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Summary:  

 

A pilot project in Norway is currently being examined to give electric energy to 

construction sites in places where connection to the power grid is not available. This thesis 

proposes a generic mobile battery charging scheduling problem that entails charging 

batteries in a location where the grid has adequate capacity and then moving the batteries 

from the charging station to relevant construction sites that use battery-powered 

construction machines. The fundamental principle behind vehicle routing problems with 

a time window and battery electric transit vehicle scheduling problem has been useful for 

problem formulation. To address these formulations, mixed-integer linear programming, 

and large neighborhood search algorithms are being investigated. The optimization model 

is formulated as mixed-integer linear programming, with objective functions, constraints, 

and other important parameters, and then solved with the Microsoft Excel solver using a 

large neighborhood search algorithm. Two study cases are formulated: a simple 

optimization problem to help understand the notion of vehicle routing problem and a more 

complex scheduling problem based on a real-world scenario. 
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1 Introduction 

1.1 Background 

A fossil-free construction site is one that does not use fossil fuel-powered machines, but an 

emission-free construction site is one that uses construction technologies such as a battery, 

cable-electric, or hydrogen to produce zero emissions. The fossil-free construction site 

typically employs bio-fueled construction equipment that are carbon neutral but does produce 

other pollutants such as particulate matter and nitrogen oxide, implying that fossil-free does 

not imply zero emissions. Even while electric construction machines can be utilized in both 

fossil-free and emission-free building sites, their usage in zero-emission sites is more likely to 

make the site emission-free. 

 

A pilot project to provide electric energy to construction activities in parts where access to the 

power grid is not possible is presently under evaluation in Norway. This project focuses on 

zero-emission construction sites of Skagerak Energi. A lot of places have limited possibilities 

for connection in the electric grid and extending the grid just for the construction activities is 

also not recommended. Mobile energy storage might resolve the issue related to grid 

connection and power up electric construction machines at sites. As described in Figure 1-1, 

the idea is to use mobile battery containers to charge batteries at a location where the grid has 

good capacity and then drive the batteries from the charging station to the relevant construction 

sites that use battery-powered construction machines. When the batteries are discharged, the 

empty batteries are driven to the nearest charging station, and new fully charged batteries are 

driven to the construction site. 

 

Figure 1-1: An overview of battery container from construction site to grid connection [1] 

At an increasing rate, new technologies are emerging and becoming a part of our daily lives. 

The smartphone revolution, as well as the evolution of automobiles and new energy 

technologies, have resulted in a technological break from traditional procedures and thinking. 

This has an impact on all aspects of daily life, including the planning and operation of 

transportation. Electric vehicles are increasingly being used by public-transit agencies due to 

their lower emissions and other social and economic benefits.  
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1.2 Previous Skagerak Work 

This thesis stands on the foundation laid by the previous work carried out by a group of students 

as a master’s thesis at USN in collaboration with Skagerak Energi. The findings of the project 

are used as a base case for this thesis for the optimal scheduling of mobile battery charging 

systems. The findings useful for this thesis are listed below [1]: 

1. The most prevalent size of the mobile battery used in Norway is a one with 7.5-ton 

weight and 576 kWh energy. The standard maximum dimension of the container 

carrying the mobile battery is 45ft long, 8 ft wide and 8 ft 6 inches tall. 

2. A typical construction site (10,000 square meters apartment block or school) needs 

three excavators (250 kWh each) and one mobile crane (500 kWh) and diverse small 

machines (150 kWh) energy. The construction site needs a total of 1400 kWh energy 

per day i.e., three 576 kWh batteries. 

3. The combined charging system (CCS) type 2 or Combo 2 cable can be used in the 

charging station as it can provide power at up to 350 kW. The charging time for one 

battery using CCS type 2 is 2 hours. 

4. The three possible charging stations are: 

a. Hauen – ideal connection point – 8.8 MW max loading capacity – can charge 

max 15 batteries 

b. Tømmerkaia – strained grid – 4.1 MW max loading capacity – can charge max 

7 batteries 

c. Floodmyrvegen – recommended by Skagerak 

1.3 Objectives 

• Propose a general mobile battery charging scheduling problem 

• Determine important variables and constraints 

• Propose a realistic case scenario for the scheduling problem 

• Formulate an optimization model, with objective functions, constraints, and other 

important parameters 

• Solve the optimization problem using adequate tools and algorithms 

1.4 Limitations 

• Only fixed cost and cost per unit distance for vehicles, remaining cost variables like 

chargers, stations, etc. are neglected. 
• Fuel consumption and CO2 emission are not regarded because of the complexity of the 

problem. 
• Cases that require the vehicle to go to the same place more than once in a given schedule 

date, are not considered. 
• Could have been more polished to get better results with a few more added features like 

battery partial charging/discharging and emissions if thesis time was not limited 
• If one or more constraint is not fulfilled, the algorithm is infeasible to show an 

alternative solution.  
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2 Vehicle Routing and Scheduling 
The following sub-section highlight’s themes and ideas that form the basis of the scheduling 

problem. 

2.1 Traveling Salesman Problem 

The traveling salesman problem (TSP) is one of the well-known problems in optimization, 

logistics, or operations research. It is a task where a salesman must visit a list of pre-defined 

cities once and return to the city, he started from in the shortest route possible. It is an NP-hard 

combinatorial optimization problem that is important in theoretical computer science and 

operations research. It is one of management science's most studied problems. Mathematical 

programming is used to solve optimal approaches to traveling salesman problems. However, 

most TSP problems are not solved optimally. Heuristics are used when the problem is so large 

that an optimal solution is impossible to obtain, or when approximate solutions are sufficient. 

The Clark and Wright savings heuristic and the nearest neighbor technique are two regularly 

utilized TSP heuristics. In 1972, Karp showed that TSP is an NP-hard which was one of the 

first problems to be shown NP-hard while the notion of NP-completeness was still developing. 

New algorithmic strategies have first been created for or at least applied to, the TSP to 

demonstrate their efficacy. Branch and bound, Lagrangian relaxation, Lin-Kernighan type 

approaches, simulated annealing, and polyhedral combinatorics for hard combinatorial 

optimization problems are some examples (polyhedral cutting plane methods and branch and 

cut). [2] 

 
Figure 2-1: TSP Solution - Shortest Possible Loop [3] 

 

TSP can be formulated as minimizing a function  

 

∑ 𝑐𝑖𝜋(𝑖)

𝑛

𝑖=1
 

 

Where 𝜋 is cyclic permutation of the integers from 1 to n given an integer 𝑛 ≥ 3 and an 𝑛 × 𝑛 

matrix 𝐶 =  (𝑐𝑖𝑗), each 𝑐𝑖𝑗 is a non-negative integer. 
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The TSP has been first documented around the mid 1700s so, is a relatively old problem. Euler 

was interested in solving the knights' tour problem which was basically a problem a knight 

should visit each of the 64 squares of a chessboard exactly once on its tour, The phrase 

‘traveling salesman’ first appeared in a German book authored by a senior traveling salesperson 

in 1932. The phrase "traveling salesman dilemma" was first used in a publication by the RAND 

Corporation in 1949. The Corporation's reputation contributed to the TSP being a well-known 

and popular problem. The TSP gained popularity at the same time as a result of the new subject 

of linear programming and attempts to tackle combinatorial issues. [4][5] 

2.2 Vehicle Routing Problem 

The classic vehicle routing problem (VRP) extends the numerous traveling salesman problem 

by incorporating varied service requirements at each node as well as different vehicle capacities 

in the fleet to reduce the overall cost or distance along all routes. The main goal of VRP is used 

to find the optimal set of routes for vehicles delivering goods to clients to minimize the total 

route cost. VRP is an NP-hard problem therefore commercial or practical problem solvers 

prefer the heuristics approach due to the size and frequency of real-world scenarios. It first 

appeared in 1959 as ‘The Truck Dispatching Problem’ by George Dantzig. [6] [7] 
 

 
Figure 2-2: Vehicle Routing Problem [6] 

 

Dantzig, Fulkerson and Johnson extended a TSP to create the two-index vehicle flow to 

minimize the total cost of the route: [6] 
 

𝑚𝑖𝑛 ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗

𝑗∈𝑉𝑖∈𝑉

 

  

Where 𝑐𝑖𝑗 and 𝑥𝑖𝑗 represent the total cost and binary variable that represent the part of the 

solution while traveling from point 𝑖 to 𝑗. The constraints for this minimization functions were 

formulated as: 

• Constraints that state exactly one arc enters and leaves each vertex associated with a 

customer 

• Constraints ensure that the number of vehicles leaving and entering the depot is the 

same. 
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• Capacity cut constraints, which impose that the routes must be interconnected, and the 

demand on each route must not exceed the capacity of the vehicles. 

• Integrality constraints 
 

There are several variations of VRP, some of which are: 

1. Vehicle Routing Problem with Profits 
2. Vehicle Routing Problem with Pickup and Delivery 
3. Vehicle Routing Problem with LIFO 
4. Vehicle Routing Problem with Time Windows 
5. Capacitated Vehicle Routing Problem 
6. Vehicle Routing Problem with Multiple Trips  
7. Open Vehicle Routing Problem 
8. Inventory Routing Problem 
9. Multi-Depot Vehicle Routing Problem 

 

2.3 Vehicle Routing Problem with Time Window 

The vehicle routing problem with time window (VRPTW) is an important concept in logistics 

systems that has received a lot of attention in recent years where many researchers have 

contributed to formulating and solving the optimization problem. The routing problem with a 

goal to minimize the total transportation cost can be stated as selecting routes for a limited 

number of cars to serve a group of consumers within time constraints where each vehicle has 

a maximum carrying capacity that begins and ends at the depot and each customer is served 

only once. Schrage identified the vehicle routing and scheduling problem with time window 

limitations as an important area for advancement in dealing with realistic complexities and 

generalizations of the fundamental routing model in 1981. [8] 

 
Figure 2-3: Multi-Depot VRPTW [9] 

 

Without time windows, VRP is NP-complete. Even with a fixed fleet of vehicles, the time-

constrained problem is fundamentally more difficult than a simple VRP. It is NP-complete to 

find a feasible solution for a VRPTW with fixed fleet size. Because of the inherent difficulty 

of the problem, heuristic-based search methods are most promising for solving practical size 

problems. In a reasonable amount of computer time, heuristic methods frequently produce 

optimal or near-optimal solutions for large problems. As a result, the development of heuristic 
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algorithms capable of obtaining near-optimal feasible solutions for large VRPTW is of primary 

importance. [10] 

2.4 Vehicle Scheduling Problem 

Most routing and scheduling problems seek to reduce the total cost of providing the service. 

which includes the total cost or price of the vehicle, mileage, and personnel costs. However, 

other goals, particularly in the public sector, may come into play. Routing and scheduling issues 

are frequently represented as graphical networks as shown in Figure 2-4 which has the benefit 

of allowing the decision-maker to see the problem in context. The classification of routing and 

scheduling problems is determined by the characteristics of the service delivery system, such 

as the size of the delivery fleet, the location of the fleet, vehicle capacities, and routing and 

scheduling objectives. We begin with a collection of nodes that will be visited by a single car 

in the most basic case. Transit costs between nodes are the same regardless of direction, there 

are no precedence relationships between them moreover there are no delivery-time constraints. 

