 

hidden layer 

# Neuron in 

second hidden 

layer 

Train R2 Test R2 Learning rate 

120 

100 0.8902 0.5581 0.00011 

60 0.7806 0.6044 0.00007 

20 0.9152 0.4980 0.00025 

70 

100 0.9520 0.3956 0.00037 

60 0.9234 0.02198 0.00037 

20 0.9229 0.3212 0.00033 

40 

100 0.8609 0.349446 0.00019 

60 0.8853 0.5716 0.00019 

20 0.8919 0.4426 0.00031 

 

Figure 4.9: Overfitting in Formaldehyde DG ANN model 
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Figure 4.10: Loss versus epochs after using regularization methods 

 

Table 4.13: Final hyperparameter of ANN model for Formaldehyde DG 

Degradation 

type 
#Hidden 

layer 

#Nodes 

in first 

hidden 

layer 

#Nodes 

in 

second 

hidden 

layer 

Batch 

size 
Epochs 

Learning 

rate 
Train R2 Test R2 

Formaldehyde 

DG 
2 40 60 40 511 0.00019 0.7656 0.7383 

 

Tuned learning rate in the corresponding number of neurons is indicated in the Table 4.14 for 

NH3 PG. As it is clear from the table, there is a huge gap between R2 in training and testing 

datasets. Besides, models with 20 neurons in the first layer have an unfavorable performance 

in test R2 presenting negative value. In addition, models with 70 neurons in the first layer does 

not either perform well. Since there is a gap between train and test R2, overfitting is firstly 

investigated. Figure 4.11 shows that the model experiences overfitting. After applying 

regularization methods (early stopping and L2), overfitting is avoided that can be seen in the 

Figure 4.12. Finally, after implementing all models, hyperparameters and R2 results for the best 

ANN model for NH3 PG are described in Table 4.15. 
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Table 4.14: Results for NH3 PG with ANN method 

# Neuron in 

first hidden 

layer 

# Neuron in 

second hidden 

layer 

Train R2 Test R2 Learning rate 

120 

100 0.8418 0.3295 0.00028 

60 0.8077 0.1878 0.00028 

20 0.8181 0.2354 0.00037 

70 

100 0.8028 0.2410 0.00009 

60 0.8044 0.2074 0.00033 

20 0.7383 0.1844 0.00033 

40 

100 0.7267 0.1322 0.00033 

60 0.7131 -0.0550 0.00035 

20 0.6427 0.0879 0.00033 

 

Figure 4.11: Overfitting in NH3 PG ANN model 
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Figure 4.12: Loss versus epochs after using regularization methods 

 

Table 4.15: Final hyperparameter of ANN model for NH3 PG 

Degradation 

type 
#Hidden 

layer 

#Nodes 

in first 

hidden 

layer 

#Nodes 

in 

second 

hidden 

layer 

Batch 

size 
Epochs 

Learning 

rate 
Train R2 Test R2 

NH3 PG 2 120 100 40 293 0.00028 0.4808 0.4301 

 

Table 4.16 indicates results for different ANN models for Acetaldehyde PG. Although all 

models have favorable results showing R2 more than 0.9 in both training and test dataset, an 

ANN model with 70 and 100 neurons in the first and second hidden layers, respectively, 

presents the highest R2. Therefore, this model is chosen for further improvement. To find the 

optimal epochs in the model, loss versus epochs is plotted for the validation and train dataset. 

