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Abstract 
Aqueous pyrolysis liquid (APL) is formed from 

pyrolysis of lignocellulosic biomass and is considered 

as a possible feed for anaerobic digestion (AD). APL is 

known to contain many components that can have a 

negative impact on the AD process. In this study, APL 

is fed into experimental AD batch reactors and modelled 

as a substrate using the Anaerobic Digestion Model No. 

1 (ADM1), extended by addition of the inhibitors 

phenol, furfural, and 5-hydroxymethylfurfural (HMF). 
Simulation performed with the extended ADM1 has a 

better ability to predict the behavior of APL than the 

standard ADM1. Reducing the inhibition constants and 

startup concentration of active biomass during 

simulation of APL at high organic load resulted in 

improved fit with experimental results, but these 

inhibitors alone cannot explain the reduced methane 

production rate at high organic load.  

Keywords:     Anaerobic Digestion, Lignocellulosic 

biomass, Aqueous Pyrolysis Liquid, phenol, furfural, 
HMF, inhibition, ADM1 

1 Introduction 

Dry lignocellulosic biomasses are abundant in nature 

and can be harvested sustainably (Feng and Lin, 2017). 

Using thermochemical and biochemical processes, we 

can convert such biomasses into energy, either for heat 

or electricity generation or even as a transport fuel such 

as biomethane (Pang, 2019). Pyrolysis, a 

thermochemical process used for dry biomasses, 

produces value added products such as biochar, syngas, 

bio-oil, and aqueous pyrolysis liquid (APL) (McNamara 

et al., 2016).  

APL has a high organic content, showing potential 

for conversion to biogas through anaerobic digestion 

(AD) (Hübner and Mumme, 2015). However, APL is a 

complicated mixture – known to contain more than 400 

chemical compounds – many of which can have a 

negative impact on the AD process (Seyedi et al., 2019). 

Compounds such as phenols, furfural, and 5-

hydroxymethylfurfural (HMF) present in APL are 

known to be inhibitory to AD (Torri and Fabbri, 2014). 

Anaerobic digestion, a biochemical process mostly 

used for treating wastewater, produces biogas that can 

be upgraded to biomethane. Methanogenesis is the final 

step that converts acetate (acetoclastic) and hydrogen 

(hydrogenotrophic) into methane and is also often a rate 

limiting step in the AD process. APL concentration of 

2-4 g COD/L (COD: chemical oxygen demand) has 

been previously reported to completely inhibit the AD 

process (Seyedi et al., 2019). Constituents of APL such 

as phenol, furfural and HMF inhibits the 

methanogenesis process completely at concentration of 

2.5 g/L (Olguin‐Lora et al., 2003), 2 g/L (Ghasimi et al., 

2016) and 2 g/L (Ghasimi et al., 2016) respectively.   

However, microorganisms present in AD are known 

to thrive in the presence of inhibitory compounds, 

managing to degrade them during the AD process. 

Phenol, a weak acid, is broken down to the intermediate 

benzoate, before it is degraded completely to acetate and 

hydrogen (Fezzani and Ben Cheikh, 2009). Similarly, 

furfural and HMF also breaks down anaerobically 

producing acetate as the final product (Zhang et al., 

2012). 

The Anaerobic Digestion Model No.1 (ADM1) 

(Batstone et al., 2002), developed by the International 

Water Association (IWA), has been widely used by the 

scientific community for evaluating the performance of 

AD processes under different substrate and reactor 

configurations. However, the model has been limited to 

only major AD processes to make it simpler and easier 

for modification in the future as per need. Complex 

substrates such as APL are gaining interest and the 

constituent phenol is already implemented in ADM1 

(Fezzani and Ben Cheikh, 2009),  but modifications are 

needed to study the inhibition caused by the APL 

constituents furfural and HMF. 