Furthermore, the vehicle capacity is not considered. The solution to the single-vehicle dilemma 

is a route or tour that visits each node only once and starts and ends at the depot node. The tour 

is designed with the purpose of lowering the overall tour cost in mind. The simplest case is 

known as the traveling salesman problem (TSP). When we restrict the capacity of the various 

vehicles and add the possibility of fluctuating demands at each node, the problem is classed as 

a vehicle routing problem (VRP). If the customers being served have no time constraints and 

no precedence relationships exist, the problem is purely routing. If the service must be 

performed at a specific time, there is a scheduling issue. Otherwise, it's a routing and scheduling 

problem. [7] 

 
Figure 2-4: Visualization of Vehicle Scheduling Problem [11] 

The problem of determining the optimal allocation of vehicles to carry out all the trips in each 

transit timetable is referred to as vehicle scheduling. Each vehicle is assigned a series of trips, 

which may include deadheading or empty trips. The number of viable solutions to this problem 

is extremely large, especially when the vehicles are in multiple depots. It is a classical non-

linear programming problem in the field of modern operational research and logistics 

management. VSP can be subdivided into static and dynamic. Dynamic VSP refers to the 

optimization in the process of logistics and distribution to find the best route based on the new 

service request. [12] 
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2.5 Electric Vehicle Scheduling Problem 

The electric vehicle scheduling problem (E-VSP) is a variant of the VSP that considers the 

restricted driving range and charging requirements of electric vehicles. The light-duty private 

car and light truck sector have led the way in the adoption of hybrid and battery electric 

technology during the last 20 years, while electric buses in the medium to a heavy-duty 

category are also gaining popularity. Although electric buses have numerous advantages, range 

anxiety is a prominent worry among electric bus users. In general, most diesel buses have a 

maximum driving range of more than 300 kilometers in urban conditions; however, the 

maximum driving range of most electric buses currently on the market ranges from 70 to 200 

kilometers, which is 25–65 percent less than that of diesel buses, making it difficult to operate 

them continuously without recharging. [13] 

 

The energy consumed must be immediately supplied using either battery switching or fast 

charging technology to assure proper operations. It must schedule battery changes for electric 

buses, identify the minimum quantity of spare batteries to stock, and schedule recharging for 

the spare batteries for the battery swapping mode, all of which are areas where significant 

research progress has already been made. It must schedule the charging of electric buses, 

establish the placement of charging stations, and determine the number of chargers required 

for the fast-charging mode. It is critical to design a cost-effective decision-making framework 

that can provide optimal strategies for planning and operational decisions while meeting the 

recharging demand of all-electric buses without delays or congestion to make the most of a 

fast-recharging system. Comprehensive planning decisions about the location and capacity of 

charging stations are used to make operational decisions about the recharging schedule or the 

assignment of electric buses to chargers. To achieve overall cost-effectiveness, both planning 

and operational choices must be made concurrently in an integrated modeling framework [14]. 

In the literature, the Vehicle Scheduling Problem (VSP) has been thoroughly investigated and 

expanded to other versions, including the Multi-Depot VSP (MD-VSP), the Multiple Vehicle 

Types VSP, and the VSP with Route Constraints (VSP-RC) where various forms of route 

constraints, such as route time, route distance, or maximum vehicle bus line modifications, can 

be imposed [7]. 

 

The E-VSP is an MDVSP with distance limits and charging capabilities. Each trip in the E-

VSP begins and ends at certain locations at predetermined times. Each vehicle can be fully or 

partially recharged at any recharging station. The charging time is believed to be a linear 

function of the battery's charge level. An E-VSP solution is a collection of vehicle schedules 

in which each vehicle begins, and each route is covered by precisely one vehicle, and it all 

starts and concludes at its base depot and the driving ranges of the vehicles are not exceeded. 

The goal is to first reduce the number of cars used and then to reduce the overall distance 

traveled. Because the traveling distance of each trip is fixed, minimizing the distance between 

the depot and the trip is analogous to reducing overall travel distance, as well as the distance 

between any two excursions in the schedule, also known as deadheading distance [15]. 

2.6 Battery Electric Transit Vehicle Scheduling Problem 

Electric vehicles are being deployed in an increasing number of transit agencies throughout the 

world due to zero emissions and other social and economic benefits. One of the most difficult 

jobs is successfully arranging a group of EVs while keeping in mind the restricted driving range 

and charging requirements. This results in the battery-electric transit vehicle scheduling 

problem (BET-VSP), which is exacerbated by stationary battery chargers provided at transit 
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terminals. From both a theoretical and practical standpoint, the BET-VSP is a novel and crucial 

research challenge. The BET-VSP takes into account stationary chargers deployed at transit 

terminals with the goal of minimizing not only the total number of electric transit vehicles 

required but also the total number of battery charges required to conduct a particular set of 

planned services. [12] 

 

 
Figure 2-5: BET-VSP Example with space-time network [16] 

 

Researchers Sassi and Oulamara investigated the single-depot electric vehicle scheduling 

problem, developed an EVSP mixed-integer programming model, and evaluated the 

cooperative scheduling and charging of electric vehicles. The topic seeks to maximize vehicle 

assignment to tours and reduce EV charging costs while satisfying operational limits on 

charging stations, the power grid, and EV driving range. [17] 

 

MD-EVSP is more complex and difficult to solve than the single-depot electric vehicle 

scheduling problem (SD-EVSP). To date, there is just the following literature on this topic: 

To overcome the problem Wen et al [15] developed a mixed-integer programming model for 

MD-EVSP and offered an adaptive big neighbor-hood search algorithm. For big instances of 

MD-EVSP, this technique can create decent solutions, while for small instances, it can generate 

optimal or near-optimal solutions. 

 

Li et al. [18] proposed a formulation for the multi-depot vehicle scheduling problem with 

different vehicle types, including electric buses, under range and refueling constraints. A 

simpler formulation was created to generate a feasible spatiotemporal energy network for bus 

traffic and for passenger flow. 

 



 

14 

3 Problem Description 
For a general formulation of the problem, a scenario in which a construction company intends 

to replace all conventional diesel equipment with electric counterparts in an emission-free 

construction site is investigated, and sensitivity analyses are performed under various 

electrification rate scenarios. Because the operational ranges of electric equipment are less than 

those of diesel counterparts, many charging stations equipped with fast chargers will be 

strategically installed at the charging stations to assure regular functioning. Given the time 

constraints, the following decisions are to be made. 

• Total number of charging stations required  

• Total number of chargers in each charging station 

• Total number of mobile battery containers to be scheduled so that they may be 

recharged without any delays or charging station congestion 

An optimization framework is created in this section. Because the suggested architecture is 

generic, it can be applied to a variety of networks. 

3.1 Problem Definition 

The main tasks in this study are to schedule the mobile battery container to be recharged and 

to determine the number of the charging stations and needed chargers. Several major 

assumptions are made to simplify the problem. 

1. The mobile battery container operates according to the previously established 

timetable. 

2. All the mobile battery containers are homogeneous and have the same driving range. 

3. The charge consumed is proportional to the working hours on the construction site. 

4. The time it takes to charge is directly proportional to the amount of energy recharged. 

5. All chargers are homogeneous fast chargers with one outlet each. 

6. The recharging duration is fixed, and continuous.  

 
Figure 3-1: Single depot charging network architecture 



 

15 

3.2 Mathematical Formulation 

The mathematical formulation used in this chapter is introduced in [14]. 

Minimize: 

𝐶 = ∑ ∑(𝑐𝑑𝑑𝑖𝑛 + 𝑐0 + 𝑐𝑒𝑢𝑛)𝐷̅𝑋𝑖
𝑛

𝑛∈𝑁𝑖∈𝑆

+ ∑ ∑ ∑ 𝑐𝑤𝑤𝑖𝑗𝑛𝑡𝐷̅𝑌𝑖𝑡
𝑛𝑘

(𝑖,𝑗,𝑡)∈𝐴𝑛𝑛∈𝑁

𝐾𝑛

𝑘=1

+

∑ ∑(𝛼𝑐𝑓1 + 𝐷̅𝑐𝑚1)𝑍𝑛𝑘

𝑛∈𝑁

𝐾𝑛

𝑘=1

+ ∑(𝛼𝑐𝑓2 + 𝐷̅𝑐𝑚2)

𝑛∈𝑁

𝑍′
𝑘

(1) 

Subject to: 

∑ 𝑋𝑖
𝑛 ≤ 1, ∀ 𝑖 ∈ 𝑆

𝑛∈𝑁

(2) 

𝐸𝑖 + ∑(𝜃𝑢𝑛 − 𝑑𝑖𝑛)𝑋𝑖
𝑛 ≤ 𝛽, ∀ 𝑖 ∈ 𝑆

𝑛∈𝑁

(3) 

𝐸𝑗 =  𝐸𝑖 + ∑(𝜃𝑢𝑛 − 𝑑𝑖𝑛)𝑋𝑖
𝑛 − 𝑑𝑗 , ∀ (𝑖, 𝑗) ∈ 𝑃

𝑛∈𝑁

(4) 

𝐸𝑖 ≥ 𝑒𝑚𝑖𝑛, ∀ 𝑖 ∈ 𝑆 (5) 

∑ ∑ 𝑌𝑖𝑡
𝑛𝑘

(𝑖,𝑗,𝑡)∈𝐴𝑛

= 𝑋𝑖
𝑛,

𝐾𝑛

𝑘=1

∀ 𝑖 ∈ 𝑆, 𝑛 ∈ 𝑁 (6) 

∑ ∑ 𝑌𝑖𝑡′
𝑛𝑘

𝑡

𝑡′=𝑡−𝑢𝑛+1𝑖:(𝑖,𝑗,𝑡′)∈𝐴𝑛

≤ 1, ∀ 𝑘 = 1, … , 𝐾𝑛, 𝑛 ∈ 𝑁𝑡 ∈ 𝑇 (7) 

∑ 𝑌𝑖𝑡
𝑛𝑘

(𝑖,𝑗,𝑡)∈𝐴𝑛

≤ 𝑀̅𝑍𝑛𝑘 , ∀ 𝑘 = 1, … , 𝐾𝑛, 𝑛 ∈ 𝑁 (8) 

∑ 𝑍𝑛𝑘

𝐾𝑛

𝑘

≤  𝑀̅𝑍′
𝑛, ∀ 𝑛 ∈ 𝑁 (9) 

𝑍𝑛𝑘 ≤ 𝑍𝑛(𝑘−1), ∀ 𝑛 ∈ 𝑁, 𝑘 = 2, … , 𝐾𝑛 (10) 