As shown in Figure 4.13, 1350 epochs can be approximately suitable for epochs in the ANN 

model. Therefore, final results for the ANN model can be described in the Table 4.17. 
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Table 4.16: Results for Acetaldehyde PG with ANN method 

# Neuron in first 

hidden layer 

# Neuron in 

second hidden 

layer 

Train R2 Test R2 Learning rate 

120 

100 0.9917 0.8716 0.00037 

60 0.9886 0.9163 0.0019 

20 0.9887 0.9035 0.0039 

70 

100 0.9900 0.9233 0.0017 

60 0.9912 0.9074 0.0029 

20 0.9923 0.8914 0.0037 

40 

100 0.9862 0.9001 0.0025 

60 0.9875 0.8688 0.0029 

20 0.9857 0.8995 0.0039 

 

Figure 4.13: Loss versus epochs for Acetaldehyde PG 

Table 4.17: Final hyperparameter of ANN model for Acetaldehyde PG 

Degradation 

type 
#Hidden 

layer 

#Nodes 

in first 

hidden 

layer 

#Nodes 

in 

second 

hidden 

layer 

Batch 

size 
Epochs 

Learning 

rate 
Train R2 Test R2 

Acetaldehyde 

PG 
2 70 100 40 1350 0.0029 0.9911 0.9013 
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The process of tuning is also executed for Formaldehyde PG. Table 4.18 demonstrates the 

corresponding results for Formaldehyde PG. As it can be seen, the gap between train and test 

R2 can be due to overfitting. Therefore, overfitting is investigated in Formaldehyde PG. As 

indicated in the Figure 4.14, overfitting has occurred since the gap between validation and train 

loss increases. After implementing early stopping and L2 regularization method in all cases, an 

ANN model with 40 and 20 neurons in the first and second hidden layers, respectively, was the 

best model. Figure 4.15 shows the loss versus epochs after applying regularization methods on 

the model. Table 4.19 also shows the hyperparameters for the tuned ANN model for 

Formaldehyde DG. 

Table 4.18: Results for Formaldehyde PG with ANN method 

# Neuron in 

first hidden 

layer 

# Neuron in 

second 

hidden layer 

Train R2 Test R2 Learning rate 

120 

100 0.9521 0.6439 0.0029 

60 0.9513 0.5231 0.0033 

20 0.9529 0.5640 0.0013 

70 

100 0.9462 0.6097 0.0031 

60 0.9465 0.5862 0.0013 

20 0.9386 0.5829 0.0029 

40 

100 0.9396 0.4741 0.0035 

60 0.9117 0.7105 0.0013 

20 0.9357 0.6113 0.0029 

 

Figure 4.14: Overfitting in Formaldehyde PG ANN model 
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Figure 4.15: Loss vs. epochs after using regularization methods 

 

Table 4.19: Final hyperparameter of ANN model for Formaldehyde PG 

Degradation 

type 
#Hidden 

layer 

#Nodes 

in first 

hidden 

layer 

#Nodes 

in 

second 

hidden 

layer 

Batch 

size 
Epochs 

Learning 

rate 
Train R2 Test R2 

Formaldehyde 

PG 2 40 20 40 48 0.0029 0.7388 0.6782 

As there are no acceptable results for train and test R2 in Ammonium water inlet sec1, number 

of hidden layers have been increased but no significant change happened in the results. In 

addition, the last two methods could not predict this type of solvent degradation very well. 

To find the hyperparameter of the ANN model for Ammonium in water inlet section 2, the 

former process is applied. Table 4.20 shows the results of R2 for different number of neurons 

for the first and second hidden layers. As it is seen in the table, train and test R2 are more than 

0.98 and 0.8 for all cases. An ANN model with 120 and 100 neurons in the first and second 

hidden layers is chosen for further process. As shown in the Figure 4.16, 1000 epochs can be 

approximately suitable in the ANN model. Therefore, results for the ANN model can be 

described in the Table 4.21. 