Through this study, we aim to better understand the 

effects of inhibitory compounds present in APL, 

represented by phenols, furfural and HMF, to predict 

and simulate the dynamic behavior of AD of APL using 

ADM1.  
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2 Materials and Methods 

Batch anaerobic reactors, fed APL and run mesophilic, 

are compared with ADM1 extended with the inhibitor’s 

phenol, furfural, and HMF, known to be present in APL. 

2.1 Analytical methods 

Total COD (tCOD), soluble COD (sCOD), volatile fatty 

acids (acetic acid, propionic acid, butyric acid, iso-

butyric acid), pH, and ammonium content were 

analyzed as described in Bergland et al., (2015).  

2.2 Material Characterization 

2.2.1 APL 

APL was obtained from pyrolysis of commercial 

softwood pellets (Norway spruce and Scots pine 60/40 

per volume, Hallingdal Trepellets AS) at 600˚C, using 

the Biogreen® technology. The pyrolysis liquid was 

condensed from syngas cooled to 5-8 ˚C, and the APL 

provided was the top phase decanted after settling by 

gravity for two weeks in a cool environment. 

APL had a tCOD and sCOD of 456 and 428 g/L and 

contained 75.83 and 5.33 g/L of acetic acid and 

propionic acid, respectively. APL had a low pH of 2.46. 

2.2.2 Inoculum 

Inoculum was obtained from Lindum AD plant in 

Drammen, Norway, a mesophilic process with an 

installed thermal hydrolysis step prior to AD. The plant 

treats sewage sludge from surrounding municipalities 

(about 90% of total volatile solids) and food waste from 

industry. The inoculum was collected from the effluent 

stream of the reactor and had a pH of 7.97, total solids 

(TS) of 16.78 g/L, volatile solids (VS) of 13.14 g/L, and 

total ammonium nitrogen (TAN) of 486 mg/L. 

2.3 Batch Reactor Set up 

Anaerobic biogas potential tests were performed in the 

Automatic Methane Potential Test System II (AMPTS 

II, Bioprocess Control® Sweden AD, Lund, Sweden 

2017). It is used to determine the methane production 

from any biodegradable material. The experimental 

procedure can be found in Ghimire et al. (2020). Batch 

reactors of 500 mL were used with 300 mL of inoculum, 

and APL was added to have an organic load (OL) of 1.2 

and 2.4 g COD APL per litre of inoculum. Additional 

blank reactors included only inoculum and was used to 

consider the background methane production. All the 

reactors were run at 35 ℃ for 54 days with 2 parallels 

for each test. 

2.4 Modelling and Simulation  

The original ADM1 was extended by the addition of 

phenol, furfural and HMF as inhibitory compounds 

(extended ADM1) (Figure 1). The inclusion of these 

inhibitory compounds requires the addition of 8 

processes (Table 1).  

Figure 1. A brief schematic of the extended ADM1. 

Table 1. Biochemical stochiometric coefficients and 

kinetic rate equations for compounds (only additional 

processes and compounds to standard ADM1 are shown). 
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Each conversion process was implemented by several 

kinetic expressions that describe the conversion 

processes in terms of rate constants and substrate 

concentration. The conversion of inhibitory compounds 

to their respective products was described using 

Monod’s growth kinetic equation. Endogenous decay of 

the biomass degrading the inhibitory compounds was 

modelled using first order kinetics, and dead biomass 

was maintained as composite particulates as in the 

original ADM1.  

The detailed stoichiometry of all the processes and 

rate equations used are presented (Table 1) with their 

respective values (Table 2). The uptake of acetate in the 

extended ADM1 was modified by addition of inhibition 

from phenols, furfural and HMF as shown by process 7 

in Table 1. Inhibition by phenol, furfural and HMF was 

modelled using a non-competitive inhibition function 

(1) (Batstone et al., 2002).  