𝑋𝑖
𝑛 = {0,1}, ∀ 𝑖 ∈ 𝑆, 𝑛 ∈ 𝑁 (11) 

𝑌𝑖𝑡
𝑛𝑘 = {0,1}, ∀ 𝑖 ∈ 𝑆, 𝑡 ∈ 𝑇, 𝑘 = 1, … , 𝐾𝑛, 𝑛 ∈ 𝑁 (12) 

𝑍𝑛𝑘 = {0,1}, ∀ 𝑘 = 1, … , 𝐾𝑛, 𝑛 ∈ 𝑁 (13) 

𝑍𝑛
′ = {0,1}, ∀ 𝑛 ∈ 𝑁 (14) 

𝐸𝑖 = 𝛽0, ∀ 𝑖 ∈ 𝑂 (15)    
Parameters 

 

𝛽 – maximum amount of energy for a fully charged mobile battery container, in kWh 

𝛽0  – the initial amount of energy for a mobile battery container at the depot, in kWh 

𝜃   – recharging rate, i.e., the extended charge using energy charged per hour, in kW 

𝑑𝑖  – energy used in a day 𝑖 ∈ 𝑆, in kWh 

𝑑𝑖𝑛  – energy used between the start/end point of trip 𝑖 ∈ 𝑆 and charging station n ∈ N, kWh 

𝑐𝑤  – cost of unit waiting time, in NOK/hour 

𝑒𝑚𝑖𝑛  – extended energy usability using the minimum energy in a battery container, in kWh 

𝑐𝑑  – cost of unit energy, in NOK/kWh 

𝑐𝑜  – fixed cost per recharging activity; refers to charger startup and operation in NOK 

𝑐𝑒  – variable recharging costs; refers to the electricity costs, in NOK/hour; 

𝑐𝑓1  – fixed costs of a charger; includes purchase and installation costs, in NOK 
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𝑐𝑓2  – fixed costs of a charging station; includes cost of land and construction, in NOK 

𝑐𝑚1  – maintenance cost per charger, in NOK 

𝑐𝑚2  – maintenance cost per charging station, in NOK 

𝐾𝑛  – the number of candidate chargers in a charging station, 𝑛 ∈ 𝑁 

𝐷̅ – the number of operating days per year 

𝑀̅ – a sufficiently large positive number 

𝛼 – annualized factor 

 

Decision Variables 

 

𝑋𝑖
𝑛 – 1 if the mobile battery container from trip 𝑖 ∈  𝑆 is recharged at charging station 

𝑛 ∈  𝑁, 0 otherwise 

 

𝑌𝑖𝑡
𝑛𝑘 – 1 if the mobile battery container from trip 𝑖 ∈  𝑆 starts being recharged on the 𝑘𝑡ℎ 

charger at charging station 𝑛 ∈  𝑁 at time 𝑡 ∈  𝑇; 0 otherwise, 𝑘 = 1, … , 𝐾𝑛 

 

𝐸𝑖 – extended energy using remaining onboard energy at the end of trip 𝑖 ∈  𝑆, in kWh 

 

𝑍𝑛𝑘 – 1 if the 𝑘𝑡ℎ charger at charging station n ∈ N is used; 0 otherwise, 𝑘 = 1, … , 𝐾𝑛 

 

𝑍′𝑘 – 1 if charging station 𝑛 ∈  𝑁 is used; 0 otherwise 

 

Variables Definitions 

 

𝑆 – set of scheduled energy use 

 

𝑁 – set of candidates charging stations 

𝑇 – the set of time nodes from the start time of the initial amount of energy to the end 

time of the final amount of energy 

𝑢𝑛  – the charging duration for each recharging activity at the charging station 𝑛 

𝑡, 𝑡 + 𝑢𝑛– start time and end time for recharging 

 

𝑟𝑖𝑛 – deadheading travel time from the last site to the charging station 

   

𝑂 – set of origin depots 

 

𝐷 – set of destination depots 

 

𝑖  – origin depot trip, 𝑖 ∈  𝑆 ∪ 𝑂 

 

𝑗  – destination depot trip, 𝑗 ∈  𝑆 ∪ 𝐷 

 

𝑎𝑗  – start time of the trip 𝑖 

 

𝑏𝑖   – end time of the trip 𝑗 
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𝑃 – set of trip pairs, such that trip 𝑗 is served immediately after trip 𝑖 by the same battery 

𝑢𝑛  – the charging duration for each recharging activity at charging station 𝑛 

𝐴𝑛 – the set of possible recharging activities at charging station 𝑛, (𝑖, 𝑗, 𝑡)  ∈  𝐴𝑛, if 𝑡 ≥
 𝑏𝑖  +  𝑟𝑖𝑛  &  𝑡 + 𝑢𝑛  + 𝑟𝑖𝑛  ≤  𝑎𝑗 

𝑤𝑖𝑗𝑛𝑡  – recharging waiting time at the charging station, 𝑤𝑖𝑗𝑛𝑡 =  𝑡 – 𝑏𝑖 – 𝑟𝑖𝑛  

 

Objective and Constraints Definition 

 

Objective (1) is to minimize the annual total charging system operating costs, which are made 

up of: deadheading travel costs, recharging costs, recharging waiting costs, charger costs, and 

charging station costs.  

 

Constraint (2) means that the mobile battery containers cannot be recharged at more than one 

charging station at the same time.  

 

Constraint (3) means that the extended energy using the remaining energy plus the recharged 

energy cannot exceed the maximum energy of the mobile battery containers.  

 

Constraint (4) refers to energy conservation.  

 

Constraint (5) ensures that the remaining energy in an electric bus is no less than the minimum 

energy (i.e., 20% generally).  

 

Constraint (6) gives the relationship of the variables 𝑌 to variable 𝑋. If a mobile battery 

container from trip 𝑖 is recharged at charging station 𝑛 (i.e., 𝑋𝑖
𝑛 = 1), there must be a 𝑡 and a 

𝑘, which enable 𝑌𝑖𝑡
𝑛𝑘 = 1; otherwise, all 𝑌𝑖𝑡

𝑛𝑘 = 0.  

 

Constraint (7) assures that each individual charger can only recharge one mobile battery 

container at a time; in other words, the charging station capacity limitation must be met.  

 

Constraint (8) gives the relationship of the variables 𝑌 to variable 𝑍. There must be no 

recharging activity on a charger if it is not being used; if there is at least one recharging activity 

on a charger, it must be used. To ensure that there are enough recharging activities, a suitably 

large number 𝑀̅ should be utilized as the cardinality for recharging activity set 𝐴𝑛 (e.g., a total 

number of recharging activities) to represent the logical link. 

 

Constraint (9) states the logical relationship between variables 𝑍 and 𝑍′; If a charging station 

is not used, all chargers at that charging station must be turned off; if at least one charger in a 

charging station is used, the charging station must be turned on. 

 

Constraint (10) imposes an order constraint, stating that the kth charger at charging station n 

cannot be used until the (𝑘 − 1)𝑡ℎ charger is used. 

 

Constraints (11) – (14) are binary constraints. 

 

Constraint (15) sets an initial range for a mobile battery container at the depot. 
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4 Methodologies 

4.1 Mixed Integer Linear Programming 

4.1.1 Introduction 

Mixed-integer linear programming (MILP) theory and practice have advanced greatly over the 

past 50 years, and it is now a vital tool in business and engineering. MIP's success can be 

attributed to two factors: linear programming (LP) based solvers and MILP's modeling 

flexibility. MILP has been used to model a wide range of applications since its early stages, 

and we now have numerous incredibly effective state-of-the-art solvers that incorporate several 

advanced techniques. [19] 

4.1.2 General Formulation 

The general form of an integer linear program in the canonical form is: 

 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑐𝑇𝑥 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴𝑥 ≤ 𝑏, 
𝑥 ≥ 0, 

𝑎𝑛𝑑 𝑥 ∈ 𝑍𝑛 

 

The general form of an integer linear program in standard form is: 

 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑐𝑇𝑥 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴𝑥 + 𝑠 ≤ 𝑏, 
𝑠 ≥ 0, 
𝑥 ≥ 0, 

𝑎𝑛𝑑 𝑥 ∈ 𝑍𝑛 

 

Where, x is a vector that is to be decided and A is a matrix where all entries as integers and c, 

b as vectors. [20] 

4.1.3 Algorithm and Solution Approach 

4.1.3.1 Branch and Bound 

Branch and bound algorithms are a vast class of algorithms that underpin almost all modern 

software for solving MILPs. Branch and bound is a divide and conquer strategy that divides 

the original problem into a number of smaller subproblems and then solves each subproblem 

recursively. There are four important parts of a branch-and-bound algorithm. A method for 

obtaining a lower limit on the objective function value of an optimal solution to a given 

subproblem is known as the lower bounding method. A method for establishing an upper bound 

on the ideal solution value is known as the upper bounding method. A process for splitting a 

subproblem into two or more offspring is known as the branching method. A process for 

choosing the search order is known as a search strategy. [21] 
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4.1.3.2 Branch and Cut 

Integer linear programs are linear programming problems in which some or all of the unknowns 

are constrained to integer values. Branch and cut is a combinatorial optimization method for 

solving integer linear programs. Running a branch and bound method and employing cutting 

planes to tighten the linear programming relaxations is known as a branch and cut [22]. The 

method uses the conventional simplex algorithm to solve the linear problem without the integer 

constraint. When an optimal solution is found, and the variable that should be integer has a 

non-integer value, a cutting plane approach can be used to find additional linear constraints 

that are satisfied by all possible integer points but violated by the existing fractional solution. 

These inequalities can be introduced to the linear program, resulting in a different solution that 

is presumably less fractional when it is resolved [23].  

 

Various types of branching heuristics can be used in branch and cut algorithms but below 

mentioned branching strategies involve branching on a variable [24].  

• Most infeasible branching 

• Pseudo cost branching 

• Strong branching 

4.1.3.3 Branch and Price 

Branch and price is an approach in which each node of the search tree can have columns added 

to the linear programming relaxation (LP relaxation). To reduce the computational and memory 

requirements, sets of columns are removed from the LP relaxation at the start of the method, 

and then columns are added back in when needed. The technique is based on the observation 

that in any optimal solution for large problems, the majority of columns will be non-basic and 

have their associated variable equal to zero. As a result, a large proportion of the columns are 

rendered ineffective in resolving the issue [25].  