 

 

 

 



4 Results and discussion 

52 

 

Table 4.20: Results for Ammonium water inlet sec2 with ANN method 

# Neuron in first 

hidden layer 

# Neuron in second 

hidden layer 
Train R2 Test R2 Learning rate 

120 

100 0.9952 0.8310 0.0009 

60 0.9958 0.8231 0.0023 

20 0.9951 0.8264 0.0009 

70 

100 0.9933 0.8309 0.0033 

60 0.9934 0.8163 0.0037 

20 0.9941 0.8278 0.0033 

40 

100 0.9896 0.7981 0.0035 

60 0.9838 0.7944 0.0031 

20 0.9915 0.8146 0.0029 

 

Figure 4.16: Loss versus epochs for Ammonium water inlet sec2 

Table 4.21: Final hyperparameter of ANN model for Ammonium water inlet sec2 

Degradation 

type 
#Hidden 

layer 

#Nodes 

in first 

hidden 

layer 

#Nodes 

in 

second 

hidden 

layer 

Batch 

size 
Epochs 

Learning 

rate 
Train R2 Test R2 

Ammonium 

Water inlet 

sec2 
2 120 100 40 1000 0.0009 0.9819 0.8202 
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Table 4.22 demonstrates results for different ANN model for MEA sec1. Although the models 

have favorable results showing R2 more than 0.93 in both training and test dataset, an ANN 

model with 70 and 60 neurons in the first and second hidden layers, respectively, presents the 

highest R2. Therefore, this model is chosen for further improvement. To find the optimal epochs 

in the model, loss versus epochs is plotted for the validation and train dataset. As shown in the 

Figure 4.17, 300 epochs can be reasonable for the ANN model. Therefore, hyperparameters 

and R2 results for MEA sec1 are described in the Table 4.23. 

 

Table 4.22: Results for MEA sec1 with ANN method 

# Neuron in 

first hidden 

layer 

# Neuron in 

second 

hidden layer 

Train R2 Test R2 Learning rate 

120 

100 0.9941 0.9317 0.0019 

60 0.9946 0.9369 0.0017 

20 0.9940 0.9480 0.0019 

70 

100 0.9940 0.9444 0.0029 

60 0.9918 0.9451 0.0019 

20 0.9929 0.9421 0.0029 

40 

100 0.9820 0.9392 0.0019 

60 0.9808 0.9409 0.0017 

20 0.9755 0.9544 0.0019 

 

Figure 4.17: Loss versus epochs for MEA sec1 
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Table 4.23: Final hyperparameter of ANN model for MEA sec1 

Degradation 

type 
#Hidden 

layer 

#Nodes 

in first 

hidden 

layer 

#Nodes 

in 

second 

hidden 

layer 

Batch 

size 
Epochs 

Learning 

rate 

Train 

R2 
Test R2 

MEA sec1 2 70 60 40 300 0.0019 0.9866 0.9362 

 

Results for the MEA sec2 is shown in Table 4.24. As it is seen, train and test R2 scores have 

good results for different number of neurons. Since an ANN model with 70 and 60 neurons in 

the first and second hidden layers has the best results among others, the relevant tuned 

hyperparameter for this model is chosen for further improvement. loss function versus epochs 

is also plotted to find appropriate epochs number for MEA sec2. As shown in the Figure 418, 

validation and train data set approximately experience no change after 800 epochs. Therefore, 

final ANN hyperparameters with corresponding R2 results for MEA sec2 are described in the 

Table 4.25. 

Table 4.24: Results for MEA section 2 with ANN method 

# Neuron in first 

hidden layer 

# Neuron in 

second 

hidden layer 

Train R2 Test R2 Learning rate 

120 

100 0.9799 0.8637 0.0005 

60 0.9808 0.8706 0.00044 

20 0.9830 0.8649 0.00026 

70 

100 0.962 0.9396 0.00034 

60 0.9819 0.9370 0.00026 

20 0.9818 0.8545 0.00044 

40 

100 0.9780 0.9310 0.0004 

60 0.9346 0.8989 0.0001 

20 0.9399 0.9305 0.00022 
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Figure 4.18: Loss versus epochs for MEA sec2 

Table 4.25: Final hyperparameter of ANN model for MEA sec2 

Degradation 

type 
#Hidden 

layer 

#Nodes 

in first 

hidden 

layer 

#Nodes 

in 

second 

hidden 

layer 

Batch 

size 
Epochs 

Learning 

rate 

Train 

R2 
Test R2 

MEA sec2 2 70 60 40 800 0.00026 0.9883 0.9329 

Appendix H shows the source code used for ANN models. 