I = 
1

1+
S 

𝐾𝑖   

 
(1) 

  

I = Inhibition, S = concentration of substrate in kg 

COD/m3, and Ki = inhibition constant (concentration of 

substrate that inhibits the activity of the microorganisms 

by 50%).    

 
a (Fezzani and Ben Cheikh 2009) 

b (Elshahed et al. 2001) 

c (Liu et al. 2017) 

Phenol is a weak acid and both phenol and benzoate 

contribute to pH changes. The charge balance equation 

used in the standard ADM1 (Batstone et al., 2002) was 

extended to include the contributions from phenol and 

benzoate (2). 

SH+  -SOH-  = 

SHCO3
- +

Sac-

64
+

Spro-

112
+

Sbu-

160
+

Sva-

208
+

Sphe-

224
+

Sbnz-

240
 

+ SAn+-Scat+-  SNH4
+ 

(2) 

 

Where Sphe- and Sbnz- are phenol (3) and benzoate ion 

concentration (4), implemented in ADM1 as described 

by Batstone et al. (2002). 

Sphe- − 
Ka,phe×Sphe  

Ka,phe+ SH+
= 0 (3) 

 

Where Ka,phe (phenolic acid dissociation constant) is 

1×10-10(Sharma and Kaminski, 2012).  

Sbnz-- 
Ka,bnz×Sbnz  

Ka,bnz+ SH+
=  0 

 

(4) 

 

Where the Ka,bnz  (benzoic acid dissociation constant) is 

6.3×10-5 (Ionization Constants of Organic Acids, n.d.) 

d (Brune, Schoberth, and Sahm 1983) 

e calculated 

 

Parameter Description Unit Phenol Benzoate Furfural HMF Value 

C Carbon content in compound  

KmoleC/kg 

COD 0.391a 0.0343 a 5/160e 

6/192 

e - 

Km Maximum uptake rate  d-1 15 a  8 a 10c 10 c - 

Ks 

Half saturation constant for 

uptake kg CODs/m3 30 a  15.5 a 10 c 10 c - 

Kdec Decay rate for biomass d-1 0.02   0.02  0.02d 0.01 c - 

Y Yield of biomass on uptake 

kg CODx/kg 

CODs 0.01 a 0.013 a 0.08 d 0.1 c - 

Ki 

Inhibition on methanogens 

from compound kg CODs/m3 1.12 a  - 2.105 e 2.05 e - 

Ki_bnz_h2 

Inhibition on benzoate 

degraders by hydrogen kg CODs/m3 - 9.50E-05b - - - 

X Concentration of biomass kg CODx/m3 0.21 0.24 0.12 0.18 - 

f_bnz_phe Yield of benzoate from phenol   - - - - 0.87 a 

f_h2_phe Yield of hydrogen from phenol   - - - - 0.13 a 

f_ac_bnz Yield of acetate from benzoate   - - - - 0.51 a 

f_h2_bnz 

Yield of hydrogen from 

benzoate   - - - - 0.49 a 

f_ac_fu Yield of acetate from furfural   - - - - 0.8 d 

f_h2_fu Yield of hydrogen from furfural   - - - - 0.2  d 

f_ac_HMF Yield of acetate from HMF   - - - - 0.88 c 

f_h2_HMF Yield of hydrogen from HMF   - - - - 0.12 c 

Table 2. Kinetics parameters and their respective value used for degradation of phenol, furfural and HMF 

SIMS EUROSIM 2021

DOI: 10.3384/ecp21185458 Proceedings of SIMS EUROSIM 2021
Virtual, Finland, 21-23 September 2021

460



2.4.1 APL characteristics 

APL concentrations implemented in ADM1 (Table 3) 

were measured based on APL characteristics. Phenol, 

furfural and HMF concentrations are not known and 

were from reporting APL from birch bark (hardwood) 

pyrolysed at 600 ℃.  

Table 3. APL composition used for simulations. 

