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Summary:  

Human activities have increased the emitted greenhouse gases into the atmosphere. 

Among greenhouse gases, the excess of CO2 in the atmosphere has caused severe 

environmental issues such as global warming and ozone depletion. Several international 

agreements, such as the Paris Agreement, have been signed to reduce CO2 emissions 

and their impacts on the environment. These agreements aim to reduce the CO2 

footprint regarding all human activities (move toward CO2 neutralization). For this 

reason, there have been substantial efforts to develop new methods and technologies 

applied to the exhaust gas from industrial activities to reduce the concentration of 

greenhouse gases (in a way that is not harmful for human and environment) prior to 

release them into atmosphere. Post-combustion flue gases contain significant amount of 

CO2. One common method for capturing CO2 released from post-combustion flue gases 

is to use an amine-based (i.e., solvent) CO2 capture plant. Although these plants have 

demonstrated good performances, the problem of foaming within their columns 

(absorber and desorber) reduces the plant's efficiency. Due to the complexity of the 

process, there is no physical model that can simulate foaming within a post-combustion 

CO2 capture (amine-based) plant. Therefore, the main goal of this report is to develop, 

for the first time, a data-driven model that can simulate and predict the mentioned 

undesirable characteristic. The data used in this report was provided by technology 

center Mongstad (TCM) that is the external partner of this project. The data includes the 

time series (10968 hourly time-steps) of 35 features (i.e., physical properties of the 

process) regarding the CO2 capture process of TCM post-combustion CO2 capture plant 

(amine-based). It is worthwhile to mention that the solvent used in the TCM plant was 

CESAR1. Comprehensive data preprocessing was done in order to tag foaming/non-

foaming time-steps as well as to ensure the high data quality before feeding the data to 

models. Furthermore, a correlation-based method was used for feature selection in order 

to avoid feeding statistically similar features to the models (retained features are 14). An 

artificial neural network (ANN) was employed to build a predictive foaming model. The 

developed model showed a promising performance in predicting the foaming in the plant 

where the model also was validated by comparing the results with a decision tree model 

results. Overall, the findings of this report provide practical insights that may allow for 

the prediction of foaming occurrence within post-combustion CO2 capture (amine-

based) plants. The latter can lead to the implementation of preventive measures that can 

increase CO2 capturing efficiency, and thus favoring the environmental sustainability. 
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Nomenclature 
 

Symbols Explanation Unit 

∑ Foaminess coefficient [t] 

𝑉 Volume [m3] 

�̇� Volume flow rate [
m3

t
] 

𝜑 Gas fraction [−] 

�̇� Reboiler duty [W] 

�̇� Reboiler mass flow rate [
Kg

t
] 

𝑇 Temperature [℃] 

𝑐 Specific heat capacity [
J

Kg ∙ ℃
] 
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1 Introduction 
Climate change as a consequence of greenhouse gases emission has been in the limelight in 

the recent years [1-3]. Among greenhouse gases, there always has been a huge concern 

regarding CO2 emissions which in turn has accelerated global warming. Technologies 

regarding CO2 capture at the source points (e.g., industrial emissions) have been applied 

efficiently in practice [4]. More specifically, the post-combustion CO2 capture methods 

applied to power plants and chemical process factories have been in the center of attention in 

the last two decades as crucial high-techs in the CO2 neutralization [5, 6]. Many methods 

have been implemented to capture post-combustion emitted CO2 from large scale plant, 

while the most technologically mature and commercially viable one appears to be amine-

based chemical absorption [7].  

1.1 Background and objectives 

The post-combustion CO2 capture technology (amine-based) consists of two main steps: 

absorption and desorption (see Figure 1.1). Post-combustion flue gas that possesses an 

amount of CO2 enters at the bottom of absorption column. The flue gas is in contact with a 

solvent, which is mainly amine-base solvent like monoethanolamine (MEA), 

methyldiethanolamine (MDEA) or diethanolamine (DEA) [8, 9], within the absorber in the 

presence of packing or tray. Since the CO2 is transferred from flue gas to the solvent, the 

cleaned gas exits from the top of column into atmosphere with less amount of CO2. The rich 

solvent (rich with the respect of having CO2) contaminated with CO2 exit from the bottom of 

column and enter the stripper [10]. In the stripper, the heat required for thermal stripping 

process is supplied by a reboiler. When stripping process is completed, the lean solvent is 

regenerated and recycled into the absorber, again. Furthermore, the CO2 leaves the stripper as 

the top product and it is prepared (condensed and stored) for further usage [10]. 

 

 

Figure 1.1: Process flow diagram of post-combustion CO2 capture plant [10]. 
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The post-combustion CO2 capture plants experience some challenges such as solvent 

degradation [11], corrosion [7], cost of solvent [12] and foaming [13] that leads to negative 

effects on the process efficiency [14]. In this report, the problem of foaming in the post-

combustion CO2 capture plants (amine-based) is investigated. 

A big challenge in the post-combustion CO2 capture plants is foaming phenomena which 

happens mostly in the water based amine solvent and results in poor efficiency [15]. There 

have been some plant experiences [16-23] and research works [4, 24, 25] in the literature 

regarding foaming problem in the acid gas plants that use amine-based aqueous solutions.  

There are actions like solution reclamation, solvent filtration and introducing anti-foam to the 

column that can mitigate the foaminess in columns. However, the latter can overcome 

foaminess temporarily [17, 20, 21, 24]. 

Although there is hardly extracted specific quantitative relationship between physical process 

properties of plant and foaminess, Bikerman, J.J [26] introduced a foaminess coefficient ∑ 

that is interpreted as average lifetime of a bubble (foam) before rupture and it has the 

dimension of time (seconds). Furthermore, Robin Thiele and his team [27] had an 

experimental study regarding foaminess coefficient. They used a method suggested by 

Bikerman, J.J [28] in which passed nitrogen through sintered frit is injected in the liquid and 

the height of created foam is measured. Afterwards, the height of foam and the area of 

container were used to calculate the volume 𝑉 of created foam and from equation 1.1 

foaminess coefficient was calculated as: 

∑ =
𝑉

�̇�
 ,  1.1 

where �̇� is volume flow rate of nitrogen. However, this method works only for tray columns 

and has some difficulties in measuring needed parameters in real plants.  

Generally, there are two major types of columns: tray and packed columns where the tray 

columns are more susceptible to foaming due to the nature and shape of them [29]. Two main 

types of packed columns are structured and unstructured packed. When the liquid rate is low 

(vapor rate is high), structured packing can face foaming more effectively than unstructured 

packing. This is due to the fact that when the liquid rate within the packing is high, the liquid 

can bridge over porosities and the vapor flowing upward causes foaming. On the other hand, 

when the liquid rate is high unstructured packing is less prone to foaming since its interior 

shape is more open laterally [29]. 

In another systematic study [30], foaminess of packed column (structured and unstructured) 

with different solvent such as Methyl diethanolamine (MDEA), water and butanol was 

evaluated and it was revealed that the foaminess occurs in the different places in the absorber 

and desorber (packed columns) such as the liquid entrance (shows the importance of 

distributer type), in the base, within the reboiler and inside the packing. Experiment showed 

that the more void fraction within packing prones the packed column to more severe 

foaminess. 
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It is worth mentioning that about half of foaming occurrence within columns in the industry 

is reported to be in the acid gas treating units [31].  Although there have been several studies 

in the literature [10, 32-37] regarding implementation of data-driven models in order to 

simulate relevant properties of CO2 capture plants using amine-based solvent (interested 

properties w.r.t output of model), there are a few scientific works to represent data-driven 

model that can be useful in the simulation and prediction of foaming occurrence in the post-

combustion CO2 capture plants using amine-based solvent. For instance, Nwaoha, et al. [36] 

implemented data-driven methods to model the process. The created model set the CO2 

capture, foaming tendency and amine vaporization as outputs. In this study, the flow rate of 

absorbed pentane (liquid hydrocarbon) by the rich amine-based solvent is chosen as the 

foaminess tendency criteria (more absorbed pentane, more foaming tendency). Eventually, 

the sensitivity analysis revealed that the most effective physical properties on the foaming 

tendency was lean amine flow rate that was reported previously in a study by Bullin and 

Brown [38]. 

As discussed earlier, since there is no physical based model that is able to simulate stable 

foaminess (stable foams (i.e., the foams with lifetime more than a few seconds) can affect the 

performance of plant) [30], this report studies and proposes a data-driven model by applying 

machine learning, for the first time, to real data (CO2 capture utilizing amine-based solvent in 

the fractionation columns) provided by Technology Center Mongstad (TCM). More 

information about TCM is provided in the Appendix D. The ultimate goal of this report is to 

create a model that can predict the foaminess occurrence based on the given process 

properties. The latter can improve the efficiency of post-combustion CO2 capture plants 

(amine-based) by adopting preventive actions before foaming occurs. For this sake, the data 

will be preprocessed, and then fed into an artificial neural network (ANN) and also a decision 

tree model. The extracted results of both models will then be compared to select the proper 

model for foaming prediction in the post-combustion CO2 capture plant (amine-based). 

Finally, there'll be a discussion about the parameters which mostly affect the occurrence of 

foaming in such plants. 

1.2 Structure of the report  

This report is structured as follows: The chapter 2 explains the foaming problem and how it 

impacts post-combustion CO2 capture processes and also appropriate machine learning 

approaches to model foaming. Chapter 3 describes the data used in this study as well as data 

preprocessing. Next, results and discussions are presented in Chapter 4. Finally, a conclusion 

is made in Chapter 5. 
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2 Foaming in CO2 capture and 

machine learning approaches 
The definition of the foaming phenomenon and how its negative aspects can affect the 

columns and therefore CO2 capture are discussed at first. The second section discusses the 

concepts of artificial neural network (ANN), which is the main machine learning method 

used in this report to simulate the problem of foaming in the post-combustion CO2 capture 

plant (amine-based solvent). In addition, another machine learning method known as decision 

tree is described at the end of the second part. 

2.1 Foaming 

Post-combustion CO2 capture processes suffer from the problem of foaming in the absorber 

and stripper that decreases absorption efficiency, mass transfer area between solvent and flue 

gas (i.e., containing CO2) [39] and also has negative effects in the stripper column. 