4.5 Discussion  

In this section, results obtained from all three models for different types of solvent degradation 

are discussed. 

In the feature selection results with Spearman’s technique, feature independency was mainly 

neglected. In fact, the correlation coefficient between features and target was counted while 

features should be independent as well. The reason was that after removing those features that 

are related to each other, model results were dramatically unfavorable. Besides, it was seen that 

CHP stripper temperature has no contribution in all models since its coefficient was less than 

0.5. One reason can be investigated in CHP stripper temperature data. As shown in the Figure 

4.19, CHP stripper contribution in the operational time is around two months and the main 

carbon capture operation occurs with RFCC stripper. The other reason relates to the feature 

selection method used in this study as correlation methods do not perform any learning 

algorithm to improve the results for the feature selection. 
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Figure 4.19: CHP stripper temperature over the time 

 

The best model to predict NH3 DG were ANN and RF. Train and test R2 were more than 0.90 

showing very good results. However, generalizability of ANN model was better than RF since 

test R2 for ANN was more than RF. SVR results were also satisfying while the first two 

methods were better. 

Random Forest method was introduced as the best model in forecasting the behavior of the 

Acetaldehyde DG since its R2 results were significantly higher than the other two methods. 

However, there is a demand for increasing generalizability of the model as R2 test is less than 

0.85. 

In Formaldehyde DG prediction, ANN after applying regularization methods demonstrated the 

best results. However, there is low R2 in testing dataset in RF. The reason can be overfitting, 

but this tried to be avoided by limiting the max_depth which did not affect the results. SVR 

presents a quite weak model for the Formaldehyde DG. 

To predict the NH3 PG, Random Forest had best result in training data. However, R2 score did 

not change significantly after restricting max_depth to prevent overfitting. ANN and SVR 

introduced unacceptable result showing R2 less than 0.5. 

To generalize the Acetaldehyde PG for further independent data, SVR was the best R2 outcome 

while the best training score belonged to Random Forest model. ANN also presented 

acceptable results with R2 more than 0.9. 

In Formaldehyde PG, Random Forest and ANN had better results in training data while SVR 

presented a better generalizability to predict independent data. 

None of the methods could properly forecast the Ammonium in the water wash section 1. In 

fact, RF demonstrated only good train R2 while R2 test was less than 0.15. The other two 

methods were also unable to give good results. Therefore, further investigation is required to 

improve this model. 

Random Forest and ANN model presented high R2 in training set for Ammonium in water wash 

section 2 while the most reliable model for test dataset was SVR with the highest R2. 
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In MEA sec1 and MEA sec 2 prediction, ANN and SVR introduced favorable results which 

can be generalized. Random Forest also demonstrated excellent results for prediction of these 

types of degradation. 
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5 Conclusion 
The objective of this study was to predict solvent degradation phenomenon by using machine 

learning methods in carbon capture plant at TCM. This research is consisted of pre-processing 

data, using different machine learning methods and evaluation of the models. 

In the pre-processing step, collected lab and online data were cleaned and finally 483 datasets 

remained for further implementations. Besides, feature selection methods such as Pearson’s 

and Spearman’s technique were utilized to increase the performance of the model by removing 

redundant and irrelevant features. 

Various machine learning methods were used to represent the pattern between the selected 

features and different types of solvent degradation. Three models of ANN, RF and SVR were 

implemented, and the corresponding results were demonstrated. Hyperparameters in all 

methods were tuned to introduce the best possible models for all types of solvent degradation. 