 

 
Figure 4-1: Branch and Price Algorithm [26] 
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4.1.4 Solver Frameworks 

A solver framework is a branch-and-bound, branch-and-cut, or branch-and-price algorithm that 

allow the user to customize some features of the method. For example, the user could want to 

include a custom branching rule or valid inequalities that are relevant to the problem. To tackle 

MILP problems, there are a variety of non-commercial software and solvers available. Table 

4-1 shows the algorithmic aspects of eight popular solvers, including whether they have a 

preprocessor, can dynamically produce correct inequalities, can do column formation, have 

primal heuristics, and what branching and search techniques they have. [21] 

 
Table 4-1: Algorithmic Features of Solvers 

 Pre-

proc 

Built-in 

Cut Gen 

Column 

Gen 

Primal 

Heuristic 

Branching 

Rules 

Search 

Strategy 

ABACYS No No Yes No 𝑓, ℎ, 𝑠 𝑏, 𝑟, 𝑑, 2(𝑑, 𝑏) 

BCO No No Yes No 𝑓, ℎ, 𝑠 ℎ(𝑑, 𝑏) 

bonsai No No No No 𝑝 ℎ(𝑑, 𝑏) 

CBC Yes Yes No Yes 𝑒, 𝑓, 𝑔, ℎ, 𝑠, 𝑥 2(𝑑, 𝑏) 

GLPK No No No No 𝑖, 𝑝 𝑏, 𝑑, 𝑝 

lp_solve No No No No 𝑒, 𝑓, 𝑖, 𝑥 𝑑, 𝑟, 𝑒, 2(𝑑, 𝑟) 

MINTO Yes Yes Yes Yes 𝑒, 𝑓, 𝑔, 𝑝, 𝑠 𝑏, 𝑑, 𝑒, ℎ(𝑑, 𝑒) 

SYMPHONY No Yes Yes No 𝑒, 𝑓, 𝑔, 𝑝, 𝑠 𝑏, 𝑟, 𝑑, ℎ(𝑑, 𝑏) 

 

Where, 

 

𝑒  –  pseudo cost branching 

 

𝑓  –  branching on the variables with the largest fractional part 

 

𝑔  –  GUB branching 

 

ℎ  –  branching on hyperplanes 

 

𝑖  –  branching on the first or last fractional variable (by index) 

 

𝑝  –  penalty method 

 

𝑠  –  strong branching 

 

𝑥  –  SOS (2) branching and branching on semicontinuous variables 

 

𝑏  –  best-first 

 

𝑑  –  depth-first 

 

𝑒  –  best-estimate 

 

𝑝  –  best-projection 

 

𝑟  –  breadth-first 
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ℎ(𝑏, 𝑑) –  a hybrid method switching from strategy 𝑏 to 𝑑 

 

ℎ(𝑏, 𝑒) –  a hybrid method switching from strategy 𝑏 to 𝑒 

 

2(𝑑, 𝑏) –  a two-phase method switching from strategy 𝑑 to 𝑏 

 

2(𝑑, 𝑟) –  a two-phase method switching from strategy 𝑑 to 𝑟 

4.1.5 Applications 

When modeling problems as a linear program, there are two key reasons to use integer 

variables. The first is an integer variable, which represents only integer amounts. Building 3.7 

vehicles, for example, is not possible. The second type of variable is an integer variable, which 

represents decisions (such as whether to include an edge in a graph) and should only have the 

values 0 or 1. As a result of these considerations, integer linear programming can be utilized in 

a variety of applications, some of which are briefly detailed below. [27] 

 

1. The applications 

2. Production Planning 

3. Scheduling 

4. Territorial Partitioning 

5. Telecommunication Networks 

6. Cellular Networks 

7. Cash-Flow Matching 

8. Energy System Optimization 

9. UAV Guidance 

4.2 Mixed Integer Non-Linear Programming 

4.2.1 Introduction 

Mixed-Integer Nonlinear Programming (MINLP) is a type of mathematical programming 
that uses continuous and discrete variables as well as nonlinearities in the objective 
function and restrictions. Many optimal choice issues in science, engineering, and public 
sector applications involve both discrete decisions and non-linear system dynamics that 
influence the ultimate design or plan. The combinatorial difficulty of optimizing over 
discrete variable sets is combined with the complexities of dealing with nonlinear 
functions in mixed-integer nonlinear programming (MINLP) situations. [28] 

4.2.2 General Formulation 

The general form of an MINLP is: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥, 𝑦) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔(𝑥, 𝑦) ≤ 0 

𝑥 ∈ 𝑋 

𝑦 ∈ 𝑌 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 
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The functions 𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦) are nonlinear objective functions and nonlinear constraint 

functions, respectively. The decision variables are 𝑥 and 𝑦, with 𝑦 having to be integer-valued. 

𝑋 and 𝑌 are variables with bounding-box constraints. [29] 

4.2.3 Algorithm 

MINLP issues are extremely difficult to solve precisely because they contain all of the 

challenges of their subclasses: the combinatorial character of mixed-integer programming 

(MIP) and the difficulty in solving nonconvex (and even convex) nonlinear programs (NLP). 

Because the subclasses MIP and NLP belong to the class of theoretically difficult problems 

(NP-complete), it is not surprising that solving MINLP can be a tough and risky endeavor. 

Fortunately, the MIP and NLP component structure within MINLP provides a collection of 

natural algorithmic approaches that utilize the structure of each of the subcomponents. [28] 

4.2.4 Solution Approach 

Innovative methodologies and related techniques borrowed and enhanced from MIP are used 

to solve MINLPs. Since the early 1980s, the literature has studied Outer Approximation (OA) 

Methods, Branch-and-Bound (B&B), Extended Cutting Plane Methods, and Generalized 

Bender's Decomposition (GBD) for solving MINLPs. In general, these techniques rely on the 

sequential resolution of closely related NLP problems. For example, B&B begins by forming 

a pure continuous NLP problem by removing the discrete variables' integrality requirements 

(often called the relaxed MINLP or RMINLP). Furthermore, each node of the growing B&B 

tree represents an RMINLP solution with updated bounds on the discrete variables. [29] 

4.2.5 Applications 

In optimization, MINLP can be considered one of the most general modeling paradigms with 

subproblems encompassing both nonlinear programming and mixed-integer linear 

programming. MINLPs have been employed in a wide range of applications, including the 

process industry, finance, engineering, management science, and operations research. It 

involves issues with process flow sheets, portfolio selection, batch processing in chemical 

engineering (including mixing, reaction, and centrifuge separation), and the best design of gas 

or water transmission networks. Automobile, aviation, and VLSI production are among the 

other fields of interest. [28] 

4.3 Genetic Algorithm 

4.3.1 Introduction 

A genetic algorithm (GA) is a natural selection-inspired metaheuristic that is part of the larger 

class of evolutionary algorithms in computer science and operations research. GA, which rely 

on biologically inspired operators such as mutation, crossover, and selection, are often 

employed to develop high-quality solutions to optimization and search problems. It becomes 

the most popular and successful optimization algorithm in the theory of artificial intelligence 

optimization methods due to its great optimization-searching performance. The essential notion 

behind the GA is that an initial set of chromosomes (solutions) is formed as a population and 

exposed to fitness function evaluation (scaled from the objective function). Chromosomes with 

a high level of fitness are more likely to survive and reproduce. They are chosen as parent 
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chromosomes to reproduce offspring chromosomes, whereas those with low fitness ratings are 

eliminated. Following the crossover and mutation of parent chromosome pairs, offspring 

chromosomes are generated, resulting in a new generation with not just enhanced genes, but 

also some of their parents' features. In a novel reproductive mechanism, the chromosomes with 

relatively high fitness levels survive and reproduce. The reproductive and evolutionary process 

is repeated over numerous generations, with chromosomes changing to produce high-quality 

offspring and population size reducing until a chromosome with the best fitness is discovered. 

This chromosome with the highest fitness is the ideal solution being sought. [30] [31] 

4.3.2 Processing Step and Algorithm 

The genetic algorithm is a sophisticated intelligent optimization method. It is based on Darwin's 

theory of evolution, which claims that evolution selects the superior while removing the worse 

and that the good fitness survives. The overall premise of GA is simple to grasp, but the detailed 

methods and processes used by GA to solve optimization problems are extremely complex. 

Instead of studying the GA itself, the major goal of this thesis is to study vehicle schedule 

optimization problems using Genetic Algorithms, therefore powerful software like MATLAB 

or Excel is introduced to conduct the calculation of searching for an optimal solution for the 

GA-based method. [32] 

 
Figure 4-2: Genetic Algorithm 

 

The following points defines the processing steps used in GA [33][31]. 

 

1. Population and Size - The starting population is produced by selecting plausible 

issue solutions at random.  

2. Encoding Scheme - The chromosome is made up of genes that must be encoded 

in such a way that they can represent a solution to the intended problem. 
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3. Fitness Function - The fitness function is derived from the objective function 

and scaled. It is intended to assess an individual's fitness worth.  

4. Selection Policy - The selection policy selects chromosomes with higher fitness 

to reproduce to ensure that the great genes are passed down to future 

generations. It focuses on two techniques of selection: roulette wheel selection 

and tournament selection.  

5. Genetic Operators - Crossover and mutation are examples of genetic operators. 

They mimic the reproductive process of the chosen parent chromosomes 

growing into offspring chromosomes. 

6. Stop Rules/Criterion - When the reproductive process is complete, the Stop 

rules are determined. As a stop condition, the maximum number of generations 

is frequently set. 

4.3.3 Pros and Cons 

This method excels at finding global optimizations. In real life, it can be utilized to efficiently 

handle some highly complex optimization problems. However, despite its widespread use, 

there are certain limitations, such as selection of initial population, a lack of strength in looking 

for local optimizations, premature convergence, selection of efficient fitness functions, degree 

of mutation and cross over, selection of encoding schemes and its solution is influenced by 

experience-based parameter settings. [34] 

4.3.4  Applications 

Combinatorial optimization primarily seeks to maximize productivity while employing limited 

resources, while also satisfying a variety of additional restrictions, such as the bin-packing 

problem, vehicle routing problem, and airline crew scheduling problem. The applications 

include facility layout, scheduling, inventory control, forecasting and network design, 

information security, image and video processing, medical imaging, precision agriculture, 

gaming, wireless networking, load balancing, localization, bandwidth, and channel allocation. 

The basic goal of multi-objective optimization is to discover the optimal solution for several 

conflicting objectives under certain limitations, such as the multiple-objective transportation 

problem and the capacitated plant location problem. [34] 

4.4 Large Neighborhood Search Algorithm 

4.4.1 Introduction 

Neighborhood search is a mathematical optimization strategy that aims to find good or near-

optimal solutions to a combinatorial optimization problem by repeatedly changing a current 

solution into a different solution in its neighborhood. A solution's neighborhood is a group of 

comparable solutions that can be acquired by making minor changes to the original solution. 