Parameters Value 

Acetic acid (g/L) 75.832f 

Propionic acid (g/L) 5.33 f 

Phenol (g/L) 25g 

Furfural (g/L) 10h 

HMF (g/L) 7 h 

Soluble Inorganic Nitrogen 

(kmole/m3) 0.025e 

X_C Calculated 

Around 50 % of the APL COD is unknown and was 

added as complex particulate (X_C) already present in 

the ADM1. 

2.4.2 Determination of inhibition constant for 

furfural and HMF 

Prior knowledge of the inhibition constant for furfural 

and HMF (1) required for modelling the inhibition effect 

is not found in the literature. Experimental results of 

specific methanogenic activity (SMA) from Ghasimi et 

al. (2016) is used to determine the IC50 value that can be 

used as inhibition constant Ki (1). Thus, inhibition 

constant values are calculated graphically to obtain the 

IC50 value, the concentration of substrate at which 50% 

inhibition occurs (Figure 2).  

 

Figure 2. IC50 value determination using graphical method 

for a: furfural and b: HMF. Based on SMA activity from 

Ghasimi et al. (2016). 

2.4.3 Simulation strategy 

To evaluate the extended model, the simulation was 

performed based on three strategies: 

1. Vary the concentration of inhibitory compounds to 

evaluate the effect (Table 4). 

2. Vary the inhibition constant to evaluate the 

sensitivity in the model (Table 5). 

3. Vary the startup active biomass concentration of 

inhibitory compounds degraders. Both sufficient 

 
f Measured 
g (Yu et al. 2020) 

and low startup concentration of biomass 

(X_low=X×0.1) were tested. 

Table 4. Concentration of inhibitory compounds in APL 

used in simulations of AD of APL at OL of 1.2 and 2.4 g 

COD/L. 

 Inhibitory 

compounds 

Sim-

base 

Sim-

inhib-

low 

Sim-

inhib-

avg 

Sim-

inhib-

high 

Phenol (g/L) 25 5 25 40 

Furfural (g/L) 10 5 25 40 

HMF (g/L) 7 5 25 40 

Table 5. Inhibition constant used in simulations of AD of 

APL at OL of 2.4 g COD/L. 

 Inhibitio

n 
constant 

Sim

-

bas
e 

Sim-

Ki_low_
1 

Sim-

Ki_low_
2 

Sim-

Ki_low_
3 

KI_fu (kg 

COD/m3) 2.10 0.84 0.21 0.11 

KI_HMF 

(kg 

COD/m3) 2.05 0.82 0.21 0.10 

KI_phe 

(kg 

COD/m3) 1.12 0.45 0.11 0.06 

3 Results and Discussion 

3.1 Experimental Results 

The methane production rate (Figure 3) was low for 

APL with OL of 2.4 g COD/L (APL2.4) and was same 

as Blank (only inoculum) till day 2, whereas APL with 

OL of 1.2 g COD/L (APL1.2) had a gradual methane 

production until day 20 with no lag phase. Unpublished 

results during batch AD tests of the same APL gave 

increased lag phase when the organic load was higher 

than 2 g COD/L and total inhibition at OL of 3 g COD/L. 

 

Figure 3. Methane production rate from batch test of APL 

at organic load of 1.2 and 2.4 g COD/L referred to as 

h (Torri and Fabbri 2014) 
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APL1.2 and APL2.4, respectively, along with results from 

blank (only inoculum). 

3.2 Simulation results 

3.2.1 Simulation of APL 

Simulation of APL1.2 (sim1.2) by standard ADM1 and 

extended ADM1 shows a good fit to the experimental 

results (Figure 4), however, both standard and extended 

ADM1 was not able to follow the trend of methane 

production rate at high OL (sim2.4).  

 

Figure 4. Simulated methane production rate using 

standard ADM1 (red line), extended ADM1 model (blue 

line) and experimental results (black dots) for APL a: at 

organic load of 1.2 g COD/L (Sim1.2-base) b: at organic 

load of 2.4 g COD/L (Sim2.4-base). 