2.1.1 Foaming definition 

There are several definitions in the literature that describe how foams can be created. One 

definition of foaming creation describes its process as rising the gas phase within the liquid 

phase up without rupture [40]. Another definition describes foam as vapor or gas which is 

encapsulated within a thin wall of liquid [29]. The systems with the probability of foaming are 

facing two conversely sub-processes; the tendency to create the bubbles and tendency to 

rupture them. Once the foam creation tendency win the competition and foam is stabilized, the 

system efficiency will drop down [29]. In [27], foam is divided in three layers based on the gas 

fraction 𝜑 (see Figure 2.1). If the foams in the Kugelschaum layer coalescence and create 

bigger bubbles, Kugelschaum will be converted to Polyederfoam. On the other hand, if the 

gravity forces which tries to make the wall of bubble thinner (drainage effect) win, the bubble 

rupture occurs and Kugelschaum will be converted to Gasdispersion [27]. 

 

 

Figure 2.1: Foam types based on the gas fraction [41]. 
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The lifetime of a foam varies from seconds to years, but generally foams have limited 

lifetime. A quick rupture occurs after 5 second, while an approximately stabilized foam can 

tolerate up to three minutes [42]. 

2.1.2 Foaming structure 

When a bubble is located within the Polyederfoam layer, three liquid films (lamellae) 

intercept with angle of 120° in a plateau border that is illustrated in the Figure 2.2 [43]. 

 

 

Figure 2.2: Foams interception structure in the polyederfoam [43]. 

 

It has been seen that in the most cases, three items are needed for the foam generation; gas, 

liquid and different types of foam agents such as impurities, macromolecules and surfactants. 

The latter, naturally has low surface tension and therefore decreases the required energy to 

expand gas inside the liquid capsule [43]. 

2.1.3 Forces acting on the foam 

Across their lifetime, foams are subjected to forces acting on their walls, and this will result 

in rupturing or stabilizing [40]. These forces are listed in the Table 2.1 and are as follow: 

• Gravity (drainage): Gravity force acts on the liquid film and force it to move from the 

wall into the base where the wall continues to become thinner until rupture happens [40]. 

• Interfacial tension: Surface tension creates a pressure gradient across the bubble wall with 

higher pressure inside the foam. Different radiuses inside the bubble result in different 

pressures in the lamellae and plateau borders leading to flowing liquid toward low-

pressure points (plateau borders), thinning foam wall and eventually rupture (see Figure 

2.2) [43]. 

• Capillary: Sucks liquid from the base into the expanded surface of the bubble and help in 

foam stabilization [40]. 

• Viscosity: Increasing viscosity opposes liquid drainage and result in the foam 

stabilization [29]. 
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Table 2.1: Forces acting on the foam. 

Forces result in rupture Forces result in stabilizing 

Gravity (drainage) Capillary 

Interfacial tension Viscosity 

 

2.1.4 Effective mechanisms on foaming stability or rupture 

There are four mechanisms that can affect stabilization of a foam which are listed below and 

will be discussed shortly in the following. 

• Marangoni effect 

• Mass-transfer induced marangoni effect 

• Ross-type foaming 

• Gelatinous surface layer 

Marangoni effect: When there is a surface tension gradient in the liquid phase, the liquid is 

sucked from the points with lower surface tension into higher surface tension. For instance, 

whenever an additive that has lower surface tension (surfactant) is introduced to the liquid 

phase, the concentration of surfactant in the expanded area of the foam decreases and as a 

result, the surface tension of the expanded part will be higher than the base of foam. At this 

stage, marangoni effect causes that the liquid flows from balk liquid base toward expanded 

wall and after a while the foam will be thicker and stabilized [29]. 

Mass-transfer induced marangoni effect: In the distillation columns, when there is no 

Marangoni effect (lack of surface-active component or impurities), a foam can be stabilized 

as a result of Mass-transfer induced marangoni effect. If the more volatile component of foam 

has higher surface tension, and the fact that the more volatile component of the foam locates 

in the expanded wall of the foam, the liquid is sucked into expanded wall of foam due to 

surface tension gradient and foam stabilizes eventually [40]. 

Ross-type foaming: Sometimes a weak solution of liquid may lead into creation of second 

liquid phase that is susceptible to foaming [44]. This counts for equilibrium effects and may 

be mitigated by increasing the temperature [45]. 

Gelatinous surface layer: This phenomenon occurs when a chemical or intermolecular 

interaction happens in the expanded liquid part of foam (due to impurities presence). 

Gelatinous surface layer results in stationary liquid film which in turn mitigates drainage and 

capillary effect (motionless layer) [40]. 

2.1.4.1 Role of particulates in foaming 

One interesting fact about particulates is that they are not able to convert a non-foaming 

system to foaming system. Instead, once the foam is created, depend on particulates shape, 

composition and size, they can help to stabilize foaming [29]. One negative aspect that makes 
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it difficult to deal with foaming stabilization due to particulate in the fractionation columns is 

the size of particulate. While the smaller particulates are more effective in foam stabilization, 

it is more difficult to remove them from the liquid [29]. 

While the foams created solely by marangoni effect (known as physical foam) are susceptible 

to drainage and are not considered as stable foam [40], Mass-transfer induced Marangoni 

effect causes more stable foams and can lead to severe foaming in the columns [46]. The 

formation of very stable foams includes two steps: At first, the foam is created by marangoni 

effect or mass-transfer induced Marangoni effect, and secondly the foam will be stabilized by 

the help of gelatinous surface layer [40]. 

2.1.5 Symptoms of foaming in the columns 

Many foaming symptoms have been reported in the literature that are described in this 

section. However, the foaming can also occur in the process with one, some or sometimes 

without any symptoms (i.e., known up to present) [40], which are counted below: 

1. Premature flooding and massive entrainment accompanied with pressure drop. The latter 

can be interpreted as below [40]: 

• Intrusive increasing in differential pressure [30]. 

• A differential pressure exceeding of 40% to 50% of tray spacing or exceeding 

pressure drop 1 inch of liquid per foot of packed bed. 

• Erratically variation in the differential pressure.  

2. Steady-state condition dominates the system when flooding starts [45]. 

3. Abnormal temperature profiles. As an example, in the amine-base absorbers, difference 

between inlet and outlet gas temperature decreases significantly along with dropping in 

temperature difference between rich and lean solution [40]. 

4. High probability of losing solvent in the columns [14]. 

5. Decrease in the process efficiency [15]. 

6. Efficiency will increase by adding anti-foam [45, 47-49]. 

7. The solvent is regenerated incompletely in the columns [14]. 

The symptoms mentioned above can be measured in post-combustion CO2 capture columns 

(amine-based) to see if there is a relationship between these physical column characteristics 

and foaming occurrence. 

2.1.6 Foam neutralization using chemical additives 

The simplest way to mitigate the foaming effect is to add foam inhibitors that are usually 

liquid. Their ability to neutralize the foaming arises from the fact that they intend to spread 

naturally over the expanded area of the foam and flow the liquid from the foam expanded part 

into the base and eventually thinning and rupture of the foam [40].  

Since prediction of foaming in Co2 capture is considered as a difficult task, the next section 

investigates the potential use of machine learning methods to solve this problem. 
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2.2 Literature review of machine learning methods 
applied to CO2 capture 

There are several criteria that we can use to categorize data-driven models. Frequency 

domain models with dead time, data mining algorithms, fuzzy logic, stochastic models, 

statistical models, state-space models, case-based reasoning models, geometric models, and 

instantaneous models are the main categories [50]. Furthermore, each of the categories can be 

subdivided into one or more specific techniques, as shown in Figure 2.3. 

 

 

Figure 2.3: Data-driven methods [50]. 

 

Among the whole data-driven models, this report focuses on the machine learning techniques. 

As seen from the Figure 2.4, the machine learning procedure can be interpreted in 7 steps. 
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Except for the first step, that is handled by external partner of this project (TCM), the other 

steps will be implemented and discussed in this report. 

 

 

Figure 2.4: Machine learning procedure [51]. 

 

 All types of machine learning methods can take discrete or continues values as input, but 

regarding the type of output one can divide them into two main groups: regression and 

classification. The output part of examples, fed into classification patterns for training only 

include discrete values. As a result, the model in these patterns is capable of predicting 

discrete values (e.g., labeling or categorizing). While in the regression patterns, the output 

part of examples, fed into the model during training procedure is continuous and the model 

can predict continuous values [52]. Since artificial neural networks (ANN) have a high 

potential for predicting classification and regression patterns [53], this machine learning 

method has been selected, a model is created, trained and tested using preprocessed data. In 

addition, a decision tree model is implemented on the preprocessed data, and the results are 

compared to the ANN results. 

2.2.1 General concepts of artificial neural network (ANN) 

The primary structure of a neural network is similar to that of the human brain which is 

illustrated in the Figure 2.5. The network takes the input portion of preprocessed data, 

processes it, computes the output, and finally calculates the difference between measured 

output and predicted output using a well-defined cost function. Several tunable parameters 

such as the number of hidden layers, the number of neurons in each hidden layer, the kind of 

activation function, the quality and quantity of input features, optimizer type and learning rate 

can influence how data is processed within the ANN as well as the quality of prediction. 
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Figure 2.5: Similarities between ANN and biological neuron [54]. 

 

The ANN architecture is shaped by the number of hidden layers, the number of neurons in 

each hidden layer, the number of applied features and the number of predicted outputs. The 

number of neurons in the final layer or output layer is determined by the number of items to 

be predicted, and if this is the case in the classification patterns, the output layer can be 

defined using the ‘softmax’ function. It is worth noting that ‘softmax’ is a function that 

converts a vector of values to a vector of probabilities. 

2.2.1.1 Neuron structure and performance 

The preliminary part of calculations within a neuron is a matrix multiplication plus a bias 

term. Matrix multiplication is performed between the output of previous layer neurons and 

the weight matrix interfaced between the previous layer neurons and the neuron in the current 

layer. Afterward, an activation function such as ‘sigmoid’, ‘tanh’, or ‘ReLU’ (see Figure 2.6) 

can be used to obtain the neuron's output, which is then used as input to calculate the next 

layer neurons (see Figure 2.7). 

 

 

Figure 2.6: Typical activation functions used in neurons [55]. 
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Figure 2.7: Performance of single neuron [56]. 

 

2.2.1.2 Types of feeding the data into the ANN model (Batch vs. mini-batch) 

One iteration is needed to optimize the model’s weights one time. The typical method 

consists of passing the whole training set (batch) through the model in one iteration (epoch). 

According to the novel technique, the training set is broken into smaller sets (mini-batch), 

and weights will be optimized when a mini-batch passes through ANN (one iteration). As a 

result, when all mini-batches (the entire training set) are run through ANN, the weights will 

be optimized many times rather than once and this helps to speed up the optimization process. 