The Large Neighborhood Search (LNS) proposed by Shaw [35] can be defined as a 

metaheuristic that finds an initial solution that is refined over time by repeatedly deleting and 

reconstructing it. The primary idea behind LNS is to conduct searches in large neighborhoods, 

which may contain more and maybe better solutions than smaller ones. A destruct method and 

a repair method define the neighborhood of a solution implicitly. A destroy technique destroys 

a portion of the present solution, whereas a repair method rebuilds it. [15] 
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4.4.2 Algorithm 

The pseudo-code for the LNS heuristics is [36]: 

1: input: a feasible solution 𝑥 

2: 𝑥𝑏 = 𝑥; 
3: repeat 

4:      𝑥𝑡 = 𝑟(𝑑(𝑥)); 
5:      if accept (𝑥𝑡 , 𝑥) then 

6:          𝑥 = 𝑥𝑡; 
7:      end if 

8:      if 𝑐(𝑥𝑡) < 𝑐(𝑥𝑏) then 

9:          𝑥𝑏 = 𝑥𝑡; 
10:      end if 

11: until the stop criterion is met 

12: return 𝑥𝑏 

Where, 

𝑥  – current solution 

𝑥𝑏  – the best solution 

𝑥𝑡  – a temporary solution 

𝑑(𝑥)  – a destroy function that destroys a copy of 𝑥 

𝑟(𝑑(𝑥)) – a repair function that returns a feasible solution built from the destroyed one 

𝑐(𝑥𝑡)  – the objective value of solution 𝑥𝑡 

𝑐(𝑥𝑏)  – the objective value of solution 𝑥𝑏 

The global best solution is initialized in line 2. To find a new solution, the heuristic uses the 

destroy method first, then the repair method in line 4. The new answer is examined at line 5, 

and in line 6 the heuristic determines whether it should be accepted as the new current solution 

or rejected. The accept function can be used in a variety of ways. The simplest option is to 

accept only improving solutions. Line 8 determines whether the new answer is superior to the 

best-known alternative. If necessary, the optimal answer is updated in line 9. The termination 

condition is tested in line 11.  The best solutions found are returned in line 12, after the 

termination criterion is met or the iteration limit is reached. 

4.4.3 Adaptive Large Neighborhood Search 

Adaptive large neighborhood search (ALNS) is an extension of LNS which uses multiple 

neighborhoods within the same search. It was first proposed by S. Ropke and D. Pisinger [37]. 

It improves on the LNS heuristic by allowing the employment of several destroy and repair 

methods in the same search. Each destroy/repair technique has a weight assigned to it, which 

determines how often it is used during the search. The weights are dynamically updated as the 
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search advances, allowing the heuristic to adapt to the situation at hand and the current stage 

of the search. The pseudo-code for the LNS heuristics is [37]: 

1: input: a feasible solution 𝑥 

2: 𝑥𝑏 = 𝑥; 𝜌− = (1, … ,1); 𝜌+ = (1, … ,1); 
3: repeat 

4:      select destroy and repair methods 𝑑 ∈  Ω− and 𝑟 ∈  Ω+ and 𝜌−  ∈  𝜌+; 

5:      𝑥𝑡 = 𝑟(𝑑(𝑥)); 
6:      if accept (𝑥𝑡 , 𝑥) then 

7:          𝑥 = 𝑥𝑡; 
8:      end if 

9:      if 𝑐(𝑥𝑡) < 𝑐(𝑥𝑏) then 

10:          𝑥𝑏 = 𝑥𝑡; 
11:      end if 

12:      update 𝜌− and 𝜌+; 
13: until stop criterion is met 

14: return 𝑥𝑏 

Where, 

Ω−and Ω+ – sets of destroy and repair methods respectively 

𝜌− and 𝜌+ – variables to store the weight of each destroy and repair method respectively 

4.5 MATLAB Optimization Toolbox 

MATLAB Optimization Toolbox is a MathWork’s software package for optimization. It is a 

MATLAB add-on product that was first made available for MATLAB in 1990. It provides a 

library of solvers that can be utilized from within the MATLAB environment that includes 

functions for determining parameters that minimize or maximize objectives while meeting 

restrictions. [38] 

 

Optimization Toolbox has algorithms for: 

1. Linear Programming 
2. Mixed-Integer Linear Programming 
3. Quadratic Programming 
4. Nonlinear Programming 
5. Linear Least Squares 
6. Nonlinear Least Squares 
7. Nonlinear Equation Solving 

8. Multi-Objective Optimization 
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Figure 4-3: MATLAB Optimization Toolbox User Interface 

 

The variable expressions that reflect the underlying mathematics or define your optimization 

problem with functions and matrices can be specified. For faster and more accurate answers, 

employ automatic differentiation of objective and constraint functions can be employed. The 

toolbox solvers can be used to identify optimal solutions to continuous and discrete problems, 

conduct tradeoff evaluations, and incorporate optimization approaches into algorithms and 

applications. You may use the toolbox to conduct design optimization tasks like parameter 

estimates, component selection, and parameter tuning. It allows you to find the best solutions 

in applications like portfolio optimization, energy management and trading, and production 

planning. [38] 

 

Some of the applications of this toolbox are:  

1. Engineering Optimization 

a. Optimal Control 

b. Optimal Mechanical Design 

2. Parameter Estimation 

a. Material Parameter Estimation 

b. Estimation of coefficients of ODE’s 
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3. Computational Finance 

a. Portfolio Optimization 

b. Cashflow Matching 

4. Utilities and Energy 

a. Security Constraints for Optimal Power Flow 

b. Power Systems Analysis 

4.6 Microsoft Excel Solver 

Microsoft Excel Solver is an optimization tool that can be used to identify how to change the 

assumptions in a model to reach the desired output. It is a Microsoft Excel add-in tool that 

allows you to perform what-if analysis. It can be used to determine an optimal (highest or 

minimum) value for a formula in a single cell, known as the objective cell, that is constrained 

or limited by the values of other formula cells on a worksheet. [39] 

 

It operates on a set of cells known as decision variables or simply variable cells, which are used 

to compute the formulas in the objective and constraint cells. The values in the choice variable 

cells are adjusted by the solver to satisfy the constraints on the constraint cells and give the 

desired outcome for the objective cell. Simply put, the solver can be used to determine the 

maximum or lowest value of one cell by changing the values of other cells. For example, you 

can alter the size of your expected advertising expenditure to observe how it affects your 

projected profit. 

 

 
Figure 4-4: Excel Solver User Interface 
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Since the free version of the Excel solver is limited to 200 decision variables so OpenSolver is 

used in this project. OpenSolver is an open-source optimization tool for Microsoft Excel with 

very close resemblance to all the functionalities that excel solver provides but without the 

restriction on the number of variables. The algorithm used in this project is COIN-OR CBC 

(Linear Solver). The COIN Branch and Cut solver (CBC) is the default solver for OpenSolver 

and is an open-source mixed-integer program (MIP) solver. 

 

 
Figure 4-5: OpenSolver User Interface 
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5 Case Studies 

5.1 VRP – Energy Supply and Demand 

5.1.1 Problem Description 

For this case scenario simulation, a scenario in which a mobile battery container distributor 

company intends to place N number battery containers in the deport and supply to the 

construction site according to the demand. There are normally four types of equipment for this 

case, small equipment, auxiliary equipment, excavator, and mobile crane with their own energy 

requirements of the rated machine. 

 

The following decisions are to be made using the optimization function. 

- Total distance traveled   

- Total energy demand 

- Total number of mobile battery containers 

5.1.2 Problem Definition 

A distributor needs to send a vehicle with battery containers to construction sites. The following 

criteria should be met for optimal routing of the vehicle. 

- The demand of each machine in one must be satisfied by one battery container. 

- Container capacity must not be exceeded for any vehicle. 

- The total distance should be minimized. 

For this, all the position of the site is considered in a 100 × 100 grid where the initial 

point(depot) is in the middle of the grid i.e., (50,50) which is considered as point 1, and the rest 

of the points 𝑛 with their location (X, Y), demand 𝐷𝑖 and description are tabulated in Table 5-

1. 

There are 𝑛 = 30 points where the machines are located and the distance between node 𝑖 and 

node 𝑗 is 𝑑𝑖𝑗 which is scaled in the unit as 1 unit in the grid. There is an N number of the 

homogenous vehicle each with a limited capacity 𝐶 = 576 kWh which fulfills the demand of 

each point. Exactly one vehicle visits each point that satisfies the demand of that point without 

exceeding the capacity of the vehicle. There are two decision variables 𝑥𝑖𝑗 which are binary 

and are assigned ‘1’ if a truck goes from node 𝑖 to node 𝑗 and 𝑓𝑖𝑗 is an integer which is the 

number of remaining energy units in a truck going from node 𝑖 to node 𝑗 

The number of vehicles required to fulfill the demand, the minimum possible distance traveled, 

and the flow of the vehicle from node 𝑖 to node 𝑗 is calculated using MILP in Excel Solver. 

 

 

 

 

 

 



 

31 

Table 5-1: Demand of Each Vehicle 

Points Location (X, Y) Demand (kWh) Description 

1 (50, 50) - Depot 

2 (92, 2) 50 Small Equipment 

3 (4, 86) 100 Auxiliary Equipment 

4 (71, 30) 100 Auxiliary Equipment 
5 (36, 35) 250 Excavator 

6 (20, 93) 500 Mobile Crane 

7 (65, 95) 50 Small Equipment 

8 (80, 75) 50 Small Equipment 

9 (44, 8) 50 Small Equipment 

10 (55, 47) 250 Excavator 

11 (91, 52) 250 Excavator 
12 (90, 87) 100 Auxiliary Equipment 

13 (31, 70) 100 Auxiliary Equipment 

14 (90, 73) 500 Mobile Crane 

15 (82, 32) 500 Mobile Crane 

16 (17, 83) 500 Mobile Crane 

17 (87, 58) 500 Mobile Crane 

18 (84, 9) 250 Excavator 
19 (97, 46) 250 Excavator 

20 (60, 17) 250 Excavator 

21 (72, 45) 250 Excavator 
22 (92, 29) 50 Small Equipment 

23 (73, 64) 50 Small Equipment 

24 (21, 10) 50 Small Equipment 
25 (12, 35) 100 Auxiliary Equipment 

26 (7, 43) 100 Auxiliary Equipment 

27 (43, 52) 100 Auxiliary Equipment 

28 (86, 87) 250 Excavator 
29 (27, 92) 250 Excavator 

30 (29, 56) 250 Excavator 

31 (7, 24) 250 Excavator 

 

5.1.3 Mathematical Formulation 

The mathematical formulation used in this study case is introduced in [40]. 