To optimize the hyperparameter, grid and randomized search optimization methods were used 

for all models. Results demonstrated that all models forecasted very well except for some cases 

for instance, NH3 PG and Ammonium water inlet sec1. ANN and RF displayed the favorable 

results in most cases whereas SVR also presented acceptable models in a few cases. For 

example, R2 results for NH3 DG, MEA sec 1, MEA sec2, Acetaldehyde DG, Acetaldehyde PG 

and Ammonium water inlet sec2 were more than 0.90 in RF and ANN models which showed 

quite accurate results. SVR also appropriately predicted MEA sec1 and MEA sec2 with high 

train and test R2 showing more than 0.97.  

There are several recommendations that can be presented for further research in solvent 

degradation prediction with machine learning methods. Since lab and online data frequency 

were different and some assumptions have been used to implement all models, there is a 

demand for better data frequency in lab data. Besides, other feature selection methods such as 

wrapped and embedded strategy could be applied to reach high resolution results as these 

methods are based on learning algorithms. To better tune the hyperparameters in all methods, 

other optimization methods might be utilized to find the global minimum since grid and 

randomized search are possibly trapped in the local minimums. Other machine learning 

methods like Recurrent Neural network (RNN) or ANFIS seem to be useful for further 

implementation as these models were also recommended in the literature review. 
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Appendix B – TCM online data 
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01.07.20

17 12:00 
1839 6786 2049 124 24 119 0.000 0.961 25.8 41.1 11.2 

02.07.20

17 00:00 
1853 6789 2036 124 21 75 0.000 0.415 22.9 35.1 9.8 

02.07.20

17 12:00 
1874 6814 2054 124 20 60 0.000 0.435 23.5 29.9 9.0 

03.07.20

17 00:00 
1966 6694 2100 124 19 44 0.000 0.125 26.3 23.2 9.8 

03.07.20

17 12:00 
1983 6668 2120 124 20 47 0.000 0.586 32 16.2 14.7 

04.07.20

17 00:00 
1984 6645 2075 124 18 40 0.000 0.500 29 11.4 11.7 

04.07.20

17 12:00 
1987 6649 2076 125 20 30 0.000 0.253 32.6 4.7 13.4 

05.07.20

17 00:00 
1990 6616 2055 125 17 90 0.000 0.017 27.8 5.8 25.1 

05.07.20

17 12:00 
1310 4400 1374 117 19 249 0.000 2.633 40.7 32.9 6.1 

06.07.20

17 00:00 
1043 3520 1114 113 16 306 0.000 1.346 34.3 29.6 7.3 

06.07.20

17 12:00 
1054 3561 1004 111 18 306 0.008 2.475 41.3 27.5 13.5 

07.07.20

17 00:00 
1131 3671 1003 110 15 269 0.000 0.869 36.6 18.6 16.7 

07.07.20

17 12:00 
2010 6470 1954 122 15 278 0.002 0.166 34.8 32.9 12.5 

08.07.20

17 00:00 
1935 6248 2008 123 14 391 0.000 0.296 36.1 31.4 8.9 
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Appendix C – TCM offline data 
 

Date 

Viscosity 

lAAI 

(mPa.s) 

Ammonium 

Water inlet 

sec1 (kg/h) 

Ammonium Wa-

ter inlet sec2 

(kg/h) 

MEA 

sec1 

(kg/h) 

MEA sec2 

(kg/h) 