2.2.1.3 Optimization process 

When the model predicts outputs in a single iteration (forward propagation), the predicted 

outputs are compared to the real output values, and the cost function, is calculated. It is worth 

noting that the ultimate objective of the optimization procedure is to minimize the cost 

function. To reach this goal, the weights and the bias terms are updated on each iteration 

using the optimization algorithm and the learning rate (backward propagation). The whole 

training set is divided into mini-batch groups and the weights and bias terms are updated after 

passing a mini-batch through the model. Number of epochs is another parameter that must be 

fine-tuned in a way that be kept as low as possible while still providing the best accuracy. 

Furthermore, the number of neurons should be tuned to identify the minimum number of 

neurons necessary to achieve acceptable accuracy during training and test procedure. Figure 

2.8 represents a schematic view of the optimization process. 

 

 

Figure 2.8: Optimization process (𝐽(𝜃0, 𝜃1): Cost function, 𝜃0 and 𝜃1: Weights) [57]. 
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2.2.1.4 Underfitting and overfitting 

Underfitting occurs when the model’s accuracy on the training and test sets is poor. There are 

some ways to avoid this undesirable outcome, such as selecting more features [58]. On the 

other hand, if the model fits the training set with good accuracy but fails to generalize to new 

samples (i.e., test set), it is considered overfitting and can be alleviated by using 

regularization, drop-out or early stopping [58, 59]. Figure 2.9 depicts underfitting and 

overfitting in a simple and clear manner. 

 

 

Figure 2.9: Underfitting, appropriate fitting and overfitting [60]. 

 

2.2.2 Decision tree model principals 

Decision tree algorithm is constituted of different paths. Each path's logic is that it begins 

with a root and then continues with some decision nodes. A Boolean within the decision node 

divides the path into new paths, and each path ends if it reaches a leaf node [61]. 

Furthermore, the longest path between the decision node and the leaf node is known as max 

depth. Figure 2.10 depicts a typical decision tree schematic algorithm. 

 

 

Figure 2.10: Typical decision tree algorithm [62]. 
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3 Data preprocessing 
When it comes to using data-driven models to extract valuable information from a system, 

one of the most important steps is data preprocessing. The reason is that the physical 

relationships and equations are not known at all or the fact that finding physical relationships 

between desired inputs and outputs are very rigorous work. Since data-driven models trust on 

the given data to extract relationship between inputs and outputs, the given data must be 

accurate and clean as much as possible. 

3.1 Description of the provided data 

A series of data in different excel files were given by TCM. The ‘USN - Foaming Data 

Extract’ excel file includes three sheets consisting of ‘Flow Pressure & Temp’, ‘CHP Stripper 

Profiles’ and ‘RFCC Stripper Profiles’. Furthermore, the lean and rich density of solvent are 

given in the ‘Density_include’ excel file. The whole given data include hourly time-steps 

from ‘01.09.2019 00:00’ to ‘30.11.2020 22:00’ (10968 samples). 

Figure 3.1 shows TCM post-combustion CO2 capture (amine-based) plant. The overall 

objective of the plant is to capture the CO2 of the post-combustion flue gas before the gas is 

released to the atmosphere in order to minimize the carbon emissions. The core elements of 

this plant are: direct contact coolers (DCC), absorber, reboilers and two strippers that are 

based heat and power plant (CHP) and the residual fluid catalytic cracker (RFCC). The 

solvent used in this plant is CESAR1, a non-proprietary solvent developed as part of the EU 

CESAR project and originally intended for use in the carbon capturing process. This mixture 

(CESAR1) contains AMP and piperazine (both are amines) as well as water, and the goal of 

creating this solvent is to replace conventional MEA [63]. The process begins when post-

combustion flue gas is introduced into the CHP and RFCC direct contact coolers, 

respectively. Once the flue gas is cooled off, it enters the absorber and flows upward. On the 

other hand, the lean solvent streams enter the absorber from the points that is higher than flue 

gas entrance (orange lines at the left of absorber) and flows downward. When the flue gas 

comes into contact with the lean solvent flow in the presence of structured packing (yellow 

rectangles within the absorber), the CO2 in the flue gas transfers to the lean solvent flow and 

converts it to the rich solvent flow (rich in terms of CO2 possession). Depleted flue gas 

(Cleaned gas) exits from the top of absorber and the rich solvent flow exits from the bottom 

of absorber into strippers. When the rich solvent flow is entered in the stripper from the point 

above the structured packing (light brown rectangles within the strippers), it is warmed up by 

the reboiler stream and solvent decomposition occurs. The released CO2 from the rich 

solvent exits the stripper from the top and is stored for future use. The solvent, which now is 

known as lean solvent, again, exits the stripper from the bottom and proceeds to the next 

cycle into absorber. It is worth noting that the strippers do not operate simultaneously, and 

therefore only one of them operates on a single time-step of the provided data. In general, all 

of the features (columns in the excel sheets) in the provided data (all of the files provided by 

TCM) consist of the entire time-steps, and due to the fact that both strippers cannot be online 

at the same time, the entire time-steps must be tagged by one of the CHP or RFCC strippers. 
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Figure 3.1: Schematic drawing of TCM post-combustion CO2 capture plant [64]. 

 

3.1.1 Foaming data extraction 

‘USN - Foaming Data Extract’ file includes three sheets which are described in the following 

subsections. 

3.1.1.1 Flow, Pressure and Temperature 

The ‘Flow, Pressure and Temperature’ table includes detailed information regarding solvent 

flow rates, temperatures and pressures. Furthermore, the flow rate and temperature of 

reboilers and also CO2 production rate in the strippers can be found in this excel sheet (see 

Figure 3.2). The important aspect of this table that must be considered is that the data 

regarding the temperature, pressure and flow rate of solvent are not tagged by strippers and 

must be treated before any further usage. 

 

 

Figure 3.2: Sample of provided data by TCM (‘USN - Foaming Data Extract’ file/ ‘Flow, Pressure and Temp’). 
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3.1.1.2  CHP Stripper Profiles 

Temperature profiles within the CHP stripper are given in this datasheet; temperatures at the 

bottom of the stripper, at various points along the height and radios of the packing, above the 

packing and at the stripper's outlet. Furthermore, the measured pressure drops in the demister, 

water wash and packing are presented in this datasheet. 

3.1.1.3 RFCC Stripper Profiles 

The same temperature profiles (e.g., temperatures at the bottom of stripper) and pressure 

drops profiles as CHP Stripper described above (section: 3.1.1.2) within the RFCC stripper 

are provided in the data.  

3.1.2 Solvent density 

Lean and rich solvent densities are given in the ‘Density_include’ excel file. This file also is 

not tagged by the strippers and the time-steps of given data must be tagged before using in 

the model. 

3.2 Cleaning offline plant data and data allocation to the 

strippers 

The first step in the cleaning of the given data is to determine in which time-steps the plant 

was offline and then removing all data associated with those time-steps. Based on the 

external partner, TCM, plant’s knowledge, the time-steps where both strippers are offline can 

be detected, as described below: 

• Both rich and lean solvent flow rates are less than 10000 [kg/h] 

• Both strippers (i.e., CHP and RFCC) produce CO2 less than 1000 [kg/h] 

• The temperature in the reboilers of CHP and RFCC strippers are lower than 33 (℃) 

Furthermore, if the reboiler temperature of one stripper is less than 33 (°C), that stripper is 

offline in the corresponding time-step, and the data must be deleted. Two separate Python 

scripts were encoded to clean the data for strippers that are available in the Appendix B. 

3.3 Finalizing data related to each stripper 

For each stripper, the data is first read from the 'USN - Foaming Data Extract' and 'Density 

include' excel files. The files are then stacked and the columns '8611-PDT-2442' and '8611-

PDT-2441' which represent the water wash pressure drop and demister pressure drop, 

respectively, are removed (there are very few usable data in these columns). Following that, 

the columns in which the number of 'NaN' values exceeds 40% of the total in that column are 

deleted and afterwards, the time-steps that are tagged plant offline are removed from each 

stripper data frame. Finally, after removing the remaining time-steps containing 'NaN' values 

or zeros, the total usable data for the strippers is obtained. It is worth noting that in a time-
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step, if any of the columns contains a 'NaN' or a zero, the entire data belong to that time-step 

(row) is removed (TCM plant knowledge). 

3.4 Finalizing the plant data 

The final step in the data preprocessing in this report is to stack the data from both strippers 

and convert it to an excel file for later use in the machine learning models. Usable number of 

time-steps for each stripper and total number are shown in Table 3.1. 

 

Table 3.1: Usable data (Usable time-steps). 

Stripper # Usable data (time-steps) 

CHP 1106 

RFCC 3049 

Total 4155 

 

Besides, the total number of features after data preprocessing is 35, as shown in Figure 3.3. 

 

 

Figure 3.3: Total features after data preprocessing (complete explanation regarding feature’s name is available 

in Appendix C). 
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3.5 Foaming data labeling 

All the remaining time-steps must be tagged with ‘foaming’ / ‘not foaming’ classification so 

that this information can be used as the output of the model (y) for the training and test 

procedures. The procedure begins with analyzing the figure provided by TCM, which is 

presented in Figure 3.4. For the period from ‘02.10.2019 10:00’ to ‘22.10.2019 23:00’ that 

‘foaming’ / ‘not foaming’ classification is provided by TCM, the data regarding CO2 

production rate, pack pressure drop, lean and rich solvent density and temperatures in 

different positions within the CHP stripper were plotted and screened. 

 

 

Figure 3.4 : Labeled ‘foaming’ / ‘not foaming’ period for CHP stripper by TCM. 

 

After analyzing the mentioned data features over the period of Figure 3.4, it was discovered 

that foaming occurs in a time-step when all the following criteria are met simultaneously. 

• Temperature at the bottom of packing is upper than 109 [℃]. 

• Temperature at the middle of packing is upper than 109 [℃]. 

• Lean solvent density is less than 1039 [
𝑘𝑔

𝑚3]. 

• Pack pressure drop is higher than 1 [mbarg] in the CHP and 0.1 [mbarg] in RFCC. 

It is vital to notice that these special characteristics of the plant at the time of foaming are 

included in the foaming symptoms mentioned in the foaming chapter (i.e., section 2.1.5). For 

the sake of better understanding of the concept, Figure 3.5 (from a to c) depicts the mentioned 

temperature, lean solvent density profiles and pack pressure drop. Regarding the last criteria 

(i.e., pack pressure drop), the CHP pack pressure drop (see Figure 3.5d) higher than 1 

[mbarg] represents the foaming with sufficient accuracy. However, the mentioned criterion 

for CHP seems to be too high for RFCC pack pressure drop (see Figure 3.6). As a result, a 

scaling between the maximum value and the foaming criterion for pack pressure drop was 

performed (for CHP, the maximum pack pressure drop is 10 [mbarg]). Since the maximum 
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pack pressure drop for RFCC is 1 [mbarg], the pack pressure drop criterion was found to be 

0.1 [mbarg] by scaling. 