Objective Function: 

min ∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

(16) 

Constraints: 

∑ 𝑥𝑖𝑗 = 1      ∀𝑖 = 2, … , 𝑛

𝑛

𝑗=1

(17) 
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∑ 𝑥𝑗𝑖 = 1      ∀𝑖 = 2, … , 𝑛

𝑛

𝑗=1

(18) 

∑ 𝑓𝑗𝑖

𝑛

𝑗=1

− ∑ 𝑓𝑖𝑗

𝑛

𝑗=1

= 𝐷𝑖     ∀𝑖 = 2, … , 𝑛 (19) 

0 ≤ 𝑓𝑖𝑗 ≤ 𝐶𝑥𝑖𝑗     ∀𝑖, 𝑗 = 1, … , 𝑛 (20) 

𝑥𝑖𝑗 ∈ {0,1}     ∀𝑖, 𝑗 = 1, … , 𝑛 (21) 

Parameters 

𝑛  – number of points (1 - depot, 2, … , 𝑛 - clients) 

𝑑𝑖𝑗  – distance from node 𝑖 to node 𝑗 

𝐷𝑖  – demand of client 𝑖 

𝐶  – capacity of each truck 

 

Variables 

𝑥𝑖𝑗  – 1 if a truck goes from node 𝑖 to node 𝑗 (binary) 

𝑓𝑖𝑗  – number of units in a truck going from node 𝑖 to node 𝑗 

 

Where, 

 

Equation (16) represents the objective function which is the sum product of the binary variable 

and distance traveled between node 𝑖 and node 𝑗 that minimizes the total distance traveled to 

fulfill all the demands. 

 

Equation (17) and (18) represents the binary variable constraints that must be 1 for the route 

from node 𝑖 to 𝑗 and 𝑗 to 𝑖 respectively. 

 

Equation (19) states that the number of energy units remaining in the vehicle after a trip should 

be equal to the demand of the next point so that it can satisfy the next demand point. 

 

Equation (20) states that any demand point should not exceed the total capacity of the vehicle. 

 

Equation (21) simply means the decision variable 𝑥𝑖𝑗 is a binary variable. 

5.1.4 Results and Interpretation 

The number of vehicles required to fulfill all the demands is N = 14 and the route of the vehicle 

from the depot to respective points is shown in Figure 5-1. All the points are fulfilled by exactly 

one vehicle with a minimum number of vehicles required to fulfill all the energy demands 

possible. If the vehicle goes to the point with lower demand, then it fulfills the demand before 

going to the second shortest demand point and finally returning to the depot for e.g., point 

1,7,28,12,28,8,1 which is 50,100,250,50 = 450 kWh of total demand in a single route. If the 

vehicle goes to the point with higher demand, then it fulfills the demand and comes back to the 

depot for e.g., point 6 which is 500kWh. And if the fulfills the higher demand like 14 which is 
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500 kWh and finds an unfilled demand like point 23 then it serves point 23 which is 50 kWh 

making a total of 550 kWh before coming to the depot. 

 
Figure 5-1: VRP Solution (2 mins) 

If all the 30 points are electric machinery operating in 4 different construction sites such that 

all 30 points are divided as i.e., upper left, upper right, lower left, and the lower right plane of 

the graph, then it can be stated that the optimal solution is feasible for each construction site 

with their own energy demand. 

 

These kinds of computation problems usually take a long computational time to reach the 

optimal solution so, the results are compared in Table 5-2 to find the optimal computational 

time using 8 core processor (Apple M1 chip) in the excel solver. There is very little variation 

in the outcomes after 2 minutes and to get a noticeable difference the computational time must 

be greater than 230 minutes which changes the objective value by 1.2 units.  

 
Table 5-2: Effect of Limited Computational Time on Objective Value 

Computational Time (min) Objective Value (distance) 

0.5 1258.3 

1 1245.5 

2 1240.8 

5 1240.8 

10 1240.8 

20 1240.8 

230 1239.6 

600 1238.2 
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Figure 5-2: Computational Time vs Objective Value 

 

The 230 minutes of computational time causes the route to change from 1-7-12-28-8-1 to 1-7-

28-12-8-1 which is 1.2 units shorter than the previous results as shown in Figure 5-2. The solver 

computed the MILP with the objective function, constraints, and decision variable to find the 

minimum distance required to travel to fulfill all the demands to be 1240.8 units. 

 

 
Figure 5-3: VRP Solution (230 mins) 
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5.2 VSP – Multiple-Depot Scheduling 

The vehicle scheduling problem is more complex in practice than in the sample scenario 

examined in the previous case study. Other more real-life aspects must be considered, as well 

as numerous uncertainties. In this study, the real-world problem is simplified and constrained 

to a normal planning cycle, as was the case in the pilot study. The optimization methods 

developed in the previous chapter will be employed in this chapter to optimize a real scheduling 

problem for several construction sites. 

5.2.1 Problem Description 

For a real case scenario, a typical construction site is considered with the following 

parameters: 

• Battery specification: 

1. Weight – 7.5 ton  

2. Energy - 576 kWh  

• Mobile battery containers specification: 

1. Length – 45 ft 

2. Breadth - 8 ft  

3. Height - 8 ft 6 inches  

• Equipment specification: 

1. Equipment: 

• Mobile Crane – 500 kWh 

• Excavator – 250 kWh  

• Auxiliary Machines – 100 kWh 

• Diverse Small Machines – 50 kWh 

• The combined charging system (CCS) type 2 or Combo 2 cable can be used in the 

charging station as it can provide power at up to 350 kW. The charging time for one 

battery from 0% to 100% using CCS type 2 is 2 hours. 

• Working time from 07:00 – 15:00  

• The three possible charging stations: 

1. Hauen 

2. Tømmerkaia 

3. Floodmyrvegen 

5.2.2 Problem Definition 

The main tasks in this study are first, to schedule the mobile battery container (called ‘vehicle’ 

in this chapter) to be used by machineries (called ‘customer’ in this chapter) in construction 

site and recharged in charging station (called ‘depot’ in this chapter) and second, to determine 

the total cost associated with it which is based on the shortest distance to from charging station 

to the construction site considering there are three charging stations (depot) and ten machines 

operated (customers) in five construction sites as shown in Figure 5-4. The latitude and 

longitude of the depots and customers along with their operating time, delivery amounts are 

listed in Table 5-3. 
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Figure 5-4: Multiple-Depot Scheduling 

 

In mathematical formulations, the following assumptions are made to simplify problems: 

 

1. The vehicle operates according to the previously established timetable. 

2. All the vehicles are homogeneous and have the same energy storage. 

3. The charge consumed is proportional to the working hours by the customers on the 

construction site. 

4. The number of vehicles in each depot is manually set, and then the solver determines 

the number of vehicles to the route. 

5. The time it takes to charge is directly proportional to the amount of energy recharged. 

6. All chargers are homogeneous fast chargers. The recharging duration is fixed (2 hours), 

and continuous.  
 

Table 5-3: Address and GPS co-ordinates of depot and customer 

Name Address Latitude Longitude 

Depot A Floodmyrvegen 59.12 9.69 

Depot B Hauen 59.17 9.64 

Depot C Tømmerkaia 59.20 9.61 

Customer 1 Gulset 59.22 9.56 

Customer 2 Gulset 59.22 9.56 

Customer 3 Herøya 59.11 9.65 

Customer 4 Herøya 59.11 9.65 

Customer 5 Vallermyrvegen 59.14 9.67 

Customer 6 Vallermyrvegen 59.14 9.67 

Customer 7 Skotfoss 59.21 9.53 

Customer 8 Skotfoss 59.21 9.53 

Customer 9 Hoppestad 59.25 9.57 

Customer 10 Hoppestad 59.25 9.57 

 



 

37 

Table 5-4: Time windows, service time, and delivery amount of all the customers 

Name Time Window 

Start (hh:mm) 

Time Window 

End (hh:mm) 

Service Time 

(Hours) 

Delivery 

Amount (kWh) 

Customer 1 07:00 15:00 7 500 

Customer 2 11:00 15:00 3.5 250 

Customer 3 07:00 15:00 7 500 

Customer 4 07:00 11:00 3.5 250 

Customer 5 07:00 11:00 4 250 

Customer 6 11:00 15:00 3.5 250 

Customer 7 07:00 11:00 2 150 

Customer 8 11:00 15:00 3 150 

Customer 9 07:00 15:00 7 500 

Customer 10 17:00 11:00 3.5 100 

 

 

The profit collected is assumed to be 5x the delivery amount i.e., 5 NOK for 1 kWh. Bing maps 

driving distance (km) is used as the distances computational method and Bing maps driving 

duration is used as the duration computation method between the depot and the customer. As 

stated earlier in the assumptions, the vehicles are homogenous with a capacity of 576 kWh.  

 

There are three vehicles each in all three depots as shown in Table 5-4, which serves the energy 

need of all the customers. The fixed cost per trip is assumed to be 1000 NOK and the cost per 

unit (km) distance is assumed to be 10 NOK. 

 
Table 5-5: Vehicle name with their corresponding depot name 

Depot Vehicle 

A V1 

V2 

V3 

B V4 

V5 

V6 

C V7 

V8 

V9 

 

5.2.3 Mathematical Formulation 

The mathematical formulation used in this study case is introduced by Erdoğan [41]. 

 

Maximize 

 

∑ ∑ 𝑝𝑖𝑦𝑖
𝑘

𝑘∈𝐾

− ∑ ∑ 𝑐𝑖𝑗
𝑘 𝑥𝑖𝑗

𝑘

𝑘∈𝐾

− ∑ ∑ 𝑓𝑘𝑥
𝑜𝑘,𝑗
𝑘

𝑘∈𝐾

− 𝜋 ∑ 𝑣𝑖

𝑖∈𝑉𝑗∈𝑉𝐶(𝑖,𝑗)∈𝐴𝑖∈𝑉𝐶

(22) 
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Subject to 

 

∑ 𝑦𝑖
𝑘

𝑘∈𝐾

= 1    ∀𝑖 ∈ 𝑉𝑀 , (23) 

 

∑ 𝑦𝑖
𝑘

𝑘∈𝐾

≤ 1    ∀𝑖 ∈ 𝑉𝐶\𝑉𝑀 , (24) 

 

∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝑉\{𝑖}

≤ ∑ 𝑥𝑗𝑖
𝑘

𝑗∈𝑉\{𝑖}

    ∀𝑖 ∈ 𝑉𝐶 , 𝑘 ∈ 𝐾, (25) 

 

∑ 𝑥𝑝𝑞
𝑘 ≥ 𝑦𝑖

𝑘     ∀𝑖 ∈ 𝑉𝐶 , 𝑘 ∈ 𝐾, 𝑆 ⊂  𝑉: 𝑜𝑘 ∈ 𝑆, 𝑖 ∈ 𝑉\𝑆,

𝑝∈𝑆,𝑞∈𝑉\𝑆

(26) 

 

∑ 𝑥𝑝𝑞
𝑘 ≥ Ω𝑦𝑖

𝑘     ∀𝑖 ∈ 𝑉𝐶 , 𝑘 ∈ 𝐾, 𝑆 ⊂  𝑉: 𝑖 ∈ 𝑆, 𝑟𝑘 ∈ 𝑉\𝑆,

𝑝∈𝑆,𝑞∈𝑉\𝑆

(27) 

 

∑ 𝑥
𝑜𝑘,𝑗
𝑘 ≤ 1    ∀𝑘 ∈ 𝐾,

𝑗∈𝑉𝐶

(28) 

 