01.07.2017 00:00 2.817 0.374 2.370 88.800 6.180 

01.07.2017 12:00 2.817 0.374 2.370 88.802 6.180 

02.07.2017 00:00 2.817 0.374 2.370 88.798 6.180 

02.07.2017 12:00 2.817 0.374 2.370 88.800 6.180 

03.07.2017 00:00 2.555 0.109 1.092 113.996 1.692 

03.07.2017 12:00 2.555 0.109 1.092 114.004 1.692 

04.07.2017 00:00 3.607 0.109 1.092 114.001 1.692 

04.07.2017 12:00 3.607 0.109 1.092 114.007 1.692 

05.07.2017 00:00 3.607 0.355 3.402 102.004 2.394 

05.07.2017 12:00 3.607 0.355 3.402 101.999 2.394 

06.07.2017 00:00 3.200 0.355 3.402 102.002 2.394 

06.07.2017 12:00 3.200 0.355 3.402 101.995 2.394 

07.07.2017 00:00 1.844 4.272 7.200 1.128 2.178 

07.07.2017 12:00 1.844 4.272 7.200 1.128 2.178 

08.07.2017 00:00 1.844 4.272 7.200 1.128 2.178 

08.07.2017 12:00 1.844 4.272 7.200 1.128 2.178 

09.07.2017 00:00 1.844 4.272 7.200 1.128 2.178 

09.07.2017 12:00 1.844 4.272 7.200 1.128 2.178 

10.07.2017 00:00 3.602 1.170 5.328 84.001 1.044 

10.07.2017 12:00 3.602 1.170 5.328 83.992 1.044 

11.07.2017 00:00 2.758 1.170 5.328 83.995 1.044 

11.07.2017 12:00 2.758 0.802 4.240 57.595 0.831 

12.07.2017 00:00 2.758 1.560 7.104 111.994 1.392 

12.07.2017 12:00 2.758 1.560 7.104 112.003 1.392 

13.07.2017 00:00 3.215 1.560 7.104 112.002 1.392 

13.07.2017 12:00 3.215 1.560 7.104 111.998 1.392 

14.07.2017 00:00 3.879 7.112 19.359 1.432 1.272 

14.07.2017 12:00 3.879 5.812 15.818 1.170 1.039 

15.07.2017 00:00 3.879 4.501 12.259 0.906 0.805 

15.07.2017 12:00 3.879 5.334 14.520 1.074 0.954 

16.07.2017 00:00 3.879 5.334 14.520 1.074 0.954 

16.07.2017 12:00 3.879 5.334 14.520 1.074 0.954 

17.07.2017 00:00 2.398 1.086 4.176 119.997 1.626 

17.07.2017 12:00 2.398 1.086 4.176 120.000 1.626 

18.07.2017 00:00 2.534 1.086 4.176 119.995 1.626 

18.07.2017 12:00 2.534 1.086 4.176 119.998 1.626 

19.07.2017 00:00 2.411 0.870 4.560 135.001 6.960 
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Appendix D - Pre-processing code for lab 
data 

 

 

import pandas as pd 

 

data=pd.read_csv(' File Directory  

                 , usecols=['Description','Sampled 

date','Analsis','Component name','Result text','Units'], 

                 index_col=0) 

 

# Wash water inlet, sec.1 (WWIS1) 

 

WWIS1=data.loc['Wash water inlet, sec.1'] 

Amine_WWIS1=WWIS1.loc[(WWIS1['Component name']=='Am1')|(WWIS1['Com-

ponent name']=='Am01')|(WWIS1['Component name']=='Am1_mg/kg')] 

Ammonium_WWIS1=WWIS1.loc[(WWIS1['Component 

name']=='NH4+')|(WWIS1['Component name']=='Ammonium')] 

 

# Wash water inlet, sec.2 (WWIS2) 

 

WWIS2=data.loc['Wash water inlet, sec.2'] 

Amine_WWIS2=WWIS2.loc[(WWIS2['Component name']=='Am1')|(WWIS2['Com-

ponent name']=='Am01')|(WWIS2['Component name']=='Am1_mg/kg')] 

Ammonium_WWIS2=WWIS2.loc[(WWIS2['Component 

name']=='NH4+')|(WWIS2['Component name']=='Ammonium')] 

 

# Lean amine - absorber inlet (LAAI) 

 

LAAI=data.loc['Lean amine - absorber inlet'] 

Amine_LAAI=LAAI.loc[LAAI['Component name']=='Am1_mg/kg'] 

TN_LAAI=LAAI.loc[LAAI['Component name']=='Total Nitrogen'] 

HEA_LAAI=LAAI.loc[LAAI['Component name']=='HEA_wt'] 