 

 

 

 

 

Figure 3.5 : Temperature profile at the packing’s bottom (a) and packing’s middle (b) as well as the lean solvent 

density profile (c) and pack pressure drop profile (d) of CHP stripper (Turquoise square: not foaming, red 

square: foaming). 

 

(a) 

(b) 

(c) 

(d) 
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Figure 3.6: Pack pressure drop of both strippers (i.e., CHP and RFCC). 

 

Once all of the foaming criteria are applied to the entire time-steps and both strippers, there 

are 2450 time-steps that are labeled as foaming and the results are shown in Figure 3.7. 

 

 

Figure 3.7: Data cleaning and labeling results. 

 

3.6 Feature selection 

As technology advances, it becomes easier to collect large amounts of data with a high 

dimensionality. On the other hand, analyzing and extracting useful information from big data 

with many features faces some challenges, such as high computational costs or a higher risk 

of overfitting. Feature selection can be applied to data in machine learning approaches to 

select the most optimal features out of all of them. The goal is to simplify the model, make it 

more understandable and improve its performance [65]. As discussed earlier, the total number 

of features after data preprocessing is 35 and it seems reasonable to implement a correlation-

based feature selection to see if there are any similar statistical behaviors between features. 

The result of correlation-based feature selection is illustrated in the Figure 3.8. The most 

noteworthy outcome of the feature selection is that the number of temperature features has 

decreased drastically from 23 to 8 (not surprisingly). Furthermore, CO2 production was 

deleted from feature’s list since it exhibited more than 0.9 similar behavior to the reboiler 

stream, which seems to be reasonable. For instance, once foaming occurs within the stripper 

and the CO2 production rate tends to decrease, the reboiler stream rate increases to 

compensate for the foaming impact. 

• 10968

Total data 
(time-steps)

• 4155

• 38%

Usable data 
(time-steps) • 2450

• 59%

Foaming data 
(time-steps)
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Figure 3.8: Correlations among features (color bar denotes the statistical similarity between features). 

 

The final result is given in Figure 3.9 after applying the outcome of correlation-based feature 

selection to the 35 existing features. 

 

 

Figure 3.9: Deleted and kept features after feature selection (Green: retained & Red: deleted). 
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3.7 Feeding data to machine learning models 

The data fed into the machine learning models after feature selection consists of 4155 rows 

(i.e., time-steps) and 15 columns (i.e., features). The first 14 columns are considered as input 

(x), whereas the last column (foaming:1 and not-foaming:0) is considered as output (y). Next, 

the data is shuffled and after that these input and output are assigned to x and y variables, 

respectively. Afterwards, 80 percent of the data is allocated to the train set and the remaining 

20 percent is maintained to test the model. At the next stage, input (training and test) is 

normalized in order to prevent gradient exploding and also help to speed up the optimization 

process (for ANN model). Once all of the preceding stages have been completed, the data 

will be fed into the designed models. 
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4 Results and discussion 
The results of applying machine learning methods (ANN and decision tree) to predict the 

foaming occurrence within post-combustion CO2 capture plant is presented, discussed and 

compared in this chapter. Furthermore, an exploratory analysis is made over the selected 

features to see their behavior when foaming/ not-foaming. Finally, a discussion is provided to 

present insights that can be helpful in predicting and preventing foaminess within the post-

combustion amine-based CO2 capture plants. 

4.1 ANN model 

The ANN model includes 1 hidden layer with 60 neurons. The number of neurons was tuned 

by encoding a for loop over entire model to determine how many neurons are required to 

obtain an acceptable accuracy for both training and test set, as illustrated in Figure 4.1.  

 

 

Figure 4.1: Tuning the number of neurons in ANN model. 

 

The type of layer is fully connected and the activation function used within the hidden layer 

neurons is ‘ReLU’. Weights are assigned random values and the bias term is set to zero in the 

first iteration. Since the model's output is a classifier (foaming/ not-foaming), its value can be 

zero or one. As a result, the output activation function is set to ‘sigmoid’. The Figure 4.2 

depicts a schematic architecture of adopted artificial neural network in this report. 

 

 

Figure 4.2: Schematic architecture of adopted ANN (number of neurons in the hidden layer are 60). 
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The data allocated to training is split to groups of 64 examples (i.e., mini-batchs) and the cost 

function, 'BinaryCrossentropy', is calculated after running a mini-batch through the model. 

The backward propagation technique is then initiated, and an 'Adam' optimizer is applied to 

update the weights and bias terms where the learning rate is set to 1𝑒−3. The number of 

iterations (epochs) across the entire training set is initially set to 1000, and based on the 

results shown in Figure 4.3, 400 epochs seem to be a suitable selection since the performance 

of the model does not improve with increasing epochs. 

 

 

Figure 4.3: Number of epochs vs training set accuracy. 

 

4.1.1 Performance of ANN model 

The model achieves promising results in both the training and testing processes, which are 

shown in the Table 4.1. Since the accuracies in both training and test are high, it is concluded 

that the data is not underfitted by the final model. Furthermore, the test accuracy is slightly 

lower than the training accuracy, indicating that the data is not overfitted by the final model. 

The loss in the test is roughly as twice as training process, which seems reasonable. 

Regarding the false negative results (i.e., predicted foaming while true labeling is not-

foaming), it can be confusing at first to understand why the test result outperforms the 

training result. However, when the number of test and training sets are considered (train: 

3324, test: 831), it seems logical to have more false negative during the training process (i.e., 

0.5 % and 1.7 % false negative in train and test, respectively). 

 

Table 4.1: Results of ANN model in training and test with one hidden layer. 

Procedure type Accuracy Loss False negative 

Training 98.5% 0.0357 15 

Test 97.5% 0.0618 14 
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In order to better characterize the performance of the adopted ANN model, the results of a 

confusion matrix on the test set are shown in Figure 4.4. 

 

 

Figure 4.4: Confusion matrix indicating the performance of the ANN model on the test set. 

 

To achieve the best possible results, another hidden layer with the same settings (fully 

connected layer, 60 neurons and activation function ‘ReLU’) was added to the model, and the 

results are shown in Table 4.2. Although the accuracy in the training set increased by 1%, the 

test accuracy dropped by 0.5%. Moreover, the number of false negative cases in the test set 

increased in comparison with the number of false negative cases in the model with one 

hidden layer (from 14 to 16). Considering these two changes in the results, as well as the fact 

that the total number of neurons/hidden layers was doubled (resulting in a model with higher 

order), it is likely that the model is slightly overfitting the data in the training set and cannot 

generalize in the test procedure as good as the model with one hidden layer did. Therefore, 

the model with one hidden layer seems to have a better performance on the data. 

 

Table 4.2: Results of ANN model in training and test with two hidden layers. 

Procedure type Accuracy Loss False negative 

Training 99.4% 0.0156 9 

Test 97% 0.1465 16 

 

Besides, the split ratio of training and test data sets was tuned, but there was not a notable 

change in the results. 
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4.2 Performance of the decision tree model 

A decision tree model was used in order to validate the results obtained from the ANN 

model. The input data and features to the decision tree model were identical to the ones to the 

ANN model. Furthermore, the data was shuffled and 80 percent of the data was allocated to 

the train set and the remaining 20 percent was kept to test the model (same procedure as 

ANN). It is worthwhile to mention that the max depth (i.e., the longest path between decision 

node and leaf node (see Figure 2.10)) was initially set to be flexible (i.e., depending to the 

performance of the training set, the max depth is tuned), which caused the model to overfit 

the data. Therefore, the max depth was tuned to find the optimal number that can prevent 

overfitting, and it was revealed that using a max depth of 4, the model performs well in the 

training and generalizes with sufficient accuracy in the test procedure. The obtained results 

are shown in the Table 4.3. 

 

Table 4.3: Results of decision tree model in training and test using a max depth of 4. 

Procedure type Accuracy 

Training 96% 

Test 94.5% 

 

The obtained results in the training and test are worse than the ANN results (2.5% and 3% 

worse than ANN results in the training and test, respectively), indicating that the ANN model 

offers promising accuracy. 

4.3 Feature analysis based on labeling (foaming/ not-foaming) 

An exploratory search was performed on the all of retained features after feature selection to 

determine if there is a threshold that can separate the foaming and not-foaming data. For this 

reason, the entire time-steps of all 14 features were plotted separately where the foaming and 

not foaming time-steps were categorized by color (green: not-foaming, red: foaming; e.g., see 

Figure 4.5). Following, an attempt was made on all of the created figures to find out if a 

horizontal line (i.e., threshold) can classifies with sufficient accuracy the not-foaming labeled 

time-steps (see the blue dash line in the Figure 4.5). Out of the 14 retained features, 7 

feature’s plots (see Figure 4.5 to Figure 4.7) have the specified attribute; meaning that a 

threshold can classify the foaming/ not-foaming condition. 
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Figure 4.5: Temperature profiles belong to the packing’s bottom (a), packing’s middle (b), reboiler stream (c), 

rich solvent (d) and lean solvent (e) while foaming/ not-foaming in the stripper. Blue dotted lines represent the 

thresholds (see Table 4.4 for the exact value) of the foaming alarm. 
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Figure 4.6: Pressure profile of lean solvent while foaming/ not-foaming. Blue dotted line represents the 

thresholds (see Table 4.4 for the exact value) of the foaming alarm. 

 

 

Figure 4.7: Density profile of lean solvent while foaming/ not-foaming. Blue dotted line represents the 

thresholds (see Table 4.4 for the exact value) of the foaming alarm. 

 

These features and the determined thresholds are presented in the Table 4.4. 

 

Table 4.4: Feature’s foaming thresholds of TCM strippers. 