∑ 𝑥𝑖𝑗
𝑘

𝑘∈𝐾

≤ 1 − 𝛽    ∀(𝑖, 𝑗) ∈ 𝐴: 𝑞𝑖 > 0 𝑎𝑛𝑑 𝑞̂𝑗 > 0, (29) 

 

∑ 𝑤𝑖𝑗
𝑘

𝑗∈𝑉\{𝑖}

− ∑ 𝑤𝑗𝑖
𝑘

𝑗∈𝑉\{𝑖}

= 𝑞𝑖𝑦𝑖
𝑘     ∀𝑖 ∈ 𝑉𝐶 , 𝑘 ∈ 𝐾, (30) 

 

∑ 𝑤
𝑖,𝑟𝑘
𝑘 = ∑ 𝑞𝑗𝑦𝑗

𝑘

𝑗∈𝑉𝑐

    ∀𝑘 ∈ 𝐾,

𝑖∈𝑉𝐶

(31) 

 

∑ 𝑧𝑖𝑗
𝑘

𝑗∈𝑉\{𝑖}

− ∑ 𝑧𝑗𝑖
𝑘

𝑗∈𝑉\{𝑖}

= 𝑞̂𝑖𝑦𝑖
𝑘    ∀𝑖 ∈ 𝑉𝐶 , 𝑘 ∈ 𝐾, (32) 

 

∑ 𝑧
𝑜𝑘,𝑖
𝑘 = ∑ 𝑞̂𝑖 𝑦𝑖

𝑘

𝑖∈𝑉𝑐

    ∀𝑘 ∈ 𝐾,

𝑖∈𝑉𝐶

(33) 

 

𝑡𝑖
𝑘 + (𝑑̂𝑖𝑗 + 𝑠𝑖)𝑥𝑖𝑗

𝑘 − 𝑊𝑘(1 − 𝑥𝑖𝑗
𝑘 ) ≤ 𝑡𝑗

𝑘     ∀(𝑖, 𝑗) ∈ 𝐴: 𝑗 ∈ 𝑉𝐶 , 𝑘 ∈ 𝐾, (34) 

 

𝑎𝑖 ≤ 𝑡𝑖
𝑘 ≤ 𝑏𝑖 − 𝑠𝑖 + 𝑣𝑖    ∀𝑖 ∈ 𝑉𝐶 , 𝑘 ∈ 𝐾, (35) 

 
𝑣𝑖 ≤ 𝑀. Θ    ∀𝑖 ∈ 𝑉𝐶 , (36) 

 

𝑡
𝑜𝑘
𝑘 = 𝜏𝑘     ∀𝑘 ∈ 𝐾, (37) 

 

𝑡𝑖
𝑘 + (𝑠𝑖 + 𝑑̂𝑖𝑗)𝑥

𝑖,𝑟𝑘
𝑘 ≤ 𝑏𝑟𝑘 + 𝑣𝑟𝑘 + 𝑀(1 − Ω)    ∀(𝑖, 𝑗) ∈ 𝐴: 𝑖 ∈ 𝑉𝐶 , 𝑘 ∈ 𝐾, (38) 
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𝑤𝑖𝑗
𝑘 + 𝑧𝑖𝑗

𝑘 ≤ 𝑄𝑘𝑥𝑖𝑗
𝑘     ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾, (39) 

 

∑ 𝑑𝑖𝑗𝑥𝑖𝑗
𝑘 ≤ 𝐷𝑘

(𝑖,𝑗)∈𝐴

    ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾, (40) 

 

∑ 𝑑̂𝑖𝑗𝑥𝑖𝑗
𝑘 ≤ 𝐷̂𝑘

(𝑖,𝑗)∈𝐴

    ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾, (41) 

 

∑ 𝑠𝑖𝑦𝑖
𝑘

𝑖∈𝑉𝐶

+ ∑ 𝑑̂𝑖𝑗𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴

≤ 𝑊𝑘     ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾, (42) 

 

𝑥𝑖𝑗
𝑘 ∈ {0,1}    ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾, (43) 

 

𝑦𝑖
𝑘 ∈ {0,1}    ∀𝑖 ∈ 𝑉𝐶 , 𝑘 ∈ 𝐾, (44) 

 
𝑣𝑖 ≥ 0    ∀𝑖 ∈ 𝑉𝐶 , (45) 

 

𝑤𝑖𝑗
𝑘 ≥ 0    ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾, (46) 

 

𝑧𝑖𝑗
𝑘 ≥ 0    ∀(𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝐾, (47)  

 

Parameters 

 

𝑉𝐷   – the vertex to contain the depots 

𝑉𝐶   – the vertex to contain the customers 

𝑉𝑀 ⊆ 𝑉𝐶  – the set of customers that must be delivered 

𝑝𝑖   – the quantity to pick up per customer 

𝑞̂𝑖   – the quantity to deliver per customer 

𝑠𝑖   – service time required per customer 

[𝑎𝑖 , 𝑏𝑖]  – service time interval per customer 

𝑘   – a vehicle; 𝑘 ∈ 𝐾; 𝐾 – set of vehicles 

𝑜𝑘   – origin depot; 𝑜𝑘 ∈ 𝑉𝐷 

𝜏𝑘   – the time when a vehicle leaves the origin depot 

𝑓𝑘   – the fixed cost of using a vehicle 

𝑄𝑘   – capacity of a vehicle 

𝐷𝑘   – distance limit a vehicle 

𝐷̂𝑘   – driving time limit a vehicle 

𝑊𝑘   – working time limit of a vehicle 

𝑟𝑘   – return to the depot of a vehicle 

𝑑𝑖𝑗   – the distance between customer 𝑖 and 𝑗 

𝑑̂𝑖𝑗   – driving time between customer 𝑖 and 𝑗 

𝑐𝑖𝑗
𝑘    – the cost of the trip from customer 𝑖 to 𝑗 

Ω   – binary variable; 1 if vehicles have to return to deport at the end, 0 otherwise 

Θ    – binary, variable; 1 if the time window is hard, 0 otherwise 

𝛽  – binary variable; 1 if there is a backhaul constraint, 0 otherwise 
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Decision Variables 

 

𝑥𝑖𝑗
𝑘    – binary variable; 1 if vehicle k traverses from customer 𝑖 to 𝑗, 0 otherwise  

𝑦𝑖
𝑘   – binary variable; 1 if vehicle k serves customer 𝑖, 0 otherwise 

𝑤𝑖𝑗
𝑘    – pickup amount of vehicle k from customer 𝑖 to 𝑗 

𝑧𝑖𝑗
𝑘    – the delivery amount of vehicle k from customer 𝑖 to 𝑗 

𝑡𝑖
𝑘   – time of a vehicle to arrive at customer 𝑖 

𝑣𝑖   – late time of arrival at customer 𝑖 
 

Constraints Explanation 

 

Equation (22) represents the maximization of profit minus the cost of travel, the fixed cost of 

vehicles, and the penalty of being late. 

Equation (23) and (24) represents the constraints that force vehicles to visit each customer once 

and exclude customers that don’t need to be served. 

Equation (25) represents a weak form of the well-known flow conservation constraints. 

Equation (26) ensure the possibility of a connection between the depot of the vehicle k and the 

customers visited by this vehicle. 

Equation (27) determines if the vehicle should return or not to the depot. 

Equation (28) says that a vehicle cannot be used more than one time. 

Equation (29) represents the backhaul constraints. 

Equations (30) and (31) verify that the amount of pick-up carried by the vehicle is equal to the 

amount of pick-up required by the customer. 

Equations (32) and (33) represent the same as equations (30) and (31) but for delivery items.  

Equation (34) (35) (36) defines the time window constraint. The first equation in equation 34 

explains that the addition of the time of arrival at customer 𝑖, the driving duration, the service 

time minus the working time limit should be less than the arrival time at customer 𝑗. The second 

equation (35) makes sure that the arrival time is between the beginning of the time interval of 

the customer and the end of the time interval minus the service time plus the delay time allowed 

if it is a soft time window. The last equation of Equation (37) determines if the time window is 

soft or hard.  

Equations (37) and (38) determine the time when the vehicle should start working and ensure 

that it goes back to the depot on time if it must. 

Equation (39) prevents the vehicle from having more objects to deliver and collect than its 

capacity allows. 

Equation (40) set the distance limit for a vehicle 𝑘. 
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Equation (41) set the driving time limit for a vehicle 𝑘. 

Equation (42) set the working time limit for a vehicle 𝑘. 

Equation (43) to (47) just shows the values that the variables can take. 

5.2.4 Results and Interpretation 

4127 LNS iterations are carried out by the solver. A total net profit of 6515.27 NOK is 

calculated after all the demands of the customers were fulfilled. The net profit of each vehicle 

from each depot along with the individual profit collection, distance traveled, driving, arrival, 

and departure time is shown in Table 5-6 to Table 5-14 and the route from the depot to the 

customer is shown in Figure 5-5. 

 

 
Table 5-6: Work Description of Vehicle V1 

Vehicle: V1 Stops: 2 Net profit: 1353,87  

Stop 
count 

Location 
Name 

Distance 
travelled 

Driving 
time 

Arrival 
time 

Departure 
time 

Profit 
collected 

0 Depot A 0.00 0:00   07:00  

1 Customer 3 7.22 0:11 07:11 14:11 2500 

2 Depot A 14.61 0:22 14:22    

 

 
Table 5-7: Work Description of Vehicle V2 

Vehicle: V2 Stops: 3 Net profit: 1453.19  

Stop 
count 

Location 
Name 

Distance 
travelled 

Driving 
time 

Arrival 
time 

Departure 
time 

Profit 
collected 

0 Depot A 0.00 0:00   07:00  

1 Customer 5 2.33 0:06 07:06 11:06 1250 

2 Customer 6 2.33 0:06 11:06 14:36 1250 

3 Depot A 4.68 0:11 15:05    

 

 
Table 5-8: Work Description of Vehicle V3 

Vehicle: V3 Stops: 2 Net profit: 103.87  

Stop 
count 

Location 
Name 

Distance 
travelled 

Driving 
time 

Arrival 
time 

Departure 
time 

Profit 
collected 

0 Depot A 0.00 0:00   07:00  

1 Customer 4 7.22 0:11 07:11 10:41 1250 

2 Depot A 14.61 0:22 10:52    
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Table 5-9: Work Description of Vehicle V4 

Vehicle: V4 Stops: 3 Net profit: 478.67  

Stop 
count 

Location 
Name 

Distance 
travelled 

Driving 
time 

Arrival 
time 

Departure 
time 

Profit 
collected 

0 Depot B 0.00 0:00   07:00  

1 Customer 10 10.81 0:19 7:19 10:49 500 

2 Customer 2 17.87 0:32 11:02 14:32 1250 

3 Depot B 27.13 0:49 14:49    

 

 
Table 5-10: Work Description of Vehicle V5 

Vehicle: V5 Stops: - Net profit: -  

Stop 
count 

Location 
Name 

Distance 
travelled 

Driving 
time 

Arrival 
time 

Departure 
time 

Profit 
collected 

- - - -   - - 

 