HEF_LAAI=LAAI.loc[LAAI['Component name']=='HEF_wt'] 

HEPO_LAAI=LAAI.loc[LAAI['Component name']=='HEPO_wt'] 

HEGly_LAAI=LAAI.loc[LAAI['Component name']=='HEGly_wt'] 

Nitrate_LAAI=LAAI.loc[LAAI['Component name']=='Nitrate'] 

Nitrite_LAAI=LAAI.loc[LAAI['Component name']=='Nitrite'] 

 

# Rich amine (RA) 

 

RA=data.loc['Rich amine - downstream make-up & filter'] 

Amine_RA=RA.loc[RA['Component name']=='Am1_mg/kg'] 
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Appendix E – Spearman’s and Pearson’s 
code 

 

 

from pandas import DataFrame 
import pandas as pd 
import seaborn as sns 
import matplotlib.pyplot as plt 
 

 

data = pd.read_csv (' File Directory ') 
data=data.iloc[ : , ] 
  

 

# Pearson's Corrolation 
 

cor_pearson= DataFrame.corr(data) 
 

plt.figure(figsize=( , )) 
sns.heatmap(cor_pearson, annot=True) 
plt.savefig("CorrolationPearson.pdf") 
 

# Spearman's Correlation 
 

cor_spearman = data.corr(method='spearman') 
plt.figure(figsize=( , )) 
sns.heatmap(cor_spearman, annot=True) 
plt.savefig("CorrolationSpearman.pdf") 
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Appendix F – Support Vector Regression 
(SVR) code 

 

 

import pandas as pd 
from sklearn.svm import SVR 
from sklearn.model_selection import train_test_split  
from sklearn.metrics import r2_score 
 

 

data = pd.read_csv('File Directory') 
 

# Features (Input) 
x = data.iloc[:, ].values 
x = (x-x.min())/(x.max()-x.min()) 
 

# Label (Output) 
y = data.iloc[:, ].values 
y = (y-y.mean())/(y.max()-y.min()) 
 

# Splitting data into train and test dataset 
x_train , x_test , y_train , y_test = train_test_split(x,y, test_size=0.2, 

random_state = 1) 
 

# SVR model 
classifier= SVR(kernel = 'rbf',epsilon= ,gamma='scale',tol= 0.00001 ,C =  ) 
 

# Fit the model 
classifier= classifier.fit(x, y) 
 

# Predict the result for train and test dataset 
y_pred_train = classifier.predict(x_train) 
y_pred_test = classifier.predict(x_test) 
 

# R2 results for each model 
R2_train_set= r2_score(y_train , y_pred_train) 
R2_test_set= r2_score(y_test , y_pred_test) 
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Appendix G – Random Forest code 
 

 

import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
from sklearn.ensemble import RandomForestRegressor 
from sklearn.model_selection import train_test_split  
from sklearn.metrics import r2_score 
from sklearn.model_selection import RandomizedSearchCV 
 

 

data = pd.read_csv(‘file Directory’) 
 

# Features (Input) 
x = data.iloc[:, ].values 
x = (x-x.min())/(x.max()-x.min()) 
 

# Label (Output) 
y = data.iloc[:, ].values 
y = (y-y.mean())/(y.max()-y.min()) 
 

# Splitting data into train and test dataset 
x_train , x_test , y_train , y_test = train_test_split(x,y, test_size=0.2, 

random_state = 0) 
 

# Number of trees in random forest 
n_estimators = [int(x) for x in np.linspace(start = 20, stop = 1000, num = 

10)] 
 