Feature (physical property) Foaming threshold 

Temperature at the bottom of packing 107 ℃ 

Temperature at the middle of packing 109 ℃ 

Temperature of lean solvent 118 ℃ 

Pressure of lean solvent 1.5 [𝑏𝑎𝑟𝑔] 

Density of lean solvent 1039 [
𝐾𝑔

𝑚3
] 

Temperature of rich solvent 113 ℃ 

Temperature of reboiler stream 120 ℃ 
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4.4 Discussion 

The ANN model fits the data roughly 98.5% in the training and 97.5% in the test set that is 

due to the fine tuning of the number of neurons, number of epochs, number of hidden layer 

and the split ratio (train and test). Furthermore, the results of the confusion matrix on the test 

set (831 time-steps) show that the model predicted foaming incorrectly 14 times (i.e., false 

positive) when there was no foaming, and it predicted not-foaming incorrectly 12 times (i.e., 

false negative) when there was foaming. The overall percentage of wrong prediction is 

approximately 3% which indicates that the model generalizes on the new samples well. False 

not-foaming prediction (when there was foaming) case is more critical than the false foaming 

prediction (when there was no foaming) case. This is due to the fact that false not-foaming 

prediction send wrong signal that there is no probability of foaming, and as a result, there are 

no preventive reactions to stop the drop in the CO2 capture efficiency. Considering the latter 

argument together with the fact that the predicted false not-foaming cases are less than 

predicted false foaming cases (i.e., 12 comparing to 14), one can notices that the inefficiency 

of the model happens less frequent in the critical conditions (i.e., false not foaming). 

The ultimate goal of foaming prediction is to implement preventive measures prior to 

foaming. Although adding anti-foam is one option, it will be beneficial to avoid foaming by 

fine-tuning the features that have the greatest impact on foaming occurrence. As a result, it is 

vital to better understand which features influence more the output of the ANN model. For 

this purpose, a feature importance method (i.e., SHapley Additive exPlanations (SHAP)) was 

applied to the final achieved ANN model. SHAP [66] is the method used to calculate the shap 

value for each feature. The shap value represents how influential that feature is on the 

model's output. To get the shap value, the impacts of that specific feature on the output for 

each combination of features (including the one which the shap value is calculated for) is 

computed, and then the average of all computed values are taken to obtain shap value for that 

feature. The results of feature importance method are shown in the Figure 4.8. 

 

 

Figure 4.8: Feature importance applied on the fitted ANN model using SHAP technique. 
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Considering the Figure 4.8 reveals that temperature at the bottom of stripper’s packing and 

packing pressure drop are the features that have the greatest impact on the output of the ANN 

model. Furthermore, the reboiler stream rate and reboiler temperature have also substantial 

impact on the ANN model’s output (i.e., sixth and seventh shap value among all features, 

respectively). The reboiler duty, that is calculated based on the equation 4.1, has direct 

correlation with reboiler stream rate and temperature. 

�̇� = �̇�𝑐∆𝑇,  4.1 

where �̇� is the reboiler duty, �̇� is the reboiler mass stream rate, 𝑐 is the specific heat capacity 

and ∆𝑇 is the temperature difference between inlet and outlet of reboiler streams. As 

discussed in the section 3.6, CO2 production rate is highly correlated with reboiler duty and 

stream. When foaming occurs within the stripper, the CO2 production rate tends to reduce. In 

this case, an increase in reboiler duty compensates for the foaming effect and prevents 

efficiency reduction. Therefore, it seems reasonable to consider increasing in reboiler duty is 

a sign to react against decreasing in the CO2 production rate when foaming occurs. 

Furthermore, it should be noted that the findings of feature importance (Figure 4.8) show the 

importance of the packing pressure drop, packing temperature, and reboiler duty in foaming 

occurrence which is in turn consistent with the mentioned foaming symptoms in the literature 

(see section 2.1.5). Also, the exploratory analysis which has been done in the section 4.3 

suggests that the temperature at the bottom and middle of packing, temperature of lean and 

rich solvent and temperature of reboiler stream are indicators of foaming occurrence as this 

has been mentioned in the literature too. As a result, if these features meet their thresholds 

during the process, there will be a symptom of foaming and preventive actions such as 

introducing anti-foam or fine-tuning the physical and thermodynamical parameters of the 

process can be applied to improve the efficiency of CO2 capture process. 
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5 Conclusion 
Post-combustion CO2 capture plants (amine-based) face some challenges such as foaming 

that occurs within the plant’s columns (absorber and stripper) and results in a decreased CO2 

capturing efficiency. Methods such as adding anti-foam to the columns can mitigate the effect 

of foaming. However, the main challenge is the foaming prediction before its occurrence. 

Despite its importance, there has been no model that can simulate the foaming occurrence 

based on the physics or thermodynamics of the process. Therefore, this report focused on the 

developing, for the first time, a data-driven model that can simulate and predict the 

undesirable foaming occurrence. The data used in this report was provided by technology 

center mongstad (TCM) that is the external partner of this project. The data includes the time 

series (10968 hourly time-steps) of 35 features (i.e., physical properties of the process) 

regarding the CO2 capture process of TCM post-combustion CO2 capture plant (amine-

based). Comprehensive data preprocessing and feature selection was performed to ensure the 

high data quality before feeding the data to the models. An artificial neural network (ANN) 

was used to build a predictive model (the tuned ANN architecture includes 1 hidden layer 

with 60 neurons and 1 output). The results showed 98.5% and 97.5% accuracy in the training 

and test sets, respectively. In order to better understand the performance of ANN model, a 

confusion matrix was created based on the obtained results. Regarding the obtained matrix, it 

was revealed that the false predictions on the test set include only 3% where the number of 

false not-foaming prediction (when there was foaming) cases is less than the number of false 

foaming predictions (when there was no foaming) cases (foaming prediction is more 

important than non-foaming prediction). To validate the obtained results of ANN model, a 

decision tree model was used where the input data and features to the decision tree model 

were identical to the ones to the ANN model. The obtained results in the training and test of 

the decision tree model were found to be worse than the ANN results (96% and 94.5% 

accuracy in the training and test sets, respectively), indicating that the ANN model offers 

promising accuracy. Furthermore, the feature importance of the fitted ANN model was 

studied to determine the impact of features on the model's output. For this sake, a feature 

importance method, SHAP method, was applied on the finalized ANN model, and the results 

showed that temperature at the bottom of stripper’s packing and packing pressure drop are the 

features that have the greatest impact on the output of the ANN model. Furthermore, the 

reboiler stream rate and temperature, which are directly related to the reboiler duty, have also 

significant impact on the ANN model’s output. In addition, an exploratory analysis based on 

the foaming condition was performed on the features and the results indicated that the 

temperature at the bottom and middle of packing, temperature of lean and rich solvent and 

temperature of reboiler stream are the main indicators of foaming occurrence. It is worth to 

mention that the findings of the feature importance method and exploratory analysis are 

consistent with the symptoms of foaming within the columns reported in the literature. 

Overall, this study reported that the temperature of the column and solvent, packing pressure 

drop, and reboiler duty have the greatest impact on the occurrence of foaming within the 

post-combustion CO2 capture plant (amine-based). 
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5.1 Future studies 

Impurities (particulates) within the solvent, surface tension, lean and rich solvent viscosity 

have been mentioned in the literature (i.e., section 2.1) that have the potential to contribute 

the formation and stabilization of the foaming. Among these features, surface tension is an 

important solvent property that can directly influence foaming occurrence. As mentioned in 

the section 2.1.3 and 2.1.4, surface tension can contribute in the foaming formation at the first 

stage, and then it has the potential to prevent foam rupturing (make it stabilized). The other 

mentioned features (i.e., solvent, stripper and process properties) seems to have an indirect 

effect on foaming occurrence by affecting surface tension. Therefore, the inclusion of the 

mentioned features, especially surface tension, may results in more accurate modeling of 

foaming. 

In this report, the presence or absence of foaming within each time-step was determined 

using some criteria applied to the provided data (i.e., section 3.5). These criteria were defined 

based on the researches discussed in section 2.1.5 as well as the exploratory analysis on the 

provided data throughout the time period of foaming labeled figure (i.e., Figure 3.4) given by 

TCM. The employed labeling technique may classify the time-steps not as accurately as the 

real foaming occurrence in the plant's actual strippers. For future studies, using an 

experimental method to determine the occurrence of foaming at different time-steps can 

represent more realistic characteristics of foaming process in the columns and therefore 

improve the model’s accuracy. 

As previously stated, TCM's provided data includes 10968 time-steps and the time interval 

between time-steps is one hour. Since the nature of the physical reactions that results in 

foaming within the stripper in each time-step may be influenced by previous time-steps, it 

can be insightful to simulate the process using a recurrent neural network (RNN). In terms of 

data preprocessing in this report, 6813 time-steps (62% of entire time-steps) were deleted, 

and due to the gaps between time-steps, it was not possible to implement the RNN model. 

Nevertheless, although the performance of the ANN model was satisfactory, employing RNN 

model by use of consecutive time-steps data can unveil new aspects of the foaming process. 

 



 

 

38 

References 

[1] G. Luderer et al., "Residual fossil CO2 emissions in 1.5-2 °c pathways," Nature 

climate change, vol. 8, no. 7, pp. 626-633, 2018. 

[2] R. Cavicchioli et al., "Scientists’ warning to humanity: microorganisms and climate 

change," Nat Rev Microbiol, vol. 17, no. 9, pp. 569-586, 2019. 

[3] M. Rahimi, "Public awareness: What climate change scientists should consider," 

Sustainability (Basel, Switzerland), vol. 12, no. 20, pp. 1-4, 2020. 

[4] M. Rahimi, S. M. Moosavi, B. Smit, and T. A. Hatton, "Toward smart carbon capture 

with machine learning," Cell reports physical science, vol. 2, no. 4, p. 100396, 2021. 

[5] H. F. Svendsen, E. T. Hessen, and T. Mejdell, "Carbon dioxide capture by absorption, 

challenges and possibilities : Symposium on Post-Combustion Carbon Dioxide 

Capture," Chemical engineering journal (Lausanne, Switzerland : 1996), vol. 171, no. 

3, pp. 718-724, 2011. 

[6] T. C. Merkel, H. Lin, X. Wei, and R. Baker, "Power plant post-combustion carbon 

dioxide capture: An opportunity for membranes," Journal of membrane science, vol. 

359, no. 1, pp. 126-139, 2010. 

[7] Z. Liang, K. Fu, R. Idem, and P. Tontiwachwuthikul, "Review on current advances, 

future challenges and consideration issues for post-combustion CO2 capture using 

amine-based absorbents," Chinese Journal of Chemical Engineering, vol. 24, no. 2, 

pp. 278-288, 2016. 

[8] Z. Zhang et al., "Effectiveness of amino acid salt solutions in capturing CO2: A 

review," vol. 98, pp. 179-188, 2018. 

[9] T. N. G. Borhani, A. Azarpour, V. Akbari, S. R. W. Alwi, and Z. A. J. I. J. o. G. G. C. 