 
Table 5-11: Work Description of Vehicle V6 

Vehicle: V6 Stops: - Net profit: -  

Stop 
count 

Location 
Name 

Distance 
travelled 

Driving 
time 

Arrival 
time 

Departure 
time 

Profit 
collected 

- - - -   - - 

 

 
Table 5-12: Work Description of Vehicle V7 

Vehicle: V7 Stops: 2 Net profit: 1394.00  

Stop 
count 

Location 
Name 

Distance 
travelled 

Driving 
time 

Arrival 
time 

Departure 
time 

Profit 
collected 

0 Depot C 0.00 0:00   07:00  

1 Customer 1 5.28 0:10 07:10 14:10 2500 

2 Depot C 10.60 0:21 14:21    

 

 
Table 5-13: Work Description of Vehicle V8 

Vehicle: V8 Stops: 3 Net profit: 369.00  

Stop 
count 

Location 
Name 

Distance 
travelled 

Driving 
time 

Arrival 
time 

Departure 
time 

Profit 
collected 

0 Depot C 0.00 0:00   07:00  

1 Customer 7 6.53 0:11 07:11 09:11 750 

2 Customer 8 6.53 0:11 09:11 14:00 750 

3 Depot C 13.10 0:22 14:11    
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Table 5-14: Work Description of Vehicle V9 

Vehicle: V9 Stops: 2 Net profit: 1362.67  

Stop 
count 

Location 
Name 

Distance 
travelled 

Driving 
time 

Arrival 
time 

Departure 
time 

Profit 
collected 

0 Depot C 0.00 0:00   07:00  

1 Customer 9 6.89 0:13 07:13 14:13 2500 

       

2 Depot C 13.73 0:26 14:26    

 

Only a single customer with higher demands (500 kWh) is served by the one vehicle for e.g., 

Customer 1 is served by V7 whereas, two customers with low demands (250 kWh) are served 

by one vehicle for e.g., Customers 5 and 6 are served by vehicles V2 which shows the optimal 

use of vehicles as per the demand of the customers. The algorithm can also serve for the pickup 

and delivery cases which is not considered in this case study because of time limitations. If a 

situation arises where it is required to pick up the detachable mobile battery containers and 

deliver it to a construction site and again go for the next pick-up and delivery it can also be 

performed. 

 

Typical 07:00 – 15:00 working hours are considered for this case study, so all the work starts 

at 7 AM in the morning and ends at 3 PM in the afternoon. All the customers have their specific 

working times as stated in Table 5-3. The time at which the work starts is named ‘Time Window 

Start’ and the time at which the work ends is named ‘Time Window End’. The vehicles leave 

their corresponding depot start 7:00, serve the customers within their time windows, and return 

to their depot at the end of the service. All the customers must be visited so, it’s a hard 

constraint. The driving time is also mentioned in Table 5-6 to Table 5-14 which is calculated 

by Bing’s driving time and distances considering the average vehicle to be 70 kilometers per 

hour.  

 

To clarify the arrival time, departure time, driving time, distance traveled, and the profit 

collected let us look at Table 5-13. Vehicle V8 leaves depot C at 07:00, arrives at customer 7 

at 07:11 after driving for 11 minutes covering 6.53 km, serves 2 hours there, and leaves at 

09:11. It arrives at customer 8 at 09:11 because both the customers (machines) are located in 

the same places (construction site) so it doesn’t take any time. It serves customers 8 for 5 hours 

and leaves at 14:00 and arrives back at depot C after driving for 11 minutes covering 6.57 km. 

The total distance traveled for vehicle V8 is 13.10 km and the total driving time is 22 minutes. 

Profit is earlier considered to be fives time the demand so, for 150 kWh the profit is 150*5=750. 

Vehicle V8 collects NOK 750 from customer 7 and NOK 750 from customer 8. Finally, the 

net profit is calculated by subtracting fixed cost (NOK 1000) and cost per unit distance (Nok 

10 * 13.10 = 131) from the profit collected which is 1500 – 1000 – 131 = 369. 
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Figure 5-5: Route from Depots to Customers 

 

Figure 5-5 shows the route of vehicles V1, V2, V3, V4, V7, V8, and V9 from their 

corresponding depots to customers and back. V1-V9 in the figure denotes all the nine vehicles 

belonging to their respective depots as mentioned in Table 5-4. Depot A, B, C, and Customer 

1-10 in the figure represents all the depots and the customers as mentioned in Table 5-3. A total 

of nine vehicles, three in each depot, are made available out of which only 7 vehicles are 

scheduled by the algorithm, two vehicles V5 and V6 are not scheduled since all the demands 

are optimally fulfilled by the remaining 7 vehicles i.e., V1, V2, V3, V4, V7, V8, V9. 
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Table 5-15: Customer served by the corresponding vehicle 

Vehicles Customer Served 

V1 Customer 3 

V2 Customer 5 

Customer 6 

V3 Customer 4 

V4 Customer 10 

Customer 2 

V5 × 

V6 × 

V7 Customer 1 

V8 Customer 7 

Customer 8 

V9 Customer 9 

 

The list of vehicles and the customers it serves are mentioned in Table 5-15. The algorithm 

specifically chooses not to schedule vehicles V5 and V6 because all the customers in the 

Porsgrunn area are served by all the vehicles (V7, V8, V9) in the nearest depot (Depot A) and 

all the customers in the Skien area are served by all the vehicles (V1, V2, V3) in the nearest 

depot (Depot C) but there is a need of an extra vehicle to fully serve all the Skien customers 

hence the algorithm uses just one vehicle (V4) from depot B. 
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6 Results and Discussion 
 

In the first case study, a distributor aims to send a vehicle carrying battery containers to 

construction sites, where the need of each machine must be met by one battery container, 

container capacity for any vehicle must not be exceeded, and overall distance must be 

minimized. There are typically four categories of equipment, each with its own set of energy 

requirements for the rated machine. It is important to compute the total distance traveled, total 

energy demand, and the total number of mobile battery containers. 

 

After successfully applying the problems in the Microsoft Excel solver, it is established that 

fourteen cars are necessary to meet all of the demands, as well as the path of the vehicle from 

the depot to the different customers. All of the criteria are met by exactly one vehicle, with a 

minimal number of vehicles required to meet all of the energy demands. If the vehicle arrives 

at the place with the lowest demand, it fulfills it before proceeding to the next customer and 

finally returning to the depot. If the vehicle arrives at a point with a higher need, it meets the 

demand and searches for the next demand; if it can be supplied, it serves it; if not, it returns to 

the starting depot. 

 

As in the pilot study, the real-world problem is simplified and limited to a standard planning 

cycle in the second case study. The primary tasks in this study are to first schedule the vehicle 

to be used by customers at the construction site and recharged at the depot, and then to calculate 

the total cost associated with it based on the shortest distance from the depot to the construction 

site. In five construction sites, there are three depots and 10 customers. The depots' and 

customers' latitude and longitude, distances between them, driving time between them, 

operating time, delivery quantities, and profit earned are all computed. In each of the three 

depots, there are three identical vehicles, their fixed cost and cost per unit distance are 

considered which serve the energy need of all the customers. 

 

After four thousand iterations of the large-neighborhood search algorithm, a total net profit is 

calculated after all the demands of the customers were fulfilled. The net profit of each vehicle 

from each depot along with the individual profit collection, distance traveled, driving, arrival, 

and departure time is also calculated by the algorithms. Only a single customer with higher 

demands is served by the one vehicle whereas two customers with low demands are served by 

one vehicle showing the optimal use of vehicles as per the demand of the customers. The 

algorithm can also be used for pickup and delivery instances, which are not covered in this case 

study due to time limitation. If the need arises to pick up the detachable mobile battery 

containers, deliver them to a construction site, and then return for the next pick-up and delivery, 

this can be done. For this case study, typical working hours are taken into account, so all work 

begins at a predetermined time in the morning and concludes at a fixed time in the afternoon. 

Every customer has a specified working time labeled 'Time Window Start' and 'Time Window 

End.' The vehicles leave their corresponding depot at their fixed time, serve the customers 

within their time windows, and return to their depot at the end of the service. All the customers 

must be visited so, it’s a hard constraint. A total of nine cars are made available, three in each 

depot, of which only seven are scheduled by the algorithm, and two are not planned because 

all requests are ideally met by the remaining seven vehicles. 
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7 Conclusions 
 

The fossil-free construction site often employs bio-fueled construction equipment that 

produces other pollutants such as particulate matter and nitrogen oxide but is not carbon 

neutral, meaning that fossil-free does not imply zero emissions. In Norway, a trial project to 

provide electric energy to building activities in areas where access to the power grid is not 

available is now being evaluated. This thesis proposes a general mobile battery charging 

scheduling problem that involves using mobile battery containers to charge batteries at a 

location where the grid has adequate capacity and then driving the batteries from the charging 

station to relevant construction sites that use battery-powered construction machines. The 

optimization model is formulated as a MILP, with objective functions, constraints, and other 

important parameters, and it is then solved using the Microsoft Excel solver. Finally, two case 

studies are provided which help to understand the practical scenarios and challenges that come 

along with the solution. 

 

Although there has been no specific previous research effort on the electric vehicle scheduling 

problem for emission-free construction sites, the core idea behind the traveling salesman 

problem, vehicle routing problem, vehicle routing problem with time window, vehicle 

scheduling problem, and battery electric transit vehicle scheduling problem has been useful for 

problem formulation. A scenario in which a construction company intends to replace all 

conventional diesel equipment with electric counterparts in an emission-free construction site 

is investigated for a general formulation of the problem. The main tasks in this study are to 

schedule the recharge of the mobile battery container and to identify the number of charging 

stations and chargers required. 

 

Mixed-integer linear programming, mixed-integer non-linear programming, genetic 

algorithms, and large neighborhood search algorithms are investigated to address these 

formulations. These procedures are carried out using the MATLAB optimization toolbox and 

the Microsoft Excel solver. It can be concluded from these studies that noncommercial MILP 

software products, in general, cannot match the speed or reliability of their commercial 

counterparts, but they can be a viable alternative for customers who cannot afford the more 

expensive commercial alternatives. Open-source software tools can also be more expandable 

and easier to adapt for certain applications than commercial software tools, whose versatility 

may be limited by the user interface. 

 

Two study cases are developed: one is a simple optimization problem to comprehend the 

concept of vehicle routing problems, and the other is a more difficult optimization scheduling 

problem to address a real-world scenario. These are constructed using mixed-integer linear 

programming and solved in an Excel solver using the large neighborhood search algorithm. 

The outcomes of these cases were satisfactory nonetheless it could have been more polished, 

and added more features, and constraints if there were no time limitations. Future work might 

cover a more complex study scenario without limiting the variables, it might as well cover the 

possibilities of partial charging and discharging, fuel usage and CO2 emissions, and an 

algorithm that can present an alternative option when one or more limitations are not met. 
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