3.2.2 Simulation with varying inhibitory compound 

concentration 

Simulations performed with varying concentrations of 

inhibitory compounds revealed only a small effect on 

the methane production rate for APL at low OL of 1.2 g 

COD/L (Figure 5). However, the effect from high 

inhibitor concentrations at OL of 2.4 g COD/L of APL 

was more pronounced. High OL and thereby high 

concentration of inhibitory compounds resulted in 

inhibition and a lower maximum methane production 

rate. 

 

 

 

 

Figure 5. Simulation with varying concentration of 

inhibitory compounds (Table 5). a: simulated methane 

production rate for APL1.2 with experimental results 

(black dots) b: simulated methane production rate for 

APL2.4 with experimental results (black dots). 

The inhibition by the individual inhibitory 

compounds increased with an increase in concentration 

(Figure 6). Phenol causes the highest inhibition effect on 

the methanogens. The total effect from the inhibitors can 

however not explain the low fit between the simulations 

and the experiment with OL of 2.4 g COD APL/L 

(Figure 5). 

 

Figure 6. Inhibition by inhibitory compounds on 

methanogens. 1 is no inhibition at all and 0 is full 

inhibition. a: simulated inhibition for APL OL of 1.2 g 

COD/L b: simulated inhibition for APL OL of 2.4 g 

COD/L. 
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3.2.3 Simulation with varying inhibition constant and 

low biomass concentration of inhibitory 

compound degraders 

Reducing the estimated inhibition constants (Table 5) 

resulted in a maximum methane production rate that 

decreased drastically (Figure 7). This is however not 

based on real inhibition constants but rather reveals the 

high degree of sensitivity towards a change in the 

inhibition constant. The concentration of active initial 

biomass degrading the individual inhibitory compounds 

is not known and reducing these concentrations (Figure 

7) also reveals an effect further reducing the gap 

between experiment and simulated methane production 

rate at OL 2.4 g COD APL/L. 

 

 

Figure 7. Simulated methane production rate with low 

initial startup concentration of inhibitory compounds 

degrading biomass (Sim-Ki_low_3-X_low, Sim-

Ki_low_2-X_low, and Sim-Ki_low_1-X_low) represented 

by dashed lines and simulation with only change in 

inhibition constant for inhibitory compounds represented 

by lines. Experiment with OL 2.4 g COD APL/L (black 

dots). 

Even though the inhibition constant used in Sim-

Ki_low_3-X_low was low, it can be justified that there 

are a lot of unknown compounds in APL that have 

potential to inhibit the methanogenesis. Compounds 

such as chlorinated alkenes and alkanes, nitros and 

nitriles are known to severely inhibit the 

methanogenesis even at low concentrations (Blum and 

Speece, 1991). Thus, there is the possibility that the 

inhibition seen using the lowest inhibition constant 

(Sim-Ki_low_3 and Sim-Ki_low_3-X_low in Figure 7) 

could also be observed if further inhibitory compounds 

are added to the model, such as ketones, polyaromatic 

hydrocarbons and esters – which are also known to be 

present in APL and known to inhibit methanogenesis 

(Blum and Speece, 1991). Microorganism can however 

also be adapted to inhibitors (Badshah, 2012;Wen, 

2020) suggesting lower inhibition over time in 

continuous AD reactors. 

4 Conclusion 

The effect of the inhibitors furfural, HMF, and phenols 

present in APL using ADM1 reveals a high sensitivity 

of the inhibition constant (made from 50% inhibition of 

the methanogens). When using realistic values for the 

inhibition constants and concentrations of inhibitory 

compounds, the reduced methane production rate at 

high organic load of APL cannot be explained by 

furfural, HMF, and phenols alone in batch AD. APL 

contains several known and unknown compounds and it 

is suggested to study more of these to find the combined 

inhibitory effect. 
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