Manan, "CO2 capture with potassium carbonate solutions: A state-of-the-art review," 

vol. 41, pp. 142-162, 2015. 

[10] F. Li, J. Zhang, E. Oko, M. J. I. J. o. C. S. Wang, and Technology, "Modelling of a 

post-combustion CO2 capture process using extreme learning machine," vol. 4, no. 1, 

pp. 33-40, 2017. 

[11] R. M. Davidson, "Post-combustion carbon capture from coal fired plants-solvent 

scrubbing," 2007. 

[12] K. A. Hoff, E. F. da Silva, I. Kim, A. Grimstvedt, and S. J. E. P. Ma’mun, "Solvent 

development in post combustion CO2 capture-Selection criteria and optimization of 

solvent performance, cost and environmental impact," vol. 37, pp. 292-299, 2013. 

[13] C. Saiwan, T. Supap, R. O. Idem, and P. J. C. M. Tontiwachwuthikul, "Part 3: 

Corrosion and prevention in post-combustion CO2 capture systems," vol. 2, no. 6, pp. 

659-675, 2011. 

[14] D. J. Heldebrant, P. K. Koech, V.-A. Glezakou, R. Rousseau, D. Malhotra, and D. C. 

J. C. r. Cantu, "Water-lean solvents for post-combustion CO2 capture: fundamentals, 

uncertainties, opportunities, and outlook," vol. 117, no. 14, pp. 9594-9624, 2017. 

[15] B. Thitakamol and A. Veawab, "Foaming Behavior in CO2 Absorption Process Using 

Aqueous Solutions of Single and Blended Alkanolamines," Ind. Eng. Chem. Res, vol. 

47, no. 1, pp. 216-225, 2008. 



 

 

39 

[16] D. J. H. P. Ballard, "How to operate an amine plant," vol. 45, no. 4, pp. 137-&, 1966. 

[17] D. Ballard, "Techniques to cut energy/corrosion/chemical costs in amine units," in 

Proceedings of Laurance Reid Gas Conditioning Conference, 1986, pp. A1-A38: 

University of Oklahoma. 

[18] R. Smith and S. RF, "Curing foam problems in gas processing," 1979. 

[19] N. Liebermann, "Amine appearance signals condition of system," 1980. 

[20] M. M. Keaton and M. J. Bourke, "Activated carbon system cuts foaming and amine 

losses," Hydrocarbon processing (International ed.), vol. 62, no. 8, pp. 71-73, 1983. 

[21] J. Thomason, "RECLAIM GAS TREATING SOLVENT," Hydrocarbon processing 

(International ed.), vol. 64, no. 4, pp. 75-78, 1985. 

[22] C. R. J. C. e. p. Pauley, "Face the facts about amine foaming," vol. 87, no. 7, pp. 33-

38, 1991. 

[23] E. Stewart and R. J. H. P. Lanning, "Reduce amine plant solvent losses; Part 1," vol. 

73, no. 5, 1994. 

[24] C. R. Pauley, R. Hashemi, and S. Caothien, "Ways to control amine unit foaming 

offered," The Oil & gas journal, vol. 87, no. 50, pp. 67-75, 1989. 

[25] J. McCarthy and M. J. C. E. C. Trebble, "An experimental investigation into the 

foaming tendency of diethanolamine gas sweetening solutions," vol. 144, no. 1, pp. 

159-171, 1996. 

[26] J. J. Bikerman, "The unit of foaminess," Transactions of the Faraday Society, vol. 34, 

pp. 634-638, 1938. 

[27] R. Thiele, O. Brettschneider, J.-U. Repke, H. Thielert, and G. Wozny, "Experimental 

Investigations of Foaming in a Packed Tower for Sour Water Stripping," Ind. Eng. 

Chem. Res, vol. 42, no. 7, pp. 1426-1432, 2003. 

[28] J. J. N. Y. Bikerman, "Foams Springer," 1973. 

[29] M. Pilling, "Foaming in Fractionation Columns," ed, 2015. 

[30] G. Senger and G. J. C. T. M. Wozny, "Impact of foam to column operation," vol. 109, 

no. 1-M, pp. 209--222, 2012. 

[31] H. Z. J. C. E. R. Kister and Design, "What caused tower malfunctions in the last 50 

years?," vol. 81, no. 1, pp. 5-26, 2003. 

[32] N. Sipöcz, F. A. Tobiesen, and M. Assadi, "The use of Artificial Neural Network 

models for CO2 capture plants," Applied energy, vol. 88, no. 7, pp. 2368-2376, 2011. 

[33] V. Chan and C. Chan, "Learning from a carbon dioxide capture system dataset: 

Application of the piecewise neural network algorithm," Petroleum, vol. 3, no. 1, pp. 

56-67, 2017. 

[34] A. Shalaby, A. Elkamel, P. L. Douglas, Q. Zhu, and Q. P. Zheng, "A machine 

learning approach for modeling and optimization of a CO2 post-combustion capture 

unit," Energy (Oxford), vol. 215, 2021. 

[35] M. Afkhamipour and M. Mofarahi, "Modeling and optimization of CO2 capture using 

4-diethylamino-2-butanol (DEAB) solution," International journal of greenhouse gas 

control, vol. 49, pp. 24-33, 2016. 



 

 

40 

[36] C. Nwaoha, K. Odoh, E. Ikpatt, R. Orji, and R. Idem, "Process simulation, parametric 

sensitivity analysis and ANFIS modeling of CO2 capture from natural gas using 

aqueous MDEA–PZ blend solution," Journal of environmental chemical engineering, 

vol. 5, no. 6, pp. 5588-5598, 2017. 

[37] A. Nuchitprasittichai and S. Cremaschi, "Optimization of CO2 Capture Process with 

Aqueous Amines A Comparison of Two Simulation–Optimization Approaches," Ind. 

Eng. Chem. Res, vol. 52, no. 30, pp. 10236-10243, 2013. 

[38] J. A. Bullin and W. G. Brown, "Hydrocarbons and BTEX pickup and control from 

amine systems," in 83 rd Annual Convention of the Gas Processors Association, 

Texas, 2004. 

[39] X. Chen, S. A. Freeman, and G. T. Rochelle, "Foaming of aqueous piperazine and 

monoethanolamine for CO2 capture," International journal of greenhouse gas 

control, vol. 5, no. 2, pp. 381-386, 2011. 

[40] H. Z. Kister, Distillation design. New York: McGraw-Hill, 1992. 

[41] M. H. Pahl and D. Franke, "Foam and foam breaking - A review," Chemie ingenieur 

technik, vol. 67, no. 3, pp. 300-312, 1995. 

[42] Perry's Chemical engineers' handbook, 6th ed. / prepared by a staff of specialists 

under the editorial direction of late editor Robert H. Perry ; editor, Don W. Green ; 

assistant editor, James O. Maloney ed. New York: New York: McGraw-Hill, 1984. 

[43] D. H. Smith, "Foams:  Fundamentals and Applications in the Petroleum Industry 

Edited by Laurier L. Schramm (Petroleum Research Institute). American Chemical 

Society:  Washington, DC, 1994. 555 pp. ISBN 0-8412-2719-5. $109.95," Energy 

Fuels, vol. 10, no. 1, pp. 266-266, 1996. 

[44] S. Ross and G. Nishioka, "Foaminess of binary and ternary solutions," J. Phys. Chem, 

vol. 79, no. 15, pp. 1561-1565, 1975. 

[45] W. L. J. C. E. P. Bolles, "Solution of a foam problem," vol. 63, no. 9, pp. 48-&, 1967. 

[46] E. Heinerth, "herausfinden wollen." 

[47] J. S. Charlton, Radioisotope techniques for problem-solving in industrial process 

plants. Springer Science & Business Media, 2012. 

[48] H. Z. Kister and T. C. J. P. O. P. Hower Jr, "Unusual operating histories of gas 

processing and olefins plant columns," vol. 6, no. 3, pp. 151-161, 1987. 

[49] C. Pratt and S. J. C. E. Hobbs, "QUICK KILL OF FOAMS ON FRACTIONATOR 

TRAYS,"  vol. 82, ed: MCGRAW HILL INC 1221 AVENUE OF THE AMERICAS, 

NEW YORK, NY 10020, 1975, pp. 112-112. 

[50] A. Afram and F. Janabi-Sharifi, "Review of modeling methods for HVAC systems," 

Applied thermal engineering, vol. 67, no. 1-2, pp. 507-519, 2014. 

[51] Great Learning Team, "What is Machine Learning? How Machine Learning Works 

and future of it?," 2022, Jan 19. 

[52] Sakshi Gupta, "Regression vs. Classification in Machine Learning: What’s the 

Difference?," 2021, October 6. 

[53] G. Zhang, B. E. Patuwo, and M. Y. J. I. j. o. f. Hu, "Forecasting with artificial neural 

networks:: The state of the art," vol. 14, no. 1, pp. 35-62, 1998. 



 

 

41 

[54] Jack Lodge. (2021, Oct 19). How Decentralised Autonomous Organisations Leverage 

Nature’s Complexity Engine. Available: https://medium.com/deeplink-labs/how-

decentralised-autonomous-organisations-leverage-natures-complexity-engine-

a61a4c26abe8 

[55] R. Yamashita, M. Nishio, R. K. G. Do, and K. J. I. i. i. Togashi, "Convolutional 

neural networks: an overview and application in radiology," vol. 9, no. 4, pp. 611-

629, 2018. 

[56] M. Shariati et al., "Application of a hybrid artificial neural network-particle swarm 

optimization (ANN-PSO) model in behavior prediction of channel shear connectors 

embedded in normal and high-strength concrete," Applied sciences, vol. 9, no. 24, p. 

5534, 2019. 

[57] Brendan Coady, "Gradient Ascent," 2017, Nov 23. 

[58] P.-H. C. Chen, Y. Liu, and L. Peng, "How to develop machine learning models for 

healthcare," Nat Mater, vol. 18, no. 5, pp. 410-414, 2019. 

[59] H. Jabbar, R. Z. J. C. S. Khan, Communication, and I. Devices, "Methods to avoid 

over-fitting and under-fitting in supervised machine learning (comparative study)," 

vol. 70, 2015. 

[60] GeeksforGeeks, "ML | Underfitting and Overfitting," 2021, Oct 20. 

[61] C. Z. J. I. T. o. S. Janikow, Man, and P. B. Cybernetics, "Fuzzy decision trees: issues 

and methods," vol. 28, no. 1, pp. 1-14, 1998. 

[62] Avinash Navlani, "Decision Tree Classification in Python Tutorial," 2018, December 

28. 