# Number of features in every split 
max_features = ['auto', 'sqrt'] 
 

# Maximum number of tree depth 
max_depth = [int(x) for x in np.linspace(10, 110, num = 11)] 
max_depth.append(None) 
 

# Minimum number of samples in splitting a node 
min_samples_split = [2, 5, 8] 
 

# Minimum number of samples needed in each leaf node 
min_samples_leaf = [1, 2, 4] 
 

# Selecting sample method for training each tree 
bootstrap = [True, False] 
 

# Create the random grid 
random_grid = {'n_estimators': n_estimators, 
               'max_features': max_features, 
               'max_depth': max_depth, 
               'min_samples_split': min_samples_split, 
               'min_samples_leaf': min_samples_leaf, 
               'bootstrap': bootstrap} 
 

 

 

# Random Forest model 
rf = RandomForestRegressor() 
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# Random search of parameters, using 3-fold (k=3) cross validation  
rf_random = RandomizedSearchCV(estimator = rf, param_distributions = random 

grid, n_iter = 100, cv = 3, verbose=2, random_state=42, n_jobs = -1) 
 

# Fit the model 
rf_random.fit(x_train, y_train) 
 

# Best parameter in each model 
best_param = rf_random.best_params_ 

 

# Predict the result for train and test dataset 
y_pred_train = rf_random.predict(x_train) 
y_pred_test = rf_random.predict(x_test) 
 

# R2 results for each model 
R2_train_set= r2_score(y_train , y_pred_train) 
R2_test_set= r2_score(y_test , y_pred_test) 
 

# Print R2 results for each model 
print( 'R2 for train set is : ', R2_train_set) 
print( 'R2 for test set is : ', R2_test_set) 
 

# plot Random Forest 
fig = plt.figure(figsize=(15, 10)) 
plot_tree(rf_random.estimators_[ ]) 
plt.show() 
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Appendix H - Artificial Neural Network 
(ANN) code 

 

 

import pandas as pd 
import matplotlib.pyplot as plt 
from tensorflow.keras.layers import Dense  
from sklearn.model_selection import train_test_split 
from keras.models import Sequential 
from keras import backend as K 
from tensorflow.keras.optimizers import Adam 
from sklearn.metrics import r2_score 
 

data = pd.read_csv ( File Directory) 
 

data = pd.DataFrame(data) 
 

# Features (Input) 
x = data.iloc[:,  ] 
x = (x-x.min())/(x.max()-x.min()) 
 

# Label (Output) 
y = data.iloc[:, ] 
y = (y-y.min())/(y.max()-y.min()) 
 

# Splitting data into train and test dataset 
x_train , x_test , y_train , y_test = train_test_split(x,y, test_size=0.2, 

random_state = 0) 
 

 

# Defining R2 score 
def det_coeff(y_true, y_pred): 
    SS_res = K.sum(K.square(y_true - y_pred)) 
    SS_tot = K.sum(K.square(y_true - K.mean(y_true))) 
    return K.ones_like(SS_tot) - (SS_res / SS_tot) 
 

# Tuned learning rate 
learning_rate=           
     

classifier = Sequential() 
 

classifier.add(Dense(units=  , kernel_initializer = 'glorot_uniform', acti-

vation = 'relu', input_dim =  )) 
 

classifier.add(Dense(units=  , kernel_initializer = 'glorot_uniform', acti-

vation ='tanh'  )) 
 

classifier.add(Dense(units= 1, kernel_initializer = 'glorot_uniform', acti-

vation = 'relu')) 
     

     

opt=Adam(learning_rate) 
     

classifier.compile(optimizer =opt , loss = 'mse', metrics = [det_coeff]) 
 

# Fit the model 
classifier.fit(x_train, y_train, batch_size = 40, epochs =  ) 



Appendix H 

72 

 

 

# Predict the result for train and test dataset 
y_pred_train = classifier.predict(x_train) 
 

y_pred_test = classifier.predict(x_test) 
 

# R2 results for each model 
R2_train_set= r2_score(y_train , y_pred_train) 
R2_test_set= r2_score(y_test , y_pred_test) 
     

# Print R2 results for each model 
print( 'R2  for train set is : ', R2_train_set ) 
print( 'R2 for test set is : ', R2_test_set ) 
     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