[63] European Commission, "Final Report Summary - CESAR (CO2 Enhanced Separation 

and Recovery)," 2012, October 31. 

[64] K. Johnsen et al., "CO2 Product Quality: Assessment of the Range and Level of 

Impurities in the CO2 product Stream from MEA Testing at Technology Centre 

Mongstad (TCM)," in 14th Greenhouse Gas Control Technologies Conference 

Melbourne, 2018, pp. 21-26. 

[65] J. Li et al., "Feature selection: A data perspective," vol. 50, no. 6, pp. 1-45, 2017. 

[66] GIANLUCA MALATO, "How to explain neural networks using SHAP," 2021, MAY 

17  

 

 

 

 

 

 

 

 

https://medium.com/deeplink-labs/how-decentralised-autonomous-organisations-leverage-natures-complexity-engine-a61a4c26abe8
https://medium.com/deeplink-labs/how-decentralised-autonomous-organisations-leverage-natures-complexity-engine-a61a4c26abe8
https://medium.com/deeplink-labs/how-decentralised-autonomous-organisations-leverage-natures-complexity-engine-a61a4c26abe8


 

 

42 

Appendix A 

FMH606 Master's Thesis 
 

Title: Foaming prediction in the post-combustion CO2 capture plants (amine-based) by 

utilizing machine learning techniques 

 

USN supervisors: Leila Ben Saad and Ru Yan 

External partner: Technology Centre Mongstad (TCM) v/ Rune Teigland 

Task background:   

 
Technology Centre Mongstad (TCM) is the world’s largest and most flexible test center for 
developing CO2 capture technologies and a leading competence center for carbon capture. 
TCM has been operating since autumn 2012, providing an arena for qualification of CO2 
capture technologies on an industrial scale.  A vast amount of data is collected from more 
than 1000 online instruments in the amine plant and more than 1100 in the utility plant. In 
addition, there are multiple sampling points for liquid sampling throughout the amine plant. 
Hence a vast amount of data is readily available to be exploited. 

Machine Learning (ML) can be applied when you have a complex task or problem involving 
big data and many variables, but you do not know the formula/equation or classic regression 
methods do not fit well. 

Machine Learning methods has the potential to design, test and improve various aspects of 
the CO2 process that are computationally time consuming or experimentally time consuming 
and expensive. The use of ML techniques for carbon capture processes [1-4] is still emerging 
and most investigations have been on simplified models.  

The objective of this project is to build data driven models that can enhance the 
understanding of relationships among key process parameters. The data available from TCM 
open campaigns will be used as training data sets for ANN model to be built. The aim of ANN 
model is to provide an analysis of the extracted rules and reveal most significant relationships 
between them. 

In this project, the focus will be mainly on the problem of foaming, which is a common issue 
in gas-liquid scrubbing processes and results in poor CO2 capture rate, increased energy 
penalty for CO2 capture, emissions and CO2 stream purity challenges and solvent losses. The 
use of ANN model in this context will allow to predict the foaming risk. 

 

References: 

[1] Rahimi, M., Moosavi, S. M., Smit, B., and Hatton, T. A., “Toward smart carbon capture with machine 
learning”, Cell Reports Physical Science, vol. 2, 2021.  
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[2] Chan, V. and Chan, C., Learning from a carbon dioxide capture system dataset: Application of the 
piecewise neural network algorithm, Petroleum, Volume 3, Issue 1, pages 56-67, 2017. 

[3] Li, F., Zhang, J., Oko, E. et al. Modelling of a post-combustion CO2 capture process using extreme 
learning machine. Int J Coal Sci Technol 4, 33–40, 2017.  

[4] Nikolett Sipöcz, Finn Andrew Tobiesen, Mohsen Assadi, The use of Artificial Neural Network models 
for CO2 capture plants, Applied Energy, Volume 88, Issue 7, Pages 2368-2376, 2011. 

 

Task description:   

• Give an overview of CO2 capture technologies with focus on data monitoring and 

control parameters. 

• Understand the problem of foaming in CO2 capture process and select its main key 

parameters. 

• Review and inspect the state-of-the-art of adopting machine learning in the context of 

CO2 capture process. 

• Describe the steps of developing data driven models using a machine learning approach. 

• Analyze and investigate various approaches utilizing Artificial Neural Networks to find 

the most suitable models for this application.  

• Develop some of these models based on data from TCM and discuss the accuracy of 

these models  

 

Development languages & tools: Python offers a good platform for software development as 
it is a well-known programming language and has access to great (open source) libraries and 
frameworks for AI and machine learning (ML), flexibility, platform independence, some of the 
libraries are: 

• Keras, TensorFlow, PyTorch and Scikit-learn for machine learning 

• NumPy for high-performance scientific computing and data analysis 

 

Student category: IIA (EET, EPE, IIA or PT students) 

Requirements: advanced coding skills in Python and some knowledge in machine learning 

 

The task is suitable for online students (not present at the campus): Yes 

 

Practical arrangements: 

Data will be provided by TCM 

 

Supervision: 

As a general rule, the student is entitled to 15-20 hours of supervision. This includes necessary 
time for the supervisor to prepare for supervision meetings (reading material to be discussed, 
etc). 

 

https://keras.io/
https://www.tensorflow.org/
https://pytorch.org/
https://scikit-learn.org/stable/
https://numpy.org/
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Appendix B 
Finding offline time-steps (The same script is encoded for RFCC) script 

import pandas as pd 

import numpy as np 

 

# %% Read the data and convert it to numpy 

data_sheet1 = pd.read_csv(r'C:\Users\amin\Desktop\USN - Foaming Data Extract.csv') 

data_sheet1.head() 

data_sheet1 = data_sheet1.to_numpy(dtype ='float32') 

 

# %% Finding CHP offline 

rich_solventflow = [] 

rich_solventflow = data_sheet1[:, 1] 

lean_solventflow = [] 

lean_solventflow = data_sheet1[:, 0] 

rblr_temp_chp = [] 

rblr_temp_chp = data_sheet1[:, 6] 

rblr_temp_rfcc = [] 

rblr_temp_rfcc = data_sheet1[:, 7] 

co2_chp = [] 

co2_chp = data_sheet1[:, 3] 

co2_rfcc = [] 

co2_rfcc = data_sheet1[:, 5] 

plant_offline_flow = np.asarray(np.where((rich_solventflow < 10000) & (lean_solventflow < 10000))).T 

co2_prud_offline = np.asarray(np.where((co2_chp < 1000) & (co2_rfcc < 1000))).T 

reboilers_offline = np.asarray(np.where((rblr_temp_chp < 33) & (rblr_temp_rfcc < 33))).T 

chp_stripper_offline = np.asarray(np.where(rblr_temp_chp < 33)).T 

chp_offline = np.concatenate((plant_offline_flow, co2_prud_offline, reboilers_offline, 
chp_stripper_offline), axis=None) 

chp_offline = set(chp_offline) 

chp_offline = np.asarray(sorted(chp_offline)) 

chp_offline = pd. DataFrame(chp_offline, columns = ['column1']) 

chp_offline.to_csv(r'chp_offline.csv', index = False) 
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Data preprocessing script 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

 

# %% Flow Pressure & Temp 

pres_temp_chp =  pd.read_excel('USN - Foaming Data Extract.xlsx', sheet_name= 'Flow Pressure & 
Temp', header=5) 

pres_temp_chp = pres_temp_chp.iloc[2:,2:] 

pres_temp_chp = pres_temp_chp.reset_index(drop=True) 

pres_temp_chp.rename(columns={'Unnamed: 2': 'date_time'}, inplace=True) 

#set the date-time format 

pres_temp_chp['date_time'] = pd.to_datetime(pres_temp_chp['date_time'], format = '%d.%m.%Y 
%H:%M') 

#drop the columns belong to rfcc 

pres_temp_chp.drop(['Rblr steam.1', 'CO2 Prod.1', 'RFCC rblr temp'], axis=1, inplace=True) 

 

# %% CHP Stripper Profiles 

chp_stripper =  pd.read_excel('USN - Foaming Data Extract.xlsx', sheet_name= 'CHP Stripper 
Profiles', header=6) 

chp_stripper = chp_stripper.iloc[2:,3:] 

chp_stripper = chp_stripper.reset_index(drop=True) 

#drop demister and waterwash pressure drops 

chp_stripper.drop(['8611-PDT-2442', '8611-PDT-2441'], axis=1, inplace=True) 

 

# %% Density 

density =  pd.read_csv('Density_include.csv') 

 

# %% concatinate 

chp_tot = pd.concat([pres_temp_chp, chp_stripper, density], axis=1) 

 

# %% removing chp offline time-steps and columns with high number of nan values 

offline_chp =  pd.read_csv('chp_offline.csv') 

chp_tot = chp_tot.loc[~chp_tot.index.isin(offline_chp['column1'])] 

chp_tot = chp_tot.reset_index(drop=True) 

xx = chp_tot.isnull().sum(axis = 0) 

chp_tot.drop(['8611-TT-2399A', '8611-TT-2399B', '8611-TT-2403D', '8611-TT-2404A', '8611-TT-
2404B', '8611-TT-2404D', '8611-TT-2405D', '8611-TT-2446C'], axis=1, inplace=True) 

 

# %% nan & zeros 

chp_tot = chp_tot.dropna() 
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chp_tot = chp_tot[(chp_tot != 0).all(1)] 

chp_tot = chp_tot.reset_index(drop=True) 

 

# %% Flow Pressure & Temp rfcc 

pres_temp_rfcc =  pd.read_excel('USN - Foaming Data Extract.xlsx', sheet_name= 'Flow Pressure & 
Temp', header=5) 

pres_temp_rfcc = pres_temp_rfcc.iloc[2:,2:] 

pres_temp_rfcc = pres_temp_rfcc.reset_index(drop=True) 

pres_temp_rfcc.rename(columns={'Unnamed: 2': 'date_time'}, inplace=True) 

#set the date-time format 

pres_temp_rfcc['date_time'] = pd.to_datetime(pres_temp_rfcc['date_time'], format = '%d.%m.%Y 
%H:%M') 

#drop the columns belong to chp 

pres_temp_rfcc.drop(['Rblr steam', 'CO2 Prod', 'CHP Rblr Temp'], axis=1, inplace=True) 

 

# %% RFCC Stripper Profiles 

rfcc_stripper =  pd.read_excel('USN - Foaming Data Extract.xlsx', sheet_name= 'RFCC Stripper 
Profiles', header=5) 

rfcc_stripper = rfcc_stripper.iloc[:,3:] 

rfcc_stripper.drop([0], axis=0, inplace=True) 

rfcc_stripper = rfcc_stripper.reset_index(drop=True) 

#drop demister and waterwash pressure drops 

rfcc_stripper.drop(['8611-PDT-2435', '8611-PDT-2436'], axis=1, inplace=True) 

 

# %% concatinate 

rfcc_tot = pd.concat([pres_temp_rfcc, rfcc_stripper, density], axis=1) 

 

# %% removing rfcc offline time-steps and columns with high number of nan values 

offline_rfcc =  pd.read_csv('rfcc_offline.csv') 

rfcc_tot = rfcc_tot.loc[~rfcc_tot.index.isin(offline_rfcc['column1'])] 

rfcc_tot = rfcc_tot.reset_index(drop=True) 

yy = rfcc_tot.isnull().sum(axis = 0) 

rfcc_tot.drop(['8611-TT-2175A', '8611-TT-2175B','8611-TT-2178D', '8611-TT-2179A', '8611-TT-
2179B', '8611-TT-2179D', '8611-TT-2180D', '8611-TT-2181C' ], axis=1, inplace=True) 

 

# %% nan & zeros 

rfcc_tot = rfcc_tot.dropna() 

rfcc_tot = rfcc_tot[(rfcc_tot != 0).all(1)] 

rfcc_tot = rfcc_tot.reset_index(drop=True) 

# %% total plant 

plant_tot = pd.DataFrame( np.concatenate( (chp_tot.values, rfcc_tot.values), axis=0 ) ) 
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plant_tot.columns = chp_tot.columns 

plant_tot.to_excel('plant_tot.xlsx', startcol=-1) 

 

# %% chp excel 

chp_tot.to_excel('chp_tot.xlsx', startcol=-1) 

 

# %% rfcc excel 

rfcc_tot.to_excel('rfcc_tot.xlsx', startcol=-1) 

 

 

Foaminess labeling script 

import pandas as pd 
import numpy as np 

 

# %% read the chp and rfcc  preprocessed tables 

chp_tot = pd.read_excel(r'C:\USN\fourth semester\thesis\programing\pandas\chp_tot.xlsx') 

rfcc_tot = pd.read_excel(r'C:\USN\fourth semester\thesis\programing\pandas\rfcc_tot.xlsx') 

 

# %% foaming detection chp_tot 

chp_tot['foaming'] = 0 

chp_tot.loc[(chp_tot['8611-TT-2401A'] > 107) & (chp_tot['8611-TT-2403A'] > 109) & (chp_tot['Lean 
Amine Density'] < 1039) & (chp_tot['8611-PDT-2383'] > 1), 'foaming'] = 1 

chp_tot['foaming'].value_counts()[1] 

 

# %% foaming detection rfcc_tot 

rfcc_tot['foaming'] = 0 

rfcc_tot.loc[(rfcc_tot['8611-TT-2176A'] > 107) & (rfcc_tot['8611-TT-2178A'] > 109) & (rfcc_tot['Lean 
Amine Density'] < 1039) & (rfcc_tot['8611-PDT-2155'] > 0.1), 'foaming'] = 1 

rfcc_tot['foaming'].value_counts()[1] 

 

# %% foaming detection plant_tot 

plant_tot = pd.DataFrame( np.concatenate( (chp_tot.values, rfcc_tot.values), axis=0 ) ) 

plant_tot.columns = chp_tot.columns 

plant_tot['foaming'].value_counts()[1] 

plant_tot.to_excel('plant_tot_plusfoam.xlsx', startcol=-1) 
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ANN model script 

import numpy as np 

import pandas as pd 

from sklearn.model_selection import train_test_split 

from sklearn.preprocessing import StandardScaler 

import tensorflow as tf 

from keras.models import Sequential 

from keras.layers import Dense 

import matplotlib.pyplot as plt 

import seaborn as sns 

 

# %% Importing the dataset 

plant_tot = pd.read_excel(r'C:\USN\fourth semester\thesis\programing\foaming 
detection\plant_tot_plusfoam.xlsx') 

 

# %% Feature selection based on correlation 

x = plant_tot.iloc[:, 1:36] 

corr = x.corr() 

plt.subplots(figsize=(10,8)) 

sns.heatmap(corr) 

columns = np.full((corr.shape[0],), True, dtype=bool) 

for i in range(corr.shape[0]): 

    for j in range(i+1, corr.shape[0]): 

        if corr.iloc[i,j] >= 0.9: 

            if columns[j]: 

                columns[j] = False 

selected_columns = x.columns[columns] 

x = x[selected_columns] 

y = plant_tot.iloc[:, -1] 

plt.savefig('Correlation.pdf', dpi=120, format='pdf', bbox_inches='tight') 

plt.show() 

 

# %% Concatinate the data 

plant_tot = pd.concat([x, y], axis=1) 

# %% Shuffle the data 

plant_tot_shuffled = plant_tot.sample(frac=1).reset_index(drop=True) 

 

 

# %% Input output separation 
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x = plant_tot_shuffled.iloc[:, 1:15] 

y = plant_tot_shuffled.iloc[:, -1] 

 

# %% Splitting the dataset into the Training set and Test set 

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2) 

 

# %% Input Scaling 

sc = StandardScaler() 

 

x_train = sc.fit_transform(x_train) 

x_test = sc.transform(x_test) 

x_train = pd.DataFrame(x_train) 

x_train.columns = x.columns 

x_test = pd.DataFrame(x_test) 

x_test.columns = x.columns 

 

# %% ANN model 

foam_predictor = Sequential() 

foam_predictor.add(tf.keras.Input(shape=(len(x_train.columns),))) 

foam_predictor.add(Dense( 

    units = 60, 

    activation='ReLU', 

    use_bias=True, 

    kernel_initializer="glorot_uniform", 

    bias_initializer="zeros", 

)) 

foam_predictor.add(Dense( 

    units = 1, 

    activation='sigmoid', 

    use_bias=True, 

    kernel_initializer="glorot_uniform", 

    bias_initializer="zeros", 

)) 

foam_predictor.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=1e-3), 

              loss=tf.keras.losses.BinaryCrossentropy(), 

              metrics=[tf.keras.metrics.BinaryAccuracy(), 

                       tf.keras.metrics.FalseNegatives()] 

) 

history = foam_predictor.fit( 
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    x=x_train, 

    y=y_train, 

    batch_size=64, 

    epochs=400, 

    validation_split=0.1, 

    initial_epoch=0, 

) 

 

# %% Model Accuracy 

print("Evaluate on test data") 

results = foam_predictor.evaluate(x_test, y_test, batch_size=128) 

print("test loss, test accuracy:", results) 

 

 

Decision tree model script 

import pandas as pd 

from sklearn.tree import DecisionTreeClassifier 

from sklearn.model_selection import train_test_split 

from sklearn import metrics 

import matplotlib.pyplot as plt 

import seaborn as sns 

import numpy as np 

 

# %% Importing the dataset 

plant_tot = pd.read_excel(r'C:\USN\fourth semester\thesis\programing\foaming 
detection\plant_tot_plusfoam.xlsx') 

 

# %% Feature selection based on correlation 

x = plant_tot.iloc[:, 1:36] 

corr = x.corr() 

plt.subplots(figsize=(10,8)) 

sns.heatmap(corr) 

columns = np.full((corr.shape[0],), True, dtype=bool) 

for i in range(corr.shape[0]): 

    for j in range(i+1, corr.shape[0]): 

        if corr.iloc[i,j] >= 0.9: 

            if columns[j]: 

                columns[j] = False 

selected_columns = x.columns[columns] 
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x = x[selected_columns] 

y = plant_tot.iloc[:, -1] 

plt.savefig('Correlation.pdf', dpi=120, format='pdf', bbox_inches='tight') 

plt.show() 

 

# %% Concatinate the data 

plant_tot = pd.concat([x, y], axis=1) 

 

# %% Shuffle the data 

plant_tot_shuffled = plant_tot.sample(frac=1).reset_index(drop=True) 

 

# %% Input output separation 

x = plant_tot_shuffled.iloc[:, 1:15] 

y = plant_tot_shuffled.iloc[:, -1] 

 

# %% Splitting the dataset into the Training set and Test set 

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.2) 

 

# %% Decision tree model 

# Create Decision Tree classifer object 

clf = DecisionTreeClassifier() 

# Train Decision Tree Classifer 

clf = clf.fit(x_train,y_train) 

#Predict the response for test dataset 

y_pred = clf.predict(x_test) 

 

# %%  Model Accuracy 

print("Accuracy:",metrics.accuracy_score(y_test, y_pred)) 
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Appendix C 

 
Clarification regarding unclear feature’s names: 

Regarding the features that show the temperatures within the packing, the table below              
clarifies where each temperature is placed. 

 

Temperatures inside packing 

A = Closest to 

packing wall 

B C D = Closest to 

packing center 

8611-TT-2446A 8611-TT-2446B ----------- 8611-TT-2446D 

8611-TT-2405A 8611-TT-2405B 8611-TT-2405C ----------- 

----------- ----------- 8611-TT-2404C ----------- 

8611-TT-2403A 8611-TT-2403B 8611-TT-2403C ----------- 

8611-TT-2402A 8611-TT-2402B 8611-TT-2402C 8611-TT-2402D 

8611-TT-2401A 8611-TT-2401B 8611-TT-2401C 8611-TT-2401D 

----------- ----------- 8611-TT-2399C 8611-TT-2399D 

 

In addition, the location of temperatures outside of the packing is listed in the following table. 

 

Temperature inside the stripper (Outside of packing) 

8615-TT-2390 Temperature at the stripper’s outlet 

8611-TT-2382 Temperature between packing’s top and stripper’s outlet 

8611-TIC-2379 Temperature at the stripper’s bottom 

 

Furthermore, the feature 8611-PDT-2383 represents pressure drop within the packing. 

 

 

 

 

Packing 
Height 
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Appendix D 
 

Technology Centre Mongstad (TCM): 

TCM as the world's largest carbon capture test center was founded in 2012. Gassnova, 

Statoil, Total, and Shell own TCM and the major attention of the TCM is the evaluation and 

development of new carbon capture technologies prior to their application on the full-scale 

commercial plants. Companies who wish to test their carbon capture system before 

implementing it in a full-scale plant (i.e., post-combustion in TCM) can decrease their risks 

and expenses by using two units constructed in the TCM, i.e., Mongstad, Bergen in Norway; 

that operate with various solvent-based techniques. Each of these units has a 12 megawatt 

electrical capability and can capture 100,000 tons of CO2 (together) per year.  

 


